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ABSTRACT 

 

Because of its high stiffness, carbon nanotubes (CNTs) are considered as one of the 

widely used reinforcement materials in the metal matrix composites. In this thesis, finite element 

(FE) models were built in Ls-Dyna3D to simulate Copper/CNTs composite deformation and 

fracture, and to explore CNTs reinforcement mechanisms. Several possible mechanisms were 

discussed.  

Deformation and failure of Cu/CNT composites were studied numerically using unit cell 

FE models, which consist of both metal matrix and CNTs. The simulation results have been 

verified by existing experiment data reported by Chen’s group. The matrix material was modeled 

as elasto-plastic ductile solids. The CNTs material properties were taken from literature results 

using molecular dynamics simulation. FE simulations have showed that CNTs deformation 

exceeds material elastic limit, which means that CNTs plasticity should be taken into account as 

well. 2D unit cell models were developed using axial symmetric elements with suitable boundary 

conditions. Several mechanisms are found to affect CNTs reinforcement prediction. The first one 

is the boundary condition imposed in the models. The CNTs significantly affect the plastic flow 

of copper during plastic deformation, which is one important reinforcement mechanism. The 

second reinforcement mechanism is found to be the hardening zone of Cu matrix around CNTs, 

which is introduced by mismatch of coefficient of thermal expansion (CTE). 

A round of parametric studies was performed to investigate the effects of several 

modeling parameters in the FE simulations; these parameters include the volume fraction of 

CNTs, aspect ratio of CNTs, the size of hardening zone, and the residual plastic strain in the zone. 
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A tool combining Matlab and Ls-Dyna was developed to automatically build 2D unit cell models 

and automatically post-process simulation results. Picking up suitable parameters, 2D unit cell 

model results well predict the experimental results from Chen’s group. It should be noted that the 

interface between Cu and CNTs was assumed to be perfect in FE simulations since no CNTs 

debonding was observed in the experiments.   

Also, a 3D unit cell model using tetrahedral elements (with element numbers up to one 

million) was tentatively developed to obtain more accurate results. The purpose was to explore 

the interface properties of Cu/CNTs, the effect of CNTs orientation distribution, and the other 

reinforcement mechanism coming from geometry necessary dislocation (GND) since the size of 

Cu matrix is divided into nano scales by CNTs. 3D unit models are also used to verify the 2D 

unit cell one, which is a simplified and effective approach. Very interesting results was observed 

in this part of study. Further works are needed to overcome the difficulties in 3D modeling and 

the limitation of current CPU speed. 
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CHAPTER 1: INTRODUCTION 

Carbon nanotubes(CNTs)[1-3] is regarded as one of the stiffest and strongest materials 

ever discovered. Because of CNTs’ such outstanding characteristics, CNTs have received 

considerable interest in research. New technologies developed to synthesis MWCNTs and 

SWCNTs reinforced metal matrix material greatly, these advances make it feasible to develop 

new carbon nanotubes composites material. CNT reinforcement technologies are used in many 

fields, copper/CNT composites improved thermal expansion, thermal and electrical conductivity 

of electric motors brushes[4], Cha et al’s studies show that CNT effectively reinforces copper 

strength[5], and lowers wear rates and friction coefficients[6]. Thus, develop new carbon 

nanotubes composites to improve material properties has become an interesting research area [5-

8].  

Theoretical models and experimental measurements have implemented to study the 

mechanism of deformation, fracture and predict composite material behavior under complex 

conditions[9]. Some studies focus on the mechanism of CNTs and its Metal-matrix composites 

[5] behavior under complex conditions; some researches focus on molecular level, molecular 

structural mechanics model[10] is a simplified elastic model, molecular dynamics[11, 12] 

simulate elastic and plastic process during tensile process, these two method are useful in 

predicting nano-composites behavior in microscope, but these models are not feasible to predict 

material in macroscopic scale calculation because of limitation of computer capacity. Continuum 

mechanics model is a feasible way[9] to study CNTs composites in microscope under complex 

stress conditions.  
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To build up theoretical models in actual application, one thing need to be addressed is the 

transition from CNTs to metals matrix, this transition area is generated during manufacture 

process, such as thermal expansion difference [13, 14], heterogeneous plastic deformation[15] 

and phase transformation[15]. Residual stress arises during manufacture period, which provide 

additional stiffness. Most of composite materials have this transition area. The characteristics of 

this area are totally different CNTs and metal matrix [16, 17] which plays key roles to change 

metal matrix stress strain properties. Simplified two parts models [5, 9] cannot accurately explain 

the whole tensile process. Nano-composites behavior changed much due to transition part 

between CNTs and metal matrix. Thus, considering transition part between is important to build 

up an accurate theoretical model. 

With the experiment data of pure metal under different stress condition, and molecule 

dynamics calculation of CNTs, elasticity of CNTs metal matrix composites can be obtained. 

After comparing the CNTs composites experiment results with finite element model calculation, 

modification and adjustment can be made until model calculation results fits experiment result. 

The major parameters to compare is the stress-strain curve, if two stress-strain curves fits each 

other, we can say that the finite element model can predict CNTs composites behavior. 

To deal with strain softening and incorrect convergence when the element is refine to 

vanishing size in our calculation, nonlocal damage theory is applied[18]. Base on nonlocal 

damage theories, the failure criterion is depends on the status of material within a radius around 

the integration points. An obvious advantage of nonlocal failure is that it can greatly reduce mesh 

size effect on failure.  The only required modification in calculation is to replace the usual local 

damage energy with its spatial average over the representative volume of the material whose size 
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is a characteristic of the material. The key idea of the nonlocal damage theory is to subject to 

nonlocal treatment only those variables that control strain softening, and to treat the elastic part 

of the strain as local [19]. 

In this thesis, we study the mechanism of harding and failure of CNTs nano-composites. 

We fit a stress-strain curve and failure criterion base on constant-fracture strain model, with this 

model we can precisely predict nano-composites material behavior under complex tensile 

conditions. The failure criterion is obtained through numerical iterations, and model is validated 

by means of experiment. This paper summarizes mechanisms of hardening of CNTs copper 

composites, and provides a feasible procedure to study nano-composites characteristics.  
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CHAPTER 2: LITERATURE REVIEW 

2.1 Carbon-nanotube composites 

The motivation from the automobile and aerospace to develop light and high strength 

materials has been recognized, as these properties of material improved, fuel economical of 

transportation can be improved greatly. Since pure metals and alloys cannot provide enough 

strength and stiffness, developing metal matrix composites is one of the best ways to solve this 

dilemma, metal matrix provides strength and ductility, and stiffness is by reinforced high 

stiffness material, such as CNTs. Due to high Young’s modulus, high strength with low density, 

high toughness and flexibility of carbon nano-tubes[20-22], synthesis of CNTs is a feasible way 

to improve material properties, such as carbon nantotube-polymer composites[23, 24], metal 

matrix composites[25-27].  

CNTs extraordinary mechanical properties are showed in numerous experiments and 

simulations, such as extremely high Young’s modulus 0.5-150 TPa[28-35], large ultimate tensile 

strengths range from 20GPa to 150 GPa[28, 34-36], very high flexibility[37], and thermal 

conductivity up to 600W
-1

K
-1

[38, 39]. The excellent CNTs mechanical properties are because of 

high bond strength of carbon-carbon bonds and perfect lattice structure[40]. 

Recent years, people carried out a lot of research about CNTs reinforcement in materials, 

such as polymer and metals. Figure 1 shows the statics of journal papers published recent years 

on CNT composites. From the statics, most of CNT reinforced matrix studies have been carried 

out on polymer base materials, whereas the major structural materials applications today are 

metals. Figure 2 shows the number of publications on CNT-metal matrix each year. From Figure 

2, we can say that obviously increased papers published after 2003.  
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Figure 1 statics of CNT composites reinforced materials 

(source:www.scopus.com)[41] 

 

 
Figure 2 Statics of papers on different metal matrix base CNT composites 

(Source: www.scopus.com[41]) 

CNT composite reinforcement is widely used to improve polymer properties. Some 

reviewed papers presented on polymer base CNTs composites [42-48], and different resins [49, 
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50]. Some papers addressed the problems for ceramic matrix composites [51-53]. Jia et al.[23] 

prepared nanocomposites with situ polymerization of poly (PMMA) and MWNTs, the 

mechanical properties are improved greatly due to very high interfacial strengths in between 

CNTs and polymers. Haggenmueller’s[48] study showed that orientation of nanotubes 

significantly influence nanocomposites properties.  Zhou et al[54]. did a comprehensive studies 

on anisotropic distribution of MWNTs in polymer, the alignment of carbon-nanotubes in the 

composites showed that the degree of alignment is critical for anisotropic properties of CNTs, 

and degree of alignment can be controlled by stretching ratio. 

To fabricate metal/CNT composites, many techniques are reported[41] to prepare it. 

Powder metallurgy is the most popular and widely technique to fabricate metal matrix CNTs 

composites. electroless and Electrodeposition [41] deposition are another important techniques, 

which is next to powder metallurgy, to fabricate metal matrix CNT composites. For low-melting-

point metals such as Mg and bulk metallic glasses[41], melting and solidification is a viable 

solution. Except these techniques, other routes have been developped to fabricate metal matrix 

CNT composites. The techniques are presented in the following section. 

2.2 Carbon-nanotube composites processing techniques 

One of the most important issues to prepare CNT metal matrix composite is the CNTs 

dispersion in composites, the main purpose of many research and experiments is to improve it. 

Another issue need to be considered is the reinforcement of CNTs, which depend on the 

interfacial wettability between CNTs and metal matrix. Also chemical reaction should be 

avoided during composites manufacture process. 
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Figure 3 Metal matrix CNTs composite processing 

Several metal matrix CNT composites methods are presented[41] 

Many ways have already been studied to manufacture metal matrix nano-composites [41]: 

1. Power metallurgy; 

2. Melting and solidification; 

3. Thermal spray; 

4. Electro chemical deposition; 

5. Other novel techniques. 

An overall disgram is showed in Figure 3 about metal matrix CNTs composites 

processing. 
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The common challenges in these processing technologies are:  

1. CNT homogeneous dispersion in metal matrix; 

2. Bond strength at the interface between CNT and metal matrix; 

3. Stability of CNTs inside metal matrix. 

2.2.1 Powder metallurgy 

Mechanical alloying and sintering 

Power metallurgy technology is widely used, especially in Cu/CNT and Al/CNT 

composites studies, and a few Sn, Ag, Ni, Ti, Mg matrix base CNT reinforced composites. Some 

metal matrix nano-composites such as Cu-CNT[6, 55], Al-CNT[56], W-Cu[57] and Ag-CNT[58], 

are prepared with mechanical alloying and sintering.  

Mixing/mechanical alloying and hot pressing 

Hot pressing is another way researcher to consolidate powder mixtures. Since some 

studies showed that it is inappropriate to fabricate AL-CNT composites because of CNT 

clustering [59, 60]. Dent et al. [61] electroless coat Ni on CNTs which address dispersing 

problems, Kuaumaki et al. [62] avoid CNTs damage and prepare Ti-CNT composite by hot 

pressing after 5 hours mechanical mixing, Carreño-Morelli et al.[63]  and Pang et al.[64] 

improved mechanical properties through uniform dispersing of CNTs. 

Spark plasma sintering 

Spark plasma sintering(SPS) is a process which a pulsed direct current is passed through 

a die and the powder, producing rapid heating and then enhance the sintering rate greatly[41, 65]. 

This produced saved time on grain growth to consolidate nano powder. The method is mainly 

applied to produce Cu-CNT[5, 66, 67], Al-CNT composites[68].  
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Deformation processing of powder compacts 

To improve CNTs density, distribution and alignment in composites, some researcher 

tried to deform composites powder compacts. Kuzumaki et al.[69] achieve better alignment in 

the Al-CNT composites through hot powder compact extrusion at 873K. However, this approach 

is limited to Cu-CNT [70-72] and Al-CNT [73-79] composites. 

2.2.2 Melting and solidification procedure 

This method is only feasible for low melting point metal, because CNTs may burns under 

high temperature, or react with metal matrix at the CNT/metal interface. The sub-routine of this 

method include: casting, metal infiltration, melt spinning and laser deposition. 

Bian et al.[80, 81] produced Zr base metal CNT composites by casting, which enhanced 

hardness and also crystallinity  at the same time because of CNT reinforcement. There is also 

Mg-CNT [82, 83] composites research reported after melting and casting, due to low melting 

point of Mg. 

There is also research reported with infiltration method to disperse CNTs in composite. 

This process is to disperse CNTs inside porous medium, then infiltrate liquidized metal into 

porous medium to produce composite structure[41]. Mg-CNT[84] and Al-CNT[85] metal matrix 

composites are reported, the metal matrix is well reinforced, and the hardness and wear 

resistance of composites are well improved. Li et al.[86] reported CNT-Fe82P18 metallic glass 

composites through pouring molten alloy on to a rotating CU wheel, the alloy is cooled rapidly 

which generate metallic composite ribbons[41]. Ni-CNT composite is prepared through laser 

deposition by Huwang el al[87]. 



10 

 

2.2.3 Electrochemical procedure 

Electrochemical procedure is the second popular method after power metallurgy 

techniques [41] based on the number of metal matrix CNT composites publications, Electro 

deposition and electroless-deposition are two major sub-index.  

It is reported that electro deposition is mainly used to prepare Ni-CNT [88-102] and Cu-

CNT matrix composites [103-106]. Recently, many researches are reported to plating techniques 

are employed to prepare metal/CNT composites [89, 91, 93, 99, 107-111]. Arai [112] fabricated 

CU/CNT composites plating by pulse-reverse (PR) electro-deposition method was investigated 

in order to increase MWCNT content of the composite plating files. To determine the best 

current in electro-deposition process, electron microscopy and X-ray diffraction were employed 

to investigate the electro-deposition and dissolution behaviors of composite films. It is reported 

from the previous studies, that the higher CNT concentration of electrolyte, current density and 

agitation rate of bath, the higher CNT vol fraction.[92, 93]. Electroless deposition, which is first 

reported by Chen et al.[113], is the process of depositing a coating with the aid of a chemical 

reducing agent in solution, and without the application of external electrical power. A few CNT 

metal matrix composites, Co-CNT[56], Ni-Fe-P[66] alloy and Ni-Cu-P[114] alloy have been 

fabricated using this approach. 

2.2.4 Other processing technique 

Thermal spray is another efficient manner to incorporate CNTs into coatings and bulk 

components. Better wear resistance and thermal conductivity of the composites in the studies. 

The major advantage of thermal spraying is to provide large cooling rate, which can reach 10
8
K

-1
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in solidification process [115-117]. Thermal spray can be classified into three sub-methods: 

flame spraying, cold spraying, high velocity oxy-fuel spraying and plasma spraying [41]. 

Except the method mentioned above, some other methods also reported, which are not 

widely used, such as Cu-CNT composites[5, 67, 118, 119] with molecular level mixing, 

sputtering route[120, 121]. 

2.3 Nonlocal theory 

Nonlocal method has been considered as an efficiently computation method to deal with 

the defects come with incontunuum medium in softening. The material damage behavior under 

force have been elaborated by many theories, such as coalescence, nucleation and micro-defects 

[122]. As a certain damage point is attained, damage result to degradation of material elasticity 

and remarkable overall strength reduction. The latter phenomenon is strain softening, which is 

considered as the computational and theoretical difficulties in continuum structural model. 

Some regulation techniques are carried out to overcome the shortcomings that mentioned 

above, the most simple one is the fracture energy regularization approach [123-125]. This 

approach is efficient and simple, but it does not provide spatial band damage distribution in the 

model. Nonlocal approaches are carried out, which comes with clear micro-mechanical 

interpretations. Nonlocal approaches are defined in two forms, one is strong form(spatial 

integral)[126-129], the other one is weak form(spatial higher gradients)[130-134]. 

Polizzotto [135] and Borino [128] developed nonlocal damage problems base on a 

nonlocal dissipative problems. This approach is extended to strain-softening plasticity which is 
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originated from thermodynamic format. Benvenuti et al.[136] consider nonlocal approach as the 

damage-hardening internal variable.  

2.4 Residual stress&strain in metal matrix CNT composites 

There is one thing must be considered in metal matrix CNT composites, the transition 

part between CNTs and metal matrix. Usually the transition parts contain residual strain/stress 

during manufacture process, which play key roles in improving composites characteristics.  

Chemical and complex temperature cycles are applied in forming process to fabricate 

metal matrix CNTs composites. Complex chemical and thermal reaction during the cycles within 

the composites produce internal stress which come from different sources,  such as unmatched 

thermal expansion [137]. 

Plastic residual strain mechanism is studied by Suh et al. [17] and Arsenault and Shi[138]; 

in their studies, plastic residual strain is produced by coefficient of thermal expansion(CTE) and 

elastic-plastic mismatch at the interface of reinforcement particle and matrix, additional stress is 

generated  by the residual strain, which is called residual stress. A model is developed to predict 

plastic dislocation around the particles by Arsenault and Shi [138], the calculation result showed 

that mismatch thermal expansion [14] produce plastic strain because of the geometrically of 

dislocation(GND). Strain gradients are also generated a the interface of particle-matrix by 

elastic-plastic mismatch which comes with deformation also generate GNDs [139], but the 

dimension of yield strength result from this process is obviously smaller than that produced in 

the CTE process. 
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Due to the elastic-plastic mismatch between the particle and matrix, plastic strain 

gradients are also produce GNDs[139] which come with deformation, while yield strength is 

reinforced smaller by this process than that generated by CTE mismatch[140]. 

Figure 4 [17] give a brief idea GND micro-structure. Figure 5 illustrate discrete particle 

distribution in composites, every particle is surrounded by a hardened area which contains 

additional residual stress, the strength of the composites is influenced by this are greatly. 

 

 
Figure 4 punched area distribution around each particle [17] 

Volinsky et al. [13] studied microstructure of electroplated copper film on different 

barrier layers and residual stress inside this films, Rozeveld et al. [141] measured the residual 

strain in Al-SiCw composites with convergent-beam electron diffraction, Yin et al,[142] 

measured the residual strains associated with the curing process to fully understand how the 

woven structures behave after cure.  

Several methods were employed to determine the residual strains in composite materials, 

Sicot et al.[137] and Wu et al.[143] employed hole-drilling method to measure residual stress in 
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composites materials; Thermal residual stress among different laminar in woven graphite 

composites is studied by Benedikt et al.[144];  Zewi et al.[145] measured residual stress in 

woven glass epoxy laminates; and several analytical model are employed a combination of 

modified classical laminate theories and finite element modeling[146]. 
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CHAPTER 3 EXPERIMENT 

3.1 Uniaxial tensile test 

In this thesis, our research is mainly focus on FEA modeling and simulation. All 

experiments are carried out by Dr Chen etc al.[147]. Then FEA models are evaluated base on 

these experiment data. In this chapter, I will introduce simplified experiment procedure which 

carried out by Dr Chen etc al.[147]. 

The fabrication of Cu/CNT nanocomposites is prepared by an innovative electrochemical 

co-deposition, which is developed and finished in Dr Chen’s lab[147], in this process the CNTs 

can be driven and deposited onto a cathode, together with copper ions. CNTs are dispersed in the 

copper electrolyte and both CNTs and copper ions are deposited on the cathode at the same time 

during deposition reaction. Therefore, uniform CNT distribution in the copper matrix has been 

manufactured (Figure 5). Figure 5 shows CNTs dispersed well in composites. 

 
Figure 5 SEM picture of Cu/CNT composites 

 Composites is fabricated by the electrochemical co-deposition[147] 
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To determine mechanical properties of Cu/CNT nanocomposites, Cu/CNT samples are 

prepared in a dog-bone shape by UV-LIGA process (Figure 6). In fabrication process, a thin 

copper layer is deposited first on a silicon wafer by a physical vaporization process. This thin Cu 

layer is used as seed layer for Cu/CNT electrochemical deposition. Su-8 molds are used to define 

the shape and size of tensile test sample Figure 7(a).  In order to compare CNT reinforcement 

effect on pure copper, pure copper sample without CNTs is also prepared by the same procedure. 

The thickness of samples is controlled by deposition time, and measured by electron 

microscopy (SEM) scanning; the shape is predetermined by the molds, which is showed in 

Figure 6. Tensile tests were carried out with a Tytron 250 Microforce Tester System (MTS, 

USA)[147]. The tested samples are examined under microscope scale (Figure 7(b)). After test, 

deposit and fractured surface are studied using TEM and SEM (JOEL 6400F). 

 

 
(a)                                                                              (b) 

Figure 6 top view of a dog-bone shape CU tensile test sample[147] 
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(a)                                                       (b)                                   

Figure 7(a) SU-8 fabrication mold SEM image. (b) A fractured sample image (copper CNT composites) 

after tensile test[147]. 

3.2 Experiment result 

Figure 8 shows a stress-strain curve comparison of Cu/CNT nanocomposite and pure 

copper. Figure 8 indicates that electrochemically deposited copper can reach a yield stress as 

high as 75MPa (0.2% offset strain) and an ultimate tensile strength of 230 MPa. The strength 

data are comparable to the published data[147]. According to Figure 8, the yield strength of 

CNTs reinforced copper can reach 420 MPa, which is about five times larger than that of pure 

copper. 
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Figure 8 A typical engineering tensile stress-strain curves 

Comparison between Cu/CNT nanocomposite sample and pure Cu sample[147] 

 

 

Figure 9 SEM fracture image of CNT reinforced copper and pure copper sample. 

Indented fracture interface is showed in Cu/CNT nanocomposites, but it is smooth in pure copper. The 

enlarged TEM image on one tip in SEM shows the MWCNT is fully wetted by deformed copper. No 

broken up between CNTs and copper according to the TEM images[147]. 
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Moreover, the ultimate tensile strength of CNTs reinforced copper is about 710 MPa, 

which is triple times greater than that of pure copper. But, the fracture strain of the Cu/CNT 

nanocomposite is much less than that of pure copper (Figure 8), but still produce enough 

ductility. 

 

The fracture morphology of copper and Cu/CNT is scanned by SEM and TEM (Figure 9). 

It indicates that the fracture phenomenon of CNT reinforced copper is very different from pure 

copper. The fracture interface of Cu/CNT is indented curve which is different from pure copper’s, 

which is quite smooth (Figure 9). When enlarging one tip of protrusion at fracture interface, 

TEM images show that the each individual CNT is fully enclosed by deformed copper (Figure 9), 

and there is no broken up take place between Cu and CNTs. This means that after deformation, 

there is no debonding at the interface between CNT and copper. This shows that there is high 

interfacial bonding force between Cu and CNT, which means a good interfacial bonding between 

Cu and CNT, is produced by electrochemical deposition process. The interfacial fracture bonding 

of electrochemical deposition is totally different from that of CNT/polymer composites and 

CNT/metal matrix composites which fabricated by power metallurgy which interfacial bonding 

is not good, and reinforcement is not large[11, 58, 59, 62, 147-149](<50%). 
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Figure 10 Tensile strength of Cu/CNT nanocomposite Vs CNT in copper electrolyte(mg L

-1
)[150] 

A series test are conducted with various amounts of CNTs added to the composites to 

determine the influence of CNT in Cu/CNT nanocomposite, the result is showed in Figure 10. It 

shows that with the increase of MWCNT in the electrolyte, the tensile strength is increased in a 

polynomial pattern. This is because of the fact that more trapped MWCNT in the Cu/CNT 

composites result from more MWCNT added to the electrolyte. 

3.3 Copper properties 

Base on the experiment data, the first step is to determine pure copper properties which is 

a easy and direct process. True stress-strain curve is determined from engineering stress-strain 

which obtained from experiment data; yield stress and Young’s modulus are determined from 
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true stress-strain curve. With these parameters, pure copper FEA model can be built up to predict 

its behavior. 

 

 
Figure 11 engineering stress strain curve of pure copper 

In our thesis, σe and εe are denote engineering stress and strain, which are determined by 

the load and deflection with the model cross-section area A0 and length L0 at t=0, σe and εe are 

determined as:                                                                                                       1 

When strain is in low portion range in tensile experiment process, the behavior of many 

materials approximately obey Hooke’s law, that is the stress is proportional to strain with a 

constant Young’s modulus, which denoted by E:                                                                                                                                                2 

While as strain increases, many materials reach plastic deformation range, the point 

where material departs from linear relation is termed as yield stress. During plastic deformation, 

the nonlinearity associates with plastic flow in the parts, and microscopic structure and internal 
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molecular of materials undergoes a restructure procedure, the atoms moves to new equilibrium 

positions. 

In LS-DYNA model, only true stress-strain rather than engineering stress-strain is 

accepted in the calculation, because materials’ response in the plastic range can be measured 

more directly by true stress-strain curve. In this thesis, true stress strain cannot be obtained 

directly from experiment, only engineering stress strain relationship can be measured from 

experiment. Converting from engineering stress strain to real stress strain is a feasible way to 

obtain true stress strain relationship. 

σt = P/A                                                                                                   3 

                                is termed as “true” or “logarithmic” strain.  

The relationship between engineering stress and strain and true stress and strain can be 

written as:                                                                                                                                              4 

                                                                                                                                              5 

These equations showed above can be used to derive from engineering curve to true 

stress-strain relations before necking. Stress-strain relationship of ductile metals usually can be 

approximately described by simple power law relation form before necking: 

σt=Aεn
t                                                                                                                                                                  6 
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The parameter n is termed as strain hardening parameter, useful to determine the necking 

resistance. After necking, true stress strain relationship is determined through trail error 

procedure which is showed in Figure 13. Then the whole stress strain relationship  of pure 

copper is determined which is showed in Figure 12; other copper parameters, Young’s modulus 

and yield stress, also determined from this stress strain curve, density and poision ratio is 

obtained from other literatures[151], there parameters are showed in  

Table 1. 

 

Table 1 Copper properties 

Density 8.94kg/m3 

Young's Modulus 120GPa 

Poision Ratio 0.34 

Initial Yield stress 172MPa 

 

 

 

Figure 12 Pure copper fitted true stress strain curve 
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With this curve, we can calculate stress-strain relationship. Fitting the curve with 

experiment data, and employing the curve to represent stress-strain relation in our calculation, 

material deformation can be predicted.  

 

 
Figure 13 trial-error procedure 

Trial-error procedure is employed to carry out several iterations, copper properties are 

determined after these processes, especially the stress-strain curve. 
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Figure 14 Engineering stress strain of pure copper calculation Vs Experiment 

With copper properties and stress strain curve, copper behavior under tensile stress can be 

predicted. Pure copper model calculation result is showed in Figure 14, from the calculation 

result comparison showed, after imposing correct boundary conditions and proper material 

properties, calculation result fits experiment data well. 
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CHAPTER 4 NUMERICAL SIMULATION OF PURE COPPER 

4.1 Finite element simulation 

Finite element models are developed to predict Cu/CNT composite behavior and Ls-dyna 

is employed to simulate the deformation process. Figure 15 showed a simplified process to create 

models, simulate and analyze calculation results. 

 

 
Figure 15 Simplified FEA process 

In this process, the first step is to employ Matlab to generate FEA models files; these files 

include grid, element, load information and material information etc. Some common data is 

extract to one keyword file, which is called main keyword file; Ls-dyna includes these common 
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keyword files at the beginning of calculation automatically. The second step is to use hypermesh 

to open and review keyword files to see whether there is something wrong in the model or not. 

The third step is to open keyword to simulate and then analyze calculation result with Ls-PrePost. 

To simplify the model and save calculation time, shell models are selected; shell model 

shape is showed Figure 16. The integration points through the thickness in our shell models are 

set to five, this is base on the balance of precise and efficiency of calculation. The meshing 

density near the location where fracture appear is set to very fine, and the density where is far 

away from the fracture is coarse. 

 

 
Figure 16 2D pure copper shell model 
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4.2 Mesh size effect 

One approach which is widely used to deal with fracture in simulation is to delete 

elements or split elements where the criterion of fracture is achieved. However, these approaches 

are very sensitive to mesh size, because stain to fail increase with finer element meshes. Mesh 

size effect appear after strain localization, for ductile material this usually appear before 

initiation of fracture. 

Localized deformation state is a state after an instable point, this state is termed as that all 

the deformations are concentrates in a small but finite area, this area is called necking region. 

Even external loading conditions do not change, the localized deformation occurs. As 

localization appears in this region, the structure outside localized region tend to unload 

elastically. 

 

 
Figure 17 dog bone area to study mesh size 

In this thesis, three different meshing are selected on the same specimen part to compare 

meshing size effect on model failure and fracture prediction, meshing information is showed in 
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Table 2. The number of elements in the Table 2 is the elements in the area which is circled 

Figure 17; this part is the area where necking and fracture takes place. 

 

Table 2 Element size information 

 
Element size(nm) Element number of boned gauge section 

Mesh 1 40*33 1200 

Mesh 2 20*22 3600 

Mesh 3 10*11 14400 

 

 

 
Figure 18 Stress-strain curve of three different meshing 

In Figure 18, three calculations are conducted with three different element size; from the 

calculation result presented in Figure 18, we can see that different mesh size result to different 

failure and necking. But there is no difference before necking takes place. The mesh1 FEA 

simulation result is showed in Figure 19. At the beginning, the stress and strain fields are almost 
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uniform along the center of dog bone part, after localized necking stress and strain starts localize 

at the center of the part.  

 
          (a) FEA simulation before necking                                (b) Simulation result after necking 

Figure 19 Plastic strain contour plot of meshing 1 

From the above discussion, we can conclude that the simulation result after necking is 

changing with meshing size. Then to predict plastic deformation after necking, one solution is to 

calibration mesh size; all the following FEA simulations should employ this mesh size to obtain 

same calculation result. 

4.3 Nonlocal method in calculation 

To solve the meshing size dependence, one feasible way is to employ nonlocal model in 

the plastic damage model. The nonlocal integral introduces long range micro structural 



31 

 

interaction by assuming the variable response at a material point is dependent on the state of its 

neighborhood in addition to the state of the point itself. The properties of one point are the 

average values within one radius, which is called characteristic length, the simplified theory is 

showed Figure 20. 

In this research, we employ nonlocal method in Ls-dyna by adding key word 

“*MAT_NONLOCAL” in keyword file. The exponent of weighting function P is 8; the exponent 

of weighting function Q is 2; the characteristic length is 200nm to span a few elements in every 

model; the number of time steps between update of neighbors is 5. 

 
Figure 20 Material nonlocal mechanism 
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Figure 21 Calculation result with nonlocal method models 

From the calculation that is showed in Figure 21, there is still big difference between 

three models after necking achieve in. In this calculation, we do not apply fracture criterion in 

the models, so all the model keep on necking in the calculation. 

From the calculation that are showed above, we can conclude that many research claimed 

that nonlocal method can reduce meshing effect, our calculation result shows that nonlocal 

method cannot fully solve meshing effect on calculation. 

4.4 Result discussion 

In this chapter, we discussed ways to fit stress-strain curve in calculation in our models; 

base on the fitted stress-strain curve, we developed pure copper FEA models and employ 

nonlocal method to partially solve meshing effect during FEA calculation. The study shows that 

although many researches discussed on non-local method, our research shows that this method 

cannot fully solve mesh size effect on FEA simulation.  
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CHAPTER 5 NUMERICAL SIMULATION OF Cu/CNT COMPOSITES 

5.1 Introduction 

Residual stresses can be defined as those stresses that remain in a material or body after 

manufacture and processing without imposed of an external forces or thermal gradients[15]. 

Residual stress usually originates during manufacturing and processing of materials; the sources 

of residual stress are from heterogeneous plastic deformation (mechanically generated), thermal 

contractions (thermally generated) and phase transformations (chemically generated)[15]. In our 

research, chemically generated residual stress is mainly considered in our research, because 

Cu/CNT composites produced by electrochemical de-position process. Due to volume changes 

result from electrochemical reaction and phase changes in Cu/CNT composite manufacture 

process, residual stress is generated between CNT and copper matrix, in composite material, the 

copper with residual stress is called hardened region. Harden region and its volume fraction 

plays key roles in changing composites hardness, which is discussed in this chapter.  

In our research, we employ implicit algorithm of LS-DYNA. To determine required time 

step in explicit algorithm, LS-DYNA goes through all the elements. To make calculation stable, 

time step is decreased by a scale factor of 0.9(default): 

         

      

l:length of an element       E:material Young’s modulus 
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Time step decrease about 1×10
9
 times because of elements nano-scale length. But in the 

LS-DYNA implicit, time step has nothing to do with element size, so we choose implicit 

algorithm in this thesis.  

Table 3 is the list of parameters which are studied in this thesis. 

 

Table 3 Parameter in study 

Parameters Parameters meaning 

σy composite material yield stress 

σ0 pure copper yield stress 

H Composite model length 

D Composite model diameter 

fv CNT volume fraction in composite model 

fH Hardened region volume fraction 

Harden strain residual strain of the copper around CNT 

 

5.2 2D Unit cell model prediction for elasticity, initial yield and strain hardening 

Deformation and failure of Cu/CNT composite is studied numerically in this chapter. In 

our calculation, we construct a 2D unit cell FE model which consists of both metal matrix and 

CNTs. A model picture is showed in Figure 22, CNT volume fraction of this unit cell model is 

2%; the red area represents CNTs, and the blue area represents the pure copper with residual 

strain which come from the affection CNTs during composites manufacture. The yellow area 

represents the copper which is not affected by CNTs during composite manufacture.  The aspect 

ratio of three parts is choosen to be the same in our models. To simplify the model and save 
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calculation time, we employ symmetry method on our models. Only one-fourth of specimen is 

selected in calculation, symmetry boundary is employed on y=0 and x=0. 

 
Figure 22 Simplified unit cell models 

Different colors on the picture represent different materials in the models. Yellow part represent 

pure copper; blue region represents hardened copper; red region represent CNTs. 

 

Table 4 Unit Cell Boundary conditions(B.C.) 

OA X symmetry B.C. 

AB Velocity B.C. 

BC global linear B.C. 

OC Y symmetry B.C. 

 

The radius of pure copper, harden area and CNT are denoted by Rcu, RH and RCNT, the 

length of three areas are Hcu, HH and HCNT. 

 The boundary conditions for the cell region analyzed numerically are showed in  



36 

 

Table 4:  

At x=0, the symmetry boundary is automatically applied in calculation because we 

employ “Axisymmetric solid (y-axis of symmetry)” as element formulation in our calculation. 

The boundary conditions(B.C.) for the 2D unit cell model are: 

uy=0 on y=0 

uy=U2 on y=H/2 

ux=U1 on x=Rcu 

In ls-dyna the keyword “CONSTRAINED_LINEAR_GLOBAL”  is applied to the 

models to fullfill cell region boundary conditions above. In the models, with this constrained 

boundary, the composite materials is reinforced greatly, the details of keywords is showed in 

Table 5. 

Table 5 constrained Linear boundary conditions 

*CONSTRAINED_LINEAR_GLOBAL 

NID DOF COEF 

1 1 -1 

 

5.3 Effect of aspect ratio, CNTs volume fraction, Harden strain and its volume fraction to the 

model 

In unit cell models, previous studies[9] show that different aspect ratios of CNT and 

copper area are key parameters that affect calculation results greatly. In our research, we did a 

series of simulation on different aspect ratios to find out the relationship of material hardening 
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with other parameters. To simplify the model, we suppose that the deformation CNT is still in 

elastic deformation range.  

Before study CNT metal matrix composite materials characteristic, the mechanic 

properties of CNT are important. Base on the previous studies, there are different way to study 

mechanics properties of CNT, K.M.Liew etc[11, 12] employed molecular dynamics simulation 

to determine CNT properties by means of investigating molecular reaction. This method consider 

both elastic and plastic behavior. Xiao etc[10] employed a simplify molecular structural 

mechanics model, which suppose there is only Morse potential interatomic reaction, which only 

produce elastic strength. Many experiments[28, 29] were also developed test plasticity and 

elasticity of CNT. From molecular dynamics simulation[11], the aspect ratio CNTs in the 

composites can also change composites hardening greatly. Reference [12, 152] states that the 

elastic properties of CNT are nearly independent of the indices but not for the plastic 

deformation. With the same radius, the elastic limits of Zigzag (n,0) CNTs are nearly twice that 

of Armchair (n,n) CNTs [12, 152].   

Based on the molecular calculation [12], the stress strain curve follows as follow. At 

0≤ε≤εp, the stress-strain relationship follows the Hooke’s law, i.e. σ=Eε, where εp is the 

proportional strain limit point. As the strain increases, the stress-strain behave non-linearly until 

it reaches the yield strain εs. The stress-strain curve is represented as σ=(Aε+B) ε at εp≤ε≤εs. A 

and B are determined by curve fitting from MD calculation, which is showed in Table 7, where 

computation result and fitted curved parameters are listed. After yield point, large plastic 

deformation without an obvious stress increase; before yield stress εs≤ε≤εh, the stress can be 
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approximately as σ= σs; from dσ/dε=0, σs=-B/(2A). We choose mechanics parameters of two-

walled CNT with L/D=9.1 in our following composite model. 

 

 
Figure 23 engineering strain stress curve of CNT molecular dynamics calculation result[12] 

 

 

Table 6 CNT properties[12] 

Young's Modulus(TPa) 1.175 

Yield strength (GPa) 163.3 

Tensil strength(GPa) 168.4 

Proportional strain limit(P point) 0.0621 

Elastic strain limit(S point) 0.242 

Max strain(M point) 0.281 
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Figure 24 smoothed and fitted stress-strain curve from CNT MD(molecule dynamic) calculation. 
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Table 7 Material properties of selected single and multi-walled CNTs[12] 

 
L/D 

Young's 

modulus

(Tpa) 

A 
(TPa) 

B 
(TPa) 

proportional 

strength(Mpa

) 

Yield 

strength 
(Mpa) 

Tensile 

strength 
(Mpa) 

Proportional 

strain limit 

Elastic 

strain 

limit 

Maximum 

strain 

Single-

walledCNT 

of (10,10) 

4.5 1.043 -2.625 1.211 6.103×10
4 1.369×10

5 1.404×10
5 0.0585 0.231 0.280 

9.1 1.031 -2.522 1.190 6.271×10
4 1.421×10

5 1.485×10
5 0.0594 0.236 0.279 

           
Two-walled 

CNT of 

(5,5) and 

(10,10) 

4.5 1.161 -2.543 1.259 7.231×10
4 1.614×10

5 1.624×10
5 0.0627 0.247 0.279 

9.1 1.175 -2.810 1.362 7.287×10
4 1.633×10

5 1.684×10
5 0.0621 0.242 0.281 

           
Three-

walled CNT 

of (5,5), 

(10,10) and 

(15,15) 

4.5 1.000 -2.358 1.160 6.068×10
4 1.430×10

5 1.434×10
5 0.0605 0.238 0.281 

9.1 0.972 -2.275 1.120 5.645×10
4 1.381×10

5 1.414×10
5 0.0611 0.246 0.282 

           
Four-walled 

CNT of 

(5,5), 

(10,10), 

(15,15) and 

(20,20) 

4.5 0.932 -2.234 1.103 6.075×10
4 1.343×10

5 1.382×10
5 0.0654 0.235 0.281 

9.1 0.872 -2.132 1.023 5.784×10
4 1.278×10

5 1.327×10
5 0.0633 0.241 0.280 
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5.4 Parametric study tool kits 

To study the different parameters effect on composite models in our project, we need to 

build up large amount of keyword files for Ls-dyna, and batch files to call Ls-dyna to launch 

keyword files one by one automatically. These parameters include elements size, specimen 

dimensions, specimen aspect ratio, CNT volume fraction, harden copper volume fraction, copper 

volume fraction, and residual strain of harden copper. All the keyword files are created based on 

these pre-determined parameters. 

Tool kits for Post-processing the simulation results are also developed, to increase the 

efficiency of data processing. 

5.4.1 Input deck generator 

To find out parameters, such as aspect ratio, volume fraction, effect on composite models, 

a series of keyword files created with a series of parameters. In our studies, different function of 

keywords files are separated into different keyword files, main keyword files is 

“CuCNT_model.k” which includes every other keyword files and provides common control 

information; meshing information is in “mesh.k”; material information is packed in “material.k” 

files; special boundary conditions are packed in “BC_Right.k” and other files. 

All the meshing information is created by our tool kits; the array of the node is formatted 

as showed in Figure 25(a), element numbering structure is similar to node numbering structure, 

the node number is increase from left to right, from bottom to top. Volume fraction separation 

points are the points which separate two materials; these points are showed in Figure 25(b). 

Volume fraction is calculated base on meshed node, the nodes which are the nearest to the 
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volume fraction separation point is selected as the border of two materials. To generate a series 

keyword files, we need simply redo the procedure mentioned above. 

 
Figure 25 Meshing node array format 

 

 
Figure 26 Ls-Dyna launch keyword dialog 
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Although Ls-Dyna provides interface dialog to user to launch keyword as showed in 

Figure 26, its efficiency is low when large amount of jobs to import into Ls-Dyna. In our 

research, we employ batch files to launch keyword files and Ls-Dyna solver directly with 

command line. A main batch file launches each sub-batch file one by one automatically; the 

routine of this process is showed in Figure 27. 

 

 
Figure 27 Keyword and Ls-Dyna solver launches procedure by batch files automatically 

 

5.4.2 Ls-Dyna post-processing code 

Ls-PrePost is the software developed by Ls-Dyna to post-process Ls-Dyna calculation 

result. But its efficiency is also low to deal with large amount of results. Node displacement and 

total force in y-direction of selected nodes are all exported to specific files which are parsed by 

our tool kits. After parsing the outputted data, results and experiments are all plotted at the same 

picture, which provide very fast and convenient way to see and compare result. 
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5.5 Calculation result 

5.5.1 Different CNT volume fraction and model aspect ratio 

To study different factors in calculation, we did a series of calculation based on CNT 

volume fraction and model aspect ratio. In our model, we apply same aspect ratio on three 

different areas. X-axis is the CNT volume fraction, Y-axis is the H/D ratio, Z-axis is normalized 

composite yield stress to pure copper yield stress.  The first step is to consider all the 

deformation of CNT as elasticity only. The Young’s modulus is 1.175TPa. 

“H/D” represents the aspect ratio of model, all the areas in our model are the same aspect 

ratio, which include CNT, hardened area and pure copper. 

“fv” represent the volume fraction of CNT in the composite material, also to better 

understanding, we also convert the volume fraction to mass fraction with equation for Cu/CNT 

composites 

                            

The density of carbon nanotube is 2.1g/cm
3
[153], the density of pure copper is 8.94g/cm

3
, 

relationship lists volume fraction and mass fraction of CNT relationship in  

Table 8. 

“σy/σ0” represent the yield stress of composite material to yield stress of pure copper  

The harden strain is 0.5. The volume fraction of hardened area is 0.1. H/D ratio is range 

from 0.1 to 100, CNT volume fraction is range from 1% to 7%. 
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Table 8 fraction ratio in our model 

Volume fraction Mass fraction 

0 0 

0.01 0.002367104 

0.02 0.004770992 

0.03 0.007212529 

0.04 0.009692606 

0.05 0.012212142 

0.06 0.014772088 

0.07 0.017373422 

 

 

 
Figure 28 CNT elastic model with different copper aspect ratio and CNT volume fraction 

From the calculation result showed in Figure 28, we can see that the fv increases, the 

yield stress increases monotonically; but to the aspect ratio (H/D), for the same fv, σy/σ0 reaches 

its minimum values at H/D=1; but aspect ratio (H/D) effects decrease significantly after H/D≈10. 

Also as the increase of H/D, the effect of fv increases at the same time.  
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Figure 29 True stress strain of CNT with plastic properties 

 

Figure 30 CNT plastic model with different copper aspect ratio and CNT volume fraction 

 

Our next step is to study the plasticity of CNT effect on the composite materials. The 

engineering stress-strain relationship is obtained from Table 7, and is converted to true stress-
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strain relationship by the process which is presented in chapter 3.3; true stress-strain curve is 

plotted on Figure 29. 

Figure 30 indicates that in comparison with the model with only elastic properties, the 

yield stress of elastic-plastic CNT decrease significantly. This means that hardness of composite 

decreases because of CNT plasticity. 

 

 
Figure 31 Volume fraction trend 

To better evaluate CNT volume fraction roles in models, a series of calculation results are 

plotted together in Figure 31. Model results with elastic CNTs and elastic-plastic CNTs are 

plotted at the same time, for the same CNT volume fraction. Models with elastic CNT is always 

stiffer than the one with plastic CNT. With the increasing of CNT volume fraction, the 

composites becomes harder and harder. It is found that CNT plasticity plays much less roles in 

reinforcing copper. 
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5.5.2 Harden volume fraction and harden strain effect on composite material 

Previous studies show that there is a transition area between CNT and pure copper, this 

area plays import roles in changing composite materials properties. We constructed a series 

models to study the effect of harden strain and harden copper volume fraction. In this model, we 

suppose that all the CNT deformation is in elastic deformation range, no plastic deformation is 

considered. The X-axis is the volume fraction of hardened copper; Y-axis is the different harden 

strain of copper; Z-axis is the normalized yield stress of composites by that of pure copper. 

A series calculation results are combined and showed in Figure 32. From the Figure 32 

we can see that with the increase of harden strain and volume fraction, the yield stress of 

composite increases monotonically with harden strain and volume fraction of harden area. 

 

 
Figure 32 CNT elastic model with different copper harden strain and different the copper harden volume 

fraction 
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Figure 33 CNT plastic model with different copper harden strain and different the copper harden volume 

fraction 

On the other hand, to evaluate the effect difference between elastic model and plastic 

model, plastic deformation of CNT is considered in the model. Same series of calculations are 

conducted, the only difference between elastic model and plastic model is the CNT stress-strain 

curve. For the model considering plasticity, stress strain relationship is not simply follow 

Hooke’s law. 

5.6 Correlation between experiments and simulations 

Based on the parameters study in the previous chapter, we can find that there are many 

parameters in the models that can affect composite hardness. To fit the calculation result with the 

experiment result, suitable mechanic properties should picked up from the series calculation. It 

should be noted that the mechanics parameters which are picked from different is not the only 
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choice, because change different parameters can have the same effect on the composite. Good 

correlation was achieve for a set of carefully choose parameters, as shown in Figure 34. 

 

 
Figure 34 Calculation result of correlated parameters 

 

5.7 Result discussion 

In this chapter, we developed unit cell models and a series of tool kits to study mechanic 

properties of CNT composites. Unit cell modeling is a simplified way to calculate composite 

material properties. By imposing proper boundary conditions, geometry factors and volume 

fraction of different area inside composites, the model can predict correct hardness of the 

composite. Our calculation result can fit experiment result. 

It is found that CNT in composites material cannot reinforce the material to the expect 

hardness, there must some other factors that play important roles to reinforce the materials. What 
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we assume is that there is a hardened area around CNT in the composite materials, which plays 

important roles in reinforcing composites material hardness. 

The aspect ratio of a model is another factor which can change composite models 

hardness dramatically. In our model, the aspect ratio of three area are all the same. At the aspect 

ratio of H/D=1, the effect of CNT reach its minimum level. The composite material hardness 

increases monotonically as H/D>1 or H/D<1. This trend is showed in Figure 28 and Figure 30. 

While our research only focus on H/D>1; the reinforcement of CNT has only slight difference 

after H/D≈10, so in our calculation, the MD calculation result of H/D=9.1which is showed in 

Table 7 is used as our uniform CNT properties. 

We also found that the residual strain around CNT also plays important roles in 

reinforcing composite materials. The hardness of composite material increases monotonically 

with both harden strain and its volume fraction. 
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CHAPTER 6 PRELIMINARY RESULT ON 3D UNIT CELL MODEL 

2D unit cell model is a simplified model, because all the materials in composite are 

simplified to be a uniform region. In the actual conditions, CNT disperse in the composites 

randomly, but our 2D unit cell models suppose that CNT is uniformly distribute among metal 

matrix. A 3D unit cell model is built in this chapter to get preliminary result. 

6.1 3D Cu/CNT composite model dimension & geometry 

3D unit cell model is a more precise model. In our research, we build up 3D geometry 

with ProE, both position and directions of CNT are randomly dispersed inside composites. To 

simplify model and save computer time, symmetry boundaries are also imposed on the model, 

one-eighth of the whole model is selected. The one-eighth length of model is 250nm, cross-

section of model is square, and one-eighth width of CNT model is 100nm. One-eighth model 

geometry shape is presented in Figure 35, the surface number and boundary on each surface is 

showed in  

Table 9. The CNTs dimension in the 3D models are 10nm(Diameter)×50nm(Length). 

 

Table 9 3D model surface information 

surface 
surface 

number 
boundary condition 

left 1 fixed at 1,5,6 

bottom 5 fixed at 3,4,5 

back 4 fixed at 2,4,6 

right 2 fixed at 5,6 and global linear equation at 1 

front 3 fixed at 4,6 and global linear equation at 2 

top 6 velocity boundary 

  
note: the number in this column represent degree of freedom 
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Figure 35 3D unit cell model with proper boundary conditions 

 

6.2 3D Cu/CNT composite model meshing 

Because the volume inside composite model is irregular, we have to employ tetra mesh 

function in Hypermesh to create tetrahedron elements, which can fill any 3D volume space. The 

first step is to generate surface shell mesh. Most of the surfaces meshing elements are quads. 

Initially 3D volume meshing elements are created based on the surface meshed elements. The 

mesh density of CNT surface mesh elements are much smaller than the surface mesh near model 

surface, because strain/stress gradient at CNT and metal matrix interface is much larger than 

other places. 
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A meshed model is showed in Figure 36 , model Figure 36(a) is viewed from XZ plane, 

Figure 36(b) is the cross-section of the model which is viewed from XY plane. The red region of 

the model is pure copper, and the blue region is CNTs. The mesh density around CNTs is much 

higher than other region, because more attention is focused on the interaction between CNTs and 

copper matrix. The total number of elements of this model is one million. 

 

 
(a)                                                                   (b) 

Figure 36 3D CNT composite finite element model 
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6.3 3D Cu/CNT composite model calculation & discussion 

The CNT materials properties is obtained from two wall CNT H/D=9.1, as listed in Table 

7. With the boundary conditions imposed, which are presented in  

Table 9, on 3D unit cell models, calculation result is obtained.  

To validate the model, we built a model in which all the materials are all copper. The 

comparison of models with tetra elements calculation results with experiment result is showed in 

Figure 37. In the calculation result that is showed in Figure 37, we have to double the 

engineering stress of calculation result, which is the only way to match the calculation result with 

experiment result. This is a “bug” in LS-DYNA (ls971_d_R5.1.1_winx64_p.exe) in terms of 

calculating reaction forces. 

 
Figure 37 3D copper unit cell model calculation result & experiment result 

0 

100 

200 

300 

400 

500 

600 

700 

800 

0 0.1 0.2 0.3 

E
n
g
in

ee
ri

n
g
 s

tr
es

s(
M

P
a)

 

Engineering strain 

Calculation 

Engineering stress 

Experiment CNT-Cu 

pure copper experiment 



56 

 

 
Figure 38 2D unit cell model & 3D unit cell model comparison 

Comparison between 3D unit cell and 2D unit cell model is presented in Figure 38, 2D 

unit cell model is constructed without harden strain. The volume fraction of 2D unit cell is about 

1%, and the volume fraction of 3D unit cell is about 2%. Stress value of 3D unit cell is doubled 

according to simulation result in Figure 37. Figure 38 shows that CNT in 3D models play very 

slight role in reinforcing composite material; there is slight different between 3D CNT composite 

unit cell model and 2D unit cell model with pure copper. The reason is due to the orientation of 

CNTs. 

In this chapter, we developed a 3D unit cell model to simulate composite material 

behavior, but unfortunately the calculation result is neither match experiment nor 2D unit cell 

model result. Further research should be performed to on resolve this incorrect simulation, and to 

develop ways to impose residual stress around CNT in 3D unit cell composites models. 
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CHAPTER 7 CONCLUSION  

In this thesis, we develop FEA model to simulate Cu/CNT composite material, and study 

possible hardening mechanisms of CNT to reinforce copper. We have studied the method to 

build up 2D and 3D unit model to study Cu/CNT composite hardness and failure mechanism 

under complex stress conditions, and built up a feasible model to predict composite materials 

behavior.  

1. Our research shows that to reduce mesh size effect, nonlocal material method can 

reduce some mesh size effect on FEA calculation, but it cannot fully solve mesh 

size effect. 

2. In our research, we tried to build up a unit cell model which comes with linear 

constrain boundary. Our calculations show that several factors can affect 

simulation result greatly. These factors include: CNT volume fraction, harden 

strain, hardened region volume fraction, model aspect ratio and meshes size. 

3. In our research we did a series of calculation with different CNT volume fraction; 

harden strain, hardened region volume fraction, model aspect ratio. Our 

simulation shows that hardness of Cu/CNT composites model increases 

monotonically with CNT volume fraction, harden strain and hardened region 

volume fraction. For the aspect ratio, we found when H/D=1, the yield stress of 

Cu/CNT models reaches its minimum value as showed in Figure 30. Yield stress 

increases when H/D>1 or H/D<1. Our research is only focused in h/D≥1, which is 

a monotonically increasing range. The yield stress of Cu/CNT composite model 
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does not change much after H/D≈10, so we choose MD simulation result of 

H/D=9.1(which is presented in [12]) as our uniform CNT properties. 

4. Based on the current research, there are three possible mechanisms that can 

change copper hardness: residual stress[17], strain gradient[154] and size 

dependence[155]; Because of the limitation of time, we focus our research on 

residual stress which is generated during composite material manufacture process. 

Further research is needed to study the other two factors. 
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