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ABSTRACT 

With the recent trend for systems to be more and more autonomous, there is a growing 

need for cooperative trajectory planning. Applications that can be considered as cooperative 

systems such as surveying, formation flight, and traffic control need a method that can rapidly 

produce trajectories while considering all of the constraints on the system. Currently most of the 

existing methods to handle cooperative control are based around either simple dynamics and/or 

on the assumption that all vehicles have homogeneous properties. In reality, typical autonomous 

systems will have heterogeneous, nonlinear dynamics while also being subject to extreme 

constraints on certain state and control variables. In this thesis, a new approach to the 

cooperative control problem is presented based on the bio-inspired motion strategy known as 

local pursuit. In this framework, decision making about the group trajectory and formation are 

handled at a cooperative level while individual trajectory planning is considered in a local sense. 

An example is presented for a case of an autonomous farming system (e.g. scouting) utilizing 

nonlinear vehicles to cooperatively accomplish various farming task with minimal energy 

consumption or minimum time. The decision making and trajectory generation is handled very 

quickly while being able to consider changing environments laden with obstacles. 
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CHAPTER ONE: INTRODUCTION 

Motivation 

Trajectory planning for autonomous systems has been a very hot topic in research in the 

last decade. It is important to be able to rapidly generate these trajectories if they are going to be 

used in a system implemented in real time. There are many challenges associated with generating 

trajectories for vehicles that have nonlinear dynamics that may also be subject to many different 

severe and realistic constraints. Some examples of these constraints could be obstacle avoidance 

and strict control limitations. Finding an optimal trajectory for vehicles is also important for 

many applications. If the system is sufficiently large, or the cost of operating the system is very 

high, finding an optimal solution could be vital to the success or failure of a system. 

Incorporating this type of trajectory generation to an application that requires vehicles to operate 

cooperatively results in a very complex and difficult problem to solve.  

The need for a method to generate cooperative trajectories is apparent in many different 

areas. These range from agricultural purposes like planting and harvesting to military defense 

issues including surveillance and battle field scouting (Murray 2007). These types of systems 

require the vehicles to be able to respond quickly, handle changing and cluttered environments, 

and also consider realistic dynamics. Many of the current algorithms and methods to handle 

these problem suffer from issues related to broad assumptions or simplifications of the dynamics 

of the systems (Kim and Meshbai 2006, Wang and Xin 2010) .  Since a system of this nature 

may require the use of a large number of vehicles, the algorithm must be heavily scalable to keep 

the computational cost low.  
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 Many studies have been conducted on various types of formation control algorithms. In 

(Murray 2006) many different applications are suggested that can be viewed as a cooperative 

control problem. In this paper three major types of solutions are reviewed: optimization, 

potential field solution, and swarm approaches. Optimization based methods, which will be 

studied in this paper, utilize optimization of various performance indices that relate the followers 

to one another in a cooperative sense (Dunbar and Murray 2004). These types of methods are 

typically high in computation cost due to the requirement of solving an optimal control problem. 

Potential field solutions (Leonard and Fiorelli 2001) use a potential function that is based on the 

system dynamics, and in this approach these functional are utilized in a leader follower structure 

to help attract or repel the followers to a leader. In swarming type approaches the vehicles are all 

moving in some cooperative direction but may not have individual requirements on formation 

(Reynolds 1987).  This type of method is similar to the gradient approaches in that there is an 

overall goal and the followers are attracted or repelled from each of the other vehicles in the 

system.  

 In (Gou et al. 2010) an adaptive leader-follower method is proposed for the formation 

control of multiple vehicles. The method presented utilizes graph theories to help distribute the 

follower robots into the desired formation. Control laws for the leaders and followers are derived 

that allow formation control but has restrictions on the shape and number of followers in a 

specific formation. In (Lawton et al. 2003) three decentralized methods to handle formation 

control are presented. These methods all involve a lot of information communication between the 

individual vehicle and some of the neighboring vehicles. Results are shown that formation 

control is achieved in actual robotic hardware test.  
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In this thesis, a method to rapidly generate cooperative trajectories for systems of 

vehicles with heterogeneous dynamics considering obstacle avoidance and severe constraints is 

studied. Using a hierarchical leader-follower structure and a bio-inspired modified local pursuit 

strategy, these challenges can be met. Often animals in nature utilize simple rules to help plan 

and guide their motions in foraging, mating, and hunting.  Local pursuit, a method derived from 

the movement of ants, is one of many different bio-inspired trajectory generation strategies. 

Using this motion strategy, each of the followers can calculate their own trajectories based on the 

relationship between the leader and follower. This allows for the overall computational cost to be 

reduced. 

Two major investigations are conducted, the viability and design of a framework to be 

used on a system of vehicles, and applying this framework to a realistic application in a citrus 

harvesting example.  

Contributions of Thesis 

The contributions of this thesis are that a framework for rapidly generating cooperative 

optimal trajectories for a group of nonlinear vehicles is designed. This method is studied 

extensively to consider various aspects that could be vital to implementing into a real system 

such as the communication complexity, problem dimension and optimality. Monte-Carlo 

simulations are presented to show the effectiveness and computation cost of the algorithm for 

three and five follower cases.  

The framework is also applied to a realistic citrus harvesting example on a group of 

cooperative heterogeneous vehicles. In addition to the trajectory generation, a cooperative 
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decision making structure is also used to decide which configuration the group will use in a 

given task planning phase.   

The benefits of this method shown in (Xu, Remeikas, and Pham 2011) are as follows, (1) the 

formation of vehicles can be globally, asymptotically maintained, (2) the trajectory of each 

vehicle can be generated using only its local information and the information of the virtual 

leader, (3) the convergence speed and optimization of the local trajectories is based only on a 

single parameter, (4) nonlinear heterogeneous dynamics with realistic constraints are considered, 

and (5) the computational cost of generating the trajectories for a large group of vehicles is low. 

Thesis Outline 

The thesis will be organized as follows; First, in Chapter 2, the problem definition about the 

hierarchal leader follower framework is discussed. Chapter 3 introduces the overall iterative 

hierarchical architecture and the modified local pursuit based cooperative trajectory planning 

algorithm are introduced and analyzed. Chapter 4 provides simulation examples to demonstrate 

the capabilities of the new algorithm including applications to a group of autonomous farming 

vehicles. Finally, conclusions are given in Chapter 5. 
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CHAPTER TWO: PROBLEM FORMULATION 

A leader-follower structure is adopted in the cooperative system. Here the leader can be a 

virtual one, e.g. the centroid of the formation, and is denoted as the VL. 

The performance indices and constraints, considered in the nonlinear constrained cooperative 

trajectory planning problem, are grouped into either the cooperative level behavior or the local 

level behavior categories. 

Cooperative Level Behaviors 

The following behaviors are considered in the cooperative level (Xu, Remeikas, and Pham 

2011) 

(i) The communication complexity, i.e. the total information transmitted between the VL and 

the followers, needs to be low. Communication among followers should be minimized or 

avoided if the communication between the VL and the followers is available.   

(ii) The trajectory of the VL, ,
pn

VL p x , needs to be rapidly computed and the overall 

performance of the formation 

0

( , , ) ( , )
ft

f
t

J J t dt  X U X U     (1) 

is minimized. The subscript “ p ” denotes the position state of the vehicles in the formation, and 

0t  and ft  are the initial and final time of the planning horizon, respectively.  

1 2[ , ,..., ]
v

T T T T

nX x x x  and 1 2[ , ,..., ]
v

T T T T

nU u u u  are respectively the aggregate state and control 

vectors of the vn  followers in the formation.  In this paper, the total energy index 
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0 01 1

v v
f f

n n
t t

T T

i i i i
t t

i i

J dt dt
 

 
   

 
  u u u u     (2) 

is studied, in which 
1

( , ) =
vn

T

i i

i

 X U u u . It is worth mentioning that different performance 

indices, such as the minimum time 
0

ft

t
J dt   and the minimum tracking error, can also be 

considered. 

(iii) The VL may need to satisfy the speed constraint ,max0 VL VLV V  , the angular velocity 

constraint ,max0 VL VL   , and the collision avoidance constraint 

, , , max , 1,...VL p obs j obs j obsr j n   x x    (3) 

 in which ,obs jx  and ,obs jr  are the center and radius of obstacle j , respectively.  max  is the 

maximum distance bias of the followers with respect to the VL. obsn  is the number of obstacles 

observed in the 0[ , ]ft t  planning horizon. 

(iv) Inter-vehicle collision should be avoided, i.e. 

, , , , 1,..., ,i p j p s vi j n i j   x x    (4) 

, in which s  is the safe distance buffer among different vehicles. It is worth noting that 

initially the vehicles in the formation should not collide with each other. 

(v) The VL needs to satisfy equality constraints (E.C.s.) such as the initial and final positions 

, 0 , ,0( )VL p VL pt x x  and , , ,( )VL p f VL p ft x x .  

The inequality constraints (I.E.C.s) discussed in (iii) and (iv) can be organized as 

( , , , ) 0VL VL VL t g x u X
    

 (5) 
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while the E.C.s in (v) can be organized as  

( , , ) 0VL VL VL t h x u
    

 (6) 

It is worth noting that since the leader may be a virtual one (with virtual state and control 

variables 
VLx  and 

VLu ), there is no dynamics involved in the VL. 

In the decision making portion of the cooperative level, the group cooperatively decides 

on a formation configuration from the set 
,1 ,2 ,{ , ,..., }

Ffc fc fc fc nE E E E  using the following 

performance index 

1 2

, , ,

, 0 , 1, , 2, , , ,

,

( ) ( ) max{ , ,..., },

1,..., , 1,...,

R

k m f k m b k m

t t t

f L k L k f b k m k m n k m

F k b

J W J W J

W t t W t t t

k n m n

 

  

 

x x
                  (7)

 

Each of the configuration sets is constructed by 
,, ,1 ,2 ,{ , ,..., }, 1,...,

k bfc k k k k n FE k n      

where 
2 1

,
Rn

k m


   is the desired position bias constructing the formation. 

Local Level Behaviors 

The following behaviors are considered in the trajectory planning of each follower in the 

formation.   

(i) The motion of the 
thi  follower is governed by a class of nonlinear, uncoupled, and 

possibly heterogeneous dynamics  

( , , ), 1,...,i i i i vt i n x f x u      (8) 

in which vn
 
is the number of vehicles, and in

i x  and im

i u  are the state and control 

variables of the 
thi  follower, respectively. ,

pn

i p x  denotes the position state in ix , for 
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example the position of a robot. It is worth noting that in addition to the position state 
,i px , there 

may be other state variables in 
ix , such as the velocity, and these remaining state variables are 

regarded as the state rate vector ,
i pn n

i sr


x . 

Assumption 2: The state and control variables 
ix  and 

iu  can be represented using the 

position state ,i px  via the differential inclusion technique or the dynamic inversion procedure 

(Kumar and Seywald 1996). 

Many vehicle models fall under Assumption 2 and example dynamics that satisfy this 

assumption include but are not limited to: classical DC motor (Guarino Lo Bianco and Piazzi 

2002) and spacecraft (Bajodah 2009). 

Assumption 3: The system dynamics ( , , )i i i i tx f x u

 

is not under-actuated; otherwise the 

differential inclusion method in Assumption 2 is not effective, because pseudo-inverse 

operations may be used and large numerical errors will be generated. 

(ii) (C1) The followers should avoid collisions with the obsn  obstacles as 

  , , , , 1,..., , 1,...i p obs j obs j v obsr i n j n   x x      (9) 

Assumption 4: The obstacle information is available to the vehicles in the formation at the 

beginning of each planning horizon. A planning horizon is predefined or updated when a discrete 

event is detected. For simplicity, the shape of the obstacles is assumed to be circular as described 

in Eq.(3) and Eq.(9).  Other shapes can be approximated by circles or ellipses, thus are not 

discussed in this paper. 
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(iii) (C2) The translational and rotational speeds of the followers may be constrained by 

,max0 i iV V 
 
and ,max0 i i   , while the control may be limited by ,maxi iu u . 

(iv) (C3) Follower i  should satisfy boundary conditions, such as 
, 0 , ,0( )i p i pt x x  and 

, , ,( )i p f i p ft x x . Different boundary conditions are considered as to be described in Section 4.B. 

The inequality constraints (I.E.C.s) discussed in (ii) and (iii) can be organized as 

( , , ) 0, 1,...,i i i vt i n g x u
   

 (10) 

, while the E.C.s in (i) and (iv) can be organized as  

( , , ) 0, 1,...,i i i vt i n h x u
   

 (11) 

(v) The formation of the cooperative followers needs to be maintained and the formation 

error is defined as 

, , , 1,...,i i p VL p i vi n   e x x      (12) 

, in which i  is the desired formation geometry bias of follower i .  The geometry 

formation should be asymptotically maintained, i.e. as t  , 0i e , 1,..., vi n , and a certain 

parameter can be used to conveniently control the formation error decay rate.  

(vi) To be consistent with the overall goal in Eq.(1), each follower minimizes its own 

performance index  

( , , )i i i i fJ J t x u      (13) 

As an example, the minimum energy index is 

 
0

2 2ft

i i i i i
t

J mV I dt       (14) 
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While only the energy based performance index is utilized in this paper, many other types 

could be considered. Some examples are minimal time, minimal distance, or maximum area. The 

computation cost of the formulated nonlinear programming problem will not be significantly 

affected by changing the performance index; instead the problem dimension plays a more 

important factor 

Assumption 5: The geometry bias of the follower with respect to the VL is not rotating.  

However the rotation effect can be achieved by reassign the formation geometry bias during 

trajectory re-planning. 

The following coupled constraint is considered in the paper. (C4): the relative distances of 

the robots are maintained and the conflicts between all of the robots must be resolved as 

, , 1,..., ,   i j ij Ri j n i jx x
                        

(15) 

where  ij ji  is the safe buffer distance between robot i  and robot j  considering the sizes of 

robots. 
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CHAPTER THREE: BIO-INSPIRED TRAJECTORY OPTIMIZATION 

METHOD 

Decision Making 

In the cooperative level as outlined in Algorithm Framework section, a decentralized 

decision making framework is proposed. In this section, the formation configurations, desired 

position assignments, and (virtual) leader trajectories are computed and ranked (Xu, Remeikas, 

and Pham 2011). 

 

Collision Free Trajectory Generation 

 

For each of the formation configuration 
,, ,1 ,2 ,{ , ,..., }, 1,...,

k bfc k k k k n FE k n     , the leader’s 

trajectory is to be generated that will be used to decide on the best formation configuration for 

the current farming task. To distribute the computational load, the follower robots in the system 

will be engaged to calculate the (virtual) leader’s trajectory for each of the formation 

configuration
,, ,1 ,2 ,{ , ,..., }, 1,...,

k bfc k k k k n FE k n     . Algorithm 1 here includes two parts.   

First, to provide an initial collision free path, a wavefront path planning algorithm (Ozdal and 

Wong) is used considering only the obstacles and the initial and final position information of the 

leader . The other constraints in C2-C4 are not addressed at this step. The wavefront planning 

algorithm is briefly outlined here and the detailed explanation of this method can be found in 

(Ozdal and Wong). 

In the first step, the farming area is divided into , ,g x g yN N  grids. The maximum width and 

height of the area are denoted as xL  and 
yL . The sizes of the grids 

, ,/g x x g xS L N  and 
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, ,/g y y g yS L N  can be changed to provide more accurate results. The grid that is covered even by 

a portion of an obstacle will be assumed to be covered by that obstacle. The grid location of the 

center of obstacle  j, 
,j cg , is found by 

 , , , , ,/ 1 , / 1 , 1,...,j c o j g x o j g y Ox S y S j n         g     (16) 

in which the value in     is rounded to the nearest integer.  The numbers of grids to be occupied 

by obstacle j along both directions are 
, ,2 /   j x j g xn a S  and 

, ,2 /   j y j g yn b S , respectively, in 

which     denotes the ceiling value. Once the grids of all the obstacles are determined, each grid 

containing an obstacle is assigned a “-1” value.  The grid locations of the initial and final 

positions of the (virtual) leader robot are calculated and represented as the ”start” sg  and ”goal” 

fg , respectively. The grids occupied by the initial and final positions of the leader robot are 

assigned a “2” value. The grids that are neither occupied by obstacles nor the initial and final 

positions will be assigned a “0” value.   

In the next step, the backwards propagation searches the neighboring grids surrounding the 

current grid position (with an index of [ xi ,
yi ] and the value associated with this grid is 

,x yi ig ) 

starting from the final position.  The values assigned to all the neighbors are: the value of the 

grid will not be changed if the value is not “0”. Otherwise, the value of this grid will be 
, 1

x yi ig . 

This procedure continues until it reaches the initial position grid. Once the initial position grid is 

reached, any grid in the search area with a value of “-1” is set to a value much larger than the 

value in grid
 sg . 
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Finally, the forward propagation is used starting from the initial grid location sg .  The values 

of all its neighbors are compared and the grid with the minimum value will be set as the next grid 

location. This propagation is continued until the final grid location 
fg

 
is reached. Connecting 

each of the grid locations found in the forward propagation, an obstacle free corridor is 

generated. 

Though the wavefront method provides a set of obstacle free waypoints for the formation to 

travel through, the path is typically not smooth due to the discretized grids. Therefore an ad-hoc 

nonlinear programming problem is solved in Algorithm 1-Part 2 to obtain a smooth path for the 

leader.  

In the second part of the collision free trajectory generation (P3), a B-spline curve (Piegl and 

Tiller 1997) is used parameterize the (virtual) leader’s trajectory (the 
thj  direction, the 

thk  

formation) with a small number of control points as 

 , , , , ,

0

( )
cpn

L k j l i d l k j i

i

x t B t P


 , 1,2j , 0,..., Fk n , 0,...,l N    (17) 

in which a nonlinear rational B-spline curve of degree d  is used. , ,k j iP  and  ,i dB t , 0,..., cpi n  

are the 
thj

 directional of the leader position and the 
thd  degree basis function, respectively. 

1cpn  is the number of control points in the B-spline representation of the trajectory. The set of 

optimizable parameters ,O LS  in this step is 

1 , ,{ , 2,..., 2, 1,2}O

k j i cpS P i n j         (18)
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In this case, the first and last control points are known based on the B-spline property (Piegl 

and Tiller 1997)  and thus don’t need to be optimized since the initial and final positions of the 

leader are known. 

An ad-hoc performance index, the first term in Eq. (7), is discretized and used in the 

optimization as 

1
1

, , 1 ,

0

( ) ( )
ITn

k m L k l L k l

l

J t t






  x x      (19) 

where ITn  is the number of interpolation points used to evaluate the (virtual) leader’s trajectory 

represented via the B-spline curve.  

Formation and Position Ranking 

 

With the leader trajectory for each of the formation configurations 
, , 1,...,fc k FE k n

 
and the 

desired position bias 
, ,, 1,..., k m k bm n

 
generated, the options of the formation and position 

locations for the follower robots within that formation are ranked. 

First, the configurations 
fcE  are ranked based off the performance index 

,k mJ  in Eq.  (7).  

Since the portion of the performance index 1

,k mJ  has been calculated in the smoothing algorithm 

(Algorithm 1 - Part2), only the transient times for each follower robot , , , 1,...,t

i k m Rt i n , 

1,..., Fk n , 
,1,..., k bm n  remains to be determined. Each robot calculates the time it will take to 

travel from its starting position to each of the available positions in the currently selected 

formation configuration.  The minimum possible transient time , ,

t

i k mt  can be calculated as 

*

, , , , 0 ,max( ) /t

i k m i k m i it t V x x      (20) 
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in which 
*

, ,i k mx , 0( )i tx , and 
,maxiV  are robot i ’s desired position (formation i and desired location 

j), current position, and maximum speed, respectively.  

Once all of the transient times have been determined, the finite dimension problem (Cormen 

et al. 2009) is solved for the combined performance index in Eq. (7). The number of possible 

options depends on the number of formation configurations, follower robots, and positions 

available in the formation. 

Local Pursuit Trajectory Generation 

In the cooperative foraging motion via the local pursuit (LP) strategy (Fig. 1), an ant may 

point its velocity towards the position of the ant ahead of it to achieve the minimum time 

performance (Hristu-Varsakelis and Shao 2004). The simple LP rule is 

 
, , ,( ) ( ) ( ) , 1,...,i p i VL p i p vt v t t i n    x x x

    
 (21) 

in which ( )iv t  is defined as the “speed control parameter” (SCP) and relates to the speed of the 

follower.  To maintain a desired formation, the LP strategy Eq.(21) is modified in this paper as 

, , , ,( ) , 1,...,i p i VL p i p i i VL p vv v i n    x x x x         (22) 

in which pn

i   is the constant bias in the formation between the VL and follower i . 

VL,p
x

,i p
x

,i p
x

 

Figure 1 Local pursuit phenomenon found in ants’ foraging. 
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The local level behavior (v) is automatically satisfied using Theorem 1 described next. 

Theorem 1: The formation is globally asymptotically stable if the SCP variable of each 

follower, whose motion is controlled by the modified LP strategy Eq.(22), is positive. The proof 

of this theorem can be found in (Xu, Remeikas and Pham 2011) 

Thus the formation can be maintained globally asymptotically stable if the SCP is kept 

locally positive. To ensure the SCP stays positive, it is considered as an inequality constraint in 

the local level optimization. Obstacle avoidance is also taken into account as an inequality 

constraint in Eq. (3) 

 It is worth noting that delay can be considered in Eq. (22), although it will not be discussed 

in this paper. Different values pn

i   can be used for different application scenarios.  For 

example, i  can be a line following the VL in the case when a group of aircraft is landing 

sequentially in an airport.  i  can be a line parallel to the VL in the case when a group of cars 

driving in a highway. 

Definition 1: , 0, 1,...,i s vi n    is defined as the radius of a ball around the desired location 

of a follower in the formation.  Within this ball, the followers will be free of any inter-vehicle 

collision as shown in Fig. 2. 

 

VL

F1

F2

F3

1, s

2, s

3, s

 

Figure 2 Safe zone defined for a formation. 
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Corollary 1: If the modified LP strategy Eq. (22) is applied by all the followers, the inter-

vehicle collision can be avoided after 
1, 2, ,max( , ,..., )

vs s s n st t t t , in which 

,
, , 0

, ,min , 0

, , 0

1 ( )ln
, , 1,...,( )

( )
0

i s
i s i p

i s vi i p

i s i p

t
t i nv t

t






  
  

     


e
e

e
   (23) 

Here  is the 2-norm, and ,miniv  is the minimum SCP of follower i . 

To guarantee the stability of the formation, theorem 1 and corollary 1 only consider first 

order kinematic relationships. Furthermore, the nonlinear dynamics are considered in the local 

level optimization where the some state and control variables are solved using differential 

inclusion or dynamic inversion. Finally, if the nonlinear dynamics do not satisfy the local level 

LP rule set for the simple first order model, then the optimization iteration will continue.   

It is also worth noting that to implement the generated trajectories in the feedback sense, two 

approaches could be utilized: open-loop planning with a low level tracking controller, or embed 

the proposed method into a receding horizon framework. 

Only the trajectories between the time frame of [0, ]st  need to be transmitted to the VL to 

check the inter-vehicle collision avoidance. However, once the formation is formed, the shape of 

the geometry is fixed.  If obstacles pop up, the whole formation has to either pass through or 

detour around the obstacles. 

Early Termination Conditions 

 

In the nonlinear constrained optimal cooperative trajectory planning algorithm, the early 

termination conditions are used to reduce the computational cost by not wasting the CPU time in 
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the local level optimization if these conditions are not satisfied in the cooperative level. If all the 

early termination conditions are satisfied, the fact that the guessed VL trajectory and the 

formation already satisfy parts or all of the I.E.C.s makes the local level optimization a lot easier. 

In addition to the I.E.C.s. described in Eq.(5), another early termination condition that 

considers the speed limitation of the followers is derived. 

Lemma 1: if the speed of follower i  at time node k  is limited by  

,min , ,max , 0,..., , 1,...,i i k i vV V V k N i n       (24) 

, a sufficient condition for the follower to satisfy Eq.(24) is 

2 2

, ,min , 0,..., , 1,...,VL k k i vV V k N i n       (25) 

, while a necessary condition is 

2 2

, ,max , 0,..., , 1,...,VL k i k vV V k N i n       (26) 

, in which k  and k  are respectively the maximum and minimum eigenvalues of matrix 

, , , , ,

T

VL k VL p k VL p kA x x .                       

To obtain the minimum and maximum eigenvalues, the velocity information of the leader is 

first calculated using the b-spline representation outlined in (Xu, Remeikas, and Pham 2011). 

The eigenvalues are then calculated using , , , , ,

T

VL k VL p k VL p kA x x . 

Equations (5), (32) and (33) are used as the early termination conditions, which can reduce 

the computational cost in the optimal cooperative trajectory planning. 

Based on Lemma 1, the speed of the VL must satisfy 
2 2

, ,minVL k i kV V    and 
2 2

, ,maxVL k i kV V   .  

The first one gives a sufficient solution, i.e., if this condition is satisfied, the speed of follower i 
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must satisfy the speed limitation.  The second inequality is a necessary condition, i.e., if there is a 

solution for follower i that satisfies the speed limitation, this condition must be satisfied.  

 

Nonlinear Programming Formulation 

 

Sets , , 1,...,O i vS i n  and ,O VLS
 
include the parameters that are optimized in the local level 

optimization of follower i
 
and the cooperative level optimization of VL. As shown in the 

following table, the parameters included in ,O iS  are different for different BCs. 

Table 1 Optimizable parameters in the achieved NLPs 

Cooperative level , , ,{ , 1,..., , 1,..., 1}O VL VL i j p cpS x i n j n     

Local level 

BC1 
, ,{ , 1,..., }, 1,...,O i i k vS v k N i n    

BC2 
, ,{ , 1,..., }, 1,...,O i i k vS v k N i n    

BC3 
, ,{ , 0,..., }, 1,...,O i i k vS v k N i n    

 

Sets ,C iS  and ,C VLS
 
include the parameters to be calculated, as shown in the following table. 

 

Table 2 Parameters to be calculated in the achieved NLPs 

Cooperative level , , ,{ , 1,..., , 0, }C VL VL i j p cpS x i n j n    

 

Local level 

BC1 
, ,0{ }, 1,...,C i i vS v i n   

BC2 
, ,0{ }, 1,...,C i i vS v i n   

BC3 
, , 1,...,C i vS i n  ,   is an empty set 

 

Since the initial and final positions of the VL (or the formation) are know the first and last 

control points are known and not optimized (Xu, Remeikas, and Pham 2011) 

Set ,O VLS
 
(Table 1) includes the parameters that are optimized in the cooperative level 

optimization of VL. The cooperative level planning is formulated as the following NLP (P1): 
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, , , 1

min , 1,...,
v

VL p j O VL

n

i p
x S

i

J J j n




       (27) 

such that 

2 2

, ,min

2 2

, ,max

1,...,
,

0,...,
( , , , ) 0

VL k i k

v

VL k i k

VL VL VL

V V
i n

V V
k N

t





  


 
 g x u X

    (28) 

, in which 
iJ  is the performance index optimized in the local level NLP. 

Only the total energy is used as the performance index in this paper.  However as mentioned 

earlier, other performance index can be used as well. 

Based on Assumptions 2 and 3, the state and control variables of each follower at the 

discretized nodes can be calculated via the differential inclusion (Kumar and Seywald 1996).  

The local level trajectory planning for follower i  is formulated as the following NLP (P2): 

,
, ,

0

min
i O i

N
T

i i k i k k
v S

k

J w




u u      (29) 

such that 

( , , ) 0, 1,...,i i i vt i n g x u
   

 (30) 

in which kw  is the weight of the node k  in the discretization (Hesthaven, Gottlieb, and Gottlieb 

2007, Fahroo and Ross 2001). 

 

Feasible and Optimal Cooperative Trajectory Generation 

 

The feasible solution and the optimal solution can be found using Algorithm 2 shown below. 
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Table 3 Algorithm 2: Feasible and optimal cooperative trajectory planning algorithm 

Step 1: Use Algorithm 1 to find a collision free and smooth VL path. 

Step 2: Start to solve P1 (Step 2 to Step 13). 

Step 3: 
Use the parameters in Set 

,O VL
S

 
found in Step 1 or generate new parameters in 

,O VL
S  as the initial guess for P1. 

Step 4 
If all the early termination conditions (Eqs. 5, 39, and 40) are satisfied, continue 

to Step 5. Otherwise, go back to Step 3. 

Step 5: 
The VL will pass 

0
t , 

f
t ,

 i , “yes/no”, and ,VL px  to the followers. Start to solve 

P2 in a decentralized manner by the followers. (Step 5 to Step 11) 

Step 6: Generate parameters in Set 
O,i

S  as the initial guess for P2. 

Step 7: 
Calculate the parameters in 

O,i
S  using the appropriate equations derived in 

Section 4.B. 

Step 8: 
Compute the state and control variables using the VL path, SCPs, and desired 

formation information. 

Step 9: Evaluate the performance index 
i

J
 
and the constraints in P2. 

Step 10: 
If the maximum number of iterations has not been reached and the convergence 

criterion is not yet satisfied, go back to Step 6.  Otherwise, continue to Step 11. 

Step 11: 

The optimization of P2 is terminated. If the optimization of P2 is successful and 

the goal is to find a feasible solution, the algorithm stops and the result 

achieved is a feasible solution. If the optimization of P2 is not successful or the 

goal is to find the optimal solution, continue to Step 12. 

Step 12: Followers transmit 
i

J
 
and , 0( ), [ , ]i p st t t tx  information to the VL. 

Step 13: 

If the performance index 
=1

vn

i

i

J = J  can be improved, or certain constraints are 

not satisfied.  Go back to Step 3.  Otherwise, the algorithm stops and the 

optimal solution is obtained. 

 

It is worth noting that the convergence of the NLP considering different constraints is not 

guaranteed.  Since the initial guess is simply an obstacle free path from a grid-based search in 

Algorithm 1, the solution may only be locally optimal around this initial condition. If an optimal 

solution that meets all the inequality and equality constraints cannot be found, a different 

obstacle free path may be used. 
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Problem Dimension, Optimality, and Communication Analysis 

Problem Dimension 

 

In Algorithm 2, the wavefront problem and three NLPs (P1, P2, and P3) are solved. Only 

one backward propagation and one forward propagation are involved in the basic wavefront 

method applied here.  Since no iterations are involved and the complexity of the wavefront 

algorithm is linearly related to the number of grids (Ozdal and Wong 2009), the computational 

complexity of the wavefront algorithm is much lower than that of the NLPs.  Therefore only the 

problem dimensions of those three NLPs are considered (Xu, Remeikas, and Pham 2011).  

The numbers of parameters to be optimized in P1, P2, and P3 are on the order of ( )p cpn n , 

( )N , and ( )p cpn n , respectively.  Therefore, the problem dimension of the achieved NLPs in 

finding the feasible solution is on the order of  2 p cpn n N  , while that of the optimal solution 

is on the order of  p cp p cpn n n n N  . 

An NLP may have a polynomial to exponential time complexity (Rao, Wright, and Rawlings 

1998). Let us use the exponential time complexity as an example. The time complexity of the 

feasible solution algorithm is on the order of  2 2 2p cp p cpn n n n N   , while the time complexity of 

the optimal cooperative algorithm is on the order of  2 2 2p cp p cpn n n n N   . 

Optimality 

 

Theorem 3: If Algorithm 2 converges, the limiting cooperative trajectory obtained 

( *{ } cpn

Nv ,
*

,{ } cpn

i p Nx , and 
*

,{ } cpn

VL px ) equals to the optimal solution ( *{ }v ,
*

,{ }i px , and *

,{ }VL px ), when 

the number of control points N  and the number of discretization nodes cpn  increase to infinity.  
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Based on the above analysis shown in (Xu, Remeikas, and Pham 2011), as the numbers of 

discretized nodes and the control points increase to infinity, if Algorithm 2 converges, the 

solution is the optimal one. It is worth noting that this solution is only locally optimal rather a 

global optimum. 

  

Virtual Leader-Follower Communication  

 

The cooperative system is comprised of one VL and multiple followers 
iF , 1,..., vi n . The 

communication architecture is shown in Fig. 3, in which each follower is assumed to be able to 

communicate directly with the VL (Fig. 3a) or indirectly with the VL through other followers 

(Fig. 3b) if this follower is not within the communication range of the VL (Xu, Remeikas, and 

Pham 2011). The communication graph is assumed to be connected.  In the case when the VL is 

malfunctioning, one of the followers will be selected as the VL and the communication 

architecture will be rearranged (Fig. 3c). 

 
(a) Communication between the VL and followers. 

VL

F1 F2
F3

 
(b) Communication between the VL and followers via other followers. 

VL (F2)

F1 F3

 
(c) Communication architecture rearranged. 

Figure 3 Communication topology 

 

The communication complexity (Dunbar 2007) depends on the total information transmitted 

between the VL and the followers. 
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The information flowing from the VL to 
vn  followers includes: (i) “Yes” or “No” (a total of 

vn  variables for 
vn  followers) about whether the cooperative level optimization is accomplished; 

(ii) desired formation geometry (a total of 
v pn n  variables), path of the VL (a total of (1 )v p cpn n n  

variables), and initial and final time ( 2 vn variables). 

The information the VL received from vn  followers.  (i) The performance index iJ  (a total of 

vn  variables).  It is worth noting that a predefined number can be used if the local level 

optimization is not successful. (ii) The trajectory information between [0, ]st . If there are sN  

nodes within this time frame, the number of variables transmitted is v p sn n N . 

Therefore, the communication complexity for the VL is bounded by [4 (2 ) ]cp s p vn N n n    

variables, and the communication complexity bound for each follower is 4 (2 )cp s pn N n   .  

For example, if a wireless communication device has a bit rate of 9.6Mb/s, theoretically the 

information update between the VL and the followers can be up to 5 KHz, if 5vn  , 6cpn  , 

2pn  , 3sN  , and the variable is double precision.  Thus the communication complexity is low 

in the proposed algorithms. 

As mentioned in (Belta and Kumar 2004), the proposed virtual leader-follower architecture is 

a centralized approach. However, since each vehicle only needs to know its own states and the 

VL’s information, the communication complexity is not high. Therefore the algorithm scales well 

as the number of robots increases. 
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Although in this paper network-induced constraints such as delays or packet losses are not 

considered, they are worth mentioning. These issues could potentially be addressed in future 

work by incorporating the methods described in (Wu & Shi 2011). 

As shown in Corollary 1, followers are only required to communicate a part of their position 

information with the VL for the purpose of checking the inter-vehicle collision during the 

transient stage. Once the formation is achieved, the inter-vehicle collision is guaranteed to be 

avoided in the current planning horizon and information transmission is not required. 

The information among the VL and the followers are updated at the following instants: (i) the 

beginning of each trajectory planning horizon 0t , (ii) any time when a follower has finished its 

local level optimization, and (iii) any time when new obstacles or unexpected events pop up. 
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CHAPTER FOUR: SIMULATION EXAMPLES 

Minimal Energy Trajectory Generation for a Group of Two-Wheel Drive Robots 

Simulation Settings 

 

To test the effectiveness and robustness of the algorithms, a minimal energy trajectory 

planning scenario for a group of cooperative robots is simulated (Xu, Remeikas, and Pham 

2011). The NLPs in the algorithms are solved using the “fmincon” function in Matlab (Version 

7.10.0.499-R2010a).  The constraint and function evaluation tolerances for the VL and followers 

are set to 10-3 and 10-3, respectively. A desktop computer with a 3.10GHz CPU and 4 GB of 

RAM is used for all of the computations.  The motion of the two-driving wheel robots in the 

formation is driven by the following nonlinear dynamics (Laumond, Sekhavat, and Lamiraux 

1998) 

cos 0

sin 0 , 1,...,

10

i i

i i i i v

i

x

y V i n



 



     
     

       
        

     (31) 

where the midpoint of the two wheels defines the position state by 
, [ , ]T

i p i ix yx  . Here the 

speed iV  and the angular velocity i  are the control variables and constrained by 
,max| |i i   

(e.g. 
,max 180 /i s  ) and 

,max0 i iV V    (e.g. 
,max 3 /iV m s ). The objective of the simulation is 

to move a formation of robots from the bottom left corner to the top right corner of the defined 

area using the least possible amount of total energy. The cost function associated wollower i
 
in 

its discretized form is 

2 2

0 ,

0

0.5( ) ( )
N

i f i i k i k k

k

J t t mV I w


       (32) 



 27 

The mass 
im  and the inertia 

iI  are assumed to be equal to 1. The cost function associated 

with the overall formation is given by 
1

vn

i

i

J J


 . The control variables and state rate are 

calculated by 2 2

i i iV x y  , 1tan ( / )i i ix y 
, 

2 2( ) / ( )i i i i i i iy x x y x y    , respectively. 

A series of Monte Carlo simulations are conducted and analyzed to test the robustness of the 

algorithm numerically. In these simulations, the following settings are varied: the number, 

position, and size of the obstacles; the initial and final positions of the VL and the followers; and 

the formation of the followers.  The number of obstacles varies from 10 to 30 with the radius in a 

range from 5m to 15m. The locations of the obstacles are varied randomly throughout the inner 

area of 200m x 200m. The formation is in a set shape but the position bias between the followers 

and the leader in the formation location will be varied from 0m to 10m. The initial and final 

positions of the VL leader and followers are chosen from a 15m x 15m area in the bottom left and 

top right corners of the given area, respectively. The rest of the settings in the Monte Carlo runs 

are static: the size of the area is 250m x 250m, the number of followers is 3 or 5, the number of 

discretization nodes is 10, the initial SPC guess for each follower is set to be 2, the degree and 

number of control points used for the b-Spline are 5 and 6, respectively, and the bounds on the 

SPC, speed, and turn rate are set to be [1,10], 3m/s, and 180 / s , respectively. 

To show the scalability of the proposed algorithms, the cases with three follower and five 

follower robots are tested in the Monte Carlo simulation and the computational time is 

compared. 
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Three-Follower Case 

 

Three followers are required to form and maintain their desired formation with respect to the 

VL, while meeting all of the constraints. Two types of solutions are shown: the feasible and the 

optimal. In the feasible solution, the algorithm stops after the first trajectory, which satisfies all 

of the constraints is found. In the optimal solution, the algorithm will continue to iterate until the 

minimal performance index is obtained. 

The feasible and optimal solutions are compared by their CPU time and performance index 

(PI). Table 5 shows the average results from a 1000-run Monte Carlo simulation.  The feasible 

method produces a solution in a much faster time, less than half a second, while the optimal 

solution takes around 33 seconds. The optimal solution provides an average improvement to the 

PI of about 13% when compared to the feasible solution. It is worth noting that the CPU time can 

be reduced further without saving and plotting all the data during the Monte Carlo runs. 

Table 4 Simulation results for three followers from 1000 Monte Carlo runs 

Solution Avg. CPU Time (s) Avg. % CPU Time Ratio Avg. % PI 
Improvement 

Feasible  0.45 
1.35 13.21 

Optimal 33.23 
 

The trajectories generated from a randomly selected result are shown in Fig. 4. Each follower 

is represented in a different line style and the obstacles are the circular objects. The formation 

takes shape after a short transient stage, while the time after it is reached is the formation steady 

stage. During both of these stages, inter vehicle collision is avoided.   
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Figure 4 Three-follower case forming and maintaining a formation 

 

In Figs. 5 and 6 the control variables of each follower are shown as a function of time. Both 

of these varabiles stay within the required constraints mentioned previously. 
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Figure 5 Followers’ speed profiles for the three-follower case. 
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Figure 6 Followers’ angular velocity profiles for the three-follower case. 
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Each of the followers may reach their desired location in the formation at a separate time and 

in a decentralized manner.  The speed of the follower reaching its desired formation is controlled 

by the SPC. In Fig. 7 the SPC of each follower is shown over the course of the trajectory, staying 

positive and within the bounds set. 
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Figure 7 Followers’ SCP profiles for the three-follower case. 

 

Five-Follower Case 

 

Another Monte Carlo simulation is conducted with five followers. The same settings are used 

as the three-follower case. The results shown in Table 6 are similar to the three-follower case in 

that when using the feasible method the solution is found in a very small amount of time. The 

optimal solution also took longer as expected but reduced the performance index by a noticeable 

amount.  

Table 5 Simulation results for five followers from 1000 Monte Carlo runs 

Solution Avg. CPU Time (s) Avg. % CPU Time 
Ratio 

Avg. % PI Improvement 

Feasible 0.49 
1.34 15.20 

Optimal 36.54 
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Figure 8 shows a selected case from the five-follower Monte Carlo simulation. The formation 

is maintained with five followers throughout the trajectories. In Fig. 9 inter-vehicle collision 

avoidance is shown in the zoomed-in figure. After this section the formation is quickly reached 

and maintained.  

 

Figure 8 Five-follower case forming and maintaining a formation. 

 

Figure 9 Zoomed-in formation transient stage in the five-follower case. 

 

In Figs. 10-12, the control variables and the SCP are shown.  Similar arguments can be 

obtained as those of the three-follower case.  



 32 

0 50 100 150 200 250
1

1.5

2

2.5

3

Time (s)
S

p
e
e
d
 (

m
/s

)

 

 

F2

F4

F1

F3 F5

 

Figure 10 Followers’ speed profiles for the five-follower case. 
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Figure 11 Followers’ angular velocity profiles for the five-follower case. 
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Figure 12 Followers’ SCP profiles for the three-follower case. 

 

To show the scalability of the algorithm, the Monte Carlo simulations from the three- and 

five-follower cases are compared in Table 6. In almost all of the cases the change in CPU time is 

less than 10%. This shows that the number of followers has very little effect on the overall 

computation cost of the algorithm for both the feasible and optimal solutions.  In addition, both 

the three-follower and five-follower have very consistent robustness with a consistent success 
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rate above 90%.  It is worth noting that the unsuccessful runs are due to the improper settings of 

the obstacles, or no feasible path/trajectory for the formation to go through. 

Table 6 Scalability and robustness of the algorithms 

 

# of followers 

Avg. CPU Time (s) Time Diff. % 

Feasible Optimal Feasible Optimal 

3 0.45 33.23 
8.59 9.98 

5 0.49 36.54 

 Success Rate 

 Feasible Optimal 

3 90.1% 90.7% 

5 90.3% 90.4% 

 

To verify the accuracy of the discretization scheme used in the open loop control design, the 

open loop control commands generated are interpolated and used to forward propagate the robot 

dynamics Eq. (31). The mismatches of the boundary conditions and the trajectories between the 

planned one and the forward propagated one are small. 

 

Farming Task Assignment and Trajectory Planning 

Due to the increased interest in automated farming, many studies have been conducted on 

increasing the efficiency and precision of different farming task. In (Eaton et al. 2008) a 

framework is present for an autonomous farming that is presented as a system of systems. In this 

framework everything from path planning, low level tracking, to precision seeding are covered 

(Remeikas et al. 2013).  In addition to this type of research, a lot of papers focus on the small 

aspects of handling different portions of automated farming. In (Kazmi et al. 2011), a method to 

detect, determine task, and execute these task in disease detection is presented. The system 

consists of various aerial and ground vehicles to accomplish the different requirements of the 
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problem.  With the current trend in almost all systems moving towards automation, it is logical 

that agriculture would be interested. As shown in (Pedersen et al. 2006) that is would be 

beneficial for the agricultural industry to move towards automation due to the ability to reduce 

the cost of labor, replace trivial task with autonomous systems, and increase the accuracy of 

various activities. 

Background 

 

 As mentioned before, a realistic example of a simple citrus harvest example is studied. 

An iterative hierarchical cooperative planning framework is developed for a group of agricultural 

robots. The framework is broken down into the two levels, the cooperative level where the 

formation configuration is selected and the leader’s trajectory is generated, and the lower level 

where the follower’s trajectories are generated. 

 

Farming Vehicle Model 

 

There are Rn  robots in the cooperative farming system and the motion of each agriculture 

robot i  is described by its own nonlinear dynamics, for example the following 2-D nonlinear 

model. 
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    (33) 

The state vector of robot i
 
includes the position vector of the geometric center 

2 1[ , ]T

i i ix y  x , the heading angle i , and the angle of the front steered wheel  i .  The 
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length from the front wheel to the rear wheel is represented by 
iL . In this model, the steering is 

handled by a single front wheel while the rear wheels provide the drive. The control variables are 

the speed iV  and the turning angular rate of the front wheel steering angle i iu .  This model 

does not explicitly consider the effects of slip from the robot, instead it can be considered as an 

inequality constraint if necessary.  

 

 

Simulation Results 

 

The objective of the simulated agricultural robots is to harvest two parallel curves of citrus 

with a minimum time in the cooperative level and minimum energy consumption in the 

individual level. The software is programmed in MATLAB (Version 7.8.0-R2009a) on a desktop 

computer with a 2.33 GHz CPU and 2.95 GB of RAM.  In the smoothing operation, the 

constraint and function tolerances are set as 10
-12

 and 10
-1

, respectively, while those of the local 

level robot trajectory generation are set to both be 10
-4

. 

To test the capability of using the algorithm for heterogeneous models (Eq. 40), three 

agricultural robots will have different sizes and dynamic characteristics as shown in Table 1. 
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Table 7 Parameters for three agricultural robots 

Agricultural Robot 1 2 3 

iL  4 m 4.5m 5m 

im  19,530kg 21,700kg 23,870kg 

iI  55,335kg m
2
 61,843 kg m

2
 67,631 kg m

2
 

,maxiV  0.22 /m s  0.25 /m s  0.19 /m s  

,maxi  3 / s  5 / s  5 / s  

,maxi  
0.3 2/ s  0.5 2/ s  1.0 2/ s  

 

 

The farming area in the simulation has a dimension of 125m by 60m. The areas occupied by 

citrus to be harvested by the robots are represented by circles with a radius of 1.5m. A total of 22 

plants are placed in the farming area, in two parallel curves. The rows are separated by an 

average distance of 7m, while each plant has 4m between them in the row, and an overview of 

the farming setup is shown in Fig 14. In addition, there will be several obstacles (i.e. fallen trees 

or stones) directly in the path of the robot. 

Three formation configurations are assumed to be proper in harvesting the rows of plants as 

shown in Fig. 15.  As mentioned before, an example formation can be a right triangle shape 

where one tractor follows behind to collect fallen fruits. 
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Figure 13 Citrus farm layout used in the simulation 

 

 

Figure 14 Three available formation configuration options in the simulation 

 

 

The performance index shown in Eq. (7) for the Cooperative Level Algorithm is utilized for 

the cooperative system to help with ranking the formation configurations and position locations. 

In this simulation the weights bW  and 
fW   are both set to be one to provide an equally weighted 

case on the formation transient times and the cooperative minimal distance. In the robot 

cooperative trajectory optimization, the performance index shown in Eq. (13) is used.  

In the cooperative level optimization, the wavefront path planning algorithm is used to 
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provide an obstacle free corridor. The number of grids used to represent the farming area is 100 x 

100. To provide the smooth trajectory a B-spline representation with the number of control 

points and degree set to be 2 and 3, respectively, is used.  In the individual level optimization, the 

robots trajectories are generated using the Individual Level Algorithm. This trajectory planning 

time horizon is discretized into 9 nodes with the trivial initial guess for the SCP at each node 

being 5. The safety buffer to prevent inter-vehicle collision, 
s  , is set to be 1m. 

The simulated citrus harvesting task is broken down into seven phases. In the first phase, the 

robots are traveling along the first row of trees. In the second phase, the formation is changed to 

avoid an additional obstacle. In the third phase, the robots continue moving along the first row of 

trees. In the fourth phase, the robots move from the first row to the second row. In the fifth 

phase, the robots will move along the second row of trees until an obstacle is encountered. In the 

sixth phase, the robots will avoid the fallen plant and then, in the last phase, the three robots 

move along the rest of the second row of trees before completing the task. The end of each phase 

can be viewed as a discrete event that will trigger the re-start of the decision making and 

planning algorithm. From the three formation configurations and the available formation location 

positions, there are three options per formation configuration as shown in Fig. 15. Each phase of 

the task is analyzed and a summary of the results are shown. 

For each phase, the virtual leader’s path is generated using Cooperative Level Algorithm. In 

Table 8, a summary of the CPU time spent during the leader path generation is shown. It can be 

seen that the CPU in generating the leader’s path is mostly less than 0.3 seconds except one case. 
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Table 8 CPU time spent in generating the leader’s path (Seconds) 

 Phase 1 Phase 2 Phase 3 Phase 4 Phase 5
 

Phase 6
 

Phase 7
 

Leader’s Path Generation        

Formation Configuration 1 

Computed by follower 1 
1.463 0.330 0.105 0.071 0.092 0.0931 0.141 

Formation Configuration 2 

Computed by follower 2 
0.178 0.093 0.084 0.073 0.097 0.066 0.088 

Formation Configuration 3 

Computed by follower 3 
0.151 0.093 0.035 0.066 0.095 0.095 0.091 

 

A more in-depth look at the CPU time spent in Phase 1 by each follower robots for both parts 

of Cooperative Level Algorithm is shown in Table 9. 

 

Table 9 CPU times of the Cooperative Level Algorithm in Phase 1 (seconds) 

 Part 1
 

Part 2 

Formation Configuration 1 by 

follower 1 

0.034 1.277 

Formation Configuration 2 by 

follower 2 

0.0175 0.135 

Formation Configuration 3 by 

follower 3 

0.0179 0.116 

 

 

The Formation Ranking Algorithm is used to determine the formation configuration and 

position location rankings. The CPU time used in this centralized step is shown in Table 

10 and it is obvious that the ranking can be accomplished in a very short time. 

 

Table 10 CPU times used in formation ranking (Seconds) 

 Phase 1 Phase 2 Phase 3 Phase 4 Phase 5 Phase 6 Phase 7 

CPU Time 0.0130 0.0034 0.0004 0.0004 0.0005 0.0004 0.0004 

 

 



 40 

Finally, the individual level optimization is used to generate the optimal trajectories for the 

follower robots. The CPU time spent in this algorithm is listed in Table 11, and it can be seen 

that the optimization can be done rapidly. 

 

Table 11 CPU time used in the Local Level Algorithm 

 Phase 1
 

Phase 2
 

Phase 3
 

Phase 4 Phase 5 Phase 6 Phase 7 

Follower 1 0.334 0.028 0.021 0.016 0.018 0.179 0.020 

Follower 2 0.251 0.016 0.017 0.019 0.020 0.031 0.017 

Follower 3 0.092 0.016 0.18 0.015 0.021 0.020 0.019 

 

Considering that the Cooperative Level Algorithm and Local Level Algorithm are 

decentralized, the total CPU time used for all seven phases is only about 2.6 seconds.  

The trajectories generated for all seven phases are shown in Figs. 16 and 17. Each of the 

followers is represented as a different line style while the plants are the circular objects. The 

follower robots quickly reach the desired position locations in the formation and proceed to 

maintain the formation. 

 

Figure 15 Generated trajectories for the followers and virtual leader in Phases 1 through 4 
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Figure 16 Generated trajectories for the followers and virtual leader in Phases 5 through 7 

 

In Figs. 18 and 19, the control variables, the speed, and the steering angle are shown. These 

stay within their constraints mentioned in the simulation settings. 

 
 

Figure 17 Followers’ speed profiles during Phase 1. 
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Figure 18 Followers’ steering angle profiles during Phase 1. 

 

The heading angle and speed control parameter plots are showing in Fig. 20 and 21. Once the 

robots have reached their formation positions the plots converge as they are all moving in a 

common direction. 

 

 

Figure 19 Followers’ heading angle profiles during Phase 1. 

 

Since the leader’s path is parallel with the x  direction, the followers’ heading angles 

converge to zero during the majority of their trajectory. During the transient stage the followers 

turn to reach their desired position locations. 
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Figure 20 Followers’ SCP profiles during Phase 1 

 

Similar results can be drawn from phases 2 through 7 but are omitted for brevity.  
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CHAPTER FIVE: SUMMARY AND FUTURE WORK 

Summary 

There are many difficulties associated with generating trajectories for a group of cooperative 

vehicles. A method to rapidly generate these considering complex dynamics and severe 

constraints is presented and analyzed. The major benefits of this approach are that the formation 

can be globally asymptotically maintained, there is very little information required to generate 

the followers’ trajectories, the problem dimension is reduced via the local pursuit strategy, and it 

has the ability to handle nonlinear heterogeneous dynamics with severe constraints. Due to the 

formulation and methods used, such as early termination conditions, the computational cost of 

the trajectory generation in the framework is low. 

Two simulation examples are presented to showcase the ability of the framework to produce 

these results with all of the expected benefits. Monte-Carlo simulations on a group of 

cooperative ground vehicles are shown to verify that the system is capable of quickly generating 

trajectories in very complex environments with a varying number of vehicles. A realistic citrus 

harvest path planning example is investigated using the studied methods that shows the system 

can cooperatively decide on the desired formation configurations and also rapidly produce the 

individual trajectories. 

 

Future Work 

Currently, research is being conducted on applying this framework to plant disease detection 

and monitoring system. With a quadrotor acting as the virtual leader in the system, it can detect 
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and process the information to be sent to the lower level vehicles such as geography and 

obstacle information. The followers in the system are simple ground robots able to detect and 

collect the disease infected parts of the plants to be brought back to a lab for analysis.  Another 

example of a system that this framework could be applied to is formation flight, for applications 

like surveillance where the cooperative goal is to survey a wide area. Different formations could 

be used that would allow for maximization of coverage area under certain restrictions and 

constraints if the airspace is limited or crowded. Since in the lower level, the vehicles are 

subjected to a performance index, fuel consumption could be minimized to reduce the overall 

cost of the operation.   

There are still areas that could be improved upon in the current method. The assumptions 

made about the dynamics can be investigated as these are still limiting the available systems that 

can be analyzed. While the method presented in this paper considers heterogeneous nonlinear 

dynamics, it has the restriction that the state and control variables must be able to be calculated 

directly using dynamic inclusion or inversion.  
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