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ABSTRACT 
 

    A pulsed Nd:YAG laser is used to study laser spark ignition of methane counter-flow diffusion 

flames with the use of helium and argon as diluents to achieve a wide range of variations in transport 

properties.  The global strain rate and Damköhler number on successful ignition were investigated for 

the effects of Lewis number and transport properties, which are dependent on the diluent type and 

dilution level.  A high-speed camera is used to record the ignition events and a software is used for pre-

ignition flow field and mixing calculations.  It is found that the role of effective Lewis number on the 

critical global strain rate, beyond which ignition is not possible, is qualitatively similar that on the 

extinction strain rate.  With the same level of dilution, the inert diluent with smaller Lewis number yields 

larger critical global strain rate.  The critical Damköhler number below which no ignition is possible is 

found to be within approximately 20% for all the fuel-inert gas mixtures studied.  When successful 

ignition takes place, the ignition time increases as the level of dilution of argon is increased.  The ignition 

time decreases with increasing level of helium dilution due to decreases in thermal diffusion time, which 

causes rapid cooling of the flammable layer during the ignition process.  However, the critical strain for 

ignition with helium dilution rapidly decreases as the dilution level is increased. The experimental results 

show that with the increase of strain rate the time to steady flame decreases, and that with the increase 

of dilution level time for the flame to become steady increases. For the same level of dilution, the time 

for steady flame is observed to be longer for He-diluted flames than for Ar-diluted flames due to its 

thermal diffusivity being larger than that of Ar. 
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CHAPTER 1: INTRODUCTION 
 

1.1 Motivation 

 

 A premixed flame is a flame in which the fuel and oxidizer have been homogeneously mixed 

before it reaches the flame front. Non-premixed flames, also known as diffusion flames, are those 

flames in which fuel and oxidizer are mixed as they approach the ignition source. The distinction 

between the two flames is that in diffusion flames the burning rate is determined by the rate at which 

the fuel and oxidizer come together and for premixed flames it predominantly dominated by chemistry. 

Premixed flame ignition and extinction phenomena have been well studied by the combustion 

community in the past [1-4], but great deals of unknowns remain for ignition of diffusion flames. Ignition 

is defined as the start of chemical reaction between fuel and oxidizer, while extinction is when this 

reaction is stopped.  

 Nowadays more than 80% of the energy production is based on combustion, and with a strong 

and ever increasing demand for energy a lot of focus is being given to improve efficiency and reduce 

waste of resources [5]. The types of flames used in industrial combustion are very complex, typically in 

the turbulent regime as well as an array of other irregularities that make it very difficult to perform 

experimental studies even with current advances in technology. In order to deal with these obstacles 

scientists have developed various methods over the years to simplify these problems and try to gain a 

better understanding of combustion in diffusion flames. One of the most used methods, and the one on 

which this study is based, is to take a complex turbulent flame as an ensemble of small scale laminar 

flames. This technique is known under the name of “flamelet model”, which was first introduced by 

Williams [6].  
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1.2 Objectives 

 

The counter-flow configuration for diffusion flames consist of two opposed jets of fuel and 

oxidizer and shares some common one-dimensional features with laminar flamelets and have been used 

to gain insight into combustion characteristics of laminar and turbulent non-premixed flames [7]. Forced 

ignition is a process in which a mechanism or system is used to start the chemical reaction between fuel 

and oxidizer. Relatively few studies have been performed on the forced ignition processes of laminar 

non-premixed combustion [8-10]. These studies will be further discussed in Chapter 2 of this thesis. In 

these studies the effects of diluents type as well as diffusive and thermal transport properties are largely 

left unaddressed. Furthermore, the ignition delay time has not been reported in the non-premixed 

counter-flow system. These unresolved issues are the focus of this study.  

Laser spark is used as the ignition source due to it being the least intrusive method of forced 

ignition and it is adopted in laminar methane-air counter-flow diffusion flames to further understanding 

of the ignition behavior for a wide range of strain rates and diffusive-thermal properties.  Helium and 

argon gases are the diluents for such purposes because both are very similar (same heat capacity) and 

largely differ in thermal diffusive properties, which is the focus of this study.  The ignition process of 

combustion gases produced by a laser spark is described in detail in [11].  When a laser beam of 

irradiance in the order of           interacts with combustion gases, a plasma of high temperature 

(~    K) and high pressure (~      ) is created at the end of the laser pulse.  This extreme condition 

relative to the ambient conditions of the gases leads to the development of a rapidly expanding shock 

wave that is strong enough to ignite combustible media [11].  Lasers also allow for change in spark 
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position with the use of stages and optical devices to ensure optimal ignition condition as well as spark 

parameters (energy, size) that are very repeatable with small errors [12].  
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CHAPTER 2: LITERATURE REVIEW 
 

 Topics of particular importance in counter-flow flames include extinction processes and they 

have been experimentally and numerically studied [13-19].  Many studies have been done on the effect 

of transport properties (preferential diffusion, effective Lewis number, and Schmidt number) on 

extinction of counter-flow flames [17, 18, 20, 21] and flame lift-off phenomena [22].  The effect of Lewis 

number (ratio of thermal diffusivity to mass diffusivity) on diffusion flame extinction has been 

investigated by using diluent gases of helium and argon that have the same molar specific heats to 

reveal the effects of Lewis number (i.e. diffusive-thermal effects) independent of the effect of heat 

capacity.  Chen et al. [20] and Park et al. [21] analyzed the effects of diluents on the extinction of 

diffusion flames in terms of effective Lewis number, which is the weighted value of the fuel and oxidizer 

Lewis numbers [23].     , is defined as [23]: 

    
       

    
         (1) 

where    and    are fuel and oxidizer Lewis number, respectively, and    is the “equivalence ratio” or 

“mixture strength” or the premixed burning regime of the premixed regime of the diffusion flame. The 

equivalence ratio is defined as           where                    is the stoichiometric 

oxidizer-to-fuel mass ratio (= 3.99 for CH4-O2) and    and    are the mass fractions of fuel and oxidizer in 

their respective stream. 

The effective Lewis number (   ) successfully explained extinction phenomena for fuels diluted 

with inert gases that possess vastly different diffusivities (such as Argon and Helium) [20].  It was 

concluded over a wide range of combinations of diluent type and dilution level, the combinations 

producing       leads to larger extinction strain rates.  However, it is not known whether it can help 

explain the ignition phenomena, such as the maximum strain rate for successful ignition and the ignition 
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delay time.  Prior to successful ignition thermal and concentration gradients do not exist for diffusive-

thermal effects to manifest themselves which means that effective Lewis number might not be able to 

predict phenomena taking place during ignition. 

The flamelet model consists of taking a complex turbulent flame as an ensemble of small scale 

laminar flames [6]. For the opposed jet configuration (i.e. counter-flow) the critical Reynolds number for 

turbulent flow is in the range of     based on the inner nozzle diameter (  ) and it is calculated as 

    
  

 
 [24, 25].   is the mass averaged velocity and   is the kinematic viscosity. In this work 

Reynolds number ranges from the low hundreds to the high hundreds, well below the critical Reynolds 

number and in the laminar regime. For example for the pure methane at a strain rate of 420     

Reynolds number was calculated to be 796.  

As mentioned in Chapter 1 section 2, few studies on ignition of counter-flow diffusion flames 

have been conducted. Phuoc [8] studied the minimum ignition energy associated with laser spark 

ignition and concluded that the ignition energy obtained by the laser spark ignition does not differ 

greatly from that obtained by the electric spark ignition.  Phuoc and Chen [9] also studied the effect of 

nitrogen dilution on the ignition stability with the use of laser-induced spark. Other numerical and 

theoretical studies on ignition of counterflow diffusion flames have been performed to mainly reveal 

effects of spark position, spark duration, spark energy, strain rate, ignition probability, and minimum 

ignition energy level [10]. 

Phuoc [11] provided a review of the fundamentals and applications of laser spark ignition, in which 

all phenomena regarding the ignition process in premixed flames are discussed. From this review and 

results obtained in this study, laser-induced gas breakdown was researched. The absorption of such 
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laser spark energy for wavelengths greater than 300 nm by gases such as air and argon is reported to be 

between 8% and 12% [26]. Another important step was to gain background on how to optimize the 

ignition process as well as what to expect once ignition was successful. In momentum matched counter-

flow flames the position of the mixing layer region (i.e. ignitable region) lies near the mid-plane of the 

two burners, allowing easy access by the laser spark [11, 20]. Due to the small mixture fraction of pure 

and diluted CH4-air flames, the stoichiometric plane is always on the air side of the mixing layer [18]. 

   

 This thesis is structured as follows: in the next chapter the experimental setup and techniques 

used to study the ignition process will be presented, and then visual observations will be described for 

pure methane flames as well as with the addition of diluents. Then the definition of critical strain rate 

will be given, after which, Chapter 4 will address critical Damköler number for ignition and time to flame 

kernel. Next, a brief discussion on time to steady flame will follow. Finally, conclusions will be drawn 

from the results and discussions presented as well as future work needed.   
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CHAPTER 3: EXPERIMENTAL AND NUMERICAL METHODOLOGIES 
 

3.1 Experiment apparatus 

 

The experimental apparatus is sketched in Fig. 1. It consists of an axisymmetric counter-flow burner, 

an Nd:YAG laser, three-axis motion controllers (for precise location of spark down to the 1 μm), optical 

devices (i.e., a 10x beam expander and a 100-mm focal lens), and a high-speed camera. Each side of the 

burner was composed of inner main nozzles (for fuel/oxidizer) and outer nozzles (for N2), with the latter 

being used to shield the ignition process from external disturbances. The diameters of the inner and 

outer nozzles are 8.9 mm and 13.56 mm, respectively. The inner nozzle can be seen in Fig. 2a and the 

sketch of the complete assembly observed in Fig. 2b below.  

 

Figure 1 – Experimental setup  
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Figure 2 – (a) Inner nozzle                                            (b) Counterflow burner assembled 

 

The burner and the laser were attached onto a three-axis and a two-axis motion control system for 

precise alignment of spark location. These axis were controlled using a simple G-code program (software 

used to operate CNC machinery) that provided steps in the μm scale. The burner consists of two nozzle 

sets (each with an inner and outer channel) with three gas inlets. In order to assure that they are 

concentric four rods are used to connect them (see Fig. 3a) and a level used to adjust the nuts for height 

at each point. The bottom nozzle assembly was attached to the L-bracket first keeping the surfaces 

parallel in order to keep the burner from being tilted. The top nozzle assembly was then added and 

adjusted to be concentric and parallel to the bottom nozzle.  
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Figure 3 – (a) Counter-flow burner                         (b) Counter-flow diffusion flame 

 

The burner was adjusted to keep a separation distance between the two nozzles of 1 cm. In Fig. 3b a 

fully established and steady counter-flow diffusion flame using the burner in Fig. 3a can be observed, 

with pure methane being used as the fuel. As expected [Ref. 18], in Fig. 3b the flame lies closer to the air 

side. The high-speed camera was mounted on a hydraulic jack in order to adjust the height to match 

that of the burner separation. The laser was fixed in the vertical direction. The burner surfaces as well as 

the beam dump were coated with black high temperature resistant paint in order to avoid laser beam 

reflections. Laser sparks were generated by pulsing a Nd:YAG laser (Quantel Brilliant; 1064 nm with a 

pulse duration of 3.5 ns) which has an energy per pulse of 380 mJ. The laser pulse was expanded using a 

10x beam expander with an inlet diameter of 2 mm, and then focused using a 100mm focal length lens. 

Table 1 shows the laser parameters provided by the manufacturer and calculated for this work.  
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Table 1 – Quantel Brilliant laser parameters (λ = 1064 nm) 

Repetition Rate (Hz)  10 

 Energy per Pulse (mJ)  380 

 Laser Power (MW)  102 

 Pulse Duration FWHM (ns)  3.5 

 Beam Diameter (mm)    ≈6 

 Beam Expander Inlet Diameter (mm)    2 

 Beam Diameter after expander (mm)    20 

 Focal Length (mm)   100 

 Laser Spot Diameter (μm)    2.03 

 Irradiance (
 

   )  4.5 x      

 

 

In order to place these optical devices in good alignment with the laser apparatus and the counter-

flow burner a rail was necessary as well as posts and a mini stage with manual vertical adjustment for 

the beam expander. The focused spark region was calculated to have a diameter of ~ 2 μm and a length 

of ~ 1 mm using a method described in [27] (Eqns.(2) and (3) given below);  the  length  was  confirmed  

using  a  microscope  image  taken  with  a  high  speed  camera (described below) with a 10x magnifying 

lens. These dimensions of laser energy deposition spot are smaller than the thickness of the flammable 

layer in the counter-flow mixing region. 
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                                                                                                                                                             (2) 

        
 

 
                                                                                                                                                 (3) 

          and   denote beam divergence, radius and length in terms of spot size, focal length, 

beam diameter and laser wavelength respectively. In the first version of the experiment the laser was 

completely fixed. Also no focus lens was used. The spark produced by the laser at this stage met the 

irradiance threshold necessary for ignition [11] mentioned in the Objectives section of the first chapter 

of this work. A beam expander was deemed necessary due to the length of the spark being larger than 

the ignitable region of the flammable layer. The beam expander was only adjustable in the vertical 

direction, which meant some centering was needed in the horizontal direction. The laser was mounted 

onto a two-axis motion controller in order to easily align with the inlet of the beam expander. Inlet 

diameter of beam expander was measured to be 2 mm.  

Figure 4 shows the Phantom v12.1 camera used to record the ignition phenomena in this 

experiment. This camera communicates with the computer via Ethernet connection. The manufacturer 

also provides very user friendly software to operate the camera. A TAMRON 60 mm F/2 Macro lens was 

used with the camera, with the lens always fully opened to allow for maximum light absorption. An 

extra Ethernet card had to be added to the computer, because the camera needs special settings in 

order to communicate with the computer as well as to keep internet connectivity for easy back-up of 

data obtained in experiments.   
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Figure 4 - Phantom v12.1 camera 

 

  Other needs in the experimental setup were addressed. Among these was the addition gas lines 

as diluents were added as well as the calibration and addition of mass flow controllers. The flow 

controllers used in the experiment were constantly checked for accuracy and adjusted accordingly. The 

beam dump was changed after the addition of the beam expander, according to calculations and 

distance from the focal point to the beam dump. Lastly the attachment of the burner onto the motion 

controller was adjusted in order to allow space for the larger beam dump.  

 

3.3 Experimental and Numerical Procedures 

 

This experiment relied heavily on using accurate location of the best area for successful ignition. Due 

to the size of the spark as well as the small ignitable region the help of software was needed. FLUENT 

V6.3 was used to calculate the flammable layer thickness and the precise location where the 

stoichiometric condition (i.e. the stoichiometric mass fraction which is defined below,    ) exists. For 
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consistency, the laser spark was always focused on the intersection of the plane and the axis of 

symmetry of the burners. The thickness of the flammable layer was then used to determine the 

characteristic heat diffusion time.  

    
    

                            
                                                                                                                  (4) 

In order to obtain the energy deposition positions prior to the experiments, the governing equations 

of mass, momentum, chemical species for a cold flow are solved using FLUENT code. The governing 

equations used in the code are given below. 

Governing equations 

1. The mass conservation equation 

The equation for continuity equation is written as follows: 

mSv
t





).(





                                                                                                                                      (5) 

Equation 1 is the general form of the mass conservation equation and is valid for incompressible 

as well as compressible flows. The source   is the mass added to the continuous phase from 

the dispersed second phase (e.g., due to vaporization of liquid droplets) and any user-defined 

sources. 

For 2D axisymmetric geometries used in the paper, the continuity equation can be written as  

m
r

rx S
r

v
v

r
v

xt














 



)()(

                                                                                                   (6)
 

Where x is the axial coordinate, r is the radial coordinate, vx is the axial velocity, and vr is the 

radial velocity. 

2. Momentum conservation equation 



14 
 

Conservation of momentum is described by [28] 

                                                                                    (7) 

 

Where p is the static pressure,   is the stress tensor, and g


  and F


are the gravitational body 

force and external body forces (e.g., that arise from interaction with the dispersed phase), 

respectively.  

The stress tensor   is given by 

]
3

2
)[( Ivvv T 

 
                                                                                                                  (8)

 

where µ is the molecular viscosity, I is the unit tensor, and the second term on the right hand 

side is the effect of volume dilation. 

3. Species transport equations 

For the local mass fraction of the ith species, iY , the conservation equation takes the following 

general form: 

iiiii SRJYvY
t




 
)()( 

                                                                                               (9)
 

Where Ri is the net rate of production of species i by chemical reaction and Si is the rate of 

creation by addition from the dispersed phase plus any other sources. Since only cold flow is of 

interest here, Ri and Si equal to 0. An equation of this form will be solved for N-1 species where 

N is the total number of fluid phase chemical species present in the system. 

4. Mass diffusion in laminar flows 

Fgpvvv
t







 ).().()(
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In Equation (10), iJ


 is the diffusion flux of species I, which arises due to concentration 

gradients. 

imii YDJ  ,


                                                                                                                                       (10) 

In this equation Di,m is the diffusion coefficients for species i in the mixture. For diffusion 

dominated flows in the paper, the dilute approximation is not acceptable, full multi-component 

diffusion is required. In such case, The Maxwell-Stefan equations can be solved to obtain the 

binary diffusion coefficients. 

5. Maxwell-Stefan equations 

From Merk [29], the Maxwell-Stefan equations can be written as 

)()(
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                                                            (11)

 

For an ideal gas the Maxwell diffusion coefficients are equal to the binary diffusion coefficients. 

After some mathematical manipulations, the diffusive mass flux vector, 


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Where Yj is the mass fraction of species j. Other terms are defined as follows: 
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                                                                                                                              (13)

 

)(
,1, iw

w
N

ij
j ij

j

Nw

w

Ni

i
ii

M

M

D

X

M

M

D

X
A 






                                                                                                     (14)

 

)
11

(
,, Nw

w

iNjw

w

ji

iij
M

M

DM

M

D
XA 

                                                                                                       (15)

 



16 
 

))1((
,, iw

w
i

Nw

w
iii

M

M
X

M

M
XB 

                                                                                                      (16)

 

[A] and [B] are (N-1)×(N-1) matrices and [D] is an (N-1)×(N-1) matrix of the generalized Fick’s law 

diffusion coefficients Dij. Mw denotes the average molar mass of the mixture, and Mw,i, Mw,N 

denotes the molar mass of species i and N. 

With the use of the solution to the above governing equations, FLUENT can be set up to get the 

velocity and species concentration field for the opposed diffusion flow. The multi-component diffusion 

coefficients matrix was calculated based on the mass fraction in that grid. Gravity and buoyancy effects 

are taken into account in the momentum equation.  

 

Figure 5 - (a) Calculation domain (b) Grid distribution 
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The calculation domain is shown in Figure 5, the domain size equals 10 cm in the axial direction by 

36cm in the radial direction. The larger length is required to keep accuracy because a small length could 

affect the flow simulation results. The fuel and oxidizer burners are set with a diameter of 8.9mm, and 

the nitrogen flow is bounded by an inner diameter of 7.605 mm and an outer diameter of 13.56 mm. 

The oxidizer consists (in molar fraction) of 0.767 N2 and 0.233 O2 at room temperature 298.15K and 1 

atm pressure. In Ref. [30] it is shown that the potential flow and plug flow has little effect on the velocity 

field in the mixing layer, so for simplicity, the fuel and oxidizer inlet are set to be velocity inlet with an 

average velocity.  

Fuel and oxidizer flows were momentum-matched rather than velocity-matched. In momentum 

matched counterflow flames the position of the mixing layer region (i.e. ignitable region) lies around half 

the separation distance, thus very little movement is needed for optimal ignition conditions [15,23]. The 

high speed camera (Phantom v12.1) was set perpendicular to both the laser beam direction and the 

burner axis to capture the ignition process. These images allow determination of the time to flame 

kernel (or the ignition delay time) through the frame by frame playback as well as the time for the flame 

to become steady. This flame kernel is when chemical reactions have started and the temperature rises 

enough that it becomes visible. Once it is visible the ignition process has begun and a successful ignition 

is deemed when these reactions are sustained until the flame is steady. The data of the time to establish 

flame kernel (  ) and to become steady for various global strain rates (  ), diluents and dilution level 

were then obtained. The framing rate was 3,000 and the reported data are average of three to five runs. 

The repeatability lies with one or two frames, so the uncertainty of the temporal data is approximately 

0.3-0.6 ms. 

The imaging of the ignition events needed several iterations before the parameters described above 
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were chosen. The first step was to choose the best pixel configuration to visualize the section in 

between the burners where reactions take place with the TAMRON lens mentioned in section 3.1. In 

Table 2 the various possible configurations are given. In order to obtain the correct configuration 

physical adjustments of the camera’s distance from the burner and height were necessary. The 

configuration that allowed for the best view was chosen to be 256 x 128 pixels. The next step was to 

choose a frame rate at which enough light was allowed into the sensor in order to be able to observe 

the ignition phenomena taking place. The framing rate was chosen to be 3,000 as mentioned above with 

the exposure time kept to the maximum allowed by the camera (332.89 µs).  

Imaging of the laser spark was performed to confirm the dimensions calculated. The image can be 

seen in Figure 6. The framing rate needed for this was determined to be 100,000. The spark was only 

visible for 1 frame. In order to get the correct distance to view the spark a small needle was placed at 

the location of the spark and the camera adjusted accordingly to observe it. The spark on the regular 

experiment setup (i.e. recording at 3000 fps) was identified as the frame in which the camera sensor 

was saturated. Due to the spark deposition time being so small, the experimental uncertainty temporal 

data ranges from 10-15%. 

 

Figure 6 - Laser spark image using microscope lens 
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Table 2 – Phantom v12.1 pixels to maximum frames per second  

Pixels 128 256 512 768 1024 1280 

8 1,000,000 980,392 763,941 632,511 534,759 463,177 

16 852,514 683,994 490,196 381,891 312,891 264,970 

32 560,224 423,190 284,171 214,684 172,503 143,472 

64 330,469 240,096 155,207 114,220 90,637 74,934 

96 236,239 168,067 106,371 77,911 61,402 50,709 

128 183,250 128,998 81,024 59,069 46,464 38,296 

256 96,749 66,997 41,483 30,042 23,548 19,362 

512 49,724 34,140 20,978 15,156 11,854 9,735 

768 33,479 22,906 14,042 10,134 7,921 6,501 

800 32,161 22,006 13,485 9,730 7,605 6,242 

 

Limits of successful ignition (successful ignition is an event when a flame kernel develops into a 

steady flame) are defined as the strain rates above which no ignition is possible given the laser spark 

conditions. For the pure and diluted CH4, such limits were obtained by gradually increasing the velocities 

of both reactant streams while simultaneously keeping the momentum-matched condition and the 

dilution level. Argon and Helium are chosen as diluents. They have the same volumetric heat capacity, 

but possess vastly different thermal and mass diffusivities. This difference permits to study of effects on 

ignition caused only by these  transport  properties  rather  than  by  the  differences  in  their  heat  
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capacities.   The global strain rate,   , is defined, following Ref. [31], as 

   
   

 
   

  

  
 

  

  
                              (17) 

where   ,   ,  ,   , and    are, respectively, the velocities of oxidizer and fuel flows, the burner 

separation distance, the fuel-diluent mixture and air densities.  The value of    beyond which the 

ignition failed is the limit of the global strain rate and is denoted by      . In order to obtain extinction 

limit strain rates (     , given in Table 3) the flame was ignited at low    and flow was gradually 

increased until extinction occurred. For comparison, the current value of               (Table 3) for 

pure methane is in agreement with the published range of 400 s-1 – 500 s-1 [32]. 

 

Table 3 - Properties related to flame extinction and ignition of CH4 and diluted CH4 

 

 

 Pure CH4 20%He 30%He 40%He 20% Ar 30%Ar 40%Ar 

 

   ( 
    ) 2.06×10-5 2.31×10-5 2.17×10-5 2.70×10-5  2.03×10-5 2.04×10-5 1.99×10-5 

  
 (K) 1,755  1,690 1,780 1,750      [Ref. 20] 

   
 (K) 2,214  2,187 2,211 2,185 

      (   ) 575 405 250 575 480         [Ref. 20]  

      (   ) 424 312 161 376 352 

      (   ) 380 272 178 110 349 330 328 

   (    ) 0.355 0.362 0.365 0.374 0.352 0.347 0.345  

   (m) 1.89×10-4 2.10×10-4 2.50×10-4 3.30×10-4 1.85×10-4 2.11×10-4 2.12×10-4 

     3.26 3.29 4.21 4.56 3.21 3.58 3.68  

        
a     is the adiabatic flame temperature and    is the counter-flow flame temperature near-extinction 
b calculated at          
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CHAPTER 4: ANALYSIS 
 

4.1 Ignition position 

In Fig. 7 the ignition positions calculated by FLUENT V6.3 software are shown. The governing 

equations used for these calculations are given in Chapter 3 of this thesis. It can be observed that 

ignition position is not only a function of diluents type and dilution level (both affect the value of    ), 

but that it is a function of strain rate as well. Since    < 0.055 (0.055 is the value of     for pure CH4), 

then the ignition location lies on the air side of the mixing layer. It can also be observed that as dilution 

level is increases (i.e.,     is decreased), the ignition position moves closer to the mid-plane between the 

nozzles on the counter-flow burner. For a given dilution level, the ignition location for Ar-diluted fuel is 

closer to the mid-plane than the He-diluted fuel, as the former produces smaller values of    . 
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Figure 7 - Ignition position vs. global strain rate 
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4.2 Visual observations  

 

 In the experiment shown in Fig. 8  pure methane was used on the fuel side. The flows were not 

momentum-matched using the description given in Chapter 3 because at the time the goal was to 

obtain a successful ignition event. In this case a velocity was chosen for air and the equivalent 

counterpart for fuel was estimated using the respective conversion parameters of the flow meters for 

methane, thus the flame ended up lying closer to the fuel side. Experiments performed afterward using 

the methodology given in Chapter 3 resulted in flames lying on the air side. The strain rate of this 

experiment was calculated to be 300    . The location of the spark to achieve the ignition was at the 

mid-plane (0.5 cm from bottom burner), but no time data was recorded on this first trial. Lastly, it also 

provided the first insight (effects of ignition location on repeatability, calibration of flow meters to 

assure proper readings) into what was necessary to conduct a successful experiment (i.e. establish an 

experimental procedure and the importance of optimal ignition location). 

 

Figure 8 - First successful ignition of counter-flow flame in this work 
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Typical images for the CH4 fuel and fuel-inert mixtures from the high-speed photography of the 

ignition process are reported in Fig. 9, where the laser spark was initiated at t = 0 and    denotes the 

time when the first sign of flame kernel appeared.  Images denoted by (d) are believed to be of the 

flames that had achieved the steady state.  Using Fig. 9 as the example, ignition processes showing 

images (a) that eventually lead to images (d) (i.e. go from the flame kernel to steady flame) are termed 

as successful ignition.  

 

 

Figure 9 - Ignition process (t = 0 at spark deposition) – (a) Identification of time to flame kernel 
formation (Processed with ImageJ to enhance visibility); (b) & (c) flame development process; (d) time 
to steady flame. 
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4.3 Critical strain rate, Kg,ig   

The time to flame kernel data (  ) for all the fuel-inert mixture studied (listed in Table 3) are 

presented as a function of    in Fig. 10 in order to understand how changes in flow conditions as well as 

changes in thermal diffusive properties (i.e. dilution level) affect ignition phenomena. Because Fig. 10 

reports    for all successful ignition for the given laser spark energy, the end points (maximum   ) for 

each fuel-inert mixture also represent values of      .  The effect of effective Lewis number (   ) on 

      is here discussed first (Eq. 1), as it is known to successfully explain the global extinction strain rates 

(     ) for methane fuels diluted with helium and argon at various dilution levels [20].  This effective 

Lewis number (   ) (Eq. 1) takes into account the combined (non-stoichiometric) mixture of fuel, 

oxidizer and diluents as the ratio of the mixture thermal diffusivity to the mass diffusivities of fuel and 

oxidizer for mixtures studied (Table 4) (which are evaluated at room temperature and pressure).     

(Table 4) is the more traditional definition of Lewis number used, but it does not take into account the 

oxidizer, which is the reason why     is used.  
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Figure 10 - Time to flame kernel (  ; open symbols) and characteristic thermal diffusion time (  ; 
closed symbols) vs. global strain rate 

 

Table 4 - Effective and fuel Lewis number for various dilution levels 

  20% 30% 40% 50% 

   -He  0.489 0.586 0.700 0.857 

   -He 1.246 1.319 1.397 1.478 

   -Ar 1.085 1.058 1.041 1.021 

   -Ar 1.075 1.060 1.049 1.039 

 

The results in Table 3 also show that for the dilution levels studied, diluted fuels possess smaller 

values of       than the pure fuel. As a result from using different diluents and dilution levels, the effect 

of     on extinction       can be summarized as follows. With the same level of dilution, the diluents 
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producing smaller values of     yield larger values of      . Dilution with Ar produces smaller values of 

    and larger values of       than with He for both 20% and 40% dilution. For example, 40% dilution 

with He/Ar leads to     = 1.397/1.049 and      =161 s-1 /352 s-1.  

These results are consistent with those from Ref. [20] using different counter-flow burners, which 

are reproduced and given in Table 4. They suggest that       is affected not only by dilution that simply 

lowers the flame temperature and reaction rate, but also on the relative rate of diffusion of chemical 

and thermal enthalpy in the into and out of the reaction zone, i.e., on    . As shown in Tables 3 and 4, 

with the same level of dilution, the diluent producing smaller values of     also yields larger values of 

  , the flame temperature. For example in Table 3 for 40% dilution level    for the Ar diluted flame is 

1750 K (    = 1.049) and for the He diluted flame    is 1690 K (    = 1.397). In the following paragraph 

the effect of     on       is discussed given the laser spark energy.  

The experimental value of       for the fuel-inert mixtures shown in Table 3 has a maximum value 

for pure CH4, as expected.  Ar-diluted mixtures have larger value of       compared to the He-diluted 

mixtures and the difference appears to be larger as the difference in     is larger – the 40% dilution 

results in a larger difference in     (1.049 for Ar diluted flame and 1.397 for He diluted flame) and larger 

difference in       (328     for 40% Ar and 110     for 40% He) with the Ar-diluted mixture having a 

smaller      and larger      .  It is also noted that for a given diluent and dilution level,            . 

      is expected to be smaller than       If the Damköhler number is defined as the ratio of 

characteristic flow time (      ) to characteristic chemical reaction time, then              .  

For a given diluent and level of dilution    is known.  Therefore,        .  Thus, the ignition 

Damköhler number is larger than the extinction Damköhler number, consistent with Liñan’s S-curve for 

diffusion flames [33].   
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Figure 11 - S-curve for diffusion flames 

 

 In Fig. 11 the behavior of temperature related to the inverse of strain rate is shown. This figure 

is based on Liñan’s work [33], who investigated the structure of steady state diffusion flames by 

analyzing the mixing and chemical reaction of two opposed jets of fuel and oxidizer. The maximum 

temperature is given in terms of Damköhler number (as stated before        ) and resulted in the S-

curve shown above. The upper part of the S-curve in Fig. 11 (circled in blue) represents the change in 

Damköhler as strain rate is increased (i.e. move along the curve towards the left) with the flame already 

existing. Meanwhile on the bottom part of Fig.11 (circled in red) it starts at room condition (i.e. low T, P) 

and as ignition occurs (from flame kernel to steady flame) there is a temperature jump to the steady 

flame regime. After successful ignition the upper right part of the curve represents the flame.  

 Two limits are observed in Fig. 11, one for ignition and the other for extinction. Once ignited 

temperature in the flammable layer rapidly increases until flame is steady, but once       is reached 

ignition is not possible anymore. In extinction a flame already exists and    is slowly increased until 

      is reached. At       temperature rapidly drops and the flame no longer exists. The behavior in 
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Liñan’s S-curve coincides with the finding in this work that            . This is due to the asymptotic 

structure of diffusion flames, and both limits found in different parts of the curve. It is of interest in this 

work to concentrate on the lower part of the S-curve and find what factors are present for the critical 

Damköhler number for ignition, which is discussed next. 

 

4.4 Critical Damköhler number for ignition   

Fig. 10 shows variation of d  as a function of diluents and dilution level from calculations using 

FLUENT (in solid symbols). d  can be regarded as the time limit within which the successful ignition is 

possible before energy is dissipated out of the flammable layer and it’s definition can be seen in Eq. 18: 

t

d
D

2
                                                                         (18) 

δ and    are the flammable layer thickness and thermal diffusivity, respectively. In Fig. 10 it is 

noticed that under lower strain rate (60-100/s), values of d are far larger than the experimental results 

for time to flame kernel (  ), while the differences decrease at higher strain rate (>100/s). The reason 

being that at low strain rates, the convection is not strong and the thickness of the flammable layer is 

larger (Fig. 12), consequently a larger time window to obtain a flame kernel is ensured. As strain rate is 

increased, the convection of the counter flows become stronger and values of  of the methane diluted 

flames decrease, thus reducing d .  

While flow time scale (inversely proportional to global strain rate) may be used to define Damköhler 

number, for successful ignition of the flammable mixture in the mixing layer the heat generation rate 

must exceed the heat loss rate.  This means that the thermal diffusion time scale (  ) and the chemical 

reaction or induction time scale (  ) following energy deposition by the laser spark should be on the 
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same order of magnitude at ignition.  The characteristic values of    and    are proportional, 

respectively, to      and       where  ,   , and    are, respectively, the flammable layer thickness, 

the one-dimensional laminar flame propagation speed for stoichiometric fuel-air mixtures, and thermal 

diffusivity of the fuel-air-inert mixture in the mixing layer.  Therefore, the critical Damköhler number for 

ignition can be defined as 

     
  

  
 

 

    
                 (19) 
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Figure 12 - Flammable layer thickness vs. global strain rate 

 

  In the counter-flow configuration, the value of   is that of the region bounded by lean and rich 

flammability limits of methane-air mixtures (equal to, respectively, 5% and 15% fuel volume fraction 

[34], which translate to equivalence ratio      =0.5164 and      =1.6182). Due to dilution, the value of 

  varies with diluent type, dilution level, and   .  The values of   were calculated for cold flows using 

the FLUENT software with their results shown in Fig. 11, as functions of diluent type, dilution level, and 
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  .  Values of    were found using CHEMKIN with GRI-Mech 3.0 and are listed in Table 3 along with 

values of   corresponding to      .      values were calculated using FLUENT and are also listed in Table 

3. 

  Values of      for the fuel and fuel-inert mixtures shown in Table 3 appear to be on the same 

order of magnitude and ranges from approximately 3.2 to 4.6.  The 40% He-diluted mixture has a larger 

value of      (by approximately 30%) than the other mixtures, as it has the smallest       (110    , 

Table 3).  With Ar, having similar diffusivities as the pure     (in the range of               , Table 3), 

the value of   is expected to be insensitive to dilution.  For diluent having large diffusivities, such as 

helium, the physical boundaries of       and       may enlarge, as the result in Table 3 show that with 

40% helium,   = 3.30×10-4 m, approximately 50% larger than other fuels, resulting an approximately 30% 

larger value of      than other fuel mixtures, consistent with Eq. (6), where values of    and     do not 

vary much among all fuel mixtures (see Table 3).  

The alternative definition of Damköhler number for ignition is to use the characteristic flow time 

(      ), as customarily done for extinction studies (           ).  In Fig. 13    and      can be 

seen to correlate in a linear manner, i.e.,          , with the constant c falling in the range of 

approximately 1.5 – 2.  Thus when the alternative definition is used we know    for given diluents and 

dilution level and the value of      falls in the range of approximately 5 – 9. As can be seen in Fig. 13 for 

40% helium dilution, the value of c is the largest further amplifying the difference in      among the 

fuel mixtures.  However, with either definition the values of      for the fuels mixtures studied are of 

the same order of magnitude.   
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Figure 13 - Thermal diffusion time scale vs. convective flow time scale 

 

In summary, for the same level of dilution the diluent generating a smaller     (argon) results in 

larger       and      .  In other words, the diluent giving a smaller    causes the flame more resistant 

to extinction and makes successful ignition easier to achieve (i.e., achievable at higher strain rates).  

However, when the thermal diffusion and chemical time scales are considered, the vastly apparently 

different values in        leads to similar values of      -- the maximum difference in      are with 40% 

helium and argon whose values of       are 110 s-1 and 328 s-1, a three-fold difference, while their values 

of      have a merely 20% difference (4.56 vs. 3.68).  

4.5 Time to flame kernel/induction time, tk  

While Ar-diluted flames are more resistant to extinction by strain and its mixtures can be ignited at 

larger      , they nonetheless have larger values of    than the He-diluted mixtures at the same level of 
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dilution.  This observation holds for all range of    reported in Fig. 10.  The molecular relaxation time 

was initially suspected to cause differences in values of   , because Ar has the largest 

rotational/translation time among the possible molecules (CH4, He, H2O, CO2, O2, and N2) present in the 

mixing layer (       [35-39]).  However, the typical values of    reported are several milliseconds and, 

therefore, should not be affected by molecular relaxation due to the laser pulse.  Therefore, the values 

of    reported in Fig. 10 are dependent on dilution and transport properties resulting from dilution.    

The value of    for pure CH4 is the lowest among all fuels throughout the entire range of   , as 

expected.  For the same dilution level (i.e., the effect of thermal capacity are the same for helium and 

argon), Ar-diluted mixture leads to larger values of   , suggesting that smaller values of     lead to 

larger   .  As shown in Fig. 10, increasing the argon dilution level from 20% to 40% increases    by a 

factor of approximately 2 over the reported range of   , while increasing the helium dilution level from 

20% to 40% leads to a decrease in   .  Thus, the effect of increasing the dilution level with He leads to 

somewhat unexpected results of   .    

These trends appear to be not explainable by the effect of Lewis number, either.  This is because as 

dilution for He is increased from 20% to 40%,     increases from 1,246 to 1.396 and the diffusive-

thermal effect should lead to decrease in mixture temperature not only because of dilution effect but 

also because of lager rates of thermal diffusion away from the mixture (i.e., cooling) than the heat 

generation rate from chemical reaction.  It is desirable to examine the role of    – one expects that if 

     , then there would be no successful ignition and no value of    should be or can be reported.  

Thus, it is reasonable to expect      .  Since the characteristic (rather than the absolute) time scale is 

of interest, the ratio       was calculated using the data in Fig. 10 (ratio of open to closed symbols) as 

well as data obtained for dilution levels of 30 and 50 percent for both diluents. The results are shown in 

Fig. 14.  
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Figure 14 - Non-dimensional ignition to diffusion time vs. global flow time 

 

The results of Fig. 14 suggest that as the flow time      is reduced, the ratio       increases.  As a 

consequence, as    is decreased,    increases relative to the time ignition has to be successful, despite 

the fact that    decreases with increasing   , as Fig. 10 indicates.  Thus, although increasing    leads to 

smaller   , ignition eventually fails because the decrease in    with increasing    outpaces the decrease 

in   . 

The reason for infeasible Lewis number explanation for the He-diluted mixture might be given as 

follows.  Due to the much larger thermal diffusivity of He, as the dilution level is increased,    decreases 

resulting in a higher heat transfer and cooling rate from the flammable layer (as can be seen from Fig. 

11).  This causes a decrease in chemical reaction rate.  As a consequence,    increases from 20% to 40% 
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dilution for    up to       (see Fig. 10).  Furthermore, the value of       is much smaller with 40% He 

dilution, further suggesting the thermal cooling due to He.  For successful ignition, these results suggest 

that (1) simple effect of dilution (such as by argon) leads to an increase in    and (2) decreasing    (such 

as by increasing dilution level with helium) forces smaller    if ignition occurs but results in smaller       

(i.e., more difficult to ignite under moderate strain rates).  

4.6 Time to steady flame 

 The other transient event recorded in this study is the time for the flame to become steady. This 

time is defined as the time necessary for the flame not to exhibit any visible major changes in structure, 

brightness or other characteristics. Once the flame had been observed for 10 – 15 frames without such 

changes being observed, the flame was deemed steady. In Fig. 15 time to steady flame for all cases in 

this work is observed as function of global strain rate. In all cases the time to steady flame has been 

observed to decrease as strain rate is increased. The flame quickly expands in the flammable layer as the 

characteristic diffusion time is reduced (i.e.    increases) and any events taking place outside of this 

region are quickly diffused. 

In Fig. 15 it can be observed that for He diluted flames the times to steady flame increased more 

significantly with the increase of dilution level than those of their Ar diluted counterparts. This is to be 

expected due to the larger thermal diffusivity of He, thus thermal diffusion for He is larger than for Ar. 

Also can be noted that for cases where experiments with strain rates higher than 200 s-1 were possible, 

the times to steady flame seem to converge closely together and even some crossing can be observed. 

Several attempts to explain why this is the case have been made, including calculations of Richardson 

number (Fig. 16) to see whether buoyancy affected the flow, but the results were inconclusive. 
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Figure 15 - Time to steady flame vs. global strain rate   
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Figure 16 - Richardson number vs. global strain rate  
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CHAPTER 5: CONCLUSION 

 

5.1 Summary 

In this thesis the effects of transport properties, effective Lewis number and thermal diffusivities, on 

ignition, ignition time (  ) and time to steady flame of counter-flow diffusion flames have been 

investigated.  The variations in transport properties were obtained by using helium and argon as 

diluents. Several conclusions and contributions can be made from this work and are presented in the 

following paragraphs. 

The role of effective Lewis number (   ) on the maximum global strain rate (     ), beyond which 

ignition is not possible, is found to be qualitatively similar to that on the extinction strain rate.   With the 

same level of dilution, the inert diluent with smaller     yields larger      . With the fuel-inert mixtures, 

the critical ignition Damköhler numbers fall within 20%-30% of each other. While    is a viable 

parameter to explain       results, no consistent role of      on    has not been found. 

Argon has similar thermal diffusivity (  ) as other species in the flammable layer and, thus 

increasing its dilution level (from 20% to 40% argon) leads to larger    due to the lowering of the 

temperature during the ignition process.  For He, the opposite is true due to its much larger thermal 

diffusivity that leads to cooling during the ignition process.  In summary, the cooling effect results from 

both dilution and thermal diffusion – for argon, increasing dilution level leads to lower temperatures 

and for helium increasing dilution level leads to smaller   , under which successful ignition needs to 

occur in shorter time (thus, smaller   ) and can occur only with smaller strain rates.  
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Lastly, time to steady flame experiment data resulted in some expected behavior (decreases as 

strain rate increases) due to the thickness reduction of the flammable layer. Also observed was the 

more pronounced effects of thermal cooling on He diluted flames compared to their Ar counterparts. 

Also observed was the convergence of time to steady flame in experiments where ignition on strain 

rates above 200 s-1 was possible.  For this case, no parameters that govern their behavior have been 

found.  
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5.2 Future work 

  

 The work presented in this thesis is the first step into gaining a deeper understanding of 

phenomena that occurs during ignition of turbulent diffusion flames as well as the effects of diluents 

and diffusive-thermal properties in ignition phenomena in these flames. The experimental results 

presented here for both time to flame kernel as well as time to steady flame will serve as validation as 

computational transient models are developed to reciprocate the events described in this work. Once an 

effective model involving detailed chemical kinetics is created more insight could be gained into all flow, 

chemical and other events that take place during the ignition process. Due to the large amount of 

calculations needed to simulate these events with detailed kinetics large computational power will be 

required.  
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