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ABSTRACT  

 CubeSats have become popular among universities, research organizations, and 

government agencies due to their low cost, small size, and light weight. Their standardized 

configurations further reduce the development time and ensure more frequent launch 

opportunities. Early cubesat missions focused on hardware validation and simple communication 

missions, with little requirement for pointing accuracy. Most of these used magnetic torque rods 

or coils for attitude stabilization. However, the intrinsic problems associated with magnetic 

torque systems, such as the lack of three-axis control and low pointing accuracy, make them 

unsuitable for more advanced missions such as detailed imaging and on-orbit inspection. Three-

axis control in a cubesat can be achieved by combining magnetic torque coils with other devices 

such as thrusters, but the lifetime is limited by the fuel source onboard. To maximize the mission 

lifetime, a fast attitude control management algorithm that could optimally manage the usage of 

the magnetic and thruster torques is desirable. Therefore, a recently developed method, the B-

Spline-augmented virtual motion camouflage, is presented in this defense to solve the problem. 

This approach provides results which are very close to those obtained through other popular 

nonlinear constrained optimal control methods with a significantly reduced computational time. 

Simulation results are presented to validate the capabilities of the method in this application. 



 

iii 

 

  

 

 

 

 

 

 

Dedicated to my grandfather, who inspired this journey.  

 

 

 

 

 

 

 

 

 

 

 

 



 

iv 

 

 ACKNOWLEDGMENTS 

 This thesis was made possible by the talents and the generosity of many others. Although 

I will try, I know that I cannot list everyone that is deserving of thanks. I am grateful to God first, 

for giving me the ability to complete this project and for the people He sent to help me. People 

like my parents, who sacrificed so I could attend good schools to give me the foundation I 

needed. Thank you to my grandparents - for listening to me, encouraging me and inspiring me to 

do more. Thank you to everyone at UCF who supported me. My committee members - Dr. Kuo-

Chi Lin and Dr. Larry Chew - gave their time and advice to make this thesis possible. Gareth, Ni, 

Brad, Forhad, Puneet and Charles offered suggestions when I was stuck, kept me smiling and 

allowed me to be a part of their group. Thank you to my advisor, Dr. Xu, for numerous edits and 

explanations, for teaching me and for pushing me to finish. 

 Thank to my extended family in Wichita. My debt to you can never be repaid. You 

opened your home to me, prayed with me, listened to my struggles, and even cooked me dinner 

so I could keep working on this thesis. You taught me about love and a few important things 

about Astrodynamics (Eddie). To Eddie, Tonie and the girls - you are some of the finest 

representatives of our Lord that I have ever met.  

 Thank you to my son, Jimmy. He gave up time with Dad on many occasions so I could 

complete this project. Most importantly, thank you to my wife and my best friend, Betsy. You 

believed in me when no one else did, and gave up hours and days of your life to support me in 

this endeavor. You gave me your encouragement, your strength and your love. Thank you for 

bearing the weight of this project on your shoulders. For this and so many other things, I am 

forever indebted to you. 



 

v 

 

TABLE OF CONTENTS 

LIST OF FIGURES ....................................................................................................................... vi 

LIST OF TABLES ....................................................................................................................... viii 

LIST OF NOMENCLATURE ....................................................................................................... ix 

CHAPTER 1: INTRODUCTION ....................................................................................................1 

CHAPTER 2: DYNAMICS MODEL ..............................................................................................7 

Coordinate Frames .......................................................................................................................8 

Magnetic Field Model ................................................................................................................11 

Dimensionless Models ...............................................................................................................13 

CHAPTER 3: VIRTUAL MOTION CAMOUFLAGE .................................................................14 

CHAPTER 4: MINIMIZING THE TOTAL TORQUE .................................................................16 

Problem Definition ....................................................................................................................16 

Necessary Conditions ................................................................................................................16 

Generating Prey Motion and Path Control Parameters ..............................................................18 

Application - Minimize Total Torque ........................................................................................19 

Simulation Scenario And Discussion ........................................................................................20 

CHAPTER 5: ATTITUDE CONTROL MANAGEMENT ...........................................................26 

Problem Definition ....................................................................................................................26 

Generating Prey Motion and Path Control Parameters ..............................................................26 

Application .................................................................................................................................28 

Simulation Results and Discussion ............................................................................................30 

CHAPTER 6: SUMMARY AND FUTURE WORK ....................................................................43 

LIST OF REFERENCES ...............................................................................................................45 

 



 

vi 

 

LIST OF FIGURES 

Figure 1. Geocentric Equatorial Coordinate Frame. ....................................................................... 9 

Figure 2. North, East, Down Coordinate Frame. ............................................................................ 9 

Figure 3. LVLH Coordinate Frame. ............................................................................................. 10 

Figure 4. Rotations about the Spacecraft Body Coordinate Frame. ............................................. 10 

Figure 5. Magnetic coil interaction with magnetic field. Current is in red and flows around the 

coil in the magnetic field. .............................................................................................................. 12 

Figure 6. Performance error between the Baseline and VMC with polynomial prey motion. ..... 22 

Figure 7. Quaternion of the near optimal attitude trajectory. ....................................................... 23 

Figure 8. Angular velocity of the near optimal attitude trajectory. .............................................. 24 

Figure 9. VMC control torque for near optimal rotation. ............................................................. 24 

Table 2. Boundary Conditions used to evaluate solutions for problem 2. .................................... 31 

Figure 10. B-Spline curve with path constraints that do  not interfere with a straight line between 

end points. ..................................................................................................................................... 33 

Figure 11. B-Spline curve with a path constraint  that drives requirement for at least one 

additional control point. ................................................................................................................ 33 

Figure 12. B-Spline curve with two path constraints which drive a requirement for at least four 

control points. ............................................................................................................................... 34 

Figure 13. Quaternion of the near optimal attitude trajectory (Case 1) ........................................ 37 

Figure 14. Angular velocity of the near optimal attitude trajectory. ............................................ 38 



 

vii 

 

Figure 15. Current for near optimal rotation. ................................................................................ 38 

Figure 16. VMC control torque for near optimal rotation (X axis). ............................................. 39 

Figure 17. VMC control torque for near optimal rotation (Y axis). ............................................. 39 

Figure 18. VMC control torque for near optimal rotation (Z axis). .............................................. 39 

Figure 19. Quaternion for Case 2, B-Spline prey motion, 10 LGL Nodes, tf=400s. .................... 40 

Figure 20. Angular velocity for Case 2, B-Spline prey motion, 10 LGL Nodes, tf=400s. ........... 40 

Figure 21. Current for Case 2, B-Spline prey motion, 10 LGL Nodes, tf=400s. .......................... 41 

Figure 22. Torque (x-axis) for Case 2, B-Spline prey motion, 10 LGL Nodes, tf=400s. ............. 41 

Figure 23. Torque (y-axis) for Case 2, B-Spline prey motion, 10 LGL Nodes, tf=400s. ............. 42 

Figure 24. Torque (z-axis) for Case 2, B-Spline prey motion, 10 LGL Nodes, tf=400s. ............. 42 

 

 

 

 

 

 

 

 



 

viii 

 

LIST OF TABLES  

Table 1. Total torque problem, results comparison (Polynomial prey motion). ........................... 23 

Table 2. Boundary Conditions used to evaluate solutions for problem 2. .................................... 31 

Table 3. Comparison of B-Spline, VMC with B-Spline Prey Motion  and Baseline Approaches 

(Case 1). ........................................................................................................................................ 36 

Table 4. Comparison of B-Spline, VMC with B-Spline Prey Motion  and Baseline Approaches 

(Case 2). ........................................................................................................................................ 36 

 

 

 

 

 

 

 

 

 

 

 

 



 

ix 

 

LIST OF NOMENCLATURE  

q  = Quaternion 

ω  = Body Rates 

aq  = Quaternion, aggressor motion 

pq  = Quaternion, prey motion 

rq  = Quaternion, reference point 

v  = Path control parameter 

T  = Total torque 

cT  = Torque from magnetic torque coils 

tT  = Torque from thrusters 

a  = Semi major axis 

e  = Eccentricity 

ni  = Inclination 

Ω  = Right ascension of the ascending node 

aopω  = Argument of perigee 

 



 

1 

 

CHAPTER 1: INTRODUCTION  

 CubeSats are small satellites with a mass no greater than 1.33 kg, and a 10 cm cube 

structure [1]. They are used primarily for education, basic research, and technology 

demonstration /validation. Accordingly, most CubeSats have been built by universities, with a 

small number built by government agencies and private companies. Since 2003, over 40 

CubeSats have been launched [2]. Of those launched so far, twenty had an active attitude 

determination and control system (ADCS) [2-8], among which eighteen were based solely on 

magnetic torques. The remaining two, CANX-2 and AAUSAT-II, featured an ADCS based on a 

combination of magnetic torque and other systems [9-10]. Future launch plans indicate that 

several spacecraft in the next generation of CubeSats will have active magnetic attitude control 

systems - one solely based on magnetic torque [42] and at least one that is planned to use 

magnetic control with in addition to reaction wheels [1, 2, 3, 11]. 

 It is clear that magnetic torque systems have been, and will continue to be, popular with 

CubeSat designers. CubeSats have very limited mass and volume budgets, and magnetic torque 

systems are cheaper and lighter than the alternatives, which include momentum wheels, reaction 

wheels and thrusters. In particular, when compared to thrusters, magnetic torque systems have a 

fuel supply (power from solar panels) that lasts for the lifetime of the satellite, where thrusters 

are limited to the fuel they are launched with. Despite their popularity, magnetic torque systems 

have important limitations. Since magnetic torque can only be produced in an axis perpendicular 

to the Earth's magnetic field, control is limited to two axes at any given time. Some designers 

have taken advantage of variations in the magnetic field seen by the spacecraft as it travels 

through its orbit, allowing stabilization of a spacecraft using just a magnetic torque system. This 
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method was pioneered by Martel and Psiaki [12].  Their proposal for a gravity gradient stabilized 

satellite used linearized equations of motion and a proportional derivative control law to 

determine the desired control torque vector. In simulations, their method stabilized the satellite 

within ±5 deg of a nadir pointing attitude but took in excess of 500 seconds to complete the 

maneuver. Musser and Ward made the next contribution to the field [13]. To stabilize a 

spacecraft in a nadir pointing attitude, they used a Linear Quadratic Regulator (LQR) and solved 

the Riccati equation to determine the time varying feedback gain matrix. In simulation, the 

method stabilized the spacecraft to within ±5 deg of a nadir pointing reference point. It was also 

slow, taking over 4000 seconds to complete the maneuver. For the Orsted satellite, Bak, 

Wisniewski and Blanke proposed a linear quadratic controller [14]. Lyapunov theory was 

applied, which showed that energy was dissipated by the B dot de-tumbling control law. In 

simulation, The B dot control law resulted in Euler angles that converged to ±10 deg after 

approximately 3 orbits. These methods were further refined by Wisniewski in [15] and [16] 

when a locally stabilizing controller was proposed, and extended to be a globally stable time 

varying controller. In simulation based on the Orsted spacecraft in a low eccentricity and high 

inclination orbit, the spacecraft was stabilized in the operational range within 6 orbits [16]. 

Makovec took the methods developed by Musser and Wisniewski and optimized the gains of a 

constant coefficient linear quadratic regulator [17]. Simulation results showed that the controller 

was able to stabilize a non gravity gradient spacecraft within approximately 750 seconds. 

Numerous variations on this approach were then proposed and utilized including the energy 

based controller designed for NCUBE [18]. Most of the control methods used were developed 

for spacecraft with low eccentricity, medium to high inclination orbits and final states equal to a 



 

3 

 

nadir pointing attitude [19]. This is mainly due to the approach used, which was based on the 

periodic nature of the Earth's magnetic field in circular orbits of medium to high inclination. 

 In [20] Liang, et al, used RIOTS, a numerical solver, to accomplish a slewing maneuver 

in far less time using only magnetic torque. After converting the free final time optimal control 

problem into a fixed final time problem by adding state variables, they chose a minimum time 

cost function with end point penalties. Weighting parameters were determined through 

experimentation, and a model predictive controller was created to track the open loop solution. 

Simulating a non gravity gradient stabilized spacecraft in a circular, medium inclination orbit, 

this approach showed that slewing maneuvers could be completed approximately 50 times faster 

than had been possible with controllers based on the periodic nature of the magnetic field. 

 Following their lead, Yan, Fleming, Ross and Alfriend, used the spectral method to find 

the time optimal solutions for a rest to rest maneuver for NPSAT1, using only magnetic 

actuators. Yan found that solutions could be generated fast enough for real time application [21]. 

In [22] Yan, Ross and Alfriend proposed using the Legendre Pseudospectral Method outlined by 

Fahroo and Ross [23] for attitude stabilization using magnetic control in elliptic orbits. This 

approach, utilizing receding horizon control, reduced the computational time required by an 

order of magnitude when compared with methods based on the Riccati equation. In [24], Fahroo 

and Ross then used the pseudospectral method to solve infinite horizon optimal control problems 

of the type being used for 3-axis stabilization by Wisniewski and others. They used a quadratic 

cost function similar to the one used by Yan [21], with a modification to replace the time penalty 

with a cost for control torque, thus converting it into a fuel optimal problem. By minimizing the 

cost function subject to total torque constraints, they produced an optimal solution for the control 

torques required to stabilize the NPSAT 1 spacecraft from 30 deg to 0 deg in every axis in under 



 

4 

 

90 seconds. Their analysis was limited to a single source of torque, such as thrusters or 

momentum wheels, and did not address a combination system utilizing both magnetic torque and 

less constrained methods, such as reaction wheels or thrusters. Despite this, they proved that the 

pseudospectral method could not only provide an optimal fuel solution, but one that achieved the 

desired final state many times faster than the periodic methods based on the Riccati equation. 

Bedrossian and Bhatt applied the pseudospectral method to develop a zero propellant maneuver 

(ZPM) for the International Space Station. This application demonstrated the practicality and 

potential cost savings (over $1 million in under three hours) of the pseudospectral method, 

although in this case, the command was generated offline and had to be uploaded to the 

spacecraft [25-27]. Zhou derived control algorithms combining magnetic torque systems with 

other sources to achieve consistent accuracy despite system degrades [28]. By using a collocation 

approach to solve for the magnetic torque control, rather than finding the solution via the Riccati 

method, researchers have demonstrated the capability for slewing maneuvers to a non-nadir 

pointing attitude in minutes rather than hours. Our method improves upon these collocation 

schemes to provide a system with all of the benefits of a traditional magnetic torque system - 

cheap to acquire, lightweight, and minimal fuel use - while reducing the limitations of past 

magnetic systems - nadir pointing only, slow response, confinement to low eccentricity/high 

inclination orbits.  

 Overall, the control designs for linearized attitude models are easily implemented, 

although the solution might not be optimal. In contrast, optimal solutions utilizing nonlinear 

dynamics are available, but the computational cost is too high for use in real time. This thesis 

presents a method utilizing the virtual motion camouflage (VMC) method to find near optimal 

solutions for attitude rotation. It accommodates user-defined constraints, provides near optimal 
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solutions with nonlinear dynamics and generates solutions rapidly in comparison to a baseline 

method. 

 This research addresses the problem of fuel optimal three-axis control for a CubeSat with 

magnetic torque coils mixed with thrusters. Specifically, rotations of a CubeSat with fixed initial 

and final times, states, and state derivatives are addressed. In Chapter 6, problem 1 is addressed -

minimizing total torque, while in Chapter 7 problem 2, minimizing torque from the thrusters, is 

addressed. In both cases, a nearly optimal solution is sought with a significant reduction in 

computational cost.  

 The author's contributions to this thesis include the application of VMC with polynomial 

prey motion to problems 1 and 2 listed above, as well as evaluation of that application in 48 

representative cases with various boundary conditions. After evaluation, VMC with polynomial 

prey motion was deemed effective when used with problem 1, but not effective with problem 2. 

 For this reason, VMC was then formulated using the B-Spline prey motion and applied to 

problem 2. Twenty four representative cases were evaluated using the VMC method augmented 

with the B-Spline prey motion. This method and B-Splines were both found to deliver near 

optimal results with a significant reduction in computational cost. Through experimentation, it 

was discovered that VMC is able to handle more severe path constraints than B-Splines and 

future work is suggested in this area to realize its full potential.  

 The thesis is organized as follows. In this chapter, background material is presented, 

including methods that were utilized in the past. In Chapter 2, the dynamics model is presented, 

along with the coordinate frames, and generation of a magnetic field model. The general VMC 

approach is described in Chapter 3 and the first of two representative problems is defined in 
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Chapter 4. This problem - minimizing the total torque - is solved using the VMC method with 

polynomial prey motion. The method is evaluated using several representative cases and found to 

provide near optimal solutions with significant reductions in computational cost as compared to 

the baseline solution. In Chapter 4, a similar comparison is made with the problem of the optimal 

attitude control management, using the B-Spline and the VMC augmented with the B-Spline 

prey motion to minimize the thruster torque in a system with both magnetic coils and thrusters. 

Performance is compared to the baseline approach and results are presented. Finally, a summary 

and suggestion of future work is presented in Chapter 6. 
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CHAPTER 2: DYNAMICS MODEL 

 The quaternion based model is used to represent the attitude motion of the CubeSat. The 

kinematic relationship between the quaternion rates and the angular velocity is given by 

 
ω1

02
− 

=  − 
B B
T
B

ω
q q

ω




 (1) 

in which q  is the quaternion, Bω  is the angular velocity and ωB  is its skew symmetric matrix. 

The CubeSat is assumed to be a rigid body in this thesis, and its attitude dynamics are modeled 

by 

 B m B m B+ =ω I ω I ω T   

 t c= +T T T  (2) 

in which mI  is the moment of inertia of the spacecraft, T  is the total torque, tT  is the thruster 

torque, and cT  is the magnetic coil torque, given by c bo= ×T m B . The spacecraft is modeled with 

three pairs of thrusters, one pair per body axis, and three magnetic torque coils with reversible 

currents. The thruster torque tT  in each axis is constrained by the total force available from a 

single thruster. A cold gas MEMS thruster [29] is assumed in this model, with its maximum 

force limited as 0.055 1,2  3, ,iu N i =≤ . Assuming a moment arm for each thruster of 0.05m, the 

maximum thruster torque in each axis is then constrained according to 

 , 0.00275  0t iT Nm− ≤     1, 2,3i =   (3) 
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The magnetic torque coils in this thesis are based primarily the parameters for the current UCF 

CubeSat design. Three magnetic torque coils are mounted on the x+  , y+ , and z+  sides of the 

spacecraft. Each coil has an area, 20.004879 mca =  and 80 turns of wire. The current is 

constrained according to  

 - 0.210 0  1,2,3ii A i≤ =  (4) 

which leads to a corresponding constraint on the components of the moment M   

 20.0820 0iM Am− ≤    1, 2,3i =  (5) 

To ensure realistic angular rates, the maximum body rate is also constrained according to  

 2 0k π− ≤ω  (6) 

Finally, the quaternion and body rates are constrained at the initial and final times, so  

 0 0( ) 0t − =q q , ( ) 0f ft − =q q , 0 0( ) 0t − =ω ω  , ( ) 0f ft − =ω ω  (7) 

and since the quaternion is used, it is subject to the constraint  

 1T =q q  (8) 

Coordinate Frames  

 Several coordinate frames are required to model the attitude dynamics produced by the 

spacecraft's interaction with the Earth's magnetic field. These systems include the Geocentric 

Equatorial System (IJK) [30], North East Down (NED), Local Vertical Local Horizon (LVLH) 

[31], Spacecraft Body (denoted by the subscript "bo"). In the IJK system, Î  points at the vernal 

equinox, K̂  is aligned with the Earth's axis of rotation, and Ĵ  completes the right hand system.  
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Figure 1. Geocentric Equatorial Coordinate Frame. 

In the NED system, xB  points North, yB  points East, and zB  points in the negative vertical 

direction [32].  

 
Figure 2. North, East, Down Coordinate Frame. 

In the LVLH system, 3L  points to the Earth's center, 2L  points in the opposite direction of the 

angular momentum and 1L  , which is approximately aligned with the velocity vector, completes 

the right hand coordinate system, i.e. 1 2 3L L L= ×  [31].  
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Figure 3. LVLH Coordinate Frame. 

In the spacecraft body frame, φ  defines roll, a rotation about the x  axis, θ  defines pitch, a 

rotation about the y  axis, and ψ  defines yaw, a rotation about the z  axis. When the Euler 

angles are each set to 0° , x̂  will be aligned with 1̂L , ŷ  will be aligned with 2L̂  and ẑ  will be 

aligned with 3L̂ . 

 
Figure 4. Rotations about the Spacecraft Body Coordinate Frame. 

A 1-2-3 rotation sequence is used to convert Euler angles to quaternion form in this thesis. 
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Magnetic Field Model  

 The orbital dynamics used in this method are based on two-body motion. The initial 

orbital elements are converted to IJKr  and IJKV


 using the RANDV algorithm found in Vallado 

[30], and then used in conjunction with the Newton method to find an iterative solution to the 

universal Kepler's equation at each LGL node as outlined in [33]. The magnetic field model used 

is an 11th order and degree spherical harmonic model as outlined in [32], and modeled as the 

gradient of V  where  

 
( )

1

1 0
( , , ) cos sin ( )

nk n
m m m
n n n

n m

aV r a g m h m P
r

θ φ φ φ θ
+

= =

 = + 
 

∑ ∑
 

 V= −∆B  (9) 

6371.2a = km, m
ng  and m

nh  are the IGRF Gaussian coefficients in the International Geomagnetic 

Reference Field Model (IGRF11) [34], r  is the distance from the center of the Earth, θ  is the 

co-elevation, and φ  is the longitude. As in [32], the magnetic field components are first 

determined in the NED frame, then converted to the IJK reference frame using  

 ( cos sin )cos sinI rB B B Bθ φδ δ α α= + −   

 ( cos sin )sin cosJ rB B B Bθ φδ δ α α= + +   

 ( sin cos )K rB B Bθδ δ= −  (10) 

where α  represents right ascension, and declination is defined by 90δ θ≡ °− . The longitude 

can be found using the right ascension and Greenwich sidereal time, Gα  , according to  

Gφ α α= −  [32]. The magnetic field is converted to LVLH using LVLH IJKB QB=  where 
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1 2 3
ˆ ˆ ˆ TT T TQ L L L =    is the rotation matrix, composed of the unit vectors of the LVLH system. 

The magnetic field in body coordinates boB , is then found using the transformation matrix [32]. 

 
( ) ( )

( ) ( )
( ) ( )

2 2 2 2
1, 2, 3, 4, 1, 2, 3, 4, 1, 3, 2, 4,

2 2 2 2
1, 2, 3, 4, 1, 2, 3, 4, 2, 3, 1, 4,

2 2 2 2
1, 3, 2, 4, 2, 3, 1, 4, 1, 2, 3, 4,

2 2

( ) 2 2

2 2

k k k k k k k k k k k k

k k k k k k k k k k k k k

k k k k k k k k k k k k

q q q q q q q q q q q q

A q q q q q q q q q q q q q

q q q q q q q q q q q q

 − − + + −
 

= − − + − + + 
 

+ − − − + +  

  

 ˆ ˆ( )bo k LVLHB A q B=  (11) 

Finally, the generated magnetic torque is calculated as bo= ×M m B . Figure 5, below, shows the 

moment, m , which is created by the current (in red) flowing within a torque coil. It is easy to see 

that the forces generated (F1 and F3), will generate a torque, T, to align m with B. At the same 

time, it is easy to see that a coil mounted on the top of the CubeSat in the picture would generate 

a moment m that was parallel to B. In this case, ×m B  would yield no torque. This illustrates the 

reason why a set of 3 magnetic torque coils cannot generate torque in all three axes 

simultaneously, since any coil whose moment is parallel to the field is unable to generate torque. 

 

Figure 5. Magnetic coil interaction with magnetic field. 
Current is in red and flows around the coil in the magnetic field. 
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Dimensionless Models 

 To aid the NLP solver in convergence, dimensionless quantities are used in all evaluated 

methods. In this case, 1 kgm =  and 0.05 mr =  are the dimensionless mass and length, 

respectively. The dimensionless velocity, ( )0/ fV r t t= −  was assigned a value, 0.000125 m/s , 

with /t r V=  and the dimensionless current is chosen as max =0.210 Ai i= . Using these basic 

values, one can calculate dimensionless values for time, initial and final, time span (nodes for the 

NLP solver), acceleration, force, moment of inertia and Teslas.      

 /t r V= , 0 0
ˆ /t t t= , ˆ /f ft t t= , ˆ /k kt t t=  2/g r t=  

 /F m g= , 2 J m r= , / (  )B F i r=  (12) 

These can then be applied to values for the actual moment of inertia, moment arm, maximum 

thruster force, maximum thruster torque, coil area, and magnetic field model (LVLH), yielding. 

 ˆ /mom mom momJ J J= , ˆ /l l r= , max max
ˆ /F F F= , tmax tmax

ˆ / (  )T T F r= ,  

 max max
ˆ /I I i= , 2ˆ /a a r= , ˆ /LVLH LVLHB B B=  (13) 

The next chapter will talk about the basic VMC approach, and how it is applied to two optimal 

attitude control problems, including the selection of prey motion. 
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CHAPTER 3: VIRTUAL MOTION CAMOUFLAGE 

 In this chapter, the basic procedure of formulating the optimal trajectory design problem 

to a nonlinear programming problem via the VMC method is described. The detailed information 

about the VMC method can be found in [35], and in this chapter the application of this method to 

specific problems is described. The VMC approach begins by defining the attitude of the 

spacecraft ( ) an
a t ∈ℜx as the aggressor motion in an an -dimensional space so that =ax q . The 

aggressor motion, is a function of three items: a one-dimensional time varying path control 

parameter (PCP) ( )v t , a virtual prey motion ( )p tx , which can be defined as a polynomial, a B-

Spline, or some other curve, and a time invariant reference point rx . Some coefficients of the 

prey motion are determined by the boundary conditions. The relation [35-36] among them is 

described by  

 ( )a t =x r +x ( ) ( )[ ]p rt t −ν x x  (14) 

For use in a nonlinear solver, ( )tν  will be discretized. Hesthaven [37] describes the Legendre 

expansion of a function [ ]2( ) 1,1t Lν ∈ −  which can be approximated by 

 ( ) ( ) ( )
0

( )
N

N k
k

ktv I v vt t tφ
=

≈ = ∑  (15) 

where NI  is the interpolant of the function ( )v t , kt  represents the nodes at which the 

approximation is made, and ( )k tφ  represents the Lagrange interpolation polynomial [37]. The 

same form applies to the Legendre Gauss Lobatto (LGL) [23-24] or Legendre Gauss (LG) 

approximations [38], although the nodes and differentiation matrix will vary. As stated in 
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Hesthaven [37, if ( )k tφ  is differentiated and evaluated at the nodes, the derivative of ( )v t  can be 

found using 

 
0

( ) ( ) ( )i

N

N N ij j
j

dv t I I v t D v t
dt =

≈ = ∑  (16) 

where D  is the ( 1) ( 1)N N+ × +  differentiation matrix, found in [37]. For compact notation, '
ijD  

is defined by 

 ( )'
0

ˆ ˆ2 /ij f ijD t t D= −  (17) 

The performance index J  is discretized for use with the pseudospectral method as  

 0
2 0

t t Nf TJ wk k kk

−  
= ∑  = 

u u  (18) 

for problems1 and 2, where kw  denotes the weights for the thk  discretization node [37]. 

 After representing all state and control variables as functions of the prey, reference, 

PCPs, and their derivatives, the optimal control problem becomes a parameter optimization 

problem which can be solved by any nonlinear programming solver. The parameters to be 

optimized are the PCP nodes , 0...kv k N=  plus rx . Further development by Xu [35] has shown 

that the number of PCPs to be optimized can reduced by calculating 0 1 1, , Nv v v −  and Nv  when the 

initial and final state and state rate are known. The proof can be found in the Xu [35] and 

application of this will be seen in the first problem of minimizing total torque. This can reduce 

the number of PCP variables that need to be optimized from 1N +  to 3N − . Compared with the 

baseline approach, this overall reduction in optimization parameters allows the optimal trajectory 

design problem to be solved much faster than baseline methods with a modest loss of optimality. 
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CHAPTER 4: MINIMIZING THE TOTAL TORQUE 

Problem Definition 

 In this chapter, the problem is to find the optimal control that minimizes the performance 

index  

 
0

ft T

t
J dt= ∫ T T  (19) 

which represents the total torque used for attitude control on a CubeSat with a single source of 

torque (thrusters in this case). In this problem, the spacecraft is assumed to have only one source 

of torque - thrusters. The attitude dynamics are described by Eqs. 1-2, subject to the inequality 

constraints on thruster torque and maximum body rate as noted in Eqs. 3 and 6. The system is 

also subject to equality constraints related to the boundary conditions and the quaternion, noted 

in Eqs. 7 and 8, respectively. 

 This problem will be solved using VMC with the polynomial prey motion and compared 

to the baseline approach. The aggressor motion ,1 ,2 ,3 ,4
T

a a a a a aq q q q =  x = q  is the 

quaternion describing the attitude of the chaser spacecraft in the body fixed coordinate frame. 

Necessary Conditions 

Since the initial and final states are fixed, the optimal solution aq  must satisfy the following 

equations: 

 ,0 0a =q q        ,a N f=q q  (20) 

For VMC, we also need to satisfy 
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 ( ),0 0 ,0a r p rv= + −q q q q        ( ), ,a N r N p N rv= + −q q q q  (21) 

If we let 0 1Nv v= = , ,0 0p =q q , and ,p N f=q q  then it can be seen that the optimized solution aq  

will always satisfy the boundary conditions for the state. 

 ,0 ,0 0a p= =q q q    , ,a N p N f= =q q q  (22) 

Since the initial and final state rates are fixed, the derivative of the optimized state solution must 

satisfy ,0 0a =q q   ,a N f=q q   to meet the boundary conditions. Based on Eq. 16, the following 

relations must are also known to be true  

 '
,0 0,

0

N

a
k

akD
=

= ∑q q         '
, ,

0

N

N
k

aa N kD
=

= ∑q q  (23) 

Utilizing these known relations and with some manipulation (details in Xu [35]), 1v  and 1Nv −   

can be found via  

 

2
' ' '

1 , ,0 0 , ,0 00 0 1 0 1 0 1
21 11 12

2
1 21 22 ' ' '

, , , , 0 0 1 1 1
2

N

a i p i k k N N
k

N
N

a i N N p i N N Nk k NN N
k

q q D a D a D a
a a
a a

q q D b D b D b

ν ν ν ν
ν
ν

ν ν ν ν

−

−
=

−
−

=

 
− − − −      =        − − − − 

 

∑

∑

 

 

 (24) 

where 

 '
11 01 1 a D a=   '

12 0 1 1 Na D a−=   '
21 ,1 1Na D b=   '

22 , 1 1 N Na D b−=  

 1 , ,0 ,   p i r ia q q= −     1 , , ,                 2p i N r ib q q i= − =  (25) 

Equations 23-24 calculate a 1v  and a 1Nv −  that will ensure the optimized state solution, aq , will 

satisfy the boundary conditions for the state derivative at it  and 1Nt −  when used to calculate aq  

in Eq. 14. 
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Generating Prey Motion and Path Control Parameters 

 If the prey motion is calculated prior to the optimization loop and remains fixed 

during optimization, the computation cost will be lower than if the parameters describing the 

prey motion must be optimized along with the PCPs. Conversely, a fixed prey motion is less 

flexible. For this reason, problems that require less flexibility in the curves (such as the problem 

of minimizing total torque) can achieve near optimal solutions with a fixed prey motion, while 

other problems, such as the one described in Chapter xx, may require a prey motion that is also 

optimized. 

 With four fixed states and state rate boundary conditions, all four coefficients, 

, , ,i i i ia b c d , required to describe a 3rd order polynomial curve (used for the prey motion) can be 

determined prior to the optimization loop. The prey motion and its derivative for the ith 

dimension are calculated using the polynomial  

 3 2
, ,

1 1   2  0
3 2p i k i k i k i k iq a t b t c t d i k N= + + + = = …  (26) 

and its derivative  

 2
,  , , , ,   2  1 1p i k q i q i q iq a t b t i kc N= = −= + +

  (27) 

The values for 0 1 1, , Nv v v −  and Nv  are calculated as mentioned in the previous section. The 

parameters to be optimized in the nonlinear solver are rq  and kν  for 2 2k N= − . The PCPs 

are constrained according to 2 2k− ≤ ≤v . An initial guess of 1kν =  is chosen for 2 2k N= − . 

The initial guess is [ ]0 0 0 1 T
r =q .  
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 The prey motion ,p kq  is initialized by calculating a value for , ,p i kq , and ,  ,p i kq  at each node 

and at 1 of the 4 dimensions, using Eqs. (25-26). In this case, 2i = . The prey motion for the jth 

dimensions (j=1,3,4), N=1,N-1 is calculated as  

 

2
' ' '

1 ,  ,0 00 , ,0 0 , , 0 , ,' '
, ,1 01 0, 1 2

' ' 2
, , 1 1 , 1 ' ' '

,  , 0 , ,0 , , , ,
2

N

p j p j k p j k N p j N
p j N k

N
p j N N N N

p j N N p j Nk p j k NN p j N
k

D D D
D D

D D
D D D

−

−
− =

−
− −

=

 
− − − 

    
 =   
        − − − 

 

∑

∑

q q q q
q

q
q q q q





 (28) 

Then the prey motion for the jth dimensions (j=1,3,4) and k=0,3...N-2,N is calculated by 

substituting j for i in Eq. 28. The next section will show how this prey motion is applied. 

Application - Minimize Total Torque 

 The PCPs were calculated in the previous section and are used with Eq. 16 to find v  

 
'
,

0

N

k k l
l

lDν ν
=

=∑

 (29) 

The aggressor motion is calculated according to  

 ( ), ,a k r k p k rν= + −q q q q 0k N= …  (30) 

which is normalized since it is a quaternion according to 

 

,
,

,

      0a k
a k

a k

k N= = …q
q
q

 (31) 

Since r r= =q q 0   the derivative of the aggressor motion for 1 1k N= −  is calculated according 

to  

 ( ) ( ), , ,a k k p k r k p kν ν= − +q q q q 

 (32) 
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The aggressor motion ,a kq  is then used to calculate the corresponding body rates kω . 

 ( ) 1
,1 3, ,4, ,2k a k a k a kq

−

−= +ω q I q 0k N=   (33) 

The derivative of the body rates can be found using Eq. 16. 

 
'
,

0

N

k k l
l

lD
=

=∑ω ω

 (34) 

Then the total torque T at each node is found using 

 k =T k mom +ω I k mom kω I ω  (35) 

where the moment of inertia tensor is given by  

 2
3 30.0009     mom x kg m=I I  (36) 

Simulation Scenario And Discussion 

 The scenario presented simulates a CubeSat with a moment of inertia 

(0.0009,0.0009,0.0009)m diag=I . The CubeSat is fitted with only one source of torque - 

thrusters - with three pairs of thrusters mounted on three different locations to provide control 

torque in each body axis. The VMC (with polynomial prey motion) solution presented here is 

evaluated against a baseline approach. The baseline solution is found by converting the original 

optimal control problem to an NLP via the LGL pseudospectral collocation method. State rates 

and control forces are calculated through differential inclusion in both the VMC and baseline 

approaches. The simulation is run on a CPU with an Intel Q9000 processor running at 2.00 GHz, 

running MATLAB Version 7.8.0 (R2009a). 
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 A total of forty eight cases were evaluated. The points were chosen so that the initial 

Euler angle offset varied from -40 to 40 degrees and the initial body rates varied from -4 to 4 

deg/s. A final time of 70 ft s=  was used for this problem. Each set of initial conditions was 

evaluated for performance error (as a percentage of the difference between the baseline and 

VMC solution), and percentage of CPU computational time reduction. In general, the VMC 

algorithm delivered solutions that were very similar (and sometimes better) than that of the 

baseline approach, but much quicker. Figure 6 shows the percentage of performance index error 

(above) and percent reduction in computational time (below, in parentheses) for the VMC 

solution as compared to the baseline approach. From the values, it is easy to see that VMC 

reduces the computational cost - sometimes up to 99% - while delivering solutions that are near 

optimal (performance index errors that were typically under 1% for individual points, with a 

maximum error of less than 4%). 
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. 

Figure 6. Performance error between the Baseline and VMC with polynomial prey motion. 

 Tables 1 is included to show the optimality and computational cost using VMC with 

polynomial prey motion in comparison to the baseline approach for one example case. For the 

specific example shown in Table 1, the initial and final quaternions were calculated as 

[ ]0 0.1921 0.4119 0.1921 0.8698 T=q  and [ ]0 0 0 1 T
f =q , respectively. This 

corresponds to an initial Euler angles of 40°  and a final Euler angles of 0°  in each axis, using a 

1-2-3 rotation sequence to convert the Euler angles to quaternions. The initial quaternion rate is 

Euler angle  

Angular rate  
difference (degs/s) 

difference (degs) 
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assumed to be [ ]0 0.0095 0.0076 0.0057 0.0069 T−=q  and the final rate of 0 deg/sec 

converted to [ ]0 0 0 0 T
f =q  . 

Table 1. Total torque problem, results comparison (Polynomial prey motion). 

N Baseline Solution J 
(N2m2s) 

Baseline Solution 
CPU(s) 

VMC     Solution J 
(N2m2s) 

VMC       Solution 
CPU(s) 

8 9.2695E-12 4.68 9.4226E-12 1.93 

15 9.2709E-12 15.43 9.4225E-12 1.81 

20 9.2718E-12 24.30 9.4179E-12 4.62 

25 9.2709E-12 44.75 9.4279E-12 7.75 

 

 The VMC solution is found to be within 2% of the baseline solution with the same 

number of nodes. Additionally, the VMC solution for 8 nodes was within 2% of the 25 node 

baseline solution and it was 96% faster. 

 Figure 7 shows the VMC state solution in quaternion form for the 8-node case. The plot 

is smooth, meets the boundary conditions and obeys all constraints.  
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Figure 7. Quaternion of the near optimal attitude trajectory. 
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The same is true for the state rates or body rates. The plot shows smooth lines with a reasonable 

magnitude that satisfies all boundary conditions.   
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Figure 8. Angular velocity of the near optimal attitude trajectory. 

Figure 9 shows a comparison of the commanded torque from the VMC and baseline solutions. 

Although there is some variation in this plot, it is small and both curves show a control that is 

smooth enough for actual hardware to follow. Again, the solution remains within the constraints 

listed in the problem definition. 
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Figure 9. VMC control torque for near optimal rotation. 

From the results in Figure 6 and Table 1, one can see that VMC with polynomial prey motion 

produces results that are very near the baseline solution. In Figures 7, 8 & 9, one can see that 
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these near optimal results produce the rotations using commands that are smooth enough to be 

easily implemented in actual hardware.  

 It is important to note that this thesis assumes continuous thrust with no lower bounds on 

the thrust. Any implementation in real hardware would surely include some lower bounds on the 

thrust produced by each thruster, and possibly include constraints for time between pulses. It is 

anticipated that a pulse width modulation scheme would be used to utilize the solutions found 

through VMC. This will be discussed in Chapter 6, Summary and Future Work. 
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CHAPTER 5: ATTITUDE CONTROL MANAGEMENT 

Problem Definition 

 In this chapter, the problem is to find the optimal control that minimizes the performance 

index  

 0

0

0

10

f

f

f

t T
thr thrt tT

tot tot tt T
tot tott

dt
J dt

dt
= +

∫
∫

∫

T T
T T

T T
 (37) 

which is designed to minimize the thruster torque in a system with both magnetic torque coils 

and thrusters, while still providing a solution that is smooth enough for implementation. The 

attitude dynamics are given by Eqs. 1-2. and the system is subject to inequality constraints on 

thruster torque, magnetic moment, and maximum body rate according to Eqs. 3, 5 and 6, 

respectively. The system is also subject to equality constraints for the boundary conditions and 

the quaternion, according to Eqs. 7 and 8.  

 This problem will be solved using VMC with the B-Spline prey motion and compared 

both the B-Spline and baseline approach. The final time for this problem is fixed at 400ft s= . 

Generating Prey Motion and Path Control Parameters 

 The prey motion in this case will be generated using non-uniform open b-splines to create 

4 curves - one for each element of the quaternion. Each B-Spline curve (and its derivative) is 

calculated by 

 ,
0

ˆ ˆ( ) ( )
n

k i p k i
i

t N t
=

=∑C P     0̂
ˆ ˆ
k ft t t≤ ≤  (38) 
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 ,
0

ˆ ˆ( ) ( )  
n

k i p k i
i

t N t
=

′ ′= ∑C P     0̂
ˆ ˆ
k ft t t≤ ≤  (39) 

where ˆ( )ktC  is the curve evaluated at each LGL node, iP  represents the control points and 

,
ˆ( )i p kN t  denotes the basis functions [39]. The number of elements in the knot vector can be 

found using the equation 1m n p= + + , where p  is the degree of the curve and 1n +  is the 

number of control points. In this thesis, the prey motion is defined by a B-Spline curve using an 

with 5n p= = , so the knot equation given by 1 1

1 1

ˆ ˆ ˆ ˆ ˆ ˆ{ , , , , , , , , }o o p m p f f

p p

U t t t t t t+ − −

+ +

=   





 collapses to   

1 1

ˆ ˆ ˆ ˆ{ , , , , , }o o f f

p p

U t t t t
+ +

=  





. Following the procedure in Piegl [39], the basis functions and their 

derivatives are calculated according to  

 

1
,0

ˆ1 if ˆ( )
0 otherwise      

i k i
i k

U t U
N t + ≤ ≤

= 
   0i n=   

 

1
, , 1 1, 1

1 1

ˆˆˆ ˆ ˆ( ) ( ) ( )i p kk i
i p k i p k i p k

i p i i p i

U tt UN t N t N t
U U U U

+ +
− + −

+ + + +

−−
= +

− −  

 
, , 1 1, 1

1 1

ˆ ˆ( ) ( )i p i p k i p k
i p i i p i

p pN N t N t
U U U U− + −

+ + + +

′ = −
− −  (40) 

The first and last control points are determined by the boundary conditions for the quaternion: 

0 0=P q  , n f=P q . The middle control points, 1... 1P n− , come from the initial guess. For use with 

the direct collocation method, the non dimensional time vector t̂  represents the LGL nodes. 

Finally, the prey motion pq  and its derivative pq  , are calculated using Eqs. 38 and 39. Note that 
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if n p= , the knot vector is composed solely of 0q  and fq  , allowing the basis function and its 

derivative to be calculated outside the optimization loop to reduce computational time.  

Application 

 The parameters to be optimized in the nonlinear solver are iP , rq  and kν  for 2i n=   

and 1 1k N= − . In this application, the control point elements, reference point elements and 

path control parameters were constrained according to ,3 3i jP− ≤ ≤ , ,1 1r jq− ≤ ≤  and 

0.8 1.2k≤ ≤v , respectively, for 1 1i n= − , 1 4j =   and 2 2k N= − . It is noted that some 

tuning is typically required to determine the appropriate bounds for a specific application.  

 The prey motion , ,p i kq  and its derivative , ,p i kq  are generated as B-Spline curves 

according to the procedure in the previous section. As in Chapter 4, the states and state rates are 

fixed, so 0 1Nν ν= = . The remaining PCPs come from the optimization variables and the 

derivative of the PCPs can be found using  

 
'
,

0

N

k k l
l

lDν ν
=

=∑

 (41) 

The aggressor motion (and it's derivative) for 0,k N=  come from the boundary conditions and 

the aggressor motion for 1 1k N= −  is calculated according to  

 ( ), ,a k r k p k rν= + −q q q q  (42) 

The state rate aq  is determined using  

 '
, ,

0
,

N

a k al kk
l

D
=

=∑q q    0k N= …  (43) 
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The body rates can then be found from the quaternion and it's derivative using the following 

equation found in Chobotov [40]:   

 1, 4, 1, 3, 2, 2, 3, 1, 4,2( )k k k k k k k k kq q q q q q q qω = + − −     

 2, 3, 1, 4, 2, 1, 3, 2, 4,2( )k k k k k k k k kq q q q q q q qω = − + + −     

 3, 2, 1, 1, 2, 4, 3, 3, 4,2( )k k k k k k k k kq q q q q q q qω = − + −      0k N= …  (44) 

and the derivative of those body rates is found according to 

 
'
,

0

N

k k l
l

lD
=

=∑ω ω

 (45) 

Then the total torque desired T  at each node is found using 

 k =T k mom +ω I k mom kω I ω  (46) 

At this point it is desirable to calculate a magnetic moment given the total torque required and 

the magnetic field in the spacecraft body frame. By calculating the moment, rather than 

optimizing the moment at each LGL node, the computational cost can be kept much lower. A 

procedure developed by Sidi [41] for use in a gravity gradient stabilized spacecraft is adapted for 

use here to calculate this magnetic moment. Since the coil torque is given by ( )ˆ ˆ ˆ
c bo= ×T M B   

 

, ,

, ,

, ,

ˆ ˆ ˆ ˆ0
ˆ ˆ ˆ ˆ0
ˆ ˆ ˆ ˆ0

cx bo z bo y x

cy bo z bo x y

cz bo y bo x z

     −
     

= −     
     

−          

T B B M

T B B M

T B B M
 (47) 

and it is desired to find M̂  given ˆ
cT  and ˆ

boB , it is natural to try to invert the 3 3x matrix in the 

process of finding for the moment. Unfortunately, in this case the matrix is singular, and another 
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method must be used. At the same time, it is easy to see that ensuring the moment is 

perpendicular to the magnetic field will maximize the torque. After some manipulation, one can 

form an equation that utilizes this fact to find the desired moment.  

 ( )ˆ ˆ ˆ ˆ ˆ
bo c bo bo× = × ×B T B M B

 

 ( ) ( ) ( )ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ
bo bo bo bo bo bo× × = − B M B B B M B M B

 (48) 

Since ( )ˆ ˆ 0bo =B M  when M̂  is perpendicular to the Earth's magnetic field, the second term can 

is set equal to zero, yielding ( )ˆ ˆ ˆ ˆ ˆ
bo c bo bo× = B T B B M  and finally 

 ( )1ˆ ˆ ˆ
ˆ bo

bo

= ×M B T
B

 (49) 

where ˆ
boB  is the dimensionless magnetic field in body coordinates and T̂  is the total torque 

required. Then the torque from the coils is given by ( )ˆ ˆ ˆ
c bo= ×T M B and the torque required from 

the thrusters is ˆ ˆ ˆ
t c= −T T T .  

Simulation Results and Discussion 

 The scenario presented simulates a CubeSat with a moment of inertia 

(0.0009,0.0009,0.0009)m diag=I . The target orbit in this scenario is defined by the following 

orbital elements which are assumed to be constant throughout the simulation: semi-major axis 

7709.04 kma = , eccentricity 0.1e = , inclination 35.4ni = ° , right ascension of the ascending 

node  0Ω = °  , argument of perigee 0aopω = ° , and initial true anomaly 0f = ° . Given that much 

of the recent literature on magnetic torque control has centered around the NPSAT-1 mission, 
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this simulation uses similar orbital elements to aid in comparison. The VMC with B-Spline prey 

motion solution is evaluated against the B-Spline and a baseline approach. The baseline solution 

is found by converting the original optimal control problem to an NLP via the LGL 

pseudospectral collocation method. State rates and control forces are calculated through 

differential inclusion in the B-Spline, VMC with B-Spline prey motion and baseline approaches. 

The simulation is run on a CPU with an Intel Q9000 processor running at 2.00 GHz, running 

MATLAB Version 7.8.0 (R2009a). 

 A total of twenty four cases were evaluated. The points were chosen so that the initial 

Euler angle offset varied from 0 to 90 degrees and the initial body rates varied from 0 to 1deg/s.  

Table 2. Boundary Conditions used to evaluate solutions for problem 2. 

Initial      

Euler 

Angles 

(deg) 

Final 

Euler 

Angles 

(deg) 

Initial 

Body 

Rates           

(deg/s) 

Final 

Body 

Rates 

(deg/s) 

Initial      

Euler 

Angles 

(deg) 

Final 

Euler 

Angles 

(deg) 

Initial 

Body 

Rates           

(deg/s) 

Final 

Body 

Rates 

(deg/s) 
15 0 1 0 -15 0 1 0 
30 0 1 0 -30 0 1 0 
45 0 1 0 -45 0 1 0 
60 0 1 0 -60 0 1 0 
75 0 1 0 -75 0 1 0 
90 0 1 0 -90 0 1 0 
0 15 0 0 0 -15 0 0 
0 30 0 0 0 -30 0 0 
0 45 0 0 0 -45 0 0 
0 60 0 0 0 -60 0 0 
0 75 0 0 0 -75 0 0 
0 90 0 0 0 -90 0 0 
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Each set of initial conditions was evaluated for performance index error (as a percentage of the 

difference between the method evaluated and the baseline solution), and percentage of CPU 

computational time reduction (as compared to the baseline approach). Overall, the computational 

time was reduced by 86% as compared to the baseline using B-Splines and by 17% using VMC 

with B-Spline prey motion. At the same time, the performance index was within 1.5% of the 

baseline solution for the B-Spline approach and within 1.6% of the baseline solution for the 

VMC with B-Spline prey motion. 

 The differences in computational time are closely related to the number of parameters to 

be optimized. The B-Spline approach, with n=p=6, evaluated at times corresponding to 10 LGL 

nodes, requires 20 parameters to be optimized. The VMC with B-Spline prey motion, with 

n=p=5 and 10 LGL nodes, requires 29 parameters to be optimized. The baseline approach, with 

10 LGL nodes, requires 36 parameters to be optimized. The simulation results show that the B-

Spline is the fastest, followed by the VMC with B-Spline prey motion and the baseline, which is 

significantly slower. This makes sense given that the B-Spline has the lowest number of 

optimization parameters, and is flexible enough (with 7 total control points) to create a curve that 

meets the constraints in this case. 

 When the path constraints are increased, the situation is expected to change. For any 

curve with path constraints that require variation from a straight line, the B-Spline will need 

additional control points to generate a curve that stay within those constraints. As these type of 

path constraints increase, more control points will be required. Figure 10 illustrates the first case 

where the path constraints do not interfere with a straight line between the end points. 
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Figure 10. B-Spline curve with path constraints that do  

not interfere with a straight line between end points. 

The next case, where a path constraint does interfere with a straight line between end points, is 

illustrated in Figure 11. In this case, a third control point is required to generate a curve that 

obeys the path constraint. 

 
Figure 11. B-Spline curve with a path constraint  

that drives requirement for at least one additional control point. 

Figure 12 illustrates the situation as additional path constraints are added which further interfere 

with any straight line path.  
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Figure 12. B-Spline curve with two path constraints 

which drive a requirement for at least four control points. 

Each new constraint of this type drives the requirement for another control point. And each 

additional interior control point increases the number of parameters to be optimized by the 

number of dimensions (for example, the number of parameters to be optimized would increase 

by four per path constraint for the problems presented in this thesis). It is easy to see how 

additional path constraints of this type could cause the computational cost for the B-Spline 

method to increase. Conversely, the VMC with B-Spline prey motion can "get around" each 

additional path constraint by adding just one PCP per constraint for all four dimensions. As a 

result, VMC with B-Spline prey motion is expected to generate solutions faster than a B-Spline 

algorithm when significant path constraints are present, requiring additional control points. In 

Problem 2, no path constraints of this type were present. As a result, VMC with B-Spline prey 

motion was not substantially faster than B-Spline in the simulation for Problem 2. 

 Table 3 compares the B-Spline and VMC with B-Spline prey motion to the baseline 

approach in for a specific case. The example shown in Table 3 is based on the commanded 

rotation of a CubeSat from an initial attitude [ ]0 0.0307 0.7037 0.0307 0.7091=q  and body 
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rate, [ ]0 0.0175 0.0175 0.0175=ω  to a final attitude of  [ ]0 0 0 0 1=q  and body rate of 

[ ]0 0 0f =ω . This is equivalent to an initial offset angle of 85 deg and body rate of 1 deg/s in 

every axis, and a final state of 0 deg and 0 deg/s, and is meant to simulate a CubeSat at an 

arbitrary attitude and body rate, which is desired to be returned to a nadir pointing attitude. The 

final time is fixed at 400 sec, and the total torque, magnetic moment, and maximum body rate are 

constrained as stated in the Problem definition.  
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Table 3. Comparison of B-Spline, VMC with B-Spline Prey Motion  
and Baseline Approaches (Case 1). 

N  Baseline 

Solution PI  
Baseline 

CPU(s)  
B-Spline  

Solution PI  
B-Spline 

CPU(s)  
VMC  

Solution PI  
VMC 

CPU(s)  

8  91.8006  11.2  91.7534  1.2  91.7526  6.1 
10  91.7317  16.9  91.7564  4.0  91.7410  6.4  
12  91.7390  25.8  91.7503  3.4  91.7363  14.4  
15  91.7315  55.8  91.7503  4.3  91.7456  16.2  

 

Table 4 shows a similar comparison for case 2. Case 2 simulates a rest to rest rotation. The initial 

attitude represents a nadir attitude. The spacecraft is commanded to rotate to an attitude of 45 

deg in each axis with body rates equal 0 deg/s in each axis. This simulates a situation where a 

CubeSat might be tasked to point at another object in orbit, such as for imaging or 

communication purposes. 

Table 4. Comparison of B-Spline, VMC with B-Spline Prey Motion  
and Baseline Approaches (Case 2). 

N  Baseline 

Solution PI  
Baseline 

CPU(s)  
B-Spline 

Solution PI  
B-Spline 

CPU(s)  
VMC  

Solution PI  
VMC 

CPU(s)  

8 3.69518  5.9  3.72487  3.1  3.7080  8.5  
10  3.70767  13.2  3.70816  3.6  3.7057  12.6  
12  3.69525  35.2  3.70813  4.0  3.7014  6.9  
15  3.69507  47.1  3.70949  4.4  3.7001  12.3  
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From the average percent difference in performance index between the B-Spline and Baseline, 

and the average percent difference between the VMC with B-Spline prey motion and the 

baseline, it appears that both the B-Spline and VMC with B-Spline prey motion provide nearly 

equivalent solutions at reduced computational cost. The next set of figures gives a visual 

representation of the differences to illustrate that the B-Spline and VMC with B-Spline prey 

motion do provide nearly equivalent solutions. In Figure 13, the quaternion (with 10 LGL 

nodes), is plotted for the B-Spline (circle), VMC with B-Spline prey motion (+) and the baseline 

(line). It is easy to see that all three solutions meet the constraints and provide smooth rotations 

from the initial to final attitudes. 

 
Figure 13. Quaternion of the near optimal attitude trajectory (Case 1) 

Figure 14 shows a similar plot for body rates, also for Case 1. Again, the change is smooth and 

clearly meets the constraints given. 
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Figure 14. Angular velocity of the near optimal attitude trajectory. 

Ultimately, the control command that comes from the flight computer in real hardware will 

change the current flowing through the coils. For this reason, Figure 15 is presented to show the 

change in current throughout the maneuver for the baseline, B-Spline and VMC with B-Spline 

prey motion methods. Again, each curve meets the constraints and is smooth enough for use in 

actual hardware. 

 
Figure 15. Current for near optimal rotation. 
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Figures 16-18 show the commanded torque for the baseline (line), B-Spline(circle) and VMC 

with B-Spline prey motion (+). The total torque is the solid black line, the Coil torque is the 

dashed blue line and the dotted red line represents the thruster torque. Clearly, the commanded 

torque obeys the constraint listed in the problem and is smooth enough for actual hardware. 

 
Figure 16. VMC control torque for near optimal rotation (X axis). 
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Figure 17. VMC control torque for near optimal rotation (Y axis). 
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Figure 18. VMC control torque for near optimal rotation (Z axis). 
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Figures 19 and 20 illustrate the quaternion and body rates in case 2 (with 10 LGL nodes), for the 

B-Spline (circle), VMC with B-Spline prey motion (+) and the baseline (line). As before, all 

three solutions meet the constraints and provide smooth rotations from the initial to final 

attitudes. 

 
Figure 19. Quaternion for Case 2, B-Spline prey motion, 10 LGL Nodes, tf=400s. 

 
Figure 20. Angular velocity for Case 2, B-Spline prey motion, 10 LGL Nodes, tf=400s. 

Figure 21, which shows the plot of the current for each of the three methods, also demonstrates 

that it meets the constraints and is smooth enough for actual hardware. 
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Figure 21. Current for Case 2, B-Spline prey motion, 10 LGL Nodes, tf=400s. 

Finally, the commanded torque for the baseline (line), B-Spline(circle) and VMC with B-Spline 

prey motion (+) are plotted in Figures 22-24. As before, the total torque is the solid black line, 

the coil torque is the dashed blue line and the dotted red line represents the thruster torque. Once 

more, the commanded torque obeys the constraint listed in the problem and is smooth enough for 

implementation in actual hardware. 

 

Figure 22. Torque (x-axis) for Case 2, B-Spline prey motion, 10 LGL Nodes, tf=400s. 
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Figure 23. Torque (y-axis) for Case 2, B-Spline prey motion, 10 LGL Nodes, tf=400s. 
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Figure 24. Torque (z-axis) for Case 2, B-Spline prey motion, 10 LGL Nodes, tf=400s. 
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CHAPTER 6: SUMMARY AND FUTURE WORK 

 In this thesis, four different methods were used to develop open loop optimal attitude 

control solutions that could be used as a reference trajectory for a feedback controller to track. 

These methods, the baseline, VMC with a polynomial prey motion, B-Spline, and VMC with a 

B-Spline prey motion were applied to two fuel optimal attitude control problems for a CubeSat: 

1) minimizing the total torque for a given rotation and 2) minimizing the thruster torque in a 

system with combined thrusters and magnetic torque coils. The methods were then compared to 

the solutions generated by the baseline to determine the optimality of their solutions and the 

reduction in computational cost they could provide.  

 In general, both the B-Spline and the VMC augmented with the B-Spline prey motion 

methods have been shown to decrease the optimization time when compared to the baseline 

solution while the solution optimality is not sacrificed much. It has also been shown that the B-

Spline method provides slightly faster solutions when providing the optimal attitude control 

management (problem 2) in situations without severe path constraints that prevent a less curved 

path between boundary points. Discussion was provided on why problems with path constraints 

would cause a greater (when compared to the VMC with a B-Spline prey motion method) 

increase in optimization parameters for the B-Spline method with an associated increase in 

computational cost. The result is that the VMC with B-Spline prey motion should provide results 

with a lower computational cost when severe path constraints exist.  

 For this reason, it is suggested that future work investigate the performance and utility of 

the VMC with a B-Spline prey motion method in realistic situations with significant path 

constraints. These realistic situations could also include known disturbances and the 
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incorporation of any additional constraints associated with the implementation in actual 

hardware. It is also suggested that some investigation of alternate parameterizations of the 

attitude representation be undertaken. Some possible candidates include the Rodriguez 

parameters and the Euler axis/angle parameterization (sometimes called the Rotation vector), 

both of which are ultimately based on four independent variables. Each of these has their own 

drawbacks (e.g. rotations limited to 180 degrees in the former, undefined values at zero for the 

latter), but they may offer opportunities to reduce the computational burden further, which seems 

to be significantly affected by the quaternion normalization constraint. These investigations may 

lead to even greater capability for the proposed VMC algorithm, proving yet another tool for 

providing near optimal solutions even faster than before. 
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