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ABSTRACT 

To remain competitive in today’s demanding economy, there is an increasing demand for 

improved productivity and scrap reduction in manufacturing. Traditional manufacturing metal 

removal processes such as turning and boring are still one of the most used techniques for 

fabricating metal products. Although the essential metal removal process is the same, new 

advances in technology have led to improvements in the monitoring of the process allowing for 

reduction of power consumption, tool wear, and total cost of production. Replacing used CNC 

lathes from the 1980’s in a manufacturing facility may prove costly, thus finding a method to 

modernize the lathes is vital.  

 This research focuses on Phase I and II of a three phase research project where the final 

goal is to optimize the simultaneous turning and boring operation of a CNC Lathe. From the 

optimization results it will be possible to build an adaptive controller that will produce parts 

rapidly while minimizing tool wear and machinist interaction with the lathe. Phase I of the 

project was geared towards selecting the sensors that were to be used to monitor the operation 

and designing a program with an architecture that would allow for simultaneous data collection 

from the selected sensors at high sampling rates. Signals monitored during the operation included 

force, temperature, vibration, sound, acoustic emissions, power, and metalworking fluid flow 

rates. Phase II of this research is focused on using the Response Surface Method to build 

empirical models for various responses and to optimize the simultaneous cutting process. The 

simultaneous turning and boring process was defined by the four factors of spindle speed, feed 

rate, outer diameter depth of cut, and inner diameter depth of cut. A total of four sets of 

experiments were performed. The first set of experiments screened the experimental region to 
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determine if the cutting parameters were feasible. The next three set s of designs of experiments 

used Central Composite Designs to build empirical models of each desired response in terms of 

the four factors and to optimize the process. Each design of experiments was compared with one 

another to validate that the results achieved were accurate within the experimental region.  

 By using the Response Surface Method optimal machining parameter settings were 

achieved. The algorithm used to search for optimal process parameter settings was the 

desirability function. By applying the results from this research to the manufacturing facility, 

they will achieve reduction in power consumption, reduction in production time, and decrease in 

the total cost of each part.   
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1 CHAPTER  1 - INTRODUCTION 

1.1 Purpose and Motivation 

 Today’s improvements in manufacturing technology have allowed for faster production 

and minimization of waste. One of the major improvements in the metal removal area of 

manufacturing has been the implementation of multi-axis machines. Multi-axis machines allow 

for simultaneous processing thus cutting the production times significantly. Although this is an 

outstanding achievement, very little is known about the complex interactions that occur in 

simultaneous machining.  

Understanding of the simultaneous machining may prove difficult to model by analytical 

models which do not take into account the variability of the system. The variability of the system 

is further increased when the work pieces used have been forged and exposed to long periods of 

environmental exposure causing rust layers to form on the surface of the work piece. To truly 

understand the variability of the system an experimental approach such as a well-planned design 

of experiments may lead to accurate modeling of the system.   

 This research focuses on an ongoing three phase project for General Dynamics in which 

an Okuma LC-40 2ST CNC Lathe is used to understand the simultaneous turning and boring 

roughing operation of AISI 4137 chrome alloy steel. The roughing operation of a metal product 

takes a heavier toll on the lathe as it is the operation where most of the metal is removed. The 

first phase of the project focused mainly on sensor selection and sensor implementation. A vast 

amount of sensors are used in order to understand the machining process by measuring force, 
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power, vibration, temperature, tool wear, metal working fluid flow rate, hardness, etc. The main 

focus of the results of this research is set on the second phase. Phase II of this research applies a 

common statistical method known as Response Surface Methodology in order to build empirical 

models for the sensor responses and to optimize the machining operation. The third and final 

phase of this project will focus on using the results of Phase II in order to build an adaptive 

control system that will run the machine at optimal settings thus maximizing tool life and 

minimizing the cost. 

  General Dynamics produces the AISI 4137 chrome alloy steel work pieces at their Red 

Lion facility in Pennsylvania. The work pieces are first forged to their initial shape and then are 

machined by a CNC lathe to their final configuration. The forging process leaves two diameters 

on the work pieces which are known as the outer diameter (OD) and the inner diameter (ID).  A 

drawing of a forged work piece can be seen in Figure 1-1. 

 

Figure 1-1: Drawing of AISI 4137 forged work piece (in.) 
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 The forging process causes several defects in these parts such as imperfect diameters, ID 

eccentricity, and hardness variation. Also environmental effects come into account when parts sit 

outside the facility for months before machining, thus causing rust layers to form on the surface 

of the work pieces. When machining the work pieces two sets of passes are done on the work 

piece in order to reach the final configuration. The first pass is known as the roughing pass and 

the second is known as the finishing pass. The roughing pass uses heavy material removal tools 

to remove most of the excess material and the finishing pass uses finishing tools to adjust the 

work piece to its final specification of shape and surface roughness.  

 The roughing pass is the most critical machining process performed by the lathe. The 

consumption of resources by the roughing pass places the heaviest toll on the machine because 

of the heavy material removal and having to overcome the imperfections caused by the forging 

of the work piece. For this reasons this pass is the main focus of the optimization. During the 

roughing pass all of the nuisance factors introduced by forging and environmental effects cause 

undesired conditions in machining. These conditions include the chatter phenomena where the 

natural frequency of the system is excited and uncontrolled vibration of the system occurs. 

Another condition that has been experienced at the Red Lion facility is rapid tool failure caused 

by abnormal surfaces on the machining pass. 

1.2 Outline 

 As mentioned in section 1.1 the focus of this research is based off using the Response 

Surface Methodology approach to optimizing the simultaneous turning and boring roughing pass 

of a CNC Lathe. Response Surface Methodology (RSM) is defined as a collection of statistical 
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and mathematical techniques useful for developing, improving and optimizing processes [1]. The 

deliverables that are expected to be achieved from by this research and the application of RSM 

are: 

 Implementation and data acquisition from numerous sensors. 

 Develop multiple linear regression models for captured sensor statistics. 

 Find optimal settings for production at the Red Lion facility. 

In Chapter 2, a comprehensive overview of the methodology used in this study will be 

described. Section 2.1 will begin with an overview of the fundamentals of turning and boring 

theory. It is of importance to first understand the process that is to be optimized because the 

factors that are to be used for the optimization need to be determined either by experimentation 

or from previous literature. Following the theory review, a summary will be given of current 

research that is being performed that utilizes multiple sensors and RSM to find optimal 

machining parameter settings for the given operation. Although much research is being 

conducted, none covers the simultaneous turning and boring cutting operation, or uses the wide 

variety of sensors implemented in this research. Another area that is also covered in the scope of 

the optimization is that of tool wear (section 2.2) and tool life (section 2.3). An overview will be 

given of current trends that are being used for measuring and predicting tool life and tool wear. 

In section 2.4 the cost of producing a part will be discussed in detail using a function commonly 

referred to as the cost function. The cost function helps determine a balance between tool life and 

cutting time that yields a minimum cost. 
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 In section 2.5 a detailed explanation will be given explaining the theory behind RSM. 

This will include the mathematical modeling of how the multiple linear regression models are 

created, plots that are used in demonstrating both the model and its adequacy, and techniques 

that are used to find optimal machine parameter settings. Also an explanation will be given of 

why RSM is to be applied over a different optimization technique. After the RSM theory is 

explained the designs used in this research will be explained. Since RSM is a broad topic 

encompassing various designs that may be used, it is important to discuss what designs were 

chosen and how they were applied. The last section of Chapter 2 (section 2.6) will give a 

summary of an important function that was applied in the optimization of the machining process. 

This function is known as the desirability function which is commonly used in optimization of 

manufacturing processes.  

Chapter 3 will focus solely on sensor setup and data acquisition. Section 3.1 will focus on the 

sensor selection for this research and on the reasons why these sensors could help determine 

optimal machining parameters. A broad range of sensors are used in this study to limit the 

amount of noise that could be presented by nuisance factors. In section 3.2 a description will be 

given of the data acquisition system (DAQ) that was used for the numerous sensor signals that 

were captured. To capture all of these sensor signals simultaneously a LabView program was 

created to set the different sampling frequencies required and store the data in the DAQ’s hard 

drive. Another program was also created in LabView in order to locate and capture the statistics 

needed for the optimization.  
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 The important results obtained by using RSM are discussed in Chapter 4. Section 4.1 

focuses on the empirical models gathered from the designed experiments. Only models which are 

key to the optimization are covered. Section 4.2 discusses the optimal settings found by using the 

empirical models found in section 4.1.  

The results obtained from the empirical model and optimization can be applied to an 

adaptive controller. The future research to be performed will be described in detail in Chapter 

5.  
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2 CHAPTER  2 – METHODOLOGY 

2.1 Literature Review 

 Advances in manufacturing technology today have led to improved production in 

facilities, while still using the same fundamental processes such as turning and boring. Since the 

nature of the machining is the same, economic implementation of new technologies to primitive 

machines is feasible. There is a demand in the industry to reduce production costs that has driven 

many major manufacturers to automate operations previously performed by skilled operators [2]. 

By improving a machine’s sensing technology, many of the tasks usually performed by an 

operator, such as monitoring the tool condition, metalworking fluid levels, and surface quality 

may be automated. Before the process is automated, it is important to find machine parameter 

settings that will yield optimal conditions that will produce parts fast, extend the life of the tool, 

and take into account the labor fees of the factory.   

 Most metal parts used today are produced by a traditional machining operation such as 

turning, boring, milling, surface grinding, etc. All over the world over $100 billion dollars are 

spent annually on metal removal processes and 10% of the material produced by machining goes 

to waste [3]. The operating conditions for a machining operation are can be determined by a 

manufacturing handbook or specified by the tool manufacturer. These conditions are not optimal 

as metals are produced by several different methods with great differences in hardness and 

dimensions causing more scrap parts. To overcome these drawbacks, much research has been 

conducted to establish a description of the machining parameters by mathematical modeling [4]. 

Mathematical modeling of the behavior of a measured response against the selected machining 
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parameters is possible through techniques such as Design of Experiments. Before entering into a 

discussion of how mathematical models are implemented in manufacturing, a brief overview will 

be given of the turning and boring operations.  

 Both turning and boring are single-point machining processes which are normally used to 

machine castings and forgings that require precise dimensional tolerance and a uniform surface 

finish [5]. The tools normally used for turning and boring are either triangular, diamond, or 

square shaped carbide inserts and they are clamped down onto a tool holder. A part called a shim 

normally separates the tool holder from the actual cutting tool. The carbide insert used in this 

research for the OD turning included a total of four cutting edges, while the ID boring tool 

included a total of eight cutting edges, due to its square shape. Two axes of machining are 

introduced in the turning operation and an additional two are introduced in the boring operation 

making the simultaneous turning and boring operation a four axis machining process. The axes 

that run perpendicular to the spindle are commonly labeled as the X axes. The axes that run 

parallel to the work piece are commonly labeled as the Z axes.  

 The cutting operations performed by a CNC Lathe are normally described by the 

machining parameters such as the spindle speed, feed rate and depth of cut. There are also 

several other ways to express the cutting operation such as using the cutting speed instead of the 

spindle speed but by doing some simple arithmetic the same terms can be derived. The spindle 

speed describes the rotational speed of the spindle. For this research the feed rate can be 

expressed as the rate in which the tool moves parallel to the work piece in the Z axes. For this 

operation, the feed rate is a function of the spindle speed. For example, if the feed rate is 0.02 
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in/rev the tool will traverse 0.02 inches in the time the spindle performed one complete 

revolution. The depth of cut is the only factor in this process that may be different for either the 

turning or boring operation. The depth of cut for the turning operation can be calculated simply 

by subtracting the outer diameter of work piece from the desired diameter and then dividing by 

two to obtain the depth of cut. The same is done for the boring operation except that in the boring 

operation one subtracts the desired diameter from the inner diameter and divides by two.  

 By using the described machining parameters that control the cutting operations the 

Response Surface Method can be applied in order to model responses and optimize the process. 

Even though Response Surface analysis will provide an empirical model for the cutting 

operation, the fundamental cutting mechanics will explain if the derived empirical model has 

meaning.  To explain the dynamics of the metal removal process, Tlusty [6] divides the cutting 

forces into three components, the feed force, the radial force, and the tangential force. The feed 

force is the force purely in the direction of the Z axes of the lathe. The radial force is the force 

acting on the X axes of the lathe. The tangential force is the largest force because it the force is 

exerted from the spindle rotation onto the tool. Tlusty mentions that for most practical purposes 

the cutting force is determined through empirical formulas derived from cutting tests [6] much 

like what is being conducted in this research. The cutting forces can be defined as a function of 

the chip width (b) and the chip thickness (h) and a material constant ( sK ). The most general form 

of the tangential force can be seen in Equation 1.1.  

rssT afKbhKF                                                           (1.1) 
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 In Equation 1, the tangential force is mentioned as a function of the chip width and chip 

thickness and also as a function of the parameter settings. The chip width corresponds to the feed 

rate ( rf ) and the chip thickness corresponds to the depth of cut (a). As mentioned, the general 

force calculations are generic and should give the engineer a region of where the forces should 

act. It is important to carry out experiments to determine the more accurate forces. Some similar 

experiments will be explained later on, in this section.  

 During the simultaneous metal removal operation one of the major causes of scrap work 

pieces is the induction of chatter. Chatter is considered a phenomenon caused by unstable 

vibrations when using a set of cutting conditions. When chatter occurs, unstable chaotic motions 

of either the tool or the work piece are seen causing unusual force fluctuations. Chatter may 

cause tool wear, tool breakage, and poor surface finish thus diminishing the dimensional 

accuracy of the work piece [7]. Much research is being conducted towards diminishing chatter 

vibrations. During the simultaneous cutting process, chatter was induced during the boring 

operation several times. The cause of chatter was the eccentricity of the work piece. The 

minimum cutting diameter for the inner diameter had to be 0.100 in for chatter not to occur. 

Conservative cutting conditions are normally used on the shop floor which result in lower 

material removal rates and loss of productivity [5]. In this research part of observations in the 

experimental space will determine if chatter is induced using a specific set of cutting conditions.  

 Several attempts have been made to monitor metal removal operations. Bouacha et al [8], 

applied Response Surface Methodology to investigate the effects of cutting parameters such as 

cutting speed, feed rate and depth of cut on cutting forces and surface roughness in hard turning. 
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Hard turning is considered the material removal process of a work piece of a hardness which is 

higher than 45 HRC. By using a Taguchi orthogonal array, Bouacha et al were able to define 

equations for the surface roughness and the cutting forces for their operation. They noticed that 

as the feed rate and depth of cut are increased, the forces are higher. They also established a 

strong correlation between the feed rate and the surface roughness. This is expected as a higher 

feed rate generally leads to a poor surface finish. One of the major differences between the 

research performed and Bouacha’s research is that in this research multiple sensors are used to 

monitor the cutting operation. Much research is being conducted to monitor the cutting operation 

via multiple sensors.  

 Kuljanic et al [9], attempted to use a rotating dynamometer, accelerometers, acoustic 

emission, and power sensors to monitor the onset of chatter in milling operations. By using more 

sensors he was able to obtain more accurate results for chatter identification as opposed to using 

a single sensor signal. For the purpose of his studies the force and acceleration measurements 

proved to be best at chatter detection, while the acoustic emission sensor and power sensor did 

not provide much change when chatter was induced. By using this multi-sensor approach, very 

high levels of accuracy for chatter detection were obtained thus producing a more robust system.  

 Another project towards the improvement of machine monitoring was performed by 

Kwak et al [10]  who analyzed the power and surface roughness of cylindrical grinding of steel 

using the response surface method. By applying the response surface method, mathematical 

models were derived for both the power and surface roughness.  
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 Other than the few mentioned, several research projects have proved useful in either 

machine monitoring or using response surface methodology to improve the machining process 

[11-17]. There are several areas in which this research is novel which include: 

 Number of sensors used combined with data capture of all sensor signals. 

 Analysis of the simultaneous turning and boring operation. 

 Response surface analysis of AISI 4137 forged steel for simultaneous cutting operation. 

2.2 Tool Wear 

 In an orthogonal cutting operation several mechanisms can cause failure of the tool. 

These mechanisms can include abrasive/flank wear, built-up edge, thermal/mechanical cracking, 

cratering, thermal deformation, chipping, notching, and fracture [18]. The most common 

measured type of wear in orthogonal cutting is the flank wear. In this research the flank wear is 

measured through a microscope. The norm for the limit of flank wear allowed for a tool is set to 

0.2 mm for finishing operations and 0.5 mm for roughing operations [19]. Since the operation 

that is being observed is roughing the allowable tool wear region is set to 0.5 mm. This becomes 

important when fitting a tool life function. Several attempts have been made to measure the flank 

wear of the cutting tool during online machining. Choudhury was successfully able to predict the 

flank wear of the tool by using the ratio between the feed force and the tangential force [20]. 

Kopac was able to achieve tool wear monitoring through a microphone [19]. Several papers have 

also been published on the use of acoustic emission sensors for the monitoring of tool wear [21-

23].  
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 Although the focus of the current research is not to measure tool wear during the 

simultaneous cutting operation, it is possible that the models derived for tool wear can be 

correlated to other models such as force, temperature, sound etc. Tool wear prediction plays a 

vital role in the optimization of the cutting process because even for modern machine tools 20% 

of the downtime can be attributed to tool failure [24], thus reducing the productivity of a facility 

leading to profit losses.   

2.3 Tool Life 

 Tool life is one of the most researched topics in metal removal operations as it is 

inversely proportional to the cost of creating a finished product. The most common equation 

used to calculate tool life is referred to as the Taylor Tool Life equation shown in Equation 2.1.   

qp fv

C
T                                                                (2.1) 

 The tool life (T) is expressed a function of the cutting speed (v) and the feed rate (f). The 

rest of the terms (C,p,q) are constants that are calculated experimentally. For the purpose of this 

project the tool life equation was calculated using a factorial design. Similar tool life estimation 

was performed by Amaitik et al [25]. The method behind this calculation is performed by 

linearizing the Taylor Tool Life equation as shown below in Equation 2.2.  

flnqvlnpClnTln                                                 (2.2) 
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 Since the linearized Taylor Tool Life equation is a linear equation, it does not require a 

second order model to represent the function. In terms of a design of experiments approach, the 

response of the Taylor Tool Life can be described as Equation 2.3.  

22110 xxy                                                    (2.3) 

 From the equation above it can be seen that all of the coefficients from the Taylor Tool 

Life can be calculated using a factorial design consisting of a minimum of four tool life 

experiments. A design of experiments was created to calculate the tool life of the OD tool 

because the OD tool life is much shorter than the ID tool life due to its higher material removal 

rate. To ensure that a precise tool life equation was estimated, a two level factorial design was 

created. The design of experiments to measure tool life lied within the same range as the 

Response Surface analysis that is performed in this research. The two level factorial design was 

repeated twice to ensure reliable measurements. The tool life could be estimated with an R-sq. 

value of 98.34% using the factorial design. To convert the Taylor tool life equation from 

logarithmic units to exponential units as seen in Equation 2.1 a conversion had to be done from 

logarithmic units to exponential units. The final tool life equation for the OD tool can be seen in 

Equation 2.4.  

816334.3625846.4
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
                                                  (2.4) 

 The Taylor Tool Life equation derived for the OD tool becomes important for the cost 

model that is derived in the Response Surface experiments. It was used in the analysis of 
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simultaneous cutting operation by adding the results obtained from this equation into the 

Response Surface results. From there, an estimate of the tool life can be made using the factors 

used in this experiment. Because of the limited experimental region observed, a quadratic model 

is enough to estimate tool life when applied to the Response Surface experiments performed. The 

results from the tool life model are reflected in the cost estimation.  

2.4 Cost  

 One of the key goals of this project is to reduce the cost of machining. It is easy to think 

that one could have optimal settings by increasing the production speed by increasing the spindle 

speed and feed rate, but if the tool repeatedly fails rapidly then there will be little to no cost 

savings. To understand a general perspective of cost estimating for manufacturing, Malstrom 

[26] defines that the general manufacturing costs of a facility should be a function of the direct 

labor, direct material costs, factory expenses and general expenses. While labor and material 

costs are straight forward factory expenses could be explained as cost of rent, air 

conditioning/heat, utilities, machines etc. The general expenses can be defined as the cost of 

design engineering, purchasing, and other back office related costs.  

 To narrow down on just the cost of a part (
pC ), Tlusty [6] defines the cost of a part as a 

function of fixed costs (
fixC ), machining costs ( mC ), and the tooling costs ( tC ). The equation 

derived by Tlusty is shown below in Equation 2.5. 

tmfixp CCCC                                                         (2.5) 
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 In this equation the two controllable parts are the cost of machining and the tooling costs. 

The costs of machining are associated with the labor fees of the shop and the time it takes to 

produce a part. The tooling costs are associated with price of the cutting insert and the time 

required to change the tool. Srinivas et al [4], take this function one step further by adding idling 

costs which include the time that the operator takes to change the work piece. The equation used 

to determine the cost of each experiment is shown in Equation 2.6.  

)OD(T

t)Crt(
rtrtC mtemch

mmmip


                                              (2.6) 

 In this equation it represents the idling time in minutes, mt  represents the machining time 

in minutes, cht  represents the tool changing time in minutes, mr  represents the rate of machining 

in US dollars, teC  represents the cost of the tool edge in US dollars, and )OD(T represents the OD 

tool life in minutes. All of the terms in the cost equation were estimated using the costs 

associated with the Red Lion facility. The cost equation used for this research is shown in 

Equation 2.7. The Cut Time is derived from the empirical model shown in section 4.1.1.  
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                              (2.7) 

 The cost function shown in Equation 2.7 should suffice for the purposes of this research. 

Expansion of the cost function is possible with the incorporation of the boring bar carbide insert. 

Although not applied in this research the equation derived for simultaneous turning and boring is 
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shown in Equation 2.8. The only difference between the cost functions is that the cost of tool, the 

tool changing time, and the tool life, correspond to either the OD turning operations or ID boring 

operations.  

)ID(T

t)Crt(

)OD(T

t)Crt(
rtrtC mteIDmchIDmteODmchOD

mmmip





                               (2.8) 

 The cost function is always an estimate of what is the cost to create a part. To increase 

the accuracy, the amount of scrap parts, the electricity costs of the facility, rapid tool failures and 

many other factors can be considered.  

2.4 Response Surface Method 

 Due to the complex system dynamics of simultaneous turning and boring, an analytical 

approach to finding optimal machine parameter settings would be lengthy and will not take into 

account the variability of the system. The Response Surface Method has been proven useful 

numerous times in the manufacturing field. In this section an in depth explanation will be given 

of the theory behind RSM and the approaches used to find optimal results. The usual approach to 

using RSM involves a three step process. First a set of experiments is designed that will yield 

adequate and reliable measurements of the responses of interest. After the experiments are 

conducted mathematical models that best fit the data are chosen followed by determining optimal 

settings of the experimental factors that produce the maximum or minimum value of the response 

[27].  

 Although the process seems to be straightforward it is important to note that it is not just 

performed once, it is rather an iterative method performed with several different types of designs 
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that ensure that the approximate response of the system is true within the region of interest. In 

the first round performed it is important to determine which of the factors are crucial to the 

machining process. Normally, less experiments are performed with more factors thus resulting in 

a loss of accuracy, yet the main factors that affect the system will be determined thus eliminating 

those factors which are not important. This is commonly known as the “screening stage”.  

 After all factors that impact the desired responses are determined and a region of 

experimentation near the location of optimality is found, a more sophisticated set of experiments 

is used to build the mathematical models of the system. This set of experiments will require more 

experimentation yet will output highly accurate models. From these models the local optimums 

within the region of experimentation can be found and the tradeoffs of each response can be 

identified.  

 After finding the optimal settings, if the experimenter has enough capital, a repeat of the 

second set of experiments can be run in order to validate the results. Now that the experimental 

process has been established, the theory behind how RSM functions will be explained.  

 Multiple linear regressions are used in RSM to build empirical models that approximate 

the true response of the system. To be able to build the regressions it is important to first define 

what are considered the factors that are to be controlled and what responses will be monitored. In 

CNC operations the user is allowed to control the speed of the spindle rotation, the feed rate of 

the tool progression through the work piece and the depth of cut. Since the turning and boring 

passes are performed simultaneous then the factors of spindle speed and feed rate are the same 

but the depths of cut may vary thus resulting in a total of four factors which are termed the 
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spindle speed (  ), feed rate (  ), OD depth of cut (  ), and ID depth of cut(  ). The different 

designs of experiments used will vary these four factors in order to build the mathematical 

models for the responses (i.e. force, temperature, vibration, etc.) only based off of these 

controllable factors. An example of this is shown in Equation 2.9.  

 +) x,x,x,f(x=y 4321                                                          (2.9) 

 The   term in the equation above is also known as the statistical error which represents 

the sources of variability in the system that are not accounted for in   [1].  To expand on the 

equation above, the final model that is to be created based off the designed experiments is second 

order in nature due to the attempt of finding the stationary point in the function whether it be a 

maximum, minimum, or saddle point. The final model should have first and second order terms 

along with their regression coefficients. An example of a generalized equation for a second order 

model is shown in Equation 2.10.  
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  In order to estimate each of the regression coefficients (β), the method of least squares is 

used. The least squares method in this application chooses the regression coefficients so that the 

sum of the squares of the statistical error is minimized [1]. Since the least squares method is 

applied for various experimental conditions it is better to define the least squares application in 

matrix notation as seen in Equation 2.11. In Equation 2.11, y is a vector that represents the 
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response at different levels, X is the design matrix which represents all of the factor levels in the 

experimental design, β is the regression coefficient vector and ε is the statistical error vector.  

  + X=y                                                              (2.11) 

 The least squares function applied to minimize the statistical error is shown in Equation 

2.12.  

)()(  XyXy T T =L                                             (2.12)     

 Equation 4 must then be expanded. This is shown in Equation 2.13.  

 XXyX2yyL TTTTT                                              (2.13) 

 To minimize the error, the differential of Equation 5 with respect to the regression 

coefficients (β), must be performed and set equal to zero. This equation is then solved for the 

least square estimator. The least square estimator vector (b) is shown in Equation 2.14.  

yXXXb T1T  )(                                                         (2.14) 

 The least squares estimator is useful in determining the regression coefficients but will 

not identify if the values gathered are statistically significant. In order to test for statistical 

significance analysis of variance (ANOVA) must be performed. The process of performing 

ANOVA is based on hypothesis testing to determine the linear relationship between the response 

(y) and the factors (  ). Hypothesis testing is shown below in Equation 2.15. 
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0H k210   ...  (Null Hypothesis)                                  (2.15) 

0H j1    (Test Hypothesis) 

 Rejection of the null hypothesis would prove that one of factors contributes significantly 

to the approximate model created. In order to test this hypothesis the Fisher F test is performed. 

The F test in multiple linear regressions is performed by partitioning the total sum of squares into 

the sum of the squares of the regression and the sum of the squares of the residual error. The F 

test is shown in Equation 2.16.  
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 In Equation 2.16, the sum of the squares of the residual (   ) is divided by the degrees of 

freedom dedicated to the regression (k). The sum of the squares of the error (   ) is divided by 

the degrees of freedom of the residual (n-k-1). The variable n represents the total degrees of 

freedom but one degree of freedom is always dedicated to the intercept, thus the total possible 

available degrees of freedom is always n-1.  

 Now that the F value is calculated, the P-value can be used to decide whether or not to 

reject the null hypothesis. The null hypothesis will be rejected if the P-value for the F statistic is 

less than the significance level (α). The significance level is extremely important in deciding 

whether or not the given factors will be important. In the screening stage a value of α = 0.1 is 

used to determine whether or not the chosen factor is significant. In the more complex set of 
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experiments, where more tests are performed to obtain a more accurate model, α = 0.05 is chosen 

to determine if the factor is really significant.  

 The most significant component of the RSM is choosing the correct design of 

experiments to follow, in order to build the mathematical models and optimize accordingly. In 

this research, a    factorial design is used for screening followed by three face centered central 

composite designs that are used to build and check the models created. 

 The    design was used to screen the initial system parameter settings to decide if the 

upper and lower levels of the factors were feasible. The initial parameter settings were based 

around the Red Lion facility settings. These screening experiments are extremely useful to 

determine what are the main effects and interactions of each one of the responses. Also 

centerpoint runs were added to check for curvature. The center point runs consist of running all 

of the four system factors at their center level, which in coded terms results to x=0. Before each 

experiment of the factorial design was performed, initial cuts were performed on the work piece 

both in the inner and outer diameters to remove the rust layer and leave the work piece at defined 

known diameters.  

 Three face centered central composite designs were used to build the mathematical 

models and optimize the machining process. The central composite design consists of          runs. The central composite designs are the most popular type of design of experiments due to 

their effectiveness and minimal number of runs to build second order models. This design of 

experiments is an expansion about the factorial design seen in the screening experiments but 
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axial points are added to better determine the second order model. The reasoning behind using 

the face centered cube relies on the stringent operating conditions.  

 Each one of the three face centered central composite designs was defined as Response 

Surface I (RSI) , Response Surface II (RSII), and Response Surface III (RSIII). RSI followed the 

same trend as the screening experiments by including the initial cuts on the work pieces. RSII 

and RSIII perfectly imitated the cutting conditions at the Red Lion facility thus did not include 

the initial cuts. The main reason for performing RSIII was to verify that the models from RSII 

were accurate.  

2.5 Desirability Function 

 One of the most useful approaches when performing optimization of multiple responses 

is to use the desirability function approach [1]. The methodology behind the desirability 

approach is to convert each one of the responses ( iy ) into an individual desirability function ( id

). The range for the desirability function is shown in Equation 2.17.  

1d0 i                                                                (2.17) 

 If the response is at its chosen target then the desirability function will equal 1. If the 

response is outside of the desirability region then the desirability will equal 0. To maximize the 

overall desirability, Equation 2.18 is implemented. The term m in Equation 2.18 represents the 

responses.  

m
1

m321 )d...ddd(D                                                    (2.18) 
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 Usage of the desirability function requires careful selection of the region one is trying to 

target. This is why it is important to use overlaid contour plots to determine what area is near 

optimal operating regions. Three different operation constraints can be chosen while using the 

desirability function approach. One can choose to minimize, maximize, or attempt to acquire a 

target number for the response. Most of the applications for this research require minimization of 

the response. The individual desirability function for a response for minimization is shown in 

Equation 2.19.  
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 In the equation above, L represents the lower bounds, T represents the target value and r 

represents the weight applied. Depending on the importance of the desirability of each measure, 

a weight can be placed to put more emphasis on that term being closer to the target value. 

Embedded into Minitab 16 software is a Response Optimizer package where the user can input 

the lower bounds, upper bounds, target values, and weights. The Response Optimizer will then 

calculate the maximum desirability.   
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3 CHAPTER  3 – EXPERIMENTAL SETUP  

3.1 Sensor Setup & Installation 

 Phase I of the simultaneous turning and boring optimization research, focused solely on 

sensor and data acquisition setup. The sensor setup process began by narrowing down which 

sensors were to be used for the monitoring of the operation. The future of this research (Phase 

III) will correlate cost effective sensors such as a power meter, microphone and thermocouples to 

more complex sensors like piezoelectric accelerometers, force sensors, and acoustic emission 

sensors. By performing this correlation, a cost effective adaptive control system for each 

machine becomes feasible for a large manufacturing facility.  

 Not all of the sensors installed on the lathe were modeled using Response Surface 

Methodology as they did not play a role in the optimization of the machining operation. The 

multitude of sensors added combined with the ability to capture the data simultaneously is one of 

the major breakthroughs of this research. For this reason, all of the sensors installed on the CNC 

lathe will be described.  

 The sensors used to monitor the simultaneous roughing operation can be classified into 

two different styles of sensors labeled either combined or turret specific. Combined sensors 

measure the machining operation without specifically either addressing the upper and lower 

turrets, while individual sensors measure a parameter specific to either the lower turret assembly 

or the upper turret assembly. The sensors that fall into the combined sensors category are the 

power meter, microphone, metalworking fluid flow meter, metalworking fluid thermocouple and 
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video camera. A basic diagram of the combined sensor setup is shown in Figure 3-1. It must be 

noted that this diagram does not expand upon the data acquisition setup which is in section 3.2. 

 

Figure 3-1: Diagram of Combined Sensor Setup 

 The turret specific sensors pertain to measurements of either the ID boring assembly or 

OD turning assembly. The turret specific sensors for the OD turning assembly consist of a tri-

axial dynamometer, a tri-axial accelerometer, an acoustic emission sensor, and a tool 

thermocouple. The turret specific sensors for the ID boring assembly consist of tri-axial force 

sensors, a tri-axial accelerometer, an acoustic emission sensor and a tool thermocouple. A basic 

diagram for the ID boring assembly can be seen in Figure 3-2. In Figure 3-2, it must be noted 

that the sensors pre amplifiers, signal conditioners, and specific data acquisition connectors are 

not shown.  



27 

 

 

Figure 3-2: Diagram of Turret Specific Sensor Setup 

 In the next subsections, all of the sensors used to monitor the machining operations will 

be described in further detail. The next section of the experimental setup will explain the data 

acquisition setup and program used for data acquisition. The final section of this chapter will be 

focused on the experimental design used to model and optimize the machining operation.   

3.1.1 Metalworking Fluid Flow Meter 

 The CNC lathe is equipped with an internal metalworking fluid system, which pumps the 

fluid into the upper and lower turret assemblies. Being able to monitor the fluid flow, will 

determine if there are significant fluctuations in the volumetric flow rate during each experiment 
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or that the flow rate can be treated as a constant value. If large fluctuations are seen, the sensor 

signals can then be correlated with the output temperature of the thermocouples and the tool 

wear.  

 A rotating paddle wheel volume flow meter manufactured by Signet was used to monitor 

the flow of the metalworking fluid through both the upper and lower turrets. The flow meter was 

installed in the piping assembly powered by the pump sump in the metalworking fluid reservoir. 

A gate valve was also installed to control the flow rate if necessary. The sensor output was an 

analog current signal ranging from 4 – 20 mA and was connected to the data acquisition through 

a National Instruments current input conditioning module in the signal conditioning carrier. The 

data received from the flow meter was sampled at 10 Hz, as changes in metalworking fluid are 

generally slow. The installed sensor can be seen in Figure 3-3.  

 

Figure 3-3: Flow meter installation 
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3.1.2 Thermocouples 

 To measure the temperature of the OD & ID tools, Omega Engineering K-type 

thermocouples were installed in the shim of the OD and ID tool holders. To allow for installation 

of the thermocouples, the tool shims were machined via electric discharge machining to allow 

for a groove of a length of 1.5 mm and a depth and width of 0.5mm. The grooves for the ID and 

OD thermocouples can be seen on Figure 3-4. Thermal conductive grease was applied to the 

groove before the thermocouple was placed in position.  

 

Figure 3-4: (Left) Machined OD tool shim (Right) Machined ID tool shim 

 The location for the thermocouple positioning was chosen to minimize the risk of 

exposure to metal chips and metal working fluid flow. Several problems were observed from the 

chosen positioning of the thermocouples. The constant tool replacement from experiment to 

experiment slightly shifted the position of the thermocouples. Also, even though the 

thermocouple tip did not suffer any damage during cutting, the wires were continuously slashed 

by metal chip debris.  
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 Another thermocouple of the same type was installed in the metalworking fluid reservoir 

to monitor any rises in temperature during experimentation. The thermocouples were routed 

through the internal components of the lathe and were connected to a National Instruments 

thermocouple module in the signal conditioner carrier. The sampling rate of all of the 

thermocouples was 10 Hz.  

3.1.3 Boring Bar (ID) Force Sensors 

 To monitor the tri-axial cutting forces on the boring bar during machining, a set of 

9066A4 Kistler group piezoelectric force sensors were installed on the upper turret assembly. 

The set of four force sensors could not be installed directly on the upper turret assembly, and 

required an adapter assembly for installation. Force sensor adapter plates were manufactured 

using AISI 1018 steel plates with the thickness and surface finish requirements specified by 

Kistler. To allow for metal working fluid passage through the force sensor adapter assembly, a 

connection using barb hoses and vinyl tubing was made to the steel plates. The force sensor 

adapter assembly was then positioned directly on the upper turret with the boring bar tool holder 

sitting above the force sensor assembly. The assembly was held together by four M16 bolts of 

120 mm in length torqued to the Kistler specified preload conditions. The force sensor assembly 

and turret mounting are shown in Figure 3-5. 
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Figure 3-5: (Left) Force sensors and hose for fluid passage (Right) Mounted assembly 

To ensure that the modified boring bar assembly would possess the same system 

dynamics as the Red Lion facility, impact hammer testing was performed on the boring bar. The 

results from the impact hammer tests resulted in frequencies very close to the Red Lion setup. 

The boring bar held an overhang of 10” on average. To match the natural frequencies, the boring 

bar was shifted to having an overhang of 9.875”. 

 Each one of the wires shown in Figure 3-5, represent the Fx, Fy, Fz axis measurement of 

each force sensor. Each one of the wires was routed to one of the three summing blocks for the 

three axes measured (Fx, Fy, Fz). The summing blocks were connected to a Kistler 5814B 

charge amplifier. The charge amplifier contains a 4.7 kHz low pass filter and allows for control 

of the measurement range. The sampling rate for the force sensors was 20 kHz and the data 

output of the force sensors (routed through the charge amplified) was provided through BNC 

cables, thus a National Instruments BNC connector block was used to capture the data.  



32 

 

3.1.4 OD Dynamometer 

 To measure the tri-axial forces on the outer diameter cutting tool a Kistler 9121 tool 

holder dynamometer was used. The dynamometer measures the three orthogonal components of 

the X,Y,Z forces acting on the cutting tool via piezoelectric elements. This specific dynamometer 

was designed to be used on turret lathes much like the lathe used in this research but it would not 

fit into the lathe without an adapter. An adapter was manufactured out of AISI 1018 steel to fit 

the dynamometer onto the lathe. Figure 3-6 shoes the dynamometer, adapter plate, bolts, and tool 

holder ready to be mounted onto the lathe.  

    

Figure 3-6: (Left) Dynamometer assembly (Right) Dynamometer mounted on lathe 

 The OD dynamometer was connected to the Kistler charge amplifier of the same style as 

the ID force sensors and then routed to a National Instruments BNC connector block. The 

sampling rate for the OD dynamometer was 20 kHz.  

 Similar to the boring bar assembly, frequency analysis was also performed on the OD 

turning assembly to determine if the system dynamics have shifted. The OD turning assembly is 

much stiffer than the ID turning assembly. Because of the rigidity of the system, the natural 
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frequencies of OD turning assembly could not be accurately excited. The frequency limit of the 

impact hammer used to excite the natural frequencies is 5 kHz. From the results, it can be 

deduced that any instability caused by the modification would be caused by the boring bar 

assembly modification over the OD turning assembly. 

3.1.5 OD & ID Accelerometers 

 To measure the vibrations during machining, two PCB Piezotronics 356B21 tri-axial 

accelerometers were mounted on the lathe. The location for the accelerometer mounting is 

critical as placing the sensor far from the cutting operation will cause faulty readings as 

dampening will have occurred. The simultaneous roughing operation of forged work pieces 

causes a heavy amount of vibration, so accelerometers of a sensitivity of 10 mV/g were chosen 

to keep the accelerometers within their operating range.  

 The accelerometers for both the turning tool and the boring bar were installed as close as 

possible to the cutting tool insert. To mount the accelerometer on the turning tool, a hole was 

drilled and tapped in the rear side of the OD tool holder. The distance from the tool holder to the 

tool tip was 3 cm. The accelerometer was mounted in the hole by a threaded stud provided by 

PCB Piezotronics. Wax was used to cover the cable connections, although the cables were 

hermetically sealed. The accelerometer placed on the OD tool holder can be seen in Figure 3-7. 

The location of the accelerometer is adequate because it ensure that few chips and little 

metalworking fluid will contact.  
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Figure 3-7: (Left) Rear side of OD tool Holder (Right) Complete OD tool holder assembly 

 The geometric structure of the boring bar did not allow for a similar installation of the ID 

accelerometer. The boring operation is also an internal operation, so being clear of any 

machining debris is not a possibility. The accelerometer for the boring bar requires a small 

circular section to allow for an accelerometer to be screwed onto the boring. Also, a groove was 

made along the boring bar to allow for cable routing to the data acquisition system. To further 

protect the accelerometer, the boring bar was wrapped with duct tape, to prevent any debris or 

coolant to enter. The boring bar accelerometer assembly can be seen in Figure 3-8. 

 

Figure 3-8: Boring Bar Accelerometer Assembly 

 The two accelerometers were connected to a PCB signal conditioner that provided the 

accelerometers with current excitation. The signal from each axis was then recorded via BNC 

connectors connected to a National Instruments BNC connector block.  
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3.1.6 OD and ID Acoustic Emission Sensors 

 Due to the growing popularity of monitoring acoustic emissions in the metal removal 

field, a Physical Acoustics R3a acoustic emission sensor was mounted on the upper and lower 

turrets. The AE sensor data will be powerful for performing correlation analysis with tool wear 

and tool breakage. The AE sensors were installed on the upper and lower turrets via a magnetic 

hold down provided by Physical Acoustics. The OD AE sensor can be seen in Figure 3-9.  

 

Figure 3-9: OD AE Sensor Setup 

 Both time and frequency domain analysis of the AE sensors is of interest. The frequency 

range of interest for the AE sensors was between 100 – 400 kHz so a bandpass filter was used to 

minimize frequencies outside that range. A power supply was used to power a signal pre-

amplifier purchased from Physical Acoustics. The sampling rate chosen for the AE sensors was 

800 kHz which satisfies the Nyquist criteria. The response from the AE sensors was routed via 

BNC cables to a National Instruments shielded connector block. Each one of the sensors was 

provided its own data acquisition card.  
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3.1.7 Power Meter 

 To measure the total three phase electrical power consumed by the lathe during 

machining a Load Control PH-3A Hall Effect power meter was installed in the electrical breaker 

cabinet of the lathe. The measurements from the power meter will allow for statistical 

measurements such as the average power consumed during a test and the sum of the power 

consumed. These measurements will be useful in the optimization of the simultaneous roughing 

operation.  

 The location of the power meter is away from the machining, thus consistent reliable 

measurements are expected from this sensor. The power meter was bolted to the metal wall 

inside the electrical breaker cabinet of the lathe. The cables which connect the breaker switch to 

the rest of the lathe’s electromechanical systems were routed through the three toroidal Hall 

Effect sensors of the meter, and then reconnected to the breaker switch using terminal lugs. The 

power meter installed in the lathe is shown on Figure 3-10.  

 

Figure 3-10: Power Meter mounted on lathe 
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 The power meter data was sampled at 20 kHz. The data from the power meter was 

captured via a 2-conductor shielded wire and was connected to a National Instruments BNC 

shielded connector block.  

3.1.8 Microphone 

 To monitor the audible sounds emitted from the machining process a Samson Audio Q8 

dynamic microphone was used. The microphone is one of the most powerful tools used to 

determine chatter and irregularities in the machining process. To properly monitor the 

simultaneous cutting process the microphone was installed on the top of the lathe. A hole was 

drilled on the top of the lathe, directly above the work piece. The microphone installation can be 

seen in Figure 3-11.  

 

Figure 3-11: (Left) Interior view of microphone (Right) Exterior view of microphone 

  All of the audible frequencies up to 20 kHz are of interest so the sampling rate 

chosen for the microphone was 40 kHz. The output from the microphone was routed via a BNC 

cable to a National Instruments BNC connector block.  
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3.1.9 Video Camera 

 A video capture of each experiment provides the experimenters with a visual and audible 

recording of what occurred during a certain experiment. This data can be tied to occurrences in 

nearly all of the sensors. A Flip Mino camera was used to record each experiment. The camera 

was mounted on the tailstock of the lathe through a magnetic adapter built specifically for this 

application. A screenshot of a video from a machining operation is seen on Figure 3-12.  

 

Figure 3-12: Screenshot of Simultaneous machining by Flip camera 

3.1.10 Microscope 

 One of the most important areas in this research is the ability to measure tool wear and 

tool life. The tool wear and tool life for this application was measured like most turning and 

boring operations are which is through the tool’s flank wear. To measure the flank wear, a Dino-

Lite Pro microscope was used along with the software provided by the company to measure the 

flank wear. The flank wear was measured at a magnification of 200x. This microscope is 

connected to the PC via a USB connection. A picture of the microscope and sample tool wear 

picture can be seen in Figure 3-13.  
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Figure 3-13: (Left) Dino Lite microscope (Right) Flank wear region for Test 138 OD tool 

3.2 Data Acquisition Setup 

 To acquire data simultaneously from the sensors, National Instruments data acquisition 

hardware and LabView software was used. The data acquisition setup was designed to be as 

economical as possible while still powerful enough to capture the data simultaneously. The 

chassis chosen to capture the data was a NI PXI-1042 8 slot chassis. Six slots of chassis were 

used for cards and two of them were used for the CPU and hard drive.  

The data acquisition cards were chosen according to the sensor sampling rates because 

sensors connected to the same card require the same sampling rate. Two separate PXI-6259 cards 

with a capability of measuring 1.25 MS/s were used for the AE sensors. These cards were placed 

in slots 1 and 2 of the PXI chassis and were sampled at 800 kHz. Three PXI-6220 sampling cards 

with a capability of measuring 250 KS/s were placed in slots 3, 4, and 5. The only sensor 

sampling data at 40 kHz is the microphone so slot 3 was dedicated solely to the microphone. Slot 

4 was dedicated to the dynamometer and force sensors. Each one of these sensors has three 

signals representing each axis so a total of six channels were used. The last PXI-6220 card was 

used for the sensors sampling at 10 Hz. This includes the OD thermocouple, ID thermocouple, 
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metalworking fluid thermocouple, and metal working fluid flow meter. In slot 6 of the chassis a 

simultaneous sampling card was used. The simultaneous sampling card allows the user the 

capability to sample each channel simultaneously at 500 kS/s per channel. The two tri-axial 

accelerometers were sampled on this card. The complete data acquisition setup can be seen on 

Figure 3-14.  

Figure 3-14: Data Acquisition Diagram  
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 To record the data simultaneously, a program was created in LabView software. The 

architecture behind the program design was a producer/consumer loop. The producer/consumer 

loop is efficient when sampling data from various cards at different sampling rates. The 

methodology behind the producer/consumer loop is efficient yet simple. There are simply loops 

that produce data and loops that consume or write the data. The production of data is much faster 

than the writing of the data so buffering of the data must occur before it is written in the hard 

drive.  

 The file format used for recording the data was a .tdms file. The .tdms file allows for fast 

recording speeds by storing the memory to an array of 32-bit unsigned integers. A detriment to 

using this file format is that it requires scaling of the data after the experiment was performed. 

This required for the creation of another program to scale the data.  

 Another program was created to extract the data and gather all of the metrics necessary 

for the analysis. The data recorded from the producer/consumer loop program is triggered by a 

button and is stopped by a different button programmed in the LabView interface. The data of 

interest is during the steady portion of the roughing pass. The second program performed the 

function of scaling the data and then determining the steady state conditions from a slope finding 

algorithm. The slope finding algorithm was tuned to determine the steady state condition by 

searching for large changes in the slope of the time domain data of the power meter. After the 

steady state power data is found, then the signal is chunked to only the steady portion. The rest of 

the sensors are also chunked in the same region that the power data was chunked. From all of the 

chunked data, the statistical metrics were gathered for the Response Surface analysis. Also FFT 
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plots were generated from the chunked data. A diagram of the methodology behind the data 

extraction program is seen in Figure 3-15. 

 

Figure 3-15: Diagram of Data Extraction Program 

 The main data analyzed in this research are the statistical metrics from the tests. After 

each test was performed the data was stored in the PXI chassis. The data was then carried to a PC 

used in the lab to be scaled and extract the metrics needed. The statistics gathered were stored in 

an Excel file and were then copied to Minitab 16.  
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3.3 Design of experiments 

 A total of four sets of experiments were run to model and optimize the simultaneous 

machining operation. The experimental phase began with the screening stage using a factorial 

design to determine if the chosen cutting conditions were feasible. The second set of experiments 

was called Response Surface I (RSI) in which a face centered Central Composite Design was 

used to monitor the responses at the chosen factor levels. In RSI, the work piece was pre-

machined to a known diameter and then the experiment was performed. The motive behind the 

machining was to minimize the variation in the models. After the completion of RSI, the same 

tool edge was used for each corresponding experimental design point in RSII and RSIII totaling 

three passes on each tool edge. RSII and RSIII emulated the machining performed at the Red 

Lion facility and is the focus of this research. The experimental design for RSII and RSIII was 

completely the same. The runs performed for RSII and RSIII are shown in Tables 3-1 and 3-2.  
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Table 3-1: Design of experiments for RSII 

Run 
Order 

Point 
Type Block 

Spindle Speed 
(rpm) 

Feed rate 
(in/rev) 

OD DOC 
(in) 

ID DOC 
(in) 

Test 
Number 

1 1 4 280 0.016 0.120 0.200 131 

2 1 4 420 0.016 0.200 0.200 132 

3 1 4 280 0.016 0.200 0.120 133 

4 1 4 420 0.024 0.200 0.120 134 

5 0 4 350 0.020 0.160 0.160 135 

6 1 4 280 0.024 0.200 0.200 136 

7 0 4 350 0.020 0.160 0.160 137 

8 1 4 420 0.016 0.120 0.120 138 

9 1 4 280 0.024 0.120 0.120 139 

10 1 4 420 0.024 0.120 0.200 140 

11 1 5 420 0.024 0.200 0.200 141 

12 0 5 350 0.020 0.160 0.160 142 

13 1 5 420 0.016 0.200 0.120 143 

14 1 5 280 0.016 0.120 0.120 144 

15 1 5 280 0.016 0.200 0.200 145 

16 1 5 280 0.024 0.200 0.120 146 

17 1 5 420 0.024 0.120 0.120 147 

18 0 5 350 0.020 0.160 0.160 148 

19 1 5 280 0.024 0.120 0.200 149 

20 1 5 420 0.016 0.120 0.200 150 

21 -1 6 350 0.020 0.160 0.200 151 

22 -1 6 350 0.020 0.200 0.160 152 

23 -1 6 350 0.016 0.160 0.160 153 

24 0 6 350 0.020 0.160 0.160 154 

25 -1 6 420 0.020 0.160 0.160 155 

26 -1 6 350 0.024 0.160 0.160 156 

27 -1 6 350 0.020 0.120 0.160 157 

28 0 6 350 0.020 0.160 0.160 158 

29 -1 6 350 0.020 0.160 0.120 159 

30 -1 6 280 0.020 0.160 0.160 160 

31 0 6 350 0.020 0.160 0.160 161 
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Table 3-2: Design of experiments for RSIII 

Run 
Order 

Pt 
Type Block 

Spindle Speed 
(rpm) 

Feed rate 
(in/rev) 

OD DOC 
(in) 

ID DOC 
(in) 

Test 
Number 

1 1 7 280 0.016 0.120 0.120 162 

2 1 7 420 0.024 0.120 0.120 163 

3 0 7 350 0.020 0.160 0.160 164 

4 1 7 280 0.016 0.200 0.200 165 

5 1 7 280 0.024 0.120 0.200 166 

6 0 7 350 0.020 0.160 0.160 167 

7 1 7 420 0.016 0.200 0.120 168 

8 1 7 280 0.024 0.200 0.120 169 

9 1 7 420 0.016 0.120 0.200 170 

10 1 7 420 0.024 0.200 0.200 171 

11 0 8 350 0.020 0.160 0.160 172 

12 1 8 280 0.016 0.120 0.200 173 

13 1 8 280 0.024 0.200 0.200 174 

14 1 8 420 0.016 0.120 0.120 175 

15 1 8 280 0.024 0.120 0.120 176 

16 1 8 420 0.024 0.200 0.120 177 

17 1 8 420 0.016 0.200 0.200 178 

18 1 8 280 0.016 0.200 0.120 179 

19 0 8 350 0.020 0.160 0.160 180 

20 1 8 420 0.024 0.120 0.200 181 

21 0 9 350 0.020 0.160 0.160 182 

22 -1 9 350 0.020 0.160 0.120 183 

23 0 9 350 0.020 0.160 0.160 184 

24 -1 9 350 0.024 0.160 0.160 185 

25 -1 9 350 0.020 0.160 0.200 186 

26 -1 9 280 0.020 0.160 0.160 187 

27 -1 9 350 0.016 0.160 0.160 188 

28 -1 9 350 0.020 0.200 0.160 189 

29 -1 9 420 0.020 0.160 0.160 190 

30 -1 9 350 0.020 0.120 0.160 191 
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 Each row of Tables 3-1 and 3-2 represents a design point. The Run Order column is 

simply the order in which the experiments were performed. The Point Type column represents 

what type of test was performed by a 1, 0 or -1. If the Point Type column has a number 1 in the 

row then the test represents a corner point of the experimental design cube. The number 0 

represents a centerpoint test and a 1 represents an axial run. Each set of experiments is broken up 

into blocks which allows for analysis of each of block to determine if the separation into blocks 

has an effect on the results. This requires sacrificing a degree of freedom for each block but the if 

the block has no effect then the degrees of freedom can be replaced and used to estimate for lack 

of fit. All of the four factors and variations of the factor levels are shown under the Spindle 

Speed, Feed rate, OD DOC and ID DOC columns. The last column represents the given test 

number.  
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4 CHAPTER  4 – EXPERIMENTAL RESULTS  

4.1 Response Surface Modeling 

 To represent the simultaneous roughing operation, ten different responses were chosen 

carefully among all of the responses gathered. The responses chosen to represent the 

simultaneous removal operation included force, temperature, power, time, wear and cost models. 

Since the application of this research is focused towards emulating the Red Lion facility 

conditions, RSI is only used as a basis to determine how the responses were to be modeled under 

near perfect cutting conditions. In this section of the chapter, the final models for the chosen 

responses will be described in detail.  

The main sets of models were derived from the RSII experiments which used the work 

pieces that had no previous machining performed in order to mirror the Red Lion facility. These 

models were compared with the responses in RSIII to ensure that the results gathered were 

accurate. Since RSII and RSIII are replicates using different work pieces, comparing the sets of 

experiments will verify if the models created are truly accurate. Since the same tool edge is used 

for each experimental point a slight change in the models from RSII to RSIII is expected as the 

wear increases slightly. Since the wear increases more at higher operating conditions, the models 

are expected to deviate more at higher operating conditions (i.e increased spindle speeds and 

feed rates).  

 The equations for each of the models will be presented. Each of the four factors were 

assigned a variable:    = Spindle Speed,    = Feed rate,    = OD Depth of Cut, and    = ID 
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Depth of Cut. The individual test results for each Response Surface set of experiments is shown 

in Appendix A and Appendix B. 

4.1.1 Cut Time Model 

 The cut time plays the largest role in the optimization of the simultaneous cutting 

operation as producing parts faster will reduce the general costs of the facility. The final cut time 

model was driven by a combination of the spindle speed, and feed rate factors. This is expected 

as the depth of cut has no impact on how fast the work piece is cut. The final model required 5 

degrees of freedom for the calculation of the model thus leaving 25 degrees of freedom for 

calculation of error. Table 4-1, shows the analysis of variance performed for the model. The least 

contribution to the model is made by the f ² term.  

Table 4-1: Analysis of Variance of the Cut Time Model 

Source D.O.F Seq SS Adj SS Adj MS F P 

Regression 5 3351.590 3351.590 670.320 696.990 0.000 

Linear 2 3222.370 3222.370 1611.180 1675.280 0.000 

Speed 1 1552.170 1552.170 1552.170 1613.920 0.000 

Feed 1 1670.200 1670.200 1670.200 1736.650 0.000 

Square 2 101.690 101.690 50.850 52.870 0.000 

Speed*Speed 1 94.190 20.850 20.850 21.680 0.000 

Feed*Feed 1 7.500 7.500 7.500 7.800 0.010 

Interaction 1 27.530 27.530 27.530 28.630 0.000 

Speed*Feed 1 27.530 27.530 27.530 28.630 0.000 

Residual Error 25 24.040 24.040 0.960 
  Lack-of-Fit 3 0.920 0.920 0.310 0.290 0.831 

Pure Error 22 23.120 23.120 1.050 
  Total 30 3375.640 
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 The regression applied to the cut time model using the two factors chosen, yielded an R-

Sq. value of 99.29% with a standard deviation of 0.980682 s.  The equation for cut time is shown 

in Equation 4.1. The cut time model shows that within the experimental region, each test ranged 

between 28 and 65 s. The approximate time for this experiment at Red Lion conditions would be 

41.87 s. In order to speed up the cut time both the feed rate and the spindle speed must be 

increased.  

21

2
2

2
121

xx4.68478+                          

x91909.9+x0.0005003+x7724.24-x0.576570-267.300=(s) Time Cut




          (4.1) 

 The cut time equation can be plotted to show how each one of the factors affects the time. 

The plot of the cut time equation can be seen in Figure 4-1. As expected, the results yielded a 

minimal cutting time at a high spindle speed and feed rate.  
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Figure 4-1: Surface Plot of the Cut Time Model  

When compared with RSIII at various different locations, it is seen that the models are 

nearly the same. A comparison between the RSII and RSIII models can be seen in Table 4-3.  

Table 4-2: Comparison of Cut Time Model between RSII and RSIII 

Model 
Point 

Spindle Speed 
(rpm) 

Feed rate 
(in/rev) 

RSII - Cut 
Time (s) 

RSIII - Cut 
Time (s) 

Percent Error 
(%) 

1 325 0.018 52.378 52.414 -0.070% 

2 350 0.020 41.861 41.766 0.227% 

3 375 0.023 33.704 34.007 -0.890% 

 

4.1.2 Average Power Model 

 The average power is of importance in the optimization because if reducing power 

consumption in the facility is of interest, a statistical model can provide what factors need to be 
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reduced without hindering production. Also, it is important to stay within range of the operating 

conditions of the CNC Lathe. This lathe’s main spindle drive motor has a capability of running 

37 kW continuously and 45 kW for a 30 min. period of time. It is important to note that this is 

just the spindle motor and not the total power consumption of the lathe which was what was 

measured. The average power model derived from RSII yielded that the power was a function 

driven by all four factors. From the analysis of variance performed, the spindle speed was the 

factor that had the greatest impact on the power consumption of the lathe. Since the regression 

consumed 9 degrees of freedom, 21 were left to account for error. From the model accuracy, no 

more points are required to test the system for error. The analysis of variance performed for the 

average power model can be seen in Table 4-3. 

Table 4-3: Analysis of Variance of the Average Power Model 

Source D.O.F Seq SS Adj SS Adj MS F P 

Regression 9 259933152.000 259933152.000 28881461.000 1262.760 0.000 

Linear 4 252451627.000 252451627.000 63112907.000 2759.430 0.000 

Speed 1 95133602.000 95133602.000 95133602.000 4159.440 0.000 

Feed 1 74823100.000 74823100.000 74823100.000 3271.420 0.000 

DOC OD 1 68516451.000 68516451.000 68516451.000 2995.680 0.000 

DOC ID 1 13978474.000 13978474.000 13978474.000 611.170 0.000 

Interaction 5 7481525.000 7481525.000 1496305.000 65.420 0.000 

Speed*Feed 1 2053177.000 2053177.000 2053177.000 89.770 0.000 

Speed*DOC OD 1 2831866.000 2831866.000 2831866.000 123.820 0.000 

Speed*DOC ID 1 435822.000 435822.000 435822.000 19.060 0.000 

Feed*DOC OD 1 2088922.000 2088922.000 2088922.000 91.330 0.000 

Feed*DOC ID 1 71737.000 71737.000 71737.000 3.140 0.091 

Residual Error 21 480307.000 480307.000 22872.000 
  Lack-of-Fit 15 368089.000 368089.000 24539.000 1.310 0.389 

Pure Error 6 112217.000 112217.000 18703.000 
  Total 30 260413458.000 
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 The multiple linear regression model can predict the average power with an R-Sq. value 

of 99.82%. The standard deviation of the power is 151.234 W which seems large but when 

machining the lathe consumes on average more than 30 kW. From the analysis of variance it can 

also be seen that the OD depth of cut has a much larger effect in the power consumed in the 

operation simply due to its higher material removal rate. Although the depths of cut have a great 

impact on the model, the spindle speed and the feed rate still dominate the average power 

consumed in the operation. It is important to note that the final model did not yield any squared 

terms or interaction between the depths of cut.  The final equation for average power 

consumption during the operation can be seen in Equation 4.2.  

4232

413143

4321

xx418497 +xx2258298                                  

+xx58.9436+xx150.251xx1279.37                                  

+x6969.23-x48978.5-x366357-x26.2163-33004.5=(W) Power Average





         (4.2) 

 The response surface for the power is a function of more than two factors thus it cannot 

be shown in a surface plot. To demonstrate how the average power affected each of the 

coefficients a combined contour plot is shown in Figure 4-2. From this plot it can be seen that the 

spindle speed vs. feed rate diagram, shows the largest change in average power. It can also be 

seen that the plots that include the ID depths of cut provide very little curvature. 
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Figure 4-2: Contour Plots of the Average Power Model 

 The average power was compared to RSIII at the same points as the Cut Time model. 

The results from the comparison can be seen in in Table 4-4. Since the Cut Time model did not 

include the depths of cut, depths of cut were chosen randomly to compare results. The 

differences between the RSII and RSIII are minimal thus ensuring that the results are accurate 

within the chosen experimental region. The increase in power from RSII to RSIII is evident due 

to the extra amount of power required to perform the operation after the tool wear has increasing 

by the added pass.  



54 

 

Table 4-4: Comparison of the Average Power Model between RSII and RSIII 

Model 
Point 

Spindle 
Speed 
(rpm) 

Feed rate 
(in/rev) 

OD DOC 
(in) 

ID DOC 
(in) 

RSII - Avg. 
Power (W) 

RSIII - Avg. 
Power (W) 

Percent 
Error 
(%) 

1 325 0.018 0.150 0.170 34572.259 34584.100 0.034% 

2 350 0.020 0.130 0.140 34882.371 34954.025 0.205% 

3 375 0.023 0.170 0.190 40279.838 40284.521 0.012% 

 

4.1.3 Power Sum Model 

 The average power is important when determining what factors will reduce the power 

consumption during machining, but does not take into account on how long the machining 

process took to complete. The sum of the power was measured in order to visualize the amount 

of power consumed throughout an entire test. The power sum was measured by summing the 

amount of Watts consumed from the beginning of the cut until the cut was completed. Since this 

metric would yield such a large value, the end result was divided by     . The model created for 

the power sum consisted of all factors, but second order terms only consisted of the Spindle 

Speed and Feed rate factors. The analysis of variance is shown in Table 4-5. 
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Table 4-5: Analysis of Variance of the Power Sum Model 

Source D.O.F Seq SS Adj SS Adj MS F P 

Regression 7 9.730 9.730 1.390 310.790 0.000 

Linear 4 9.401 9.401 2.350 525.490 0.000 

Speed 1 4.010 4.010 4.010 896.630 0.000 

Feed 1 4.921 4.921 4.921 1100.220 0.000 

DOC OD 1 0.340 0.340 0.340 75.940 0.000 

DOC ID 1 0.131 0.131 0.131 29.190 0.000 

Square 2 0.292 0.292 0.146 32.690 0.000 

Speed*Speed 1 0.269 0.057 0.057 12.740 0.002 

Feed*Feed 1 0.024 0.024 0.024 5.270 0.031 

Interaction 1 0.037 0.037 0.037 8.160 0.009 

Speed*Feed 1 0.037 0.037 0.037 8.160 0.009 

Residual Error 23 0.103 0.103 0.004 
  Lack-of-Fit 17 0.062 0.062 0.004 0.540 0.851 

Pure Error 6 0.041 0.041 0.007 
  Total 30 9.833 

     

 From the analysis of variance, it can be seen that the regression accounted for 7 degrees 

of freedom, leaving 23 degrees of freedom to estimate for error. The linear terms of the Spindle 

Speed and the Feed rate accounted for 90.8% of the total model. The Power Sum can be 

estimated with an R-Sq. value of 98.95% and a standard deviation of 0.0668760 W. The equation 

for the Power Sum model is shown in Equation 4.3. 

2 1
2
2

2
1

432110

xx0.170586+x5151.33+x05-2.61521E+                              

x2.12904+x3.43396+x396.470-x0.0284610-13.6185 )W(
10

PowerSum





         (4.3)

 

 The response surface for the Power Sum model was plotted similarly to the Average 

Power model and it is shown in Figure 4-3. From this plot the influence of the combination of 
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Spindle Speed and Feed rate can clearly be seen. The faster the cut is performed, the lower the 

total power consumption for a test. A general trend can be seen in increasing total power as the 

depths of cut are increased.  
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Figure 4-3: Contour Plots of the Power Sum Model 

 The results from the Power Sum model obtained from RSII were compared to the RSIII 

model at the same points as the Average Power Model. The results in the comparison can be seen 

in Table 4-6. From the points tested a slight amount of error increase can be seen as all of the 

factors are increased.  
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Table 4-6: Comparison of the Power Sum Model between RSII and RSIII 

Model 
Point 

Spindle 
Speed 
(rpm) 

Feed 
rate 
(in/rev) 

OD 
DOC 
(in) 

ID 
DOC 
(in) 

RSII - Power 
Sum/E+10 (W) 

RSIII - Power 
Sum/E+10 (W) 

Percent 
Error 
(%) 

1 325 0.018 0.150 0.170 3.618 3.618 -0.023% 

2 350 0.020 0.130 0.140 2.930 2.927 0.106% 

3 375 0.023 0.170 0.190 2.738 2.781 -1.525% 

 

4.1.4 OD Feed Force Model 

 From the set of tool life experiments performed it was determined that the feed force was 

prone to increase the most as the tool wear increased for this operation. From these results it was 

decided that out of the three forces measured, the feed force would be used as the representative 

force in the optimization model. The feed force was measured by the Y-axis of the dynamometer 

and was a function of the feed rate and depth of cut. From basic turning theory it is important to 

note that the Response Surface model for the OD feed force is very close to the traditional 

cutting force model which is a function of the specific cutting and the chip area. The chip areas is 

a function of the feed rate and depth of cut. Although the feed rate has significant impact on the 

force, the OD depth of cut generally has the most impact on the response. The analysis of 

variance for the OD feed force is shown in Table 4-7.  
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Table 4-7: Analysis of Variance of the OD Feed Force Model 

Source D.O.F Seq SS Adj SS Adj MS F P 

Regression 4 7219234.000 7219234.000 1804809.000 123.180 0.000 

Linear 2 6910223.000 6588952.000 3294476.000 224.860 0.000 

Feed 1 1321229.000 2095316.000 2095316.000 143.010 0.000 

DOC OD 1 5588994.000 5453498.000 5453498.000 372.220 0.000 

Square 1 190328.000 152905.000 152905.000 10.440 0.004 

DOC OD*DOC OD 1 190328.000 152905.000 152905.000 10.440 0.004 

Interaction 1 118683.000 118683.000 118683.000 8.100 0.009 

Feed*DOC OD 1 118683.000 118683.000 118683.000 8.100 0.009 

Residual Error 24 351631.000 351631.000 14651.000 
  Lack-of-Fit 4 50792.000 50792.000 12698.000 0.840 0.514 

Pure Error 20 300839.000 300839.000 15042.000 
  Total 28 7570866.000 

     

 The analysis of variance of the force model yielded 4 degrees of freedom dedicated to the 

regression and 24 degrees of freedom for error. The total degrees of freedom that every model 

should have are 30, but due to sensor errors two tests did not have force measurements. The tests 

could not be repeated because the same tool edge is used for every test using the same settings 

thus another pass on the tool would result in inaccurate RSIII data. The OD feed force could be 

predicted with an R-Sq. value of 95.36% and a standard deviation of 121.043 N. The equation 

for force is shown in Equation 4.4.  

3 2

2
332

xx597176+                                       

x*92700.8-x32827.0+x 1911.73-2165.36- =(N) Force Feed OD




                   (4.4) 
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 The surface plot for the OD feed force is shown in Figure 4-4. The response surface of 

the OD Feed force corresponds to the model showing a much larger slope for increasing OD 

Depth of cut than for increasing feed rate.  

 

Figure 4-4: Surface Plot of the OD Feed Force Model 

  The results from RSII were compared to RSIII. The results for RSIII were surprisingly 

slightly lower than RSII. Although the results for RSIII are slightly lower, the change in the 

model is not great as the results are all close to within a standard deviation. For the third model 

point the results are nearly exactly the same indicating a very strong model in that region.  
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Table 4-8: Comparison of the OD Feed Force Model between RSII and RSIII 

Model 
Point 

Spindle 
Speed 
(rpm) 

Feed rate 
(in/rev) 

OD 
DOC 
(in) 

ID 
DOC 
(in) 

RSII -OD 
Feed Force 
(N) 

RSIII - OD 
Feed Force (N) 

Percent 
Error (%) 

1 325 0.018 0.150 0.170 2207.054 2074.803 6.374% 

2 350 0.020 0.130 0.140 2049.929 1952.958 4.965% 

3 375 0.023 0.170 0.190 2977.361 2976.275 0.036% 

 

4.1.5 ID Feed Force Model 

 The ID feed force was measured by the X-axis of the force sensors. Similar to the OD 

feed force, the ID feed force was a function of the feed rate and the ID depth of cut. The ID 

depth of cut had the greatest impact on the feed force. The analysis of variance for the feed force 

model is show on Table 4-9.  

Table 4-9: Analysis of Variance of ID Feed Force Model 

Source D.O.F Seq SS Adj SS Adj MS F P 

Regression 3 4150727.000 4150727.000 1383576.000 488.620 0.000 

Linear 2 4120445.000 4120445.000 2060223.000 727.580 0.000 

Feed 1 247519.000 247519.000 247519.000 87.410 0.000 

DOC ID 1 3872926.000 3872926.000 3872926.000 1367.750 0.000 

Interaction 1 30282.000 30282.000 30282.000 10.690 0.003 

Feed*DOC ID 1 30282.000 30282.000 30282.000 10.690 0.003 

Residual Error 26 73622.000 73622.000 2832.000 
  Lack-of-Fit 5 13449.000 13449.000 2690.000 0.940 0.476 

Pure Error 21 60173.000 60173.000 2865.000 
  Total 29 4224349.000 

     

 From the analysis of variance it can be seen that only 29 degrees of freedom were used to 

build the model indicating that 1 degree of freedom was eliminated. This was due to a sensor 



61 

 

error during a centerpoint test. The centerpoint test will not affect the results as there are 5 more 

to estimate curvature towards the center of the experimental region. The force can be estimated 

with an R-Sq. value of 98.26% with a standard deviation of 53.2128 N. The standard deviation of 

the ID feed force is greater than half of the OD feed force. These results were unexpected as the 

inner diameter suffers from eccentricity. From the observed results, it can be defined that the 

feed force can still be measured accurately even with eccentric work pieces. The equation for the 

ID feed force was calculated and it is shown in Equation 4.5. 

4242 xx271903+x6158.34+x14188.3-67.7811=(N) Force Feed ID                (4.5) 

 The ID feed force model is different that the OD feed force model in the sense that it 

experiences very little curvature. In Figure 4-5, it can be seen that as the ID depth of cut 

increases, the feed force increases greatly. To minimize the force the federate and ID depth of cut 

must be minimized, but as will be seen in the ID tool wear model, these settings will not provide 

the least wear.  
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Figure 4-5: Surface Plot of ID Feed Force Model 

The ID feed force RSII model was compared to the RSIII model. The results are shown 

on Table 4-10. It is clear that there is an increase in feed force from RSII to RSIII indicating 

wear progression on the tool from RSII to RSIII. The increase in force is between 4-5%.  

Table 4-10: Comparison of the ID Feed Force Model between RSII and RSIII 

Model 
Point 

Spindle 
Speed 
(rpm) 

Feed rate 
(in/rev) 

OD 
DOC 
(in) 

ID 
DOC 
(in) 

RSII - ID 
Feed Force 
(N) 

RSIII - ID 
Feed Force 
(N) 

Percent 
Error (%) 

1 325 0.018 0.150 0.170 1675.315 1745.402 -4.016% 

2 350 0.020 0.130 0.140 1407.511 1495.852 -5.906% 

3 375 0.023 0.170 0.190 2081.014 2183.953 -4.713% 
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4.1.6 OD Tool Temperature Model 

 The OD tool temperature was measured by the thermocouple on the shim of the tool. The 

position of the thermocouple is of great importance to the results, as a slight shift in the cable 

will measure temperature in a different region of the tool. Since the thermocouple tip protruded 

slightly beyond the outer edge of the shim, the thermocouple tip was often sheared by chips and 

was always under coolant wash. This greatly affected the accuracy of the results, as new 

thermocouples had to be installed. The results for the temperature indicated that the OD tool 

temperature was a function of the OD depth of cut and the Feed rate. The analysis of variance for 

the tool temperature is shown on Table 4-11.   

Table 4-11: Analysis of Variance of the OD Tool Temperature Model 

Source D.O.F Seq SS Adj SS Adj MS F P 

Regression 3 21772.100 21772.100 7257.400 34.590 0.000 

Linear 2 21290.400 21290.400 10645.200 50.730 0.000 

Feed 1 4641.100 4641.100 4641.100 22.120 0.000 

DOC OD 1 16649.300 16649.300 16649.300 79.350 0.000 

Square 1 481.700 481.700 481.700 2.300 0.141 

DOC OD*DOC OD 1 481.700 481.700 481.700 2.300 0.141 

Residual Error 27 5665.300 5665.300 209.800 
  Lack-of-Fit 5 508.200 508.200 101.600 0.430 0.820 

Pure Error 22 5157.100 5157.100 234.400 
  Total 30 27437.400 

     

 From the analysis of variance, it can be seen that the OD depth of cut has the largest 

impact on the on the model, followed by the feed rate. The OD tool temperature was measured 

with an R-Sq. value of 79.35% with a standard deviation of 14.4854 ºF. The equation for the OD 

tool temperature can be seen in Equation 4.6.  
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2
3

x4992.77-
3

x2358.02+
2

x4014.36+149.786- =(F) eTemperatur Tool OD      (4.6) 

 The response for the OD tool temperature was very similar to force. The plot for the 

response can be seen in Figure 4-6.  

 

Figure 4-6: Surface Plot of the OD Tool Temperature Model 

 The results for the OD tool temperature were compared between RSII and RSIII and are 

shown on Table 4-12. All of the results were within a standard deviation indicating an accurate 

model. The tool life testing results did not indicate an increase in OD tool temperature as the tool 

wear progressed. This is evident in the comparison seen below.  
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Table 4-12: Comparison of the OD Tool Temperature Model between RSII and RSIII 

Model 
Point 

Spindle 
Speed 
(rpm) 

Feed rate 
(in/rev) 

OD 
DOC 
(in) 

ID 
DOC 
(in) 

RSII - OD 
Tool Temp 
(F) 

RSIII - OD 
Tool Temp (F) 

Percent 
Error (%) 

1 325 0.018 0.150 0.170 161.831 167.207 -3.215% 

2 350 0.020 0.130 0.140 152.666 156.733 -2.595% 

3 375 0.023 0.170 0.190 197.109 188.351 4.650% 

 

4.1.7 ID Tool Temperature Model 

 The ID thermocouple was mounted in the same way that the OD thermocouple was, thus 

suffered from the same environment. The main difference in the cutting environment between 

the OD and ID thermocouples is that the ID thermocouple was cutting inside of the work piece 

while coolant was flowing. The coolant flow flooded the ID thermocouple as it was trying to 

escape from the work piece as the tool was cutting. The ID tool temperature model was similar to 

the OD tool temperature model with the ID depth of cut being the most influential factor. The 

analysis of variance for the ID tool temperature is shown on Table 4-13.   

Table 4-13: Analysis of Variance of the ID Tool Temperature Model 

Source D.O.F Seq SS Adj SS Adj MS F P 

Regression 3 6563.700 6563.700 2187.890 30.630 0.000 

Linear 2 5750.200 5750.200 2875.100 40.250 0.000 

Feed 1 639.000 639.000 638.980 8.950 0.006 

DOC ID 1 5111.200 5111.200 5111.210 71.560 0.000 

Square 1 813.500 813.500 813.480 11.390 0.002 

Feed*Feed 1 813.500 813.500 813.480 11.390 0.002 

Residual Error 27 1928.400 1928.400 71.420 
  Lack-of-Fit 5 496.700 496.700 99.340 1.530 0.222 

Pure Error 22 1431.700 1431.700 65.080 
  Total 30 8492.100 
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 The ID tool temperature could be measured with an R-Sq. value of 77.29% with a 

standard deviation of 8.45125 ºF. The predictability of the ID and OD tool temperature are very 

similar but the standard deviation of the ID tool temperature is much lower indicating less 

variation of the ID tool temperature. The equation derived for the ID tool temperature is shown 

in Equation 4.7.   

2
242 x648822+x421.275+x24463.3-285.471=(F) eTemperatur Tool ID     (4.7) 

 The equation for the ID tool temperature was plotted and is shown in Figure 4-7. From 

this figure the curvature caused the second order feed term is evident. In order to reduce the 

temperature the feed rate must be near the center point region.  

 

Figure 4-7: Surface plot of the ID Tool Temperature Model 
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 The results between RSII and RSIII for the ID tool temperature yielded very similar 

results. The comparison between the two models is shown on Table 4-14.  

Table 4-14: Comparison of the ID Tool Temperature Model between RSII and RSIII 

Model 
Point 

Spindle 
Speed 
(rpm) 

Feed rate 
(in/rev) 

OD 
DOC 
(in) 

ID 
DOC 
(in) 

RSII -ID 
Tool Temp 
(F) 

RSIII -ID 
Tool Temp 
(F) 

Percent 
Error (%) 

1 325 0.018 0.150 0.170 127.682 127.272 0.322% 

2 350 0.020 0.130 0.140 114.712 123.370 -7.017% 

3 375 0.023 0.170 0.190 143.555 141.714 1.299% 

 

4.1.8 OD Tool Wear Model 

 The OD tool wear was categorized by the flank wear measurement after eeach test. RSII 

models were categorized by the second pass on the tool edges and RSIII models were 

categorized by the third pass on the tool edges. The results from RSIII were expected to be more 

accurate than the RSII because as more passes are placed on the tool edge, the flank wear trend 

line appears clearer on the tool edge. The OD tool wear was a function of the spindle speed, feed 

rate and OD depth of cut. The OD tool wear is the first model described where a second order 

term has the largest influence on the response. The analysis of variance for the OD tool wear 

model is shown on Table 4-15.  
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Table 4-15: Analysis of Variance of the OD Tool Wear Model 

Source D.O.F Seq SS Adj SS Adj MS F P 

Regression 5 29182.000 29182.000 5836.400 14.840 0.000 

Linear 3 13517.000 13517.000 4505.700 11.450 0.000 

Speed 1 7914.000 7914.000 7914.000 20.120 0.000 

Feed 1 1484.000 1484.000 1483.700 3.770 0.063 

DOC OD 1 4119.000 4119.000 4119.300 10.470 0.003 

Square 1 14506.000 14506.000 14505.900 36.880 0.000 

Speed*Speed 1 14506.000 14506.000 14505.900 36.880 0.000 

Interaction 1 1159.000 1159.000 1159.100 2.950 0.098 

Speed*DOC OD 1 1159.000 1159.000 1159.100 2.950 0.098 

Residual Error 25 9834.000 9834.000 393.400 
  Lack-of-Fit 9 5617.000 5617.000 624.100 2.370 0.064 

Pure Error 16 4217.000 4217.000 263.600 
  Total 30 39016.000 

     

 The analysis of variance for the OD tool wear models yields that the second order spindle 

speed term has the greatest influence on the model followed the by linear spindle speed term. 

The OD tool wear could be predicted with an R-sq. value of 74.79% with a standard deviation of 

19.8334 microns. The equation for the OD tool wear is shown in Equation 4.8.   

31
2
3

321

xx3.03982+x 0.00894643+                                     

x685.744-x2269.76+x6.44933-1153.61=m)( Wear Tool OD




   (4.8) 

 Each one of the factors is compared to see how they affect the response in Figure 4-8. 

The second order effect of the spindle speed is evident when comparing the spindle speed with 

the feed rate and the OD depth of cut. More importantly it can be seen that when the spindle 

speed is maintained at lower levels the wear will minimal regardless of the OD depth of cut or 

the feed rate.  
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Figure 4-8: Contour Plots of the OD Tool Wear Model 

 The results from the OD tool wear model in RSII are compared to RSIII in Table 4-16. 

The increase in wear from one model to the other is evident, thus the models cannot be compared 

as to accuracy. The RSIII tool wear model was more accurate as the R-Sq. value changed to 

90.23% due to a more defined wear line in each tool edge.  
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Table 4-16: Comparison of the OD Tool Wear Model between RSII and RSIII 

Model 
Point 

Spindle 
Speed 
(rpm) 

Feed 
rate 
(in/rev) 

OD 
DOC 
(in) 

ID 
DOC 
(in) 

RSII -OD 
Tool Wear 
(mm) 

RSIII - OD 
Tool Wear 
(mm) 

Percent 
Increase 
(%) 

1 325 0.018 0.150 0.170 87.595 104.603 16.259% 

2 350 0.020 0.130 0.140 86.842 105.161 17.420% 

3 375 0.023 0.170 0.190 121.485 181.668 33.128% 

 

4.1.9 ID Tool Wear Model 

The ID tool wear was measured by measuring the flank wear on the tool edge after each 

test. Since the ID material removed is much less than the OD material removed the tool wear 

increases at a much slower pace. The ID Tool wear was a model defined by all of the factors. 

The OD depth of cut had an impact on the ID tool wear indicating that there is an interaction 

between the machining operation that affects the wear mechanism of the ID tool edge. Much like 

the OD tool wear model, the main contribution to the ID tool wear model was the second order 

spindle speed term followed by the linear speed term. The analysis of variance of the ID tool 

wear model is shown on Table 4-17.   
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Table 4-17: Analysis of Variance of the ID Tool Wear Model 

Source D.O.F Seq SS Adj SS Adj MS F P 

Regression 8 14929.600 14929.600 1866.200 6.470 0.000 

Linear 4 3160.100 3160.100 790.020 2.740 0.056 

Speed 1 2927.900 2927.900 2927.910 10.160 0.004 

Feed 1 215.300 215.300 215.330 0.750 0.397 

DOC OD 1 13.500 13.500 13.460 0.050 0.831 

DOC ID 1 3.400 3.400 3.370 0.010 0.915 

Square 1 5642.400 5642.400 5642.370 19.580 0.000 

Speed*Speed 1 5642.400 5642.400 5642.370 19.580 0.000 

Interaction 3 6127.100 6127.100 2042.370 7.090 0.002 

Speed*Feed 1 2461.300 2461.300 2461.250 8.540 0.008 

Speed*DOC OD 1 1916.200 1916.200 1916.210 6.650 0.018 

Speed*DOC ID 1 1749.700 1749.700 1749.670 6.070 0.022 

Error 21 6052.800 6052.800 288.230 
  Lack-of-Fit 16 4306.700 4306.700 269.170 0.770 0.686 

Pure Error 5 1746.100 1746.100 349.230 
  Total 29 20982.400 

     

 The ID tool wear model has an R-sq. value of 71.15% with a standard deviation of 

16.9773 microns. One term was not counted in the model as the tool edge chipped during the 

pass. The equation for the ID tool wear is shown in Equation 4.9.  

4131

21
2
14

21

xx3.73473-xx3.90844                                    

+xx44.2955+x0.00571306+x1296.35                                    

+x31389.57-x14638.8-x4.73064-1001.16=m)( Wear Tool ID






  (4.9) 

 A contour plot was created to show how each one of the responses affected the ID tool 

wear and it is shown in Figure 4-9. Several interesting effects can be seen from this plot. When 

comparing the ID depth of cut with the spindle speed, it is evident that as the spindle speed is 

increased at lower depths of cut there is a greater increase in wear. This is due to the eccentricity 
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effect of the work piece. When comparing the OD depth of cut with the spindle speed, it can be 

seen that when the speed is at centerpoint levels the OD Depth of cut can be increased to any 

level and it will not affect the wear of the ID tool.  
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Figure 4-9: Contour Plots of the ID Tool Wear Model 

 The results from the ID tool wear model were compared from RSII to RSIII. The increase 

in wear of the tool is evident from RSII to RSIII. The model accuracy increased to an R-sq. value 

of 94.38% for RSIII indicating a clearer flank wear trend line on the tool edges. The comparison 

is shown in Table 4-18.  
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Table 4-18: Comparison of the ID Tool Wear Model between RSII and RSIII 

Model 
Point 

Spindle 
Speed 
(rpm) 

Feed rate 
(in/rev) 

OD 
DOC 
(in) 

ID 
DOC 
(in) 

RSII - ID Tool 
Wear (mm) 

RSIII -ID 
Tool Wear 
(mm) 

Percent 
increase 
(%) 

1 325 0.018 0.150 0.170 59.032 68.907 14.330% 

2 350 0.020 0.130 0.140 58.255 63.764 8.639% 

3 375 0.023 0.170 0.190 68.082 85.198 20.089% 

 

4.1.10 Cost Model 

 The cost model is the fundamental model to be used in the optimization of the 

simultaneous cutting operation as it is the driving factor for the Red Lion facility. The cost 

function was derived in section 2.4. The results from the analysis of variance of the cost function 

applied to RSII can be seen on Table 4-19.  

Table 4-19: Analysis of Variance of the Cost Model 

Source D.O.F Seq SS Adj SS Adj MS F P 

Regression 5 0.539 0.539 0.108 126.750 0.000 

Linear 2 0.188 0.188 0.094 110.520 0.000 

Speed 1 0.043 0.043 0.043 50.350 0.000 

Feed 1 0.145 0.145 0.145 170.700 0.000 

Square 2 0.153 0.153 0.077 90.240 0.000 

Speed*Speed 1 0.143 0.033 0.033 39.350 0.000 

Feed*Feed 1 0.010 0.010 0.010 11.860 0.002 

Interaction 1 0.197 0.197 0.197 232.240 0.000 

Speed*Feed 1 0.197 0.197 0.197 232.240 0.000 

Residual Error 25 0.021 0.021 0.001 
  Lack-of-Fit 3 0.001 0.001 0.000 0.460 0.714 

Pure Error 22 0.020 0.020 0.001 
  Total 30 0.560 

     



74 

 

 The cost function model was a full second order model of the spindle speed and feed rate 

factors. Since the depths of cut were not considered in the tool life applications, this model was 

expected. The highest contributing factor to the cost is the combination of the spindle speed and 

feed rate terms. With the application of the cost function to the RSII model, the cost per test can 

be calculated with a R-Sq. value of 96.21% and a standard deviation of 0.0291579 $. The cost 

function applied to RSII yielded the equation in terms of the factors and it is shown in Equation 

4.10.  

21
2
2

2
121

xx0.396741+x3368.84+                  

x05-2.00394E+x296.061-x0.0226590-9.13223=($) Cost

1



   (4.10) 

 

 The response surface for the cost was plotted in Figure 4-10 to show the relationship 

between the spindle speed and the feed rate. From the plot it can be seen that a lower spindle 

speed and feed rate cause a high rise in costs due to the labor rate, but as the spindle speeds and 

feed rates are raised to high levels, the costs begin to rise due to the tool life .  
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Figure 4-10: Surface Plot of the Cost Model 

 The cost model for RSII was compared to the cost of RSIII and the results are nearly the 

same. The only factor affecting the slight changes in the response is the cut time. Since there are 

slight differences in the cut time from RSII to RSIII there is a slight percent error shown in Table 

4-20.  

Table 4-20: Comparison of the Cost Model between RSII and RSIII 

Model 
Point 

Spindle 
Speed (rpm) 

Feed rate 
(in/rev) 

OD 
DOC 
(in) 

ID 
DOC 
(in) 

RSII - 
Cost ($) 

RSIII - 
Cost ($) 

Percent 
Error (%) 

1 325 0.018 0.150 0.170 1.992 1.999 -0.356% 

2 350 0.020 0.130 0.140 1.860 1.860 0.013% 

3 375 0.023 0.170 0.190 1.845 1.846 -0.061% 
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4.2 Optimization 

 The optimization of the simultaneous cutting operation is focused on the Red Lion 

facility. In the previous sections the results show that the sensor signals along with other 

important factors such as the cut time, tool wear, and cost are modeled to represent the cutting 

operation using the four factors of spindle speed, feed rate, OD depth of cut and ID depth of cut 

based around Red Lion facility settings.  

 Most operations in the Red Lion facility require a heavy material removal pass followed 

by a finishing pass to machine the work pieces to specification and desired surface roughness. 

Two material removal operations and a finishing pass would be less of a toll on the lathe but 

would cost more money due to the labor rate of adding another pass. The heaviest material 

removal pass allowed by this research is 0.200 in both in the OD and the ID. Pushing the 

machine past these depths of cut would result power consumption greater than the lathe can 

output.  

 To compare how each one of the factors affects the responses an overlaid contour plot 

was created with all ten responses and it is shown in Figure 4-11. This plot holds the depths of 

cut constant at 0.200 in to allow for maximum material removal in the first pass. In the center of 

the overlaid contour plot one can see the settings used by the Red Lion facility.  
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Figure 4-11: Contour Plot of Combined Responses at High Depths of Cut 

 From the overlaid contour plot the responses can be compared to decide on optimal 

operating levels. Since the forces and temperatures are generally functions of the feed rate and 

depths of cuts, they set the general limitation on the allowed feed rate. The cut time, average 

power, and sum of the power all show similar trends with increasing spindle speeds and feed 

rates. The goal of optimization is to reduce the cut time and the sum of power, while staying in 

an available operating range of the average power. To keep the lathe from operating at maximum 

power an operation condition of <43 kW was chosen. The overlaid contour plot also shows the 
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similarity of the effects of the spindle speed and feed rates on the OD and ID tool wear. The most 

important factor considered for the optimization is the cost which is represented by the dashed 

black line. Inside the black dashed line the cost is below $1.90. 

 Using the desirability function centered around cost minimization, the optimal settings 

for the Red Lion facility are a spindle speed of 365 rpm and a feed rate of 0.0223 holding the 

depths of cut constant at their highest settings. This can be seen in Minitab’s Optimization Plot 

shown in Figure 4-12. The plot shows that both the OD and ID tool wear models are not at their 

minimal levels, but the cost is close to the minimum.  

 

Figure 4-12: Response Optimizer  
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 To compare the optimal settings to the Red Lion facility settings a table was created. In 

Table 4-21, it is seen that the optimization reduced the cost, sum of power, and the cut time. The 

tradeoff was a slight increase in average power and increases in both OD and ID tool wear. The 

cost decrease does not show the decreases in cost that the company could potentially save in 

overall power consumption. By reducing the overall power required to produce a work piece by 

over 12% the overall facility costs of electricity will be decreased. 

Table 4-21: Comparison of Results between Red Lion and Proposed Optimum 

Responses Units Red Lion Settings Proposed Optimum % Difference 

OD Tool Wear  μm 113.54 126.87 10.51% 

ID Tool Wear μm 56.1934 63.7393 11.84% 

Cut Time s 41.7405 35.0866 -18.96% 

Average Power W 39652.1 41700 4.91% 

Sum of Power W/E+10 3.29228 2.9356 -12.15% 

Cost $ 1.85899 1.8338 -1.37% 

 

 The results from the optimization have led to an improvement in productivity while still 

reducing cost. It is of importance to note that these results are valid for the given tool wear 

conditions. As the tool wears further, an expected increase of power will be seen along with 

increasing forces on the tool. A further study should be performed to determine how the 

empirical models will change throughout the entire life of the tool.  
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5 CHAPTER  5. CHAPTER 5 – CONCLUSION & FUTURE RESEARCH 

 The research presented in this paper focuses on the use of the Response Surface Method 

to build empirical models based off of the four process parameters chosen and to optimize the 

machining process. The results from the designs of experiments proved that cost reductions 

could be made while reducing the production time and power consumption. The next phase of 

the research project should allow for the implementation of the statistical results gathered to an 

adaptive controller.  

 Before construction of an adaptive controller is considered, correlation analysis must be 

made between the empirical models of each sensor signal. The multitude of sensors added to the 

lathe could prove costly once the price of the data acquisition equipment is also taken into 

account. Several of the sensor signals maybe reiterating each other so regression analysis may be 

performed to acquire one sensor response from another. By doing so, a limited amount of sensors 

that monitor the cutting operation can be carefully chosen. This will also limit the amount of data 

acquired thus limiting the amount of equipment required to acquire data.  

 Another area that could be investigated further is the tool life of the inner diameter boring 

tool. If a tool life model is designed for the inner diameter, then a simultaneous cost function 

could be derived. Since the outer diameter tool wear is much greater than the inner diameter tool 

wear, this is not required as the outer diameter tool will need replacement prior to the inner 

diameter tool.  

The application of the Taylor Tool Life model for the outer diameter was one of the key 

results used in obtaining cost. Although the depth of cut does not have a large impact on the tool 
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life, several researchers have developed a Taylor Tool Life model using the cutting speed, feed 

rate and depth of cut. Due to the limited amount of work pieces used in this research the extra 

amount of data points required to include the depth of cut in the tool life model could not be 

achieved. The accuracy of the results could be increased by including the depth of cut in the 

model.  

The design of experiments approach to find optimal settings proved useful in this 

manufacturing operation. A downfall of this method is that the empirical models derived for each 

sensor signal are only true to the region of tool life explored which is in the beginning phase. 

Several sensor signals such as force, power and sound change as the tool wear progresses thus 

changing the optimal region. To identify how the forces will change over the life of the tool, 

several design points could be experimented on until tool failure. The limited amount of work 

pieces did not allow for this testing to be performed.  
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APPENDIX A: RESPONSE SURFACE II RESULTS 
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Run  Cut Time  Average Power  

Power 

Sum 

OD Feed 

Force 

ID Feed 

Force 

1 67.636 32327.757 4.360 1257.109 2035.710 

2 43.372 39875.555 3.459 2358.503 1968.211 

3 64.227 33450.056 4.297 2419.100 1126.680 

4 27.218 43153.098 2.349 

 

1290.554 

5 42.038 36879.678 3.101 2636.494 1631.967 

6 43.568 38844.084 3.384 3579.060 2264.202 

7 40.976 36753.636 3.012 2620.623 1611.359 

8 45.271 33868.287 3.066 1644.865 1048.250 

9 44.928 33466.651 3.007 2118.090 1212.306 

10 28.750 39830.680 2.290 1993.446 2197.175 

11 29.150 45284.649 2.640 

 

2401.604 

12 42.364 36478.047 3.091 2476.808 1640.688 

13 46.450 37540.508 3.488 2722.469 1113.223 

14 66.450 30958.738 4.114 1624.505 1191.925 

15 65.847 34550.115 4.550 2716.598 1952.276 

16 42.956 37241.733 3.200 3498.556 1238.590 

17 27.564 37637.140 2.075 2295.138 1277.512 

18 44.110 36882.869 3.254 2593.380 

 19 44.650 35085.125 3.133 2069.534 2229.023 

20 44.660 35538.726 3.174 1592.406 1900.851 

21 41.501 37785.638 3.136 2530.156 2078.826 

22 41.809 38528.305 3.222 3062.886 1607.138 

23 52.374 34834.543 3.649 2394.293 1472.023 

24 41.686 36683.503 3.058 2578.853 1559.475 

25 34.565 39174.157 2.708 2617.112 1608.026 

26 34.116 39100.114 2.668 2892.703 1808.953 

27 41.788 34636.683 2.895 1910.695 1595.003 

28 41.060 36713.787 3.015 2541.532 1665.598 

29 41.717 35943.819 2.999 2654.641 1179.427 

30 53.887 34597.327 3.700 2482.387 1684.808 

31 41.592 36729.966 3.055 2606.162 1591.839 
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Run  

OD Tool 

Temperature 

ID Tool 

Temperature OD Tool Wear 

ID Tool 

Wear 

1 134.252 144.979 89.493 101.167 

2 172.373 155.756 171.205 89.493 

3 148.097 117.356 128.404 77.820 

4 192.023 126.407 202.333 155.641 

5 191.856 125.242 77.820 58.365 

6 240.362 166.627 128.404 73.929 

7 194.515 113.899 97.276 89.493 

8 125.817 108.296 147.859 97.276 

9 147.678 107.143 112.840 46.692 

10 161.652 152.293 151.750 77.820 

11 218.846 153.019 241.243 120.622 

12 197.956 123.242 73.929 42.801 

13 199.332 115.422 155.641 81.711 

14 130.248 106.946 112.840 93.385 

15 207.333 122.463 108.949 58.365 

16 241.393 119.392 140.077 42.801 

17 141.327 123.187 132.295 116.731 

18 172.490 123.571 128.404 

 19 161.699 174.776 116.731 101.167 

20 134.099 145.638 128.404 70.038 

21 172.200 130.465 101.167 58.365 

22 201.780 119.475 93.385 54.474 

23 155.505 131.182 116.731 66.147 

24 179.357 124.312 77.820 35.019 

25 178.354 126.171 136.186 73.929 

26 191.110 132.440 97.276 62.256 

27 137.330 122.278 105.130 66.147 

28 167.780 129.492 108.949 54.474 

29 184.404 118.549 97.276 46.692 

30 180.829 125.926 151.750 58.365 

31 173.234 118.156 101.241 54.474 

 

  



85 

 

APPENDIX B: RESPONSE SURFACE III RESULTS 
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Run  

Cut 

Time  Average Power  

Power 

Sum 

OD Feed 

Force 

ID Feed 

Force 

1 67.000 31091.849 4.166 1359.029 1152.254 

2 28.030 37649.575 2.111 1805.479 1393.912 

3 41.550 36568.424 3.039 2301.672 1707.569 

4 65.400 34752.099 4.546 2561.062 2052.235 

5 44.250 34955.677 3.094 1869.116 2412.995 

6 41.500 36687.339 3.045 2329.209 1685.711 

7 41.500 37938.768 3.149 2599.959 1194.494 

8 43.225 36981.908 3.197 3326.610 1372.747 

9 43.760 35968.501 3.148 1611.616 2061.730 

10 29.150 45284.649 2.640 4327.202 2401.604 

11 41.273 37051.475 3.058 2669.727 

 12 67.597 31878.700 4.310 1463.608 2079.952 

13 44.600 38839.904 3.465 3480.954 2297.610 

14 43.970 33934.078 2.984 1688.193 1234.174 

15 42.420 33403.327 2.834 2033.781 1340.858 

16 27.829 42972.801 2.392 3842.338 1587.731 

17 42.390 39711.915 3.367 2856.842 2037.826 

18 66.632 33572.592 4.474 2696.569 1106.220 

19 42.710 36918.170 3.154 2723.132 

 20 29.956 39859.597 2.388 2003.429 2479.558 

21 42.670 37063.684 3.163 2565.661 1637.504 

22 42.352 36041.408 3.053 2592.260 1193.004 

23 41.028 37037.318 3.039 2660.516 1663.453 

24 34.310 38972.436 2.674 2801.387 1898.011 

25 41.658 37360.619 3.113 2513.487 2128.896 

26 52.156 34572.121 3.606 2401.494 1711.168 

27 51.946 34604.340 3.595 2223.886 1499.766 

28 41.592 38476.706 3.201 3095.504 1673.089 

29 34.071 39613.292 2.699 2741.791 1677.367 

30 42.274 34940.198 2.954 1837.405 1717.858 
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Run  

OD Tool 

Temperature 

ID Tool 

Temperature 

OD Tool 

Wear 

ID Tool 

Wear 

1 150.834 102.273 93.385 97.276 

2 150.598 129.992 186.789 105.058 

3 182.401 138.620 

 

66.147 

4 194.498 119.207 112.840 70.038 

5 152.211 149.697 97.276 101.167 

6 178.449 133.082 105.058 62.256 

7 196.738 113.030 175.096 58.365 

8 208.455 114.241 190.660 77.820 

9 134.141 141.162 140.077 89.493 

10 218.846 153.019 338.519 128.404 

11 184.498 126.749 143.968 

 12 136.373 134.395 97.276 100.529 

13 201.119 138.673 159.532 89.493 

14 143.274 108.824 147.859 97.276 

15 159.793 116.261 105.058 73.929 

16 203.392 117.447 319.064 105.058 

17 189.521 126.379 198.442 70.038 

18 194.655 102.671 124.513 85.602 

19 179.265 113.365 155.641 

 20 153.286 140.075 147.859 

 21 191.326 116.765 120.622 62.256 

22 179.596 117.743 120.622 54.474 

23 181.444 114.389 128.404 62.256 

24 179.363 128.027 132.295 81.711 

25 177.359 150.094 116.731 70.038 

26 190.927 121.150 143.968 70.038 

27 159.256 123.605 136.186 77.820 

28 192.676 134.510 159.532 54.474 

29 178.054 139.357 178.987 73.929 

30 147.598 128.628 128.404 62.256 
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