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ABSTRACT 

Acoustic levitation permits the study of droplet dynamics without the effects of surface 

interactions present in other techniques such as pendant droplet methods. Despite the 

complexities of the interactions of the acoustic field with the suspended droplet, acoustic 

levitation
 

provides distinct advantages of controlling morphology of droplets with 

nanosuspensions post precipitation. Droplet morphology is controlled by vaporization, 

deformation and agglomeration of nanoparticles, and therefore their respective timescales are 

important to control the final shape. The balance of forces acting on the droplet, such as the 

acoustic pressure and surface tension, determine the geometry of the levitated droplet. Thus, the 

morphology of the resultant structure can be controlled by manipulating the amplitude of the 

levitator and the fluid properties of the precursor nanosuspensions. The interface area in colloidal 

nanosuspensions is very large even at low particle concentrations. The effects of the presence of 

this interface have large influence in the properties of the solution even at low concentrations. 

This thesis focuses on the dynamics of particle agglomeration in acoustically levitated 

evaporating nanofluid droplets leading to shell structure formation. These experiments were 

performed by suspending 500µm droplets in a pressure node of a standing acoustic wave in a 

levitator and heating them using a carbon dioxide laser. These radiatively heated functional 

droplets exhibit three distinct stages, namely, pure evaporation, agglomeration and structure 

formation. The temporal history of the droplet surface temperature shows two inflection points. 

Morphology and final precipitation structures of levitated droplets are due to competing 

mechanisms of particle agglomeration, evaporation and shape deformation. This thesis provides 
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a detailed analysis for each process and proposes two important timescales for evaporation and 

agglomeration that determine the final diameter of the structure formed. It is seen that both 

agglomeration and evaporation timescales are similar functions of acoustic amplitude (sound 

pressure level), droplet size, viscosity and density. However it is shown that while the 

agglomeration timescale decreases with initial particle concentration, the evaporation timescale 

shows the opposite trend. The final normalized diameter hence can be shown to be dependent 

solely on the ratio of agglomeration to evaporation timescales for all concentrations and acoustic 

amplitudes. The experiments were conducted with 10nm silica, 20nm silica, 20nm alumina and 

50nm alumina solutions. The structures exhibit various aspect ratios (bowls, rings, spheroids) 

which depend on the ratio of the deformation timescale (tdef) and the agglomeration timescale 

(tg). For tdef<tg  a sharp peak in aspect ratio is seen at low concentrations of nanosilica which 

separates high aspect ratio structures like rings from the low aspect ratio structures like bowls 

and spheroids. The time duration of pure evaporation, agglomeration and structure formation are 

presented in phase diagrams where these stages are represented by regions in the time-particle 

concentration domain. A comparison of phase diagrams for different particle solutions is made 

illustrating the influence of liquid properties on the duration of the structure formation phases 

and the transition to different morphology when concentration is increased. 
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CHAPTER I: INTRODUCTION 

Acoustic levitation permits the study of droplet dynamics without the effects of surface 

interactions present in other techniques such as pendant droplet methods. Despite the 

complexities of the interactions of the acoustic field with the suspended droplet, acoustic 

levitation [1-4]
 

provides distinct advantages of controlling morphology of droplets with 

nanosuspensions post precipitation [5-9]. Droplet morphology is controlled by vaporization, 

deformation and agglomeration of nanoparticles, and therefore their respective timescales are 

important to control the final shape. The balance of forces acting on the droplet, such as the 

acoustic pressure and surface tension, determine the geometry of the levitated droplet. Thus, the 

morphology of the resultant structure can be controlled by manipulating the amplitude of the 

levitator and the fluid properties of the precursor nanosuspensions [10-15]. The interface area in 

colloidal nanosuspensions is very large even at low particle concentrations. The effects of the 

presence of this interface have large influence in the properties of the solution even at low 

concentrations. For example, the viscosity of a nanosilica solution at 2% concentration can be 

40% higher than that of pure fluid [10-13]. 

 Structure formation is a direct consequence of particle agglomeration, the rate at which 

particles agglomerate and the rate at which the liquid phase in the droplet evaporates determine 

the final structure size and morphology [16-17]. Agglomeration of suspended particles is an 

important field of study which delineates two processes called perikinetics and orthokinetics. 

The agglomeration of particles within an acoustically levitated droplet and its influence in 

structure formation has been studied previously by our group [18-19]. Perikinetics deals with 
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agglomeration of suspended particles due to Brownian rotation and diffusion, while orthokinetics 

arises from shear/velocity gradient within the liquid layers. Bremer et al [16] estimated the time 

scale of macroscopic aggregation which occurs when precipitation is visible. The number of 

bonds formed and aggregation rate are important for the aggregation process. This led them to 

define a physical time scale based on orthokinetic sedimentation which did not include arbitrary 

parameters like visibility of precipitation. The effect on structure geometry of agglomeration and 

evaporation rates is studied in this thesis by using the agglomeration and evaporation time scales. 

The objective is to acoustically levitate a droplet containing silica and alumina nanoparticle 

solutions at different concentrations heated by a CO2 laser. This thesis analyzes the effect of 

concentration on the shape of final structure using high speed imaging and IR thermography. In a 

first attempt of this kind, the ratio of agglomeration to evaporation time, tg/te, is used to compare 

the structure formation at different precursor concentrations, and is shown to influence the 

diameter ratio.  
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CHAPTER II: LITERATURE REVIEW 

Nanofluids: 

The term nanofluid refers to a colloidal suspension of nanometer size particles in a liquid 

phase.  Nanofluids are comprised in the field of nanoscience which studies the phenomena that 

occurs at the one to one hundred nanometers [21]. The particles used in this study are of 10, 20 

and 50nm size. To give a sense of scale, the diameter of a typical human hair is in the order of 

80,000nm and most studied viruses are in the 20 to 100nm size scale. Stable colloidal suspension 

of nanoparticles is possible thanks to their small size and weight that allow fluid Brownian 

motion to significantly slow down particle deposition caused by gravitational force. The 

exceptionally large area to volume ratio of nanofluids means the interface area between 

nanoparticles and liquid in colloidal solutions is very large even at low particle concentrations. 

At a given total particle volume the total interface surface area increases exponentially with the 

decrease of particle size. A fixed volume of particles of nanometer scale have a surface area six 

orders of magnitude larger compared to the same volume of millimeter sized particles. In the 

particular case of a droplet containing a 5% volume concentration of 20nm particles, total 

surface area of the fluid, that comprises the droplet external and internal surface areas, is 1,300 

times larger than the liquid surface area of the same size pure liquid droplet. Then interfacial 

phenomena at the liquid surface become a major factor that determines the state of the system 

due to the large magnitude of interfacial surface area in the system. Thus, surface dependent 

processes such as heat transfer are enhanced by the use of nanoparticles and the use of nanofluids 

as thermal fluids is a large application of nanotechnology. Also the energy at the interfaces 
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increases considerably since it is proportional to the interfacial area. The interface curvature at 

the particle surface is inversely proportional to the radius of the particle, as seen in figure 2.1. 

This makes the preparation of stable colloidal solutions with very small particles a challenge due 

to the very large surface free energy at the interface. The system will tend to equilibrium by 

minimizing its surface free energy and that causes particle agglomeration to reduce the 

interfacial surface area in order to minimize this interfacial energy. Then interfacial tension has 

to be reduced in order to have a stable suspension of very small particles, this is done by altering 

the surface properties of the particles, an example of this is the use of surfactants and dispersing 

agents. The many advantages that nanometer geometries bring come with the complexities of 

physical properties not being equal in the nano-scale compared to the macro-scale and give an 

opportunity to manipulate the properties of a fluid by their addition to the base fluid. The 

following sections present the effects of interfacial interactions on droplet geometry and its 

dependence on particle size and concentration.  

     

Figure 2.1: Nanoparticle Solid-Liquid Interface. 

  

rp 

Interface 

Particle 
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Acoustic Levitation: 

Acoustic levitation permits the study of droplet dynamics without the effects of surface 

interactions present in other techniques such as pendant droplet methods. These advantages do 

not come without compromise; acoustic levitation brings complexities due to the interactions of 

the acoustic field with the suspended droplet. Internal flow and droplet rotation is induced by 

acoustic streaming; also droplet deformation is caused due to the effect of acoustic pressure at 

the droplet surface. Acoustic levitation is a powerful tool to investigate droplet phenomena, but 

the effects of this method has on the subject of study must be determined and quantified in order 

to correlate the results to applications outside of an acoustic field.  

Acoustic levitation is accomplished by generating a standing acoustic wave; this is done 

by the emission of pressure pulses from a transducer that are reflected by a static surface placed 

at a distance Lr from the transducer. The incident and reflected pressure waves superimpose to 

form a harmonic standing acoustic wave.  The acoustic field force potential makes sample 

suspension possible, this potential is the combination of radiation pressure “PR” and Bernoulli 

pressure “PB” of the standing wave [9]. The gradients of the force potential are the source of the 

axial and radial levitation forces acting on the droplet. In the absence of gravity, droplets can be 

suspended in the pressure nodes of the standing wave. In the gravitational field, the droplet 

center of gravity moves below the pressure node to compensate for the droplet weight, as seen in 

figure 2.2.   
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Figure 2.2: Sketch of Droplet Positioning in the Standing Acoustic Wave 

In order to suspend a droplet, the acoustic wave pressure amplitude has to balance the 

droplet weight. If the amplitude is lower than this critical value, levitation is not possible. The 

levitation force acting on the droplet also depends on its external area, which in turn depends on 

droplet volume, thus the limits for levitation are determined by the density of the droplet. 

Droplets suspended in an acoustic field are subject to deformation from the pressure forces 

acting at the surface applied by the acoustic field. The geometry of the suspended droplet 

depends on the equilibrium of forces normal to the surface and forces acting on the surface 

tangential direction, the later will be addressed in more detail in the following sections. The 

amplitude of the acoustic field correlates with sound pressure level (SPL) measured in decibels 

(dB). Radiation and Bernoulli pressure can be calculating by the following [9]: 

                                                               (2.1) 
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Where Ma is the acoustic Mach number and correlates to SPL approximately by: 

              a                         (2.2) 

The acoustic pressure acting on the droplet tends to flatten it deforming it from a 

spherical to an oblate geometry. In the case where the acoustic forces acting in the normal 

direction of the droplet surface exceed the forces acting tangential to the surface, i.e., if a droplet 

has very low surface tension or if the droplet is in an acoustic field at high SPL, droplet 

disintegration may occur. The acoustic pressure limit after a droplet goes through break up is 

dictated by the size and interfacial properties of the droplet.  Anilkumar, Lee and Wang [22] 

have studied the conditions at which acoustically levitated droplets become unstable and break 

up, they have studied the balance of stresses applied on the levitated droplets and have 

determined that the geometry and stability of acoustically levitated droplets depend on surface 

tension, acoustic pressure and droplet size with respect to the acoustic wave number. They have 

observed droplet deformations including horizontal elongation, appearance of concavities in the 

upper and lower halves of the droplet and “dog-bone” cross section droplets. Then by varying the 

acoustic levitation conditions, the geometry of the suspended droplets can be manipulated and 

droplet disintegration can be avoided or promoted depending on the requirements of the 

particular application. The important effect of droplet geometry in the final geometry of 

agglomerated nanoparticles is presented in the following sections. 
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Acoustic Streaming 

When an object is suspended in an acoustic field the presence of this object perturbs the 

force potential field around it. This perturbation results in a flow around the suspended object, 

which is termed ‘Acoustic Streaming’. This phenomenon has been studied by many authors. In 

particular, Lord Rayleigh was the first one to publish his calculations of fluid motion via the 

momentum equation of steady incompressible laminar flow in 1884 [23]. Burdukov and 

Nakoryakov (1965) [24] and Lee & Wang (1990) [25] applied perturbation methods to solve the 

acoustic streaming flow field, Riley (1997) [26] differentiated the internal acoustic streaming due 

to interactions with a solid surface from the acoustic streaming caused by dissipation to the bulk. 

Acoustic streaming is the fluid motion that occurs due to the attenuation of high intensity 

ultrasound waves [27]. This attenuation can be caused by dissipation in the far field, referred as 

“quartz wind”, it can also occur due to the presence of a solid boundary. In this study, it is 

assumed the acoustic waves do not penetrate the liquid droplet due to the much larger sonic 

impedance of the fluid phase compare to the gas phase sonic impedance. Thus a suspended liquid 

droplet is considered to be a solid boundary within the acoustic field [5, 7]; the ultrasonic waves 

are then dissipated at the Stokes boundary layer around the “solid” surface of the droplet. The 

acoustic energy is dissipated in the form of heat and by transferring momentum to the fluid in the 

dissipation region [5, 7, 28, 29]. This transference of momentum puts the fluid surrounding the 

surface of droplet in motion. Yarin et.al. [5, 7] addressed the streaming phenomena around an 

acoustically levitated droplet and obtained solutions of the boundary layer equations around the 

droplet. Two regions were identified: the inner acoustic streaming referred as acoustic boundary 

layer due to solid wall dissipation at the surface of the droplet, which its thickness is in the order 
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of             , and outer acoustic streaming due to far field dissipation where vortices are 

of the order of several droplet diameters [7]. The later type of recirculation is of great importance 

in the case of evaporating droplets since the vapor coming from the droplet can be transported by 

the outer streaming away from the droplet which has an effect on the evaporation rate due to the 

vapor concentration reduction near the droplet surface. The acoustic streaming field is illustrated 

in figure 2.3. 

 

Figure 2.3 Sketch of Acoustic Streaming Flow Field [7]. 
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A secondary flow around the droplet is also present and it is referred as secondary 

acoustic streaming. This flow at the droplet surface, acts tangentially on the droplet in the 

horizontal direction rotating the suspended droplet. In the experimental and numerical work of a 

droplet resting on a flat surface is subject to an acoustic field, Algane et.al.’s [29] results 

illustrate the secondary acoustic streaming around the droplet. The flow at the surface of the 

droplet causes recirculating internal flow in the droplet. In the work done by Hong Zao et.al. 

[30], the circulation within the droplet is described by the steady state streaming function in polar 

coordinates of the flow in the droplet,   .  

                                                                                                                (2.3) 

where M is a constant parameter determined by the acoustic wave frequency and the droplet 

radius,    is the cos(θ) and κ is to the ratio of gaseous and liquid media dynamic viscosity. 

                                                                                                                            (2.4) 

where    is the dynamic viscosity of the gaseous media and    is the dynamic viscosity of the 

liquid media inside the droplet. This ratio decreases with increasing liquid viscosity, by assuming 

the viscosity of the fluid in the droplet does is not a spatial dependant and assuming constant 

gaseous phase viscosity it can be said the recirculation velocity field scales to: 

                                                                         (2.5) 

Then the recirculation velocity scale “  ” decreases with liquid phase viscosity, this has a 
significant effect on the distribution of a solute inside the droplet. Figure 2.4 a. and b. illustrate 
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the internal flow induced through shear by primary and secondary acoustic streaming. The 

solution of the stream function shows two recirculating cells at the top and two cells at the 

bottom of the droplet. In a microgravity environment, where the droplet is located at the pressure 

node, these cells are symmetrical. The gravitational forces acting on the droplet in terrestrial 

conditions shift the droplet under the pressure node making the bottom recirculation cells larger 

than the top cells [8].  Figure 2.4.a is an illustration of the symmetrical recirculation cells 

reported in Rednikov et al. analytical study of a non-rotating droplet [8]. Secondary acoustic 

streaming over imposes a horizontal circulating flow, shown in figure 2.4.b. Droplet solid 

rotation is can be caused  by droplet misalignment with the levitation axis, solution 

inhomogeneity and/or asymmetric heating [18]. In the work of Saha et al., the flow regime inside 

the droplet has been measured via Particle Image Velocimetry (PIV), the results of those 

measurements show that droplet rotation affects internal recirculation causing only one 

recirculation cell to be present in the droplet [18, 21].  The important effects of these internal 

flows on particle migration in the droplet are discussed in later sections. 

 

Figure 2.4: a) Droplet Cross Section View Illustrating Internal Recirculation Cells due to primary 

Acoustic Streaming. b) Droplet Top View Illustrating Horizontal Rotating Flow Induced by 

Secondary Acoustic Streaming. 
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Interface Physical Properties  

Surface tension is defined by the free energy at the interface of the fluid due to the lack of 

other molecules at one side of the interfacial boundary. The energy at the interface is referred as 

Gibbs free energy. The solutions used in the present work are water based thus the 

intermolecular attraction properties of this substance are discussed in this section. Water has a 

relatively high surface tension (~72mN/m) compared to any organic compound. These 

particularly high attraction forces are due to water’s molecular structure, water molecules form 

hydrogen bonds with four other surrounding water molecules. The energy of these bonds (10-

40kJ/mol) is larger than the usual Van der Waals attraction energy (~1kJ/mol) but much lower 

than ionic bonds (~500kJ/mol) [31].  Surface tension is thermodynamically defined as Gibbs free 

energy by interface unit area. Gibbs free energy can be defined as the amount of energy to create 

a unit of surface area; it can be expressed at constant pressure and temperature as [21]: 

                                (2.6) 

Where   is surface tension, G is Gibbs free energy and A is surface area. In the particular 

case of enlarging the surface of a sphere the work done on the droplet to change its radius by    

can be written as [29]: 

                                                                (2.7) 

Then the energy needed to deform a spherical droplet, which has the lowest surface area 

for any given volume, can be quantified by equation 2.7. Surface tension is proportional to Gibbs 
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free energy at the interface, the thermodynamic definition of Gibbs free energy can be expressed 

as [32]: 

                                 (2.8) 

If we take the derivative of Gibbs free energy: 

                          (2.9) 

Since            we substitute in (2. 8): 

                           (2.10) 

At constant pressure (2.9) yields: 

                      (2.11) 

To satisfy equilibrium conditions the entropy of the system has to be at a maximum and 

Gibbs free energy at a minimum. At equilibrium, entropy is constant so a change in Gibbs free 

energy scales with temperature (at constant pressure) as: 

                                                                 (2.12) 

Since surface tension is proportional to the variation of Gibbs free energy      , an 

increase in temperature causes a decrease in surface tension thus a decrease in surface energy at 

the interface. Then it can be said, from a thermodynamic point of view, that surface tension is 

free energy per unit of interfacial surface area. These interfacial effects also take place in solid-
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liquid interfaces; surface tension in this case is referred as interfacial tension which is a more 

general way to refer to this phenomenon.   

Effects of Interface Curvature 

The curvature of an interface has significant effects on some of the thermal properties of 

the fluid and on the surface forces acting at the interface [29, 33]. This is particularly true for 

small geometries since their surface to volume ratio and the curvature of their interfaces can be 

very large. A pressure difference between the exterior and the interior of the droplet occurs when 

the interface is curved. In order for the system to be in equilibrium the forces acting tangentially 

to the surface have to be balanced by the difference in pressure across the interface. The pressure 

difference across the interface    can be calculated equating the force exerted on a surface 

element of the surface      to the force acting on a line at the surface by surface tension,    , 
the result is the Laplace equation: 

                                                                   (2.13) 

Where    and    are the radii of curvature of the surface, in the case of a spherical 

geometry    and     are equal. Then the pressure difference at the interface is not only a function 

of interfacial energy but is also a function of the curvature of the interface. Curvature also has an 

effect on thermodynamic properties of the interface, from equation 2.9 it can be seen that Gibbs 

free energy has a PV component, then for a constant temperature and surface area a change in 

Gibbs free energy can be expressed as: 

                                                               (2.14) 
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Substituting 2.13 for a spherical droplet of radius r in 2.14 yields: 

                                                                  (2.15) 

Then Gibbs free energy increases with curvature of the interface (1/r), this increase of 

free energy is known as the Gibbs-Thompson effect [29, 33, 34].  Taking into consideration the 

physico-chemical and mechanical equilibrium conditions, the following expression for vapor 

pressure can be derived from the Laplace equation [29, 33]: 

                                                                 (2.16) 

Where    is the vapor at a curved surface and    is the vapor pressure of the same 

substance in a flat surface of zero curvature. This expression is known as Kelvin’s equation and 

it represents the dependence of vapor pressure on the curvature of the interface surface. Then 

from this relation it can be said that vapor pressure increases with surface curvature thus vapor 

pressure is higher for smaller droplets. This explains why in a distribution of different size 

droplets the large droplets will increase in size by absorbing the smaller droplets [29, 33].  

Equilibrium of Multiphase Multicomponent Systems 

Multi-component systems including more than one phase are stable when all the 

component phases are in equilibrium. The phases in the system can be considered as subsystems, 

all subsystems have to be in equilibrium with each other for the whole system to be in 

equilibrium. The free energy of the each subsystem can be quantified applying the definition of 

Gibbs free energy:  
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                                                               (2.17) 

                                                               (2.18) 

Where   and   represent the phases in the system, 1 and 2 refer to the components in the 

system,   is the chemical potential of each component at a given phase and   is the number of 

moles of a component at a given phase. If there is no source nor a sink in the system, the amount 

of matter lost by a phase, due to a phase change, is gained by the phase it changes into  

                                                                   (2.19) 

The total change of free energy of the system is the sum of free energy change of each 

subsystem. For the system to be in equilibrium free energy has to be at a minimum,     . The 

free energy change of the system can be then expressed as: 

                                                             (2.20) 

At constant temperature and pressure and if component 2 is kept at a constant physical 

state,            , substituting 2.17, 2.18 and 2.19 into 1.20 after rearranging yields: 

                                                                    (2.21) 

This states the chemical potential of each component is equal in all phases in order for the 

system to be in equilibrium. If this condition is not satisfied, mass will change from one phase to 

the other [29]. To calculate the composition of a two-phase system, an approximation using 

known properties of the pure components can be used when the system is at relativity low 

pressure. From equation 2.21 we can write for component 1: 
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                                                                      (2.22) 

Where    is the fugacity of component 1 in the mixture, taking the particular case of a 

liquid-vapor system, then 

                                                                      (2.23) 

The fugacity of a component can be quantified as product of the molar fraction of the 

component in the system by the fugacity of the component in pure form f.  

                                                                      (2.24) 

The fugacity of the component can be approximated as to be equal to the component 

saturation pressure           , if we approximate the fugacity of the component to be equal to 

the saturation pressure of the component in the system               we can write  

                                                                      (2.25) 

This relation is known as Rault’s Law, where        is the vapor pressure of the 

component, the vapor pressure of the system is the sum of the vapor pressure of each component 

in the system. In the particular case where one of the components is non-volatile, its vapor 

pressure is zero and the system vapor pressure will be equal to the product of the saturation 

pressure of the volatile component by its molar fraction. Since          and increase of 

molar concentration of component 2 will decrease component’s 1 molar fraction thus decreasing 

the vapor pressure of the system. 
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CHAPTER III: METHODOLOGY 

The experimental set up consisted of an ultrasonic levitator (Tec5 ultrasonic levitator, 

100 kHz) to suspend the droplet (Figure 3.1) [15]. The suspended droplet was heated by a CO2 

laser irradiating at a wave length of 10.6 μm with a nominal beam diameter of 2 mm. The power 

of the laser was tuned at 0.75 MW/m
2
 using a power supply controller. An Infrared camera was 

placed perpendicular to the laser beam to measure the temperature of the droplet. The IR camera 

(FLIR Silver: calibrated for a range of -5 to 200
o
C with an accuracy of +/- 1

o
C) was equipped 

with a microscopic zoom (FLIR G3-F/2) lens to facilitate 3X magnification with a working 

distance of 40 mm. The IR camera was operated at a 100 fps and the recorded images were 

processed to obtain the temperature data of the droplet during heating. The integration time of 

the IR camera depends on the temperature range adapted. Most of the experiments were 

performed with a temperature range of 20-80
o
C which needed an integration time of 1.63 msec. 

The error in temperature detection due to change in emissivity was found to be 0.03 °C and 

hence negligible. A high speed camera (Fastec TSHRMM, with a maximum speed of 16000 

frames per second) along with a zoom lens assembly (Navitar 6000) was used to capture the 

physical processes within the droplet during the laser irradiation. This camera was placed at an 

angle of 30⁰ with the laser beam as shown in Figure 3.1. The event was recorded at 500 fps, the 

maximum that could be achieved without losing spatial resolution. The images from high speed 

camera were used to measure the instantaneous diameter of the droplet with a better time 

resolution than the IR camera (100 fps). 
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Particles of different types and size were used in this work, 10nm and 20nm Silica as well 

as 20nm and 50nm Alumina. Experiments were conducted at particles concentrations of ϕ = 0.5, 

1, 2, 3 and 5%vol in addition to these the maximum concentrations attainable from the colloidal 

suspensions manufacturer were used. In the case of 10nm Silica the maximum concentration 

used was φ = 7.33%vol, 20nm Silica φ = 23.11%vol, 20nm Alumina φ = 8.99%vol and 50nm 

Alumina φ = 5.99%vol. The experiments were conducted with four different types of particles, 

six particle concentrations and three SPL (160, 162 and 165dB) for each particle type. In 

addition, glycerin was added to 0.5 and 2%vol 10nm Silica (1 and 4%vol glycerin concentrations 

respectively) solutions to study the effect of increasing the solution viscosity on structure 

formation. Similarly surfactant was added to 10nm and 20nm Silica particle concentration φ = 

0.5%vol solutions to observe the effect of surface tension reduction on the final structure 

morphology. The droplets were generated and deployed to the pressure node of the levitator by a 

micro needle. For every run of the experiment, the initial diameter of the droplet was maintained 

to be 500 μm (+/- 30 μm). After the experiment, the IR and high speed images were analyzed to 

obtain the temperature and diameter data.  

The temperature data was obtained by defining a zone of interest around the surface of 

the droplet in each IR images, and the maximum, average and standard deviation of the 

temperature within droplet were calculated. It is important to mention here that the droplet 

oscillates from side to side with respect to the IR camera axis during the experiment resulting in 

out of focus images. For aforementioned analysis only those images were considered where the 

droplet was in the focus plane. The high speed images were used as evidence of different shape 
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transformations during the heating process. These images were also used to calculate the 

diameter of the droplet. 

 

Figure 3.1: Experimental Setup Schematic. 

The images were analyzed using Motion Measure software. To calculate the 

instantaneous diameter, an edge around the droplet was defined. An equivalent diameter was 

calculated from the area under the curve (edge) assuming the droplet to be axisymmetric with 

respect to the levitator longitudinal axis. The final form of the precipitate was collected on 

copper grids to perform ex-situ analyses. The samples were analyzed using optical microscope, 

and scanning electron microscopy (SEM). The schematic of the experimental setup is shown in 

Figure 3.1. More details about the experimental methods can be found in previous works [14,15]. 
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CHAPTER IV: STRUCTURE FORMATION AT DIFFERENT ACOUSTIC 

AMPLITUDES 

Radiatively heated levitated functional droplets exhibit three distinct stages namely pure 

evaporation, agglomeration and finally structure formation. During the initial stages of the 

vaporization process, the droplet surface temperature increases due to the monochromatic 

irradiation of the CO2 laser. The increase in temperature is primarily due to the low vaporization 

rate and consequently transient heating of the droplet. The temperature front is initially 

asymmetric (due to directional laser flux) and subsequently advances over the surface (Figure 

4.1). The droplet vaporization rate and temperature homogenization is mainly controlled by the 

forced convection caused by internal flow recirculation in the liquid phase induced by acoustic 

streaming (an effect caused by the scattering of the acoustic field due to the presence of the 

liquid droplet which has a large acoustic impedance compared to the gaseous phase, see Acoustic 

Streaming in Chapter 2) and droplet rotation about the vertical axis induced by the acoustic 

torque. Thus, acoustic levitation properties, such as sound pressure level (SPL), have a direct 

impact on liquid evaporation. 

 

Figure 4.1: Infrared Images of the droplet temperature increase during early stages of  the 

evaporation phase. 
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Characteristics of the temperature profiles 

The droplet surface temperature profile exhibits a local maximum and a local minimum 

during the entire evaporation and agglomeration lifecycle (Figs. 4.2a and 4.3a). Initially with 

continuous heating, the temperature increases and reaches a maximum, which is a function of 

droplet specific heat, vapor pressure, latent heat, internal recirculation strength and projected 

area available for radiative heat transfer. Strong liquid phase recirculation induced by the 

acoustic streaming generally increases the timescale of the transient temperature rise or in other 

words, delays the occurrence of the first inflection point in the temperature profile (Figs. 4.2a 

and 4.3a). Internal recirculation also aids in reducing the diffusion length (increases the energy 

transport) and hence constrains the transient temperature rise of a droplet to a lower wet bulb 

limit.  Thus, by tuning the sound pressure level, the magnitude of the acoustic streaming can be 

adjusted and hence one can control the wet bulb temperature and transient heating timescale. 

Hence the maximum temperature in the normalized time domain is higher at an SPL of 160 dB 

compared to 165 dB in the evaporation phase as shown in Figures 4.2a and 4.3a. Liquid 

evaporation is affected by SPL through heat transfer enhancement by virtue of strong 

recirculation. Once the droplet attains the wet bulb temperature, vaporization rate becomes 

maximum (first maximum of the temperature profile in Fig. 4.2a). However in radiatively heated 

droplets (unlike convectively heated droplets) the temperature increase leads to heat dissipation 

to the cooler ambient and heat transferred to the droplet is also converted to latent heat due to the 

phase change occurring at the droplet surface. The heat dissipated to the ambient combined with 

the latent heat of vaporization exceed the heat flow into the droplet from the heat source, then the 

net heat flow is in the direction away from the droplet causing a decrease in temperature. 
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Figure 4.2: a) Surface Temperature and D/Do vs. t/te b) Aspect Ratio vs. t/te  at φ = 0.5%. 



24 

 

 

Figure 4.3: c) Surface Temperature and D/Do vs. time d) Aspect Ratio vs. time  at φ = 0.5%. 
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Figure 4.4 a) Surface Temperature and D/Do vs. t/te b) Aspect Ratio vs. t/te  at φ = 2%. 
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Figure 4.5: c) Surface Temperature and D/Do vs. time d) Aspect Ratio vs. time  at φ = 2%. 
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This leads to a slow decrease in droplet surface temperature. Surface temperature reaches 

the minimum point when liquid evaporation rate decreases with increase of particle 

concentration at the droplet surface. Consequently, the heat absorbed from the laser flux raises 

the temperature of the  structure abruptly (second inflection point in Figures 4.2a, 4.4a).  The 

maximum temperature attained by this structure is a weak function of the aspect ratio. Usually 

there is a decrease of available projected area for heating as aspect ratio increases with increase 

in SPL (Figures 4.2b, 4.4b). The maximum temperature of the φ = 2% silica solutions is larger 

compared to the φ = 0.5% due to larger exposed heating area since rings formed at this particle 

concentration reorient (from horizontal to vertical plane). Structure reorientation can be 

attributed to non-uniform agglomeration. Non-uniform agglomeration can have two effects on 

the stability of the structure within the acoustic field, a shift of the structure center of gravity 

away from the pressure node in the radial direction and asymmetric structure formation. The 

shift of the center of gravity away from the pressure node causes the acoustic levitation force and 

the weight of the droplet to become unaligned, since the forces are no longer collinear in this 

case, an unbalanced torque pair acting on the structure causes it to become unstable and structure 

rotation occurs. Geometrical asymmetries affect the force acting on different regions on the ring 

surface; the force applied by the acoustic field is dependent on the geometry of the object 

perturbing the acoustic field, then the net force acting on one side of the ring can be different 

than the force acting on the other side of the ring if these are not symmetric. This yields an 

unbalanced force pair that causes the structure to rotate. Figure 4.6 presents a free body diagram 

showing the interaction of these forces on the agglomerated ring structure. 
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In contrast, with the φ = 0.5% cases at 160 and 162dB, the structure formed at a higher 

SPL has a larger aspect ratio, therefore, the area exposed to heating is smaller, which yields a 

lower final surface temperature. The diameter reaches a constant value marking the formation of 

the agglomerated particle structure at different concentrations and different SPL (Figures 4.2a 

and 4.4a). Aspect ratio also reaches a constant value at the end of the evaporation phase.  

 

Figure 4.6: Free body diagram. 

Figures 4.3c and 4.4c present D/Do and Temperature vs. time plots, which clearly show 

that the total time before structure formation varies between 5-8 secs.  The droplets with higher 

initial concentration of nanosilica (Fig. 4.4c) exhibit structure formation relatively faster 
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compared to the droplets with low initial concentration (Figure 4.3c). Similarly Figures 4.3d and 

4.4d represent the temporal variation of aspect ratio (c). The sharp increase in aspect ratio 

coincides with the inflection point of the diameter regression plots (Figures 4.3c and 4.4c). 

Timescales of Vaporization and Agglomeration 

As shown in our group’s earlier work [15], the timescale for pure evaporation stage is 

smaller for higher concentration since the amount of solvent to be vaporized is less. Higher 

solute concentration also suppresses the vapor pressure according to Raoults’ law (see 

Equilibrium of Multiphase Multicomponent Systems in Chapter 2), slowing down the 

vaporization rate. The total time of the droplet lifecycle (vaporization and agglomeration) is 

normalized by the evaporation time scale,   , which is the time required to evaporate the liquid 

phase in the droplet. The evaporation timescale is composed of two parts. One part corresponds 

to the structure formation time    which is determined by the time taken by the droplet to form a 

rigid structure with no further decrease in size.  Beyond    , evaporation continues as the liquid 

phase is still present within the structure although no further surface regression is detected. The 

volume of this residual liquid is calculated by subtracting the volume at the time of structure 

formation (  ) from the initial liquid volume (  ). Finally one can write the evaporation time 

scale    as 

                                                                         (4.1) 

Where     is the liquid evaporation rate at the instant of structure formation.  
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Structural Morphology 

 The nanosilica particles in the droplet are transported by internal recirculation induced by 

acoustic streaming. As the liquid phase evaporates, the particle concentration near the droplet 

surface increases, and generates a concentration gradient inside the droplet. Solution viscosity 

increases with particle concentration [10-14], thus the radial increase in concentration yields a 

radial increase in viscosity. The fluid momentum is dissipated in the vicinity of the highly 

viscous droplet surface. Ultimately, agglomeration is triggered near the surface leading to the 

formation of a shell shaped structure. Figure 4.7 illustrates the particle concentration gradient 

formation as the liquid phase evaporates, particles agglomerate near the surface causing a 

depletion of particles in the center region of the droplet giving the resultant structures their shell 

shaped morphologies.  A cross section of a ring structure can be seen Figure 4.8b where this 

shell geometry is clearly depicted.  

 

Figure 4.7: Concentration gradient inside the droplet as liquid evaporates. 
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The microscopic images show that the particles agglomerate into a semisolid lattice i.e. a 

gel morphology. Structure formation is a consequence of the particle agglomeration, and the rate 

at which the particles agglomerate into a gel is a determining factor on the structure final 

dimensions. The different structures (Figure 4.8) exhibit thin to thick shell type features though 

the overall shape may resemble a bowl, apple-like spheroid or a ring [10]. The final geometry of 

the structure is not only a function of particle concentration but also of the flow dynamics, 

evaporation and agglomeration characteristics. 

 

Figure 4.8: SEM images of different structure morphologies.  a) 10nm Silica ϕ = 0.5% bowl b) 

10nm Silica φ = 2% ring section c) 10nm Silica φ = 2% ring d) 10nm Silica φ =7.33% spheroid. 
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 Evaporation rate governs the rate at which the concentration increases, and is a major 

contributor in determining the structure geometry. Since recirculation velocity (function of both 

viscosity and sound pressure level) decreases with viscosity, the particle migration is affected by 

it. Agglomeration occurs when particles collide due to bulk motion in the droplet. This 

orthokinetic agglomeration mechanism is a hydrodynamic driven process, and has no 

dependence on particle size and is a function of particle concentration and flow shear rate. In 

short, the rate at which the particles migrate to the droplet surface is a function of viscosity 

which at any time during the evaporation phase is determined by particle concentration, which in 

turn, changes with the liquid phase evaporation rate. 

Agglomeration Time Scale 

 The effects of evaporation and agglomeration rates are strongly coupled based on the 

initial concentration and determine the final morphology of the precipitated droplet. The effect of 

each mechanism, i.e., evaporation rate and agglomeration rate, can be compared by using 

appropriate time scales. In addition to t  in equation (4.1), an orthokinetic time scale may be 

defined as the time required for particles to agglomerate into a gel. In order to calculate the gel 

agglomeration scale [16], assumptions such as fractal agglomeration and particle monodispersity 

are taken into account. The time scale for the start of gel formation is defined as [16]: 

               φ                                    (4.2) 

Where D is fractal dimensionality [35], φ  is the initial particle concentration and    is shear rate 

or the velocity gradient in the radial direction defined as: 



33 

 

                                                                     (4.3) 

Where    is the droplet radius and    is the liquid phase velocity scale [5].  Subscripts “o” and 

“l” denote the gas and liquid phases respectively.      is the maximum velocity in the acoustic 

field,            where    is the speed of sound in the gas phase and Ma is the mach number 

of the acoustic field related to sound pressure level (SPL) as given by 

                                                            (4.4) 

 The orthokinetic time scale (t ) is therefore a function of fractal dimensionality, initial 

particle concentration, sound pressure level, viscosities of the liquid and gas phase, density of the 

liquid phase and droplet size. A control experiment was conducted using 20nm Silica particles to 

study the effect of particle size on agglomeration; Figures 4.9a and b present a comparison of 

diameter reduction between 0.5% and 2%vol particle concentration solutions. Droplet diameter 

vs. time plots are shown in figure 4.9a, the time at which the droplet diameter becomes constant 

is similar for both 10nm and 20nm solutions. This supports the assumption that the 

agglomeration time scale does not have a strong dependence on particle size. The same trend can 

be seen in the normalized diameter plots in Figure 4.9b. The final D/Do values are a function of 

the droplet agglomeration and deformation scales. 

Bulk agglomeration occurs in nanosilica solutions due to strong shear and thermal fields. 

This has been proven in other systems (not using droplets) by Bremer et al [16] and Kumar et al 

[10-11]. The timescale for agglomeration is an order of magnitude estimate, and remains 

unaltered even if evaporation induced enhancement of concentration of nanosilica at the droplet 
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surface and colloidal repulsive forces influence the actual agglomeration time. Hence using such 

a timescale is appropriate for the agglomeration process within the droplet. 

Since the SPL level is strong enough to induce a surface velocity in the liquid phase of 

the order of 1-20 cm/sec (see our PIV measurements in 500 m droplets [21]). This recirculation 

strongly influences the particle transport and shear rate and hence controls the agglomeration in 

addition to the thermal field created by radiative heating. It can be seen that the agglomeration 

timescale decreases with increase in liquid phase velocity. The liquid velocity can be augmented 

in two ways: by decreasing the viscosity of the liquid phase or by increasing SPL. So the 

agglomeration timescale is considerably shorter for low viscosity fluids subjected to high SPL. 

Evaporation timescale on the other hand depends on the initial particle concentration, 

sound pressure level and liquid viscosities. High initial particle concentration retards the 

vaporization rate leading to a longer evaporation timescale. Similarly high SPL leads to 

increased recirculation velocity inside the droplet which leads to enhanced vaporization, 

effectively reducing the diffusion length by almost three times. Low viscosity fluids also lead to 

strong recirculation that further enhances vaporization.  

From Equations (4.2) and (4.3),          , implying that orthokinetic timescale increases 

with solution viscosity. Evaporation time scale (   ) is also affected by solution viscosity. 

Typically the heat transfer inside the droplet scales with the recirculation velocity      ) which 

is affected by solution viscosity. Therefore, 

                                                                   (4.5) 
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Figure 4.9: a.) Non-dimensional droplet diameter (D/Do) in time b.) Droplet diameter (D) in 

time. 

A change in viscosity therefore has similar effects on    and      This suggests that the 

ratio,       has a low sensitivity to a change in solution viscosity. Similarly, for a change in SPL, 

                                                                           (4.6) 

From Equation 4.4, 

                                                                (4.7)  
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Finally, 

                                                                         (4.8) 

   decreases by a factor of 1.3 for an increase in SPL from 160 db to 165 db. SPL directly 

influences the recirculation velocity, which affects the evaporation scale by reducing the 

diffusion distance by a factor of 2. The evaporation timescale thus reduces with increase in 

acoustic streaming in a similar way as the orthokinetic timescale. Thus, the ratio        has 

relatively lower sensitivity to SPL.  

 Finally, initial particle concentration also has a large effect on both    and   . From 

Equation 4.2,    scales with particle concentration as         which signifies that orthokinetic 

time scale decreases with particle concentration (since the distance between particles decreases 

with particle concentration). The frequency of particle collisions increases, causing an increase in 

agglomeration rate. On the contrary, evaporation time calculated based on the initial volume of 

the liquid in the droplet (in the absence of agglomeration) should decrease with increase in initial 

particle concentration mainly due to the resistance offered by the surface accumulation of the 

nanoparticles. 

                                                                            (4.9) 

Where      and       are the vapor mass fraction and vapor pressure at the droplet surface 

and   signifies initial concentration of the nanoparticles. Thus,    will increase with increase in 

initial particle concentration. This functional dependence of    on initial concentration is 
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opposite to the orthokinetic timescale. Hence        ratio will exhibit high sensitivity to initial 

concentration.       will decrease with increase in initial concentration (Figure 4.10), and the 

normalized diameter,     , of the final structure scales with the inverse power of      . For 

small      , particles begin agglomerating faster near the droplet surface even when the diameter 

of the droplet has not reduced appreciably mainly due to the time required for evaporation being 

longer than the time required for particle agglomeration. At           , agglomeration occurs 

after significant reduction in droplet size due to evaporation. At high concentrations,       is 

generally low. 

 

Figure 4.10: Final D/Do with respect to the ratio of orthokinetic time scale (tg) and liquid phase 

evaporation time (te). 
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Deformation Timescale 

 The final structures formed by the droplets exhibit a variety of morphological shapes 

varying from bowls to rings. These structures can be differentiated from each other based on 

their aspect ratios. Hence it is clearly understood that the droplets deform considerably due to the 

acoustic force during the vaporization and agglomeration process. For a droplet at equilibrium, 

the acoustic pressure force acting on it has to be balanced by surface tension forces. Acoustic 

pressure is a function of SPL and the magnitude of Laplace pressure is inversely proportional to 

the interface curvature which in turn is inversely proportional to aspect ratio.  The Laplace 

pressure and RMS value of the acoustic pressure are of similar magnitude prior to precipitation 

(inflection point of the D/D0 plot, Figure 4.2 a).  

 The structure morphology is sensitive to sound pressure level due to the effects SPL has 

on droplet aspect ratio and on the magnitude of droplet internal recirculation. The droplet aspect 

ratio increases with acoustic pressure (PB), an increase in SPL from 160dB to 162dB increases 

PB by a factor of ~1.6, similarly an increase from 160dB to 165dB increases PB by a factor of 

~3.2. The recirculation velocity scale (ul) also increases with SPL, an increase in SPL from 

160dB to 162dB increases ul  by a factor of ~1.3, similarly an increase from 160dB to 165dB 

increases ul by a factor of ~1.8. Then SPL has a large effect on the structure precursor droplet 

aspect ratio and on the droplet internal flow which in turn contribute to determine the structure 

final morphology.  

The aspect ratio should ideally increase with increase in SPL in order to balance the 

additional acoustic pressure force acting on the droplet surface that may lead to droplet 
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disintegration. As aspect ratio increases, the droplet minor axis length decreases (considering the 

droplet to be elliptical). The temporal variation of the minor axis of the droplet can be scaled as 

(neglecting surface tension and viscosity) 

                                                                    (4.10) 

Where y is the deformation length scale, corresponding to a variation in droplet minor 

axis length.. The ideal time scale for droplet deformation (    ) is derived by integrating 

Equation 4.7, yielding 

                    
                                             (4.11) 

 The deformation length scale is defined as y = rp, the polar mass element is defined as          where    is the droplet mass, then       can be expressed as: 

                                                                (4.11.b) 

 The relative magnitudes of the orthokinetic scale (    and deformation time scale (    ) 

determine the final structure aspect ratio. If           particle agglomeration occurs as the 

droplet has been already deformed substantially by the acoustic field. At this instant, the droplet 

aspect ratio is already large. When        , the increase in aspect ratio requires a longer time 

than the agglomeration process. Consequently, the particles agglomerate while the aspect ratio is 

still small. Once agglomeration is triggered, the droplet tends to remain undeformed since the 

surface rigidity is enhanced by the particulate shell (Figure 4.11). For φ < 2 %, the orthokinetic 
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timescale is comparatively large. This is reflected by the fact that the droplet deforms 

substantially before agglomeration is triggered resulting in a large aspect ratio structure. On the 

other hand, for φ > 2%, the orthokinetic timescale is low which leads to faster agglomeration 

compared to deformation. This yields low aspect ratio structures. Therefore an inflection point is 

present at φ ~2% which separates high and low aspect ratio structures.  

 

Figure 4.11: Final aspect ratio of the agglomerated structure with respect to initial particle 

concentration. 

Figure 4.12 presents high speed and IR images of the structure formation process of 

various 10nm Silica solutions. Ring reorientation can been seen in the second and third rows of 
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images corresponding to 1%vol and 2% vol Silica solutions respectively, the sharp  temperature 

increase associated with ring reorientation can be seen in the infrared images when comparing 

the structure surface temperature before and after reorientation. This figure also presents the 

particular case of structure breakup caused by non-uniform particle agglomeration of a 5%vol 

Silica solution. When breakup occurs the structure fragments are pushed towards the pressure 

node by the acoustic pressure field (see Acoustic Levitation in Chapter Two). 
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Figure 4.12: Evaporation, structure formation and reorientation for different 10nm Silica solution 

concentrations. 
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CHAPTER V: STRUCTURE FORMATION FROM DIFFERENT 

PRECURSOR SOLUTIONS 

The previous chapter presented the process of structure formation by particle 

agglomeration during the evaporation of the liquid phase in the acoustically levitated droplet. It 

was shown that the size and geometry of the structure are determined by the outcome of the 

competition among several mechanisms determined by their timescales: a) evaporation time 

scale which is the time needed for complete liquid evaporation, b) agglomeration time scale, the 

time elapsed for particles to agglomerate into a gel by means of orthokinetic agglomeration, and 

c) the deformation time scale, which is the time needed for droplet to deform.  

Both evaporation and agglomeration time scales are functions of sound pressure level 

(SPL), droplet size, solution viscosity and density. Similarly, the deformation time scale is a 

function of SPL and solution surface tension. Then the outcome of the structure formation 

phenomenon can be expressed as a function of the solution properties discussed earlier and it is 

not dependent on the particle size or type. The relationship between particle size and 

concentration with solution viscosity and surface tension have been studied by others [4, 36, 37], 

this is beyond the scope of this study. This analysis is done by directly measuring the solution 

properties to characterize each solution’s agglomeration and evaporation time scales as well as 

the droplet acoustic interactions that cause deformation. Experiments utilizing different 

solutions, 10 and 20nm Silica as well as 20 and 50nm Alumina, were conducted to compare how 

well the time scale model holds for different solutions. In addition, the viscosity and surface 
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tension of 10 and 20nm Silica solutions have been altered by adding glycerin and surfactant in 

order to evaluate the impact of property changes on structure formation. 

Solution Properties 

Viscosity and surface tension of the different Silica and Alumina solutions used in this 

study were measured at different particle concentrations. Solution viscosity “  ” increases with 

particle concentration, shown in figure 5.1a. In this figure it can be seen that the 50nm Alumina 

solutions have higher viscosities in the 0.5 to 5%vol particle concentration range, this has a 

direct impact on structure formation due to the magnitude of agglomeration time scale “t ” for 

these solutions. Similarly surface tension of the Silica and Alumina solutions were measured at 

different concentrations. Solution surface tension “σ” decreases with particle concentration. In 

the special case of the 20nm Alumina solutions the dispersing agent in the solution, used to 

maintain stable colloidal suspension, causes a noticeable sharp decrease in surface tension 

decrease with particle concentration due to the larger solution volume containing the dispersing 

agent needed to increase particle concentration. Figure 5.1b presents σ with respect to particle 

concentration “φ”.  

Figure 5.2a presents the temperature dependence of φ = 0.5% 50nm Alumina solution 

viscosity, similarly figure 5.2b presents the temperature dependence of φ = 0.5% 50nm Alumina 

solution surface tension. Droplet temperature increases during heating, and as liquid evaporates 

particle concentration increases, then solution viscosity and surface tension vary during the 

liquid evaporation phase. 
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Figure 5.1: a.) Viscosity “  ” vs. Particle Concentration “φ” b.) Surface Tension  “σ” vs. Particle 
Concentration “φ” 

As particle concentration and droplet temperature vary in time, solution viscosity and 

surface tension do as well. The sensitivity of solution viscosity to particle concentration is higher 

than to solution temperature, this can be seen in figures 5.2a and 5.2b. 

 

Figure 5.2: a) Viscosity  “  ” vs. Temperature  b.) Surface Tension “σ” vs. Temperature,  
50nm Alumina, φ = 5.99%.  

The maximum temperature during evaporation of approximately 45°C, decreases the 

surface tension of φ = 5.99% 50nm Alumina by 25%. An increase in solution concentration from 
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5.99% to 20% (the final estimated concentration at the time of structure formation   ) yields a 

750% increase in solution viscosity. Then the temperature effect on viscosity can be neglected 

compared to the viscosity increase caused by the increase in particle concentration. The 

approximate instantaneous solution viscosity during the experiment can then be estimated by 

calculating the instantaneous particle concentration in the droplet. Since the particle volume 

within the droplet is known and remains constant through the experiment, the instantaneous 

particle concentration can be calculated using the high speed imaging data indicating the 

instantaneous droplet volume, shown in figure 5.3a. The solution viscosity can be estimated 

using the measured viscosity dependence on particle concentration shown in figure 5.1. The 

instantaneous viscosity of φ = 5.99% 50nm Alumina  is shown in figure 5.3b.  

 

Figure 5.3: a.) Concentration “φ” vs. Time b.) Viscosity “  ” vs. Time, 50nm Alumina. 

Figure 5.3b illustrates an ideal approximation of the viscosity increase caused by 

concentration increase in time. But in fact the increase in solution viscosity is not uniform across 

the droplet, as liquid evaporates at the droplet surface the local viscosity increases. This localized 

increase in viscosity near the droplet surface yields a velocity gradient in the radial direction. The 
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velocity of the recirculation flow within the droplet decreases in the radial direction and causes 

the increase of particle concentration near the surface due to deposition of the particles being 

carried by the flow, giving the structures their characteristic shell morphology [14, 38]. The 

droplet surface temperature in time was recorded using infrared imaging in parallel with high 

speed imaging. From this data the surface temperature is known (figure 5.4a) and by correlating 

surface tension to temperature, using the measured surface tension with respect to temperature 

data (figure 5.2b), the instantaneous droplet surface tension can then be calculated (figure 5.4b). 

Surface tension first decreases sharply with the increase in surface temperature, as the 

temperature of the droplet decreases with the liquid phase evaporation surface tension decreases. 

The initial surface tension and the magnitude of this drop determine the length of the 

deformation time scale which in turn is a determinant in the final structure morphology [38]. The 

function of surface tension with respect to temperature is not valid after the droplet surface has 

solidified at   , this instant is marked with an “x” on the surface tension curves in figure 5.4b. 

 

Figure 5.4: a.) φ = 0.5% Temperature vs. time. b) φ = 0.5% Surface Tension “σ” vs. time, 50nm 
Alumina. 
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Results 

Particles of different types and sized were used in this work, 10nm and 20nm Silica as 

well as 20nm and 50nm Alumina. Experiments were conducted at particles concentrations of φ = 

0.5, 1, 2, 3 and 5%vol, in addition to these, the maximum concentrations attainable from the 

colloidal suspensions manufacturer (Alpha-Aesar) were also studied. In the case of 10nm Silica 

the maximum concentration used was φ = 7.33%vol, 20nm Silica φ = 23.11%vol, 20nm 

Alumina φ = 8.99%vol and 50nm Alumina φ = 5.99%vol. Experiments were conducted with 

four different types of particles, six particle concentrations and three SPL (160, 162 and 165dB) 

for each particle type. In addition glycerin was added to 0.5 and 2%vol 10nm Silica solutions (1 

and 4%vol glycerin concentrations respectively) to study the effect of solution viscosity increase 

on structure formation. Similarly, surfactant was added (1%wt) to 10nm and 20nm Silica particle 

concentration φ = 0.5%vol solutions to observe the effect of surface tension reduction on the 

final structure morphology.  

As presented in the previous chapter, the final structure normalized diameter “    ” is 

presented as a function of the ratio of agglomeration and evaporation time scales “     ”.  It was 

proposed that the result of the structure formation process is dependent only on the fluid 

properties of the solution and the acoustic levitation amplitude (SPL). The characteristic time 

scales used to correlate the results, are functions of the particular fluid properties and levitation 

conditions of each sample of the different nanofluid solutions. There is good agreement between 

the results presented from the work done on 10nm Silica solutions and the results of the work 

done with different particle solutions; this can be seen in figure 5.5. The resultant structure      
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shows an exponential correlation with      . The different particle and concentration cases, with 

different fluid properties, correlate well to this exponential curve which supports the proposed 

concept of characterizing the structure formation phenomenon with the properties of the 

precursor solutions and the conditions of acoustic levitation using the previously proposed time 

scale relations. The results from manipulating solution viscosity and surface tension by addition 

of glycerin and surfactant are also presented in figure 5.5. These special cases also agree well 

with the rest of the cases, the modification to the solutions’ properties affects the structure 

formation process due to the effect of these properties variations on the magnitude of 

agglomeration, evaporation and deformation time scales. As result, the change in solution 

properties affects the final structure morphology. 

 

Figure 5.5: Final      vs.       for different particle solutions. 
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Glycerin was added (1%vol) to a φ = 0.5% 10nm Silica solution, viscosity increased from 

1.04cP to 1.12cP (7.7% increase), a value close to the viscosity of 50nm Alumina φ = 0.5%vol 

solution of 1.13cP. Glycerin was also added (4%vol) to a 2%vol 10nm Silica solution, the 

viscosity increased from 1.45cP to 1.53cP (5.5% increase) matching the viscosity of the 50nm 

Alumina 2%vol solution of 1.53cP. The effect of glycerin addition on vapor pressure has been 

taken into consideration, an addition of 1%vol Glycerin decreases vapor pressure approximately 

by 0.34Pa (0.34% decrease) and approximately 1.12Pa (1.1% decrease) for 4% Glycerin 

concentration [39]. The effect of glycerin addition on the evaporation rate can be neglected due 

to the small decrease in vapor pressure. The recirculation velocity scale scales with viscosity as          (equation 2.5), from equation 4.2 the agglomeration time scale varies with    as: 

                                                                           (5.1) 

then    scales with recirculation velocity scale as:  

                                                                        (5.2) 

The reduction on recirculation within the droplet also increases the evaporation time scale    due to the decrease of convection within the droplet which hinders the heat transfer from the 

surface to the center of the droplet. The increase in evaporation time scale manifests as a longer 

time for structure formation    at which both structure      and aspect ratio have stabilized, this 

can be seen in figure 5.6.a when comparing the solutions with added glycerin with the untamed 

10nm Silica solutions. 
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Figure 5.6: a.)      vs. time b.) Aspect ratio vs. time 10nm Silica ϕ  = 0.5%vol, 2% + Glycerin 

c.)      vs. time d.) Aspect Ratio vs. time 10nm and 20nm Silica ϕ = 0.5%vol + Surfactant. 

 

The Surface tension of 10nm Silica and 20 nm Silica φ = 0.5%vol were modified by 

adding “Polisorbate 80” (Alpha-Aesar) surfactant to these solutions at a 1%vol concentration. 

Surface tension of the 10nm Silica solution was reduced from 72.2 to 53.9mN/m, similarly the 

surface tension of the 20nm Silica solution decreased from 65.3 to 54.9mN/m. Decreasing 

solution surface tension increases the droplet aspect ratio (shown in figure 5.6.d), the droplet area 

exposed to the radiative heat source (CO2 laser) decreases with aspect ratio. The heat flux from 
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the radiative heat source is maintained constant then the decrease in droplet heat transfer area 

causes a reduction in the total heat flow to the droplet. Due to the reduction of heat transferred to 

the droplet, the evaporation time    scale increases, the increase in this time scale can be seen in 

figure 5.7b when comparing the droplet normalized diameter reduction      and aspect ratio in 

time of the solutions containing surfactant to the solutions with no surfactant content. 

The increase of    with viscosity is of larger magnitude compared to the increase of   , 

subsequently the increase in viscosity has an overall effect of decreasing the ratio of 

agglomeration and evaporation time scales      . Due to the longer evaporation time scale 

compared to the agglomeration time scale, particles agglomerate at an instant when the droplet is 

larger compared to the droplet size at the time of agglomeration of the lower viscosity solutions. 

This yields a larger final structure size manifested on larger final     ,  this agrees well with the 

trend observed in the previously presented data. Final      increases exponentially with the 

decrease of the       ratio. This is shown in figure 5.7.a, as expected both cases move up the 

correlation curve as      .       shows a slight increase with the addition of glycerin to 10nm 

Silica φ = 0.5%vol in contrast with the large increase of       caused by glycerin addition to 

10nm Silica φ = 2%vol, this is consistent to the       inverse exponential correlation to      .  
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Figure 5.7:      vs. time a.) 10nm Silica + Glycerin b.) 10nm and 20nm Silica + Surfactant. 

Surface tension reduction results in a decrease in agglomeration to evaporation time scale 

ratio      , similarly to increased viscosity cases, final      increases with the decrease of       which is consistent with our previous observations. The structure final aspect ratio is also 

affected by the increase in evaporation time scale caused by increased solution viscosity and 

reduced surface tension. In the case of viscosity increase the evaporation time scale is larger 

compared to the deformation time scale yielding larger aspect ratio structures. Figure 5.8 

presents a comparison of 10nm Silica with and without added glycerin to 50nm Alumina that has 

a similar viscosity, a bowl structure forms in the case of no glycerin added (figure 5.8.a) in 

contrast a ring is formed in the case with added glycerin (figure 5.8.b) which is similar to the ring 

formed from the 50nm Alumina precursor droplet solution (figure 5.8.d).  
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Figure 5.8: a) 10nm Silica b) 10nm Silica +  Glycerin, c) 50nm Alumina φ = 0.5%vol.  
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The deformation time scale is reduced due to the decrease in surface free energy caused 

by the reduction of surface tension. This yields larger aspect ratio structures due to the increased 

aspect ratio of the precursor droplets. In addition to the reduction of      , the evaporation time 

scale is increased due to the reduction of projected area to heating caused by the increase in 

aspect ratio, then the deformation time scale magnitude with respect to the evaporation time 

scale is reduced even further,  contributing to the formation of high aspect ratio structures (figure 

5.9.b) such as rings. Figure 5.9 presents a comparison between 10nm Silica φ = 0.5%vol with 

and without added surfactant (figure 5.9.a), bowls are formed in the higher surface tension cases, 

in contrast, rings are formed in the case of reduced surface tension (figure 5.9.b).  

 

Figure 5.9: a) 10nm Silica b) 10nm Silica + Surfactant, φ = 0.5%vol 

A different morphology was observed in the case of 20nm Alumina solutions,  these 

solutions have high viscosity (of comparable to 50nm Alumina, 1.17 to 14cP) and low surface 

tension (50 to 57mN/m) yielding structures that differ from the bowls and rings observed from 

10nm and 20nm Silica and also from 50nm Alumina. The structures formed from these precursor 
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solutions have disc geometry surrounded by a toroidal edge which differs from the hollow 

structure geometries observed from the other precursor solutions. This is due to the reduced 

recirculation within the droplet caused by the solutions high viscosity and the droplets low 

surface tension. Low recirculation means that the particle migration rate is lower compared to 

droplets of less viscous solutions and low surface tension yields droplets of higher aspect ratios 

compared to the higher surface tension droplets. This results in a flat disc shaped geometry, an 

annulus is formed at the edge of the structure due to centrifugal force induced from droplet 

rotation along the longitudinal levitation axis caused by secondary acoustic streaming [5, 7-9 , 

29, 30]. Figure 5.10 presents Scanning Electron Microscopy (SEM) images from a disc structure 

formed from 20nm Alumina φ = 0.5%vol. 

 

Figure 5.10: SEM images of a disc structure formed from 20nm Alumina 0.5%vol. 

These structures have high aspect ratios due to the solutions’ low surface tension which 

decreases the deformation time scale. A comparison between 20nm Silica and 20nm Alumina 
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final aspect ratio is made in figure 5.11, 20nm Alumina solutions yield structures of higher 

aspect ratio compared to the structures formed from higher surface tension 20nm Silica solutions.  

 

Figure 5.11: Final Aspect Ratio “C” vs.  φ, 20nm Silica and 20nm Alumina Solutions. 

Time for structure formation “  ” [38], defined as the time when particles have 

agglomerated forming an exterior solid shell and after which the exterior surface radial 

regression stops, decreases with particle concentration. The structure formation phases, 

evaporation, agglomeration and structure reorientation, are illustrated by phase diagrams [21] for 

each different nanofluid solution in figure 5.12.  The regions in the time-initial particle 

concentration domain, delimited by the solid lines, represent the distinct phases of the structure 
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formation process. The region beneath the blue structure formation line corresponds to the liquid 

phase evaporation phase, recirculation, particle migration and early agglomeration occur during 

this phase, thus final structure geometry is defined in this phase. 

The time for structure formation is not only a function of particle concentration but it is 

also affected by solution viscosity and surface tension. As stated earlier, recirculation decreases 

with viscosity which in turn causes a decrease in evaporation rate due to the reduction of 

convection within the droplet. At a constant heat flux, the droplet heat absorption rate is 

proportional to the area exposed to heating, this area decreases with aspect ratio which in turn 

increases with a decrease in surface tension. Thus the time for structure formation increases with 

viscosity and increases with decreasing surface tension. These effects can be seen in figure 5.12 

when comparing the different cases to each other. Figure 5.12.a presents the phase diagram for 

10nm Silica solutions. When compared to the 20nm Silica solutions phase diagram (5.12.b), it 

can be noted that the evaporation phase is longer in the cases of the 20nm Silica solutions. Even 

though the viscosity of the later solutions is lower, especially at concentrations higher than 

3%vol, the effect on evaporation rate caused by lower surface tension  is dominant thus 

increasing “  ”. The 20nm Alumina cases, figure 5.12.c, present the extreme effects of high 

viscosity and low surface tension, this results in liquid evaporation rate reduction and a longer 

structure formation time compared to high viscosity 50nm Alumina (figure 5.12.d). 

Structure reorientation of ring structures formed at solution concentrations higher than φ 

= 1%vol was observed in the cases of 10nm and 20nm Silica caused by geometric asymmetries 

due to non-uniform particle agglomeration [14, 38]. The time at which this happens is depicted 
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by red lines in figures 5.12.a and b. The area between the structure reorientation and structure 

formation lines represents the region at which the interior of the structures is at the final stage of 

agglomeration thus the internal geometry is still changing, these mass swifts within the structure 

ultimately cause structure reorientation. 

 

 Figure 5.12: Phase diagram comparing different nano-particle solutions,  

a.) 10nm Silica, b.) 20nm Silica, c.) 20nm Alumina, d.) 50nm Alumina. 
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Structure reorientation was not seen in the 20nm and 50nm Alumina cases due to the 

lower recirculation caused by these solutions high viscosity. Relatively slower recirculation and 

longer structure formation times allow the particles to agglomerate in a more uniform manner 

forming well defined symmetric structures; this can be seen in the SEM images of the different 

particle cases presented in figure 5.13. 

 

Figure 5.13. Ring SEM images of a.)10nm Silica, b.) 20nm Silica,  

c.) 20nm Alumina, d.) 50nm Alumina, φ = 2%vol. 
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CHAPTER VI: CONCLUSIONS 

 In summary, this work shows that there are competing timescales for vaporization, 

deformation and agglomeration processes. The normalized diameter is inversely proportional to 

the ratio of agglomeration to evaporation timescales for all concentrations and acoustic 

amplitudes. It is seen that both agglomeration and evaporation timescales are similar functions of 

acoustic amplitude (sound pressure level), droplet size, viscosity and density. However it is 

shown that while the agglomeration timescale decreases with initial particle concentration, the 

evaporation timescale shows the opposite trend. The final normalized diameter has been shown 

to be dependent solely on the ratio of agglomeration to evaporation timescales for all 

concentrations and acoustic amplitudes. The structures also exhibit various aspect ratios (bowls, 

rings, spheroids) which depend on the ratio of the deformation timescale (t   ) and the 

agglomeration timescale (t  . A sharp peak in aspect ratio is seen at 10nm Silica ~2% 

concentration. For t    t  a sharp peak in aspect ratio is seen at low concentrations of 

nanosilica which separates high aspect ratio structures like rings from the low aspect ratio 

structures like bowls and spheroids. 

 The correlation between the final structure normalized diameter and the ratio of 

agglomeration to evaporation time scales holds for different particle types and sizes, this was 

shown by comparing the results from different particle solutions as function of  t t  . This 

supports the proposed property based approach to normalizing the structure formation data. 

Manipulating the precursor solution properties then allows altering the outcome of the structure 

formation process, such as final structure size and aspect ratio. Increasing solution viscosity has 
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the resultant effect of decreasing the agglomeration to evaporation time scale ratio, thus yielding 

larger normalized diameter structures and also affects the final structure morphology such as ring 

formation at low 10nm Silica concentrations where normally bowls are formed. Similarly, a 

decrease in surface tension has the overall effect of decreasing t t   thus increasing final     , 

and also decreasing the deformation time scale yielding larger aspect ratio structures favoring the 

formation of ring structures.  

The ratio of agglomeration to evaporation time scales and the ratio of deformation to 

evaporation time scales determine the final structure morphology. This is seen by the formation 

of bowls at high t t   and the formation of rings at low t t  . Low surface tension favors the 

formation of rings due to the increase in droplet aspect ratio (Figure 5.6). Solid disc structures, 

different from hollow ring and bowl structures, form in the case of high viscosity and low 

surface tension solutions such as 20nm Alumina. The high viscosity of these solutions hinders 

particle migration, this combined with the resultant high aspect ratio caused by low droplet 

surface tension yield flat high aspect ratio solid structures. 

The duration of the different phases of the structure formation process is determined by 

the solution properties and the acoustic levitation amplitude (SPL) due to the time scale 

dependence on these properties. This is seen in the shape of the phase diagrams for different 

solutions. Finally this work has shown the dependence of the structure formation from functional 

precursor nanoparticle suspensions on solution viscosity and surface tension and also that the 

structure formation process can be controlled by manipulating the precursor solution properties 

and by controlling the acoustic levitation sound pressure level. 
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