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ABSTRACT 
 

Nonlinear constrained optimal trajectory control is an important and fundamental area of 

research that continues to advance in numerous fields. Many attempts have been made to present 

new methods that can solve for optimal trajectories more efficiently or to improve the overall 

performance of existing techniques. This research presents a recently developed bio-inspired 

method called the Virtual Motion Camouflage (VMC) method that offers a means of quickly 

finding, within a defined but varying search space, the optimal trajectory that is equal or close to 

the optimal solution. 

The research starts with the polynomial-based VMC method, which works within a 

search space that is defined by a selected and fixed polynomial type virtual prey motion. Next 

will be presented a means of improving the solution’s optimality by using a sequential based 

form of VMC, where the search space is adjusted by adjusting the polynomial prey trajectory 

after a solution is obtained. After the search space is adjusted, an optimization is performed in 

the new search space to find a solution closer to the global space optimal solution, and further 

adjustments are made as desired. Finally, a B-spline augmented VMC method is presented, in 

which a B-spline curve represents the prey motion and will allow the search space to be 

optimized together with the solution trajectory. 

It is shown that (1) the polynomial based VMC method will significantly reduce the 

overall problem dimension, which in practice will significantly reduce the computational cost 

associated with solving nonlinear constrained optimal trajectory problems; (2) the sequential 

VMC method will improve the solution optimality by sequentially refining certain parameters, 

such as the prey motion;  and (3) the B-spline augmented VMC method will improve the solution 
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optimality without sacrificing the CPU time much as compared with the polynomial based 

approach. Several simulation scenarios, including the Breakwell problem, the phantom track 

problem, the minimum-time mobile robot obstacle avoidance problem, and the Snell’s river 

problem are simulated to demonstrate the capabilities of the various forms of the VMC 

algorithm. The capabilities of the B-spline augmented VMC method are also shown in a 

hardware demonstration using a mobile robot obstacle avoidance testbed.  
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 1.  INTRODUCTION 
 

1.1. Introduction and Literature Search 

 

Nonlinear trajectory planning optimization is an incredibly important and fundamental 

area of research that remains active to this very day. Countless applications that involve controls 

and dynamics utilize this form of optimization, including applications that consider inequality 

constraints for states and controls. In these problems, the goal is to find the values of the state x  

and control u  variable that generate the optimum (minimum or maximum) value of a cost 

function 
0

[ ( ), ] ( , , )
ft

f f
t

J t t L t dt  x x u  subject to inequality constraints ( , , ) 0t g x u  and 

equality constraints ( , , ) 0t h x u , the latter of which includes dynamic equations of motion 

( , , )tx f x u  and boundary conditions 0 0[ ( ), ( ), , ] 0
f f

t t t t ψ x x . Some trajectory planning 

problems that have used nonlinear optimization methods include satellite formation flying [53], 

short-time special maneuvers [59], robotic arm manipulators [54], mobile robots path generation 

[55], spacecraft rendezvous [56], missile control [68], spacecraft reentry [69], reconnaissance 

and surveillance missions [70], and mapping and exploration [71]. For these problems and more, 

many optimization methods [5], both optimal and suboptimal, have been proposed over the years 

to effectively and efficiently solve these applications. Many of these methods are typically used 

to find a problem’s local optimum and are known as mathematical programming approaches. 

Approaches that can be classified as mathematical programming can be divided broadly 

into two main categories: (1) the calculus of variations (CoV) with Pontryagin’s Minimum 

Principle (PMP), and (2) direct collocation (DC) with nonlinear programming (NLP).  The 



 

 

2 

methods defined as CoV+PMP approaches usually lead to optimality necessary conditions, 

which have been widely used in solving nonlinear optimal trajectory planning problems. 

Furthermore, a quickly converged solution can sometimes be obtained when the approaches are 

accompanied by shooting methods [12][13][15].  However, problems formulated in this manner 

are extremely sensitive to the initial guess of the costate, and the obtained result may not have 

converged and it may not be the global optimum. Additionally, the presence of discontinuities or 

inequality constraints (I.E.C.s) within the state or control variables can make a converged 

solution very difficult to achieve, even with help from the indirect adjoining or direct adjoining 

approaches [24][25].  

The second mathematical programming category involves DC+NLP methods. The 

methods in this category are promising and several approaches based on different discretization 

schemes and NLP packages have been proposed in recent years. Trapezoid, Hermite-Simpson, 

Runge-Kutta [26][4], B-Spline [27], and Pseudospectral Methods such as Legendre-Gauss-

Lobatto [7], Radau [28][29], and Gauss [3] are all discretization methods that have been 

examined.  DC+NLP methods have the benefit of avoiding any derivation of transversality 

conditions, and unlike CoV+PMP methods, the presence of discontinuities, equality constraints 

(E.C.s), and I.E.C.s can easily be incorporated. On the other hand, the discretization scheme 

chosen for the method can affect the solution. Furthermore, the dimension of the problem is 

typically very large, so applying DC+NLP methods for rapid planning and re-planning can be 

impractical.  

As mentioned earlier, solutions that are obtained using mathematical programming are 

often local optima. Therefore, numerous heuristic or metaheuristic algorithms have been 
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proposed in order to mitigate this issue. Many of these algorithms are bio-inspired and tend to 

use fairly simple methodologies. Examples of heuristic and methaueristic algorithms include 

evolutionary programming [30], genetic algorithm [31][23], simulated annealing [32], artificial 

immunity [33], multi-start [34], Tabu search [35], ant colony optimization [36], differential 

evolution [37], cross entropy [38], particle swarming [39][40], harmony search [41], invasive 

weed optimization [42], bee algorithm [43], firefly algorithm [44], and cuckoo search [45]. Most, 

if not all of these algorithms can be understood as a two-step iterative process. First, a solution is 

evaluated, and second, the solution is improved through a search. The effectiveness of many of 

these algorithms has been demonstrated in examples, but the methods generally also tend to lack 

any kind of rigorous proof. Furthermore, the evaluation and search algorithms often have high 

computational costs that make them inappropriate for rapid optimal trajectory planning. 

As a way to compromise between mathematical programming and heuristic methods, so-

called hybrid methods, such as the biologically inspired “local pursuit” method and its variations 

[46][47] have been proposed. A two-step iterative process is involved with hybrid methods, 

similar to how metaheuristic approaches function, but in this case a rigorous proof has been 

provided for some special optimization problems such that each step of the iteration will improve 

the previous achieved solution. The two-step process involves a two-loop structure. First, the 

inner loop takes care of local optimization with traditional methods such as mathematical 

programming. Second, refinement of the solution is performed within the outer loop using bio-

inspired methodologies such as the heuristic and metaheuristic methods. Thus far, these hybrid 

approaches hold a lot of promise, but currently their computational cost still remains too high for 

real-time implementation. 
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Attempts to address this heavy computational cost has been made using proposed 

algorithms called dimension reduction methods, in which the infinite dimension of the system is 

reduced to a more manageable and finite size. Three examples of this type of method are the 

shape based method, the inverse dynamic in virtual domain (IDVD) method, and the primitive 

trajectory generation method. The shape based method [48] assumes a known path and then 

optimizes the acceleration of the vehicle along that path, while the IDVD approach [21][22] 

approximates the trajectory using a family of polynomials with optimized coefficients. An 

analytical method with an imposed avoidance condition [67] is used to generate a family of 

piecewise polynomials that can describe feasible trajectories, and the primitive trajectory 

generation method [66] constructs paths using a series of primitives that maintain defined 

boundary conditions. As hoped, the computational cost of these approaches is reduced compared 

to previously discussed methods, but in general the methods’ solutions tend to only be feasible 

and their optimality has not been proven. 

 

 

1.2. Significance of the Dissertation 

 

The research presented within this dissertation will solve a class of nonlinear constrained 

optimal trajectory planning problems rapidly through the introduction of the virtual motion 

camouflage (VMC) method. Similar to Category 4 methods, the VMC method reduces the 

infinite dimension of the problem to a finite dimension problem, which is expected to 

significantly improve the computational time of the problem. In addition, the optimality of the 

solution for this method has been proven. The VMC method also allows for intuitive initial 
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guesses because the parameters have physical meaning. 

An important issue that will also be examined is the previously mentioned problem of a 

search space that cannot allow the global solution to be generated within the reduced dimension 

search space. The VMC method uses an observed biological phenomenon called motion 

camouflage to construct a subspace in which the solution trajectory is solved. This solution 

trajectory is optimal within the constructed subspace but may not be able to generate the global 

solution within that same search space. Therefore, this dissertation will introduce means of 

adjusting the search space such that the VMC’s optimal solution is equal to or close to the global 

space’s optimal solution. 

In addition, the VMC method also offers advantages in single vehicle trajectory planning, 

such as a mobile robot testbed involving a dynamic obstacle environment. Because of the 

relatively small dimension, the VMC method can generate a trajectory solution fast enough that 

it can be applied rapidly. The algorithm can also be setup such that it can recalculate the mobile 

robot’s path quickly and efficiently if the environment changes noticeably. VMC can also handle 

multiple robots within certain cooperative trajectory planning scenarios. For example, if multiple 

robots are required to traverse an obstacle-laden environment simultaneously without colliding 

with each other, VMC can utilize a decentralized solving structure to prevent such collisions 

from occurring. 

 

 

1.3. Outline 

 

The following sections summarize each chapter of this dissertation and their 
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contributions. 

Chapter 2: In this chapter, some background information is presented to discuss the tools 

and methods that will be used to define the virtual motion camouflage method. Some 

background information about the observed biological phenomenon motion camouflage will be 

discussed. Then two important methods – pseudospectral methods and differential inclusion – 

that help form the method of motion camouflage will be presented. Finally, nonlinear 

programming will be discussed. 

Chapter 3: In this chapter, the general polynomial based virtual motion camouflage 

method is presented. First, the general procedure of how motion camouflage works will be 

presented. A discussion on necessary conditions will then be presented, and algorithms on how 

the polynomial based VMC method implements these necessary conditions will be provided. 

Finally, a discussion on VMC’s optimality and dimension analysis will be given. 

Chapter 4: In this chapter, the sequential VMC method is derived. First the chapter 

discusses the motivation behind the sequential VMC method. Then several tools used in the 

sequential method – linear programming and line search – are discussed. Finally, the sequential 

VMC algorithm is presented. 

Chapter 5: In this chapter, the B-spline augmented VMC (BVMC) method is introduced. 

First, some basic properties of B-spline curves are provided. Then, necessary conditions that can 

be used with the B-spline augmented VMC method are derived. The algorithm for the BVMC 

method is then presented. Finally, a dimension comparison and discussion on the optimality is 

provided. 

Chapter 6: In this chapter, the VMC method is applied to a specific cooperative 
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trajectory optimization scenario called the coherent phantom track generation. 

Chapter 7: In this chapter, the VMC method is applied to another specific trajectory 

optimization scenario, satellite rendezvous within the LVLH coordinate frame. 

Chapter 8: In this chapter, several simulation examples are provided to demonstrate the 

capabilities of the VMC method, specifically the B-spline augmented VMC method. First, the 

Snell’s River problem is presented to demonstrate VMC ability to solve a system with 

noninjective system dynamics. Second, a minimum-time obstacle avoidance problem is 

demonstrated to show how VMC can generate paths navigating in an obstacle-laden 

environment. Simulation examples for the two special applications – the phantom track 

generation problem and the free-flying rendezvous problem – are then shown. Finally, the 

obstacle-avoidance problem is revisited to show VMC’s ability to work in a real-world testbed 

with dynamic obstacles. 

Chapter 9: Conclusions are drawn about the VMC method and its variations and future 

work is presented. 
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 2.  PRELIMINARY TOOLS 
 

In this chapter, some discussion about the preliminary tools used to create the virtual 

motion camouflage method will be discussed. First, the motion camouflage phenomenon and the 

MC rule will be presented. Two important concepts used to design VMC will then be discussed: 

pseudospectral methods and differential inclusion. Finally, nonlinear programming will be 

outlined.  

 

 

2.1. Motion Camouflage 

 

Much of the research in the area of motion camouflage draws inspiration from nature. 

Camouflage is a technique utilized by many animals and plant life to conceal their presence to 

other entities. Common examples of camouflage in natural settings include predators such as 

leopards masking their presence to potential prey, or animals such as moths blending into their 

surroundings to avoid being noticed by nearby predators. These are examples of stationary 

camouflage, where the concealment is performed while either the predator or prey remains 

perfectly still. Motion camouflage, on the other hand, considers circumstances where both prey 

and predator are moving, and the goal of the predator is to approach the prey while attempting to 

conceal its presence from the prey’s viewpoint. 

Srinivsan described in [19] a phenomenon found in nature that a “shadower” used to 

conceal its movements while tracking a “shadowee” in motion. The behavior of the male 

hoverfly in tracking a female counterpart is held up as the foremost example. Similar behavior is 
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also found in dragonflies between two males vying for territorial control as described in [49], and 

[18] applies the description to insects in general while also specifically mentioning bees. All of 

this research focused on the idea of motion camouflage itself while choosing to hold off 

providing possible mathematical models for this kind of behavior. 

The research in [2] provided an attempt on the quantitative properties of motion control 

by presenting a simplistic model based upon insights noted in previous motion camouflage 

literature. Similar observations were made about a year later in [1]. More robust possibilities that 

mathematically represent motion camouflage were soon to follow, such as a discrete-time state 

equation method proposed in [50] while assuming the motions of both predator and prey could 

be modeled with linear dynamics. 

The mathematical model that has influenced this research’s proposed VMC model 

emerged in [11], where the motion of the predator (now called the aggressor) is modeled using 

the motion of the prey and another real function. These ideas will be discussed in a later section. 

With this newly established model of the aggressor’s motion based upon the motion of the prey 

and a real function, further research was performed into the possibilities of this algorithm.  

The concept of motion camouflage’s behavior as a pursuit and avoidance strategy has 

been examined closely for application in other systems. The steering laws of MC for a feedback 

problem with constant speed particles are examined in [77], and a connection with missile 

guidance is also studied. A high-gain feedback law for a three-dimensional system is derived in 

[16] using MC’s natural curvatures as controls, and then [10] revisits the problem with 

sensorimotor delay. Motion camouflage has also been examined as a means of achieving 

observational requirements in coverage over physical space in [78], and as a guidance strategy 
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within a linear quadratic Gaussian framework in [50]. The method has additionally been studied 

for application in space situational awareness scenarios involving satellite rendezvous in 

[79][80]. 

As mentioned earlier, motion camouflage depends on the ability of the aggressor to 

approach its mobile prey without displaying any kind of linear motion from the prey’s viewpoint. 

In practice, the prey (say, the oft-used example of the female hoverfly) may notice the aggressor 

(the male hoverfly) change its size as the aggressor gets closer towards the prey. The model for 

motion camouflage first needs to address this linear motion of the aggressor from the viewpoint 

of the prey. To accomplish this feat, the aggressor must first choose a point in space, ( )
ref

tr , that 

places the aggressor directly between it and the prey, i.e., if a line were drawn between ( )
ref

tr  

and the position of the prey, the aggressor’s position will fall on this line. With these initial 

positions set, the goal of the aggressor is now to approach the mobile prey while remaining 

situated on the line between ( )
ref

tr  and the prey’s position, thus allowing the aggressor to 

maintain the illusion of non-motion save for the inevitable and (for this research’s purposes) 

unimportant size change. 
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Figure 2.1 Male (Hoverfly 1) and female (Hoverfly 2) 

 

With the reference point selected, the path of the aggressor requires one other variable 

that constrains its motion to obtain motion camouflage. This variable is called the path control 

parameter (PCP) [20], defined as ( )v t . Along with the prey motion’s position  p tr , the position 

of the aggressor ( )a tr  can be modeled by the equation 

( )
a ref p ref

v  r r r r  (2.1) 

The PCP vector controls the speed and curvature of the aggressor’s motion, and there is 

no limit to the number of paths that the aggressor can take to follow the prey. Thus, if we wish to 

optimize the path that the aggressor takes while chasing the prey, the PCP values are the main 

values that we need to optimize. 
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2.2. Pseudospectral Methods 

 

After the state and control variables are represented by the PCPs through the VMC 

formulation, the PCP history ( )v t  can be discretized along a set of collocation points using what 

are known as pseudospectral (or orthogonal collocation) methods. These methods are based on 

spectral methods that have been traditionally utilized in solving fluid dynamics problems, and 

they are recognized for having typically faster convergence rates than other methods [3]. A 

pseudospectral method approximates the states and controls at a group of discretization points 

using global interpolating polynomials. The derivative of the interpolating polynomial 

approximates the dynamic equations’ state’s time derivative. The dynamic equations’ vector 

field is then constrained at the collocation points set to be equal to this state’s time derivative. 

As indicated earlier, several different pseudospectral methods are currently available. 

Some of these methods have been used fairly recently in the trajectory optimal control problems. 

These methods include the Chebyshev pseudospectral method [8], the Legendre pseudospectral 

method [7], the Guass pseudospecetral method [3], and methods using collocation at the 

Legendre-Gauss-Radau point [28][29]. A method that has been used in the current VMC 

research is the Legendre-Gauss-Lobatto (LGL) pseudospectral method. A brief discussion of 

how the LGL method works to give a feel for how pseudospectral methods in general will now 

be presented. 

Using the PCPS as an example, the vector form of the discretized PCP ( ), 0,...,iv t i N  is 

denoted as v .  The PCP time history in the simulations performed to date is approximated using 

the Lagrange interpolation polynomial 
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0

( ) ( )
N

i i

i

t v t


v  (2.2) 

in which the scaled time  0 0(2 ) / ( ) 1,1
f f

t t t t t t       is the zeros of 
N

L , the derivative of 

the  Legendre polynomial 
NL .  The base functions ( )i t , 0,...,i N  are the Lagrange 

interpolating polynomials of order N  and are written as 

2( 1) ( )1
( ) , 0,...,

( 1) ( )

N
i

N i i

t L t
t i N

N N L t t t
 

 
 

(2.3) 

Through this collocation, the th
n  order derivatives of the PCP vector in the original time 

scale t  is 

0/ [2 / ( )]n n n n

f
d dt t t v D v  (2.4) 

where the differentiation matrix D  is defined in [7]. 

From here, the rest of the continuous system, from the performance index to the equality 

and inequality constraints, can be discretized in terms of the PCPs using differential inclusion 

(this will be demonstrated in Chapter 3). A nonlinear programming (NLP) package can be used 

to solve the constrained optimal trajectory control problem. 

 

 

2.3. Differential Inclusion 
 

We define the dynamics of a continuous system as 

 , ,f tx x u  (2.5) 
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where x  represents the state variables, u  represents the control variables, and t  represents the 

time. The dimension of the system Eq. (2.5) can be reduced using the differential inclusion 

technique [17] if the state and control variables can be expressed in terms of an output z  and its 

derivatives. 

 , ,... , ,...

( , ,...)

( , ,...)

z

x

u

f x x u u

f z z

f z z






z

x

u

 (2.6) 

Now the system in Eq. (2.5) can solve for the states and variables without differentiating 

or integrating the original equations of Eq. (2.7) [6]. 

 

 

2.4. Nonlinear Programming 

 

(P1) In a typical nonlinear constrained optimal trajectory control problem [9], a set 

consisting of the state 1nx , control 1mu  , and  final time f
t  (if it is not fixed) will be 

found to minimize (or maximize) the performance index 

0
1 1 1[ ( ), ] ( , , )

ft

f f
t

J t t L t dt  x x u  (2.8) 

while subject to the inequality constraints 

1( , , ) 0t g x u , 1pg  (2.9) 

and the equality constraints 

1( , , ) 0t h x u , 1

1

qh  (2.10) 
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Here, the equality constraints include the boundary conditions 

0 0[ ( ), ( ), , ] 0
f f

t t t t ψ x x , 1lψ  (2.11) 

and the equations of motion 

( , , )tx f x u , 1nx , 1mu  (2.12) 

where q n l  , and the final time 
f

t  can be free or fixed.  The optimal solution is defined as the 

optimal solution in the full space. 

The following assumptions will be considered in this dissertation. 

Assumption 2.1: The state vector 1nx  can be rearranged into two parts: the 

“position” state 1an

a

x  and the “state rate” ( ) 1an n

sr

 x . Correspondingly, the equations of 

motion ( , , )tx f x u  can be rewritten into two forms: ( ) ( , )
a a

t tx f x  and ( ) ( , , )
sr sr

t tx f x u . 

Remark 2.1: Assumption 1.1 is valid for a wide variety of dynamics models seen in real-

world problems, such as two-driving-wheel mobile robots, satellites/spacecraft, unmanned aerial 

vehicles, etc. 

Assumption 2.2: The mappings from ( , , )a a tx x  to srx  and from ( , , )tx x  to u  are 

assumed to be injective [75], which means the control variables u  and the “state rate” srx  can be 

solved as 1( , , )
sr a a a

t
x f x x  and 1( , , )

sr sr
t

u f x x  either explicitly or implicitly using an 

iterative fashion.   

Remark 2.2: If the mapping ends up not being injective, then the optimal control problem 

is not well posed and the differential inclusion can eliminate the nonuniqueness [75]. 
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 3.  VIRTUAL MOTION CAMOUFLAGE METHOD 
 

In this chapter, the virtual motion camouflage method is derived using all of the 

preliminary tools described in Chapter 2. First, the polynomial based VMC procedure is laid out. 

Next, a discussion on how boundary conditions are used within the context of VMC is given. 

Then the general VMC algorithm is presented, followed by a discussion about the method’s 

dimension complexity and optimality. Further discussion about the polynomial based VMC 

method can be found in [20][61][63]. 

 

 

3.1. General Procedure 

 

Here, we present the basic procedure of the VMC method. From the aggressor equation 

shown in Chapter 2.1, the derivatives of the “position” state a
r  can be calculated via 

   a ref p ref p ref
v v    r r r r r r  (3.1)

     2
a ref p ref p ref p ref

v v v      r r r r r r r r  (3.2) 

and so on. The reference point in the MC rule will normally remain fixed, so Eq. (3.1) and Eq. 

(3.2) can be simplified as 

 a p ref p
v v  r r r r  (3.3) 

and 

  2
a p ref p p

v v v   r r r r r  (3.4) 
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Based on differential inclusion and Eqs. (2.1) and (3.3)-(3.4), the state and control 

variables are functions of the path control parameter, virtual prey motion, the reference point, 

and their corresponding derivatives.  Thus, we can define the following problem: 

(P2) Given 
ref

r  and a polynomial 
p

r , the variables ( )v t , ( )v t , ( )v t , …, and 
f

t  will be 

designed to minimize the performance index 

0
2 2 2[ ,..., ] ( , ,..., )

ft

f
t

J v,v t L v v t dt    (3.5) 

subject to the state and control inequality constraints 

 2( , ,..., ) 0v v t g , 1pg  (3.6) 

and equality constraints 2 0( , ,..., , ) 0
f

v v t t h ψ , 1

2

lh .  In P1, only the boundary conditions 

are regarded as E.C.s, while the equations of motion (Eq. (2.5)) are already taken into account 

when calculating srx  and u . The PCP history ( )v t  is discretized using the method (or any 

similar method) described in Section 2.2. 

The discretized version of P2 is defined as follows:  

(P3) Given ref
r and p

r , 0,1,...,[ ]
k k N

v v =  and f
t  will be designed to minimize the 

performance index 

 3 3 0 3

0

[ ] [( ) / 2] ( )
N

f f k

k

J ,t t t L 


   v v  (3.7) 

where k
  are the weights for the th

k  node.  Here, the performance index (15) is a discretized 

approximation of (11) using (14).  The inequality constraints to be considered are 

3( , ) 0
f

t g v  (3.8) 
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and the equality constraints are 3( , ) 0
f

t h v . As the number of nodes increases in the NLP, P3 

becomes equivalent to P2.  

 

 

3.2. Necessary Conditions 

 

Here, necessary conditions used to calculate the PCP and prey motion at certain nodes 

will be developed under different boundary conditions (BCs) that are described in Section 2: (1) 

BC 1: fixed initial and final 
a

r ; (2) BC 2 fixed initial and final 
a

r , and initial 
a

r ; (3) BC 3: fixed 

initial and final 
a

r  and 
a

r .  

In the following derivations, ' '

0[ ] 2 / ( )
ij f

D t t D D , in which the subscript ij  means 

the entry of the matrix in the th
i  row and the th

j  column. 

First, the necessary conditions for BC1 are discussed. 

Lemma 3.1. For the case when the initial “position” state is known, the initial PCP and 

the initial virtual prey position must be selected to satisfy 

,0 0 ,0( )
a ref p ref

v  r r r r  (3.9) 

Lemma 3.2. For the case when the final “position” state is known, the final PCP and the 

final virtual prey position must be selected to satisfy 

, ,( )
a N ref N p N ref

v  r r r r  (3.10) 

Proof. The proofs for Lemma 3.1 and Lemma 3.2 are straightforward, just by evaluating 

the MC rule at the initial and final nodes, and thus omitted here. 
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Remark 3.1: For simplicity, we will let 0 1Nv v  , ,0 ,0p a
r r , and , ,p N a N

r r , although 

there are many different ways of using (3.9) and (3.10). 

Remark 3.2: Based on Remark 3.1, for the case BC1, 0v , 
N

v , ,0p
r ,  and ,p N

r  are 

calculated instead of guessed or optimized. 

The necessary conditions for BC2 are now discussed. 

Lemma 3.3. When the initial “position” and “state rate”, and the final “position” are 

known, 0v  and N
v  can be found through Remark 3.1, and  1v  can be found by 

1 '

1 11 , ,0 0 , ,0 0 , ,0 ,

0
1

( )
N

a i p i k p i ref i k

k
k

v a r v r D r r v




 
      
 

  (3.11) 

in which ,ref i
r , , ,0a i

r , , ,0p i
r , and , ,0p i

r  are the th
i  component of the reference point, initial velocity, 

and initial velocity and position of the prey, respectively. 

Proof. Based on Eq. (3.9), the derivative of the initial “position” state is 

,0 0 ,0 0 ,0

' '

0 ,0 0 ,0 01 1 ,0

0
1

( )

( ) ( )

a p ref p

N

k k p ref p p ref

k
k

v v

D v v D v



  

    

r r r r

r r r r r
 (3.12) 

The th
i component of the vector equation (3.12) can be written as 

' '

, ,0 0 , ,0 , 0 , ,0 01 1 , ,0 ,

0
1

( ) ( )
N

a i k k p i ref i p i p i ref i

k
k

r D v r r v r D v r r



     (3.13) 

Let us define 
'

11 01 , ,0 ,( )
p i ref i

a D r r , and by reorganizing (3.13), Lemma 3.3 is proven. □ 
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Remark 3.3: The th
i components of the initial prey motion and reference point should be 

selected such that they don’t overlap, i.e., , ,0 ,p i ref i
r r . 

Lemma 3.4. If the dimension of 
a

r  is larger than 1, the th
i  and th

j  ( , [1,..., ],
a

i j n j i  ) 

components of the initial velocity of the virtual prey motion, , ,0p i
r , and , ,0p j

r , must be selected to 

satisfy the following equality constraint: 

'

, ,0 , ,0 0 , ,0 ,

0

'

, ,0 , ,0 0 , ,0 ,

0

( )

( )

N

p i a j k p j ref j k

k

N

p j a i k p i ref i k

k

r r D r r v

r r D r r v





 
  

 
 

   
 




 (3.14) 

Proof. The th
i and th

j  components of (3.3) are 

'

, ,0 0 , ,0 , 0 , ,0

0

( )
N

a i k k p i ref i p i

k

r D v r r v r


    (3.15) 

and 

'

, ,0 0 , ,0 , 0 , ,0

0

( )
N

a j k k p j ref j p j

k

r D v r r v r


    (3.16) 

Reorganizing these two equations will obtain (3.14). □ 

Remark 3.4: In Lemma 3.4, , ,0p i
r  can be calculated using  

'

, ,0 0 , ,

0

N

p i k p i k

k

r D r


  (3.17) 

where , ,0p i
r  and , ,p i N

r  can be found according to Remark 3.1, and the other components are either 

guessed or optimized. 
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Remark 3.5: If the dimension of 
a

x  is larger than 1, , ,0p i
r  is calculated based on Remark 

3.4, and , ,0p j
r  ( [1,..., ],

a
j n j i  ) is calculated by Lemma 3.4, then  

'

, ,1 , ,0 0 , ,'
001
1

1 N

p j p j k p j k

k
k

r r D r
D 



 
   
  

  (3.18) 

Remark 3.6: Based on Lemmas 3.3-3.4 and Remarks 3.1-3.5, for the case of BC2, the 

variables 0v , 1v , 
N

v , ,0p
r , ,p N

r , and , ,1p j
r  ( 1,..., ,

a
j n j i  ) are calculated and will not be 

guessed or optimized.  Here, i  denotes the th
i component used in Lemma 3.3. 

The necessary conditions for BC3 are now discussed. 

Lemma 3.5. When the initial and final “position” and “state rate” are known, 0v  and N
v  

can be found through Remark 3.1, and  1v  and 1Nv   can be found by 

1

1 11 12

1 21 22

'

, ,0 0 , ,0 0 , ,0 ,

0
1

1

'

, , , , , , ,

0
1

1

( )

( )

N

N

a i p i j j p i ref i

j
j
j N

N

a i N N p i N Nj k p i N ref i

j
j
j N

v a a

v a a

r v r D v r r

r v r D v r r







 



 

   
   
  

 
   

 
 
 
   
 
  





 (3.19) 

Here, 
'

11 01 , ,0 ,( )
p i ref i

a D r r  , 
'

12 0( 1) , ,0 ,( )
N p i ref i

a D r r  , 
'

21 1 , , ,( )
N p i N ref i

a D r r  , and 

'

22 ( 1) , , ,( )
N N p i N ref i

a D r r  .  The  th
i  component is selected such at the matrix involved in (3.19) is 

invertible.  Here, , ,0 , ,0 ,0 0( , , )
a i a i a sr

r = f tr r  and , , , , ,( , , )
a i N a i a N sr N N

r = f tr r . 
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Proof. Based on (3.9) and (3.10), the derivatives of the initial and final “position” states 

are 

'

,0 0 ,0 0 ,0

0
1, 1

' '

01 1 ,0 0( 1) 1 ,0

( )

( ) ( )

N

a k k p ref p

k
k k N

p ref N N p ref

D v v

D v D v


  

 

  

   

r r r r

r r r r

  (3.20) 

and 

'

, , ,

0
1, 1

' '

1 1 , ( 1) 1 ,

( )

( ) ( )

N

a N Nk k p N ref N p N

k
k k N

N p N ref N N N p N ref

D v v

D v D v


  

 

  

   

r r r r

r r r r

  (3.21) 

We now select the th
i  component in Eqs. (3.20)-(3.21)(29) as 

' '

01 1 , ,0 , 0( 1) 1 , ,0 ,

'

, ,0 0 , ,0 , 0 , ,0

0
1, 1

( ) ( )

( )

p i ref i N N p i ref i

N

a i k k p i ref i p i

k
k k N

D v r r D v r r

r D v r r v r

 


  

   

    (3.22) 

and 

' '

1 , , , 1 ( 1) , , , 1

'

, , , , , , ,

0
1, 1

( ) ( )

( )

N p i N ref i N N p i N ref i N

N

a i N Nk k p i N ref i N p i N

k
k k N

D r r v D r r v

r D v r r v r

 


  

   

    (3.23) 

Reorganizing (3.22) and (3.23) into the matrix form will prove Lemma 3.5. □ 

Lemma 3.6. If the dimension of a
r  is larger than 1, the th

i  (used in Lemma 3.5) and th
j  

( 1,...,
a

j n , i j ) components of the virtual prey motion’s initial velocity , , ,0p i
r , and , ,0p j

r , 

must be selected to satisfy the equality constraint 
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'

, ,0 , ,0 0 , ,0 ,

0

'

, ,0 , ,0 0 , ,0 ,

0

( )

( )

N

p i a j k k p j ref j

k

N

p j a i k k p i ref i

k

r r D v r r

r r D v r r





 
   

 
 

  
 




 (3.24) 

while the th
i  and th

j   components in the virtual prey motion’s final velocity, , ,p i N
r , and , ,p j N

r , are 

constrained by the equation 

'

, , , , , , ,

0

'

, , , , , , ,

0

( )

( )

N

p i N a j N Nk k p j N ref j

k

N

p j N a i N Nk k p i N ref i

k

r r D v r r

r r D v r r





 
   

 
 

  
 




 (3.25) 

Proof. The proof is similar to that of Lemma 3.4 and is straightforward.  The initial and 

final velocity nodes will be evaluated using Eq. (2.1).  After that the th
i and th

j  components of 

those two equations will be organized to achieve the results shown in (3.24) and (3.25).  

Remark 3.7: In Lemma 3.6, , ,0p i
r  and , ,p i N

r  can be calculated using  

'

, ,0 0 , ,

0

N

p i k p i k

k

r D r


  (3.26) 

and 

'

, , , ,

0

N

p i N Nk p i k

k

r D r


  (3.27) 

where , ,0p i
r  and , ,p i N

r  can be found according to Remark 3.1, and the other components are either 

guessed or optimized. 
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Remark 3.8: If the dimension of 
a

r  is larger than 1, , ,0p i
r  and , ,p i N

r  are calculated based 

on Remark 3.5, and , ,0p j
r  and , ,p j N

r  ( 1,...,
a

j n , i j ) are calculated by Lemma 3.6, then 

1
' '

, ,1 01 0( 1)

' '
, , 1 1 ( 1)

'

, ,0 0 , ,

0, 1, 1

'

, , , ,

0, 1, 1

p j N

p j N N N N

N

p j k p j k

k k k N

N

p j N Nk p j k

k k k N

r D D

r D D

r D x

r D x





 

   

   

  
   
    

 
 

 
 

 
 





 (3.28) 

Remark 3.9: Based on Lemmas 3.5-3.6, and Remarks 3.7-3.9, for the case of boundary 

condition 3, 0 1 1, , ,
N N

v v v v , ,0p
r , ,p N

r , , ,1p m
r  ( 1,..., ,

a
m n m i  ), and , , 1p m N

r   ( 1,..., ,
a

m n m i  ) 

are calculated instead of guessed or optimized.  Here, i  denotes the th
i  component used in 

Lemma 3.5. 

Depending on the boundary conditions, the parameters that affect the optimality of the 

results will vary according to Remarks 3.2, 3.6, and 3.9.  Two parameter sets will now be 

defined. 

Definition 1: The parameter Set vS  contains all the PCP parameters that need to be 

optimized in the VMC approach. 

Based on Remarks 3.2, 3.6, and 3.9, Sets vS  for boundary cases 1, 2, and 3, are 

{ , 1,..., 1}
v i

S v i N   , { , 2,..., 1}
v i

S v i N   , and { , 2,..., 2}
v i

S v i N   , respectively. 

Definition 2: The parameter Set g
S  contains the prey motion and reference point 

parameters given in the VMC approach. 

Based on Remarks 3.1, 3.5, and 3.8, Sets g
S  for boundary conditions 1, 2, and 3 are 
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,{ , , 1,..., 1}
g p i ref

S i N  r r , , , , ,{ , , , 1,..., 1, 2,..., 1}
g p i k p j m ref

S r r k N m N    r , 

and 

, , , ,{ , , , 1,..., 1, 2,..., 2}
g p i k p j m ref

S r r k N m N    r , 

respectively. For boundary conditions 2 and 3, the index i  (only one index) and indices j , 

1,..., ,aj n j i   (all the indices except i ) are chosen according to Remark 3.6 and Remark 3.8. 

All the parameters that are calculated are summarized in the following three algorithms. 

Algorithm 3.1. Parameters calculation in BC 1 

Step 1: Based on Remark 3.1, 0 1Nv v  , 

,0 ,0p a
r r , and , ,p N a N

r r . 

 

Algorithm 3.2. Parameters calculation in BC 2 

Step 1: Based on Remark 3.1, 0 1Nv v  , ,0 ,0p a
r r , 

and , ,p N a N
r r . 

Step 2: Based on Lemma 3.3, calculate 1v  

Step 3: 
, ,1p j

r  ( 1,..., ,
a

j n j i  ) are calculated based 

on Lemma 3.4, Remarks 3.3, 3.4, and 3.5. 

 

Algorithm 3.3. Parameters calculation in BC 3 

Step 1: Based on Remark 3.1, 0 1Nv v  , 

,0 ,0p a
r r , and , ,p N a N

r r . 

Step 2: Based on Lemma 3.5, calculate 1v  and 

1Nv   

Step 3: 
, ,1p m

r  ( 1,..., ,
a

m n m i  ), and , , 1p m N
r   

( 1,..., ,
a

m n m i  ) are calculated based 

on Lemma 3.5, Remarks 3.6, 3.7 and 3.8. 

 

Now solving P3 is equivalent to solving P4: 
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(P4) Given the parameters in Set 
g

S , 
i v

v S  and 
f

t  need to be designed to minimize the 

performance index 

 
4 4 0 4

0

[ , ] [( ) / 2] ( )
N

v f f v k

k

J S t t t L S 


     (3.29) 

The inequality constraints to be considered are 

4( , ) 0
v f

S t g , 1

4

pg  

 (3.30) 

Because the boundary conditions have been taken into account using one of Algorithms 3.1-3.3, 

equality constraints are no longer considered.  The optimal solution to P4 is defined to be the 

VMC subspace optimal solution, which is also optimal in P2 if the number of discretized node is 

large enough. 

In P4, the parameters to be optimized via an NLP solver are the PCPs 
vSv'  and (if free) 

the final time. 

 

 

3.3. Polynomial Based VMC Algorithm  

 

The following VMC algorithm finds the subspace (full space for 1-DOF problems) 

optimal solution of P4. 

First, based on the boundary conditions of the problem, the Lemmas in Section 3.2 

determine which parameters can be calculated instead of optimized. For the three BC conditions 

provided, all the parameters that are calculated are summarized in Algorithms 3.1-3.3.  
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Algorithm 3.4. VMC subspace optimal trajectory control 

 

Steps in  

the Initializ-ation  

Step 1: Generate initial guesses for the parameters in 
Set 

g
S . 

Step 2: Generate initial guesses for the PCPs in Set 

vS  and (if free) the final time. 
 

Steps  

inside the NLP 

Iterations 

Step 1: Generate results for the PCP parameters in 
Set 

vS  and (if free) the final time at each 
iteration. 

Step 2: Based on the boundary conditions, apply one 
of Algorithms 3.1-3.3. 

Step 3: Evaluate the performance index using Eq. 
(3.29). 

Step 4: Evaluate the constraints using Eq. (3.30). 

 

One advantage of the VMC method that is apparent from the above algorithms is that the 

parameters that require initial guesses, from the prey trajectory to the PCPs, have physical 

meaning. This makes it easy to provide good initial guesses for the variables. Another advantage 

is that only a single vector of variables, the PCPs, are optimized in the selected subspace, which 

should improve the problem’s convergence and computational time with fewer variables to 

optimize than a regular NLP problem. 

 

 

3.4. Optimality and Dimension Analysis 

 

As shown in Algorithm 3.4, there are an infinite number of trajectories for the aggressor 

because of the unlimited choice of the PCPs.  When the position vector a
r  is a scalar, regardless 

of the parameters in Set g
S , the variation of the PCPs in Set vS  allows a

r  to vary over the full 

space ( , )  .  Therefore, the result is optimal over the full space.  However, when the 
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dimension of the position is larger than one, only one component of 
a

r  is free over the full space 

( , )  .  The other states will be affected by the parameters in Set 
vS .   

Because of this, in this section we propose a way to judge the optimality of the achieved 

subspace optimization result in the original full space. 

If P2 is converted into an NLP formulation directly, the parameters to be optimized, 

inequality, and equality constraints are Χ , ( ) 0g X  and 1( ) 0h X , respectively.  Here, X  

includes the discretized state 
k

x  and control 
ku , 0,...,k N , and the final time (if it is not 

fixed). 

Table 3.1 lists the comparison of the problem dimensions of the achieved NLPs for two 

approaches. The first method is a baseline approach.  In the baseline approach, the nonlinear 

constrained trajectory design problem (P1) described in Section 2.4 is formulated as an NLP via 

a pseudo-spectral based collocation method such as the LGL method [7]. It is worth noting that 

the problem formulated via other methods like the Gauss method [3] has a similar dimension and 

therefore will not be compared here. The states and control vectors are discretized into 0,1,..., N  

nodes, and the state and control parameters at those collocation nodes are then optimized. 

Therefore, the dimension of the parameters is on the order of  ( )n m N  . 

The second method, the polynomial based VMC approach, in which the prey motion is 

represented by a polynomial, optimizes the discretized PCP vector (and possibly the final time 

and the reference point).  In this approach, the parameter dimension is on the order of ( )N . 

While the baseline method has ~ l nN  E.Cs. that come from the dynamic equations and 

the boundary conditions of the problem, the VMC approach contains zero equality constraints, 
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and the lack of E.Cs. in the VMC approach reduces the difficulty in solving an NLP program 

significantly. Furthermore, the necessary conditions in Lemmas 3.1-3.6 reduce the dimension in 

the VMC approach even further. The number of I.E.Cs. is the same for all methods. 

Table 3.1 Dimension comparison between baseline and VMC approaches 

 Baseline 

Approach  

Polynomial Based 

VMC Approach 

# of parameters ~ ( )n m N  ~ N  

# of E.Cs. ~ l nN  0 

# of I.E.Cs. ~ pN  ~ pN  

 

If P1 is converted into an NLP formulation directly, the parameters to be optimized, 

inequality, and equality constraints are Χ , 1( ) 0g X  and 1( ) 0h X , respectively.  Here, X  

includes the discretized state k
x  and control ku , 0,...,k N , and the final time (if it is not 

fixed). 

Lemma 3.7 (optimality necessary condition). If the solution obtained from the VMC 

method (in P4) equals the solution found in the full space optimization (in P1), the solution 1λ  in 

the equation  

1 11 1

11
0

T T

T

J       
      

   0

XX X
λg h

ζg
 (3.31) 

must be larger than or equal to zero. 

Proof. The proof is similar to the Karush–Kuhn–Tucker (KKT) condition shown in [51].  

Here 1
1

T
T 


X

g
g

X
, 1

1

T
T 


X

h
h

X
, and 1

1

J
J




X
X

. It should be noted that the values used in 

(39) come from the VMC subspace method via Algorithm 3.4. 
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There are two steps involved in applying Lemma 3.7.  First, a pseudo inverse is applied 

to solve for an initial guess of 
1 1,

T
T T  λ ζ .  Theoretically, the necessary condition is not satisfied 

if 1 0λ .  But in practice, the numerical value achieved even from the full space optimization is 

sometimes negative.  Therefore, the initial guess found from the pseudo inverse will be used in a 

constrained minimum search code (e.g., fmincon in Matlab
®
) to find the minimum residual under 

the constraint 1 0λ . 
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 4.  SEQUENTIAL VMC 
 

This chapter discusses the sequential VMC method, which expands upon the polynomial 

based VMC method. First, motivation for the sequential VMC method is presented. Then, two 

additional tools – linear programming and line search – will be discussed. Finally, the sequential 

VMC algorithm will be given. Further discussion about the sequential VMC method can be 

found in [57]. 

 

 

4.1. Motivation for Sequential VMC 

 

Using Lemma 3.7, it can be shown that the polynomial based VMC method will find the 

optimal solution within the subspace constructed by the prey trajectory and the selected reference 

point. However, because the prey and reference point have to be defined by the user, the 

constructed subspace may be such that it cannot contain the full space solution, so the optimal 

VMC solution may not be the globally optimal solution. 

A way to address this concern is to improve the VMC subspace by adjusting the 

parameters that define the subspace until the subspace can contain the global full space, and thus 

the optimal VMC solution will be the optimal global solution. The sequential VMC method is 

proposed here as a means of solving the nonlinear constrained optimal trajectory problem 

quickly by iteratively adjusting the subspace after the optimal solution has been found within that 

subspace. The proposed approach is a hybrid approach and involves two steps in an iterative 

process.  In the first step of each iteration, an optimal solution can be quickly found within the 
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subspace constructed by defined parameters via the VMC method.  A linear programming and a 

line search algorithm are then utilized in the second step to improve these parameters such that 

the result obtained in the ( 1)th
k   step VMC is always better (or at least not worse) than that of 

the th
k  step VMC. 

 The benefits of this sequential method are: (1) Via the computationally fast linear 

programming, certain parameters (e.g., the prey motion and reference point to be defined later) 

used in the VMC can be refined sequentially. (2) Solution optimality has been proven for this 

hybrid approach. 

 

 

4.2. Linear Programming and Line Search 

 

First, the improving direction of the virtual prey motion and the reference point, 

following which the performance index will decrease, will be discussed.  

Lemma 4.1. Given the subspace optimal solution found at the th
k  VMC optimization, 

and based on Topkis and Veinott’s method [51], an improving direction [ ] , 1,...,
k j k s

d j n d , 

used in the ( 1)th
k   VMC iteration can be provided by the solution of the following linear 

programming problem:  

(P5) Minimize the scalar z  subject to 

1
k

s k

J
z





d

X
 (4.1) 
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1,

1,- , 1,...,
i

k i k
s k

g
g z i p


  


d

X
 (4.2) 

0z   (4.3) 

and  

1 1, 1,...,
j s

d j n     (4.4) 

Here, the variable sn

s
X  includes the final time (if free) and all the variables in 

g
S  and 

vS . 

k
 means the term is evaluated using the value achieved in the th

k  VMC optimization. 

Proof. The performance index 1J  is a function of sn

s
X , which include the final time 

and the parameters described in g
S  and vS .  The Taylor series expansion of 1J  is   

1
1 11
( ) ( ) ( )T

s s k k kk k

s k

J
J J




  


X X d d d

X
 (4.5) 

If there is a solution to P5, 0z   and  1 / s kk
J z  X d , then 1 11

( ) ( )
s sk k

J J


X X . Therefore 

kd  is an improving direction.  The same procedure can be applied to the I.E.Cs.  Since 0z  , it 

implies that s kk
X d  is feasible for 0   and is sufficiently small. It is worth noting that P5 

always has a solution and the worst case is 0z   and 1 11
( ) ( )

s sk k
J J


X X .□ 

The partial derivatives used in P5 can be calculated either analytically or numerically.  A 

possible improvement to the numerical approach is the recently introduced forward mode 

automatic differentiation (Forth 2006) implemented in the MATLAB Automatic Differentiation 

(MAD) Toolbox (Forth & Edvall 2007). 
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To make sure the  1
th

k   step VMC optimization starts with a feasible solution, the 

following line search algorithm will be used to find the improving direction: 

(P6) Find the maximum  , [0,1] , such that 1, 1
( ) 0

i s k
g


X , 1,...,i p , in which 

1s s kk k



 X X d . 

The parameter   found in P6 can be zero, but in practice,   will be lower bounded by a 

small number, e.g. 0.02. 

 

 

4.3. Sequential VMC Algorithm 

 

The detailed steps of the sequential VMC method are described in Algorithm 4.1 below.  

It is worth noting that the solution optimality can be validated by solving P5 and P6, and the 

computational cost of using the following approach should be much lower than using Lemma 

3.7.  
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Algorithm 4.1. Sequential VMC optimal trajectory control 

Step 1: Apply Algorithm 3.4 to find the subspace 

optimization solution. 

Step 2: If the current solution satisfies the KKT 

condition in Lemma 3.7, then the optimal 

solution in the full space is found and the 

algorithm stops.  Otherwise, go to Step 3. 

Step 3: Calculate the partial derivatives to be used in 

P5 either numerically or analytically. 

Step 4: Solve the linear programming problem P5 

for an improving direction. 

Step 5: Solve the line search problem P6 to obtain an 

improving feasible direction. 

Step 6: If the improving feasible direction is less 

than the tolerance, the optimal solution is 

found and the algorithm stops.  Otherwise, 

go to Step 7. 

Step 7: Apply the modified prey motion, reference 

point, initial PCPs, and final time (if it is not 

fixed) to Algorithm 4.2.  Go to Step 3. 

 

Step 7 of Algorithm 4.1 uses a modified VMC subspace approach as described in 

Algorithm 4.2 below.  The only difference between the steps in Algorithm 4.1 and those in 

Algorithm 3.4 is the initialization step. 
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Algorithm 4.2. VMC subspace optimal trajectory control 

in sequential iterations 

 

Initialization  
Update the parameters in Sets 

g
S  and 

vS  

using the improving feasible direction 

found in P5 and P6. 

 

Steps  

inside the 

NLP 

Iterations 

Step 1: Generate PCP parameters in Set 

vS  and the final time at each 

iteration except the first 

iteration. 

Step 2: Based on the boundary 

conditions, apply one of 

Algorithms 3.1-3.3. 

Step 3: Evaluate the performance index 

using (37). 

Step 4: Evaluate the constraints using 

(38). 

 

Theorem 1. Following the procedure described in Algorithm 4.1, the limiting trajectory, 

as the number of iterations in the sequential VMC approach increases and the number of 

discretized nodes reaches  , is locally optimal in the full space described in P1. 

Proof. The optimality of the solution found via the sequential VMC approach can be 

proven in three steps. The first two steps are equivalence proofs of the conversions from P2 to 

P3 and from P3 to P4, and the third step uses P5 & P6 to help the optimal solution found from 

P2 First, if the discrete optimal solution in P4 converges, then the converged results, as the 

number of nodes increases, will approach the optimal solution of the continuous problem P2. 

This was proven in [73][74]. 

Second, in each of the VMC optimizations inside Algorithm 4.2, an optimal result is 

achieved in the subspace constructed by the prey motion and reference point. 
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Third, as proven in P5 and P6, at the th
k  step iteration, the prey motion and the reference 

will be improved along the direction 
kd  as shown in Fig. 4.1, which satisfies  / 0

s kk
J  X d .  

Therefore, the VMC result of the ( 1)th
k   step will not be worse than the result achieved in the  

th
k  step in terms of the first order Taylor series expansion. 

Figure 4.1 illustrates the search of a new direction for the prey motion and reference 

point. In the figure, “+” represents the current VMC solution; “o” represents the optimal 

solution; “star” represents the current prey motion; and “arrow” represents the new feasible and 

improving directions for the PCPs, reference point, and prey motion. 
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Figure 4.1 The search of a new direction for the prey motion and reference point. 

 

Thus, as the number of iterations and the number of the nodes increase, the magnitude of 

the improving direction kd  in Lemma 4.1 or   in P6 will be within the tolerance.  Thus the 

optimal solution in the full space will be achieved. □ 
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 5.  B-SPLINE AUGMENTED VMC 
 

This chapter discusses the B-spline augmented virtual motion camouflage method 

(BVMC), which is an extension of the polynomial based VMC method. First, the basics of B-

spline curves are presented. Then, necessary conditions based on the augmented method are 

derived. The algorithm for the BVMC method is then presented, and finally a dimension 

comparison of the BVMC method with other methods is given. 

 

 

5.1. Motivation for B-spline Augmented VMC 

 

As stated in Section 4.1, Lemma 3.7 can be used to show that the polynomial based VMC 

method will find the optimal solution within the constructed subspace. The sequential VMC 

method discussed in Chapter 4 was proposed as a means of adjusting the subspace so that the 

global optimal solution will be contained within the VMC search space. The B-spline augmented 

VMC method is similar in that it also seeks to adjust the VMC search space such that it contains 

the global optimal solution. 

The main difference between the sequential VMC method and the B-spline augmented 

VMC method is that the sequential method adjusts the subspace sequentially while the B-spline 

augmented method adjusts the subspace simultaneously. In other words, the sequential method 

first finds an optimal solution within the given subspace, and then sequentially adjusts the 

variables that define the subspace, inside of which new optimal solutions will be found, until 

eventually the adjusted subspace contains the global optimal solution. The B-spline augmented 
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method, meanwhile, optimizes the variables that define the subspace simultaneously with the 

variables that optimize the solution trajectory. 

The main benefit that the BVMC method has over the sequential VMC method is that the 

BVMC method’s simultaneous optimization structure is easier to program than the sequential 

method’s structure. In addition, the BVMC will represent the prey motion trajectory using B-

spline curves, which are more flexible and more stable than polynomials.  

 

 

5.2. Basics of B-Splines 

 

Polynomials have proven to be very useful in representing or approximating curves. 

Despite their ease of use, however, their main drawback is that they cannot be very inflexible on 

large intervals and can generate wild oscillations especially for high order curves [14]. Spline 

functions remedy this by taking piecewise polynomials and connecting them together while 

maintaining some degree of global smoothness.  

For example, function  f t  is represented by a B-spline curve of degree d  as  

   ,

0

cpn

i d i

i

f t B t P


  (5.1) 

where  , , 0,...,
i d cp

B t i n  are the basis functions, , 0,...,
i cp

P i n  are the control points, and 

1
cp

n   is the number of control points. The curve is generated over a time span 0 ,
f

t t t   .  

Defined on this same time span is what’s known as the knot vector, which is 
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0 0 1 1

1 1

,..., , ,..., , ,...,d k d f f

d d

t t t t    

 

    
  

 (5.2) 

with length 1k  . The knots   are the time points (or breakpoints) on time span t  where the 

piecewise polynomials are linked together to form the B-spline curve. Naturally, the knots must 

be non-decreasing, i.e., 1i i   . There are a few types of knot vectors available; the vector 

shown in Eq. (5.2) and used in this dissertation is called the non-periodic knot vector.  Here, the 

initial knot 0 0t   and final knot k f
t   are repeated with multiplicity 1d  , and the remaining 

knots are uniformly spaced between the initial and final knot. The actual number of knots 

selected will depend on the curve degree and the number of control points. A B-spline curve will 

generally only interpolate through a control point for a non-periodic knot vector, and in this case, 

the curve’s two endpoints will interpolate through the initial and final control points. 

 

 

Figure 5.1 Comparison of B-spline and discretized trajectory 

 

Piecewise Polynomials 

Knots 

Reference 

Node
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The B-spline basis functions are calculated recursively for each time t . First, the zero-

degree functions are calculated as 

  1

,0

1

0

i i

i

if t
B t

otherwise

   
 


 (5.3) 

Then the remaining basis functions are calculated as 

     1
, , 1 1, 1

1 1

i i d
i m i m i m

i d i i d i

t t
B t B t B t

 
   

 
  

   

 
 

 
, 1,...,m d (5.4) 

up to the th
d  degree basis functions, which are used in Eq. (5.1). The th

j  derivative of the 

th
d degree basis functions can be found recursively using 

   
   1 1

, 1 1, 1

,

1 1

j j

j i d i d

i d

i d i i d i

B B
B t d

   

 
  

   

 
     

 (5.5) 

Because of continuity constraints that link the polynomials together, the number of 

control points is related to the degree of the spline and the number of knots in the non-periodic 

knot vector as 

1
cp

n k d    (5.6) 

It is worth noting that the B-spline curve is used for each of the prey motion components, 

and the description in this section just represents one of them. 

 

 

5.3. BVMC Necessary Conditions 
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When B-spline curves are used to define the prey motion, the boundary conditions shown 

in Section II.C will be used to solve for certain control points or control point components. Here 

the necessary conditions are derived for the three different boundary conditions mentioned 

previously: (1) BC1: Fixed initial and final 
a

r ; (2) BC2: Fixed initial 
a

r  and 
srr ; final 

a
r ; (3) 

BC3: fixed initial and final 
a

r  and 
srr . 

Lemma 5.1. When the initial and final “position” states are known, the first and the last 

control points for th
i  component, 1,... ai n , must satisfy the equations 

   

 

,0 0, 0 , , 0

1

, ,0 , , 0

1

, 1,...

cp cp

cp

i d i n n d

n

a i i k k d a

k

P B t P B t

r P B t i n







  
 (5.7) 

and 

   

 

,0 0, , ,

1

, , , ,

1

, 1,...,

cp cp

cp

i d f i n n d f

n

a i N i k k d f a

k

P B t P B t

r P B t i n







  
 (5.8) 

In this Lemma, ,i k
P  is the th

k  control point for the  th
i  direction of the prey motion. 

Proof. The initial and final positions of the prey motion are selected to equal to, 

respectively, the initial and final aggressor positions by selecting 0 1Nv v  .  This gives us the 

necessary conditions ,0 ,0p a
r r  and , ,p N a N

r r , according to Eqs. (3.9) and (3.10). Since the prey 

motion is represented by the B-spline curve in Eq. (5.1), this obtains the equations 
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 

 

, , 0 , ,0

0

, , , ,

0

cp

cp

n

i k k d a i

k

n

i k k d f a i N

k

P B t r

P B t r












, 1,...,

a
i n  (5.9) 

In Eq. (5.9), the initial and final control points, ,0i
P  and , , 1,...,

i N a
P i n , are calculated 

instead of optimized. Rearranging the equations gives us Eqs. (5.7) and (5.8). □ 

Remark 5.1: When using a non-periodic knot vector, as in Eq. (5.2), 

 , 0 0, 1,...,
k d cp

B t k n  ,  0, 0 1
d

B t  ,  , 1
cpn d fB t  , and  , 0, 0,..., 1

k d f cp
B t k n   .  

Therefore, ,0 , ,0i a i
P r  and , , ,cpi n a i NP r . 

Remark 5.2: For BC1, the following parameters are calculated: , 0,kv k N , and 

, , 0, , [1,..., ]
j k cp a

P k n j n  ; and the following parameters are optimized: ref
r ,  , 1,.., 1

k
v k N  , 

and , , 1,..., 1, [1,..., ]
j k cp a

P k n j n   . 

Lemma 5.2. The th
i  component of the initial prey velocity , ,0p i

x  is calculated first using  

 , ,0 , , 0

0

cpn

p i i k k d

k

r P B t


  (5.10)  

Then the control point ,1j
P  for the remaining th

j  components ( 1,..., ,
a

j n j i  ) can be found 

using the equation 

   1

,1 1, 0 , ,0 , , 0

0
1

,

1,..., ,

cpn

j d p j j k k d

k
k

a

P B t r P B t

j n j i






 
      
  

 


 (5.11) 
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Proof. Lemma 5.1 and Remark 5.1 are used to find the control points ,0i
P  and , cpi nP , 

1,..., ai n , and PCPs 0  and 
N

 . Then Eq. (5.10) is used to solve for the th
i  component of the 

initial prey velocity , ,0p i
r . After that, Eq. (3.11) is used to solve for PCP 1 . The initial prey 

velocity , ,0p j
r  for the remaining th

j  components ( 1,..., ,
a

j n j i  ) can then be solved using Eq. 

(3.14). 

Once the th
j  component  , ,0p j

r  is known, it can be inserted in the equation 

 , ,0 , , 0

0

, 1,..., ,
cpn

p j j k k d a

k

r P B t j n j i


    (5.12) 

Rearranging the equation into matrix form to solve for the desired control point components will 

yield Eq. (5.11).  □ 

Remark 5.3: For BC2, the following parameters are calculated: , 0,1,
k

v k N , 

, , 0,
i k cp

P k n  ( i  is the selected component in [1,..., ]an ), and ,j k
P , 0,1,

cp
k n , 

[1,..., ],
a

j n j i  ; and the following parameters are optimized: ref
r , , 2,..., 1

k
v k N  , 

, , 1,..., 1
i k cp

P k n  ( i  is the selected one component in [1,..., ]an ), and 

, , 2, 1, [1,..., ],
j k cp a

P k n j n j i    . 

Lemma 5.3. The th
i  components of the initial and final prey velocities , ,0p i

r  and , ,p i N
r  are 

calculated first using  

 , ,0 , , 0

0

cpn

p i i k k d

i

r P B t


  (5.13) 

and 
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 , , , ,

0

cpn

p i N i k k d f

i

r P B t


   (5.14) 

Then the control points ,1j
P  and 

, cpj nP  for the remaining th
j  components ( 1,..., ,

a
j n j i  ) can 

be found using the equation 

   
   

 

 

1

1, 0 1, 0,1

, 1
1, 1,

, ,0 , , 0

0
1, 1

, , , ,

0
1, 1

cp

cp
cp

cp

cp

cp

cp

d n dj

j n
d f n d f

n

p j j k k d

k
k k n

n

p j N j k k d f

k
k k n

B t B tP

P B t B t

r P B t

r P B t





 


  


  

  
  
     

 
 

 
 
 

 
 
 





 (5.15) 

Proof. Lemma 5.1 and Remark 5.2 are used to find control points ,0i
P  and , cpi nP , 

1,..., ai n , and PCPs 0  and N
 . Then Eqs. (5.13) and (5.14) are used to solve for the th

i  

component of the initial and final prey velocities , ,0p i
r  and , ,p i N

r . After that PCPs 1  and 1N
   can 

be solved using Eq. (3.19). The initial and final prey velocities , ,0p j
r  and , ,p j N

r  for the remaining 

th
j  components ( 1,..., ,

a
j n j i  ) can then be solved using Eq. (3.24) and (3.25). 

Once the th
j  components of the initial and final prey velocities are known, then they are 

inserted in the equations 

 

 

, ,0 , , 0

0

, , , ,

0

cp

cp

n

p j j k k d

k

n

p j f j k k d f

k

r P B t

r P B t












 (5.16) 
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Rearranging the equations into matrix form to solve for the desired control point components 

will yield Eq. (5.15).   □ 

Remark 5.4: For BC3, the following parameters are calculated: , 0,1, 1,
k

v k N N  , 

, , 0,
i k cp

P k n ( i  is one selected component in [1,..., ]an ), and 

, , 0,1, 1, , [1,..., ],
j k cp cp a

P k n n j n j i    ; and the following parameters are optimized: ref
r ,  

, 2,..., 2kv k N  , , , 1,..., 1
i k cp

P k n  ( i  is the selected component in [1,..., ]an ), and 

, , 2, 2, [1,..., ],
j k cp a

P k n j n j i    . 

It should be noted that the th
i  component can be any of the available an  components. In 

this dissertation’s later simulation examples, the x-component is chosen as the th
i  component. 

 

 

5.4. BVMC Algorithm 

 

(P7) Similar to how P1 is converted into P4, P1 is converted into the following 

dimension reduced NLP. The cost function 

   0

5 5

0

, , , , , ,
2

N
f

ref f ref f k

k

t t
J t L r t   



 
   

 
P r P  (5.17) 

is minimized by varying the components of the PCP vector   and the control points P  that are 

optimized (instead of calculated), as well as the reference point ref
r  and (if it is free) the final 

time f
t . The parameters to be optimized for boundary cases BC1, BC2, and BC3 can be found in 

Remarks 5.2, 5.3, and 5.4. The optimization is subject to inequality constraints 
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 5 , , , 0
ref

t g P r   (5.18) 

The algorithms used to calculate certain PCPs and control points for the three boundary 

condition cases are summarized here. 

Algorithm 5.1. Parameters Calculation for BC1 

Step 1: Generate initial guesses for variables to be optimized according 

to Remark 5.2. 

Step 2: Determine PCPs 0 , 
N

 , and control points ,0i
P  and , cpi nP , 

1,..., ai n , using Lemma 5.1 and Remark 5.1. 

 

Algorithm 5.2. Parameters Calculation for BC2 

Step 1: Generate initial guesses for variables to be optimized according 

to Remark 5.3. 

Step 2: Determine PCPs 0 , 
N

 , and control points ,0i
P  and , cpi nP , 

1,..., ai n , using Lemma 5.1 and Remark 5.1. 

Step 3: Find the selected th
i  component of , ,0p i

r  using Eq. (5.10). 

Calculate PCP 1  using Eq.  (3.11)  in Lemma 3.2. 

Step 4: Find th
j  components ( [1,..., ],

a
j n j i  ) of , ,0p j

x  with Eq. 

(3.14). 

Step 5: Use Eq. (5.11) to calculate th
j  components of ,1j

P , 

( [1,..., ],
a

j n j i  ). 
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Algorithm 5.3. Parameters Calculation for BC3 

Step 1: Generate initial guesses for variables to be optimized 

according to Remark 5.4. 

Step 2: Determine PCPs 0  and
N

  and control points ,0i
P  and

, cpi nP  

using Lemma 5.1 and Remark 5.1. 

Step 3: Find the selected th
i  component of , ,0p i

r  and , ,p i N
r  using Eqs. 

(5.13) and (5.14) in Lemma 3.3. Calculate PCPs 1  and 1N
   

using Eq. (3.19).  

Step 4: Find th
j  components ( [1,..., ],

a
j n j i  ) of , ,0p j

x  and , ,p j N
x  

with Eqs. (3.24) and (3.25). 

Step 5: Use Eq. (5.15) to calculate th
j  components of ,1j

P  and , 1cpj nP  , 

( [1,..., ],
a

j n j i  ). 

 

For the B-spline augmented VMC algorithm, similar to the polynomial based VMC 

algorithm, all variables to be optimized are grouped into Set vS . This set contains different 

parameters for each respective set of boundary conditions, which can be found in Remarks 5.2, 

5.3, and 5.4. The other set, Set 
g

S , contains the remaining parameters that are calculated for each 

set of boundary conditions. For example, in BC2, Set 
vS  will contain ref

r , , 2,..., 1
k

v k N  , 

, , 1,..., 1
i k cp

P k n  , and , , 2, 1
j k cp

P k n  ( [1,..., ]aj n , j i ), while Set g
S  will contain, 

, 0,1,
k

v k N , , , 0,
i k cp

P k n , and ,j k
P , 0,1,

cp
k n , [1,..., ],

a
j n j i  . The following algorithm 

below lists the detailed steps of the B-spline augmented VMC algorithm. 
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Algorithm 5.4. B-spline Augmented VMC Algorithm 

Steps in the 

Initialization  

Step 0: Provide initial guesses for the parameters in Set 
vS  

depending on the boundary condition. 

 

 

Steps inside 

the NLP 

Iterations 

Step 1: Calculate the parameters in Set
g

S  using the appropriate 

Lemmas (ex: use Steps 2-5 of Algorithm 3.3 for BC3). 

Step 2: Evaluate the performance index using Eq. (5.17). 

Step 3: Evaluate the constraints using Eq. (5.18). 

Step 4: If the convergence criterion is not satisfied and the maximum 

number of iterations hasn’t reached, generate parameters in 
Set 

g
S  for the next NLP iteration, and go back to Step 1.  

Otherwise, the optimization is a success and terminated. 

 

 

5.5. Dimension Comparison and Optimality 

 

Here, the optimality and dimension comparison section of Chapter 3 is re-examined, with 

the additional comparison of the BVMC method. 

Table 5.1 lists the comparison of the problem dimensions of the achieved NLPs for two 

approaches. The first method is the baseline approach, where the nonlinear constrained trajectory 

design problem (P1) described in Section II is formulated as an NLP via a pseudo-spectral based 

collocation method, such as the LGL method [7]. The states and control vectors are discretized 

into 0,1,..., N  nodes, and the state and control parameters at those collocation nodes are then 

optimized. Therefore, the dimension of the parameters is on the order of  ( )n m N  . 

The second method, the polynomial based VMC approach, in which the prey motion is 

represented by a polynomial, optimizes the discretized PCP vector (and possibly the final time 

and the reference point).  In this approach, the parameter dimension is on the order of ( )N . 



 

 

50 

The third method is the B-spline augmented VMC algorithm. In addition to the PCPs and 

possibly the reference point and final time, this augmented VMC approach needs to optimize 

some of the control points of the B-spline which is used to represent the prey motion. Therefore, 

the number of parameters to be optimized is on the order of ( )
a cp

N n n  , where 
an  is the 

number of “position” states (or the degrees of freedom) and cp
n  is the number of control points. 

Normally 
cp

n  is much less than the number of collocation nodes N .  For example, if we wish to 

use cubic splines of 3d   with eight knots (or two “non-multiple” knots), 4
cp

n   is required.  

While the baseline method has ~ l nN  E.Cs. that come from the dynamic equations and 

the boundary conditions of the problem, both VMC approaches contain zero equality constraints, 

and this lack of E.Cs. in the VMC approach reduces the difficulty in solving an NLP program 

significantly. Furthermore, the necessary conditions derived in Section 5.2 reduce the dimension 

in the VMC approach even further. The number of I.E.Cs. is the same for all three cases. 

Table 5.1 Dimension comparisons of baseline, VMC, and BVMC approaches 

 Baseline 

Approach  

Polynomial 

Based 

VMC 

Approach 

B-spline 

Augmented 

VMC Approach 

# of parameters ~ ( )n m N  ~ N  ~
a cp

N n n  

# of E.Cs. ~ l nN  0 0 

# of I.E.Cs. ~ pN  ~ pN  ~ pN  

 

Similar to the PCPs in the VMC approach, boundary conditions can be used to calculate 

certain control points in the B-spline augmented VMC approach. For example, BC1, according 

to Lemma 5.1 0 1Nv v  , the initial and final control points ( 0P  and N
P ) then can be calculated. 

These calculated control points further reduces the number of parameters to be optimized and 
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thus the problem dimension of the B-spline augmented method.  Based on the above analysis, 

although the achieved NLP approach has only a little bit larger dimension than that of the 

polynomial VMC approach, it is still much smaller in dimension than that of the baseline 

approach.  

Remark 5.5: In principle, both VMC approaches can solve P1 more quickly.  This remark 

can also be validated by the simulation results to be shown later. 

The polynomial based VMC method, where the prey motion is represented by a 

polynomial and the polynomial order is determined by the boundary conditions, optimizes only 

the PCP vector and the reference point. Therefore, whether or not the limited search space can 

produce an optimal solution over the full space depends on a proper guess of the polynomials. 

In the augmented VMC method, the prey motion is represented by a B-spline curve. The 

B-spline curve’s shape characteristics are determined by the number of control points and the 

degree of the curve. The more control points used and the higher the degree, the more flexible 

the curve becomes. These variables are not limited by the motion camouflage rule. Instead, the 

B-spline augmented VMC method’s optimality is dependent on the number of control points and 

the degree used to define the B-spline curve.  In addition, the variation of the PCPs at discretized 

node will further increase the flexibility of the achieved actual motion.   

Lemma 5.4. The trajectory of the Lego robot represented using Eqs. (5.17) and (5.18), 

for a given degree and a certain number of control points, is more flexible than that of the 

trajectory directly represented by a B-spline curve. 

Proof. The path that the Lego robot will optimize with the BVMC method is located 

within the subspace defined by the reference point ref
r  and the prey trajectory, which is a B-
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spline curve defined by Eq. (5.1). The robot’s path 
a

r  is defined according to the MC rule in Eq. 

(2.1), and can be represented by the B-spline curve itself 
a bsp
r r  if the PCPs are set equal to 

1  . 

If the obstacle-laden environment is too complex, the trajectory has to be more flexible.  

The trajectory of the robots if represented by the B-spline curve will need to have a larger 

number of d  and 
cp

n .  In the BVMC method, when a virtual prey motion is represented by the 

B-spline, d  and 
cp

n  don’t need to be increased, because by varying the PCP variables, any 

obstacle avoidance constraints can be satisfied without worrying about the virtual prey colliding 

with obstacles.  Therefore, it can be seen that the robot trajectory represented by Eqs. (5.17) and 

(5.18) can be much more flexible than the case if the path is directly represented by the B-spline 

curve. □ 

Remark 5.6: The result achieved via the BVMC method will at least have the same 

optimality as that of the B-spline prey trajectory when 1  . Thus the solution optimality 

achieved using the BVMC method will be better or at least no worse than a method that 

optimizes a B-spline curve as the solution path. 

Remark 5.7: In obstacle-laden environments, a B-spline curve trajectory by itself requires 

a large number of control points cp
n  and a large degree d  in order to avoid the obstacles.  Thus, 

the number of optimized parameters (i.e., the control points) increases when more collision 

avoidance constraints are present, which will have a larger CPU time. By comparison, the 

BVMC method doesn’t require a high degree or large number of control points for the B-spline 

prey trajectory because the virtual prey isn’t required to satisfy any collision avoidance 
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constraints, so a small d  and 
cp

n can be used. Therefore, the number of parameters optimized in 

the BVMC (i.e., Set 
opt

S ) can remain small for obstacle-laden environments, which in practice 

allows for a faster CPU time. 
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 6.  APPLICATION: PHANTOM TRACK GENERATION 
 

In this chapter, the optimal collaborative phantom track generation mission will be 

discussed. First, the dynamics of the phantom track are presented, along with the numerical 

values of the states and controls that will be used in simulation examples for this thesis. Finally, 

certain aspects of the phantom track such as a steering law and terminal conditions will be 

examined. Further discussion about phantom track generation can be found in [62][64][65]. 

 

 

6.1. Phantom Track Dynamics 

 

A 6DOF dynamics model [72] will be used in the optimal coherent PT mission design to 

govern the motions of all ECAVs and the phantom aircraft as 

cos cos

sin cos

sin

[( ) / sin ]

( / )( cos cos )

( sin ) / ( cos )
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n

n

Vr

Vr

Vr

g T D WV

g V k n

gk n V

 
 



 

 

  
  
  
  

        
   
  
    

x  (6.1) 

where [ , , ]T

E N U
r r r  is the east-north-up coordinate of the aircraft (ECAVs or phantom), V  is the 

air speed ( 0 200 /V m s  ),   is the heading angle ( 0 050 50   ), and   is the flight path 

angle ( 0 025 25   ).  The control variables are the applied thrust T  ( 0 229,124T N  ), load 

factor n  ( 1.5 3n   ), and bank angle   ( 25 25o o   ). 

The drag used here is calculated by 
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 2 2 2 2 2

00.5 2 /
D n

D V SC kk n W V S    (6.2) 

The constants used in the model [20][72] are: wing area 237.16S m , zero lift drag coefficient 

0 0.02
D

C  , load factor effectiveness 1
n

k  , induced drag coefficient 0.1k  , gravitational 

coefficient 29.81 /g kg m , atmospheric density 31.2251 /kg m  , and the weight 

14515W g . 

The problem is to design the optimal collaborative trajectories for ECAVs to achieve a 

coherent PT with the minimum total energy consumption.  The geometric characteristic of the 

mission profile is that each ECAV must be on the line connecting its corresponding radar and the 

PT during its flight. The performance index is the total energy consumption used in the coherent 

mission, defined as 

0

2

1

EC
f

i

N
t

EC
t

i

J T dt


  (6.3) 

where ECN  is the number of the ECAVs involved in the mission, 
iEC

T  is the thrust used by the 

th
i  ECAV, and 0t  and ft  are the initial and final time of the mission, respectively. 

In this constrained nonlinear optimal trajectory design problem, in addition to the 

dynamic constraint (equality constraint) as shown in Eq. (1), there are state and control 

inequality constraints, and geometric equality constraints involved. Also, to be more realistic, the 

rate of the control variables need to be constrained and the ECAV should not be too close to the 

PT or its corresponding radar. The rates of the control variables are assumed to be 

4 43 10 3 10 /T N s     , 0.5 0.5 1/n s   , and 10 / 10 /o o
s s   , respectively.  Here 

the relative distance from an ECAV to PT and its corresponding radar is described by the PCP v .  
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The proximity of the ECAV to the PT and to its corresponding radar location is constrained by 

min maxv v v  . 

Correspondingly, the dynamics model ( , , )tx f x u  (Eq. 1) will be rewritten as 

( ) ( , )
a a

t tx f x  and ( ) ( , , )
sr sr

t tx f x u . For the particular dynamics model used here, all state 

and control variables can be represented by the PCPs and their derivatives based as 

 1/2
T

a aV  r r  (6.4) 

  /T

a a
V V r r  (6.5) 

 1sin /
U
r V   (6.6) 

 1tan /
N E

r r   (6.7) 

2 21/ 1 ( / ) ( ) /U U Ur V r V r V V       (6.8) 

 2 2{1/ [1 / ]}( ) /
N E N E E N E

r r r r xr r r     (6.9) 

tan [ ( cos ) / ] / [ / cos ]V g V g       (6.10)  

cos / ( sin ) sin 0

( cos ) / cos cos 0

n

n

V gk
n if

V g gk

   
   


   

 (6.11) 

and 

(sin / )T W V g D    (6.12) 
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6.2. Steering Law and Terminal Condition 

 

This section describes the early termination strategy based on a motion camouflage 

steering law. 

Lemma 6.1: The propagation of the PCP for each ECAV [58] is governed by 

2 2

2
2 22 2

4 2 2

( )

(2 )( )

T T

ref p r p r p r

p r p r

TT T
r p r p r rp r p r ref p r EC

p r p r p r

v t v

v v Vv V

  

 
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  

  

 
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r r r r

r r

r r rr r r r

r r r

(6.13) 

Remark 6.1: In most cases, the location of the reference point (e.g. the radar network) is 

fixed.  Therefore, the PCP governing equation for the ECAV can be simplified as  

2 2 2 2

2 4 2 2

( )T T

p r p p r p p EC

p r p r p r p r

v v V V
v v

 

   

    
r r r r

r r r r
 (6.14) 

Lemma 6.2: For a PT mission to be feasible, the speed of the coherent PT [58] must 

satisfy 

 2 2
2 2 2/ /T

p p r p p r ECV V v  r r r  (6.15) 

for all the groups of the ECAVs, PT, and radars. 

Proof of Lemma 6.1: 

The velocity of the aggressor (i.e., the ECAV) under the motion camouflage rule (Eq. 1) 

is calculated by  

EC ref p r p r
v v   r r r r  (6.16) 

thus the speed of the aggressor, 
T

EC EC ECV  r r , can be derived as 
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2
2 2 2

2
2

2 2

2

T T

EC r ref p r ref p r p r

T

p r p r p r

V V v v v

vv v

  
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   

 

r r r r r

r r r

  (6.17) 

where the speed of the reference point is 
rV . Therefore the propagation equation of the PCP ( )v t  

can be found from the quadratic Eq. (6.17) as shown in Eq. (6.13). 

Proof of Lemma 6.2: 

For Eq. (6.14) to be valid, it requires that 

2 2
2 2 2 2( ) 0T

p r p p p r EC p rv v V V    r r r r   (6.18) 

Re-arranging Eq. (6.18), it is easy to see that a coherent PT can be achieved if its speed satisfies 

 2 2
2 2 2/ /T

p p r p p r ECV V v  r r r  (6.19) 

Based on Lemma 6.2 and Remark 6.1, the following early termination condition can be 

derived. 

Lemma 6.3: The position and velocity of the PT at each discretized node must satisfy the 

following equation: 

 2 2
2 2 2

,max/ /T

p p r p p r EC bV V v  r r r  (6.20) 

where bv  is selected according to the initial and final PCP values.   

Remark 6.2: Since the control variables of the ECAV and/or PT are limited, a big 

difference between 0v  and 
f

v  will cause the ECAV to violate the control constraints. To make 

sure the generated PT is feasible for all ECAV trajectories, the value of bv  should fall in the 

range of min 0min( , )
b f

v v v v   but be closer to 0min( , )
f

v v . In this lemma, ,maxEC
V  is the 

maximum speed allowed for the ECAV. 
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 7.  APPLICATION: FREE FLYING MC RENDEZVOUS AND DETECTION 
 

In this chapter, the free flying MC rendezvous and detection problem will be discussed. 

This problem is not directly related to nonlinear trajectory optimization, but instead deals with 

finding a free-flying trajectory that allows a moving craft to perform motion camouflage, and 

whether that kind of motion can be detected. First, the relative motion dynamics of craft within 

the LVLH coordinate system will be presented. Then, motion camouflage within the LVLH 

coordinate will be examined, followed by the derivations of free flying MC within LVLH. 

Finally, application of the extended Kalman filter will be studied. Further discussion about 

motion camouflage in relative rendezvous can be found in [60]. 

 

 

7.1. Relative Motion 

 

In the MC strategy, the position vector of the shadower (aggressor)   [ , , ]T

a a a a
t x y zr  is 

confined by the motion of the shadowee (prey)   [ , , ]T

p p p p
t x y zr , a selected reference point 

  [ , , ]T

ref ref ref ref
t x y zr , and the PCP  v t .  

The relative motion between the shadower and shadowee in the local vertical and local 

horizontal (LVLH) coordinate system is described by the Clohessy-Wiltshire (CW) equation, 

where the origin of the coordinate system is in a circular or near circular orbit and the relative 

distance between the shadowee and shadower is not big, as 
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2

,

,

2

,

2 3

2

a x a a a

a y a a

a z a a

a x ny n x

a y nx

a z n z

  

 

 

 (7.1) 

in which the mean motion is 3/n R ,   is the central body’s gravitational parameter, and 

R  is the circular orbit’s radius. The variables ,a x
a , ,a y

a , and ,a z
a  are the shadower’s 

accelerations in the LVLH coordinate. 

 

 

7.2. Motion Camouflage in LVLH 

 

Case 1: Shadowee at the Origin of the LVLH. In this case the position, velocity, and 

acceleration of the shadowee in LVLH are  0
p p p
  r r r . According to Eqs. (2.1), (3.3) and 

(3.4), the position, velocity, and acceleration of the shadower governed by the MC strategy can 

be simplified as 

 

(1 )a ref

a ref

a ref

v

v

v

 

 

 

r r

r r

r x

 (7.2) 

Substituting Eq. (7.2) into Eq. (7.1), the relative motion of the shadower and the shadowee can 

be derived as 

 

 

2

,

,

2

,

2 3 1

2

1

a x ref ref ref

a y ref ref

a z ref ref

a vx ny n x

a vy nx

a vz n z

 





    

  

   

 (7.3) 



 

 

62 

Case 2: Moving Shadowee in LVLH. For this case, the shadowee is moving in the 

LVLH but not necessarily at or near the origin of the coordinate frame, so the shadower’s motion 

are equal to the MC rule equations. Substituting these equations in Eq. (7.1), the motion of the 

shadower can be derived as 

   
 

   
 

   

,

2 2

,

2

,

2

2

2 3 3

2

2

2

a x p ref p p ref

p p p ref ref

a y p ref p p ref

p p

a z p ref p p p ref

ref

a v x x x n y y

x ny n x x n x

a v y y y n x x

y nx

a v z z z z n z z

n z









 

      
      

      

 

       


 (7.4) 

For space applications, fuel consumption is always an important design factor. For the 

motion camouflage strategy to be attractive as a means for the shadower to approach and 

rendezvous with the shadowee, low acceleration or zero acceleration is preferred to allow for a 

long mission life. The next two sections details the derivations for free flying MC strategies.  

Here the term “free flying” is used to denote the case when no control is applied in the motion. 

 

 

7.3. Free Flying MC in LVLH  

 

Case 1: Shadowee at the Origin of the LVLH. This section discusses free-flying MC 

strategies for when the shadowee is fixed at the origin. 

Lemma 7.1. When a shadowee is fixed at the origin of the LVLH coordinate system, 

there are two non-trivial free flying MC paths that the shadower can use.  (1) The shadower is 
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moving solely along the z-axis and only the z component of the reference point is not set at zero.  

In this case, the PCP variables is governed by 2(1 )v n v  and the motion of the shadower is 

(1 )
a ref

z v z  . (2) When 0
ref

x  , 0
ref

y  , and 0
ref

z  , the PCP variation is controlled by 

2 23 (1 ) / 2( )
ref ref ref ref

nx y v x y      , and the motion of the shadower is (1 )
a ref

x v x   , 

(1 )
a ref

y v y  , and 0
a p

z vz  . 

Proof. When the shadower is fixed at the origin of the LVLH coordinate and the 

reference point is constant, Eq. (7.3) can be rewritten in matrix form as 

2 2

2 2

2 3 3

2 0 0

0

ref ref ref ref

ref ref

ref ref ref

x ny n x v n x

y nx v

z n z v n z

      
         
        

      (7.5)

 

which is defined as [ , , ]T
A v v v  b .  Since the reference point and the mean motion of the LVLH 

coordinate are constant, matrix A is a constant matrix.  

 Case 1: if the determinant of matrix A  is not zero.  Because the

 

third column of matrix 

A  is the same as b , according to the Cramer rule, 1v  , and 0v v  . Therefore, this case is 

trivial. 

Case 2: if the determinant of matrix A  is zero.  In this case the following equation can be 

derived. 

3 2 22 (4 ) 0
ref ref ref

A n x y z    (7.6) 

There are a total of five solution cases for Eq. (7.6). The following three cases are trivial: (1) 

0
ref ref ref

x y z   , (2) 0
ref

x  , 0
ref

y  , and 0
ref

z  , and (3) 0
ref

x  , 0
ref

y  , and 0
ref

z  .  

There are two non-trivial cases.   
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First 0
ref ref

x y   and 0
ref

z  . The third equation in Eq. (7.5) leads to 2(1 )v n v   , 

0
a a

x y   , and (1 )
a ref

z v z  .  For this first non-trivial case, only the z component of the 

reference point is non-zero and the shadower has to move along the z-axis only. 

Second, 0
ref

x  , 0
ref

y  , and 0
ref

z  .  In this case, Eq. (7.5) can be simplified as 

2 22 3 3

2 0

ref ref ref ref

ref ref

x v ny n x n x

y v nx

 



   

 
 (7.7) 

Based on Eq. (7.6), the governing equation of the PCP variable is 

2 23 (1 ) / 2( )
ref ref ref ref

nx y v x y       (7.8) 

and the motion of the shadower is determined by  

 (1 )
a ref

x v x   , (1 )
a ref

y v y  , 0
a p

z vz   (7.9)

 
Therefore, Lemma 7.1 is proven.   ฀ 

Remark 7.1: An interesting effect of note in Eq. (7.8) is that if ref
x  is positive and ref

y  is 

negative (or vice versa), then the PCP will decrease over time, and therefore the shadower will 

move away from the shadowee instead of move towards it. To prevent this, ref
x  and ref

y  must 

have the same sign. This will cause the PCP to increase and therefore move towards the 

shadowee. 

Case 2: Shadowee moving in the LVLH. This section discusses free-flying MC 

strategies for when the shadowee is fixed at the origin. It should be noted that all the equations 

and symbols listed in the following algorithm will be explained in the proof that follows it. 
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Lemma 7.2. When a shadowee is free flying and not in the origin of the LVLH 

coordinate, a free flying MC motion can be planned by the shadower if the following algorithm 

is used. 

Algorithm 7.1. Finding Free Flying MC Path for Case 2 

 

Steps in  

the Initializ-ation  

 Define the initial and final PCPs as 0 0   and 1
f

  . Select 

values for the initial and final PCP velocities 0  and 
f

 . 

 Select initial guesses for the reference point 
ref

r  and the final 

time 
f

t . 

 

 

 

Steps  

inside the NLP 

Iterations 

Step 

1 

Propagate shadowee’s dynamics using Eq. (7.1) for a free 

flying scenario (i.e., no external acceleration) from 0t  to 
f

t . 

Step 

2 

Find the error defined in Eq. (7.22). 

Step 

3 

Minimize the cost function in Eq. (7.21). 

Step 

4 

If optimization is successfully finished, stop. 

If the optimization is finished, go to Step 1. 

 

Steps after the 

NLP Iterations  

 Solve for the remaining discretized PCPs using Eq. (7.18). 

 Define shadower’s free flying trajectory with Eq. (2.1) using 

optimized 
ref

r , propagated 
p

r ,  and calculated PCPs  

 

Proof. For free flying shadower and shadowee, the accelerations in Eqs. (7.1) and (7.4) 

are set to be zero.  When the free flying shadowee equations are substituted into Eq. (7.4) with 

zero accelerations, the following equation will be obtained: 

 
 

2
2

22

2 3 3

0 0

2

pr p pr ref
ref

pr p pr

refpr p ref

x x ny n x n x

y y nx

n zz z n z

 
 



                        

(7.10) 

Here pr p ref
x x x  , pr p ref

y y y  , and pr p ref
z z z  . The matrix on the left hand side is a time 

varying matrix.  For convenience, at each discretized time step k
t , the system can be redefined as 
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k

k k k

k

E

A D A

I

 
    
  

b   (7.11) 

in which  02 /
f

D t t D  ,    22

04 / fE D t t  , 
 3 1N

k
A

   , 3 1b , and 

 1 1

0 1[ , ,..., ]
NT

N
v v v

   .  
   1 1N N

I
   is an identity matrix, and 

   1 1N N
D

    is the 

differentiation matrix in pseudospectral discretization methods, such as the Legendre-Gauss-

Lobatto method in [16]. The subscript k  indicates the th
k  row of the respective matrix. 

Matrix k
A  can be further broken down as *

,0 ,k k k k N
A A A A       where 

 3 1* N

k
A

   and 

,0k
A  and ,k N

A  are the 1
st
 and the ( 1)th

N   columns of matrix k
A , respectively.  Therefore Eq. 

(7.11) can be reorganized as 

* *

,0 0 , 1k k k N N
A A v A v    b  (7.12) 

If Eq. (7.12) for all the nodes are put together, the following equation will be achieved: 

*
H = c  (7.13) 

where 

   

*

0

*
3 1 11

*

N N

N

A

A
H

A

  

 
 
  
 
 
  

 (7.14) 

 

0,0 0 0,

1,0 0 1, 3 1 1

,0 0 ,

N N

N N N

N N N N

A A

A A

A A

 
 

 

 

   
     
 
    

b

b
c

b

 (7.15) 
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and *  is taken from the PCP vector  , which can be written as 
 1 1*

0

T N

N        . 

In addition, the boundary conditions of the PCP velocities have to be taken into account.  

Because the initial PCP derivative can be expressed as *

0 0,0 0 0,ND D D      and the final 

PCP derivative is *

,0 ,N N N N N
D D D     , the following two equations are obtained: 

* *

0 0 0,0 0 0,N N
D D D      (7.16) 

and 

* *

,0 0 ,N N N N N N
D D D      (7.17) 

Now the PCP derivative equations can be incorporated with Eq. (7.13) into the equation 

*
M = d  (7.18) 

where 

   3 1 2 1*

0

*

N N

N

H

M D

D

     

 
   
  

 (7.19) 

and 

 3 1 2 1

0 0,0 0 0,

,0 0 ,

N

N N

N N N N N

D D

D D

  
  

    

 
    
   

c

d =  (7.20) 

If matrix M  is left invertible, then the PCP variables can be calculated from *
M

 d , where 

the superscript “+” denotes the left pseudoinverse. 
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Because M  is non-square, it may not be invertible, so it becomes necessary to use an 

optimization problem to find the optimal reference point 
ref

r  and final time 
f

t  so that the 

following cost function can be close to zero: 

 
,

min ,
ref f

T

ref f
t

f t
r

r = e e  (7.21) 

where e  is the error defined as 

 MM
 e d d  (7.22) 

Since the MC rule, CW equation, the boundary conditions, and zero accelerations have all been 

considered in Eq. (7.18), the optimal solution of 
ref

r  and 
f

t  found by optimizing Eq. (7.21) is the 

free flying MC path for the shadower. ฀ 

Remark 7.2: According to Eq. (7.10), the reference point must be selected such that the 

determinant of matrix  0A t  is zero.  Otherwise, the solution is trivial and p a
r r  for all time. 

Here, one possible solution is selected as: 

   2 2

,0 1 3 1
T

p ref r ref ref rx k n y z k n    r
 

(7.23) 

where 
rk  is a selected ratio. 

 

 

7.4. Extended Kalman Filter 

 

Here an extended Kalman filter is designed for the shadowee to estimate whether or not a 

motion camouflage strategy has been adopted by the shadower. The process model will utilize 

continuous-time dynamics while the measurement model will be performed at discrete instances 
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of time. 

The reference point and the PCP propagation of the shadower can be captured in the 

following dynamics model when the MC strategy is used: 

0

0

0

ref

ref ref

ref

x

y

z

   
       
     

w  (7.24) 

and 

/
a ref pcp

V r   w  (7.25) 

 

in which 
ref

w and 
pcp

w  are the noise associate with the implementation of the reference point and 

the PCP variable. 
aV  is the speed of the shadower. 

Proof. Since the shadowee’s position p
x  is known, the variables in that need to be 

estimated are the PCP and the reference point. First, the reference point should remain fixed for 

any feasible MCs, so the motion of the reference point is described as in Eq. (7.24), where 

 ~ 0,
ref

Qw  is the zero-mean Gaussian white process noise. 

Second, as proven in [58], the governing equation of the PCP variable for a general speed 

profile of the shadower and shadowee, when noise is considered, is 

 2 2
2 2

2 4 2 2

TT
pr p ppr p a

pcp

pr pr pr pr

V 
      

r r rr r
w

r r r r
(7.26) 

where pr p ref
 r r r . This steering law is used for Case 2 with a moving shadowee. For the fixed 

shadowee in Case 1, Eq. (7.26) can be simplified to 
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/
a ref pcp

V r   w  (7.27) 

where 
aV  and 

ref
r  are the shadower’s speed and the reference point magnitude, respectively. The 

“ ” sign is determined by whether the PCP is expected to increase or decrease. For example, in 

this dissertation’s later simulations, the PCP is expected to increase from the reference point at 

0   to the shadower at 1  , thus the “ ” sign is used. ฀ 

In this model, the speed of the shadower 
aV  in Eqs. (7.26) and (7.27) can be found via the 

CW equation as 

,

,

,

2

, ,

, ,

2

,

2 2

2

a a x

a a y

a a z

CW

a x a y a

a y a x

a z a

x V

y V

z V

V nV n x

V nV

V n z

   
   
   
   

       
   
   

     

w  (7.28) 

Therefore, for a fixed shadowee, Eqs. (7.24), (7.25), and (7.28) are regarded as the 

processing model in the EKF, in which the state vector is [ , ]T T T T

a a ref
, , vr V r . The partial derivatives 

of the state function with respect to the state variables in Case 2 (i.e., the shadowee is moving) 

are 
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2

2

1

,, ,

2 2 2

0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

3 0 0 0 2 0 0 0 0 0

0 0 0 2 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0
a ya x a z

x y z

pr pr pr

n n

n

nA

VV V
R R R R

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

   
    r r r

(7.29) 

where   is the square root portion of Eq. (7.26) and 
x

R , 
y

R , 
z

R , and R  are the derivatives of 

Eq. (7.26) in terms of 
ref

x , 
ref

y , 
ref

z , and the PCP, respectively. 

For Case 1 (i.e., the shadowee is fixed at the origin), the partial derivatives of the state 

function with respect to the state variables are 

2

2

2

,, ,

3 3 3

0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

3 0 0 0 2 0 0 0 0 0

0 0 0 2 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0
a y a ref a ref a refa x a z

a ref a ref a ref ref ref ref

n n

n

nA

V V x V y V zV V

V r V r V r r r r

 
 
 
 
 
 
 
 

 







  
 











(7.30) 
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This dissertation utilizes an idealistic measurement model to determine the position of the 

shadower.  The 3D position of the shadowee in the LVLH coordinate can be measured from the 

sensor directly. The sensor’s measurement model is 

[ , , ]T
p x y z  v  (7.31) 

where p  is the measurement and v  is the zero-mean Gaussian white measurement noise.. The 

partial derivative matrix of the measurement with respect to the state variables  is 

3 3 6

1 0 0

0 1 0

0 0 1

ref

D ref

ref

x

H O y

z







  
    
   

 (7.32) 
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 8.  SIMULATION CASES 
 

In this chapter, several simulation examples are presented to demonstrate the capabilities 

of the VMC algorithms. The polynomial based VMC method will be used in the phantom track 

generation example, the B-spline augmented VMC method will be used in the Snell’s River 

example, and both the sequential VMC method and BVMC method will be used in the 

minimum-time obstacle avoidance problem example. The capabilities of the BVMC method will 

also be demonstrated using a physical mobile robot testbed. 

 

 

8.1. Snell’s River 

 

The motion of a boat moving through a river with a varying current [76] is governed by  

 
 

cos ,

sin ,

V u x yx

V v x yy



  

       
 (7.33) 

where the positions x  and y  are regarded as the “position” state variables, the direction   is the 

control, and the speed V  is fixed and assumed to be 1 /m s . The functions  ,u x y  and  ,v x y  

are the velocity contributions of the river’s current, and selected as  , /u x y Vy h   and 

 , 0v x y  , where 1h m  is a dimensional constant.  

The boat starts at a position of [ 3.86,1.86]m  and aims to rendezvous with the moving 

final position of [0 0.11 ,0 0.07 ]
f f

t t m   in the minimum time possible while avoiding all 

obstacles. Here a circular obstacle of    2 2
1.5 1.7 1x y     is used in this simulation. The 
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discretized form of the minimum time cost function is  0

0

0.5
N

f i

i

J t t 


   .  The control 

variable   is eliminated using the differential flatness, ending up with the nonlinear state 

equality constraint  

 2 2 2
x Vy y V    (7.34) 

For each simulation case, there are two sub-cases. In the first sub-case, the reference 

point is optimized along with the other parameters in Set 
g

S . An initial trivial guess of 

 0.5, 6 m   is used. For the second sub-case, the reference point is fixed and set at  0.5, 6 m  . 

In all simulation cases, a trivial initial guess of a straight line connecting the endpoints is used for 

the control points. The numbers of discretization nodes used in the simulation are set as 10, 15, 

20, and 25. 

Table 8.1 shows the results of the baseline approach and the B-spline augmented VMC 

approach (both sub-cases) with either fixed or optimized reference point.  The NURBS used in 

the B-spline augmented approach has a degree of four, i.e. an order of five, and five control 

points. The degree and number of control points was selected through trial and error. 

Several observations can be made about the results. First, all of the VMC results fall very 

close to the optimal solution calculated by the baseline method, within about 1% differences. 

Second, the two VMC methods find the solution with noticeably smaller runtimes, with the CPU 

time saving averaging to be approximately 35%. Third, the B-spline augmented VMC method 

with a fixed reference point finds the solution with a faster runtime than the one with an 

optimized reference point. This is expected, since the method with a fixed reference point has 

fewer parameters to optimize than the one with the optimized reference point.  It is worth noting 
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that the reason why the computational time saving is not as significant as that of the second 

simulation in Section 4.4 is: there are no severe state and control constraints and only one 

obstacle is involved in this Snell’s river problem, therefore the advantages of the VMC haven’t 

been fully demonstrated here. 

An interesting behavior found in the results is that the trajectory for the VMC methods is 

smoother than the trajectory from the baseline method. This can be seen in the plots of the 

trajectories in Figs. 8.1 and 8.2. Figure 8.1 displays the results for the 25-node case with the 

optimized (free) reference point, while Fig. 8.2 displays the 25 node case with the fixed reference 

point. 

Table 8.1 Simulation results of the minimum time Snell’s River problem 

Algorithm Performance 10-node 15-node 20-node 25-node 

Baseline 

approach 

Index (s) 6.344486 6.329424 6.324757 6.325828 

CPU Time (s) 2.503112 3.188158 5.188576 6.522735 

VMC methods 

Augmented 

VMC w/ 

optimized ref. pt. 

Index (s) 6.363182 6.371427 6.388621 6.388511 

Difference % 0.294681 0.663615 1.009746 0.990906 

CPU Time (s) 2.044497 2.345518 3.381903 4.284894 

Augmented 

VMC w/ fixed 

ref. pt. 

Index (s) 6.374644 6.370314 6.370426 6.373432 

Difference % 0.475342 0.64603 0.722067 0.752534 

CPU Time (s) 1.435613 1.803156 3.008053 4.04436 
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Figure 8.1 Snell’s river with free reference point 

 

 

Figure 8.2 Snell’s river with fixed reference point 

 

 

8.2. Minimum-Time Obstacle Avoidance 

 

The simple dynamic model of a two-wheel mobile robot [52] is given by 
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cos 0

sin 0

0 1

x

y w


 



     
           
          

 (7.35) 

where the two wheels’ midpoint  ,
T

a
x yx  is regarded as the “position” state and the direction 

of the vehicle 
sr

x   is regarded as the “state rate” variable. Two control variables are involved 

as the speed v  and the angular speed w , and they are respectively constrained by maxv v  (e.g. 

max 0.1 /v m s ) and maxw w  (e.g. max 135 /w s  ).  The mission objective of the robot is to start 

at a position of [1,1] with an initial direction of 0 45    and move to a position of [9,9]  in the 

minimum possible time while avoiding all obstacles. In the discretized form, the minimum time 

cost function is  0

0

0.5
N

f i

i

J t t 


   .  Through the differential flatness technique, the “state 

rate” can be computed as  1tan /y x  , while the control variables can be computed as 

 / cosv x   (or  / sinv y   if  cos 0  ) and    2 2/w yx xy x y    (if  2 2 0x y  ). 

Five different circular obstacles will be used in three different simulation cases for this 

problem. The five obstacles are: (C1)    2 2
5 5 4x y    ; (C2)    2 2

4 4 4x y    ; (C3) 

   2 2
6 7 1x y    ; (C4)    2 2

8 8 0.5x y    ; and (C5)    2 2
8 6 1x y    . The first 

case will consider obstacle C1. The second case will consider obstacles C2, C3, and C4. Finally, 

the third case will consider obstacles C2, C3, C4, and C5. 

Three methods are first compared here: the baseline method, the polynomial based VMC 

method, and the B-spline augmented VMC method. Also two sub-cases will be simulated in the 

B-spline augmented VMC method: fixed reference point or optimized reference point. For the 
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polynomial based VMC algorithm, the reference point for Cases 1, 2, and 3 are respectively set 

at [130, 120] , [150, 160] , and [100, 100] . For the B-spline augmented VMC algorithm, the 

reference point is set as [130, 120]  for the fixed reference cases. In the sub-case where the 

reference point is optimized, an initial guess of [130, 120]  is used. In the simulation, an initial 

trivial guess of a straight line connecting the endpoints is used either as the prey motion in the 

polynomial based VMC method or as the control points in the B-spline augmented VMC 

method. The number of nodes used is set as 10, 15, 20, and 25.  

Table 8.2 shows the results for Case 1 using the baseline approach, the polynomial based 

VMC approach, and the B-spline augmented VMC approach with either fixed or optimized 

reference point. The B-spline augmented VMC approach uses a degree of three (or order four) 

and four control points. Again, trial and error was used to select the degree and number of 

control points for the problem. 

Several observations are apparent in these results. First, all of the VMC methods generate 

results that fall within 1.8% of the baseline’s results in error differences. The difference 

percentage between the baseline’s and the VMC methods’ results gets smaller as the number of 

nodes increases. Second, compared to the baseline approach, all of the VMC methods have 

significantly smaller CPU runtimes. The baseline method’s runtime increases noticeably as the 

number of nodes increases (from 3.65 to 24.06 seconds), while the VMC methods have a much 

smaller increase as the number of nodes increases. The polynomial based VMC method ranges 

from 1.07 to 1.57, the B-spline augmented VMC method with the fixed reference point ranges 

from 1.36 to 4.14, and the B-spline augmented method with the optimized reference point ranges 

from 2.30 to 5.72. Third, the B-spline augmented VMC method obtains results that are much 
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closer to the baseline solutions, while the polynomial based VMC method achieves its results 

with faster runtimes. This is because the B-spline augmented VMC method optimizes more 

variables compared to the polynomial based VMC method. Fourth, the B-spline augmented 

method with a variable reference point achieves a solution closer to the baseline than the one 

with a fixed reference point while having a slightly bigger runtime because of the addition of the 

reference point being optimized.  

Table 8.2 BVMC minimum time collision avoidance (1 obstacle) 

Algorithm Performance 10-node 15-node 20-node 25-node 

Baseline approach Index (s) 120.8123 120.2759 120.3392 120.3258 

CPU Time (s) 3.6499 14.2157 31.7255 24.0594 

VMC methods 

Polynomial based VMC Index (s) 122.4358 121.9288 121.1358 121.0189 

Difference % 1.7536 1.3322 0.6732 0.5760 

CPU Time (s) 1.0727 1.1632 1.3078 1.5735 

B-spline Augmented VMC 

w/ fixed ref. pt. 

Index (s) 122.0063 121.5847 120.9073 120.8038 

Difference % 0.9880 1.0880 0.4720 0.3970 

CPU Time (s) 1.3578 2.1595 3.0158 4.1399 

B-spline Augmented VMC 

w/ optimized ref. pt. 

Index (s) 120.7515 121.5823 120.8751 120.7515 

Difference % 0.7870 1.0860 0.4450 0.3540 

CPU Time (s) 2.2962 2.3382 4.3058 5.7203 

 

The results for Cases 2 and 3 are shown in Tables 8.3 and 8.4, respectively, and the same 

arguments made for Case 1 can also be made for Cases 2 and 3. All of the VMC methods 

manage to obtain results that are close to the baseline method. The B-spline augmented VMC 

method, while having a slightly higher runtime than the polynomial based VMC method, has a 

noticeably better optimality. 
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Table 8.3 BVMC minimum time collision avoidance (3 obstacles) 

Algorithm Performance 10-node 15-node 20-node 25-node 

Baseline approach Index (s) 121.9482 121.9222 122.0689 121.8265 

CPU Time (s) 7.0953 8.9596 19.2836 59.8025 

VMC methods 

Polynomial based VMC Index (s) 124.9275 124.6273 125.1759 125.9641 

Difference % 2.3418 2.0959 2.5453 3.1910 

CPU Time (s) 1.1217 1.2327 1.2739 2.2784 

B-spline Augmented VMC 

w/ fixed ref. pt. 

Index (s) 123.1414 122.7489 123.0498 123.0612 

Difference % 0.9780 0.6780 0.8040 2.5820 

CPU Time (s) 1.6145 1.6507 3.3157 6.3116 

B-spline Augmented VMC 

w/ optimized ref. pt. 

Index (s) 122.8176 122.3159 122.5107 122.6498 

Difference % 0.7130 0.3230 0.3620 2.9080 

CPU Time (s) 2.8830 2.2911 4.4907 6.2093 

 

Table 8.4 BVMC minimum time collision avoidance (4 obstacles) 

Algorithm Performance 10-node 15-node 20-node 25-node 

Baseline approach Index (s) 121.9482 121.9222 122.0691 121.8265 

CPU Time (s) 3.6936 9.1304 21.7263 59.8025 

VMC methods 

Polynomial based 

VMC 

Index (s) 128.9249 125.4656 125.9822 125.9872 

Difference % 5.8267 2.9871 3.4112 3.4153 

CPU Time (s) 1.1766 1.2771 1.5672 2.4650 

B-spline Augmented 

VMC w/ fixed ref. pt. 

Index (s) 125.747 124.1551 124.0675 124.5689 

Difference % 3.1150 1.8310 1.6370 2.2510 

CPU Time (s) 1.2625 1.7057 2.2747 3.3794 

B-spline Augmented 

VMC w/ optimized 

ref. pt. 

Index (s) 124.4884 123.051 123.2818 123.213 

Difference % 2.0830 0.9260 0.9930 1.1380 

CPU Time (s) 1.8837 1.7458 2.9565 3.6962 

 

Figure 8.3 shows the results for the 1-obstacle 25-node fixed reference point case, while 

Fig. 8.4 shows the same case with the optimized reference point. In these figures, the straight line 

is used as the prey motion in the polynomial based VMC, while the b-spline augmented VMC 

method uses this straight line as the initial guess line for the control points.  In both cases, the 

VMC methods follow the path of the baseline approach very well but the B-spline augmented 

VMC is closer to the baseline one than the polynomial based VMC approach.  The figures also 
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illustrate how much the prey motion changes in the B-spline augmented VMC approach to 

improve the performance index, as compared with the fixed straight line used in the polynomial 

based VMC approach. 

Similar results can be seen in Figs. 8.5 and 8.6 for the 3-obstacle 25-node cases and in 

Figs. 8.7 and 8.8 for the 4-obstacle 25-node cases. Whether the reference point is fixed or 

optimized, the B-spline augmented VMC approach matches well with the baseline approach’s 

results. 
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Figure 8.3 One obstacle optimal trajectory with fixed reference point 
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Figure 8.4 One obstacle optimal trajectory with optimal reference point 

 

 
Figure 8.5 Three obstacle optimal trajectory with fixed reference point 
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Figure 8.6 Three obstacle optimal trajectory with optimal reference point 
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Figure 8.7 Four obstacle optimal trajectory with fixed reference point 
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Figure 8.8 Four obstacle optimal trajectory with optimal reference point 

 

Now the “baseline” results are compared to the sequential VMC method’s results. Using 

sequential VMC, the results of Case 1 are shown in Table 8.5 and the following observations are 

apparent. (1) The first VMC run generates solutions that have a difference percentage of less 

than 1.8% as compared with the 25-node baseline solution, and this difference percentage 

number gets smaller as the number of nodes increases.  (2) The CPU runtime rises significantly 

as the number of nodes increases in the baseline approach (from 3.65 to 24.06 seconds), while 

the rise is fairly small for the VMC method (from 1.07 to 1.57 seconds). (3) It can be seen in 

Table 8.5 that each VMC run will improve upon the result achieved in its previous one. (4) The 

runtimes of the partial derivatives calculation and the linear programming used in the sequential 

approach increases only by a slight amount as the number of nodes increases.  As expected, the 

time spent in the NLP is much bigger than those of the LP and partial derivative calculations for 

the first VMC iteration.  (5) The overall CPU time for the sequential method does increase as the 
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number of iterations increases; however the maximum CPU time for the 25-node case with three 

iterations is only 2.89 seconds, which is much smaller than that of the baseline method (24.06 

seconds). (6) In practice, users can determine the number of iterations in the sequential algorithm 

based on the tradeoff between the optimality and CPU time.  For example, in the case shown in 

Table 8.5, if the runtime is crucial to the mission, only one VMC run should be enough to obtain 

a result with a 0.576% difference percentage (1.57 seconds CPU time) as compared with the 

baseline approach (24.06 seconds). 

Table 8.5 Sequential VMC minimum time collision avoidance (1 obstacle) 

Algorithm Performance 10-node 15-node 20-node 25-node 

“baseline” 
approach 

Index (s) 120.8123 120.2759 120.3392 120.3258 

CPU Time (s) 3.6499 14.2157 31.7255 24.0594 

VMC methods 

1
st
 VMC 

Index (s) 122.4358 121.9288 121.1358 121.0189 

Difference % 1.7536 1.3322 0.6732 0.5760 

CPU Time (s) 1.0727 1.1632 1.3078 1.5735 

Partial 

Derivatives 

Calculation 

CPU Time (s) 0.1128 0.1405 0.1797 0.2326 

Linear 

Programming 
CPU Time (s) 0.3014 0.3535 0.3789 0.4048 

2
nd

 VMC 

Index (s) 122.3267 121.664 121.1245 120.9588 

Difference % 1.6629 1.1122 0.6638 0.5261 

CPU Time (s) 0.1112 0.0926 0.1358 0.1775 

Partial 

Derivatives 

Calculation 

CPU Time (s) 0.0625 0.0752 0.1150 0.1648 

Linear 

Programming 
CPU Time (s) 0.0253 0.0709 0.0746 0.1511 

 

3
rd

 VMC 

Index (s) 122.2621 

1.6092 

0.0472 

121.4213 

0.9104 

0.0782 

121.1026 

0.6455 

0.1196 

120.9458 

0.5153 

0.1848 

Difference % 

CPU Time (s) 

 Total Time (s) 1.7331 1.9741 2.3114 2.8892 

 

The results for Case 2 and Case 3 with three and four obstacles, respectively, are shown 
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in Table 8.6 and Table 8.7.  Similar arguments as those of Case 1 can be drawn and are thus not 

repeated here.  For example, in Case 3 (4 obstacles), the computational cost using the proposed 

sequential VMC (e.g. 4.16 seconds) is much smaller than that of the baseline approach (59.80 

seconds). 

Table 8.6 Sequential VMC minimum time collision avoidance (3 obstacles) 

Algorithm Performance 10-node 15-node 20-node 25-node 

“baseline” 
approach 

Index (s) 121.9482 121.9222 122.0689 126.3240 

CPU Time (s) 7.0953 8.9596 19.2836 57.0197 

VMC methods 

1
st
 VMC 

Index (s) 124.9275 124.6273 125.1759 125.9641 

Difference % 2.341806 2.095851 2.545254 3.191031 

CPU Time (s) 1.121679 1.232665 1.273912 2.278369 

Partial 

Derivatives 

Calculation 

CPU Time (s) 0.1214 0.1576 0.2133 0.2821 

Linear 

Programming 
CPU Time (s) 0.304219 0.375177 0.555894 0.568205 

2
nd

 VMC 

Index (s) 124.8041 124.5641 125.103 125.8638 

Difference % 2.240733 2.044089 2.485552 3.108811 

CPU Time (s) 0.081145 0.118672 0.157525 0.380844 

Partial 

Derivatives 

Calculation 

CPU Time (s) 0.0520 0.0929 0.1472 0.2143 

Linear 

Programming 
CPU Time (s) 0.023058 0.082097 0.188599 0.155109 

 

3
rd

 VMC 

Index (s) 124.6834 

2.1418 

0.0524 

124.525 

2.0121 

0.0773 

125.0275 

2.4237 

0.1350 

125.7633 

3.0265 

0.1443 

Difference % 

CPU Time (s) 

 Total Time (s) 1.7559 2.1365 2.6714 4.0232 
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Table 8.7 Sequential VMC minimum time collision avoidance (4 obstacles) 

Algorithm Performance 10-node 15-node 20-node 25-node 

“baseline” 
approach 

Index (s) 121.9482 121.9222 122.0691 121.8265 

CPU Time (s) 3.6936 9.1304 21.7263 59.8025 

VMC methods 

1
st
 VMC 

Index (s) 128.9249 125.4656 125.9822 125.9872 

Difference % 5.8267 2.9871 3.4112 3.4153 

CPU Time (s) 1.1766 1.2771 1.5672 2.4650 

Partial 

Derivatives 

Calculation 

CPU Time (s) 0.1233 0.1693 0.2342 0.3074 

Linear 

Programming 
CPU Time (s) 0.3099 0.3234 0.4478 0.6382 

2
nd

 VMC 

Index (s) 128.5055 125.3132 125.8301 125.9609 

Difference % 5.4824 2.8621 3.2863 3.3937 

CPU Time (s) 0.0786 0.0849 0.1757 0.1859 

Partial 

Derivatives 

Calculation 

CPU Time (s) 0.0574 0.1043 0.1650 0.2439 

Linear 

Programming 
CPU Time (s) 0.0324 0.0642 0.3446 0.1510 

 

3
rd

 VMC 

Index (s) 128.102 

5.1512 

0.0650 

125.1939 

2.7641 

0.0722 

125.8022 

3.2634 

0.1118 

125.9273 

3.3661 

0.1731 

Difference % 

CPU Time (s) 

 Total Time (s) 1.8432 2.0954 3.0463 4.1645 

 

Figure 8.9 shows that for the 1-obstacle 25-node case, the collision avoidance trajectory 

generated via the VMC result (the third one in the sequential approach) matches well with the 

one obtained through the baseline approach. 
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Figure 8.9 Optimal trajectory for Case 1 

 

Figure 8.10 uses the 10 node 1 obstacle case to demonstrate how the linear programming 

portion of the sequential algorithm works.  After the first VMC run, a change direction is 

assigned to the parameters in Set g
S  and 

vS  to indicate which direction they need to move.  For 

example, the PCP at point A in the graph needs to increase (i.e., move toward the prey motion) in 

order to improve the solution if all the other parameters are not moving.  At the same time, the 

prey motion node (point B) corresponding to the PCP node point A needs to move in the 

direction indicated by the arrow.  As can be seen in Fig. 8.10, any of these two moves will help 

straighten the trajectory and reduce the final time. 
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Figure 8.10 Parameter adjustment 

 

The minimum time trajectories for the 3-obstacle and 4-obstacle cases (25 nodes) are 

shown in Fig. 8.11 and Fig. 8.12, and it can be observed that the VMC results (the third one in 

the sequential approach) also match the baseline approach result. 

 
Figure 8.11 Optimal trajectory for Case 2 
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Figure 8.12 Optimal trajectory for Case 3 

 

 

 

8.3. Phantom Track Generation 

 

The following simulations use the dynamics and scenarios discussed in Chapter 6.  

Without the loss of generality, the initial and final positions of the PT are set as 

[ 6709.4, 4357.1,  3600]m   and [ 2975, 3642.4,  3918.1]m  .  Up to four ECAVs and four radars 

are involved, and these radars are located at [1000, 4000,10]m , [0,4000,60]m , 

[ 10000, 7000, 30] m   , and [5000, 9000,50]m . The initial and final PCPs for each ECAV are 

listed in Table 8.8.  

The speed, flight path angle, and heading angle of the ECAVs are constrained by 

0 200 /V m s  , 10 10o o   , and 50 50o o   , respectively. The controls of the 

ECAVS, namely the thrust, g-load, and bank angle, are constrained by 50 2.29 10T N   , 
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1.5 3gn   , and 80 80o o   , and the constraints on their rates are 

5 53 10 3 10 /T N s     , 1 1 /gn g s   , and 125 125 /o
s   .  The speed and thrust of 

the PT are constrained and have the same bounds as those of the ECAVs.  The initial and final 

speeds of the PT are around 150 /m s  and 140 /m s , respectively, although they are not 

necessarily to be tightly controlled. 

In the first loop of the decentralized approach, six combinations of the polynomials were 

tested. As an example, (2
nd

, 2
nd

, 1
st
) denotes the case where the x  and y  components of the PT 

are represented by second order curves and the z  component is represented by a first order 

curve.  The remaining candidate curve orders in each group are: (1
st
, 1

st
, 1

st
), (2

nd
, 1

st
, 1

st
), (2

nd
, 

2
nd

, 2
nd

), (3
rd

, 2
nd

, 1
st
), and (2

nd
, 3

rd
, 1

st
).  The best result from the second loop optimization using 

these six polynomial PT candidates will be the solution for the decentralized approach.   

Due to the high dimensionality of the problem and the severe geometric E.Cs. (i.e., the 

stringent LOS constraints at each node), no simulation results based on the direct collocation 

method are shown for this problem. 

Table 8.8 Phantom track simulation settings  

ECAVs Initial/final PCPs 

ECAV 1 0.7/0.65 

ECAV 2 0.5/0.44 

ECAV 3 0.51/0.54 

ECAV 4 0.6/0.55 

 

Cases with different numbers of nodes and different numbers of ECAVs are tested for 

both centralized and decentralized approaches, and the results are shown in Tables 8.9-8.10. As 
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shown in Tables 8.9 and 8.10, the optimization results remain consistent as the number of nodes 

increases for a certain number of ECAVs involved.  Also it can be seen that as the number of 

ECAVs increases, the performance index increases because it is more challenging to design the 

optimal coherent PT when multiple ECAVs are involved.  The advantages of the decentralized 

approach can be seen in Tables 8.9, 8.10, and 8.11.  In the decentralized approach the CPU time 

needed remains roughly the same (as shown in Table 8.10), while in the centralized approach (as 

shown in Table 8.9), the CPU time required in the optimization increases significantly as the 

number of nodes increases.  As shown in Table 8.11, the computational cost required in the 

decentralized approach is only a fraction of those of the centralized approach.  For example, 

when four ECAVs are involved and the number of nodes is fourteen, the CPU time used in the 

decentralized approach is only 0.98% of what is needed in the centralized approach.  Table 8.9 

shows that the CPU time required for all cases in the decentralized approach is around 1 second 

(coded in MATLAB), which is fast enough to be implemented in real-time. 

Table 8.9 Results for different # of ECAVs and nodes in the centralized approach 

ECAVs 

involved 

Performance 6-node 8-node 10-node 12-node 14-node 

1 CPU time (s) 2.22 3.34 11.23 17.96 36.05 

Index 241272.7 236322.3 236493.4 236384.6 235474.9 

1, 2 CPU time (s) 3.15 5.11 15.13 28.40 71.04 

Index 501820.1 488822.2 489491.4 488751.5 487030.8 

1, 2, 3 CPU time (s) 4.35 8.88 19.64 53.34 111.39 

Index 1125091 1107232 1099076 1095805 1095169 

1, 2, 3, 4 CPU time (s) 7.77 13.32 34.76 89.24 123.85 

Index 1476896 1457767 1447756 1440355 1440015 
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Table 8.10 Results for different # of ECAVs and nodes in the decentralized approach 

ECAVs 

involved 

Performance 6-node 8-node 10-node 12-node 14-node 

1 CPU time (s) 1.06 1.08 1.13 1.15 1.59 

Index 248994.08 238455.45 237681.10 236878.54 235628.30 

1, 2 CPU time (s) 0.99 1.01 1.08 1.11 1.30 

Index 549076.30 528893.10 528235.99 526424.92 524572.43 

1, 2, 3 CPU time (s) 0.97 0.99 1.05 1.08 1.26 

Index 1250044 1215156 1208292 1200567 1200893 

1, 2, 3, 4 CPU time (s) 0.95 1.05 1.04 1.07 1.21 

Index 1603942 1561380 1552859 1543076 1541672 

 

Table 8.11 Cost of decentralized approach compared to centralized approach 

 1 

ECAV 

2 

ECAVs 

3 

ECAVs 

4 

ECAVs 

6-node 47.56% 31.40% 22.26% 12.29% 

8-node 32.26% 19.84% 11.18% 7.90% 

10-node 10.06% 7.15% 5.36% 2.99% 

12-node 6.42% 3.92% 2.03% 1.20% 

14-node 4.41% 1.82% 1.13% 0.98% 

 

The PT in the decentralized approach is selected within a limited number of polynomial 

representations, so the performance indices achieved are 0.07% to 9.99% larger than those of the 

centralized approach, as shown in Table 8.12.  However, the significant computation cost 

reduction (as shown in Tables 8.9 and 8.10) of the decentralized approach makes it worth 

sacrificing the slightly lower performance indices of the centralized approach for the sake of 

real-time implementation. 
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Table 8.12 Performance indices increase from centralized to decentralized approach 

 1 

ECAV 

2 

ECAVs 

3 

ECAVs 

4 

ECAVs 

6-node 3.1% 8.6% 9.99% 7.92% 

8-node 0.89% 7.58% 8.88% 6.63% 

10-node 0.50% 7.33% 9.04% 6.77% 

12-node 0.21% 7.16% 8.73% 6.66% 

14-node 0.07% 7.16% 8.80% 6.59% 

 

For the sake of brevity, only one set of the simulation results, the decentralized case with 

4-ECAV (i.e., the most complicated case), is demonstrated here in Figs. 8.13-8.19. These figures 

show the converged results for the cases with 6, 8, 10, 12, and 14 discretization nodes.  In Fig. 

8.13, the optimal phantom and ECAVs trajectories are shown.  In Fig. 9.14, the speeds of all 

ECAVs and PT are within the constraints.  Convergence can be seen in the flight path angle (Fig. 

8.15) and the heading angle (Fig. 8.16) for each ECAV.  As expected, the thrust commands of 

the ECAVs remain as minimal as possible to achieve the minimum energy maneuver as shown in 

Fig. 8.17.  Also as demonstrated in Fig. 8.18 and Fig. 8.19, the g-load and the bank angle are 

within the constraints. 
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Figure 8.13 The ECAVs’ optimal trajectory 
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Figure 8.14 Speed of the PT and ECAVs 
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Figure 8.15 Flight path angle of the PT and ECAVs 
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Figure 8.16 Heading angle of the PT and ECAVs 
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Figure 8.17 Thrust for the PT and ECAVs 
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Figure 8.18 G-load for the PT and ECAVs 
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Figure 8.19 Bank angle for the PT and ECAVs 

 

 

8.4. Mobile Robot Testbed 

 

In this section, a physical mobile robot testbed is used to demonstrate the capabilities of 

the virtual motion camouflage method, specifically the B-spline augmented VMC method. The 

dynamics for the mobile robots are the same as those defined in Eq. (7.35), as well as the same 
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cost function. The main hardware included in this testbed, as shown in Fig. 8.20, are a Logitech 

Camera C250, a Lenovo ThinkPad (Intel® Core™ i7-2630QM CPU 2GHz processor and 6GB 

RAM), and two Lego Mindstorms NXT 2.0 robots. The NTX robot contains a central 

microprocessor, four sensor input ports, and three motor output ports. Each robot is also capable 

of Bluetooth wireless communication, which is used to transmit data between the laptop and the 

Lego robots.  The left and right motors of the Lego robots are separately controlled based on the 

signals transmitted from the laptop.  The maximum translational speed of the Lego robot is 

max 22.4 /V cm s , while the maximum rotational speed is max 1.5 /rad s  . The position and 

heading information of the Lego robots and the position information of the obstacles are 

determined through a vision system suspended over the testbed. 

 

webcam

laptop

Lego robots

Obstacles

T
est area

T
est area

 
Figure 8.20 Physical testbed architecture 

 

The initial positions ,0a
r  obtained from the vision system are [33.6,140.8]cm  and 

[35.2,70.2]cm  for Robot 1 and Robot 2, respectively, and the final targets are [248,184]cm   and 
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[248,8]cm . The optimal path is generated for each of the robots based on an initial known set of 

three obstacles with the center points defined as  ,1 86.8,171.2
obs

cmr ,  ,2 113.6,146.0
obs

cmr , 

and  ,3 146.0,125.6
obs

cmr   (Fig. 8.21). The buffer for all of these obstacles is set as 

17.6
buf

a cm . 

The inter-robot collision avoidance is considered in Robot 2 to avoid the collision with 

Robot 1. This collision avoidance behaves as follows. Robot 1 first generates its minimum-time 

trajectory while taking into account all boundary conditions. Second, Robot 2 then generates its 

trajectory while taking into account the boundary conditions and the collision avoidance 

constraint 
,2 ,1a a r

d r r , where 17.6rd cm  is assumed to be the diagonal of a circle that 

enclose Robot 1. 

Once the optimal trajectories are computed using the BVMC method, each robot follows 

its path. After that in this scenario, two new obstacles will appear at  178.8,20.2 cm  and 

 186.8,113.6 cm , and the Legos will stop and wait for a new path to be generated. Then the 

Lego robots will follow the re-planned path to reach their target destinations as shown in Fig. 

8.22. 
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Figure 8.21 Trajectory planned considering three known obstacles (Case 1) 

 

 
Figure 8.22 Trajectories re-planned considering all five known obstacles (Case 1) 

 

Figure 8.23 shows the combination of the two sections overlaid upon an image of the 

testbed as seen by the vision system. 
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Figure 8.23 Combination of first and second planned paths (Case 1) 

 

The underlying image is the initial setup of the testbed. For this particular run, the 

optimal paths of Robot 1 are computed using 2.31 seconds after three tries for the first section 

(S1) and 6.10 seconds after two tries for the second section (S2). Robot 2 took 6.39 seconds to 

compute the optimal trajectory after two tries for its first section and while its second section 

took only 2.98 seconds for a single iteration. The performance indices for Robot 1 and Robot 2 

can be seen in Table 8.13. 

Table 8.13 Testbed results (Case 1) 

 
CPU 

Time (s) 
BVMC Tries 

Performance 

Index (s) 

 S1 S2 S1 S2 S1 S2 

Robot 1 2.31 6.10 3 2 11.58 8.64 

Robot 2 6.39 2.98 2 1 9.81 6.26 

 

Figures 8.24 and 8.25 show two additional experiment runs (Case 2 and Case 3), and 

Tables 8.14 and 8.15 show their respective computational cost, number of tries, and performance 

indices. Both runs show that the collision avoidance with both obstacles and other robots is 

satisfied in the closed quarters. 
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Figure 8.24 Combination of first and second planned paths (Case 2)  

 

 

 
Figure 8.25 Combination of first and second planned paths (Case 3) 

 

As shown in Tables 8.14-8.15, the minimum-time trajectories can be computed within the 

range of 0.82 seconds to 6.39 seconds depends on how many tries it has to take. These testbed 
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runs show the applicability of the BVMC method in a real environment. If the program is coded 

in C/C++, the computational cost can be further reduced significantly. 

Table 8.14 Testbed results (Case 2) 

 CPU Time (s) BVMC Tries Performance Index (s) 

 S1 S2 S1 S2 S1 S2 

Robot 1 0.82 5.82 1 3 8.88 10.27 

Robot 2 3.04 6.17 1 2 10.23 8.69 

 

Table 8.15 Testbed results (Case 3) 

 CPU Time (s) BVMC Tries Performance Index (s) 

 S1 S2 S1 S2 S1 S2 

Robot 1 1.24 1.56 1 1 13.94 9.59 

Robot 2 1.88 1.61 1 1 12.28 8.79 
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 9.  CONCLUDING REMARKS AND FUTURE WORK 
 

 

9.1. Conclusions 

 

In order to solve nonlinear constrained trajectory optimization problem in a relatively 

quick manner, the virtual motion camouflage method has been introduced in this dissertation as a 

means of reducing the overall dimension of the optimization problem. In practice, this reduction 

in dimension has reduced the computational time significantly compared to a more traditional 

“baseline” method. The polynomial based VMC method has been shown to produce an optimal 

solution within the defined search space, though the solution may not be the optimal solution 

within the global space. To allow the VMC method to find the global optimal solution, two 

solution improvement methodologies have been introduced later: the sequential VMC method, 

and the B-spline augmented VMV method. 

The sequential VMC method first obtains an optimal solution within the local search 

space. The parameters that define the search space are then adjusted and another optimization is 

performed within the new search space. This iterative adjustment procedure brings the optimal 

solution within the VMC search space closer to the global solution with each iterative 

adjustment. The solution optimality is proven. 

The B-spline augmented method allows the search space to be adjusted simultaneously 

along the optimization process by making the parameters that define the search space 

optimizable, in addition to the VMC method’s regular optimization parameters. This 

methodology structure effectively performs the same process as the sequential VMC method, but 



 

 

105 

instead of improving the search space simultaneously, the search space is improved within the 

optimization. The BVMC method is able to allow an optimal solution without sacrificing the 

computational cost benefit of the polynomial based VMC method.  It is worth noting that 

theoretically, the solution achieved in both the sequential method and the BVMC method will be 

optimal if the number of the discretization points and the control points approach infinite. 

Several simulation examples have been provided to demonstrate the effectiveness of the 

VMC method. The Snell’s river problem and mobile robot obstacle avoidance problem illustrate 

the VMC method’s ability to solve for a minimum time trajectory that can navigate a series of 

obstacles with a computational time that is smaller than the “baseline” method’s. The VMC 

method is also shown to be well suited for the phantom track generation problem, in which the 

search space is defined by specific entities (the radar network and the phantom aerial vehicle) 

within the problem. Therefore, the VMC method can find the optimal solution within the defined 

subspace quickly enough for real-time implementation. The rendezvous problem shows that 

VMC can also be used for free-flying rendezvous of satellites within the LVLH coordinate 

system. Finally, to fully demonstrate the effectiveness of the method, the BVMC method was 

implemented in a physical testbed in which one or more mobile robots are required to navigate a 

dynamic heavy-obstacle environment. The results show that the BVMC method can generate 

very quick solutions for the mobile robots, even when the environment changes midway through 

the robots’ run. 
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9.2. Future Work 

 

Dynamic inversion. The VMC methods rely on the assumption that the system dynamics 

of the given problem can apply differential inclusion, as discussed in Section 2.3. If a problem 

cannot be dynamically inverted, then additional equality constraints are required in the problem. 

An example of a problem that cannot be fully inverted is the Snell’s river problem in Section 8.1, 

in which the problem requires the equality constraint shown in Eq. (7.34). While the 

computational time of the BVMC method is still smaller than that of the baseline method despite 

this additional equality constraint, more complex problems that can’t be fully inverted may not 

be as rapid. Therefore, one avenue of future work would be to examine how to best implement 

VMC for systems that are not fully dynamically invertible. 

Initial guess techniques. The polynomial based VMC method finds the optimal solution 

within the subspace (constructed by the prey trajectory and the reference point) by optimizing the 

discretized PCP vector, which will define the solution trajectory according to Eq. (2.1). Because 

the PCPs hold physical meaning, it is easy and intuitive to come up with an initial guess for the 

PCP vector in most cases. For the BVMC method, however, it can be a little more difficult to 

generate initial guesses for all optimization parameters, especially the control points that define 

the prey trajectory’s B-spline curve. 
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Figure 9.1 Possible initial guesses of reference point 

 

Therefore, another avenue of future work is to come up with a structured means of 

determining good initial guesses for all optimization parameters. One very simple initial guess 

would be to define a straight line with the B-spline curves’s control points and set the PCPs as 

1i  , 0,...,i N , while setting the reference point initial guess as shown in Fig. 9.1. This would 

generate an initial guess of a straight line between the trajectory’s endpoints. However, for 

complex obstacle-laden environments, a straight line may not make a suitable initial guess, so 

better initial guess techniques may be required.  One possible technique is using a rapid top-level 

feasible path generation method to generate a feasible path, and then set the B-spline curve prey 

trajectory equal to the feasible path while setting PCPs equal to 1. Additional techniques for 

initial guess generation can be explored. 

Sequential VMC improvements. In theory, the sequential VMC method will improve 

the VMC subspace sequentially until it will be able to contain the global optimal solution and 

both using previous solutions as initial guesses and the rapid computation of the linear 

programming algorithm will mean the solution is found quickly. In practice, the improvement of 
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the solution by the sequential VMC method is sometimes really small, which can result in a slow 

progression. Another issue that can appear is that the solution fluctuates at certain points, i.e., the 

updated solution is sometimes larger than the previous solution, which ideally should not occur 

with the linear programming algorithm. Therefore, another avenue of future work is to further 

study the sequential VMC method to determine how to improve the linear programming update 

step of the algorithm. 

Adaptive grid. One of the main benefits of the VMC method is that it can rapidly solve 

for the optimal solution (within the constructed subspace) because of the reduced number of 

parameters that are optimized. In the polynomial based VMC method, the size of the problem 

being solved is on the order of ( )N , which is the length of the PCP vector. In addition to using 

boundary conditions to calculate certain PCPs, the size of the PCP vector can be reduced further 

by simply reducing the number of discretized nodes N , which may be favorable for real-time 

applications. 

However, reducing the number of nodes will also reduce the accuracy of the solution, so 

the user must make an educated guess of how many nodes would be appropriate. But selecting 

the right number of nodes may be difficult for heavy obstacle-laden environments, which can 

lead to a solution trajectory passing through an obstacle. Therefore, a possible avenue of future 

work can be to investigate ways to prevent such irregularities from occurring. One possible 

method that can be investigated is the adaptive grid method, which is a technique that numerical 

methods utilize to find a highly accurate solution. High-resolution (or dense) grids are able to 

accurately capture irregularities in the solution and any discontinuities or switches in state and 

control variables. There exist several means of generating these grids, with their overall goal 
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being generating grids that appropriately enclose solution irregularities while adding little 

computational complexity to the overall problem. One such adaptive grid, a multi-resolution 

technique in [81], proposes a use of progressive tightening of the tolerance at different levels of 

resolution, though only at locations on the grid that dominate the solution’s overall accuracy. 

Future research can determine if utilizing an adaptive grid method can refine the VMC solution 

for cases where there is infeasibility that the solution initially doesn’t notice. 
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