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ABSTRACT 
 

 A proprietary Ocean Thermal Energy Conversion (OTEC) modeling tool, the Makai 

OTEC Thermodynamic and Economic Model (MOTEM), is leveraged to evaluate the accuracy 

of finite-time thermodynamic OTEC optimization methods. MOTEM is a full OTEC system 

simulator capable of evaluating the effects of variation in heat exchanger operating temperatures 

and seawater flow rates. The evaluation is based on a comparison of the net power output of an 

OTEC plant with a fixed configuration. Select optimization methods from the literature are 

shown to produce between 93% and 99% of the maximum possible amount of power, depending 

on the selection of heat exchanger performance curves. OTEC optimization is found to be 

dependent on the performance characteristics of the evaporator and condenser used in the plant. 

Optimization algorithms in the literature do not take heat exchanger performance variation into 

account, which causes a discrepancy between their predictions and those calculated with 

MOTEM.  

 A new characteristic metric of OTEC optimization, the ratio of evaporator and condenser 

overall heat transfer coefficients, is found. The heat transfer ratio is constant for all plant 

configurations in which the seawater flow rate is optimized for any particular evaporator and 

condenser operating temperatures. The existence of this ratio implies that a solution for the ideal 

heat exchanger operating temperatures could be computed based on the ratio of heat exchanger 

performance curves, and additional research is recommended. 

  



iv 

 

 

 

 

 

 

 

 

 

 

 

Dedicated to my lovely wife Leighanna, without whose support this would not have been 

possible. 

  



v 

 

ACKNOWLEDGMENTS 
 

 

The completion of this paper required the assistance of friends, family, and colleagues. I 

would like to thank select individuals who made a particular contribution. Firstly, I must 

acknowledge the assistance of my adviser, Professor Marcel Ilie. His guidance, patience, and 

focus on helping students excel were invaluable in the completion of my research. 

Secondly, I would like to extend special thanks to Makai Ocean Engineering for granting 

access to their Makai OTEC Thermodynamic and Economic Model, with which most of the 

calculations for this project were performed. In addition, their long-term support has made my 

foray into graduate school possible. 

Last, but certainly not least, I would like to thank my friends and family for their support. 

My wife, in particular, has exhibited a boundless capacity for sacrificing weekends, quiet 

evenings at home, and no small number of special events in the name of my education. 

  



vi 

 

TABLE OF CONTENTS 
 

LIST OF FIGURES ........................................................................................................................ x 

LIST OF TABLES ......................................................................................................................... xi 

LIST OF SYMBOLS .................................................................................................................... xii 

1. INTRODUCTION .................................................................................................................. 1 

1.1. Basic OTEC Heat Engine ................................................................................................. 1 

1.2. Design Challenges ............................................................................................................ 3 

1.2.1. Heat Engine Efficiency ............................................................................................. 4 

1.2.2. Seawater Flow Rate .................................................................................................. 8 

1.2.3. Impact on OTEC Design ........................................................................................... 8 

2. LITERATURE REVIEW ..................................................................................................... 10 

2.1. Isothermal Heat Reservoirs with a Carnot Engine ......................................................... 11 

2.1.1. Limiting Assumptions ............................................................................................. 12 

2.2. Heat Reservoirs with Varying Heat Capacity Rate and a Rankine Engine .................... 13 

2.2.1. Limiting Assumptions ............................................................................................. 14 

3. MODELING REAL OTEC SYSTEMS ............................................................................... 16 

3.1. Theoretical Magnification of the Effects of Variation in Optimization Parameters ...... 16 

3.2. Magnification of the Effects of Optimization Parameter Variation in MOTEM ........... 20 

4. THE OTEC MODEL ............................................................................................................ 24 



vii 

 

4.1. An OTEC Simulator ....................................................................................................... 24 

4.2. Governing Equations ...................................................................................................... 25 

4.3. Rankine Cycle Modeling ................................................................................................ 28 

4.4. Heat Exchanger Modeling .............................................................................................. 31 

5. OPTIMIZATION ALGORITHMS ....................................................................................... 33 

5.1. MOTEM’s Optimization Algorithm .............................................................................. 33 

5.2. Robustness of the Optimization Scheme ........................................................................ 34 

5.3. Solution Space Reduction .............................................................................................. 35 

5.4. Optimization of Operating Temperature ........................................................................ 36 

5.5. Optimization of Water Flow .......................................................................................... 38 

6. OPTIMIZATION RESULTS................................................................................................ 41 

6.1. Temperature Optimization ............................................................................................. 41 

6.2. Water Flow Optimization ............................................................................................... 45 

6.3. Heat Transfer Coefficient Ratio ..................................................................................... 47 

6.4. Effects of Heat Exchanger Performance ........................................................................ 52 

7. OTEC PLANT DESIGN....................................................................................................... 56 

7.1. Modeled Design ............................................................................................................. 56 

7.1.1. Thermal Efficiency ................................................................................................. 57 

7.1.2. Ratio of Warm Water Flow to Cold Water Flow .................................................... 57 



viii 

 

7.1.3. Relative Performance of Evaporators and Condensers ........................................... 58 

7.2. Comparison to Isothermal Heat Reservoirs with a Carnot Engine ................................ 59 

7.2.1. Comparison with Artificial Heat Exchanger Performance Curves ......................... 60 

7.2.2. Comparison with Real World Heat Exchanger Curves .......................................... 60 

7.3. Comparison to Heat Reservoirs with Varying Properties and a Rankine Engine .......... 61 

7.3.1. Comparison with Artificial Heat Exchanger Performance Curves ......................... 61 

7.3.2. Comparison with Real World Heat Exchanger Curves .......................................... 62 

7.4. Summary of Comparison Results ................................................................................... 62 

8. DISCUSSION ....................................................................................................................... 65 

8.1. Temperature Optimization ............................................................................................. 65 

8.2. Water Flow Optimization ............................................................................................... 65 

8.3. Combined Optimization ................................................................................................. 66 

8.4. Heat Exchanger Performance ......................................................................................... 67 

8.5. Comparison between MOTEM Results and Results in the Literature ........................... 68 

8.6. Heat Transfer Coefficient Ratio ..................................................................................... 70 

8.6.1. Direct Calculation of Heat Transfer Coefficient Ratio ........................................... 71 

8.6.2. Improvements to MOTEM ..................................................................................... 72 

9. CONCLUSIONS................................................................................................................... 73 

10. FUTURE WORK ............................................................................................................... 75 



ix 

 

10.1. Model Validation ........................................................................................................ 75 

10.2. Investigation of Heat Transfer Coefficient Ratio ....................................................... 75 

10.3. OTEC Cost Estimation ............................................................................................... 76 

11. REFERENCES .................................................................................................................. 77 

  



x 

 

LIST OF FIGURES 
 

Figure 1: Schematic of an OTEC Rankine cycle ............................................................................ 2 

Figure 2: Power Cycle Diagram Showing Each Node in the OTEC Model’s Thermodynamic 

Cycle ............................................................................................................................................. 29 

Figure 3: Optimization Curve for Evaporator Operating Temperature ........................................ 37 

Figure 4: Normalized Optimization Curve for Evaporator Operating Temperature .................... 38 

Figure 5: Optimization Curve for Cold Water Flow Rate ............................................................ 39 

Figure 6: Normalized Optimization Curve for Cold Seawater Flow Rate .................................... 40 

Figure 7: Normalized Optimization Curve for Evaporator Operating Temperature .................... 41 

Figure 8: Normalized Optimization Curve for Condenser Operating Temperature ..................... 42 

Figure 9: Normalized Optimization Curve for Evaporator Operating Temperature with 

Reoptimized Seawater Flow ......................................................................................................... 43 

Figure 10: Normalized Optimization Curve for Condenser Operating Temperature with 

Reoptimized Seawater Flow ......................................................................................................... 44 

Figure 11: Normalized Optimization Curve for Simultaneous Variation of Evaporator and 

Condenser Operating Temperature with Reoptimized Seawater Flow ......................................... 45 

Figure 12: Normalized Optimization Curve for Warm Seawater Flow Rate with Reoptimized 

Operating Temperatures................................................................................................................ 46 

Figure 13: Normalized Optimization Curve for Cold Seawater Flow Rate with Reoptimized 

Operating Temperatures................................................................................................................ 46 

Figure 14: Normalized Optimization Curves for Real World Heat Exchangers .......................... 51 

Figure 15: Baseline Heat Exchanger Performance ....................................................................... 53  



xi 

 

LIST OF TABLES 
 

Table 1: Magnification of the Effects of a 25% Increase in Warm Water Flow Rate at Fixed 

Thermal Duty ................................................................................................................................ 21 

Table 2: Magnification of the Effects of a 25% Increase in Warm Water Flow Rate with Variable 

Thermal Duty ................................................................................................................................ 22 

Table 3: Sample of OTEC Plant Characteristic Data .................................................................... 48 

Table 4: Ratio of Evaporator Heat Transfer Coefficient to Condenser Heat Transfer Coefficient 

with Artificial Heat Exchangers.................................................................................................... 48 

Table 5: Ratio of Evaporator Heat Transfer Coefficient to Condenser Heat Transfer Coefficient 

with Real World Heat Exchangers ................................................................................................ 50 

Table 6: The Effects of Variation in Heat Exchanger Performance on Optimized OTEC Plant 

Design ........................................................................................................................................... 54 

Table 7: MOTEM-Optimized OTEC Design ............................................................................... 56 

Table 8: Optimum Heat Exchanger Operating Temperatures with Artificial Heat Exchangers .. 63 

Table 9: Optimum Heat Exchanger Operating Temperatures with Real World Heat Exchangers

....................................................................................................................................................... 63 

  



xii 

 

LIST OF SYMBOLS 
 

Variables 

 A  heat transfer area 

 C  numeric constant 

 G  mass velocity 

 h  specific enthalpy 

 H  head loss 

LMTD  log mean temperature difference 

     mass flow rate 

 p  pressure 

 P  power 

 Q  thermal duty 

t  time 

 T  temperature 

 U  overall heat transfer coefficient 

 η  thermal efficiency 

 ρ  density 

 

Subscripts 

 a   working fluid 

 C  working fluid low temperature 

 gross   total OTEC electrical power output 



xiii 

 

 H  warm seawater temperature 

 L  cold seawater temperature 

 net  OTEC electrical power output beyond that required for plant operation 

 parasitic electrical power required for OTEC plant operation 

 s   seawater 

 W  working fluid high temperature 

 

Operators 

 Δ  differential 

 



1 

 

1. INTRODUCTION 
 

Ocean Thermal Energy Conversion (OTEC) is the extraction of solar thermal energy 

from the ocean for the production of electricity. The energy extraction is accomplished via a heat 

engine that uses warm seawater from the ocean’s surface as a heat source, and cold seawater 

from 1,000 m water depth as a heat sink. OTEC makes use of a renewable solar resource, but is 

not subject to the variability inherent to most other renewable energy technologies. Surface 

seawater temperature does not vary daily and good OTEC sites experience only 2-3
o
 C of 

seasonal variation. About 60% of an OTEC plant’s annual average output is available throughout 

the year. This allows OTEC to provide firm base-load power, a category traditionally restricted 

to fuel-based technologies such as coal, oil, and nuclear. 

1.1. Basic OTEC Heat Engine 

 OTEC cycles can be categorized as open-cycle and closed-cycle. In an open-cycle plant, 

the seawater itself is used as the working fluid during a flash-evaporation process in a large 

vacuum chamber. In closed-cycle OTEC, a working fluid is circulated between the heat source 

and the heat sink, and energy is extracted from the working fluid (Avery & Wu, 1994). Since it 

can take advantage of existing, off-the-shelf components, recent OTEC development has focused 

on closed-cycle systems, and closed-cycle OTEC is the focus of this paper. Among the simplest 

closed-cycle heat engines is the Rankine cycle. Figure 1 shows a schematic of an OTEC Rankine 

cycle. 

 



2 

 

 

Figure 1: Schematic of an OTEC Rankine cycle 

 

Liquid working fluid is pumped through an evaporator. Warm seawater drawn from 30m 

water depth boils the working fluid in an isobaric process to produce a saturated vapor. The 

vapor is expanded isentropically through a turbine, where approximately 3% of the vapor 

condenses. The saturated vapor-liquid mix then enters a condenser. Cold seawater from 1,000 m 

water depth is pumped through the condenser to convert the working fluid into a saturated liquid 

via another isobaric process. The liquid is then drawn into a pump where it is isentropically 

pressurized and pushed back into the evaporator. 

Real OTEC heat engines typically include an additional recirculation loop because many 

OTEC-appropriate evaporators operate more efficiently if the working fluid feed rate exceeds the 

evaporation rate. A demister is used to separate the saturated vapor from the residual liquid. A 

recirculation pump moves the liquid from a collecting tank below the demister and reintroduces 
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it to the evaporator inlet stream. Figure 2 shows a schematic of an OTEC Rankine cycle that 

includes a recirculation loop. 

1.2. Design Challenges 

Adoption of renewable energy technology is a matter of cost – a new energy source is 

viable only if it can produce power at a price comparable to that of existing power production 

methods. Power plants of differing construction can be compared by use of life-cycle cost, which 

incorporates all capital costs and all operating costs over the life of the plant. In order to 

maximize the chances of successfully competing with established power production systems, 

renewable energy design efforts are focused on minimization of life-cycle cost. 

 In fossil fuel power plants, a significant portion of the life-cycle cost comes from the fuel 

required to operate. Since OTEC draws on solar thermal energy, there is no fuel cost associated 

with power generation. Therefore, the life-cycle cost of an OTEC plant is dominated by non-fuel 

operating cost and capital expenditure. The capital costs of a heat engine are related to the 

amount of heat transfer required to operate the engine. The heat transfer requirement is a 

function of the power output of the plant and the system’s thermal efficiency. 

Warm surface seawater is typically available at temperatures between 25
o
 C and 29

o
 C, 

and cold deep seawater is typically available at 4
o
 C. The Carnot efficiency between these 

temperatures is between 7.0% and 8.2%. The low thermal efficiency results in high heat transfer 

requirements. The large amount of heat transfer requires large water flows and large heat 

exchangers. The amount of water used, combined with the size of the required heat exchangers, 

makes OTEC capital cost much higher than the non-fuel operating costs. Therefore, capital cost 
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dominates the life-cycle cost of an OTEC plant and design efforts should be focused on their 

reduction. 

Since no full-scale OTEC power plant has been constructed, capital cost estimates are 

speculative. This paper will focus on minimization of heat exchanger area as an approximation 

for minimization of cost. Heat exchangers make up the single largest component of an OTEC 

system, and much of the system design is based on the need to direct seawater and the working 

fluid in and out of them. Therefore, minimization of heat exchanger area will approximate 

minimization of total plant size, and therefore of plant capital cost. 

There are four variables that have the most impact on the total heat exchanger area 

required in an OTEC plant: evaporator operating temperature, condenser operating temperature, 

warm seawater flow rate, and cold seawater flow rate. The effects of heat exchanger operating 

temperature relate to heat transfer rates and heat engine efficiency, and are introduced in Section 

1.2.1. The effects of seawater flow rate pervade the OTEC plant design process, and are 

addressed throughout this paper. The relationship between seawater flow rate and gross power 

production are introduced in Section 1.2.2. 

1.2.1. Heat Engine Efficiency 

The maximum possible efficiency of any heat engine is the Carnot efficiency. Carnot 

efficiency is based on the reversible Carnot cycle, and is described by equation (1). 

     
  
  

 
(1) 
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Real heat engines can only operate at Carnot efficiency when producing an 

infinitesimally small amount of power because the working fluid must be in thermal equilibrium 

with the heat source and heat sink in order to ensure reversibility. Practical heat engines operate 

with the working fluid cooler than the heat source and warmer than the heat sink, which allows 

for a temperature differential that drives heat transfer in and out of the cycle. The existence of the 

temperature differential makes the heat transfer irreversible, so practical heat engines are 

necessarily irreversible processes (Wu 1987). 

The irreversibility can be accounted for by considering an endoreversible cycle operating 

between new temperatures TW and TC, where TW is less than TH and TC is greater than TL (Wu 

1987). The thermal efficiency of the heat engine can then be calculated according to equation 

(2). 

 

     
  
  

 
(2) 

 

 

The difference between TH and TW represents the degree of irreversibility, and the amount 

of temperature differential available to drive heat transfer, between the warm working fluid and 

the heat source. Similarly, the difference between TC and TL represents the degree of 

irreversibility and temperature differential available between the cold working fluid and the heat 

sink. 

The degree of irreversibility and temperature differential available to drive heat transfer 

in an OTEC plant are controlled through the heat exchanger operating temperatures: the 

evaporator outlet temperature (i.e. – TW) and the condenser inlet temperature (i.e. – TC). These 
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temperatures characterize the thermodynamic state of the working fluid at the turbine inlet and 

outlet, and therefore the amount of useful work that can be extracted from the engine. Since there 

are two temperatures, the irreversibility associated with heat transfer to the heat source and heat 

sink can be controlled independently. 

There exists a balance between the degree of irreversibility and the rate of heat transfer. If 

the temperature difference between the working fluid and the heat source and sink is small, then 

TW will be high and TC will be low. Equation (2) predicts that the efficiency of such a heat engine 

is high, but the small temperature differential means that heat transfer rates will be low. 

Conversely, if the temperature difference is high, the thermal efficiency of the heat engine is low 

but the heat transfer rate is high. At either extreme, no power is produced. At the limit in which 

the temperature difference is zero, an infinitesimally slow heat engine approaching the Carnot 

efficiency exists. At the limit in which the temperature difference is maximized, thermal energy 

is transferred directly from the heat source to the heat sink and no power is available for 

extraction. 

Between the two extremes of temperature difference selection exists an optimum choice 

at which power output is maximized. Significant research has been conducted to determine the 

optimum temperature difference considering the irreversibility required for a practical heat 

engine. Following up on work by Curzon and Ahlborn (1975), Wu (1987) found a theoretical 

bound for OTEC performance based on an endoreversible Carnot engine, and used the results to 

predict optimum heat exchanger operating temperatures. Wu continued his work by extending 

the analysis to an endoreversible Rankine engine (1989); finding that when maximizing the 

amount of power produced per unit heat exchanger area, the optimum area ratio of heat 

exchangers could be determined from the ratio of their heat transfer coefficients (1990, 1991); 



7 

 

and showing that relaxation of the assumption that the inner heat engine be reversible did not 

change the optimum operating temperatures or heat transfer area (1993). 

Other authors have continued work in the field of optimization of real engines that 

operate on low-grade heat sources. Chen, Sun, and Wu (1996) explored the effects of internal 

reversibility due to friction within a heat engine. Lee (1990) extended Wu’s work to include a 

heat engine alternately connected to the heat source and heat sink. Sahin, Kodal, and Yavuz 

(1996) showed that maximization of power density was superior to maximization of power 

overall. Yilmaz, Ust, and Erdil (2005) confirmed the results of Sahin et al. Lee and Kim (1990, 

1991) performed analysis at both fixed and varying heat reservoir conductance. Khaliq (2004) 

relaxed many of the assumptions found in Wu’s work and developed alternate expressions for 

optimum heat exchanger operating temperatures. Kazim (2005) considered the optimal 

temperature drop between the evaporator and condenser rather than specific evaporation and 

condensation temperatures. Sun, Ikegami, Jia, and Arima (2012) relaxed the assumptions 

associated with an endoreversible cycle by modeling the thermodynamic state of ammonia 

throughout a heat engine. Sahin and Kodal applied capital and operating cost factors to analysis 

of a generalized endoreversible Carnot engine (2001).  

Two sets of optimization algorithms, from Wu (1987) and Khaliq (2004), have been 

selected to be bases of comparison for this paper. A review of the selected methods is included in 

Section 2. 
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1.2.2. Seawater Flow Rate 

An OTEC plant must generate more power than is scheduled for export. An OTEC 

system includes both seawater and working fluid pumps that require power to operate. The 

power for these components must be generated by the OTEC plant in addition to the net power 

that will be sold. The power required beyond net output is called parasitic power, and the sum of 

net power and parasitic power is gross power. The relationship between OTEC gross power, 

parasitic power, and net power is given in equation (11). 

The largest component of OTEC parasitic power is seawater pumping. The expression to 

calculate parasitic pumping power is shown in equation (3). 

 

          
      
   

 
(3) 

 

 

Neglecting the fact that the pressure differential,    , is a function of seawater mass 

velocity through the heat exchangers, parasitic pumping power is directly proportional to the 

mass flow rate of seawater,    . Therefore, all other factors being equal, an OTEC plant that uses 

more seawater will need to produce more gross power than a plant that uses less seawater. The 

increased gross power requires a larger, and more expensive, system. 

1.2.3. Impact on OTEC Design 

An efficient OTEC plant must balance the thermal efficiency of its underlying heat 

engine, temperature differential available to drive heat transfer, and parasitic electrical loads. The 
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balance is achieved by selection of appropriate seawater flow rates and heat exchanger operating 

temperatures. The fact that the life-cycle cost of OTEC is heavily dependent on capital costs 

means that careful control of overall plant size is required for OTEC to be cost-competitive with 

existing power production technologies. 
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2. LITERATURE REVIEW 
 

 OTEC optimization algorithms found in the literature make use of finite-time 

thermodynamics, which is the study of endoreversible heat engines that relax the isothermal heat 

transfer assumption inherent in the Carnot cycle. An overview of the concept underlying finite-

time thermodynamics was given in section 1.2.1. Such analysis allows researchers to consider 

the thermal duty and power output from heat engines. Finite-time analysis is particularly 

important in analyzing heat engines that operate on low-grade heat, as OTEC does, because a 

significant portion of the available temperature difference must be allocated to heat transfer in 

order to maintain sufficient power output. Two algorithms were selected from the literature for 

comparison with the research presented in this paper.  

The conclusions presented in the original work by Wu (1987) were not significantly 

changed by subsequent analysis; later expressions for optimum heat exchanger operating 

temperature evaluate to the same result even if their functional forms are different. Thus, Wu’s 

original approach has been selected as a basis for comparison because it is representative of a 

straight-forward approach. The method developed by Khaliq (2004) takes advantage of 

advancements made by several prior researchers, and has been selected as the second basis for 

comparison. Khaliq’s work relaxes many of the assumptions made by Wu, and presents 

expressions for optimum heat exchanger operating temperature that evaluate to different results 

compared to Wu’s method. Each algorithm is briefly presented below. 
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2.1. Isothermal Heat Reservoirs with a Carnot Engine 

 Wu (1987) considered a Carnot heat engine operating between temperatures TW and TC 

such that TW is less than the temperature of the heat source, and TC is greater than the 

temperature of the heat sink. Assuming the temperatures of the heat reservoirs are constant, the 

amount of time required for heat transfer between the Carnot heat engine and the heat reservoirs 

can be calculated from: 

 

    
         

 
 

(4) 

 

 

Where (T1 – T2) represents the temperature difference between one of the Carnot heat engine 

operating temperatures and its associated heat reservoir temperature. Wu showed that the 

optimum Carnot operating temperatures are: 

 

         
    

(5) 

 

         
    (6) 

 

 

Where: 

 

   
        

             
   

      
          

    
 

(7) 
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The thermal efficiency of the Carnot heat engine is: 

 

      
  
  
 
   

 
(8) 

 

 

Wu’s work predicts the optimum operating temperatures and thermal efficiency of an 

OTEC plant designed to produce the maximum possible amount of power. It addresses the heat 

engine efficiency design challenge discussed in Section 1.2.1, but not the parasitic power 

concerns from Section 1.2.2. In addition, the analysis makes some simplifying assumptions that 

do not accurately reflect real OTEC systems. Section 2.1.1 below outlines the assumptions in 

question. 

2.1.1. Limiting Assumptions 

Wu models the OTEC heat source and sink as isothermal entities. Therefore, the effects 

of seawater temperature variation through the heat exchanger are neglected. This assumption 

simplifies the analysis because the temperature difference driving heat transfer is simply the 

difference between the temperature of the heat source or sink and the working fluid. Otherwise, 

the log mean temperature difference (LMTD) would be required to compensate for the seawater 

temperature variation. The fact that LMTD does not vary linearly with working fluid temperature 

means that the assumption of an isothermal heat source and heat sink introduces inaccuracy into 

the analysis. 

Wu’s algorithm accounts for the thermodynamic effects finite-time heat transfer on heat 

engine design, but makes broad assumptions regarding the seawater flow rates required to 
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operate the plant. The method requires a priori knowledge of the heat transfer coefficient and 

total area of the heat exchangers. Since the heat transfer coefficient of an OTEC heat exchanger 

is dependent on the mass velocity of seawater, fixing both heat transfer coefficient and heat 

transfer area implicitly fixes seawater flow rate. Therefore, OTEC plant optimization in terms of 

the relationship between gross power and net power is excluded. 

In addition to its role in excluding the effects of parasitic power from the optimization 

process, the assumption of a fixed heat transfer coefficient limits the capability of finite-time 

thermodynamic OTEC optimization methods to account for the practical implications of using 

heat exchangers. The heat transfer coefficient of a real heat exchanger varies as a function of the 

mass velocity of seawater; high velocities result in high heat transfer coefficients and low 

velocities result in low heat transfer coefficients. The heat exchanger can be operated anywhere 

along a wide range of potential velocities. The fact that heat transfer coefficient is fixed in Wu’s 

analysis restricts the optimization to a single operating point. Moreover, the analysis does not 

include a method of evaluating whether the heat exchanger would perform better at a different 

point. The quality of the optimization process is therefore partially dependent on the heat 

exchanger designer’s ability to select an OTEC-appropriate operating point. 

2.2. Heat Reservoirs with Varying Heat Capacity Rate and a Rankine Engine 

Khaliq (2004) presented a comprehensive optimization scheme that modeled a Rankine 

engine without the need for isothermal heat reservoirs. He also allowed the mass flow rate of 

seawater (and therefore the heat capacity rate of the heat source and heat sink) to vary. These 
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modifications more accurately reflect the real OTEC heat source and heat sink, which must use a 

finite amount of seawater to fuel the heat engine. 

Khaliq’s work is an extension of Wu’s in that it also produced expressions for the 

optimum evaporator and condenser operating temperatures. Khaliq relaxed the following 

assumptions made in the derivation of equations (5) through (8): isothermal heat reservoirs, 

constant heat conductance, and constant heat capacitance. Khaliq calculates the optimum 

evaporator and condenser operating temperatures to be: 

 

       
  
 
     

  
  
   

(9) 

 

 

      
     
 

     
  
  
   

(10) 

 

 

 The heat engine thermal efficiency at maximum power output was found to be 

independent of reservoir heat conductance, capacitance, or temperature variation, and equation 

(8) is unchanged (Khaliq 2004). As with Wu’s work, Khaliq’s methods address heat engine 

efficiency, but not parasitic power. 

2.2.1. Limiting Assumptions 

Unlike Wu, Khaliq includes the effects of seawater temperature variation and uses LMTD 

in the derivation of equations (9) and (10). However, the analysis decouples heat transfer 
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coefficient from seawater flow rate, and therefore excludes the effects of parasitic power from 

the optimization as discussed in section 2.1.1. 

The fact that Khaliq allows independent variation in seawater flow rate introduces an 

implicit assumption that the heat transfer coefficients of the heat exchangers are independent of 

mass velocity of seawater through the heat exchanger. If the seawater flow rate varies, but the 

heat exchanger area remains unchanged, then the mass velocity of seawater through the heat 

exchanger must also change. A real heat exchanger responds to changes in mass velocity with 

changes in heat transfer coefficient, but Khaliq’s analysis treats heat transfer coefficient and 

mass velocity as independently varying quantities.  
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3. MODELING REAL OTEC SYSTEMS 
 

The net power produced from an OTEC system can be described by: 

 

 

                        

 

(11) 

 

Pgross represents the total power output of the OTEC plant. It is this value that published 

OTEC optimization schemes have sought to maximize. However, Pparasitic is not trivial. 

Preliminary modeling using the Makai OTEC Thermodynamic and Economic Model (MOTEM 

– see Section 4) has shown that parasitic power losses can account for up to 40% of the total 

electrical output of an OTEC plant. Minimization of parasitic losses cannot be carried out 

independently of Rankine cycle optimization because seawater flow rate has a direct impact on 

overall heat transfer coefficient, and therefore heat transfer area requirements. Both heat transfer 

coefficient and heat exchanger area are explicitly shown in equation (7), and are found in the 

derivation of equations (9) and (10). 

3.1. Theoretical Magnification of the Effects of Variation in Optimization Parameters 

 When designing an OTEC plant for minimum heat exchanger size, the configuration is 

sensitive to two pairs of operating parameters: evaporator and condenser operating temperatures, 

and warm and cold seawater flow rates. The sensitivity stems from the fact that heat exchanger 

performance is tied to seawater mass velocity through the heat exchanger and the mean 

temperature difference available between the working fluid and the seawater. 
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 A representative relationship between seawater velocity and the overall heat transfer 

coefficient of a heat exchanger can be expressed as: 

     
  (12) 

 

where C is some unknown positive constant. Assuming that the seawater flow rates of any 

particular OTEC plant configuration are held constant, the mass velocity through the heat 

exchanger is a function of the amount of heat exchanger over which seawater must be 

distributed: 

 

 
   

   

 
 

(13) 

 

 

The amount of heat exchanger required can be calculated from: 

 

 
  

 

       
 

(14) 

 

 

Equations (12) through (14) can be combined to give a relation of the form: 

 

 
   

          

 
 
 

 
(15) 

 

 

Solving for U gives: 
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(16) 

 

 

The effect of the magnification on heat transfer area can be determined by combining equations 

(12) through (14) to eliminate U instead of A: 

 

 
  

 

 
   
 
 
 

      

 
(17) 

 

 

Solving for A gives: 

 

 

  
 

 
   

   
 
         

 
    

 

(18) 

 

 

 For all C less than 1, equations (16)  and (18) grow faster with increasing seawater flow 

rate than do equations (12) and (14). Therefore, the change in overall heat transfer coefficient 

and the change in heat transfer area due to a change in seawater flow rate in a real OTEC plant 

are magnified.  The physical rational for the magnification is as follows:  

 

1. An increase in seawater mass flow rate causes an increase in seawater mass 

velocity through the heat exchanger. 

2. The increase in mass velocity causes an increase in overall heat transfer 

coefficient. 
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3. At constant duty, the increased heat transfer coefficient allows for a reduced heat 

transfer area. 

4. The reduced heat transfer area further increases the mass velocity through the heat 

exchanger. 

5. The increased mass velocity causes an increase in overall heat transfer coefficient.  

 

The relationship is further complicated by the fact that neither LMTD nor Q is fixed when 

seawater flow rate varies. A change in seawater flow rate at constant duty will change the 

seawater outlet temperature, which will change the LMTD. Changing seawater flow rate also 

changes the pumping power required, which changes the thermal duty required. 

 At constant duty, an increase in seawater flow rate will increase the temperature at which 

the warm seawater exits the evaporator or decrease the temperature at which the cold seawater 

exits the condenser. In both cases, LMTD is increased. Since increased LMTD allows for reduced 

heat exchanger area, the variability of LMTD with seawater flow further magnifies the cycle 

described above. Since duty increases when seawater flow rate increases, and increased duty 

requires more heat transfer area, the variability of Q with seawater flow counteracts the cycle 

described above. The relative strength of the magnifying effects described above and the 

counteracting effects of variation in Q depends on the performance curves of the specific heat 

exchangers used. Table 2 shows an example of a case where variation in Q was sufficient to 

completely counteract the magnification effect on heat transfer area, but not on heat transfer 

coefficient.  

 The cycle described above also magnifies the effect of changes in LMTD due to changes 

in heat exchanger operating temperature. Heat transfer area and LMTD are inversely related as 
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shown in equation (14). The change in area associated with a change in LMTD increases the 

mass velocity of seawater through the heat exchanger. The increased mass velocity magnifies the 

reduction in area as described above. The effect is captured in the fact that equation (18) is more 

sensitive to changes in LMTD than is equation (14) for all C less than 1. 

 Equations (16) and (18) are undefined for C greater than or equal to 1. This captures the 

fact that the magnification cycle diverges if overall heat transfer coefficient grows faster than a 

linear function as mass velocity changes. The divergence arises because the relationship between 

mass velocity and heat transfer area is linear when seawater flow rate and duty are held constant. 

If the overall heat transfer coefficient grows faster than the heat transfer area shrinks, then the 

two parameters can never balance. The limit that C be less than one is appropriate because real 

heat exchangers exhibit diminishing returns in overall heat transfer coefficient as mass velocity 

is increased, which ensures that the relationship between the two grows more slowly than a linear 

relationship. 

3.2. Magnification of the Effects of Optimization Parameter Variation in MOTEM 

 MOTEM was tested to determine if it captured the effects implied by equations (16) and 

(18). To conduct the test, total thermal duty was artificially held constant and warm water flow 

rate was increased 25%. As shown in equation (25), the value for C used in MOTEM for this 

analysis is 0.5. Therefore, a 25% increase in evaporator heat transfer coefficient and a 25% 

decrease in heat transfer area are predicted by equations (16) and (18). 
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Table 1: Magnification of the Effects of a 25% Increase in Warm Water Flow Rate at Fixed 

Thermal Duty 

 

 

The change in heat transfer coefficient is slightly higher than predicted by equation (16), 

and the change in heat transfer area is slightly lower than predicted by equation (18). However, 

the values are significantly higher than the 12% variation predicted by equations (12) and (14). 

MOTEM accurately captures the effects of magnified responses to variation in optimization 

parameters. In order to evaluate the relative importance of changes in pumping power due to 

increased seawater head loss, a second test was conducted in which the constant thermal duty 

assumption is relaxed. 

 

Baseline +25% WW Flow % Variation

Gross Power Output 142.2 142.3 MW 0%

Net Power Output 100.0 100.0 MW

Warm Water Flow Rate 470,000 587,500 kg/s 25%

Cold Water Flow Rate 350,000 350,000 kg/s

Evaporator

Operating Temperature 21 21

Heat Transfer Area 350,171 273,243 m2 -22%

U-value 5.09 6.44 kW/m2/C 27%

Waterside Head Loss 18.6 18.6 kPa 0%

Condenser

Operating Temperature 9.6 9.6

Heat Transfer Area 254,914 256,721 m2 1%

U-value 5.15 5.13 kW/m2/C 0%

Waterside Head Loss 19.5 19.2 kPa -1%



22 

 

Table 2: Magnification of the Effects of a 25% Increase in Warm Water Flow Rate with Variable 

Thermal Duty 

 

 

The 25% increase in warm water flow rate results in a 9% increase in gross power 

requirements, which requires a 9% increase in thermal duty. The increased gross power is 

required to compensate for the increased warm water flow rate and the increased evaporator 

seawater head loss. The added thermal duty requires additional heat transfer area, and 

counteracts the magnification effects. The counteraction is strong enough that heat transfer area 

variation is smaller than that predicted by equation (14). However, the variation in overall heat 

transfer coefficient is still greater than that predicted by equation (12). Additional condenser heat 

transfer area is also required to accommodate the 9% increase in thermal duty. However, since 

no additional cold water flow was provided, the magnification effect works in reverse; a large 

increase in heat transfer area and a large decrease in overall heat transfer coefficient are 

observed. 

Baseline +25% WW Flow % Variation

Gross Power Output 142.2 155.1 MW 9%

Net Power Output 100.0 100.0 MW

Warm Water Flow Rate 470,000 587,500 kg/s 25%

Cold Water Flow Rate 350,000 350,000 kg/s

Evaporator

Operating Temperature 21 21

Heat Transfer Area 350,171 324,014 m2 -7%

U-value 5.09 5.91 kW/m2/C 16%

Waterside Head Loss 18.6 34.0 kPa 82%

Condenser

Operating Temperature 9.6 9.6

Heat Transfer Area 254,914 344,746 m2 35%

U-value 5.15 4.43 kW/m2/C -14%

Waterside Head Loss 19.5 10.7 kPa -45%
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The differences between Table 1 and Table 2 indicate that the constant thermal duty 

assumption is not valid when optimizing real OTEC systems. Variation in seawater head loss has 

a significant impact on heat exchanger thermal duty. Full OTEC system simulation is required in 

order to accurately predict the interaction between mass velocity through the heat exchanger, 

total thermal duty, heat transfer area, and overall heat transfer coefficient. 
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4. THE OTEC MODEL 
 

As part of an SBIR research grant from the Office of Naval Research beginning in 2007, 

Makai Ocean Engineering developed an OTEC computer model capable of simulating a steady-

state OTEC plant. The program is called the Makai OTEC Thermodynamic and Economic 

Model (MOTEM). MOTEM includes a complete calculation of the thermodynamic state of the 

working fluid throughout out the system, as well as modeled heat exchanger performance curves 

that account for the effects of varying seawater flow rate and seawater temperature. 

Makai agreed to permit use of MOTEM as part of the research presented in this paper. As 

a condition of the permission, the economic analysis modules were disabled and the optimization 

was carried out to minimize total heat exchanger area. Minimization of heat exchanger area is a 

good approximation of economic optimization because it captures both heat exchanger costs and 

cost for space as discussed in Section 1.2. 

4.1. An OTEC Simulator 

MOTEM is not an OTEC optimization algorithm, but an OTEC simulation program. It is 

comprised of modules that represent components or processes in a practical OTEC plant design. 

A subset of the modules includes heat exchanger performance modeling, Rankine cycle 

modeling, overall system hydraulics, and cold water pipe hydraulics. 

The most important modules are the Rankine cycle performance and heat exchanger 

performance modules, and an overview of each is provided in Sections 4.2 and 4.4. The user is 

able to input a wide variety of technical parameters, the most important of which include desired 

net power output, seawater flow rates, heat exchanger operating temperatures, cold water pipe 
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diameter, and seawater ducting geometry. MOTEM will then calculate the amount of heat 

exchanger area required to produce the desired net power. It will also inform the user if the input 

parameters cannot produce the desired result. In an alternative mode, the user provides the heat 

transfer area for the evaporator and the condenser instead of the desired net power. MOTEM 

then calculates the net power output of the plant. If no net power can be produced, the program 

will inform the user that the input configuration is not valid. 

In addition to the technical calculations, MOTEM includes an economic evaluation 

module. This module estimates the total capital cost of an OTEC plant based on the technical 

parameters calculated by rest of the program.  

The OTEC optimization algorithm is an automatic input manipulation system. It modifies 

the inputs over a user-specified solution space to find the configuration that minimizes OTEC 

plant total capital cost. Since the economic module of MOTEM was disabled for this analysis, 

the optimization algorithm was modified to converge on minimum heat transfer area. An 

overview of the optimization algorithm is provided in Section 5. Since MOTEM’s optimization 

process is carried out based on a full OTEC simulation, it achieves the best possible 

configuration within the accuracy of the simulation and the limits of the optimization algorithm. 

It can therefore be used as a benchmark against which other optimization algorithms are 

compared. 

4.2. Governing Equations 

MOTEM is based on an energy balance on three fluids: warm seawater, cold seawater, 

and the working fluid. The rate at which energy leaves the warm seawater must equal the rate at 
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which energy enters the working fluid in the evaporator. Similarly, the rate at which energy 

leaves the working fluid in the condenser must equal the rate at which energy enters the cold 

seawater. The rate at which energy enters and leaves the working fluid is shown in equation (19), 

and the rate at which energy leaves the warm seawater and enters the cold seawater is shown in 

equation (20). 

 

            (19) 

 

              (20) 

 

 

MOTEM adjusts the heat transfer area in equation (19) until the calculated duty matches 

that from equation (20). The changes in heat transfer area cause changes in the mass velocity of 

the seawater through the heat exchangers, and therefore the heat transfer coefficient, as discussed 

in section 3.1. The relationship between the rate of energy transfer to and from the working fluid 

and the power output of the system is based on the thermodynamic state of the working fluid in 

the heat engine. The output of the turbine is calculated from Equation (21).  

 

                                                  (21) 

 

 

The specific enthalpy of the working fluid at the turbine inlet and outlet are calculated in 

the Rankine cycle modeling module, which is discussed in section 4.3. The mass flow rate of the 

working fluid is calculated from the working fluid heat of vaporization according to equation 
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(22). The thermal duty calculated in equations (19), (20), and (22) are balanced independently 

for the evaporator and the condenser. 

 

                      (22) 

 

The net power output is calculated according to equation (11). The parasitic power is 

calculated based on the seawater pumping power and the working fluid pumping power required. 

The working fluid pumping power is calculated from the thermodynamic state of the working 

fluid in the heat engine according to equation (23). 

 

 
                       

                         

     
 

(23) 

 

 

The seawater pumping power is calculated based on the head loss calculated over the 

entire seawater flow path, as shown in equation (24). 

 

 
                  

         

     
 

(24) 

 

 

MOTEM adjusts the working fluid flow rate, and therefore the thermal duty required of 

the heat exchangers, until the net power reaches the user-specified target value. In doing so, 

equations (19) through (24) are solved iteratively and simultaneously until the heat balance 

equations match. 
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4.3. Rankine Cycle Modeling 

The heat engine modeled within MOTEM is a Rankine cycle. The cycle is calculated in 

an iterative table. Each entry in the table represents a node in the cycle. Each node represents the 

inlet or outlet of one of the system components. Figure 2 shows a power cycle diagram that 

includes the temperature, pressure, and quality at each node within the thermodynamic cycle 

model. 
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Figure 2: Power Cycle Diagram Showing Each Node in the OTEC Model’s Thermodynamic Cycle 

De-mister: -45 m       Turbine (Datum): 0 m

P = 884 kPa P = 879 kPa P = 869 kPa P = 608 kPa

T = 21.0 C T = 20.8 C T = 20.4 C T = 9.7 C

X = 65% X = 100% Length = 55 m X = 100% X = 97%

Diameter = 2.30m

Length = 5 m P = 879 kPa Flow Rate = 3929 kg/s

Diameter = 2.83m T = 21.0 C  Length = 75 m

Flow Rate = 6045 kg/s X = 0%  Diameter = 2.68m

 Flow Rate = 3929 kg/s

  Length = 2 m

  Diameter = 0.76m

  Flow Rate = 2116 kg/s

P = 891 kPa P = 608 kPa

P = 885 kPa T = 21.0 C T = 9.6 C

T = 21.0 C X = 0.00 X = 97%

X = 65% Water Tin = 4.1 C

Water Tin = 25.7 C Holding Tank: -47 m      Condenser: -65 m Water Flow = 350000 kg/s

Water Flow = 470000 kg/s    Evaporator: -47 m Water Tout = 7.4 C

Water Tout = 23.1 C P = 891 kPa P = 607 kPa

P = 907 kPa T = 21.0 C T = 9.6 C

T = 13.7 C X = 0% X = 0%

X = 0%

  Length = 38 m  Length = 10 m

  Diameter = 0.76m  Diameter = 1.01m

  Flow Rate = 2116 kg/s  Flow Rate = 3929 kg/s

P = 1053 kPa

T = 21.1 C P = 636 kPa

Length = 38 m X = 0% T = 9.6 C

Diameter = 1.26m X = 0%

Flow Rate = 6045 kg/s  Recirc Pump: -75 m

            Buffer: -70 m

P = 1083 kPa

T = 21.1 C P = 636 kPa

X = -3% T = 9.6 C

X = 0%

  Length = 5 m

  Diameter = 0.76m

  Flow Rate = 2116 kg/s

 Length = 10 m

P = 1082 kPa  Diameter = 1.01m

T = 21.1 C  Flow Rate = 3929 kg/s

X = 0%

   Feed Pump: -75 m

    Pump Wye: -75 m

P = 1082 kPa P = 1088 kPa P = 662 kPa

P = 1080 kPa T = 9.7 C T = 9.7 C T = 9.6 C

T = 13.7 C X = 0% Length = 5 m X = -8% X = 0%

X = 0% Diameter = 1.01m

Flow Rate = 3929 kg/s
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The complete thermodynamic state of the working fluid is calculated at each node, which 

allows convenient calculation of turbine power output and pump power input (see section 4.2). 

The iteration algorithm uses the evaporator outlet temperature and the condenser inlet 

temperature as inputs. Saturated conditions are assumed at these points, so the thermodynamic 

state of the working fluid is fully defined. The state of the working fluid is calculated throughout 

the rest of the system based on the following methods: 

 

1. The pressure drop between adjacent nodes is calculated from the Darcy-Weisbach 

equation, with the friction factor calculated with the Swamee-Jain equation. 

2. Energy extraction at the turbine is assumed to be isentropic. 

3. Energy input at pumps is assumed to be isentropic. 

4. Pressure losses are assumed to be isentropic for vapor. 

5. Pressure losses are assumed to occur at constant density for liquid. 

6. Fluid properties are calculated using the equation-of-state program REFPROP 7 

from the National Institute of Standards and Technology 

 

The above statements provide two thermodynamic parameters for each node in the 

system (i.e. – pressure and entropy for vapor nodes; pressure and density for liquid nodes). 

Therefore, the thermodynamic state of the working fluid can be calculated everywhere. Iterative 

calculations are required because the pressure drop between nodes on the system is a function of 

working fluid flow rate. Working fluid flow rate is dependent on the specific work extracted by 

the turbine, which is in turn dependent on the thermodynamic state at the turbine inlet and outlet. 
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 An acknowledged limitation of MOTEM’s thermodynamic modeling scheme is that it 

does not fully account for component inefficiencies. Turbine and pump wire-to-fluid efficiencies 

are included in the power calculations, but not in the Rankine cycle calculations. Therefore, there 

is a mismatch between the amount of thermal energy extracted from the working fluid and the 

power output (input) of the turbine (pumps). This essentially models all inefficiencies as 

electrical in nature – the energy is lost to the environment as waste heat. However, some of the 

inefficiency is hydraulic. Such inefficiencies add entropy to the working fluid, and this entropy 

addition is not captured by the Rankine cycle model. In a real system, the excess energy would 

be rejected at the condenser, so MOTEM under-predicts condenser thermal duty. However, the 

inefficiency operates on the extracted energy of the plant, which is less than 4% of the thermal 

duty. Even if 25% of the energy assumed to be extracted from the Rankine cycle is instead 

converted into entropy, it would account for less than 1% of the condenser thermal duty. 

4.4. Heat Exchanger Modeling 

 A thermodynamic description of a Rankine cycle is not sufficient to accurately simulate 

OTEC plant operation. Heat exchanger performance is integrally related to OTEC plant 

performance; it affects parasitic power losses, optimum water flow rates, and optimum operating 

temperatures. 

 As part of its OTEC development program, Makai Ocean Engineering has acquired heat 

performance curves for a brazed-fin OTEC evaporator and a twisted tube shell-and-tube OTEC 

condenser. The curves include relations for overall heat transfer coefficient, working fluid head 
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loss, and seawater head loss. The curves parameterize performance based on seawater and 

working fluid velocities. 

 For this analysis, artificial heat exchanger performance curves were created. The curves 

were designed such that their shapes and magnitudes approximated those from real heat 

exchangers tested by Makai Ocean Engineering. The performance parameterizations are: 
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(27) 

 

 

 The units of Gs and Ga are 
  

   
. Equation (27) is applied only to the evaporator; the 

condenser is assumed to be a gravity-flow unit with negligible head loss. 
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5. OPTIMIZATION ALGORITHMS 
 

The ultimate goal of MOTEM is to allow rapid optimization of varying OTEC plant 

configurations in order to minimize capital cost. 

5.1. MOTEM’s Optimization Algorithm 

MOTEM uses a variation on the path of steepest descent optimization scheme. The path 

of steepest descent involves a sensitivity analysis in which the optimized variable is perturbed 

above and below its initial value. The direction that results in the largest decrease in the objective 

parameter is selected as the new value for the optimized variable. The process is repeated until 

all perturbations result in an increase in the objective parameter. Such an optimization scheme is 

considered crude and can be inefficient, but is easy to implement (Press, Flannery, Teukolsky & 

Vetterling, 1997). MOTEM makes use of a multi-dimensional form of the path of steepest 

descent. Seawater flow rates and heat exchanger operating temperatures are simultaneously 

varied, and the combination of parameters that results in the smallest optimization parameter 

value (i.e. – minimum heat transfer area) is selected as the new set of values. 

The primary difficulty with the path of steepest descent is that the steepest path at any 

given point in the solution space may not point towards the minimum value. The steepest path 

will generally only point towards the minimum value if the principal optimization direction is 

parallel to one of the available optimization directions (i.e. – the path to the minimum value 

involves changes in only one of the available optimization parameters). In the worst case 

scenario, where the steepest path points as far away from the actual minimum value as possible, 

the method of steepest descent degenerates to a series of perpendicular optimization steps in 
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which each step is equally oblique to the path that points toward so the minimum value (Press et 

al., 1997). The result is that the method of steepest descent is sensitive to the initial values of the 

optimization parameters, and can require extensive computation resources if the principal 

directions are far from the available optimization directions. MOTEM deals with this fact by 

limiting the number of varying parameters in any given optimization step (see section 5.2). 

A superior method of optimization would be the Fletcher-Reeves conjugate gradient 

algorithm. Conjugate gradient algorithms are analogous to the method of steepest descent, but 

focus on conjugate directions rather than the direction with maximum gradient. A conjugate 

direction is an optimization path that does not counteract the effects of the path from the previous 

iteration. In the worst case scenario of the method of steepest descent, each iteration step 

operates against the gradient of the previous step to some degree – it reverses some of the 

optimization already completed. Optimization along a path conjugate to the previous path would 

ensure that the gradient along the previous optimization path stays at zero, which maintains the 

previous optimization gains (Press et al., 1997). In essence, the Fletcher-Reeves method favors 

conjugate optimization directions over the path of steepest descent, and tends to converge in 

fewer iteration steps. 

5.2. Robustness of the Optimization Scheme 

A significant challenge in the field of optimization algorithm design is distinguishing 

between local and global minima. A global minimum is the point on an optimization surface 

where the objective variable is at its minimum value over the entire domain. A local minimum is 

a point at which the objective variable is at a minimum value relative to a nearby locus of points, 
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but not relative to the entire domain (Press et al., 1997). A robust optimization scheme must be 

able to recognize local minima and continue iterating until the global minimum is found. 

The surface over which MOTEM optimizes does not have any local minima. Figure 9, 

Figure 10, Figure 12, and Figure 13 show that the derivative of the linear optimization curve for 

each optimization variable is monotonically increasing. A function with a monotonic derivative 

has no local extrema – only a global extrema. Additionally, a linear combination of orthogonal 

functions with monotonic derivatives has no local extrema. Therefore, it is not expected that the 

overall four-dimensional surface, which is comprised of component functions with monotonic 

derivatives, will have local minima. This expectation was tested early in MOTEM’s development 

by creating a global optimization map over a wide range of seawater flow rates and heat 

exchanger operating temperatures. The test confirmed that local minima do not exist. 

5.3. Solution Space Reduction 

Two separate optimization categories are considered: heat exchanger operating 

temperature and seawater flow rate. Heat exchanger operating temperature refers to the 

saturation temperature of the working fluid at the evaporator outlet and the condenser inlet. 

These temperatures control the mean temperature difference across the heat exchanger (and 

therefore total heat transfer rate) as well as the thermal efficiency of the Rankine cycle (and 

therefore net power output). There are a total of four optimization parameters: evaporator outlet 

temperature, condenser inlet temperature, warm seawater flow rate, and cold seawater flow rate. 

Calculation of every possible combination of optimization parameters results in a number 

of computations scaling as n
4
, where n is the number of allowable values for each parameter. 
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Addition of further optimization parameters will increase the exponent. MOTEM is intended to 

operate over a large space of potential temperatures and water flows, and exponential growth of 

the solution space requires more computational speed than is conveniently available. Therefore, 

MOTEM was designed to optimize pairs of operating conditions. Each pair is optimized 

together, resulting in a solution set of n
2
 for each pair. The total number of computations 

therefore scales at n
2
 + n

2
, and addition of further optimization parameters will result in 

polynomial growth of the solution space. It is recognized that splitting the optimization 

parameters into pairs is suboptimum, as some of the overlooked combinations could represent 

superior configurations, but the compromise was deemed worthwhile in light of the improved 

optimization resolution that is permitted. 

5.4. Optimization of Operating Temperature 

Figure 3 shows a sample optimization curve for the evaporator operating temperature. 

Although MOTEM optimizes both evaporator and condenser operating temperatures 

simultaneously, only a single parameter is shown for clarity. 
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Figure 3: Optimization Curve for Evaporator Operating Temperature 

 

Any deviation from the MOTEM-predicted optimum temperature results in an increase in 

the total heat transfer area required to produce 100 MW of electricity. The curve is steeper as 

operating temperature increases. This trend is mirrored on condenser operating temperature 

optimization curves; total heat transfer area required increases more steeply as condenser 

operating temperature falls. In both cases, the increased sensitivity is found when the operating 

temperature approaches the corresponding seawater temperature. As operating temperature and 

seawater temperature converge, each incremental increase in operating temperature makes up a 

larger percentage of the remaining temperature difference with the seawater. Therefore, 

temperature difference falls proportionally faster as the operating temperature moves towards the 

seawater temperature. A faster change in temperature difference results in a faster change in heat 

transfer area requirements. 

 Normalized optimization curves are useful in comparing the effects of changes in 

evaporator operating temperature to those in condenser operating temperature. Additionally, 
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normalized curves divorce the analysis from the specific plant size modeled. Figure 4 is the 

normalized optimization curve produced from Figure 3. All subsequent operating temperature 

optimization curves in this paper will be normalized. 

 

 

Figure 4: Normalized Optimization Curve for Evaporator Operating Temperature 

 

 The temperature variation is referred to a baseline value – the optimum temperature 

predicted by MOTEM. Similarly, the heat transfer area is referred to the minimum value found at 

the MOTEM-predicted optimum. 

5.5. Optimization of Water Flow  

Figure 5 shows a sample optimization curve for the cold water flow rate. 
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Figure 5: Optimization Curve for Cold Water Flow Rate 

 

Any deviation from the MOTEM-predicted optimum flow rate results in an increase in 

the total heat transfer area required to produce 100 MW of electricity. Normalized optimization 

curves are useful in comparing the effects of changes in cold water flow rate to those in warm 

water flow rate. Figure 6 is the normalized optimization curve produced from Figure 5. All 

subsequent flow rate optimization curves in this paper will be normalized. 
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Figure 6: Normalized Optimization Curve for Cold Seawater Flow Rate 

 

 The flow rate variation is referred to a baseline value – the optimum flow predicted by 

MOTEM. Similarly, the heat transfer area is referred to the minimum value found at the 

MOTEM-predicted optimum. The scale of all optimization curves is left constant throughout the 

paper in order to facilitate comparison of the relative importance of each optimization parameter. 
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6. OPTIMIZATION RESULTS 
 

Investigation of the optimization curves produced by MOTEM can reveal the relative 

importance of the four optimization parameters. Although the optimization is carried out in pairs, 

the performance curves are presented for individual parameters for the sake of clarity. 

6.1. Temperature Optimization 

Figure 7 and Figure 8 show the optimization curves for evaporator and condenser 

operating temperatures. 

 

 

Figure 7: Normalized Optimization Curve for Evaporator Operating Temperature 
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Figure 8: Normalized Optimization Curve for Condenser Operating Temperature 

 

The heat transfer area variation in Figure 7 is greater than that in Figure 8, thus 

evaporator operating temperature is more important than condenser operating temperature for the 

same variation. A technical description of the optimum OTEC plant configuration is shown in 

Table 7 (in Section 7.1). The table shows that the LMTD in the optimum configuration is 2.7
o
 C 

for the evaporator and 3.6
o
 C for the condenser. The smaller LMTD for the evaporator means that 

any incremental change in evaporator operating temperature constitutes a proportionally larger 

portion of the remaining temperature difference than does an incremental change in condenser 

operating temperature. The condenser LMTD is larger than that of the evaporator because cold 

water must be drawn up a pipe, while warm water is readily available. See the Section 7.1.2 for 

details. 

 Figure 9 and Figure 10 show the effect of seawater flow rate reoptimization on the 

operating temperature optimization curves. To produce the curves, MOTEM was allowed to 

reoptimize the seawater flow rates (i.e. – find the warm and cold seawater flow rates that 
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minimize the heat transfer area requirement) for each evaporator or condenser operating 

temperature included in the figure. 

 

 

Figure 9: Normalized Optimization Curve for Evaporator Operating Temperature with 

Reoptimized Seawater Flow 
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Figure 10: Normalized Optimization Curve for Condenser Operating Temperature with 

Reoptimized Seawater Flow 

 

The presence of a second set of optimization parameters changes the optimization curves 

of the first set of parameters. Allowing MOTEM to reoptimize the warm and cold seawater flow 

rates reduces the maximum heat transfer area variation due to evaporator temperature variation 

from 47% to 10%, and that due to condenser temperature variation from 31% to 7%. 

Figure 11 shows an optimization curve created by symmetrically varying both evaporator 

and condenser operating temperatures. Positive variation is defined as the operating temperatures 

moving apart (i.e. – positive change in evaporator operating temperature and negative in 

condenser operating pressure). 
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Figure 11: Normalized Optimization Curve for Simultaneous Variation of Evaporator and 

Condenser Operating Temperature with Reoptimized Seawater Flow 

 

When both evaporator and condenser operating temperatures are varied symmetrically, 

the total variation in heat transfer area is smaller than that when only one temperature is varied. 

Furthermore, reoptimization of water flow rates has only a minimal effect. See Section 6.3 for a 

discussion on the implications of the conditional insensitivity of heat transfer area to water flow 

optimization. 

6.2. Water Flow Optimization 

Figure 12  and Figure 13 show the optimization curves for seawater, both with and 

without reoptimized operating temperatures. 
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Figure 12: Normalized Optimization Curve for Warm Seawater Flow Rate with Reoptimized 

Operating Temperatures 

 

 

Figure 13: Normalized Optimization Curve for Cold Seawater Flow Rate with Reoptimized 

Operating Temperatures 
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heat transfer area variation from 9% to 2% in the warm water optimization curve, and from 26% 

to 7% in the cold water optimization curve. 

6.3. Heat Transfer Coefficient Ratio 

Figure 11 shows that seawater flow rate optimization does not significantly reduce the 

total heat transfer area when the heat exchanger operating temperatures deviate symmetrically 

from optimum values (i.e. – evaporator operating temperature increases while condenser 

operating temperature decreases, and vice versa). This is in contrast to the trend seen in Figure 9, 

Figure 10, and Figure 12, where seawater flow optimization reduces heat transfer area variation 

by a factor of 4. This implies that heat exchanger operating temperature optimization and 

seawater flow rate optimization are not independent processes, and that there exists some 

relationship between them that is unchanged when heat exchanger operating temperatures are 

varied symmetrically. 

To investigate the relationship, data tables were created that showed the main OTEC 

characteristics along the entirety of the optimization curves. Table 3 shows a sample of the data 

tables created. Review of the data revealed that the ratio of evaporator to condenser heat transfer 

coefficient can be correlated with the level of seawater flow optimization. Table 4 shows the heat 

transfer coefficient ratios for the simulations considered. The simulation case names identify 

which heat exchanger operating temperature is allowed to vary, and whether seawater 

reoptimization was allowed. Symmetric variation refers to mirrored variation in both evaporator 

and condenser operating temperatures; an increase in evaporator temperature is associated with a 

decrease in condenser temperature, and vice versa. 
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Table 3: Sample of OTEC Plant Characteristic Data 

 

 

Table 4: Ratio of Evaporator Heat Transfer Coefficient to Condenser Heat Transfer Coefficient with Artificial Heat Exchangers 

 

-1.5 -1.2 -0.9 -0.6 -0.3 Baseline 0.3 0.6 0.9 1.2 1.5

Gross Power Output 142.6 142.5 142.5 142.4 142.2 142.2 142.1 142.2 142.4 142.8 143.4 MW

Net Power Output 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 MW

Warm Water Flow Rate 470,000 470,000 470,000 470,000 470,000 470,000 470,000 470,000 470,000 470,000 470,000 kg/s

Cold Water Flow Rate 350,000 350,000 350,000 350,000 350,000 350,000 350,000 350,000 350,000 350,000 350,000 kg/s

Rakine Cycle Efficiency 3.1% 3.2% 3.3% 3.4% 3.5% 3.6% 3.7% 3.8% 3.9% 4.0% 4.1%

Evaporator

Operating Temperature 19.5 19.8 20.1 20.4 20.7 21.0 21.3 21.6 21.9 22.2 22.5

Heat Transfer Area 286,089 292,376 301,101 312,914 328,800 350,171 379,362 420,044 478,751 567,659 712,029 m2

U-value 5.63 5.57 5.49 5.38 5.25 5.09 4.89 4.65 4.35 4.00 3.57 kW/m2/C

Thermal Duty 5,628 5,456 5,292 5,138 4,992 4,855 4,728 4,611 4,504 4,409 4,325 MW

LMTD 3.49 3.35 3.20 3.05 2.89 2.72 2.55 2.36 2.16 1.94 1.70 C

Seawater Head Loss 27.9 26.7 25.2 23.3 21.1 18.6 15.9 12.9 10.0 7.1 4.5 kPa

Condenser

Operating Temperature 9.6 9.6 9.6 9.6 9.6 9.6 9.6 9.6 9.6 9.6 9.6

Heat Transfer Area 441,182 389,788 347,011 311,099 280,722 254,914 232,936 214,288 198,476 185,209 174,223 m2

U-value 3.910 4.160 4.410 4.660 4.900 5.147 5.380 5.610 5.830 6.040 6.230 kW/m2/C

Thermal Duty 5,446 5,274 5,111 4,956 4,811 4,675 4,548 4,431 4,324 4,228 4,144 MW

LMTD 3.16 3.25 3.34 3.42 3.49 3.56 3.63 3.68 3.74 3.78 3.82 C

Seawater Head Loss 6.5 8.3 10.5 13.1 16.1 19.5 23.3 27.6 32.2 36.9 41.7 kPa

Evaporator Temperature Variation

Simulation Case -1.5 -1.2 -0.9 -0.6 -0.3 Baseline 0.3 0.6 0.9 1.2 1.5 C

Evaporator Variation without Reoptimization 1.44 1.34 1.24 1.15 1.07 0.99 0.91 0.83 0.75 0.66 0.57

Evaporator Variation with Reoptimization 0.97 0.98 0.98 0.98 1.00 0.99 0.97 0.98 0.98 1.00 1.01

Symmetric Variation without Reoptimization 1.03 1.02 1.01 1.00 0.99 0.99 0.98 0.98 0.97 0.96 0.95

Temperature Variation
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The ratio of evaporator to condenser heat transfer coefficient is uniform for the 

reoptimized case and for the symmetric variation case, but changes significantly in the 

unoptimized case.  This implies that any configuration in which the heat transfer coefficient ratio 

matches that in the optimized configuration is fully optimized for the specific heat exchanger 

operating temperatures; no further heat transfer area reduction is possible by changing the 

seawater flow rates. The fact that the ratio is constant when no further reduction in heat transfer 

area is possible implies that it plays a role in OTEC plant optimization.  

The calculation of evaporator to condenser heat transfer ratio was repeated with real 

world heat exchangers, and cases in which the heat exchanger operating temperatures were 

manipulated to maintain constant heat transfer coefficient ratio were added. In the added cases, 

the evaporator operating temperature was varied identically with all other cases while the 

condenser operating temperature variation was selected such that the heat transfer ratio was 

approximately equal to that in the baseline case. If the heat transfer coefficient ratio is a metric 

for level of optimization, then seawater reoptimization of the constant ratio cases will not result 

in a reduction in heat transfer area requirements. Table 5 shows the heat transfer coefficient 

ratios for the cases considered with real world heat exchangers. 

The simulation case names identify which heat exchanger operating temperature is 

allowed to vary, and whether seawater reoptimization was allowed. Symmetric variation refers to 

mirrored variation in both evaporator and condenser operating temperatures; an increase in 

evaporator temperature is associated with a decrease in condenser temperature, and vice versa. 

Constant ratio refers to an evaporator variation that matches the values along the top of the table, 

and a condenser variation selected to maintain a constant ratio between the evaporator and 

condenser heat transfer coefficients. 
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Table 5: Ratio of Evaporator Heat Transfer Coefficient to Condenser Heat Transfer Coefficient with Real World Heat Exchangers 

 

 

Simulation Case -1.5 -1.2 -0.9 -0.6 -0.3 Baseline 0.3 0.6 0.9 1.2 1.5

Evaporator Only without Reoptimization 2.34 2.14 1.95 1.78 1.61 1.45 1.30 1.15 1.00 0.84 0.68

Evaporator Only with Reoptimization 1.42 1.41 1.44 1.45 1.44 1.45 1.45 1.44 1.45 1.44 1.48

Symmetric without Reoptimization 1.66 1.61 1.57 1.53 1.49 1.45 1.41 1.37 1.32 1.26 1.19

Symmetric with Reoptimization 1.45 1.44 1.43 1.44 1.45 1.45 1.44 1.44 1.44 1.47 1.48

Constant Ratio without Reoptimization 1.47 1.46 1.44 1.46 1.46 1.45 1.46 1.46 1.46 1.47 1.48

Constant Ratio with Reoptimization 1.45 1.44 1.45 1.46 1.46 1.45 1.46 1.46 1.48 1.46 1.48

Temperature Variation [C]
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All reoptimized cases maintain the same heat transfer coefficient ratio as the baseline 

design. This verifies that the correlation between heat transfer coefficient ratio and level of 

optimization is not restricted to the identical artificial heat exchangers used to produce the results 

in Table 4. However, the baseline ratio for real world heat exchangers is 1.45, while the value for 

the artificial heat exchangers is 0.99. 

To determine if heat transfer coefficient ratio is an accurate metric for level of 

optimization, the heat transfer area variation of selected cases from Table 5 were plotted in 

Figure 14. 

 

 

Figure 14: Normalized Optimization Curves for Real World Heat Exchangers 

 

 Reoptimization reduced the heat transfer area requirement of the symmetric variation 

case. Contrast the reduction with the symmetric variation case shown in Figure 11, where no 
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variation of heat exchanger operating temperatures only maintains optimum seawater flow rates 

with the artificial symmetric heat exchanger performance curves.  

Reoptimization did not reduce the heat transfer area requirement of the constant heat 

transfer coefficient case. This confirms the fact that any configuration in which the heat transfer 

coefficient ratio is equal to that in the optimized case cannot be further optimized by variation of 

seawater flow rates. 

6.4. Effects of Heat Exchanger Performance 

 To investigate the effects of heat exchanger performance on OTEC plant optimization, 

the artificial heat exchanger performance curves were modified. The first modification increased 

the overall heat transfer coefficient by 25%, and the second modification reduced the seawater 

head losses by 50%. Figure 15 shows the baseline heat exchanger performance curves, as well as 

variants with a 25% increase in overall heat transfer coefficient a 50% reduction in seawater 

head loss. 
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Figure 15: Baseline Heat Exchanger Performance 

 

Table 6 compares the major parameters of the base OTEC plant with those of plants 

optimized about the heat exchangers with modified performance. 
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Table 6: The Effects of Variation in Heat Exchanger Performance on Optimized OTEC Plant 

Design 

 

 

Both performance curve modifications represent improvements to the heat exchanger and 

should result in improved OTEC plant designs. As expected, both types of improvement reduce 

total heat exchanger area requirements – by 15% for improved heat transfer coefficient and 14% 

for improved seawater head loss. The similarity between the levels of improvement is 

coincidental. 

Despite the similarity in heat exchanger area reduction, the improvement to heat transfer 

coefficient is superior to that of seawater head loss. The improvement to heat transfer coefficient 

reduced the total seawater flow by 9%, while the improvement to head loss increased the total 

seawater flow by 6%; the former conserves more of the renewable resource than the latter. 

Baseline +25% U -50% dP

Gross Power Output 142.2 141.4 139.4 MW

Net Power Output 100.0 100.0 100.0 MW

Warm Water Flow Rate 470,000 430,000 500,000 kg/s

Cold Water Flow Rate 350,000 320,000 370,000 kg/s

Rakine Cycle Efficiency 3.6% 3.7% 3.6%

Evaporator

Operating Temperature 21.0 21.0 21.0

Heat Transfer Area 350,171 300,900 303,715 m2

U-value 5.09 6.56 5.64 kW/m2/C

Thermal Duty 4,855 4,748 4,720 MW

LMTD 2.72 2.40 2.76 C

Seawater Head Loss 18.6 21.1 14.0 kPa

Condenser

Operating Temperature 9.6 9.4 9.5

Heat Transfer Area 254,914 214,121 217,919 m2

U-value 5.147 6.712 5.723 kW/m2/C

Thermal Duty 4,675 4,568 4,543 MW

LMTD 3.56 3.18 3.64 C

Seawater Head Loss 19.5 23.1 14.9 kPa
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The total increase in overall heat transfer coefficient due to a 25% increase in the 

performance curve magnitude is 29% for the evaporator and 30% for the condenser. The increase 

is greater than 25% due to the magnification effect discussed in Sections 3.1 and 3.2. The total 

reduction in seawater head loss due to a 50% reduction in the performance curve magnitude is 

25% for the evaporator and 24% for the condenser due to the same magnification effect. 
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7. OTEC PLANT DESIGN 
 

MOTEM was used to generate an OTEC plant configuration based on the principle of 

minimization of heat exchanger area. The model includes the effects of heat exchanger operating 

temperature (i.e. – degree of irreversibility), pumping power requirements for seawater flow, and 

variation in heat exchanger performance due to variation in seawater mass velocity. 

7.1. Modeled Design 

Table 7 outlines the optimum configuration as calculated by MOTEM 

 

Table 7: MOTEM-Optimized OTEC Design 

 

 

 

Gross Power Output 142.2 MW

Net Power Output 100.0 MW

Warm Water Flow Rate 470,000 kg/s

Cold Water Flow Rate 350,000 kg/s

Rakine Cycle Efficiency 3.6%

Evaporator

Operating Temperature 21

Heat Transfer Area 350,171 m2

U-value 5.09 kW/m2/C

Thermal Duty 4,855 MW

LMTD 2.72 C

Waterside Head Loss 18.6 kPa

Condenser

Operating Temperature 9.6

Heat Transfer Area 254,914 m2

U-value 5.15 kW/m2/C

Thermal Duty 4,675 MW

LMTD 3.56 C

Waterside Head Loss 19.5 kPa
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7.1.1. Thermal Efficiency 

 The thermal efficiency of the Rankine cycle is 3.6%. However, this value assumes 

isentropic expansion in the turbine. Real turbines are not capable of true isentropic expansion. 

Makai Ocean Engineering has approached turbine manufacturers for OTEC component 

performance, and they have indicated that OTEC turbines can be expected to have a working-

fluid-to-electricity efficiency of 81%. This reduces the practical efficiency of the Rankine cycle 

to 2.9%. Additionally, 42.2 MW of power is required to operate the plant, so only 100 MW of 

power is available for export. Accounting for the parasitic power results in an overall plant 

efficiency of 2%. 

7.1.2. Ratio of Warm Water Flow to Cold Water Flow 

 The warm water flow rate is higher than the cold water flow rate, despite the fact that 

both evaporators and condensers have identical performance characteristics. The difference 

exists because of the practical effects of the cold water pipe. The OTEC heat sink and heat 

source are not equally available; cold water must be drawn up a pipe, while warm water is 

readily accessible. The cold water flow through a pipe reaching 1,000 m water depth is 

associated with a non-trivial head loss. The head loss associated with drawing warm seawater 

from the surface of the ocean is comparatively small. For any given flow rate, the higher head 

loss in the cold water flow path requires more pumping power than does the lower head loss in 

the warm water flow path.  
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Since all the power to run an OTEC plant must be generated by the plant itself, including 

the power required for seawater pumping, cold seawater “costs” more than does warm seawater. 

Previous work has shown that the benefits of reducing cold water flow with respect to warm 

water flow outweigh the penalties, and that the optimum ratio of cold water flow to warm water 

flow is expected to be 1.6:1 (Makai Ocean Engineering, 2005). The optimum warm water to cold 

water ratio is unique to any given evaporator and condenser pair. The ratio of 1.34:1 seen in 

Table 7 is likely an artifact of the artificial heat exchanger performance curves used in the 

analysis. 

7.1.3. Relative Performance of Evaporators and Condensers 

The fact that the cold water flow rate is less than the warm water flow rate affects the 

relative performance of the evaporators and condensers. In the absence of operating temperature 

optimization, the reduced cold water flow rate would result in a reduced condenser heat transfer 

coefficient. The reduced heat transfer coefficient would necessitate large condensers to 

accommodate the required thermal duty. To compensate for this effect, the optimization process 

increased the difference between the condenser operating temperature and the cold seawater 

temperature (5.5
o
 C) compared to that between the evaporator operating temperature and the 

warm seawater temperature (4.7
o
 C). This increases the LMTD of the condenser and allows for a 

reduction in condenser heat transfer area. It also reduces the thermal efficiency of the plant, 

which requires additional heat transfer area and slightly counteracts the gains from increased 

condenser LMTD. 
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The overall effect of the optimization process is that evaporator performance and 

condenser performance are similar. The reduced cold water flow rate is compensated by 

increased LMTD and reduced area. See Section 6.1 for a discussion on the effects of increased 

condenser LMTD. 

7.2. Comparison to Isothermal Heat Reservoirs with a Carnot Engine 

 Wu’s method is not well suited to overall OTEC optimization since the heat transfer 

coefficient and heat transfer areas of the heat exchangers must be known a priori. Therefore, the 

values computed with MOTEM were used to calculate the predicted optimum operating 

temperatures. However, MOTEM is based on a Rankine cycle and does not assume isothermal 

heat reservoirs. As a result, the operating temperatures predicted by equations (5) and (6) do not 

produce a viable system in conjunction with the MOTEM-selected seawater flow rates; the 

calculated condenser duty is insufficient to maintain the specified condenser temperature. 

 To compensate for the problem, the MOTEM seawater flow rates were adjusted such that 

the OTEC system was viable. The seawater flows were then reoptimized to ensure the best 

possible values were selected. The reoptimization resulted in a change in the heat transfer 

coefficients and heat transfer areas of the evaporator and condenser. The new values were used 

to compute new predicted optimum operating temperatures. Multiple iterations between 

MOTEM and equations (5) through (7) were carried out. 
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7.2.1. Comparison with Artificial Heat Exchanger Performance Curves 

With a warm water surface temperature of 25.7
o
 C and a cold deep temperature of 4.1

o
 C, 

equations (5) and (6) predict that the optimum evaporator operating temperature is 20.6
o
 C and 

the optimum condenser operating temperature is 9.8
o
 C. Predicted efficiency is 3.68%.  

 The relative efficiency of the predicted optimum operating temperatures was evaluated 

by entering them into MOTEM and comparing the results with the MOTEM-optimized system. 

MOTEM predicts that a system designed to operate at 20.6
o
 C and 9.8

o
 C will produce 99 MW of 

electrical power, a 1% reduction from the MOTEM-optimized case. The thermal efficiency of 

the power cycle is 3.42%, 7% lower than predicted by equation (8). 

7.2.2. Comparison with Real World Heat Exchanger Curves 

 As an additional test, Wu’s predicted operating temperatures were fed into a version of 

MOTEM using real-world heat exchanger performance data provided by Makai Ocean 

Engineering. The performance details are proprietary, but the shape and magnitude of the 

performance curves generally agree with those from equations (25) through (27). The condenser 

heat transfer coefficient curve is similar to the evaporator heat transfer coefficient curve, but the 

seawater head loss curve is 4-5 times higher. 

With a warm water surface temperature of 25.7
o
 C and a cold deep temperature of 4.1

o
 C, 

equations (5) and (6) predict that the optimum evaporator operating temperature is still 20.6
o
 C 

and the optimum condenser operating temperature is still 9.8
o
 C. Predicted efficiency remains 

unchanged at 3.68%. MOTEM predicts that a system designed to operate at 20.6
o
 C and 9.8

o
 C 
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will produce 97 MW of electrical power using real world heat exchangers, which represents a 

3% reduction from the MOTEM-optimized case. The thermal efficiency of the power cycle is 

3.42%, 7% lower than predicted by equation (8). 

7.3. Comparison to Heat Reservoirs with Varying Properties and a Rankine Engine 

 Khaliq’s optimization algorithm is not dependent on heat exchanger area or heat transfer 

coefficient, only the seawater temperatures. Thus, no iteration process was required to evaluate 

the relative efficiency of an OTEC plant designed according to equations (9) and (10). 

7.3.1. Comparison with Artificial Heat Exchanger Performance Curves 

With a warm water surface temperature of 25.7
o
 C and a cold deep temperature of 4.1

o
 C, 

equations (9) and (10) predict an optimum evaporator operating temperature of 20.2
o
 C and an 

optimum condenser operating temperature of 9.4
o
 C. Predicted efficiency is 3.68%. 

 The relative efficiency of the predicted optimum operating temperatures was evaluated 

by entering them into MOTEM and comparing the results with the MOTEM-optimized system. 

MOTEM predicts that a system designed to operate at 20.2
o
 C and 9.4

o
 C will produce 97 MW of 

electrical power, a 3% reduction from the MOTEM-optimized case. The thermal efficiency of 

the power cycle is 3.42%, 7% lower than predicted by equation (8). 
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7.3.2. Comparison with Real World Heat Exchanger Curves 

Since heat exchanger performance does not influence Khaliq’s algorithm, the predicted 

optimum evaporator operating temperature remains at 20.2
o
 C and the optimum predicted 

condenser operating temperature remains at 9.4
o
 C. Predicted efficiency is still 3.68%. 

 The relative efficiency of the predicted optimum operating temperatures was evaluated 

by entering them into MOTEM, with real world heat exchanger performance data, and 

comparing the results with the MOTEM-optimized system. MOTEM predicts that a system 

designed to operate at 20.2
o
 C and 9.4

o
 C will produce 93 MW of electrical power, a 7% 

reduction from the MOTEM-optimized case. The thermal efficiency of the power cycle is 3.43%, 

7% lower than predicted by equation (8). 

7.4. Summary of Comparison Results 

Table 8 and Table 9 compare the optimum heat exchanger operating temperatures 

predicted by Wu and Khaliq with those predicted by MOTEM. 
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Table 8: Optimum Heat Exchanger Operating Temperatures with Artificial Heat Exchangers 

 

 

The amount of net power predicted by MOTEM is the maximum amount of power 

possible with the available heat transfer area. Both Wu’s method and Khaliq’s method produce 

less power when using the artificial heat exchanger performance curves, though Wu’s method is 

in better agreement with MOTEM than is Khaliq’s method. Both published methods apportion 

more temperature difference to heat transfer than MOTEM. MOTEM and Wu’s method reserve 

significantly more temperature difference for condensation than for evaporation. 

 

Table 9: Optimum Heat Exchanger Operating Temperatures with Real World Heat Exchangers 

 

MOTEM Wu Khaliq

Net Power Output 100 99 97 MW

Thermodynamic Cycle Efficiency 3.61% 3.42% 3.42%

Heat Transfer Coefficient Ratio 0.99 0.95 0.85

Evaporator Operating Temperature 21.0 20.6 20.2 C

Condenser Operating Temperature 9.6 9.8 9.4 C

Total Temperature Difference Available 21.6 21.6 21.6 C

Difference Available for Rankine Cycle 11.4 10.8 10.8 C

Difference Available for Heat Transfer 10.2 10.8 10.8 C

Difference Reserved for Evaporation 4.7 5.1 5.5 C

Difference Reserved for Condensation 5.5 5.7 5.3 C

MOTEM Wu Khaliq

Net Power Output 100 97 93 MW

Thermodynamic Cycle Efficiency 3.52% 3.42% 3.43%

Heat Transfer Coefficient Ratio 1.45 1.27 1.14

Evaporator Operating Temperature 21.2 20.6 20.2 C

Condenser Operating Temperature 10.1 9.8 9.4 C

Total Temperature Difference Available 21.6 21.6 21.6 C

Difference Available for Rankine Cycle 11.1 10.8 10.8 C

Difference Available for Heat Transfer 10.5 10.8 10.8 C

Difference Reserved for Evaporation 4.5 5.1 5.5 C

Difference Reserved for Condensation 6.0 5.7 5.3 C
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The predicted optimum conditions calculated by Wu’s method and Khaliq’s method are 

unchanged due the switch to real world heat exchanger performance. MOTEM’s results reserve 

more temperature difference for heat transfer and devote proportionally more temperature 

difference to condensation compared to the results with the artificial heat exchanger performance 

curves. Both Wu’s method and Khaliq’s method produce less power with real world heat 

exchangers than they did with the artificial heat exchanger performance curves. 
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8. DISCUSSION 

8.1. Temperature Optimization 

Initial investigation of temperature optimization suggests it is critical to successful OTEC 

plant design. Figure 7 and Figure 8 show that heat transfer area requirements can increase up to 

45% when the operating temperature deviate from the optimum by 1.5
o
 C.  The importance of 

temperature optimization is tied to the LMTD between the working fluid and seawater under 

optimum conditions. Heat transfer area is more sensitive to changes in evaporator operating 

temperature because the evaporator LMTD is lower than that of the condenser. Similarly, a 

deviation from the optimum value that decreases LMTD is more detrimental than a deviation that 

increases LMTD. 

8.2. Water Flow Optimization 

Total heat transfer area is slightly more sensitive to cold water optimization than to warm 

water optimization, particularly when the flow rate is decreased. Figure 12 and Figure 13  show 

that a 20% increase in flow relative to the optimum value causes a 6% increase in heat transfer 

area for warm water and an 8% increase for cold water. If flow rates are decreased, the heat 

transfer area deviation grows to 9% for warm water and 15% for cold water. The reason for the 

asymmetry is two-fold.  

Firstly, decreasing the flow rate will increase the seawater temperature change through 

the heat exchanger and decrease LMTD. A decrease in LMTD is more detrimental than an 

increase in LMTD. For any given magnitude of deviation, a decrease represents a proportionally 
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larger amount than does an increase. Therefore, optimization curves are asymmetrical in that 

increasing seawater flow rate causes less of an impact than decreasing seawater flow rate. 

Secondly, the magnification effects discussed in Sections 3.1 and 3.2 favor increases in 

seawater flow rate. When the flow rate is increased, the head loss and parasitic pumping power 

requirements increase, but so does heat transfer coefficient. The increased heat transfer 

coefficient helps to counteract the increase in area required to compensate for the added parasitic 

power. Conversely, a decrease in flow rate reduces pumping power requirements, but also 

reduces heat transfer coefficient. The reduced heat transfer coefficient counteracts the area 

reduction permitted by the reduced pumping power. 

The effects of heat transfer coefficient reduction and pumping power reduction are 

competing. The shapes of Figure 12 and Figure 13 indicate that the heat transfer coefficient 

effect is dominant. This conclusion may be tied to the specific heat exchanger performance 

curves used. If heat transfer coefficient is insensitive to seawater flow, but head loss is very 

sensitive, then asymmetry in the figures will likely be reversed, and increases in seawater flow 

rate will be more detrimental than decreases. 

8.3. Combined Optimization 

The ability to optimize both operating temperatures and seawater flow rates significantly 

mitigates the effects of sub-optimum selection of a single design parameter. Figure 9 and Figure 

10 show that optimization of seawater flow rate reduces the penalty for suboptimum heat 

exchanger operating condition selection by a factor of 4. A similar effect is seen in Figure 12 and 
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Figure 13; optimization of operating temperatures reduces the penalty for suboptimum water 

flows by a factor of 4.  

In Figure 11, both evaporator and condenser operating temperatures are varied. The 

variation is symmetric, such that a positive variation is defined as an increase in evaporator 

operating temperature and a decrease in condenser operating temperature. The results contradict 

the pattern discussed above in that seawater flow optimization has a negligible effect on the 

penalties associated with suboptimum heat exchanger operating temperature selection. This 

suggests that sets of heat exchanger operating temperatures exist for which the optimum 

seawater flow rates are identical. Furthermore, it suggests that there is a relationship governing 

the set that includes the optimum configuration. Review of the ratio of evaporator heat transfer 

coefficient to condenser heat transfer coefficient along an optimization curve revealed that all 

configurations in which optimum seawater flows are selected share a common ratio. Section 8.6 

explores the implications behind the common heat transfer coefficient ratio. 

8.4. Heat Exchanger Performance 

A 25% increase in the artificial heat transfer coefficient curve results in a 29%-30% 

increase in heat transfer coefficient in the optimum configuration. The effective increase is larger 

than the performance curve scale factor due to the magnification effect discussed in Section 3.1. 

The magnification effect is counteracted by the seawater flow rate optimization process. As the 

overall heat transfer coefficient increases and heat transfer area decreases, seawater pressure 

drop increases. An increase in seawater pressure drop reduces the penalty of reducing seawater 

flow at the expense of heat transfer coefficient, and the optimum seawater flow rate shifts 
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downwards. Table 6 illustrates this effect in that the optimum seawater flow when heat transfer 

coefficient is increased is 9% lower than in the baseline design. 

A 50% decrease in the artificial seawater pressure drop curve results in a 24%-25% 

decrease in the seawater pressure drop in the optimum configuration. A magnification effect is 

also responsible for the mitigation of the change in pressure drop. As seawater pressure drop 

decreases, the parasitic power requirement of the plant decreases, and therefore gross power 

decreases. The decrease in gross power means that less thermal duty is required. The reduction in 

thermal duty allows for a reduction in heat transfer area. The reduction in heat transfer area 

increases the seawater mass velocity, which increases the seawater pressure drop. The increase in 

seawater pressure drop counteracts the 50% reduction applied to the performance curve. The 

magnification effect is exacerbated by the seawater optimization process. A reduction in 

seawater pressure reduces the penalty associated with increasing seawater flow rate to enhance 

heat transfer coefficient, so the optimum seawater flow rates will shift upwards. Table 6 

illustrates this effect in that the optimum seawater flow when seawater pressure drop is reduced 

is 6% higher than in the baseline design. 

8.5. Comparison between MOTEM Results and Results in the Literature 

The total temperature difference available between warm and cold seawater is 21.6
o
 C. 

Of that, MOTEM predicts that 11.4
o
 C should be devoted to power generation and 10.2

o
 C 

should be devoted to driving heat transfer when artificial heat exchanger performance curves are 

used. When using real world heat exchangers, MOTEM predicts that 11.1
o
 C should be devoted 

to power generation and 10.5
o
 C to heat transfer. Both Wu’s and Khaliq’s methods predict that 
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10.8
o
 C should be reserved for power generation regardless of the selected heat exchanger 

performance curves. A discrepancy exists among the three methods when considering how the 

temperature differential reserved for heat transfer should be apportioned. 

 When considering artificial heat exchangers, all three methods are in general agreement. 

MOTEM and Wu’s method both recommend more temperature difference for the condenser than 

for the evaporator. As discussed in Section 7.1.3, an optimum OTEC plant is expected to use 

more cold seawater than warm seawater. Reserving more temperature difference for the 

condenser than the evaporator compensates for the relative reduction in cold water flow and 

keeps condenser heat transfer area low. The influence of cold seawater flow rate was introduced 

to Wu’s during the iterative calculations with MOTEM. Khaliq’s method did not require 

iteration, and reserves a similar amount of temperature difference for both evaporators and 

condensers. 

 When considering real world heat exchangers, MOTEM is not in agreement with 

predictions from Wu and Khaliq. Neither Wu’s nor Khaliq’s recommended operating 

temperatures change, but MOTEM’s recommendation changes significantly. The seawater head 

loss curve for the real world condenser is 4-5 times higher than that for the evaporator. This 

drives the optimization in favor of low condenser mass velocity, and therefore low overall heat 

transfer coefficient.  MOTEM recommends reserving additional temperature difference for the 

condenser, even at the expense of temperature difference available to the Rankine cycle. 

Despite differences in predicted optimum heat exchanger operating temperatures, 

MOTEM and Wu’s method produce comparably optimized OTEC plants. If Wu’s predicted 

temperatures are used to design an OTEC plant using the artificial heat exchanger performance 

curves, the net power output is 99% of the maximum possible plant output. If real world heat 
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exchanger performance curves are used, the net power output of that a plant designed with Wu’s 

method would be 97% of the maximum possible plant output. In spite of the fact that it uses a 

Rankine cycle and relaxes the assumption that the OTEC heat source and sink are isothermal, 

Khaliq’s method does not perform as well. A design using recommended operating temperatures 

calculated from equations (9) and (10) would produce 3% less than a fully optimized plant if 

artificial heat exchanger performance curves are used, and 7% less if real world heat exchangers 

are used. 

The deficiency in Khaliq’s algorithm likely lies with the implicit assumption that heat 

transfer coefficient is insensitive to changes in seawater mass velocity through the heat 

exchanger (see Section 2.2.1). This paper has shown that OTEC optimization is sensitive to heat 

exchanger performance, and Khaliq’s algorithm excludes heat exchanger performance effects 

from the calculations by allowing seawater flow rate to vary independently of heat transfer 

coefficient. Wu’s method provides a better estimate of optimum heat exchanger operating 

temperatures because a set of heat exchanger performance curves can be used to adapt it to 

compensate for the fixed seawater flow rate (as discussed in Section 7.2). 

8.6. Heat Transfer Coefficient Ratio 

Table 4 and Table 5 show there is a correlation between the potential for heat transfer 

area reduction via further optimization and the ratio between evaporator overall heat transfer 

coefficient and condenser overall heat transfer coefficient. If any particular pair of evaporator 

and condenser operating temperatures has the same heat transfer coefficient ratio as is found in 

the optimized configuration, no further optimization via variation in seawater flow rate is 
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possible. The best possible configuration has been achieved for that particular operating 

temperature pair. Table 8 and Table 9 reinforce the correlation between heat transfer coefficient 

and OTEC plant optimization. Wu’s method, which produces more net power and is therefore 

closer to an optimum design, results in a heat transfer coefficient ratio closer to that calculated by 

MOTEM than does Khaliq’s method.  

The fact that the artificial heat exchangers and real world heat exchangers have different 

optimum heat transfer coefficient ratios indicates that the ratio is a function of heat exchanger 

performance curves. The fact that the optimum heat transfer coefficient ratio for the artificial 

heat exchangers is 1 suggests that it is related to the ratio of the performance of the evaporator 

and the condenser. Therefore, the optimum ratio will be specific to each combination of 

evaporator and condenser, and is therefore a characteristic feature of the heat exchanger pair. 

Further research into the relationship between heat transfer coefficient ratio and heat exchanger 

performance is recommended. 

8.6.1. Direct Calculation of Heat Transfer Coefficient Ratio 

If a correlation can be drawn between heat exchanger performance curves and the 

optimum heat transfer coefficient ratio, then OTEC optimization will become easier. Ideally, the 

relationship could be combined with existing published finite-time thermodynamic OTEC 

optimization algorithms to compute optimum operating conditions without the need for the 

simulation capabilities in MOTEM. This would allow the suitability of competing heat 

exchanger concepts to be evaluated quickly, and would speed up development of OTEC-specific 

designs.  
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Since real world heat exchangers exhibit a range of functional forms in their performance 

correlations, a numerical solution will likely be required for practical applications. Further 

research into the relationship between optimum heat transfer coefficient ratio and heat exchanger 

performance curves is recommended.  

8.6.2. Improvements to MOTEM 

Even if no direct correlation between heat transfer coefficient ratio and heat exchanger 

performance can be determined, MOTEM could be improved to take advantage of the results of 

this research. In the current algorithm, MOTEM separately searches the entire solution spaces for 

both heat exchanger operating temperature and seawater flow rate. It alternates between the two 

parameter pairs until a stable configuration is reached. However, optimization of either pair of 

parameters will provide the correct heat transfer coefficient ratio for the fully optimized plant. 

Once the optimum ratio is known, the solution space on subsequent iterations can be reduced to 

those values that share the same ratio. 

The reduction in solution space, if large enough, could eliminate the need for alternation 

between operating temperature and seawater flow rate optimization. If the relationship between 

seawater flow rate and heat transfer coefficient were pre-calculated, then a set of allowable warm 

and cold seawater flow rate pairs could be determined for any given pair of operating conditions. 

The allowable pairs represent a linear space rather than the original quadratic space. The size of 

the total solution space would be reduced by a factor of n, where n is the number of allowable 

values; it would be reduced from n
4
 to n

3
. Such a reduction could avoid the need to split the 

solution space into two segments and improve the accuracy of the optimization process.  
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9. CONCLUSIONS 
 

The optimum heat exchanger operating temperatures and seawater flow rates predicted 

by MOTEM vary when the heat exchanger performance curves are altered. Therefore, OTEC 

optimization is sensitive to heat exchanger performance. Deviation from the optimum parameters 

results in a reduction in net power output for any given configuration. Previously published 

finite-time thermodynamic optimization algorithms do not include the effects of heat exchanger 

performance curves. As a result, they make sub-optimum recommendations of heat exchanger 

operating temperatures and no recommendations regarding seawater flow rate. Of the published 

optimization algorithms tested, Wu’s method performed the best with a maximum deviation of 

3% from optimum power output when real world heat exchanger data is used. Wu’s method also 

performs best, with a 1% deviation from optimum power output, when evaporator and condenser 

performance is identical. It can be concluded that the magnitude of the deviation between the 

optimum configuration and the configuration recommended by finite-time thermodynamic 

optimization is related to the difference between evaporator and condenser performance. 

Warm seawater from the surface of the ocean and cold deep seawater from 1,000 m water 

depth have different costs associated with them. Cold seawater must be pumped up a long pipe, 

whereas warm seawater is readily available, which results in a higher proportion of the parasitic 

power being devoted to cold water pumping than warm water pumping. The fact that the OTEC 

plant must produce extra power to pump the cold seawater causes MOTEM to predict a higher 

warm water flow rate than cold water flow rate at optimum conditions. Finite-time 

thermodynamic optimization algorithms do not include the effects of seawater pumping, and 

therefore do not include the effects of asymmetric seawater flow rates.  
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The ratio of evaporator and condenser overall heat transfer coefficients is a good metric 

for the relative optimization of a particular OTEC configuration. Any configuration in which the 

seawater flow rate is ideal for the selected heat exchanger operating temperatures shares the 

same heat transfer coefficient ratio with the overall optimum configuration. Unfortunately, no 

method currently exists to determine the optimum value a priori. Therefore, the heat transfer 

coefficient ratio is currently only effective at evaluating sub-optimum configurations relative to a 

known optimum configuration. If a solution for the ideal heat transfer coefficient were found, it 

would allow rapid relative evaluation of evaporator condenser pairs and could speed up the 

optimization algorithm in MOTEM. 

  



75 

 

10.  FUTURE WORK 

10.1. Model Validation 

The conclusions presented in this paper are dependent on the accuracy of MOTEM. 

While the fact that MOTEM is programmed as a simulator means that verification with basic test 

cases has already been carried out, no validation against a real OTEC system has been possible 

because no suitable system currently exists. Once an OTEC test system is constructed, 

MOTEM’s alternate mode can be used for validation. In alternate mode, the heat exchanger area 

is fixed and MOTEM predicts the amount of power that will be produced. If the power output of 

a test facility and that predicted by MOTEM match, then overall calculations of the model will 

have been validated. Full validation will require that the test facility be fully instrumented so 

each of MOTEM’s calculation steps can be checked. 

10.2. Investigation of Heat Transfer Coefficient Ratio 

The ratio of evaporator and condenser overall heat transfer coefficients has been found to 

be characteristic of the level of optimization of an OTEC plant. The ratio is constant over a wide 

range of heat exchanger operating temperatures provided that optimum seawater flow rates have 

been selected. The existence of a characteristic ratio implies that the ideal ratio should be 

calculable from the heat exchanger performance curves. Additional work is recommended to 

investigate the relationship between the shape of heat exchanger performance curves and the heat 

transfer coefficient ratio. If a relationship is discovered, then MOTEM should be improved to 

take advantage of it in order to reduce the size of the solution space and speed up optimization. 
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10.3. OTEC Cost Estimation 

Minimization of heat exchanger area is a useful approximation for minimization of 

OTEC plant capital cost, but true optimization on cost would be superior. Refinement of OTEC 

costs will be dependent upon development of a pilot plant producing at least 10 MW of net 

electrical power output. If and when such a plant is constructed, the cost details should be 

entered into MOTEM’s cost estimation module, and the analysis presented in this paper should 

be confirmed. 
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