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Abstract

A non-invasive method to quantify the stress distribution in polymer-based materials

is presented through the piezospectroscopic calibration of alumina-epoxy nanocompos-

ites. Three different alumina volume fraction nanocomposites were created and loaded

under uniaxial compression in order to determine the relationship between applied stress

and the frequency shift of the R-lines produced by alumina under excitation. Quan-

titative values for six piezospectroscopic coefficients were obtained which represent the

stress-sensing property of the nanocomposites. The results were applied to an alumina-

filled adhesive in a single lap shear configuration demonstrating the capability of the

technique to monitor R-line peak positions with high spatial resolution and assess the

stress distribution within the material prior to failure. Additionally, particle dispersion

and volume fraction were confirmed with spectral intensities, introducing a novel exper-

imental method for the assessment of quality in manufacturing of such nanocomposites.

Results were further used to initiate studies in determining the load transfer to the

nanoparticles and assessing the fundamental driving mechanisms.
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CHAPTER 1
INTRODUCTION

1.1 Motivation and Background

The ability to accurately assess integrity and predict the onset of failure in aerospace

structures is complex, yet imperative for structurally sound designs and to ensure con-

tinued safety in operation. Over the last 50 years, the surge in usage of composites and

corresponding bonded joints in aerospace structures has led to increased use of polymer

adhesives in areas ranging from fuselage components to wing structures, as well as the

joining of fiberglass composite parts [24, 68, 69, 48, 47]. This further emphasizes the

need for non-invasive methods to assess the integrity and quality of adhesive joints both

in laboratory testing and in operation. Many advantages stem from the use of adhesives

including the elimination of stress concentrations created by typical metallic fasteners

and rivets, a decrease in the overall weight of the structure, and reduced assembly times.

Structural failure in bonded joints are the result of delaminations, disbonds, porosity,

voids (high volume porosity), incorrect matrix cure, and cracks which alter the struc-

ture’s overall load-carrying capability. In aerospace structures, various loading scenarios

including static loads, vibration, and fatigue can lead to the eventual weakening and

failure of these bonded joints. While ultrasonic techniques are the primary source for

structural integrity monitoring of disbonds and voids, these methods are unable to as-

sess and identify the weak bonds prior to debonding. The ability to detect weak bonds

preceding failure is of significance and new and promising laser-based and thermographic
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methods are currently being researched [8] to address this. Active thermography is based

on differences in heat diffusion in the presence of air gaps due to voids or delamination

but is limited in its ability to detect weak bonds due to low diffusion response and reso-

lution. Laser bond inspection uses a shock wave generated by plasma originating from a

high power laser with short pulse on the front surface which propagates through the in-

spected structure in compression and its reflection on the back surface provokes a tensile

strength [2]. Such a technique is based on the principle that a weak adhesive bond would

be disbonded whereas a good adhesive bond would not be damaged by a determined

tensile stress induced by the shock wave [8]. However, besides being invasive in nature,

such methods lack the ability to provide quantitative measurements that can relate to

the integrity of a bond prior to weakening and failure.

In addition to integrity assessment, there is also a need for high spatial resolution

and in-situ laboratory based techniques to advance research in adhesives with improved

mechanical strength. Standard techniques for measuring stress distributions within a

material, such as the use of traditional strain gauges [68], are limited in the ability

to achieve high spatial resolution and are invasive in nature. They are further limited

in the ability to assess load transfer mechanisms and identify localized and/or time-

related initiation of failure. Research on the mechanisms of adhesive failure and effects

of modifying fillers in advanced adhesives would be greatly enhanced by the ability to

map the stress evolution within the adhesive towards failure in standard adhesive tests

with high spatial resolution.
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A novel approach which allows for the non-destructive determination of

real-time stress distributions prior to failure is offered here by enabling and

calibrating advanced adhesives that have stress-sensing capabilities. By em-

bedding a polymer matrix with photo-luminescent α-alumina nanoparticles,

in-situ non-invasive monitoring of stress distribution is enabled in these ad-

hesives. A schematic of this concept is illustrated in Figure 1.1. Relating quantitative

stress measurements from such a technique and the stress evolution with the weaken-

ing and failure of the bonded joint would allow for integrity monitoring. The successful

development of such high spatial resolution stress-sensing capabilities in adhesives can

effectively be extended to coatings that can be applied directly on structures, as well as

to matrix materials in composites with the appropriate calibration.

!"#$%&

!"#$%&'"($'$#(&

!"#$%&

)*+,(#&

Figure 1.1: Concept for stress-sensing adhesive

3



1.2 Photo-Stimulated Luminescence of α-Alumina Nanoparticles for Stress

Sensing

The basis of the stress-sensing capability presented here for alumina-epoxy nanocompos-

ites is the photo-stimulated luminescence emission of chromium-doped alumina and the

behavior of the emission spectra with stress. This behavior, known as the piezospectro-

scopic effect (PS), directly correlates stress to an observed shift in characteristic lumi-

nescence lines found in α-alumina. These spectral lines, known as the R-lines, can be

identified readily as two sharp and closely spaced peaks and arise directly from chromium

(Cr3+) ions that naturally inhabit the crystal structure of alumina. These impurities

randomly replace aluminum ions within the trigonal crystal geometry of alumina. The

R-lines, illustrated in Figure 1.2, are the resulting spectral emission that occur when laser

excitation causes the chromium (Cr3+) ions in α-alumina to transition from an excited

state back to ground state. This distinct spectrum forms the basis for the method of

piezospectroscopy.

Applications using the PS technique began with the widespread use of the R1 line

to monitor pressure in diamond anvil cells [1] followed by the determination of stresses

in polycrystalline ceramics [32, 53, 4] and alumina-filled composites for electronic appli-

cations [45]. The method gained importance over the last two decades as a means to

assess the integrity of the thermally grown oxide (TGO) layers of thermal barrier coat-

ings [46, 15, 51, 59] on jet engine turbine blades as illustrated in Figure 1.3. These ceramic
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Figure 1.2: Emission spectra of Cr3+ ions doped in alumina.

coatings on the turbine blades enable their operation at high temperatures. They are

exposed to cyclic thermo-mechanical loads which results in spallation of the coatings over

time with complex stress variations in the multi-layered coating system [3]. The ability

to measure the thermally grown oxide layer stress using piezospectroscopy as a function

of the cycles allows for an understanding of the effects of thermo-mechanical cycling on

the stresses leading to failure and contributes to life assessment studies of the coatings.

The planar stress assumptions made in the existing piezospectroscopic theoretical model

with 2 R-lines limits the measurement of the stress in the TGO. This has motivated

efforts to extend the capabilities of this method accomplished through the measurement

and the deconvolution of the less-studied vibronic band region in accompaniment with

the R-lines in the emission spectra of polycrystalline alumina [52, 53].
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Figure 1.3: Application for PSLS technique for TBC on turbine blades

1.3 Effects of Nanoparticle Modifiers on Mechanical Properties

In the process of developing stress-sensing materials, additionally important are the me-

chanical properties of the particle-polymer system. Specifically, the incorporation of

the modifiers cannot provide a negative impact on the mechanical properties of the

composite [68]. Several studies indicating improvements in mechanical properties have

been highlighted with ceramic reinforcing particles including enhanced impact proper-

ties [30, 50, 40, 58, 57, 7, 71] for lighweight armor applications. The selection of an

epoxy resin as the matrix material for this work was influenced by current improve-
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ments in aircraft designs that are arising due to the use of polymer adhesive bonding

of primary aircraft structures. As compared to standard metals, however, unreinforced

polymers have inferior mechanical properties and also exhibit poor resistance to crack

initiation and propagation. Therefore, their mechanical properties must be enhanced

prior to operational use. Recent efforts have already successfully shown improvements

of the mechanical properties of polymer adhesives, such as increased adhesion, tough-

ness, and peel strength [16], by reinforcing them with micron- or nano-sized particles.

By doing so, the already dense cross-linked network structure of the epoxy is further in-

creased, providing a higher strength and stiffness. Commonly used filler particles include

silica [64], aluminum oxide [16, 57, 70, 63, 37] and titanium oxide [63, 10], and range from

micron- to nano-sized particles. While micron-sized particles are typically more conve-

nient to embed, the use of nano-particles ensures a higher surface-to-volume ratio [17],

resulting in superior mechanical properties of the polymer matrix. A correlation between

filler quantity and mechanical property improvement has been developed, indicating that

there is a limit to which these particles can be added while still achieving uniform dis-

persion. According to Gilbert et. al. [16], an adhesive containing 10% nanoparticles by

weight serves as a maximum mixture ratio, while Munson et. al. [44] identified an upper

limit for nanoparticle modifiers to be 43% nanoparticles by volume. Uniform particle

dispersion is essential, as this ensures an even stress distribution throughout the polymer

under loading conditions. Furthermore, non-homogenous particle dispersion facilitates

7



agglomerations, allowing specific regions to absorb more stress than surrounding areas

and creates an unbalance of the stresses.

1.4 Overview of Research

To evaluate the reliability of the mechanical properties of an adhesive or coating, it is

imperative to understand the material behavior due to stress as it tends toward failure.

The motivation of this work was to enable a real-time evaluation of the stress distri-

bution within a polymer material using alumina particles as stress sensors. This will

facilitate the development of new adhesives with optimal mechanical properties. Our

recent work [67, 66] has shown that stresses within polymer compounds can be ob-

tained non-destructively by infusing the material with photo-luminescent nanoparticles

and measuring the observed photo-stimulated luminescence peaks as they shift due to

an applied, external stress. Alpha alumina (α − Al2O3) nanoparticles were specifically

chosen for this study as the polymer modifier due to their capability through photo-

luminescence to provide a wealth of information regarding particle dispersion and stress

distribution within the polymer matrix. Using epoxy composites embedded with var-

ious volume percentages of α-alumina, a calibration for optimal particle quantity was

achieved non-invasively using the method of piezospectroscopy. Chapter 2 describes the

theory of piezospectroscopy as it has been developed for single crystal and polycrystalline

chromium-doped alumina. In this chapter, the applicability of the theory and calibration
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of PS coefficients to alumina nanoparticles in an epoxy matrix is discussed. In addition,

the spectral analysis procedure, which is of significance in the accurate determination of

peaks positions for stress determination through deconvolution and fitting, is presented.

While the focus of this work uses alumina particles as stress sensors which are incor-

porated into a polymer system, the major challenges arise in the design and fabrication

of the material itself. Particle dispersion quality and the quantification of satisfactory

volume fraction and/or weight percentages of the filler materials are the most significant

design parameters to optimize. In addition to the details of the manufacturing of the

alumina-epoxy nanocomposites used in our studies, Chapter 3 highlights the experiments

and studies conducted for the dispersion assessment of the samples of different volume

fractions. Here, as a corollary to our research objectives, a novel method of dispersion

assessment and volume fraction determination was established using the spectral inten-

sities of the material. This method has the potential to be developed and used as a

quality control tool for dispersion of similar particle-reinforced composites. In addition,

this chapter describes the novel instrumentation [13] used in our studies to enable stress

mapping with high spatial resolution in-situ with load.

The major focus of our work are the calibration experiments and results presented in

Chapter 4. These calibration tests were performed under controlled compressive loading

to obtain spectral data with increasing load. The outcomes of the calibration tests are

presented as piezospectroscopic coefficients for the alumina-epoxy nanocomposite mate-

rials. The effects of the external environment, specifically the temperature, on the peak

9



positions is of significance to ensure that the calibrated shifts are entirely stress induced.

A set of experiments assessing the effect of temperature are presented in this chapter

with results indicating the negligible effect of temperature in the peak position shifts. In

addition, the residual stress innately produced in the samples during manufacturing is

presented and briefly discussed to highlight the variations in the different volume fraction

nanocomposites. It is noted that the manufacturing induced stresses, or residual stresses,

are taken as the reference or baseline condition in all piezospectroscopic studies and their

significance only lies in the knowledge of a varying baseline which depends on the choice

of volume fraction of alumina used for the development of such a stress-sensing material.

The new results representing the PS behavior of alumina-epoxy nanocomposites pre-

sented for the first time are discussed with respect to our knowledge of the PS behavior

of polycrystalline alumina. The important findings in this chapter provide quantitative

information paving the way for the development of effective stress sensing materials in

various applications. The significance of our measurements on load transfer studies in

the area of particle reinforcement is discussed in this chapter.

An application of stress measurement in an alumina-filled epoxy adhesive under a

single lap shear test is presented in Chapter 5. Currently used methods to assess adhe-

sive integrity is discussed and compared to our proposed technique, which involves the

use of embedded alumina particles as stress sensors within an epoxy matrix. Using cal-

ibrations established from the nanocomposite experiments, a single lap shear specimen

with the ideal nanoparticle content was developed for optimal photo-luminescence data

10



collection. Contour maps described in Chapter 3 were used to observe the stress distri-

bution throughout the adhesive with applied incremental loads. These results provide

the potential for monitoring the stresses within an adhesive in a real-time environment.

Chapter 6 summarizes our findings and the implications of these findings in the devel-

opment of stress-sensing adhesives using piezospectroscopy and in areas of nanocomposite

development and nanoparticle reinforcement. Future directions in the use of the tech-

nique in understanding fundamental behavior of adhesives and load transfer in reinforcing

particles are discussed.
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CHAPTER 2
THEORY AND ANALYSIS IN PIEZOSPECTROSCOPY

2.1 Theory of Piezospectroscopy

Investigation regarding the evolution of the piezospectroscopic effect (PS) and the corre-

sponding theoretical principles in alumina materials (Al2O3Cr3+) is extensive. A shift in

the characteristic R-lines of α-alumina results when the crystal field that encompasses the

chromium (Cr3+) ions within the alumina distorts due to applied stress causing a change

in the energy of the electronic transfers cite [42, 54]. Gaining popularity as the first laser

material, ruby (Cr3+-doped sapphire) crystals were studied and applied to a variety of

applications including the elucidation of the crystal field theory of ruby luminscence [11].

While determining the behavior of ruby absorption and luminescence spectra due to

uniaxial compression, Kaplyanskii [27] subsequently introduced the first model of the PS

effect, which is expressed by the following equation:

∆ν = A(σ1 + σ2) +Bσ3 (2.1)

where σ1, σ2, σ3 are the normal stresses directed along the crystallographic axes and A

and B are parameters known today as the piezospectroscopic (PS) coefficients. This

equation represents the frequency shift (∆ν) as a linear function of stress, due to

symmetry.
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The potential for the use of the PS effect in further applications arose due to the work

by Forman [12], who first used the spectral shift of the R-lines to monitor the hydrostatic

stresses in diamond anvil cells (DAC). Modifying the previous theoretical models for the

PS effect, Forman developed the following relationship between the frequency shift of the

R-lines and hydrostatic stress:

∆υ = πσH (2.2)

where σH is the hydrostatic stress and π represents the PS coefficient

Grabner [18] later determined the relationship between an observable shift in spectral

peaks with stress and provided the following tensorial expression:

∆ν = πijσij (2.3)

where ∆ν is the frequency shift, πij represents the piezospectrocopic coefficients, and

σij is the stress state with respect to the crystallographic frame of reference. Grabner

proposed that πij is symmetric, and therefore, σij=σji. From this, Grabner calculated

the isotropic stress as:

1

3
(σ1 + σ2 + σ3) (2.4)

In later work, He and Clarke [23] determined that point symmetry cannot be assumed,

as it degenerates with applied stress. The following equation represents the updated

tensorial expression after applying a coordinate transformation to a global coordinate
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system:

∆υ = πijaikajlσ
′

kl (2.5)

He and Clarke then modified the above equation to include the transformation of the

frequency shift, ∆υ, by averaging Equation 2.5 over many randomly oriented grains. The

new, reduced model for polycrystalline alumina is given by:

∆υ =
1

3
(π11 + π22 + π33)(σ11 + σ22 + σ33) (2.6)

This model could be further reduced by neglecting tranverse stress (σ33 = 0) and assuming

equal in plane stresses (σ11 = σ22 = σ):

∆υ =
2

3
(π11 + π22 + π33)σ (2.7)

He and Clarke’s work in determining the coefficients of the PS tensor for ruby gave

the following expressions for the frequency shift of the R-lines in terms of the three

crystallographic directions:

∆ν (R1) = 2.56σ11 + 3.50σ22 + 1.53σ33 (2.8)

∆ν (R2) = 2.66σ11 + 2.80σ22 + 2.16σ33 (2.9)

The PS coefficients were determined by observing the frequency shift corresponding to

uniaxial compression along the three principal crystallographic axes. In later work, He

and Clarke expanded upon their PS effect models by evaluating the room temperature

polarization characteristics of ruby R-lines. The consequences of the polarization on

14



piezospectroscopic measurements are presented below [22, 35, 34, 14]:

∆νR1 = 3.26(σ11 + σ22 cos θ
2 + σ33 sin θ

2) + 1.53(σ22 sin θ
2 + σ33 cos θ

2) (2.10)

∆νR2 = 2.73(σ11 + σ22 cos θ
2 + σ33 sin θ

2) + 2.16(σ22 sin θ
2 + σ33 cos θ

2) (2.11)

The study of the vibronic sidebands in the emission spectrum by Raghavan and Im-

brie [53, 51] revealed multiple peaks within these bands to exhibit stress-sensitive behav-

ior indicating the potential for extending the piezospectrocopic model.

Building on the theoretical basis for the PS effect for a polycrystalline material, when

considering our case in which alumina particles are embedded within a polymer matrix,

the PS coefficient can be directly related to the applied stress and frequency shift of the

R-lines using the following expression:

∆νNC = ΠNCσapplied (2.12)

where ∆νNC is the frequency shift of the alumina R-lines embedded in the nanocomposite,

Π is the PS coefficient, and σapplied is the stress applied to the nanocomposite.

2.2 Deconvolution and Curve Fitting

To properly study stress effects using piezospectroscopy, the deconvolution and fitting of

the α- alumina produced R-lines is crucial to ensure accurate and precise peak positions

throughout the entire procedure. Unfortunately, these values are not readily available
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from the experimental data as the R-lines share data due to their close proximity to each

other, as shown in Figure 1.2.

Figure 2.1: R-lines obtained from polycrystalline alumina and the 38% nanocomposite.

The overall shape distribution of the curves is similar.

This overlapping region affects the exact position of the curves, making it necessary

to process the raw data using a curve-fitting technique that generates the correct peak

positions. Throughout this work, a genetic algorithm (GA) based procedure previously

created and used to predict the correct R-line and vibronic sideband peak positions of

polycrystalline alumina [52] was implemented on the unprocessed, experimental data.

This GA method was preferred over gradient-based methods, as it has the capability of

global optimization [65, 5]. This Matlab-based, GA method performs four main functions

to optimize the R-lines: baseline removal, cropping, separation, and recombination. The
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fitting procedure used two pseudo-Voigt functions [28, 62, 25] to obtain the following

design variables for each of the R1 and R2 curves: area, line-widths, peak positions, and

shape factors (describing the Gaussian and Lorentzian characteristics) [55]. Figure 2.2

shows the deconvolution of the R-lines.

Figure 2.2: The deconvolution and fitting results for the R-lines of alumina-epoxy con-

taining 38% α-alumina by volume.
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CHAPTER 3
VOLUME FRACTION AND DISPERSION USING

PHOTO-STIMULATED LUMINESCENCE INTENSITY MAPPING

3.1 Objectives

Calibrating stress-sensing alumina-epoxy nanocomposites requires the challenging task of

designing and fabricating such a composite, while achieving an improvement in the over-

all mechanical properties of the material. Important objectives of the work presented in

this chapter include verifying that sufficient luminescence intensities could be obtained

from the alumina nanoparticles for spectral peaks to be monitored with stress during

calibration, as well as to ensure uniform particle dispersion. Additionally, an accurate

control of the volume fraction or weight percentages of the fillers was to be achieved

during manufacturing of the calibration specimens. The fabrication of the samples are

presented here, followed by the experimental equipment and data collection method used

to assess the spectral data from different alumina volume fraction samples. The results

of photo-stimulated luminescence spectra are presented for the nanocomposites and com-

pared with polycrystalline alumina. The theory on photo-luminescence emission intensi-

ties are discussed and related to findings of the intensities from varying volume fractions.

In achieving our objectives, a novel method to verify homogeneous parti-

cle dispersion, as well as to calibrate and identify particle volume fractions

within a polymer matrix was established and implemented on the specimens

investigated in this work . Here, the photo-stimulated luminescence intensities and
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integrated intensities (area under the emission spectra) from embedded α-alumina parti-

cles within polymer matrices are used as indicators of dispersion over the mapped surface.

This method is applicable as a means of ensuring uniform dispersion of modifying fillers

in various nanocomposites with a spectral signature and can be implemented as a quality

control tool in the manufacturing of these materials. The benefits of such a non-invasive

tool over conventional microscopy techniques is the high spatial resolution over a large

area that can be achieved with no sample preparation requirements.

3.2 Fabrication of Alumina-Epoxy Nanocomposites of Varying Volume

Fraction

Three separate composite samples were created as calibration specimens consisting of

5%, 25% and 38% α-alumina by volume. This range was established based on literature

showing that a minimum of 5% volume fraction has a positive influence on mechanical

properties [6] and 43% has been determined to be the maximum amount of alumina that

can be added conveniently to an epoxy without having a negative effect on the over-

all properties of the epoxy [16]. The filler material used for this study was α-alumina

nanopowder, having an average particle size of 150nm and 99.85% purity, obtained from

Advanced Materials. The epoxy resin was Epon 862 which was coupled with the curing

agent Epikure W, both of which were received from Hexion. The manufacturing proce-

dure was based on literature describing the addition of alumina fillers in epoxy composites
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for mechanical property improvements [50, 58, 30, 40]. For each volume fraction com-

posite fabrication, the epoxy resin, curing agent and α-alumina particles were initially

mixed using a high shear mixer for the duration of 15 minutes to break up any agglom-

erates present, while also dispersing the alumina homogeneously within the epoxy. Once

combined, the material was then placed into a sonicator for approximately 20 minutes

to further ensure homogeneity, as well as cause any entrapped air bubbles to surface

for removal. The composite was then placed inside a low-pressure desiccator-vacuum

system for approximately 45 minutes, or until no air bubbles were visible. The sample

was then collected and poured into an aluminum mold with the dimensions 10in x 6in

x 3.5in, which was first prepared with Partall Hi-Temp Wax, used as a mold release. A

two-step curing process, with a duration of 6 hours at 54◦C and 16 hours at 93◦C, was

then implemented and the specimens were allowed to cool.

3.3 In-Situ Optical Probe for Spectral Surface Mapping

A unique system consisting of an MTS Insight electromechanical testing system, fiber

optic probe, XYZ stage, and Raman spectrometer was utilized in order to collect fluores-

cence data as tensile and/or compression loads are applied to a specimen and is shown

in Figure 3.1. The Raman spectrometer was coupled with a green, argon laser which

operated at a wavelength of 532 nm and exerted a maximum output power of 50 mW.

The laser beam had the capability of either being directed to an attached microscope or
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to a connecting fiber optic probe. The fiber optic probe was coupled with the Raman

system via optical cables and worked with multiple objectives. A special mount to hold

the probe stationary was created and attached to the Y-axis of the XYZ stage, while the

XYZ stage itself was fastened to a platform that was built and affixed to the base of the

MTS machine. The electromechanical testing system used was capable of both tensile

and compression loads of up to 50 kN and was operated via the software, TestWorks 4.

The operating software for the Raman spectrometer and the XYZ stage were WIRE 3.1

and COSMOS 3.1.6, respectively. This unique system [13] enabled specific regions on the

surface to be mapped with a spatial resolution of about 1-2 microns.

!"#$%&'()*+$#,'+-.$
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Figure 3.1: Experimental equipment setup
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By focusing the optical probe on the sample surface, spectral data could be collected

from several regions over the surface. The spectral data can then be represented as

contour plots, created by a program written using MATLAB. When considering the

intensity and integrated intensity, uneven intensities are represented by variations in the

contour plots indicating a change in the amount of alumina present over the sample

due to the direct relationship between luminescence emission and particle content. A

variation in the contour plots when analyzing R-line peak positions represents a shift in

the peaks, which is correlated to a change in the stress of the material through calibration.

Therefore, using this technique, a visual inspection of homogeneity as well as stress

distribution with applied stress can be obtained.

3.4 Photo-Stimulated Luminescence Spectra Obtained from

Alumina-Filled Epoxy Nanocomposites

The first notable result obtained from this work is the capability of detecting and mea-

suring the R-lines from α-alumina nanoparticles embedded within an epoxy resin. Photo-

stimulated luminescence readings from all three α-alumina-epoxy nanocomposites were

obtained as shown in Figure 3.2 with strong emissions from 25% and 38% samples. Ad-

ditionally, a comparison of measured R-lines from polycrystalline alumina and alumina

nanopowder indicates that the overall lineshape distribution between the two materials is

similar, as presented in Figure 3.3. Another notable feature from this data is an evident
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Figure 3.2: Intensities of R-lines for 5%, 25% and 38% volume fraction alumina epoxy

composites
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correlation between intensity and α-alumina particle quantity. It was observed that the

increase in particle volume fraction was accompanied by an increase in the magnitude of

the emission intensity. This phenomenon can be explained using the concept of the pho-

ton energy released due to the electronic transfers of the chromium ion from an excited

state back to ground state to produce the R-lines:

E = hν (3.1)

where E is the energy of the photon (J), h is Planck’s constant,(6.63x10−34Js), and ν is

frequency (Hz or s−1).

As the concentration of α-alumina increases, the probability of the incident beam inter-

acting with a nanoparticle also increases and is governed by the following equation:

P = Nσ (3.2)

where P is the interaction probability, N is the number of atoms or ions, and σ is the

microscopic cross-section. Thus, the overall energy emitted from an α-alumina composite

is directly related to the amount of photo-luminescent particles present.

By incorporating Beer’s Law, the luminescence of each nanocomposite can be an-

alyzed, predicting that there exists a relationship between absorbance (and therefore

emittance) and the concentration of the material, as described by the following equation:

A = − log T = − log(Φ/Φa) = abc (3.3)
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where A is the absorbance of the material, T is the transmittance, a is the absorptivity,

b is the path length of the absorption, and c is the concentration of the material that has

the absorption properties

As previously mentioned, the nanocomposites configured in this study consisted only

of epoxy resin and α-alumina nanoparticles. Only the chromium within the alumina ex-

hibited luminescent properties while the other materials (the resin matrix) were optically

transparent. Therefore, the measured luminescence from the specimens only describes

the behavior of the chromium-doped alumina particles. It can be stated that the radiant

power that is luminesced is proportional to the amount of power that is absorbed,

ΦL = k(Φ0Φ) (3.4)

where Φ0 is the radiant power of the incident beam, Φ is the total power transmitted,

and k describes the efficiency at which an excited atom or molecule emits a photon when

returning to ground state and varies by material.

Combining Beer’s Law with Equation 3.4 provides the total power transmitted from

a photo-luminescent material:

ΦL = kΦ0(1− 10−abc) (3.5)

The ability to capture the photo-luminescence of these nanoparticles is altered, how-

ever, once embedded within a material of specified density. While the behavior of the

photoluminescence of the chromium atoms is still governed by Equation 3.3, the number
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of photons collected may be less than the actual number of photons emitted, due to ab-

sorbance and scattering that occurs within the material itself. Photons capable of being

collected by a charged coupling device (CCD) exit the specimen in a direction parallel

and opposite to the incident beam. Scattered photons will exit in various directions and

are, therefore, unaccounted for in the measurement. Additionally, an emitted photon

may also be absorbed by a material, prohibiting the energy from escaping.

Figure 3.3: Intensities of R-lines for 38% volume fraction alumina epoxy composite com-

pared with polycrystalline alumina

In addition, an increase in PSLS intensity resulted from the increase of alumina

nanoparticles present. This relationship is shown in Figure 3.4 and may provide a po-

tential means to establish homogeneity and/or alumina content within a specimen. If a

specific photo-luminescent intensity is measured, a prediction of how much alumina is

contributing to that value may be deduced by comparing it to the intensities of known
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volume fraction alumina-epoxy samples. Homogeneity could be validated if the intensity

at each point in the composite is the same.

Figure 3.4: Intensities of R-lines for 5%, 25% and 38% volume fraction nanocomposites
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3.5 Volume Fraction and Dispersion Results

To ascertain consistent properties throughout the sample, the composite must have a

homogeneous dispersion of particles as well as be free of all inclusions, agglomerates,

and aggregates, as they can contribute to stress concentrations and lead to premature

structure failure. Air bubbles, voids, and any other non-composite material are deemed

inclusions, while agglomerates and aggregates are essentially clumps of particles. Ag-

glomerates can often be dissipated by high shear mixing, whereas aggregates are formed

from covalent bonds and cannot be separated. Current methods for determining uni-

form particle distribution include the visual inspection of Scanning Electron Microscopy

(SEM) and Transmission Electron Microscopy (TEM) images with the assumption that

they represent the entire behavior of the specimen. Ensuring that the desired amount of

modifier is added to the matrix is also an important aspect of the design process. The

amount of filler particle directly affects the mechanical properties of a specimen, as it de-

termines the cross-link density of the matrix. A composite which contains a high amount

of filler particles may experience an undesirable brittle behavior, whereas one with too

few particles, may not exhibit the material strength required for a specific application.

By collecting data over the entire specimen surface, maps comprised of spectral charac-

teristics can be obtained. Specifically, there are three main spectral attributes that can

be analyzed: integrated intensity (area under the curve), intensity, and peak position.

Through the utilization of α-alumina and its unique spectrum, these properties are col-
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Figure 3.5: Spectral intensity mapping technique using photo-luminescence (above) and

the results for our different volume fraction specimens indicating particle dispersion over

the specimen surface

lected at specified surface regions and compared. The results are then visually shown via

contour plots. The resolution of these surface maps is dependent upon both the num-

ber of spectral collection points taken and the objective magnification used. To date,

this new method currently applies to specimens having flat surfaces, such as a prism or

parallelpiped, as these are the ideal geometric shapes for fluorescent data collection. A

perpendicular alignment of the surface to the excitation source is required to obtain accu-

rate spectral results. The aim of this work is to validate the even dispersion of embedded
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α-alumina nanoparticles within an epoxy resin by generating spectral surface maps us-

ing the integrated intensity characteristic. Contour maps capable of visually displaying

the differences in integrated intensity throughout the sample surface were created and

used to identify particle distribution, as well as locate undesirable features such as voids,

agglomerations, and inclusions.
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CHAPTER 4
CALIBRATION OF ALUMINA-FILLED EPOXY NANOCOMPOSITES

USING PIEZOSPECTROSCOPY

4.1 Objectives

In order to calibrate alumina-epoxy nanocomposites as a stress-sensing material, we must

first investigate the behavior of the photo-luminescent information received from the α-

alumina nanoparticles as they are allowed to interact with the matrix material under

loading conditions for various configurations of particle-matrix ratio (volume fraction).

These results will be compared and verified against previous work done using polycrys-

talline alumina. Calibration experiments using alumina-filled epoxy nanocomposites were

devised to determine the spectral peak shifts with stress or piezospectroscopic (PS) coef-

ficients, as well as to provide a standardization between the observed PS coefficients and

volume fraction. This information on the PS behavior, when coupled with mechanical

property analysis, can be used for the development of optimized stress-sensing adhesives

and/or coatings. These calibration experiments and results are described in the following

section.

The unloaded peak positions form the baseline for the calibration experiments and all

PS coefficients are taken with reference to their corresponding baseline as they are loaded

incrementally. Hence, any initial residual stress in the material from the manufacturing

process correlates to the zero applied load peak position and consequently does not affect
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the determination of the PS coefficients. However, the differences in the zero applied load

peak positions between the various volume fraction specimens provides some interesting

information on the difference in residual stress due to the manufacturing process when

varying amounts of alumina nanoparticles are incorporated into an epoxy matrix. This

is discussed briefly in the following section.

Finally, while spectral peak shifts are known to occur with stress, existing literature

indicate that external factors such as temperature also affects the peak positions. There-

fore, the effect of temperature changes on the peak positions must be ascertained to

establish the range of error in the PS coefficients with respect to variations in ambient

temperature during the calibration process. Thermal experiments were conducted to ad-

dress this and also to quantitatively establish the peak position shifts over a temperature

range that the samples are exposed to. The results are presented in this chapter.

4.2 Piezospectroscopic Calibration Experiments

The alumina-filled epoxy nanocomposites used in this work were cut from bulk samples

fabricated using methods previously described in Chapter 3. Three samples of each

volume fraction were manufactured into parallelepipeds having a 4:1 ratio per ASTM

D695. This ratio was chosen to avoid edge effects, caused by the friction between the

sample surface and the platen during loading experiments which were previously observed

in ex-situ studies of compression tests on polycrystalline alumina of a lower aspect ratio.
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The final dimension sizes of the samples included a 1/8 in x 1/8 in cross-section and a

length of 1/2 in, shown in Figure 4.1.

Figure 4.1: Manufactured alumina-epoxy nanocomposites consisting of different three

different volume percentages of alumina, 5% (left), 25% (middle), and 38% (right)

4.2.1 Experimental Setup for PS calibration

To collect and analyze the excited fluorescence during the in-situ compression loading

experiments, the experimental set-up and method presented in Chapter 2 was imple-

mented. An argon laser operating at a wavelength of 532 nm served as the excitation

source. To initialize the experiments, the laser beam was first focused on the 5% volume

fraction specimen surface, using the intensity of the R1 as a calibration tool. Contain-

ing the least amount of alumina particles, the intensity received from the 5% specimen

was the most important to optimize. The XYZ stage/ laser was moved incrementally

backward or forward in a step size of approximately 544 microns until the R1 curve
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achieved maximum intensity, indicating that the beam was now focused. This position

was fixed and used as the focus position for all experiments, as the relative intensities

for the 25% and 38% percent samples would be sufficient due to an increase in alumina

particle quantity. For each experiment, the laser beam was initially set to the left-center

of the surface. This position, along with the previously determined focusing distance,

was set as the reference location, allowing for the program to return to that exact spot

throughout the testing. Starting from the left-center position, individual spectra from

5 different collection points on the surface of each sample were collected in a horizontal

line, as shown in Figure. The step size between each collection location was approxi-

mately 544 microns. Photo-luminescence data was captured from each position using 1

second collection intervals at 100% laser power (50mW). Per position, 50 acquisitions

were obtained for statistical and averaging purposes. A neutral density filter of 40%

transmissibility was used to reduce the laser power provided to 38% specimen, to allow

for constant experimental parameters to be used without saturation of the charged couple

device (CCD).

Each of the three manufactured α-alumina volume fraction specimens were subjected

to incremental, compression loads, while photo-luminescent data was simultaneously col-

lected. An Insight MTS electromechanical loading system applied the compressive load

via steel platens. Due to the hardness of alumina, additional sapphire platens served to

avoid direct contact of the sample with the platens. To ensure that the applied load was

directed uniaxially throughout the specimen, plexiglass templates were specially designed
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to align the sapphire platens and composites with the exact center of the compression

platens. Incremental loads of 0.04 kN were applied and held for 15 minutes each while the

PSLS information was obtained. The load range applied to each volume fraction sample

was dependant upon the mechanical strength of each sample which was established dur-

ing separate load range experiments. These experiments were run on additional samples

that were compressively loaded to failure to establish the maximum loads that could be

applied to each volume fraction sample before failure occurs. Table 4.2 provides the max-

imum load values for each of the different volume fraction specimens. All measurements

were performed at room temperature.

Table 4.1: Maximum Loads and Corresponding Stress.

Volume Percent of Specimen Maximum Load (kN) Maximum Stress (GPa)

5 1 0.099

25 1.2 0.119

38 1.4 0.139

4.2.2 PS Coefficients Results and Discussion

Shifts in the R-lines were observed with increasing compressive load on each of the volume

fraction nanocomposites. These R1 and R2 line peak shifts due to applied uniaxial

compressive stress are presented individually for the 5%, 25%, and 38% volume fraction

specimens in Figures 4.3, 4.4 and 4.5 respectively.
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Figure 4.2: Alumina-epoxy nanocomposites under compression load

The PS coefficients corresponding to each nanocomposite material were determined

as the slopes established by the collected in-situ PSLS data in these plots. The data

obtained from the spectral lines indicate a linear relationship between the peak shift and

applied stress with the values of the R1 and R2 PS coefficients exhibiting similar order

of magnitudes to that of single and polycrystalline alumina. This linear slope is the

expected piezospectroscopic behavior of the α-alumina material.

A comparison of PS coefficients to nanoparticle volume fraction are presented in Ta-

ble 4.2. The results indicate that the magnitude of the R1 and R2 PS coefficients exhibit

an increasing trend with the quantity of filler material (volume fraction) present. This

phenomenon can be justified by analyzing the effects of mechanical properties due to
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Figure 4.3: Frequency shift of the R-lines vs. stress for the 5% specimen

increased modifier content within an epoxy. Generally, a larger PS coefficient (slope)

represents a larger peak shift for a given applied stress value. Since the peak shifts cor-
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Figure 4.4: Frequency shift of the R-lines vs. stress for the 25% specimen

relate directly to the stress experienced by the α-alumina material, the nanoparticles

experiencing higher stress exhibit larger R-line peak position shifts. This would indicate
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Figure 4.5: Frequency shift of the R-lines vs. stress for the 38% specimen

then, that the alumina particles contained in the 38% volume specimen are subjected to

higher stresses as compared to the 5% and 25% volume composites. This can be explained
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Table 4.2: R-line PS coefficients comparison (magnitude) per volume fraction specimen.

Specimen Type R1 PS Coefficient R2 PS Coefficient

(Volume Percent) (cm−1/GPa) (cm−1/GPa)

5 3.16 2.60

25 3.65 3.42

38 5.63 5.08

by observing that the alumina material has a higher mechanical strength than the epoxy

and is, therefore, capable of accepting more of the applied stress given to the composite.

Thus,within the nanocomposites of increased volume fraction of alumina nanoparticles,

a higher proportion of the applied stresses are experienced by the nanoparticles and con-

sequently these samples can sustain higher stress before failure. This corresponds to

previous experimental work verifying that specimens with a greater volume of modifier

particles possess higher mechanical properties [16]. The experimental results are con-

sistent with the theory of the rule of mixtures which defines the elastic modulus of a

composite as

ENC = vfEf + vmEm (4.1)

where E is the elastic modulus, v is the volume fraction, and the subscripts f and m

refer to the filler and matrix respectively.
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Table 4.3: Elastic modulus of each volume fraction composite (ENC)

.

Volume Percent of Filler Volume Percent of Matrix ENC (GPa)

5 95 19.9-23.1

25 75 88.3-104.3

38 57 149.9-177.4

The mechanical reinforcement of fillers has been studied in a variety of analysis and

simulation studies with varying ideas on the load transfer mechanisms. Both particle-

to-polymer interface and interparticle contact have been identified as contributors to

reinforcement in polymer based nanocomposites [41]. It has been predicted that at high

loads reinforcement occurs due to “particle jamming,” while the particle-polymer net-

work is of significance in low loadings [49]. These two effects are illustrated in a schematic

as applied to our nanocomposites in Figure 4.6. Two main theories can be used for com-

parison with the measured stress in the nanoparticles with applied load. Theoretical

mechanics indicate that the surface and interface elasticities are critical at the nano-

scale. The governing classical Eshelby theory [9, 56] on the elasticity of an ellipsoidal

inclusion was modified by taking into account corrections for a finite matrix by Gurtin

et al. [20]. Recently, Mi et al. [39, 38] solved the axisymmetric problem of a spherical

nanoparticle embedded in a finite spherical elastic body and established that as the inclu-

sion size is reduced to nanometers, the impact of the surface and interface stress effects

becomes significant. The large surface-to-volume ratio yields a significant surface stress,

which is simultaneously strengthened by the high curvature of the surface. Furthermore,
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Figure 4.6: Schematic of possible load transfer mechanisms whereby quantitative data is

captured by our piezospectroscopic measurements

the effect of the surface and interface elasticity strongly depends on the stiffness of the

nanoparticle as well as the magnitude of the external loading. The sub-micron behavior

at the nanoparticle-matrix interface is key to understanding and improving the strength

and toughness of these adhesives and nanocomposites in general. At low loads and/or

low volume fractions, the particles are expected to be under hydrostatic stress condi-

tions as shown in Figure 4.6. At higher loads and/or high volume fractions, hertzian
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theory defines the stress due to interparticle contact [19] which becomes the dominant

mechanism.

Assuming a hydrostatic condition, the known PS relationship for a polycrystalline

material is given as [23]:

∆vpoly = ΠHσH (4.2)

where ΠH is 7.59 cm−1/GPa for the R1 line and 7.615cm−1/GPa for the R2 line.

The PS relationship for our nanocomposites earlier presented in Chapter 2 as Equa-

tion 2.12 is repeated here:

∆νNC = ΠNCσapplied (4.3)

where ∆νNC is the frequency shift of the alumina R-lines, Π is the PS coefficient, and

σapplied is the external stress applied to the nanocomposite.

The above relates the observed peak shifts with the applied load. Since the photo-

stimulated luminescence shift from the nanocomposite is directly related to the average

stress within the large number of nanoparticles under hydrostatic stress, we can equate

the two peakshifts as follows:

∆νNC = ∆vpoly (4.4)
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Table 4.4: Hydrostatic stress transfer ratio to nanoparticles for different volume fractions

Specimen Type (%) σH

σapplied
(R1) σH

σapplied
(R2)

5 0.42 0.34

25 0.48 0.45

38 0.74 0.68

From this, we can therefore relate the hydrostatic stress on the particles with the

applied stress as follows:

σH

σapplied

=
ΠNC

ΠH

(4.5)

Using our measured values for the PS coefficients of R1 and R2 for each of the different

volume fractions coulpled with Equation 4.5, we can infer the ratio of the externally

applied stress that is transferred to the nanoparticles as being σH

σapplied
. These calculated

values are presented in Table 4.4.

The results show a trend of increasing load transfer with higher volume fractions which is

consistent with the improved mechanical properties of similar nanocomposites that have

been tested for mechanical strength. The results from the R1 and R2 peaks correspond

in this trend but differ quantitatively with R1 showing a higher load transfer than R2.

A possible explanation for this variation, based on our measurements of PS coefficients,

is that the R1 line is more sensitive to frequency shift with stress. This relationship
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between particle content and PS coefficient values, therefore, has the potential to provide

critical experimental data on the load transfer mechanisms in these nanocomposites and

a calibration for optimized mechanical properties with the addition of fillers using the

PS behavior of nanoparticles as stress indicators. Here, variations in the particle size,

morphology, and the effects of nanoparticle surface modification (silane treatments) [60]

on the effectiveness of load transfer can be assessed experimentally and compared with

theoretical studies.

In summary, our PS results for the alumina nanocomposites are consistent with the-

oretical and analytical studies and provide a direct empirical relationship between the

applied stress given to the nanocomposite and the spectral peak positions, therefore

enabling the stress-sensing capability in these materials.

4.2.3 Discussion on Residual Stresses in Manufactured Samples

Residual stresses are produced in polycrystalline alumina upon cooling due to a difference

in the thermal expansion coefficients with respect to the crystallographic axes [31, 33, 29].

Residual stresses are complex to analyze and the full details of the stress distribution are

usually unknown, allowing for only average values for the residual stresses within poly-

crystalline alumina to be obtained. For epoxy composites cured at high temperatures

(as the ones used here), substantial thermoelastic residual stresses are also created by a

mismatch in the thermal expansion coefficients between the two differing materials. We
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Figure 4.7: R-line peak positions at zero load; indication of residual stress

present here, the results that relate the residual stresses found in the alumina nanocom-

posite to alumina volume. Figure 4.7 shows the relationship between alumina particle
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percentage to R-line peak positions in the absence of an external load. A trend is ob-

served, suggesting that as the volume fraction of alumina increases, the initial peak

position value tends toward a higher wavenumber, indicating an increased magnitude of

residual stress.

4.3 Thermal Experiments

Previous work on ruby has indicated that the peak positions of the R-lines tend to shift

toward smaller wavenumbers as temperature is increased [36, 43]. Calibration of peak

shifts with stress to obtain the PS coefficients assumes temperature variations in the

sample during the calibration process do not have a significant effect on the peak posi-

tions. This was verified for polycrystalline alumina by He and Clarke [23]. In this work,

a temperature calibration was performed on each volume fraction material to establish

quantitatively the temperature effects on the peak positions for the nanocomposites.

Figure 4.8: Experimental setup for the temperature studies

47



Table 4.5: R-line coefficients comparison (magnitude) with temperature.

Specimen Type R1 Temp. Coefficient (α) R2 Temp. Coefficient (α)

(Volume Percent) cm−1/oC cm−1/oC

5 0.098 0.112

25 0.127 0.125

38 0.118 0.125

The temperature experiments were performed at the Argonne National Laboratory’s

Center of Nanoscale Materials. A Renishaw R© Raman system accomodated a Linkam R©

thermal stage with a silver, liquid nitrogen-cooled sample holder. Each material was

subjected to a temperature range of -25◦C to +70◦C with readings taken at 5 degree

intervals. Figures 4.9, 4.10, and 4.11 show the linear relationship between the frequency

shift of the R-lines and temperature.

Table 4.5 provides a quantitative R-line comparison of the PS coefficients with tem-

perature. The temperature coefficient, (α), for each curve is much smaller than the

determined PS coefficient produced by the stress-induced shifts. Therefore, the effects of

temperature can be deemed as negligible and the calibrated shifts are assumed to result

purely from the applied stress.
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Figure 4.9: R1 and R2 Temperature Results for 5% volume fraction nanocomposite
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Figure 4.10: R1 and R2 Temperature Results for 25% volume fraction nanocomposite

4.4 Error Analysis

To ensure the validity of the photo-luminscence data collected during the in-situ com-

pression tests, an analysis of the measurement error of the Raman spectrometer was
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Figure 4.11: R1 and R2 Temperature Results for 38% volume fraction nanocomposite

performed using polycrystalline alumina. Fifty consecutive R-line spectrums were taken

from one static point in the center of the polycrystalline specimen under load-free con-

ditions. The data from each spectral collection was post-processed using the previously
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described deconvolution method from Chapter 2 to obtain accurate R-line peak posi-

tions. These values, which describe the average variation between each measurement,

were compared in order to determine the standard deviation, as shown in Figure 4.12.

The standard deviations (1σ) were determined as 0.0086 and 0.0176 for the R1 and R2

lines, respectively. Comparison to the PS coefficients for the nanocomposites indicate

that the error values contributed by the Raman spectrometer and deconvolution process

are insignificant.
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Figure 4.12: Standard deviation of PL data collected from polycrystalline alumina
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CHAPTER 5
APPLICATION: SINGLE LAP SHEAR ADHESIVE TEST

5.1 Objectives

As technology advances, the need for non-invasive techniques to evaluate the integrity of

aerospace structures increases. In Chapter 4, a calibration was designed using alumina-

epoxy nanocomposites to provide a relationship between particle quantity and stress. An

application is presented here, involving the creation of stress-sensing adhesives. By em-

bedding epoxy adhesives with the previously studied alumina nanoparticles, the stress

experienced by the material during a single lap-shear design configuration was deter-

mined. Using the spectral characteristic mapping technique presented in Chapter 3,

real-time monitoring of stress prior to adhesive failure was possible by comparing the

stress distributions throughout the sample surface as load increased. For future appli-

cations, the stress versus particle quantity calibrations created from the nanocomposite

work may be used to determine appropriate volume fractions of alumina to achieve high

mechanical properties with sufficient PS results.

5.2 Current Methods in Adhesive Integrity Testing

Using adhesives in the operational field requires extensive testing to assess the material’s

integrity and durability. Some of the currently used mechanical tests applied to adhe-

54



sives for the determination of mechanical properties include: lap shear tests (single and

double), climbing drum peel tests, and tests to determine fracture toughness. Lap-shear

configurations are designed such that an adhesive is bonded to substrates and then failed

in tension under in-plane shear stress [21, 24, 61]. The two main types of lap-shear design

are the single lap-shear and double lap-shear, both of which are capable of providing the

lap-shear strength, which is determined by relating the maximum stress at the point of

specimen failure. The peel strength of an adhesive can be determined by creating and

testing cylindrical drum peel samples. The drum is rotated upward during the testing

and the peel strength is determined by averaging out the energy required to pull the

drum steadily and dividing this value by the specimen width. To determine the frac-

ture toughness of adhesives, current techniques being used include the double cantilever

beam (DCB) method, and the End-Notch Flexure (ENF) test. The DCB method is

typically used to determine Mode I (opening mode) interlaminar fracture toughness by

pre-cracking and pulling the specimen apart in tension. Using the ENF test design, a

shear fracture is typically created in the specimen, allowing for the the Mode II (sliding,

or shear) fracture toughness to be established. Lastly, the thick-adherend tensile-shear

test is generally used as a test method to experimentally determine such material prop-

erties as the static and dynamic shear modulus, shear strength, and elongation at failure,

under shear loading [26]. All of the above techniques used to determine the integrity of

an adhesive rely on the deformation or failure of the specimen. The method proposed

here using the PS technique offers a non-destructive, non-contact method for determin-
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ing the stress distribution of the adhesive during tensile loading. During the real-time

monitoring of the adhesive with applied stress, regions that experience the most stress

can be evaluated to determine the main cause of specimen failure.

5.3 Single Lap-Shear Test Experiment

The single lap-shear design was chosen for simplicity in the representation of aerospace

structural joints. ASTM Standard D5868 was followed as it is designed for determin-

ing the bonding characteristics of adhesives joined to both fiber reinforced plastics and

metals. Two specimens, each 0.0254 m x 0.1016 m x 0.005 m (1 in x 4 in x 0.5 mm)

were joined together with an adhesive infused with 13% volume α-alumina nanoparticles.

Preceding research indicated an upper limit concentration of filler particles added to a

polymer matrix for optimal mechanical properties ranged from 10% by weight [3] to 43%

by volume [44]. Coupling these results with the quantity of photo-luminescent parti-

cles required to obtain sufficient PS measurements, led to the choice of 13% α-alumina

by volume for the specimens in this test. The proper amounts of filler particles and

epoxy/curing agent were measured and then hand-mixed for approximately 15 minutes.

The adhesive overlap was 0.0254 m x 0.0254 m (1 in x 1 in) to ensure that failure would

occur in the adhesive and not the substrate. The specimen was allowed to cure at room

temperature in an arrangement such that the substrates remained parallel to each other

during curing. The overall lap-shear configuration is shown schematically in Figure 5.1.
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Figure 5.1: Single lap-shear configurations per ASTM D5868

The exact failure behavior of the α-alumina-embedded adhesive configuration tested

here is not readily available in the literature. To ensure sufficient PS data was collected,

small incremental tensile loads of 0.18 kN were applied at a rate of 13 mm/min (0.5

in/min) per to ASTM Standard D5868, until failure. Additionally, rubber shims were

used to prevent the fiberglass from prematurely failing or slipping.

At every 50 MPa (0.18 kN) load, the experiment was held and photo-luminescent data

from the modifier within the adhesive was collected in the form of a spectral surface map.

The laser was focused using the intensity of the R-lines as a calibration tool. Similar

to the compression tests on the nanocomposites, the optimal focal distance was reserved

for all data collection points during the entire experiment. There were a total of 36 data

collection points; 6 in the x-direction and 6 in the y-direction. The origin of the fiber

optic probe was initially set in the upper-left-hand corner of the adhesive to begin each
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surface map. A snake scan pattern, as shown in Figure 5.2, was automated by the x, y,

z stage to collect independent photo-luminescent measurements at each of the 36 points.

Figure 5.2: PSLS data collection pattern for an adhesive during tensile loading

5.4 Results and Discussion

Experiments to ensure that the fiberglass chosen had sufficient optical transparency were

conducted prior to the tensile tests. Spectral data through the fiberglass from polycrys-

talline alumina and the epoxy-alumina composites consisting of various volume fractions

of filler material were obtained and compared to measurements taken from the compos-

ites without the fiberglass. The results are shown in Figure 5.3 which clearly indicate

sharp and distinct R-lines through the fiberglass, even for the 5% alumina volume frac-
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tion composite. A small, consistent decrease in intensity was witnessed for all volume

fraction specimens. This trend may be explained through the reduction in transmissi-

bility of the laser through the fiberglass coupled with the difficulty in focusing the laser

directly on the alumina composite. While the transmissibility may have contributed to

the small decrease in the intensity, it was not sufficient enough to affect obtaining clear

and distinct R-lines. The results of these tests verified the capability of real-time moni-

toring of the adhesives through fiberglass substrates and provided a quantitative volume

fraction range of alumina that would successfully allow for substantial R-line peaks to be

obtained.

Figure 5.3: R-lines collected through fiberglass substrates from 4 alumina specimens.

Spectral characteristic maps comparing R1 peak positions were generated for three

tensile loads of 0 kN, 0.6 kN, and 1.2 kN, corresponding to the reference load, inter-
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mediate load, and maximum load, respectively. The map obtained from the unloaded

lap-shear specimen contains an assortment of information regarding the adhesive prior

to the loading tests. For a material experiencing a uniform state of stress, a correspond-

ing homogenous and unvarying contour map is expected. Hence, if no external load is

applied, all peak position values should be approximately equal. As seen in Figure 5.4,

there is a clear deviation in the range of the R1 line peak positions prior to loading,

which indicates pre-existing and fluctuating residual stresses on the α-alumina particles

prior to the lap-shear tests. Possible explanations for the deviations in the unstressed

R1 peak positions are uneven adhesive curing, and non-homogeneous particle dispersion.

The focus of this work, however, was to evaluate whether the change in stresses within

an adhesive can be monitored or observed non-destructively using the peak positions of

the R-lines. Comparison of specific regions between the reference and loaded maps verify

the capability of the proposed method in detecting the change in stresses of the R1 lines

due to applied loading.

The ability to obtain spectral information from an entire sample surface has the

potential to aide in the development of adhesives with optimal mechanical properties.

Using photo-luminescent particles as polymer modifiers not only strengthens the material,

but also provides a non-destructive means to observe the stress distribution within the

adhesives when loaded up to failure. The method has the potential to provide high

spatial resolution measurements and resolution can be adjusted to fit the dimensions

of various samples. The combination of a fiber optic probe and Raman spectrometer
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Figure 5.4: Stress distribution with respect to applied load. Peak positions of the R1

line throughout the adhesive are compared via a contour map.

has the capability of producing a laser spot size of about 1-2 microns, comparable to

a microscope/spectrometer system configuration [11]. In addition, particle dispersion

can be established over the reference material to assess homogeneity in manufacturing.

Coupled with SEM and/or TEM imaging techniques, a complete evaluation of particle

distribution can be confirmed.
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CHAPTER 6
CONCLUSIONS

6.1 Summary of Results

The motivation of this research initiated from the need to invent a non-destructive means

to assess the integrity of structures. Current methods used for this purpose are invasive

and are deficient in the ability to quantitatively determine the stresses with a material

prior to failure. Additionally, these methods are also incapable of high spatial measure-

ments and also cannot assess load transfer mechanisms that are crucial in the develop-

ment of optimized polymer-based materials. As such, the primary focus of this work

was to design and create a novel approach with the ability to non-destructively evaluate

real-time stress distributions prior to material failure. This was achieved by using the

method of piezospectroscopy on embedded photo-luminescent α-alumina nanoparticles

within a polymer matrix in order to determine the relationship between applied stress and

the frequency shift of the characteristic R-lines produced from the alumina. From this

work, we have determined quantitative values for PS coefficients that calibrate the stress-

sensing property of the alumina-epoxy nanocomposites. Six coefficients were obtained

for each of the volume fraction specimens, representing the behavior of both the R1 and

R2 peaks with stress. With these coefficients we have successfully designed a method for

enabling the implementation of stress-sensing polymer-based materials that can be used

for structural integrity monitoring. By applying this technique to an adhesive in a single

lap-shear configuration, we have demonstrated the capability of discerning peak shifts of
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the R-lines with high spatial resolution, which can be used to evaluate stress distribu-

tions. Laboratory-based implementation of this technique for real-time stress monitoring

provides the potential for formulating adhesives with enhanced mechanical properties.

Additionally, this work will help in improving fabrication and manufacturing stan-

dards of nanocomposites through quality control. By mapping the intensity character-

istics of the alumina nanocomposites and relating this to particle dispersion we have

effectively established a novel approach to assess the homogeneity of particle dispersion

within a polymer-based nanocomposite. Quantitative comparison of the intensities be-

tween volume fraction specimens allowed us to determine a relationship between filler

material quantity with the spectral property. This provides a measurement tool that

enables verification of the particle volume fraction within manufactured nanocomposites.

The significant contribution of this work lies in the capability of numerically assessing

load transfer to the particles within a nanocomposite, which can be achieved through

piezospectroscopic measurements. The relationship between particle content and PS

coefficient values presented in this work has the potential to provide critical experimental

data on the load transfer mechanisms in these nanocomposites. With our results and

findings, a calibration for optimized mechanical properties with the addition of fillers

using the piezospectroscopic behavior of alumina nanoparticles as stress indicators can

be obtained.

63



6.2 Future Work

The piezospectroscopic calibration has provided an overall relationship between the ex-

ternal stress and the emission peak positions of the nanoparticles when excited with a

laser. While the calibrated coefficients to the external stress will provide the basis for a

spectral characteristic mapping system, data on the actual stresses experienced by the

nanoparticles will become experimentally available by our study. This will lead to a fun-

damental understanding of the interface elasticity and load transfer between the epoxy

and nanoparticles. Development of the testing method for the stress sensing material,

forms an important motivation for laboratory-based efforts to understand how adhesive

performance can be improved through filler particles. The stress sensing capabilities

of alumina nanoparticles will provide experimental data relevant to uncover and under-

stand nanoparticle behavior. The piezospectroscopic nature of these particles make them

ideal to facilitate experimental discoveries related to high interface stresses and enable

insight on the mechanical strengthening mechanisms at the nanoscale. The ability to per-

form piezospectroscopic studies on a single alumina nanoparticle has recently been made

possible with advances in combined AFM-Raman instrumentation. Potentially, stress

mapping on an individual nanoparticle in epoxy under load is achievable. With specific

focus on experimental stresses measured at the interface, individual particle piezospec-

troscopic behavior can be linked to microprobe based studies through volume averaging

of particle data while assessing effects of particle morphology, size, distribution, and filler
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content. This adds a new dimension to nanoparticle research, expanding the capabilities

through experimental techniques.
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