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ABSTRACT 

 

Cooling techniques for high density electrical components and electronic devices have 

been studied heavily in recent years. The advancements in the electrical/electronic industry have 

required methods of high heat flux removal.  Many of the current electrical components and 

electronic devices produce a range of heat fluxes from 20 W/cm
2
 – 100 W/cm

2
. While parallel 

flow cooling systems have been used in the past, jet impingement is now more desirable for its 

potential to have a heat transfer coefficient 3-5 times greater than that of parallel flow at the 

same flow rate. Problems do arise when the jet impingement is confined and a cross flow 

develops that interacts with impinging jets downstream leading to a decrease in heat transfer 

coefficient. For long heated surfaces, such as an aircraft generator rotor, span wise fluid 

management is important in keeping the temperature distribution uniform along the length of the 

surface. A detailed simulation of the heat/mass transfer on a three-layer impingement/effusion 

cooling system has been conducted. The impingement jet fluid enters from the top layer into the 

bottom layer to impinge on the heated surface. The spent fluid is removed from the effusion 

holes and exits through the middle layer. Three different effusion configurations were used with 

effusion diameters ranging from 0.5 mm to 2 mm.  Temperature uniformity, heat transfer 

coefficients, and pressure drops were compared for each effusion diameter arrangement, jet to 

target spacing (H/d), and rib configuration. A Shear Stress Transport (SST) turbulence fluid 

model was used within ANSYS CFX to simulate all design models. Three-layer configurations 

were also set in series for long, rectangular heated surfaces and compared against traditional 

cooling methods such as parallel internal flow and traditional jet impingement models.  The 

results show that the three-layer design compared to a traditional impingement cooling scheme 



iii 

 

over an elongated heated surface can increase the average heat transfer coefficient by 75% and 

reduce the temperature difference on the surface by 75%.  It was shown that for a three layer 

design under the same impingement geometry, the average heat transfer coefficient increases 

when H/d is small.  The inclusion of ribs always provided better heat transfer and centralized the 

cooling areas. The heat transfer was increased by as much as 25% when ribs were used.  The 

effusion hole arrangement showed minimal correlation to heat transfer other than a large array 

provides better results.  The effusion holes’ greatest impact was found in the pressure drop of the 

cooling model.  The pressure losses were minimal when the effective area of effusion holes was 

large. This minimizes the losses due to contraction and expansion. 
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NOMENCLATURE 

 

CFD  = computational fluid dynamics 

d  = jet nozzle diameter 

deff  = effusion hole diameter 

dh  = hydraulic diameter 

f  = friction factor 

Gc  = cross-flow mass velocity based on channel cross-sectional area 

Gj  = jet mass velocity based on jet hole area 

h  = heat transfer coefficient 

H, z  = jet-to-target height 

I  = electrical current 

K  = thermal conductivity of the fluid 

K  = minor loss coefficient 

Nu  = Nusselt number 

PAO  = poly-alpha-olephin 

Pr  = Prandtl number 

    = heat per unit area 



x 

 

R  = electrical resistance 

Re  = Reynolds number 

s  = jet-to-jet spacing 

Tin  = inlet temperature 

Tmax  = maximum temperature on the heated surface 

Tmin  = minimum temperature on the heated surface 

Ts  = surface temperature 

    = mean velocity in a pipe 

xn  = stream-wise jet hole spacing 

yn  = span-wise jet hole spacing 
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CHAPTER 1 - INTRODUCTION 

 

 The volume and complexity of electronic devises is ever increasing in today’s society.  

Electricity has long since established itself as a major, if not the most important, form of usable 

energy to power all that we come in contact with.  Trains, planes, and automobiles; houses, 

hotels, and apartment complexes; phones computers and micro devises all require electricity to 

function.  What is more is that the current demand is not for bigger and better but smaller and 

more efficient; smaller and more powerful.  Many advances in the field of super conductors and 

micro chips are allowing this to happen but behind all these devises lay a part of physics that 

cannot be ignored; these devices are not 100% efficient.  While we try to maximize all that we 

can many physical laws governing our devices along with the deficiencies in our materials and 

processes will not allow us to use every bit of power harnessed.  So where do these percentages 

of loss go?  Are the losses something that needs to be dealt with or can they be left alone?  We 

have all experienced a laptop that has been running a long time.  The internal parts generate heat. 

Under many circumstances we must either let it cool down by turning it off or find an effective 

way to cool the machine.  It is intuitive knowing that if a computer over heats it will not perform 

correctly or even worse will break down. We just discovered two principles behind all electronic 

devices; that electric loads in any device produce heat, I
2
R losses, and when the heat is miss 

managed or above design specifications parts begin to fail due to undesired temperatures.  We 

can see the effects electric loads have on a laptop computer but what happens when the electric 

loads are higher and the devices are more demanding?  Cooling for electronic devices has been 

and is continuing to be an important topic when discussing the development of high density 
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electronic devises that have heat fluxes ranging from 23-100 W/cm
2
.  Common fields of study in 

cooling for high density electronic devices are cooling fluid properties, flow management, 

cooling geometries as well as specific functions the cooling device is used for. While most 

cooling systems are geared towards electronic devices similar cooling schemes are used in other 

areas of engineering such as turbine blade cooling. The thermal and fluid dynamics are the same 

just assigned different applications.  A highly effective cooling method in this field of study 

utilizes jet impingement onto a heated surface.  A single fluid jet or an array of such jets, 

impinging normally on a surface, may be used to achieve enhanced coefficients for convective 

heating, cooling, or drying.  While simple jet impingement geometries and flow schemes are 

easily predicted through equations based on key parameters many flow schemes are based off 

complicated geometries that are much more difficult to predict. For example an array of jets 

along a long surface where jet to jet interaction occurs can cause variance in heat transfer 

coefficients, many times undesirable, and needs to be solved through experimental design or 

numerical simulations.  With the advancement of computing power and computational fluid 

modeling numerical simulation have become an advantageous way to model flow geometries and 

the thermal impact a cooling scheme can have under certain boundary conditions.  Specifically 

for this work a cooling scheme under the geometrical constraints and heat loads of an aircraft 

generator rotor winding is to be modeled and simulated to find a desirable cooling system that 

will provide adequate temperature profiles and flow management.  
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CHAPTER 2 - LITERATURE REVIEW 

 

 The following chapter will present an all-encompassing review of relevant literature and 

theory linked with the methodology and analysis presented in the following content of this work. 

First will be a summary of aircraft generator cooling and the methods of cooling used followed 

by an extensive look jet impingement and the effects certain parameters have on the thermal 

coefficients associated with jet impingement.  Cooling models utilizing similar geometries and 

flow properties as the present work will be used to create a baseline for modeling.  Finally, 

comparisons of numerical fluid modeling and computational fluid dynamic used will be 

presented. 

 

Aircraft Generator Cooling 

 Aircraft generators are powered by an aircraft’s turbine engine and the physical size of 

each generator is dependent on the amount of power, volt-amps (VA), output of the generator.  

With increasing electric demands for the same size generator the electric loadings for stator and 

rotor windings are increasing. King [1] sought to find a feasible internally wetted generator 

cooling system due to the recent appearance of high temperature, fluid resistant film insulations. 

A study was initiated to re-examine and evaluate further potential advantages which might 

accrue to direct oil cooling by internal spray techniques. With promising results a program for 

development was initiated and presented a large number of spray oil-cooled generators.  What 

was found was that both rotor and stator conduction cooling portions were ineffective, stationary 

spray nozzles on the stator were also relatively ineffective, but most effective cooling method 
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appeared to be one with a limited number of large diameter nozzles on the rotor with an optimal 

nozzle size of 0.033 in. in diameter.  US Patent 3,659,125 [2] is one of the nozzle schemes used 

on the rotor that allowed the oil to spray onto the winding only by the rotational force from the 

rotor spinning.  Also documented was that the rotor winding temperatures were limited by the 

coking tendencies of the oil and not by the temperature limitation of the insulations. Between the 

1950s and 1970s integrated drive generators emerged as effective equipment in industry for 

improving power/weight ratios of aircraft generators. These generators elegantly harnessed the 

advantages of the direct liquid-cooled generator.  Kennett [3] describes in detail the components, 

configuration, and materials used in an i.d.g. assembly.  More specifically detailed is the working 

fluid flow loop. The synthetic turbine oil is fed by a charge pump both to the hydraulic circuits 

and through the a.c. generator frame.  The oil in the fame is transferred into the shaft where a 

portion is diverted through a metering annulus and lubricates the bearing before passing under 

the influence of centrifugal force over adjacent end windings. Oil thrown from various rotor 

surfaces also passes over the stationary windings before draining into the sump pumps located 

within the i.d.g frame.  Scavenge pumps extract this drainage from the a.c. generator windings 

and return the oil to the hydraulic system.  Gasperetti [4] also found that spray oil cooling would 

provide weight reduction, enhance generator reliability, and lengthen overhaul intervals.  Detail 

was provided for inlet fluid temperatures, fluid temperature rise through the generator, and 

required oil pressures for specific designs. Most notably a comparison of oil to air use was given 

and showed the rise in oil temperature through the generator was only 10-15 °C with an inlet 

temperature of 150°C while air had a temperature increase of 75-85°C. This is due to the specific 

heat of oil being twice that of air and because of the greater mass flow rate available for oil.  

More recently, Schoning and Walti [5] introduced a comparison of the current generator cooling 
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techniques for high speed electric machines.  The schemes are rated by the current density with 

an operating winding temperature of 250°C. Table 1 lists the current cooling systems with their 

maximum current density as well as the advantage and disadvantages of each system. 

 

Table 1- Selected techniques for enhancing heat dissipation in high speed electric machines [5] 

 

© 2011 IEEE 

 

One design that is highlighted in the paper is a cooling system developed by Innovative 

Power Solutions (IPS). This 1 MW generator cooling design implements a new patent method 

for cooling the rotor poles and conductors.  This method, shown in Figure 1, uses cold plates 

disposed between each rotor pole and field coil.  While spray oil techniques reaches higher 

current densities than the cold plate design the plates have an internal cooling system that keeps 

the working fluid in a closed loop and out of contact with any electrical part. 
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© 2011 IEEE 

Figure 1- Construction of rotor poles and windings for cold plate design [5] 

 

The cold plate design presented in U.S. Patent 6,661,133 [6] describes the fluid 

management and rotor assembly used for the cold plate design.  This design, utilizing an internal 

parallel flow, is used as a baseline for comparing the three-layer impingement design used in this 

work.  U.S. Patent 6,759,771 [7] also provides an internal parallel flow cooling scheme for an 

aircraft generator but instead of placing the cooling channels between the rotor pole and 

windings the cooling channel is placed inside the winding support wedges therefore utilizing a 

part of the generator already needed in the design.  A detailed description of the fluid passage 

way from the rotor core to the rotor wedges is provided in the patent.  While spray cooling, a 

hybrid of jet impingement, shows the most promise for cooling rotor windings the draw backs 

begin with the oil scavenging system and trying to maintain oil from entering the air gap between 

the rotor and stator.  Windage loss occurs when oil fills into the air gap creating a drag force and 
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this loss increases greatly when the size and radius of the rotor increases. Many designs such as 

the cold plate patent have eliminated any possibility for oil to enter the air gap but have 

sacrificed the greater heat transfer coefficients spray cooling offers and therefore have increased 

weight or decreased electrical loads. 

 

Free Jet Impingement 

Martin [8] is one of the early and influential works on jet impingement for engineering 

purposes. It is a comprehensive survey emphasizing the engineering applications of heat and 

mass transfer between impinging jets and solid surfaces. Martin describes the flow pattern of 

impinging jets, seen in Figure 2, from single round and slot nozzles can be subdivided into three 

characteristic regions: the free jet region, the stagnation flow region, and the region of lateral (or 

radial) flow outside the stagnation zone, also called the wall jet region.  

 

 

Figure 2- Flow field of impinging flow (schematically) 
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 In a section titled “Heat and Mass Transfer: Variables and Boundary Conditions”, Martin 

lists key hydrodynamic, thermal, and material boundary conditions that may be kept constant and 

must be considered. Two hydrodynamic boundary conditions are given by the distribution of 

velocities at the nozzle exit and the surface. It is presumed that all velocity components vanish at 

the surface and the fluid velocity at the nozzle exit is equally distributed over the cross section.  

The first assumption may never be met in practical applications but does not impose severe 

restrictions since the moving velocity of the material does not exceed a small fraction of the fluid 

impact velocity. The second assumption is fulfilled to a high degree of approximation since the 

exit jets are usually turbulent.  A thermal boundary condition of importance is to presume the 

temperatures to be constant over the nozzle exit cross section.  After determining local mass 

transfer coefficients and measuring local surface temperatures for both round and slot nozzles, 

the local variation in mass transfer coefficients shows a monotonically decreasing bell-shaped 

curve for large relative nozzle-to-plate distances H/d and curves with a more or less distant hump 

or second maximum for small H/d.  Most influential of Martin’s paper for this work was Chapter 

VII; “Optimal Spatial Arrangements of Nozzles”.  This chapter sought to find a combination of 

the geometric variables that yields the highest average transfer coefficient for a given blower 

rating per unit area of transfer surface.  For uniformly spaced arrays of nozzles with good outlet 

flow conditions, there are always three independent geometric variables: nozzle diameter d, 

nozzle-to-nozzle spacing s, and nozzle-to-plate distance H.  For jet Re between 2000 and 30,000 

the optimal nozzle diameter is dopt=0.184H, coinciding with the length of the potential core, and 

the optimal orthogonal array spacing is sopt=1.324H. It is also noted that the transfer coefficients 

reached by the optimal round nozzle are about 8% higher than those for the optimal slot nozzle 

provided the blower rating, the pressure loss coefficients, and the nozzle-to-plate distances are 
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equal in both cases.  Incropera et al. [9], in chapter 7, summarized key Nusselt number equations 

listed in Martin for round and slot nozzles. These local and averaged Nusselt number equations 

are given for different Prandtl number, Reynolds number, H/d, and nozzle exit cross-sectional 

area to surface area cell Ar.  

 

Confined and Submerged Jet Impingement 

 Pais et al. [10] was concerned with the possibility of flooding on the surface with the 

coolant when miniaturization is imposed on nozzle sizes and nozzle-to-surface spacing. The flow 

conditions are hence no more of a free jet impinging a surface but that of a submerged jet 

configuration.  The efforts of their study were geared towards single-phase heat transfer 

characteristics of a submerged jet and to compare the performance with that of a free jet.  The 

liquid used in their study was a synthesized hydrocarbon fluid called PAO coolant (poly-alpha-

olefin) which had been developed by the Air Force for electrical and electronic cooling.  The 

experiments conducted had a circular jet nozzle of fixed diameter 0.76 mm with exit velocities 

ranging between 5 to 15 m/s and jet-to-surface spacing ranging from 0.5 to 16 mm; 0.65 to 21 

H/d. For all velocities tested Figure 3 shows that as the distance of the jet from the test surface is 

increased the heat transfer at first increases, then decreases sharply reaching a minimum at 

H/d~3.  For any further increase of H/d the value of heat transfer coefficient increases steeply 

and then levels out for H/d >11. 
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© 1994 IEEE 

Figure 3- Effect of velocity V and the Distance H on the average heat transfer [10] 

 

 Figure 4 shows when the jet is submerged the temperatures on the surface can be as much 

as 33% higher than the free case and in all cases as the fluid flows away from the stagnation 

region the temperature of the surface raises rapidly. This is because 1) the liquid film velocity 

decreases as the fluid flows outwards, reducing the local convective heat-transfer coefficient and 

2) the liquid is absorbing heat as its temperature rises and it flows outward. 
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© 1994 IEEE 

Figure 4- Surface temperature profile under the influence of free and submerged jets [10] 

 

 Chin-Yuan et al. [11] found that in spite of the large number of studies of jet 

impingement in literature a means for scaling the results, heat transfer coefficients and flow 

fields, between different fluids (with different thermo physical properties) and geometric 

parameters has not yet be developed for confined impingement. One of the main goals of the 

authors work was to develop predictive correlations for the stagnation and area-averaged Nusselt 

numbers in confined and submerged jet impingement, based on experimental results obtained 

over a wide range of fluid thermo physical properties.  Single nozzle experiments using water 

with a range of parameters including Reynolds number, orifice-to-target spacing and orifice 

diameter were designed. Together with the experimental water jet results, results previously 

obtained for FC-77, and air similar techniques and facilities were used as a database to determine 

the effects of fluid properties (Prandtl number), and propose correlations that are valid for a 
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range of fluids.  The author also sought out to no longer use a fixed exponent for Prandtl number, 

but instead, deduce this exponent based on an analysis of the experimental results.  Table 2 

presents Li’s findings on area-averaged Nusselt-number correlations for a wide range of fluids. 

 

Table 2- Area-averaged Nusselt-number correlations [11] 
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Florschuetz et al. [12] provided an extensive look at flow distribution and heat transfer 

coefficients when two-dimensional arrays of jet orifice are required.  Based on the cooling of the 

mid chord region of a gas turbine airfoil, the authors designed an experiment to determine the 

heat transfer behavior for a range of uniformly spaced array configurations. Figure 5 shows flow 

from the upstream span-wise jets in the array, yn, imposing a cross-flow on those located 

downstream in the stream-wise direction, xn. 

 

 

Figure 5- Basic test model geometry [12] 

 

  Correlations are presented for both inline and staggered hole patterns for Nusselt 

numbers resolved to one stream-wise hole spacing. Specifically, these Nusselt numbers are 

correlated in terms of the individual span-wise row jet Reynolds number, Rej, and cross-flow-to-

jet velocity ratio (Gc/Gj); and in terms of three geometric parameters: the stream-wise hole 

spacing, the span-wise hole spacing, and the channel height each normalized by the hole 

diameter(xn/d, yn/d, z/d). Two relevant conclusions are reached from this paper, one dealing with 

jet orifice flow characteristics the other on Nusselt number distributions along the stream-wise 

direction.  The jet velocities for impingement with cross-flow are uniform when the parameter 
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(yn/d)*(z/d) is large. For the smallest value the distribution is highly non uniform with the jet 

velocity as small as one-half the mean at the first row, and as large as twice the mean at the tenth 

row. This can be seen in Figure 6. The local jet velocity-to-mean jet velocity is plotted for 

varying stream-wise hole spacing, span-wise hole spacing, and channel height. 

 

.  

Figure 6- Stream-wise distribution of jet velocities 

 Comparison between measured values and model [12] 

 

 The experiments show that for all cases the local Nusselt number decreases along the 

stream-wise direction with the degree of decrease depending on the three geometric variables.  

The second relevant conclusion made deals with inline vs. staggered arrays when cross-flow is 

introduced.  The tendency of the cross-flow to become channelized between adjacent stream-

wise rows of the inline pattern reduces the direct influence it (cross-flow) can exert on each 

downstream jet. In contrast, the span-wise cross-flow distribution presumably remains more 
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nearly uniform for the staggered patterns. This effect is not significant for the largest hole 

spacing however as xn/d and yn/d decreases, and as zn/d increases, the staggered pattern results in 

increasingly reduced heat transfer coefficients relative to the inline values for increasing cross-

flow.  Cross-flow effects are undesirable when the channel height-to-diameter is small, the span-

wise distance is long. The flow distribution becomes non-uniform when (yn/d)*( z/d) is small. 

 

Applications of Jet Impingement and the Use of Effusion Holes 

 Several types of cooling process have been introduced in the industry that have taken 

advantage of jet impingement and sought to effectively deal with cross-flow.  One cooling 

system that has utilized jet impingement effectively is the Compact High Intensity Cooler 

(CHIC) [13].  The author sought a heat exchanger design that would involve both jet 

impingement heat transfer as well as thermal conduction. This was achieved by the use of 

impingement stacks.  Effusion holes on the target surface were placed in a staggered array with 

the impingement holes to allow the fluid after impinging on the target surface to leave through 

the holes on the target surface.  This process took place over a series of three to four stacks until 

the fluid reached the bottom target surface. After reaching the bottom surface the fluid leaves 

through channels located on the side of the structure until it reaches an outlet nozzle at the top of 

the model.  The design configuration resulted in effective heat transfer coefficients based on the 

prime surface, of about 85,000 W/m
2
 °C and 1.8 watts hydraulic power with liquid Freon 11 as 

coolant.  The use of effusion holes to extract the impinging fluid locally has been studied when 

extraction is on the target plate as well as the impinging plate.  Rhee et al. [14] studied jet 

impingement with local effusion holes located on the target plate.  The author compared the heat 
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transfer characteristics of staggered effusion holes to shifted effusion holes.  What was found 

was that the secondary vortices are strengthened strongly and accelerated to the effusion holes 

for the staggered hole arrangement, resulting in heat/mass transfer enhancement. Therefore, the 

cooling of effusion plate with the staggered hole arrangement shows better performance than the 

cooling with the shifted hole arrangement.  Hoberg et al. [15] investigated effusion holes that 

were located on the impingement plate instead of the target plate.  The experiment tested an 

impingement/effusion system that had a staggered pattern of jets, each surrounded by six evenly 

spaced effusion holes.  The experiment tested jet-to-target spacing between 0.44 and 4 and had 

Reynolds number range from 500-10,000.  Results showed that arrays with smaller diameter jets 

were more effective at achieving the highest heat transfer coefficients and the larger heights 

consistently led to lower heat transfer coefficients. Hoberg et al. [15] also compared his results 

with correlations found in Martin [8] and Florschuetz et al. [12]. 

 

Numerical Solutions for Impingement Cooling 

 With the rise in computing power and the available CFD methods numerical solutions are 

being used more often. Numerical solutions provide a cheaper method to estimate fluid flow and 

heat transfer characteristics for many thermal models.  Although jet impingement is a specific 

case that many still believe can only be accurately predicted through experiments several sources 

have used numerical solutions to confirm their experimental data.  One of the most extensive 

papers on jet impingement relevant to this topic is “Jet Impingement Heat Transfer” by 

Zuckerman et al. [16].  This paper covers the physics, correlations, and numerical modeling 

related to jet impingement.  Zuckerman has collected many resources on jet impingement and 
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compiled all results and correlations.  The paper covers topics such as flow regions, jet 

geometries, cross flow and spacing effects, and experimental techniques for jet impingement.  

While these are extensive one of the greatest contributions is its research on numerical modeling. 

The author states that for jet impingement the difficulties in accurately predicting velocities and 

transfer coefficients stem primarily from modeling of turbulence and the interaction of the 

turbulent flow field with the wall. Steady and transient models are the two common categories 

for turbulence modeling.  The time-variant Large Eddy Simulation (LES) approach tracks flow 

properties with the full equations down to some user defined length scale and then uses 

additional sub-grid scale equations to describe turbulent flow behavior at smaller scales.  The 

LES method has shown encouraging results but requires high resolution in space for accuracy, 

high resolution in time for stability and accuracy, and therefore needs a great amount of 

computing power or time to produce satisfactory solutions for the transitional and turbulent 

flows.  Steady-state time averaged solution techniques, typically Reynolds-averaged Navier-

Stokes (RANS) models, use some version of the Navier-Stokes equations adjusted for the 

presence of turbulent flow.  As seen in Table 3 even with high resolution grids, the various 

implementations of the k-ε, k-ω, RSM, and ASM models give large errors compared to the 

experimental data sets. The  2
-f and SST models can produce better predictions of fluid 

properties in impinging jet flows and are recommended as the best compromise between solution 

speed and accuracy.  In addition to the portions of the CFX model describing the fluid flow 

inside the computational domain, the steady and transient models require a description of how 

the flow behaves next to the wall or target surface. This part of the model typically plays the 

major role in properly predicting both the flow and heat transfer.  Numerical solutions have 

shown that heat transfer rates within the viscous sublayer are a larger magnitude than outside the 
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layer. The special region in which the turbulence models have the greatest difficulty 

approximating the flow is the same region in which the largest heat and mass gradient occur, and 

so this region cannot be neglected. While some models have different ways to approach this near 

wall behavior the creation of computation cells near the wall is just as important. 
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Table 3- Comparison of CFD turbulence models used for impinging jet problems [16] 
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Kalitzin et al. [17] found that wall integration of turbulence models requires the first 

computational cell above the wall to be located within the viscous sublayer at about y
+
=1.  Kays 

[18] gives a detailed description of the critical value y
+
.  Experimentally we find that the 

sublayer thickness can be expressed in terms of y
+
, and this value remains unchanged regardless 

of the total thickness of the boundary layer.  The reason is that y
+
 is simply a local thickness 

Reynolds number.  Chougule et al. [19] and Tie [20] both conducted experiments that were 

comparable to numerical simulations they created.  Chougule et al. [19] designed a simple round 

nozzle jet array of air impingement.  The experiment had a range of Reynolds numbers from 

7000 to 11,000 and a range of H/d from 6 to 8. These results were compared to an ANSYS 

ICEM CFD solution that utilized a shear stress transport (SST) turbulent model and comparable 

boundary conditions.  The error in experiment to numerical calculations was no greater than 

11%.  Peng et al. [20] designed a liquid jet array experiment with comparable geometric 

parameters and Reynolds number to the present study.  Fluent was used as the CFD modeler with 

a standard k- turbulence model.  The experimental and numerical results fit well with a 

maximum uncertainty of 14%. Both papers show that correctly simulated numerical models have 

desirable results with small deviations from the experimental data. 
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CHAPTER 3 - METHODOLOGY 

 

Overview 

 This work aims to provide an effective cooling method for high density electronic 

devices.  The process of research and design began with analyzing previous methods and patents 

of cooling schemes. An effective method of cooling would take the benefits of the best heat 

transfer methods while removing as many of the draw backs a theoretically and manufacturably 

possible. One would not want to design a more thermally beneficial system only to create an 

undesirable pressure requirement for the working fluid.  A design utilizing jet impingement with 

the inclusion of effusion holes was decided to be most beneficial.  At this stage of development 

the proposed technique needs to be tested for its ability to provide cooling.  To find an optimal 

design several key parameters in jet impingement need to be compared along with other 

geometric parameters that would increase heat transfer coefficients. Once the range of variables 

is decided a testing method is needed. While experimentation has been the tried and true way to 

accurately test cooling designs, the increase in CFD modeling as well as the advancement in 

computing power has allowed numerical simulations to gain similar footing for testing.  With 

this in mind, computer simulation software, ANSYS CFX, was used to predict the fluid and 

thermal behavior of said design. Baseline models were also created, based off previous cooling 

techniques listed in the literature, for comparison purposes. A brief look at the theoretical 

equations and turbulence model used for simulating the flow field will be presented along with a 

look at the geometry and boundary conditions of the design. It should be noted that much 

research has already been done related to Reynolds and Nusselt number correlations for different 
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flow regimes of impingement. This work instead is focused on achieving an optimal cooling 

design under a given flow condition or mass flow rate.  

 

Geometry 

The three-layer impingement design utilizes the heat transfer benefits of jet impingement 

while eliminating the negative heat transfer as a result of stream-wise flow for a long heated 

segment by utilizing effusion holes on the impingement plate.  The major focus in design was to 

analyze a heated surface width of 24mm (1”) and a surface length ranging from 24mm to 144mm 

(1” to 6”). The inlet and outlet ports were placed on the ends of the design with the fluid entering 

and exiting parallel to the heated surface, creating one flow direction.  Figure 7 shows the flow 

of the cooling fluid moving within the first layer in the positive x (stream-wise) direction into the 

jet impingement nozzle. The impingement nozzles eject the fluid into the bottom layer. After 

impinging on the heated surface, the fluid is sent through the effusion holes located on the 

impingement plate into the middle layer where it then flows in the positive x direction towards 

the outlet. 
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Figure 7- Three-layer flow pattern 

 

The significant dimensions that would be unchanged throughout all the numerical tests 

were the jet impingement diameter (d = 0.838 mm) and the jet-to-jet spacing (s = 7.34d).  

Zuckerman [16] noted that for small scale turbomachinary applications, jet arrays commonly 

have jet diameter values of 0.2-2mm. The jet nozzles are placed in an inline configuration 

making the jet-to-jet spacing the same for the stream-wise and span-wise (y) direction.  The 

height of both the inlet and outlet channels, first and second layer respectively, were specified to 

give uniform flow distribution across the entire length of heated segment, the inlet height for 

uniform jet impingement velocity and the outlet height for minimal pressure drop compared to 

the effusion holes pressure loss, and are therefore not dimensions vital to the heat transfer 

characteristics of the design.  The jet diameter and jet-to-jet spacing were optimized for the mass 

flow rate used across all tested designs.   

The first geometric parameter under analysis for its effects in heat transfer was the 

nozzle-to-impingement surface height (H). Common among literature is the non-dimensional 

variable, H/d, that sufficiently describes the jet to target height. This variable will be used for the 

rest of this paper.  Three values of H/d are chosen that encompass the desired range for analysis; 
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six, three, and one.  While some optimal values of H/d are discussed in literature for jet 

impingement, such as Martin [8], the case of submerged jet with the use of effusion holes is 

limited and therefore requires study to analyze H/d and effects in cooling. 

 

 

Figure 8- Three-layer design showing the jet diameter and jet-to-target height 

 

The second geometric parameter that needed to be analyzed was the effusion orifice, 

specifically the diameter (deff) and arrangement.  Since the design calls for a completely internal 

flow system, effusion holes on the target surface are inadequate.  This lead to the placement of 

effusion holes on the jet impingement plate.  Figure 9 shows the two arrangements that were 

used for the effusion hole design.  The first arrangement was used only for the 0.5mm (small) 

effusion orifices.  This arrangement, shown on the left, added effusion orifices in-line with the 

impingement jets as well as the staggered positions totaling 33 holes in the 1”x1” design. The 

second arrangement was used for the 0.838mm (medium) and 2mm (large) diameter effusion 

orifice and is presented on the right.  The holes are equidistance from each other, 7.34d, and have 

been staggered with the jet orifices totaling 9 holes.  The first arrangement provided more holes 
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on the surface of the plate in areas that jet interactions were known to occur while the second 

arrangement,0.838mm and 2mm effusion holes, would only be located at the areas that were 

known to have the least amount of impingement activity. 

 

 

Figure 9- Jet impingement plate showing the jet diameters and effusion diameters 

 

The final geometric parameter that would be analyzed for its heat transfer effects would 

be the addition of ribs on the heated surface.  As stated by Zuckerman [16] the inclusion of ribs 

on the target or heated surface disturbs the wall jet, increasing turbulence as well as functioning 

as fins to increase the effective surface area for energy transfer.  While many applications of ribs, 

also known as turbulators, include enhancing downstream turbulence such as a turbine blade, the 

ribs will most likely enhance heat transfer in this cooling system by acting as fins and directing 

the fluid to the effusion orifices located on the impingement plate.  The ribs outline the area of 
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impingement for each jet nozzle and have a rib height-to-channel height ratio of 0.4.  Figure 10 

shows the arrangement of the ribs on the target surface. The ribs are separated from the walls of 

the model for the purpose of easy manufacturing.  After analysis, conclusions might be found to 

show if the ribs would want to be extended to the edges to maximize heat transfer.  

 

 

Figure 10- Small (1”x1”) target surface with ribs 

 

Governing Equations and Numerical Procedure 

 Multiple equations govern the physics behind the heat transfer involved in the three-layer 

design.  The three laws required to solve the system, temperature and velocity, are the 

conservation of mass, momentum, and energy.  For a three dimensional analysis the Cartesian 

equations can become long so a symbolic expression is used to describe the processes involved 

in each equation.  The conservation of mass is the first equation needed to be used for numerical 

solutions. 
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              (1) 

 

If we analyze an infinitesimal volume or point mass, the rate of change of the internal 

mass with respect to time is the net mass flow rate on the volume in all three Cartesian 

directions. 

The conservation of momentum is the next equation needed and is analogous of 

Newton’s second law of motion that states change in momentum is proportional to the impulse 

impressed on a body.  In fluid mechanics, the application of Newton’s second law leads to 

Navier-Stokes’ equation, which is a differential form of the momentum equation, much like the 

continuity equation is for the conservation of mass.  The general Navier-Stokes equations is 

given as 

 

                            (2) 

 

The left side of the equation contains the product of density and total acceleration of the 

fluid.  This total acceleration is broken down into the local and convective acceleration.  If the 

problem is steady state and incompressible such as our case, then the local acceleration becomes 

zero leaving the convective acceleration only.  The right side of the equation contains all the 

surface and body forces that are acting on the fluid element.  The first two terms are the pressure 

gradient and the viscous forces, both of which are stresses in the fluid.  The third term includes 

all the body forces.  In most cases this term accounts for gravity acting on the fluid. 
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 The final equation used is the conservation of energy equation.  Since the flow involves 

fluid at low speeds, the total energy equation can be simplified to a thermal energy equation. 

 

                                              (3) 

 

The left side of the equation contains the unsteady flow term, unsteady density term, and 

the rate of change of energy due to flow work, convection, respectively.  The right side includes 

the conduction across the element, the work done by pressure, viscous dissipation, and internal 

energy generation, respectively.  Both the pressure term and viscous term on the right side are 

derived from work done by shearing.  If the flow is steady than the first two terms on the left side 

become zero.   

 After the general equations had been provided, modifications needed to be made to 

account for the turbulence that is found in the flow. Jet impingement takes special notice because 

of the different fluid regions that exist in an impinging jet. Not only does the core jet region need 

to be well modeled but also the wall boundary layers.  While the present research has low 

turbulence exiting the jet nozzle, turbulence modeling for this simulation is important and needs 

to be tailored to the flow.  A Reynolds Averaged Navier-Stokes (RANS) equation is one 

approach to solving these equations. This starts by substituting the velocity   into an average 

component    and a varying component . 
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       (4) 

 

The average component is given by 

 

                 (5) 

 

The Reynolds average total energy equation becomes 

 

                                                                                (6) 

 

The equation contains an additional turbulence flux term            and the                           

term is the viscous work term for total energy.  A modified version is used for the thermal energy 

equation. From here Zimmerman [16] provides an analysis of several models used to close the 

averaged equations by computing the Reynolds stresses and fluxes.  Zimmerman states that 

Menter’s Shear Stress Transport (SST) model is one of the most successful Hybrid model. The 

SST model combines the k-ω model near the wall and the k-ε model farther from the wall to 

utilize the strengths of each.  Smooth transition between the two models is accomplished by use 

of a blending function based upon distance from the wall.  Chougule [19] also stated that SST k-

ω model worked the best among the available turbulence models from an impingement flow 

condition giving accurate temperature and velocity measurements.  While RANS models are less 
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accurate than the LES models that take into account the unsteady nature impingement can 

produce, run time and simplicity make SST a favorable choice. 

 

Assumptions and Boundary Conditions 

 While conducting the present research, several key assumptions were made that are vital 

to the setup of the simulations and affect the outcome of the results.  The first major assumption 

was to have constant thermo-physical properties for the working fluid.  Many of the properties 

such as density, viscosity, specific heat, and thermal conductivity are dependent upon the fluid 

temperature.  When there is a large change in fluid temperature or a property has a strong 

dependence on temperature, the assumption of constant property may not be valid.  To determine 

if the present research can use the assumption of constant property across the whole fluid path, 

simulations were made using thermo-physical properties at different conditions that covered the 

range of temperatures found in the cooling scheme.  Poly alpha olephin (PAO), the working 

fluid, is a synthesized hydrocarbon used as a dielectric cooling fluid for aircraft avionic systems 

and was the working fluid for this research.  The temperature at inlet, film temperature, and 

heated surface temperature were the three temperatures used to calculate the PAO fluid 

properties.  Nusselt numbers were compared using the constant fluid properties at 100 °C, 116 

°C, and 136 °C with 100 °C being the base for comparison.  The max, min, and average Nusselt 

numbers were recorded for the three-layer, 24.62 x 24.62 mm heated surface with 2mm diameter 

effusion holes.  When the thermal properties were calculated at 116 °C, film temperature, the 

percent increase in Nusselt number was 8.7%. When the thermal properties were calculated at 
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136 °C, surface temperature, the percent increase in Nusselt number was 12.8%.  The properties 

evaluated at inlet condition were sufficient to provide conservative results. 

It is important to find if thermal radiation can be neglected when analyzing the three-

layer cooling scheme.  For many heat transfer problems radiation is a minor contributor 

compared to conduction and convection.  A simulation was developed that included radiation 

using the Monte Carlo method.  When compared with one of the 24.62 x 24.62mm heated 

surface models that did not include radiation a percent difference less than one existed.  It can be 

concluded that radiation does not play a significant role in this cooling scheme.  The Stefan-

Boltzmann law relates heat transfer in radiation to the total temperature to the fourth power.  

Low absolute temperature in the solid body and working fluid leads to a relatively low emissive 

power.  Buoyancy effects were also neglected due to the small change in density that exists in the 

working fluid making is safe to assume incompressibility.  While some applications may have 

this cooling scheme submitted to rotational forces, such as an aircraft generator, the current 

model has no external forces applied to it.  It is also assumed that the fluid is in a steady state 

condition.  While turbulence has transient properties the RANS numerical method averages the 

transient properties or fluxuations, and forces the turbulent components into an averaged state.  

With low flow velocities the energy equation can be reduced from total enthalpy or total energy 

to a thermal energy equation by removing the kinetic energy terms from the energy equation. 

 Two domains are used within the CFX simulations.  The fluid domain contains the fluid 

paths of the three-layer design including the inlet, outlet, impingement, and effusion channels.  A 

1mm thick, aluminum solid domain is located at the impingement surface of the fluid domain. A 
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conservative interface flux connects the two domains.  Boundary conditions were placed at all 

external surfaces. 

 

 

Figure 11- Boundary conditions for the small three-layer model 

 

An inlet condition was placed at the entrance to the 1
st
 layer with a specified flow 

condition and temperature.  For the small model, 24.62x24.62mm heated surface, a mass flow 

rate of 0.0365504 kg/s was assigned with a subsonic, turbulence intensity of 1% and a static 

temperature of 100 °C.  The mass flow rate provides an average Reynolds number across the jet 

nozzles to be 2800.  When the geometry changes for models with elongated heat flux surface the 

mass flow increases to keep the average Reynolds number of the jet nozzles at 2800.  The outlet 

condition was placed at the exit of the 2
nd

 layer.  An area average static pressure of zero was 

used.  In the solid domain, a heat flux of 23 W/cm
2 

was imposed on the bottom surface.  This 
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heat flux was comparable to a heat source given in an aircraft generator.  All other surfaces were 

specified with a smooth, no slip, and adiabatic wall condition.   

 

Mesh Setup 

 When solving the governing equations that are used to find the temperatures and 

velocities of the system, simulations require a number of smaller cells or elements that make up 

the whole system.  The collect of all these elements is called a grid or mesh.  Within each of 

these cells, the governing equations are discretized and solved iteratively.  When the solutions 

are collected and put together, a detailed description of the fluid and or solid can be found for the 

entire system.  The more cells that are incorporated the more accurate your solution becomes.  

There are limits to how beneficial addition elements becomes and this is based on the 

convergence of the simulation.  Ideally the researcher aims to have a mesh independent solution, 

meaning the addition of more elements does not benefit the model and the model has converged 

completely.  Residuals are set up to determine the amount of error tolerable from the true value 

and if the solution is converging the solver will stop when an iteration has reached a solution 

within the residual.  The importance of mesh size and the number of elements is to guarantee the 

converged solution is the correct solution.  If the mesh is too coarse the numerical solver could 

produce inaccurate results.  ANSYS CFX has automatic mesh generator based on specifications 

by the user as well as the intended solver being used for simulation.  Since the mesh used in this 

research was based off CFX’s automatic made mesh, the important changes will be presented. 

Tetrahedral elements were the main elements used in the fluid and solid domain.  A 

patch-conforming mesh method was chosen which creates the surface mesh first, then the 
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volume mesh.  This mesh choice provides the ability to add mesh controls later on to improve the 

accuracy in critical areas, such as the impingement surface.  The relevance or fineness of the 

mesh was set to Fine and the smoothing was set to High.  In total, most of the 18 simulations 

used to compare the three-layer model had over one million elements in the fluid domain.  The 

surface meshing was set to Curvature and Proximity which allows for a refined mesh around 

curves and edges as well as a set number of cells across a narrow gap. This becomes important 

for the case of ribs on the impingement surface.  Default values were used for the number of 

cells and span angle, 3 and 18 respectively. 

 

 

Figure 12- Mesh for three-layer design including the solid and fluid domain 

 

A key control added to the mesh was the addition of inflation layers on the impingement 

surface of the fluid domain.  Inflation layers are added to a surface when the cell height needs to 
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be refined within a certain distance. The inflation layers are generated based on three key 

parameters. The first is First Cell Height.  For this model the first cell height was intended to 

have a y+ less than 1.  To achieve this, a height of 5x10
-6

 meters was used for H/d of 3 and a 

height of 2.5 x10
-6

 meters for H/d of 1 and 2.  The second critical parameter was height 

expansion ratio. This was set to 1.2.  The final parameter was the number of inflation layers.  

This value depended on the bottom layer height. The goal was to have one or two unrefined cells 

in the bottom layer. For H/d of 1, 2, and 3 the number of inflation layers was set to 20, 24, and 

22 respectively. 

 

Figure 13- Inflation layers on the impingement surface 

 

 The first cell height was the critical meshing value and is agreed as the variable that 

determines if the model is grid independent.  To find out if the first cell height was adequate, we 

test varying cell heights.  The tested cell heights were 5x10
-7 

m, 5x10
-6 

m, 5x10
-5 

m, and a model 

with no first cell height given for a H/d=3 model with 2mm effusion holes and a heated surface 
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with ribs. Figure 14 shows the average Nusselt number for each height configuration normalized 

to the finest mesh simulated. 

 

Figure 14- Temperature distribution and Nusselt number comparison for varying meshes 

 

 It can be seen that once the cell height was within the y+ value of 1 a decrease in first cell 

height provided minimal improvement in Nusselt number.  It was assumed that providing a first 

cell height less than y+=1 was sufficient to provide a mesh independent model in the z direction. 
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Nusselt Number Correlations 

 Much research is spent examining heat transfer coefficients for jet impingement.  The 

basic convection heat transfer equation, Newton’s law of cooling, is expressed in the form 

 

             (7) 

 

Where  

        (8) 

For most jet impingement cases, the heat transfer coefficient over a given surface area is 

desired making the average Nusselt number the main focus for data collection. This is obtained 

by integrating the local results over the given surface area. Incorpera [9] states for a free jet that 

the average Nusselt number, a dimensionless quantity, is a function of 

 

                        (9) 

 

Where 

 

           (10) 
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This shows that the three main geometrical parameters for finding the heat transfer 

coefficients are jet-to-target spacing, nozzle diameter, and jet-to-jet spacing while the fluid 

identities required for calculation are the Reynolds number and Prandtl number.  Martin [8] gave 

the correlation for round nozzle arrays with the range of validity: 2,000< Re<100,000; 

0.004 Ar 0.04; 2000 H/D 12. 

 

                       (11) 

 

Where 

                         (12) 

                               (13) 

           (14) 

 

 When geometric boundaries, such as top and side surfaces, constrain the fluid flow paths 

the heat transfer characteristics are no longer defined by the correlations above.  In most cases, 

the heat transfer coefficients decrease, particularly when the spent jet fluid interacts with other 

jets developing a cross-flow in the stream-wise direction.  Florschuetz [12] deduced that the 

Nusselt number is now affected by the ratio of cross-flow mass velocity –to-jet mass velocity.  

Since Florschuetz was testing within the range of parameters used for this research the 

correlations used for confined flow will be of importance, specifically for validating the results 
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of this research, and therefore these Nusselt number correlations will be presented in detail.  

Florschuetz adapted the following form  

 

                                  (15) 

 

The coefficients A and B, and the exponents m and n are each permitted to depend on the 

geometric parameters in the form of simple power functions. 

 

                                 (16) 

 

Table 4- Constants for Use in Correlation Equation [12] 

Inline Pattern 

  C nx ny nH 

A 1.18 -0.944 -0.642 0.169 

m 0.612 0.059 0.032 -0.002 

B 0.437 -0.095 -0.219 0.275 

n 0.092 -0.005 0.599 1.04 

 

For the sake of this research             s.  This correlation does not account for 

effusion orifices or ribs on the heated surface.  The research done by Florschuetz only included 

H/d for 1,2 and 3.  Figure 15 shows the average Nusselt number plotted for a stream-wise jet 

distance.  In the graph below, xn represents the stream-wise row of jet orifices.  In this case the 

cooling scheme has 12 stream-wise rows of jets. The correlation plots show the effect cross-flow 
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has on the average Nusselt number for each stream-wise row.  The graph includes two plots, one 

for H/d of 2 and the other H/d of 3. 

 

Figure 15- Stream-wise distribution of average Nusselt number 

 

 The cross-flow functional form would have to be monotonically decreasing for most 

values of            , and     but for some cases, with       ,would have to allow a broad 

shallow minimum.  From the chart we can see that cross-flow for long stream-wise distances 

decrease the local and average Nusselt number over the heated surface. The goal of the present 

research is reducing this decline in heat transfer coefficient. 
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CHAPTER 4 - RESULTS AND DISCUSSION 

 

 The process of collecting data and developing correlations during this research was 

continuous and frequently evolving.  When developing new techniques for cooling, finding the 

right variables that are significant enough to be analyzed is many times the most important step, 

one that seems to never be completely solved.  When one question was answered two more were 

presented.  The results found during testing were significant and difficult to narrow down. 

However, the present work revealed key aspects and trends of the three-layer cooling design that 

will indeed provide the means of creating an optimal cooling scheme.   

 To find the optimal design, combinations of three goals were set. The first was to obtain 

the highest heat transfer coefficients available for a given mass flow.  To quantify this goal an 

area-averaged heat transfer coefficient was found on the heated surface.  While this does not 

represent the temperature field of each model it provides the best solution for finding an overall 

difference in each model.  Plots of each heated surface will be compared and analyzed to provide 

a more detailed look at each models cooling process.  The second goal was to find the 

configuration that provided the heated surface with the most uniform temperature distribution.  

For the sake of this research 
     is not what will be looked at but the overall temperature 

difference on the surface ΔT.  The third goal was to find a design that maintained a reasonable 

amount of pressure drop for the given heat transfer coefficient.  As mentioned before, it wouldn’t 

be beneficial to have a high heat transfer coefficient but an unreasonably high pressure drop in 

the system.  Another goal that is desired from this research, but not primary, is to find a well 

defined trend among the variables used in this research so that the optimal design could be 
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tailored to a specific factor that may be needed in further research or design.  Like the research 

preceding it, dimensionless and normalized values will be used when possible to describe the 

results of the simulations.  A total of 18 simulations were used to compare the variables used in 

this research, each containing a 24.62 x 24.62mm (1”x1”) heated surface. 

 

Average Heat Transfer Coefficients 

 The average heat transfer coefficient shows the overall effectiveness of the cooling 

scheme.  Equation 7 and Equation 8 provide the formulas for determining the heat transfer 

coefficient. The input parameters of the simulation are the heat flux on the surface per unit area 

and the inlet fluid temperature.  The simulation provides the surface temperature needed to solve 

the rest of the equation.  It should be noted that within the Post-Processing of simulation, two 

different options are provided when finding a value on a surface element such as the heated 

surface.  Within CFX, hybrid and conservative values can be given for most variables.  

Conservative values are used most often except at specified boundaries such as a no slip 

condition or a heat flux condition.  Simply put, conservative values are the element average 

value while the hybrid values are given at the specified boundary.  For our purpose hybrid values 

are used since the temperature at the heated surface is what we are looking for. More 

specifically, since this cooling design is meant to be in contact with another object that provides 

the heat source, surface temperatures on the bottom of solid body will be used for the heat 

transfer equations. Figure 16 shows the average Nusselt number plotted for each of the 18 

simulations. 
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Figure 16- Effects of H/d on the average Nusselt number  

 

Of the three variables under analysis, the heat transfer coefficient appears to have the 

strongest dependence on H/d.  A linear decrease occurs as H/d becomes larger.  Table 5 shows 

the heat transfer coefficients normalized to the maximum average reached during simulation, the 

coefficient given at H/d=1. 
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Table 5- Effects of H/d on heat transfer coefficient  

Normalized Heat Transfer Coefficient to H/d=1 

     w/out Ribs     w/ Ribs     

H/d 0.5 mm deff 0.838mm deff 2mm deff 0.5 mm deff 0.838mm deff 2mm deff 

1 1.00 1.00 1.00 1.00 1.00 1.00 

3 0.92 0.85 0.90 0.96 0.95 0.96 

6 0.79 0.73 0.76 0.91 0.90 0.90 

 

Since the maximum heat transfer coefficient is our goal, this value will be our point for 

comparison.  When the cooling system does not have ribs on the heated surface the heat transfer 

coefficient is 10-15%% less at H/d =3. At H/d=6 the heat transfer coefficient ranges from 24-

29%. less.  When the cooling system includes ribs on the heated surface the heat transfer 

coefficient does not reduce at the same rate as a design without ribs. The coefficient only 

decreases 4-5% for H/d=3 and 9-10% for H/d=6. 

  The second strongest parameter affecting the average heat transfer coefficient was the 

addition of ribs on the heated surface. 

 

Table 6- Effects of ribs on the heat transfer coefficient 

Analysis with Ribs 

  `  Percentage Increase with Ribs 

H/d 0.5 mm deff 0.838mm deff 2mm deff 

1 1.8 3.1 3.0 

3 6.6 14.9 10.0 

6 17.6 26.3 21.9 
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 From Table 6 we can see that the addition of ribs affects the heat transfer coefficient 

differently for each H/d but always with an increase in transfer coefficient.  For small H/d, the 

addition of ribs is minimal, 1-3% for H/d=1.  When H/d=3 the ribs have a 6-15% increase and 

for H/d=6 there is a 17-26% increase.  The increase in heat transfer can be due to the length of 

fin as well as the ribs directing the fluid towards the effusion holes.   

 The effusion hole diameter and arrangement are the parameters that have the least 

amount of impact on the average heat transfer coefficient.  The effusion diameter and 

arrangement does not directly impact the jet impingement process, but one might be able to make 

an assessment concerning the arrangement of effusion holes from the results. It can be seen in 

Figure 16 that the design containing the most amount of holes, 33 small holes placed on the 

effusion plate as compared to the 9 hole arrangement used for the medium and large diameter 

arrangements, provided the best heat transfer in every case.  This might imply that the design 

with the larger amount of effusion holes provides the best evacuation of the spent fluid leading to 

a high heat transfer. 

 

Temperature Distribution on the Heated Surface 

 After each of the 18 models had been simulated, a temperature plot was produced for 

each heated surface.  Each plot shows an outline of the impingement holes, effusion holes, and 

ribs, according to each model.   
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Figure 17- Effects of effusion holes on surface temperature for H/d=1 

 

 

Figure 18- Effects of effusion holes and ribs on surface temperature for H/d=1 

 



47 

 

 

Figure 19- Effects of effusion holes on surface temperature for H/d=3 

 

 

Figure 20- Effects of effusion holes and ribs on surface temperature for H/d=3 
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Figure 21- Effects of effusion holes on surface temperature for H/d=6 

 

 

Figure 22- Effects of effusion holes and ribs on surface temperature for H/d=6 
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 The heated surface temperature plots provide a good representation of how the impinging 

fluid is interacting with the surface and how the surface is distributing the heat at the bottom.  

We will first look at the models having H/d=1.  The temperature plots for non-ribbed surfaces 

shows a symmetric distribution of impingement from the stagnation point to the outer regions for 

each jet.  The hottest points are located furthest away from the jets and are all the same 

temperature.  The models that include ribs have cooler regions at the center but the temperature 

distribution from the stagnation region outwards, for each jet, is still well defined.  The hottest 

points are located at the outer edges of the heated surface.   

When H/d=3 the temperature plots become less symmetric.  The jet stagnation regions 

are still recognized but the location of impingement is not directly below the jet nozzles.  There 

are varying hot spots indicating a small amount of mixing within the chamber. For models that 

include ribs, the coolest spots are located at the center of the surface.  The impingement regions 

are less noticeable than for H/d=1, but like H/d=1 the hottest spots are located at the outer edges 

of the surface are fairly distributed around the edge.   

When H/d=6 the temperature plot is not symmetric in the x or y direction of the surface 

and trends are harder to recognize.  When the heated surface does not have ribs the impingement 

regions vary in cooling intensity and are not always located below the nozzles, much like the 

case for H/d=3, and impingement regions are hard to distinguish.  When ribs are included on the 

heated surface the impingement regions are not recognizable.  The ribs have centralized the 

cooling areas.  If a temperature plot was given at the interface of the fluid and solid domain, the 

impingement regions would be more recognizable.   
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 After analyzing the streamlines of a model with ribs verses a model without the fluid is 

indeed directed by the ribs.  This of course becomes less dominate when H/d decrease.  When 

H/d=1 the benefit of ribs is much smaller than that of H/d= 3 or 6.  Figure 23 shows the 

temperature plot of the interface between the solid and fluid domain for H/d=3. 

 

 

Figure 23- Temperature plot of the fluid-solid interface of the heated surface with ribs (1”x1”) 

 

While the thickness for each rib remains the same for all models, the height is dependent 

on H/d.  The cooler impingement regions are in the center of the model but only are increased by 

less than 1°C for most cases. It can be seen that the ribs act as fins on the surface where 
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temperatures of less than 400 k are reached.  The coolest parts of the ribs are in the thinnest 

sections.  When the ribs come together the thickness reduces the ability to transfer heat 

effectively.  Changes could be made in the future to develop a uniform thickness at the junction 

points or variable thickness as the height increases.  The decision to not have the ribs extend to 

the edges of the heated surface was for easy manufacturing but this could also be changed.  If the 

ribs were extended to the edges heat transfer would increase at those spots and would not 

centralize the cooling as much as the present model does.  The hypothesis for better rib 

performance at higher H/d is due to the height of each rib increasing. It is also believed that the 

rib height creates uniformity in the impingement regions.  The interaction of jets and spent fluid 

in H/d=3 and H/d=6 is reduced when the ribs are introduced to the model. 

 

Pressure Drop across the Model 

 The pressure drop across the three layer design consists of five main sections; the inlet 

channel, impingement nozzle, impingement channel, effusion nozzle, and outlet channel.  While 

there is pressure drop that is calculated for each channel length and nozzle length, the nozzles for 

impingement and effusion have minor losses as well.  These losses occur at the sudden 

contraction leading into the nozzle and the sudden expansion leading out of the nozzle.  Of these 

sections only one differs for each model enough to create a significant pressure difference, the 

effusion nozzle.  To look at the pressure drop across the effusion holes we will consider the loss 

due to contraction and the loss across the nozzle length utilizing pressure loss equations from 

Fox et al. [21].  Equation 17 describes the major loss for an internal flow.  The friction factor is a 

function of Reynolds number.  If the flow is laminar, less than 2300, the friction factor is 
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described as      .  If the Reynolds number is greater than 2300, the friction factor is given by 

Equation 18.  

 

           (17) 

 

              (18) 

 

Equation 19 provides the pressure loss due to contraction.  For a square-edged nozzle, the 

minor loss coefficient K becomes 0.5.  For high velocities, the minor losses could be 

significantly larger than the major losses. 

 

          (19) 

 

Table 7 provides the losses from the effusion holes for the case of H/d=1 without ribs.  It 

is clear that the 2mm effusion hole has negligible pressure loss for the system while the 0.5mm 

and 0.838mm diameters add 24 kPa and 39 kPa respectively. 

 

 

 Table 7- Minor and major losses due to the effusion holes  
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Pressure Drop across Effusion Hole (kPa)   

Regions 0.5 mm deff 0.838mm deff 2mm deff 

Entrance 22.1 37.7 1.2 

Length 2.0 1.7 0.0 

Total Loss 24.1 39.4 1.2 

 

The pressure calculations then needed to be compared with the simulation data.  The 

pressure drop from inlet to outlet was recorded from each of the 18 simulations.  For each H/d 

and surface geometry, the pressure drop was the same.  Table 8 shows this trend.  It was then 

suggested that the pressure drop across the 2mm effusion hole was negligible and the pressure 

drop of 23 kPa is the losses from the impingement holes and third layer.  With this assumption 

the losses across the 0.5mm and 0.838mm effusion holes were added to the 23 kPa.  With this 

addition it can be concluded that 8 kPa and 17 kPa are the losses due to expansion for the 0.5mm 

and 0.838 mm effusion holes. It must also be pointed out that the effusion losses were only 

accounted for one effusion hole. This shows that all the effusion holes are in parallel.  The best 

configuration of effusion holes would provide a large effective area.  This means the flow 

leaving the effusion holes has enough area to result in a small mean velocity.  A simple volume 

flow calculation could be used to find number of holes and at what diameter one would need to 

negate the pressure loss due to contraction. 

Table 8- Pressure drop across the three-layer model 

Pressure Drop across model (kPa)         

  w/out Ribs     w/ Ribs     

H/d 0.5 mm deff 0.838mm deff 2mm deff 0.5 mm deff 0.838mm deff 2mm deff 

1 55.9 80.7 23.6 57.4 80.8 24.0 

3 57.9 78.5 23.1 58.1 78.3 23.2 

6 57.6 79.7 23.4 58.0 79.5 23.2 
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Rectangular (1”x6”) Comparisons 

 The effectiveness of the three-layer design is evident when the heated surface becomes 

elongated or the span-wise distance of the heated area is very large compared to the jet-to-jet 

spacing.  Three different cooling models will be presented for comparison; an internal parallel 

flow model, a traditional impingement model, and a three-layer design.  For there to be an 

“apples to apples” comparison the geometries will be identical in almost all dimensions.  The 

three layer model will have an effusion diameter of 2mm, H/d=1, and no ribs on the heated 

surface.  The traditional impingement model will have the same inlet channel dimensions, jet 

nozzle dimensions, and impingement channel dimensions as the three-layer model for H/d=1.  

The parallel flow model will have a channel height of 0.838mm or the equivalent of an 

impingement layer when H/d=1.  A mass flow rate was given that for all three models 6 times 

greater than that of the smaller heated surface models.  This is to insure that the jet Reynolds 

number remains the same for the impingement cases.  The same boundary conditions used for 

the smaller heated model are applied to the rectangular model.  The first model to be analyzed is 

the three-layer model. 
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Figure 24- Heated surface temperature plot for a three-layer model  

 

The temperature distribution and average heat transfer coefficient for the elongated 

model are almost identical to the smaller models with the same parameters.  The impingement 

regions are clearly shown on the surface.  There are no signs of cross-flow along the stream-wise 

direction.  There is a noticeable increase in intensity of impingement in the positive stream-wise 

direction. This is due to the pressure drop that the impingement holes encounter downstream, 

although it is not nearly as strong as the pressure drop seen in tradition impingement models that 

experiences cross-flow.  Figure 24 highlights the pressure change in the stream-wise direction.  

Since the effusion holes have negligible pressure drop when the velocity is low, the impingement 

channel is slightly affected by the pressure drop in the middle layer, hence the non-uniform 

impingement intensity. 
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Figure 25- Stream-wise distribution of pressure in the three-layer model 

 

The traditional impingement model suffers greatly from the effects of cross-flow.  As 

stated above, the jet velocities vary along the stream-wise direction because of the pressure 

change in the impingement channel.  This pressure distribution is shown in Figure 25. 

 

Figure 26- Stream-wise distribution of pressure in the tradition impingement model 

 

This large pressure gradient causes the heat transfer to monotonically increase in the x-

direction as the jet velocity increase. 
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Figure 27- Heated surface temperature plot for the tradition impingement model 

 

This trend of increasing heat transfer coefficient as the span-wise direction increases is 

shown in Florschuetz when analyzing Nusselt numbers for H/d=1. However, this trend was not 

seen for H/d=2 or 3.  The final comparison model was the parallel flow model.  The heat transfer 

occurring within the small channel displayed a small temperature change on the heated surface, 

only 2.26°C while maintaining a high heat transfer coefficient.  One of the main reasons was due 

to the high Reynolds number, 14195.  The heat transfer for the parallel case was 48% greater 

than the three-layer model but at the cost of having a pressure loss 6.95 times that of the three 

layer.  The traditional impingement suffered from the cross-flow effects in both pressure loss and 

heat transfer.  The average heat transfer coefficient for the three-layer model was 1.84 times 

greater than the traditional impingement model while maintaining a pressure loss 83% less than 

the traditional model.  Table 9 show the key values obtained from the results of each of the three 

simulations. 



58 

 

Table 9- Comparison of elongated models when H/d=1 

Comparison of 1"x6" models (H/d=1) 

  Parallel 

Traditional 

Impingement 3 Layer 

Tmax (K) 395.0 446.6 403.3 

Tavg (K) 392.7 426.4 402.1 

Tmin (K) 392.7 391.1 399.1 

ΔT 2.3 55.5 4.2 

havg (W/m
2
K) 11786.4 4319.8 7950.2 

ΔP (kPa) 213.4 187.8 30.7 

 

It should be noted that the pressure drop in both the parallel case and tradition 

impingement case were extreme and are not satisfactory for the present cooling goals.  This 

comparison simply demonstrates that the three-layer design enhances jet impingement cooling 

for long surfaces by managing the spent fluid.  Traditional impingement is satisfactory until the 

span-wise distance becomes too great and internal flow becomes expensive to pump through the 

channel due to the small hydraulic diameter and high Reynolds number needed to have effective 

cooling.  Comparison models are more accurately represented when H/d=3.  In these cases the 

heat transfer for the three-layer model is 2 times greater and 1.75 times greater than the internal 

parallel model and traditional impingement model, respectively.  

Table 10- Comparison of elongated models when H/d=3 

1"x6"  Traditional models (H/d=3) 

  Parallel 

Traditional 

Impingement 

Tmax (K) 435.4 432.2 

Tavg (K) 431.2 423.6 

Tmin (K) 430.2 415.5 

ΔT 5.2 16.7 

havg (W/m
2
K) 3960.9 4556.5 

ΔP (kPa) 8.8 34.6 
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Additions 

 The research up to this point has optimized three-layer jet impingement to traditional 

impingement.  We have seen the benefits that occur for the three-layer model in heat transfer 

coefficient, temperature uniformity, and pressure drop. But it can also be seen that when 

comparing the three-layer model to parallel flow, the parallel flow outperformed the three layer 

model in some categories such as average heat transfer coefficient. To optimize the three layer 

impingement model to parallel flow, some variables need to be modified to show the advantage 

of the three layer model, variables that up to this point have not been modified. Some of the 

variables presented are tailored to this experiment and may need different parameters for other 

cases but the principles still applies.  The first variable changed will be the heat flux imposed on 

the cooling system.  Even though the heat transfer coefficients will not be affected by this 

change, the differences in temperature uniformity will become clearer. The heat flux will 

increase by a factor of three, from 23 W/cm
2
 to 70 W/cm

2
. Another significant variable needing 

to be modified is the Reynolds number for parallel flow.  To do this without changing the 

geometry of the model or the fluid properties the mass flow will be changed. The goal is to have 

comparable Reynolds numbers between the internal channel and the impinging jets.  Equation 15 

provides a basis on what variables affect the non-dimensional heat transfer coefficient for jet 

impingement.  Reynolds number and impinging geometry are the dominating variables for an 

impinging process that has no cross flow, such as a three layer model. Equation 20 provides the 

Nusselt number correlation for turbulent flow in a pipe. 

 

                    (20) 
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By this equation, a correlation for heat transfer coefficient to mass flow can be made for 

internal flow.  Then with a mass flow rate reduced to 1/4
th

, the equation shows that the heat 

transfer coefficient will be 1/3
rd

 its original value.  For the three layer model to maintain its 

original jet Reynolds number while also having 1/4
th

 the mass flow, a reduction in the number of 

impinging holes is required. 1/4
th

 the amount of holes are used.  Therefore the small geometry 

that originally had a 4x4 inline jet arrangement will now contain a 2x2 inline jet arrangement. 

Figure 28 shows the geometric configuration for the modified three layer design. The 

impingement holes are placed 2x2 with an inline pattern. This leads to double the distance for 

x/d and y/d.  The increase in distance between the impinging holes only reduces the three-layer 

average heat transfer by one half which will be seen later.  

 

Figure 28 - Effusion plate showing the modified jet holes and effusion holes 
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The third variable will be the bottom layer thickness.  The temperature plots in the 

previous sections show small temperature changes, 2-10 °C, across the heated surface. This was 

due to the relatively large flow rate and small heat flux compared to the ones that will be used for 

this section. To better analyze the affects of bottom surface thickness for parallel and three layer 

design, bottom thicknesses of 1, 3, and 5 mm will be used. 

 

Figure 29 – Three layer design showing bottom layer thickness 

 

The goals for the modified three layer geometry are the same as before; provide a high 

average heat transfer coefficient, uniform temperature on the heated surface and low pressure 

loss.  But now a direct comparison will be made against the parallel flow case while before the 

three-layer model was tailored towards tackling the drawbacks of jet impingement with cross 

flow.   
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 After testing the different H/d impingement cases, it was found that H/d=3 would provide 

the best heat transfer characteristics for the comparison.   Since the temperature profiles are not 

uniform in the x and y direction, two points were used to measure from along the y axis.  The 

first was the point of impingement in the y-direction and the second was the midpoint between 

the impinging jets in the y-direction.  These two locations can be seen in Figure 30. 

 

Figure 30 - Effusion plate showing the locations of temperature measurements 

 

With these two locations we were able to record the coldest and hottest temperatures at 

any given x location.  Figure 31 shows the temperature distribution across the length of the 

elongated heated surface for the impinging model. It can be seen that the temperature difference 

for a given x-location decreases when the bottom surface thickness is increased.  The maximum 

temperature difference along the x direction for a 1 mm surface thickness was 16.5°C. This 

difference decreases to 4°C for a 3 mm thickness and even further, 1.4°C difference, for a 5 mm 

bottom thickness. This decrease does come at the cost of a lower heat transfer coefficient.   
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Figure 31 – Temperature distribution of three-layer model over an elongated surface 

 

 The parallel flow model H/d=1 showed to be the most the beneficial cooling model and 

was used to compare against the three-layer model.  A temperature profile was recorded and a 1-

D plot was taken. This 1-D assumption can be made for the internal flow case since the fluid 

interacting with the heated surface is uniform in the y-direction i.e. there is no velocity term in 

the y direction.  To compare the three-layer to parallel in a 1-D analysis, the midsection plot was 

used for the impingement case. 
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Figure 32 - Temperature distribution for parallel and three-layer models over an elongated 

surface 

 

Figure 32 shows that the parallel flow temperature increase in the x direction is 

dependent on the fluid temperature increase which is 19°C for this case.  This is mainly due to 

the concept that once the internal flow reaches a fully developed state the wall temperature will 

increase at the same rate as the fluid temperature in a linear fashion.  The three-layer model is 

less dependent on the fluid temperature increase and the surface temperatures become more 

uniform as the bottom surface thickness increases.  To take advantage of the parallel flow’s 
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dependence on fluid temperature, one can either raise the heat flux of the design or have a 

smaller mass flow rate to take advantage of jet impingement. 

After looking at the temperature uniformity on the surface, a look at the average heat 

transfer coefficient is necessary.  As mentioned earlier, the changes in mass flow rate affected 

the average heat transfer coefficient for both the parallel and three-layer models.  It can be seen 

in Table 11 that the three-layer model, which before was 50% less than the parallel flow, is now 

5% better.  This benefit exists for all thickness used.   

Table 11- Average heat transfer coefficients for modified design 

Avg. heat transfer coefficient (W/m²K) 

  Parallel Three-Layer 

t = 1 mm 3831.6 4055.7 

t = 3 mm 3707.4 3899.2 

t = 5 mm 3579.6 3757.2 

 

 The three-layer model could be modified even further to a single jet as compared to the 

2x2 arrangement that is presently used.  If the same process of reducing mass flow rate is used, 

the three-layer model would only decrease by one half while the parallel flow model would be 

reduced to 1/3 the values shown in Table 11.  The reduction in flow rate would also produce a 

laminar flow within the parallel model leading to a further reduction in heat transfer.   

 In terms of pressure drop, for the three-layer 2x2 arrangement and parallel flow models, 

the pressure loss is between 17 - 21 kPa.  The pressure loss for the three-layer model could be 

reduced even further if round inlets are used for each of the impinging nozzles.  This would 

reduce the minor loss coefficient for pipe entrances but not the contraction or expansion 

coefficients. 
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Validation 

 The accuracy and reliability of the present research must be tested and compared against 

experiments that have been accepted in industry as well as scholarly journals.  Without any 

validation to the simulations the results hold no foundation and would not be accepted among 

journals or other technical papers in the field of study.  Especially with simulations, experimental 

data is needed to uphold the results.  Florschuetz et al. [12] provides an extensive study on jet 

impingement and will be used as a source to validate the results from this research.  The main 

goal is to prove that the numerical model and simulation setup would accurately describe the 

fluid flow and heat transfer.  Two impingement models were created that fit within the 

parameters of the correlations provided by Florschuetz, similar to the baseline impingement 

model.  The comparison model had a 24.62mm x 73.86mm (1”x3”) heated surface with a 

0.838mm diameter jet nozzle spaced 6.15mm apart within an inline formation.  An H/d of 2 and 

3 were modeled, both of which fit well into the correlation presented.  The major parameters 

used in the setup of mesh and boundary conditions are carried into these models.   

The first comparison conducted from the experiments of Florschuetz et al. [12] and the 

numerical simulations was the stream-wise distribution of jet velocities.  A jet velocity 

distribution model was derived based on the span-wise distance, jet-to-target height and channel 

length.  This distribution was plotted for H/d of 2 and 3.  Figure 27 shows the jet velocity 

distribution normalized by the average jet velocity for the model data and the simulations. 

 



67 

 

 

Figure 33- Stream-wise distribution of jet velocities 

Comparison between simulated values and model 

 

Jet velocities were measured at the each stream-wise row.  Since each nozzle had a 

turbulent profile, an average was taken over the 2-D profile.  The velocities were plotted and a 

third order polynomial trend line was fitted to the three points, one equation per H/d.  These two 

equations were plotted with the model.  For both H/d of 2 and 3 the maximum difference was 

8.5% and 5.3% respectively. For H/d of 2 and 3 the average difference of the jet velocities from 

the model over the whole channel length was 4% and 2.9%, respectively.   
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Table 12- Jet velocity difference between the simulation and correlation models 

Gj/Gjavg error (%)   

x/xn H/d=2 H/d=3 

1 8.5 5.3 

2 7.3 4.9 

3 6.2 4.5 

4 5.1 4.1 

5 4.2 3.5 

6 3.3 2.9 

7 2.6 2.3 

8 2.0 1.6 

9 1.5 0.8 

10 1.2 0.1 

11 1.0 0.8 

12 0.9 1.6 

AVG 4 2.9 

 

The plot shows that the simulation effectively predicted the jet velocities of the long 

channel.  Since these velocities are based on the pressure at the inlet and outlet of the jet nozzles, 

it also accurately predicted the pressure distribution in the bottom layer or impingement region.  

The final conclusion deduced from this comparison is that the inlet channel height is sufficient 

large enough to neglect any pressure drop occurring across the 1
st
 layer when calculating the jet 

velocities.  The 1
st
 layer is essentially acting as an inlet plume.   

 The second comparison conducted from the experiments of Florschuetz et al. [12] and the 

simulations of the present research is the heat transfer occurring at each stream-wise row of 

impingement.  Specifically, the average Nusselt number at each stream-wise row is to be 

compared.  The correlation model used for comparison was previous given in the present 
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research in detail.  For the purpose of this research plots were given for H/d of 2 and 3.  While 

the correlation has the ability to model an impingement design with H/d=1, it is proposed that 

overall the correlation appears to do an excellent job for H/d = 2 and 3 and an adequate job for 

H/d = 1. Therefore H/d = 2 and 3 will only be used for comparison.   Figure 34 shows the 

stream-wise distribution of Nusselt number for the correlation and simulation data. 

 

 

Figure 34- Heat transfer correlations compared with numerical simulation data 

 

It must also be mentioned that the test setup only recorded the average Nusselt number at 

each stream-wise row.  A copper plate, used as the heated surface, created a one-dimensional 

thermal profile leaving little to no variance in the span-wise, y, direction.  While this simplified 
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the experiment such was not the case when simulations were conducted.  The heated surface was 

not assumed to be one-dimensional and therefore requiring the Nusselt number to be averaged in 

the span-wise direction for comparison to be accurate with the correlation. 24 measurement 

points were taken along the stream-wise direction. 

 

Table 13- Nusselt number difference between simulation and correlation models 

Nusselt number error (%) 

X/Xn H/d=2 H/d=3 

1 3.0 18.1 

2 0.5 17.4 

3 0.8 16.8 

4 0.5 16.1 

5 0.1 15.2 

6 0.8 14.1 

7 1.6 12.7 

8 2.4 11.1 

9 3.2 9.1 

10 4.0 6.8 

11 4.7 4.0 

12 5.3 0.8 

AVG 2.4 12.9 

 

For H/d=3 the maximum difference from the correlation was 18.1%. This occurred at the 

midsection of the channel, at the 1
st
 stream-wise row. The average difference across the whole 

channel was 12.9%.  For H/d =2 the maximum difference from the correlation was 5.3%. This 

occurred at end of the channel, at the 12th stream-wise row.  The average difference across the 

whole channel was 2.4%.   
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CHAPTER 5 - CONCLUSION 

 

 Cooling techniques for high density electronic devices will always be in demand.  A 

collective effort by many researchers has given the industry a fair understanding of many cooling 

models over the past several years but new techniques are being made aware of every year.  It 

was the goal of this research to find an effective cooling technique, one that combines low cost, 

high heat transfer, and low maintenance.  The objective was to understand and implement a fresh 

approach to jet impingement cooling.  The use of effusion holes and heated surface ribs, while 

not new, are still young in development for jet impingement.  With the aid of numerical 

simulation, models were created hoping to find trends in each variable that would lead us to 

understand how each one would affect the fluid flow and heat transfer.  With a limited amount of 

resources, assumptions were made on what ranges would be needed to make correlations from 

the results to be in the realm of credible.  Over 18 simulations were conducted using reliable 

commercial software popular in the CFD field.  The numerical models were bounded and formed 

by a turbulence model and meshing that was proven accurate for jet impingement [16].  The 

numerical model was tested and successfully replicated the experiments provided by Florschuetz 

et al. [12].  Boundary conditions were then given to the models that were comparable to real 

world scenarios in the industry. 

 Given the results from the 18 small models and several elongated models, it can be 

concluded that a three-layer model effectively managed the working fluid in cases where 

traditional jet impingement would develop unacceptable heat transfer effects.  Other models 

were also able to show how the three-layer model could be used as an effective substitute to 
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parallel, internal flow.  The use of effusion holes and a separate outlet channel allowed the fluid 

to impinge on the heated surface without significant interaction between jets.  For large values of 

H/d, the fluid showed signs of mixing in the impingement channel while smaller values showed 

little to no jet interaction in the impingement region.  The smaller H/d values also produced the 

better heat transfer with no change in pressure.  When analyzing the effects of effusion hole 

arrangement, it seemed the heat transfer coefficient was most positively affected when the most 

effusion holes were present and the pressure loss was least when the effective area of the holes 

was greatest.  Additional research could be done for varying span-wise heated surfaces and its 

effect on effusion holes.  The use of ribs increased heat transfer for every case.  It is not known if 

the ribs were optimized for the current testing or by which means the ribs increased the heat 

transfer; by guiding the flow of the spent fluid to the effusion holes or by merely acting as fins 

on the heated surface.  While this research did not cover all conceivable flow rates or 

impingement configurations it can be concluded that a three-layer cooling design is a credible 

improvement over jet impingement cooling.  
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