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ABSTRACT 

Flutter is an aeroelastic instability phenomenon that can result either in serious damage or 

complete destruction of a gas turbine blade structure due to high cycle fatigue. Although 90% of 

potential high cycle fatigue occurrences are uncovered during engine development, the 

remaining 10% stand for one third of the total engine development costs. Field experience has 

shown that during the last decades as much as 46% of fighter aircrafts were not mission-capable 

in certain periods due to high cycle fatigue related mishaps.  

To assure a reliable and safe operation, potential for blade flutter must be eliminated from 

the turbomachinery stages. However, even the most computationally intensive higher order 

models of today are not able to predict flutter accurately. Moreover, there are uncertainties in the 

operational environment, and gas turbine parts degrade over time due to fouling, erosion and 

corrosion resulting in parametric uncertainties. Therefore, it is essential to design engines that are 

robust with respect to the possible uncertainties. In this thesis, the robustness of an axial 

compressor blade design is studied with respect to parametric uncertainties through the Mu 

analysis. The nominal flutter model is adopted from [9]. This model was derived by matching a 

two dimensional incompressible flow field across the flexible rotor and the rigid stator. The 

aerodynamic load on the blade is derived via the control volume analysis. For use in the Mu 

analysis, first the model originally described by a set of partial differential equations is reduced 

to ordinary differential equations by the Fourier series based collocation method.  After that, the 

nominal model is obtained by linearizing the achieved non-linear ordinary differential equations. 

The uncertainties coming from the modeling assumptions and imperfectly known parameters and 

coefficients are all modeled as parametric uncertainties through the Monte Carlo simulation. As 
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compared with other robustness analysis tools, such as Hinf, the Mu analysis is less conservative 

and can handle both structured and unstructured perturbations.  

Finally, Genetic Algorithm is used as an optimization tool to find ideal parameters that 

will ensure best performance in terms of damping out flutter. Simulation results show that the 

procedure described in this thesis can be effective in studying the flutter stability margin and can 

be used to guide the gas turbine blade design. 
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NOMENCLATURE 

tA  : Throttle parameter 
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2rL  : Coefficient of the empirical rotor loss function 

3rL  : Coefficient of the empirical rotor loss function 

1sL  : Coefficient of the empirical stator loss function 

2sL  : Coefficient of the empirical stator loss function 



 xi 

3sL  : Coefficient of the empirical stator loss function 

sL  : Stator pressure loss 

M  : Aerodynamic moment about the elastic axis 

BN  : Number of blades  

atmp  : Atmospheric pressure non-dimensionalized by 2

TUρ  

bQ  : Frequency of the pure bending mode  

tQ  : Frequency of the pure torsion mode  

 q  : Bending displacement of the blade 

t  : Non-dimensional time 

TU  : Tip speed 

v  : Non-dimensional tangential velocity, TC Uθ  

x  : Axial coordinate  

X  : States in the non-linear and linear models 

α  : Torsional displacement of the blade 

rβ  : Trailing edge metal angle of the rotor 

zrβ  : Zero-incidence angle of the rotor leading edge 

zsβ  : Zero-incidence angle of the stator leading edge 

rγ  : Stagger angle of the rotor 

sγ  : Stagger angle of the stator 

ε  : Rotational inertia divided by chord
 

Ф  : Non-dimensional mass Flow, x TC U  
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φ  : Perturbation axial velocity  

Ψ  : Non-dimensional pressure, 2
TP Uρ  

PΨ  : Non-dimensional plenum Pressure, 2
p TUP ρ  

ψ  : Perturbation pressure 

rτ  : Time scale for the rotor loss  

sτ  : Time scale for the stator loss  

eaξ  : Position of the elastic axis of the blade from the leading edge divided by the 

blade-chord 

cgξ  : Position of the center of gravity of the blade from the leading edge divided by 

the blade-chord 

cpξ  : Position of the center of pressure of the blade from the leading edge divided by 

the blade-chord 

bς  : Structural damping of the bending mode 

tς  : Structural damping of the torsion mode 

1δ  : Coefficient of the empirical rotor deviation function  

2δ  : Coefficient of the empirical rotor deviation function  

Subscripts:  

1 : Inlet of the actuator disk 

2 : Exit of the rotor, inlet of the stator 

3 : Exit of the stator 

le : Leading edge 



 xiii 

rel : In the rotor (rotating) reference frame 

r : Rotor 

s : Stator 

te : Trailing edge 
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CHAPTER ONE: INTRODUCTION 

Background of Turbomachinery Instabilities 
Compression system such as gas turbines can exhibit several types of instabilities: 

combustion instabilities, aeroelastic instabilities such as flutter and aerodynamic flow 

instabilities such as rotating stall and surge. The aerodynamic instabilities limit the flow range in 

which the compressor can operate. At high mass flow rate, the operation of turbo-compressors is 

limited by choking while at low mass flows, operation of turbomachines is restricted by the onset 

of two other instabilities known as surge and rotating stall. Apart from the operability, the 

performance and efficiency of the compressors are also limited by surge and rotating stall. The 

aerodynamic instabilities may also lead to heating of the blades and to an increase in the exit 

temperature of the compressor [1-3]. 

Flutter in Turbomachinery 
Gas turbines and other turbomachines constitute rotating blades and guiding vanes.  Out 

of the whole gas turbine, the compression system is more susceptible to aerodynamic and 

aeroelastic instabilities. The current research focuses on analyzing the robustness of 

turbomachines in terms of flutter. As compared to stationary vanes, rotating blades are more 

susceptible to fluttering, and the risk of blade flutter in turbine applications has received attention 

due to increasing operational demands and aggressive design requirements recently. For example 

high lift and low mass designs in aero-engines [5]. To assure reliability and safety of jet 

propulsion, the potential for blade flutter must be eliminated from the turbomachinery stages. 

From both experimental and theoretical studies [5-6], it is found that flutter is caused 

primarily by the interaction of the turbomachinery blade motion with incoming flow fields.  As a 

result, unsteady aerodynamic forces and moments are generated on the blade surface.  When the 
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aerodynamic damping resulted from these aerodynamic forces and moments is negative and 

exceeds the available blade structural damping, a marked increase in blade vibratory response 

will occur.  When the vibration levels exceed the material endurance limits, blade flutter failure 

soon results.  

Motivation for the Research 
The aeroelastic instability phenomenon of flutter can result either in serious damage or 

complete destruction of a gas turbine blade structure due to high cycle fatigue. Although 90% of 

potential high cycle fatigue occurrences are uncovered during engine development, the 

remaining 10% stand for one third of the total engine development costs [4]. Field experience 

has shown that during the last decades as much as 46% of fighter aircrafts were not mission-

capable in certain periods due to high cycle fatigue related mishaps.  

Significant advances in the understanding of blade flutter have been achieved through 

numerous experimental and theoretical investigations. Much attention has been focused on 

compressors due to their well documented predisposition to blade flutter under certain operation 

regimes [5].  

Although the advances in understanding the blade flutter have been quite significant, the 

current models for turbomachinery flutter are normally computationally intensive, and it is 

difficult to ensure high fidelity. Also, the number of states is prohibitively high such that a 

systematic analysis of the flutter phenomenon is not easy to achieve [6]. Reduced order models 

have been constructed to obtain a computationally more tractable system [7]. But these models 

suffer from either one or several of the following limitations: (1) not including the vibration 

mode shape, (2) typically cannot capture the flows over different geometries and Mach numbers, 

(3) only valid for small perturbations about a steady state.  
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Considering various shortcomings of the models resulting in lack of proper tools to 

predict flutter accurately, to ensure a safe operation it is therefore important to study the 

robustness of a turbomachinery blade design in the presence of uncertainties. In this thesis, the 

robustness of an axial compression system is studied with respect to parametric uncertainties. 

This thesis also demonstrates an application of Genetic Algorithm as an optimization tool 

to find ideal parameters that will ensure best performance in terms of damping out flutter. 

Simulation results show that the procedure described in this thesis can be effective in studying 

the flutter stability margin and can be used to guide the gas turbine blade design. 

Research Advantages 
The research outlined in this thesis focuses on:  (1) studying the robustness of an axial 

compression system in terms of flutter, under the presence of different uncertainties (2) finding 

the best parameter set that can improve the performance in terms of flutter.   

The necessity of robustness study for these machines is the result of the fact that robust 

design must be ensured because of the following three major reasons: (1) the most 

computationally expensive flutter models are not able to predict flutter accurately (2) some of the 

parameters of the machine are not perfectly known and their values change over time as a result 

of degradation due to fouling, erosion, corrosion etc (3) there are uncertainties in the operating 

environment of the machines.  

The major technical challenges addressed in this thesis are shown as follows:   

First, the original model is organized in a form which is easy to use for control-oriented 

studies. 

Second, in order to obtain a linear model for the subsequent Mu analysis, the original 

PDE model is reduced to a non-linear ODE model in state space form by means of Fourier series 
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based collocation method. The non-linear model is then linearized about the equilibrium points, 

which are found with the help of non-linear solvers, using small perturbation method.  

Third, Mu analysis is done for robustness study of the system under the presence of the 

uncertainties and using the linear model achieved in the previous step. Also, Genetic Algorithm 

is applied to find the best parameter set that can optimize the performance in terms of flutter. 

Thesis Outline 
The analytical model used in this thesis as the nominal model of the system is described 

in details in Chapter 2. This model is adopted from [9] and reorganized in this thesis in a form 

which is easy to use for control-oriented studies.   

While a linear model is needed for the robustness analysis using the Mu tool, the original 

model, which describes the physical phenomenon of fluid-solid interaction in the axial 

compression system, is in PDE form. As the first step of achieving the linear model, the original 

PDE model is reduced to a non-linear ODE model by means of a Fourier series based collocation 

method. In Chapter 3 of the thesis, the procedure for achieving this non-linear model is shown in 

details.  

The non-linear model is linearized about the equilibrium points in the next step. The 

procedure for obtaining the linear model by small perturbation method is discussed in Chapter 4. 

This chapter also includes a description of linear stability analysis done in this thesis.   

In Chapter 5 of the thesis, the procedure for quantification of uncertainty bounds on the 

linear model via Monte Carlo simulation is shown.  

Chapter 6 describes the formulation of the problem for Mu analysis and the simulation 

results.  

With a view to optimizing the performance in terms of flutter, Genetic algorithm is used 
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as the tool to search the ideal parameters. The results are shown in Chapter 7. 

Chapter 8 is the summary and conclusion of this thesis work. 
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CHAPTER TWO: FLUTTER MODEL  

The compression system as shown in Figure 1, composed of an inlet duct, an axial 

compressor stage of flexible rotors and rigid stators, a plenum chamber, and a throttle, is 

considered. The compressor pumps the flow into the plenum, which exhausts through a throttle.  

 

Figure 1: Compression system schematic 

The equations of the flutter model used here are adopted from [8-9]. A high hub-to-tip 

ratio is assumed in deriving the model such that the flow can be treated as two-dimensional, with 

the variations considered in the axial and circumferential directions only. The compressor ducts 

are assumed to be long enough so that there is no non-axisymmetric pressure field interaction 

with the end terminations. The flow external to the blade rows is considered to be inviscid. 

Compressibility effects are neglected assuming low Mach numbers in the compressor and ducts. 

In the plenum, where the compressibility effects are important, density changes are related to the 

pressure changes through an isentropic relation [10]. Losses are introduced into the rotor and 

stator stages through the empirical total pressure loss relations. The flexible rotor blades are 

represented by a simple two dimensional, two degrees of freedom model, which is done using a 

typical section with an inertial and aerodynamic coupling between twist and plunge. A control 

Exit Duct Plenum  

Throttle 

Rigid 
Stator 

3 1 

2 3 

Flexible 
Rotor 

1 

Inlet Duct 
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volume analysis is used to couple the aerodynamics and structural dynamics, which provides the 

effect of the aeroelastic phenomenon. The deformed blade passages are defined and analyzed as 

a deformable control volume across flexible rotors coupled with a structural model [8-9]. 

In this thesis, the equations presented in [8-9] have been reorganized in a form that can be 

easily used in the Mu robustness analysis later. Detailed discussions on the model can be found 

in [8-14]. 

Inlet and Exit Duct 
The annular inlet and exit ducts are assumed to have a constant height, and the flow is 

assumed to be incompressible. In the inlet duct, only the potential flow perturbations can be 

created by the compressor and these decay upstream. Hence, for an axisymmetric meanflow, the 

linearized relation between the non-axisymmetric static pressure and the axial velocity 

perturbations at the inlet (station 1), as given in [11], is 

1
11 1

1

ˆ
1 ˆRe ( )

N
inn

nn
t en t

θ
φ

φ φψ
=

 ∂ = − +∑
 ∂
 


       (1) 

where 
2

1 10
(1/ 2 ) ( , )Ф t d

π
φ π θ θ= ∫ , and 1 1 1Ф φ φ= +   . 1

ˆ
n

φ  is the nth harmonic component of non-

axisymmetric axial velocity perturbation at station 1, while “Re” denotes the real part of the 

complex term in Eq. (1) and N  is the highest number of harmonics used to describe the inlet 

axial velocity 1Ф . 

In the exit duct, the only disturbances considered are the decaying potential field 

downstream and the vorticity associated with the variation in the compressor loading around the 

annulus.  The analysis is simplified by the assumption that the stators fix the exit flow angle to 

be axial (i.e. no deviation effects). This produces the following relation between the non-



 8 

axisymmetric pressure distribution at the exit of the compressor (Station 3) and the flow 

perturbations [11]. 

3
3

1

ˆ
1Re

N
inn

n
en t

θ
φ

ψ
=

 ∂ = ∑
 ∂
 


     (2) 

3
ˆ

n
φ  is the nth harmonic component of non-axisymmetric axial velocity perturbation at 

station 3. Equations (1) and (2) are used together with Equations (32) and (36), which are shown 

later in this thesis, to calculate the pressures at stations 1 and 3. 

Plenum and Throttle 
As shown in [4], the conservation of the axial momentum in the inlet and exit ducts, and 

the conservation of the mass in an isentropic plenum results in the following equations: 

2
1

3 1 P
0

1 ( )
2 c

ФL d
t

π

θ
π

∂ Ψ −Ψ −Ψ = ∂ ∫            (3)
 

and
 

2
2 P

1 P
0

1 2 4B
2 t cФ L dA t

π

θ
π

∂Ψ − Ψ = ∂ ∫     (4) 

Equations (3) and (4) are related to two states: 1Ф  and PΨ .  

Blade Dynamics 
As described by Dowel [15] and Gysling and Myers [10], the structural dynamics of the 

blade is modeled considering a typical section with the inertial and aerodynamic coupling 

between the twist and plunge motions. The lift force is assumed to act at the center of pressure, 

which is assumed constant. The two modes considered here are the twist and plunge as illustrated 

in Figure 2. 
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Figure 2: Blade deflection indicating the twist α and plunge q  (modified based on [9]) 

The plunge equation is described by 

( )
2 2

22

ea cp

l
b b b

q c
t t

Fq qQ Q
t D

αξ ξ
θ θ

ς
θ

∂ ∂ ∂ ∂   − + − −   ∂ ∂ ∂ ∂   
∂ ∂ + − + = ∂ ∂ 

    (5)
 

while the twist equation is            

( )2 2

22

ea cg

ea

t t t
ea

cD
q

t tI
MQ Q

t I

ξ ξ
α

θ θ

ς α α
θ

−∂ ∂ ∂ ∂   − + −   ∂ ∂ ∂ ∂   
∂ ∂ + − + = ∂ ∂ 

     (6) 

where the moment of inertia eaI  can be calculated by  

( )2 2 2 2
ea ea cgI D c Dc εξ ξ= − +      (7) 

The lift force on the blade lF   in Eq. (5) is calculated by 

( ) ( )cos sin
2

r x r
l

F F
F θ γ α γ α− − −
=      (8) 

where xF  and Fθ  are axial and circumferential components of the force on the blade 

ˆ ˆi jxF F Fθ= +


. xF  and Fθ  can be calculated through the control volume analysis across two 

 

 

γr 

γr - α 

α 

q 
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adjacent blades to be describe in the next section.  The moment about the elastic axis in Eq. (6) is 

given by  

( )l ea cpM F cξ ξ= −      (9)  

There are four state variables in Equations (5) and (6): α ,α , q  and q . 

Control Volume Analysis 

The two components of the force on the blade, xF  and Fθ , can be calculated based on the 

conservation of the momentum equation across the rotor described by   

( )

( )

,

,

le
le rel le le le le

te
te rel te te te te

sVv v v n p n
t

s Fv v n p n

θ θ θ

θ θ

∂∂ ∂ ∂    − + ⋅ +    ∂ ∂ ∂ ∂  
∂ ∂ + ⋅ + = −  ∂ ∂

    


   

            (10) 

where 

1cos( )
 2   

le te
r

s sV c γ α
θ θ θ

∂ ∂∂  = − + ∂ ∂ ∂ 
         (11)

 

Force exerted on the blade by the fluid is found by 

/

/
/B B

B B

N

N
F F d

θ π

θ π
θ θ

+

−
 = ∂ ∂ ∫

 
              (12) 

where Bθ  is the blade angular position , which is constant for a blade with respect to a fixed 

reference. 

The two path lengths along the leading and trailing edges can be calculated by 

2 2

   
le le les x θ

θ θθ
∂ ∂ ∂   = +   ∂ ∂∂    

     (13)
 

and 



 11 

2 2

   
te te tes x θ

θ θθ
∂ ∂ ∂   = +   ∂ ∂∂    

     (14) 

respectively. The axial and circumferential coordinates of the leading and trailing edges are 

given by 

sin( ) cos( )le r ea rx q cγ ξ γ α= − − −          (15) 

cos( ) s ( )le r ea rq c inθ θ γ ξ γ α= + − −               (16) 

sin( ) (1 ) cos( )te r ea rx q cγ ξ γ α= − + − −                (17) 

cos( ) (1 ) s ( )te r ea rq c inθ θ γ ξ γ α= + + − −             (18) 

The two normal vectors at the blade leading and trailing edges used in Eq. (10) are found 

as 

ˆ ˆcos( )i sin( ) jle le len β β= − +


      (19) 

ˆ ˆcos( )i sin( ) jte te ten β β= −


      (20) 

The relative velocities between the flow and the two edges of the blade used in Eq. (10), 

,rel lev  and ,rel tev , are given by  

( ) ( )1, 1
ˆ ˆ ˆ ˆi j i jrel le le lev v xФ t θθ

∂ ∂ = + − − + ∂ ∂ 
     (21) 

and 

( ) ( )2, 2
ˆ ˆ ˆ ˆi j i jrel te te tev v xФ t θθ

∂ ∂ = + − − + ∂ ∂ 
      (22) 

The axial component of the velocity at the rotor leading edge (station 1) 1Ф  is found from 

Eq. (3) while the circumferential component 1v  is calculated by the following assumption as 

suggested by Moore and Greitzer [12]. 
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1
1

v φ
θ
∂

= −
∂

             (23) 

The axial and circumferential velocities at the trailing edge of the rotor (station 2), 2Ф  

and 2v , can be found from the conservation of mass equation together with an assumption on 

flow kinematics. The conservation of mass equation is expressed as 

( ) ( ), , 0le te
rel le le rel te te

s sV v n v n
t θ θ θ θ

∂ ∂∂ ∂ ∂ − + ⋅ + ⋅ = ∂ ∂ ∂ ∂ ∂ 
             (24) 

The kinematic constraint on the flow is based on the assumption that the fluid exits the 

blade with a certain deviation angle described by an empirical relation. Following is the equation 

of kinematic constraint on the flow. 

( )22 tante te rv xФt t
α δβθθ θ

∂ ∂  ∂ ∂    − − = − − − +    ∂ ∂ ∂ ∂    
  (25) 

where the flow deviation angle at the exit of the rotor, δ , is related to the incidence angle by the 

following relation. 

1 , 2inc rδ δ α δ= +       (26) 

The rotor incidence angle ,inc rα is given by 

,1
,

,

ĵ
tan

î
rel le

inc r zr
rel le

v
v

α β α
⋅−

⋅

 
= − +  

 



                 (27) 

The velocity within the control volume, v  in Eq. (10), is approximated by the mean value 

of the leading and trailing edge flow velocities as 

( )1
2 le tev v v= +

         (28) 

where 
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11
ˆ ˆi + (1+ )jle Ф vv =      (29) 

22
ˆ ˆi + (1+ )jte Ф vv =       (30) 

The axisymmetric pressure at the leading edge 1Ψ  can be calculated by the unsteady 

Bernoulli’s equation [16] 

             ( )22 1
1 11

1
2atm I

Фp LvФ t
∂

−Ψ = + +
∂

   (31) 

Thus the expression for lep in Eq. (10), which is essentially the pressure at station 1, 1Ψ , 

is given by 

    ( )22
1 11 1 1 1

1
2atmle pp vФψ ψ= Ψ = Ψ + = − + +     (32) 

The trailing edge pressure tep  used in Eq. (10) can be calculated from the conservation of 

energy, when the force term in the equation is substituted by the LHS of the conservation of 

momentum equation. The conservation of energy across the deforming blade passage is given by 

( )

( )

2 2
,

2
,

1 1
2 2

1
2

le
rel lele le r le

te
rel tete te te cv

sVv p v L nvt
s Fp v n vv

θ θ θ

θ θ

∂∂ ∂ ∂   − + + − ⋅   ∂ ∂ ∂ ∂   
∂ ∂ + + ⋅ = − ⋅  ∂ ∂ 




 

        
(33)

 

where rL  represents a loss in the leading edge total pressure to account for non-conservative 

processes, which is governed by Eq. (37) shown in the next section. The velocity of the control 

volume is given by  

ˆ ˆ ˆi j j
2 2

le te le le
cv

x xv
t

θ θ
θ

+ +∂ ∂   = − + +  ∂ ∂  
      (34) 
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Analysis for the Stator 
The stator is modeled as a rigid blade row, and the conservation of mass across the stator 

can be expressed as  

2 3Ф Ф=            (35) 

Using the unsteady Bernoulli’s equation [10], the following relation is found to govern 

the pressure rise across the stator 

2
,3 ,2( )

cos( )
s

t t s
s

c Ф L
γ τ

∂
Ψ −Ψ = −

∂
         (36)

 

where sL  represents a loss in the total pressure across the stator, which is governed by Eq. (38) 

to be shown in the next section. 2,tΨ  is the total pressure at the trailing edge of the rotor, while 

3,tΨ is the total pressure at the trailing edge of the stator.  

Rotor and Stator Losses 
The total pressure losses across the rotor and stator disks are assumed to lag their quasi-

static values. A simple one dimensional lag equation is used in each case [5].   

( ),r r qsr rL L L
t

τ
θ

∂ ∂ − = − − ∂ ∂ 
      (37) 

( ),s s qss sL L L
t

τ
θ

∂ ∂ − = − − ∂ ∂ 
      (38) 

The quasi-static losses ,r qsL  and ,s qsL  are assumed to be functions of incidence angle,  

2
, ,, 1 2 3inc r inc rr qs r r rL L L Lα α= + +          (39) 

2
, ,, 1 2 3inc s inc ss qs s s sL L L Lα α= + +          (40) 

The incidence angle on the rotor is defined in Eq. (27). The incidence angle on the stator 

is given by 
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1 2
,

2

taninc s zs
vα β
φ

−  
= − − 

 
              (41) 

Equation (37) and (38) result in two states in the model: rL  and sL .  
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CHAPTER THREE: NONLINEAR MODEL VIA FOURIER SERIES BASED 
COLLOCATION METHOD 

Generation of Non-linear Model 
To be used in the stability and robustness analysis, the PDE model described in the above 

section is reduced to an ODE form through the Fourier series based collocation approach 

following the steps described in [17]. 

 The state variables 1Ф , α , q , rL  and sL  in the model are approximated in terms of the 

Fourier series as shown below.  

[ ]1
0

ˆ( ) cos( ) ( )sin( )
N

n n
n

Ф t n t nϕ θ ϕ θ
=

= +∑
            (42) 

[ ]
0

ˆ( ) cos( ) ( )sin( )
N

n n
n

a t n a t nα θ θ
=

= +∑
            (43) 

0

ˆ( ) cos( ) ( )sin( )
N

n n
n

q b t n b t nθ θ
=

 = + ∑
            (44) 

0

ˆ( ) cos( ) ( )sin( )
N

r n n
n

L lr t n lr t nθ θ
=

 = + ∑
              (45) 

0

ˆ( ) cos( ) ( )sin( )
N

s n n
n

L ls t n ls t nθ θ
=

 = + ∑
              (46) 

in which N  is the highest number of harmonics used in the series.  

Plenum pressure pΨ  is assumed to be spatially uniform and hence approximated by a 

time dependent term only.   

p 0Ψ = ( )tψ                (47) 
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The unknown variables in the original PDEs are then substituted by the approximation 

and the residual functions are obtained at the collocation points.  In this thesis, the two boundary 

points of integration and their midpoint are used as the collocation points. A set of ODEs is then 

obtained by forcing the residual functions to be zero at the collocation points.  For brevity, Eq. 

(37), the rotor loss equation, is used as an example to demonstrate the basic procedure.   

( ),r r qsr rL L L
t

τ
θ

∂ ∂ − = − − ∂ ∂                (48)
 

If 1N = , the unknown variable rotor loss rL  is approximated by 

( ) ( )0 1 1
ˆ ( )  ( ) cos   ( )sinrL lr t lr t lr tθ θ= + +        (49) 

Now substituting rL  in Eq. (48) by the approximation in Eq. (49), following residual 

equation can be obtained at iθ θ= , where 1, 2,3i = .   

( )

0 1 1
1 1

0 1 1 ,

ˆ( ) ( ) ( ) ˆcos sin ( )sin ( ) cos

ˆ( ) ( ) cos ( )sin

r

r qs

dlr t dlr t dlr t lr t lr t
dt dt dt

lr t lr t lr t L

τ θ θ θ θ

θ θ

 
+ + + −  

 

= − + + −

     (50) 

The residual equation can be reorganized to obtain a state space representation.  

Comparing the simulations with different number of harmonics in the Fourier series 

approximation, it is found that a series approximation with only zeroth and first order harmonic 

is sufficient to capture the system dynamics. Following are the 22 states in the reduced order 

non-linear model: 
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Variables States 

1Ф  
0φ , 1φ  , 1φ̂  

pΨ  0ψ  

α  
0a , 1a  , 1â , 0a , 1a ,  1â  

q  
0b , 1b , 1̂b , 0b , 1b , 1̂b  

rL  0lr  , 1lr  , 1l̂r  

sL  0ls , 1ls , 1l̂s  

The nonlinear model of the whole compression system in terms of the 22 state variables 

are then organized in the form of  

[ ] [ ] [ ] [ ]22 22 22 1 22 22 22 122 1 22 1
( , )X XA X B f X p

× × × ×× ×
   = + +   

      (51)  

where ( , )f X p is a function of the states, X , and parameter vector p . Matrices [ ]A and [ ]B are 

found to be constant for each operating point; [ ][ ]A X denotes the linear part of the model.  For 

the model achieved here, matrix [ ]B  has only one non-zero entry, as the governing equation of 

the plenum pressure is the only equation in the model with a square root term. Non-linearity of 

the system comes mainly from the part ( , )f X p . 

Non-linear Simulation Results  
The non-linear model achieved by applying the Fourier series based collocation method, 

as described above, is then simulated using the Runge-Kutta method for solving the Ordinary 

Differential Equations. Results obtained from the simulations are presented here in Figures 3 to 

6. 
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Figure 3: Non-linear simulation results for the non-dimensional mass flow 

Figure 3 above shows the simulation results obtained for the non-dimensional mass flow 

rate. As can be seen in the figure, the mass flow has initial transient, which then achieves the 

steady-state condition with time.  

Presented below in Figure 4 are the simulation results for the non-dimensional plenum 

pressure. Like the non-dimensional mass flow rate, some initial transients are seen in the plenum 

pressure, which then reaches the steady-state value with time.  

 

Figure 4: Non-linear simulation results for the non-dimensional plenum pressure 
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The non-linear simulation results for the bending and twist displacements of the blades 

are presented in Figure 5, and the simulations results for the rotor and stator losses are presented 

in Figure 6.  

 

Figure 5: Non-linear simulation results for the non-dimensional twist and bending 

displacements 

 

Figure 6: Non-linear simulation results for the rotor and stator losses 
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CHAPTER FOUR: LINEARIZATION AND STABILITY ANALYSIS 

First the equilibrium point of the system (Eq. 51) is found for a throttle parameter ( tA ) 

setting. Then the non-linear model is linearized about the equilibrium point eqX  by means of the 

small perturbation theory. First the partial derivatives of  ( , )f X p  with respect to all the state 

variables X  are found numerically, by using a five point stencil formula. For the model 

achieved here, matrix [ ]B  has only one non-zero entry, as explained in the previous chapter. 

Hence, all the partial derivatives of the second term in Eq. 51 can be found analytically. Finally, 

the Taylor series expansion is utilized to obtain the linearized function for the original non-linear 

function. All the three matrices combined together, the linearized perturbation model is obtained 

in the form of [ ] [ ]22 22 22 122 1
X Z X

× ××
 ∆ = ∆ 

 , where eqX X X= + ∆ . 

The eigenvalues of the linear model are calculated to study the stability of the system. 

The eigenvalues of the linear system obtained for a throttle parameter value of 0.7 is shown in 

Figure 7.  

 

Figure 7: Eigenvalues of the linear system for a throttle parameter value of 0.7 
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Using the similar procedure, linear models are obtained for other settings of the throttle 

parameter, and linear stability analysis done. The eigenvalues of the linear model obtained for a 

throttle parameter value of 0.8 is presented in Figure 8.  

 

Figure 8: Eigenvalues of the linear system for a throttle parameter value of 0.8 

From Figure 7 and Figure 8, it is seen that all the eigenvalues of the linear systems 

obtained for the two throttle parameter values are on left half of the complex plane. Hence the 

linear systems are stable.  
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CHAPTER FIVE: UNCERTAINTY QUANTIFICAION VIA MONTE 
CARLO SIMULATION 

Description of the Monte Carlo Simulation Performed 
Because of a number of assumptions and simplifications, which have been made at 

different levels, the nominal model may not be an exact representation of the system. Secondly, 

the model reduction approximations also cause uncertainties in the model. Thirdly, the 

linearization causes uncertainties to the model due both to truncation of the Taylor series and the 

calculation of partial derivatives numerically. Furthermore, the parameters and coefficients used 

in the obtained nominal model are not perfectly known. 

To find the uncertainty bounds on the nominal model, the Monte Carlo simulation is done 

for the system with some bounded random variation of some of the parameters. The mean model 

obtained from Monte Carlo simulations is used as the nominal model for the Mu Analysis.  

The parametric uncertainties considered here are mainly on some of the structural 

properties which might vary slightly from the design value because of the manufacturing and 

installation processes. For example all the blades are not exactly the same. Different blades 

might have slightly different frequencies for bending and twist modes, and different damping 

ratios. Also a small uncertainty is considered in some of the geometry parameters, which may be 

caused by wear and tear etc.  

Following are the structural properties in which uncertainties are considered with their 

nominal values: 

Structural damping of bending mode, bς  = 0.035 

Frequency of pure bending mode, bQ  = 1.5 

Structural damping of torsion mode, tς  = 0.035 
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Frequency of pure torsion mode, tQ  = 3.3 

The geometry parameters considered to have uncertainties and their nominal values are:  

Position of the elastic axis of the blade from leading edge divided by blade-chord, eaξ = 

0.55 

Position of the center of gravity of the blade from leading edge divided by blade-chord, 

cgξ = 0.35  

Position of the center of pressure of the blade from leading edge divided by blade-chord, 

cpξ = 0.35 

The following empirical coefficients are also considered to have uncertainties:  

Time scale for rotor loss, rτ = 0.61  

Time scale for stator loss, sτ = 0.32 

Coefficient of empirical rotor deviation function, 1δ = 0.18 

Coefficient of empirical rotor deviation function, 2δ = 12o 

Coefficient of empirical rotor loss function, 1rL = 1.8842 

Coefficient of empirical rotor loss function, 2rL = - 0.5053 

Coefficient of empirical rotor loss function, 3rL = 0.1219 

Coefficient of empirical stator loss function, 1sL = 0.7429 

Coefficient of empirical stator loss function, 2sL = - 0.1450 

Coefficient of empirical stator loss function, 3sL = 0.0951 

In the Monte Carlo simulations, each of the parameter is defined with a random variation 

about the nominal value within the uncertainty ranges described above. The linear model is 
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obtained in each iteration of the Monte Carlo simulation. A total of 1,000 iterations are used in 

the simulations to quantify the uncertainty bounds on the nominal model. The overall structure 

for the Monte Carlo simulations performed is presented below in Figure 9. 

 

Figure 9: Overall structure for the Monte Carlo simulation 

For obtaining a number of linear models and uncertainty bounds on the model, three 

different percentages of uncertainties are assumed on structural parameters-- 1%, 2.5% and 5% 

respectively. For all the cases considered in this thesis, the empirical coefficients are assumed to 

have 5% uncertainty about their nominal values while considering the state of the art 
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manufacturing processes that most often can obtain any geometry very accurately, the geometry 

parameters in the model are considered to have only 1% uncertainty. 

Sample Results Obtained via Monte Carlo Simulation 
The main purpose of performing a Monte Carlo simulation here is to quantify the 

uncertainty bounds on the linear model obtained in the previous step. A total of 1000 iterations 

of the Monte Carlo simulations were performed to obtain 1000 linear models for different 

combinations of the uncertain parameters. Based the linear models obtained, a mean model (i.e. 

nominal model) and the uncertainty bounds are calculated.  

Analyzing the results obtained from the Monte Carlo simulation, it was found that the 

uncertainty bound on the linear model as well as the mean model is quite dependent on the 

percentage of uncertainty considered. For example, the original entry in the 22nd column of the 

22nd row in the 22x22 system was -1.5625 for a throttle parameter value of 0.7. For an 

uncertainty of 1% on the structural parameters, the mean value of this entry for all 1000 

iterations of Monte Carlo simulation was found to be -1.5628 with an uncertainty bound of 

0.0195. On the other hand for an uncertainty of 5% on the structural parameters, the mean value 

of this entry for all 1000 iterations of Monte Carlo simulation was found to be -1.5665 with an 

uncertainty bound of 0.0781. Thus the results from the Monte Carlo simulation are in agreement 

with the natural expectation that the uncertainty bound on the linear model will be high when the 

percentage of uncertainty on the parameter values is high.  

Liner stability analysis is also done for the linear models obtained via the Monte Carlo 

simulation. All the eigenvalues of 1000 iterations of the Monte Carlo simulation are shown in 

Figure 10 and a representative eigenvalue of the system as found in each iteration of the Monte 

Carlo simulation is presented in Figure 11. The eigenvalue plots shown here are for a Monte 
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Carlo simulation with considering a 5% uncertainty on the nominal values of the structural 

parameters, 1% uncertainty on the geometry parameters, and 5% uncertainty on the empirical 

coefficients in the model.  

 

Figure 10: Eigenvalues of the system (all eigenvalues shown together) 

 

Figure 11: A representative eigenvalue of the system (for all iterations of Monte Carlo 

simulations) 

From Figure 10 and Figure 11, it can be seen that all the eigenvalues of the system are in 

left half of the complex plane, which indicates a stable system for the uncertainty bounds used. 
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CHAPTER SIX: MU ANALYSIS AND SIMULATION RESULTS 

Mu Analysis Procedure  
In this section, the basic steps, in using the Mu analysis tool [24-29] to analyze the robust 

performance of the system in presence of parametric uncertainties in the system, are shown.  

The linearized system obtained in chapter 5 can be written as: 

22 22 22 22

22 22

[ ] [ ]
[ ]

X A X B u
y I X

× ×

×

= +
=



 
            (52) 

where B  is a zero matrix because the system under analysis is open loop. The system output is 

the state. All the uncertainties in matrix A  are modeled as additive parametric uncertainties as 

ˆ( )A A W= + ∆ , where Â  is the mean value obtained in the Monte Carlo simulation, and 

22 22[ ]W W ×=  contains the uncertainty boundary magnitude for each of the entries in matrix A . ∆  

is any kind of uncertainties with a magnitude upper bounded by 1. 

The following are the basic steps involved in obtaining the synthesis model for the Mu 

analysis with the uncertainties accounted. The magnitudes of the uncertainty, their position in the 

main equation and their numbers are unique which vary with each equation. Let us use the first 

state equation as an example to show the basic approach.  

22

1 1, 1,
1
( )j j j

j
X A W X

=

= + ∆∑                     (53) 

Rewriting Eq. (53), the following equation is obtained. 

22

1 1, 1,
1
( )j j j j

j
X A X W X

=

= + ∆∑                (54) 

Let’s define 1, j j jW X z= ; Eq. (54) can then be written as: 
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22

1 1,
1
( )j j j

j
X A X z

=

= + ∆∑          (55) 

Eq. (55) can be further written as  

22

1 1,
1

j j j
j

X A X w
=

= +∑          (56) 

with the definition j jz w∆ = . 

Similarly, equations for the remaining 21 states are derived.  For a particular throttle 

parameter value, the input and output relations derived for the open loop model is shown in 

Figure 12.  In this model, there are 207 uncertainty signals input to the open loop system P  from 

the uncertainty block ∆  as shown in Figure 13.  In the meantime, there are 207 signals 

, 1,..., 207iz i =  coming into the uncertainty block ∆  from the open loop model P . 

 

Figure 12: Open-loop model with the input/output relations 

 

Figure 13: Synthesis model 
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The synthesized model is written in state space form as shown in Eq. (57) including states 

[X] ∈ ℝ22x1 , exogenous signals [w, u] ∈ ℝ229x1, uncertainty input signals z ∈ ℝ207x1 and output 

signals y ∈ ℝ22x1 

22 22922 22

229 22 229 229

xBA
P

C D
×

× ×


= 
 

     (57) 

Simulation Results 
The structured singular value Mu from the Robust Control Toolbox in MATLAB® is 

used to analyze the robustness of the uncertain flutter model based on the synthesis model in 

Figure 14. As discussed in the previous section, for the particular throttle setting, the outputs of 

the synthesis system are composed of the output of the system and input to the uncertainty block. 

For calculating the robust performance, the frequency response of the system is calculated with 

the real uncertainty block specified. In this section the results of this analysis are discussed. 

Three different cases with throttle parameter tA  = 0.7 are presented first here. Case I is a 

system with small uncertainty of 1% on all the parameters. The simulation result for this case is 

presented in Figure 14.  

 

Figure 14: Robust analysis of case I flutter model 
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As can be seen in the Mu plot in Figure 14, the system is robustly stable to modeled 

uncertainty because the Mu value is less than one for all frequencies.   

Case II is a system with an uncertainty of 2.5% in the parameter values. Simulation result 

for this case is presented in Figure 15. From Figure 15, it can be seen that this uncertain system 

is not robustly stable to the modeled uncertainty for certain frequencies. It can tolerate up to 

30.9% of the modeled uncertainty and a destabilizing combination of 114% of the modeled 

uncertainty exists causing instability at 2.15 rad/s.  

 

Figure 15: Robust analysis of case II flutter model 

Case III involves a system with a relatively higher uncertainty of 5% on the structural 

parameters. It is shown in Figure 16 that the design is not robust with respect to the defined 
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Figure 16: Robust analysis of case III flutter model 

Mu analysis is then done on the system with 5% uncertainties on the structural 

parameters at two new operating points. The Mu plots for Case IV represented by throttle 

parameter tA  = 0.6, and Case V represented by tA  = 0.9 are shown in Figure 17 and Figure 18 

respectively.  

 

Figure 17: Robust analysis of case IV flutter model 
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Figure 18: Robust analysis of case V flutter model 

Looking at the Mu plot for Cases III, IV and Case V, which all have 5% uncertainty on 

structural parameters but different operating points, it is found that the frequency corresponding 

to the maximum value of Mu does not shift much depending on operating point. Hence a new set 

of values are assigned to the structural parameters to see if the frequency corresponding to the 

peak value of Mu would shift based on nominal values of the parameters. New values assigned 

for the structural properties are shown below: 

Structural damping of bending mode, bς  = 0.025 

Frequency of pure bending mode, bQ  = 2.75 

Structural damping of torsion mode, tς  = 0.025 

Frequency of pure torsion mode, tQ  = 5.5 

The Mu plot for the new values of parameters with 5% uncertainty on structural 

parameters is shown in Figure 19.  
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Figure 19: Robust analysis of case VI flutter model 

As seen in Figure 19, like the previously stated cases with 5% uncertainties on the 

structural parameters, the system is not robustly stable for the modeled uncertainty. The peak 

frequency occurs at 2.42 rad/sec, which does not indicate a shift in frequency corresponding to 

instability based on changes in nominal value of structural parameters. Hence the linear models 

obtained for both cases were investigated and it was found that out of the 22 natural frequencies 

of the linear system, mainly the highest frequency are affected by the change in nominal values 

of structural parameters while the lower frequencies are not affected significantly. As a result the 

frequency corresponding to the peak value of Mu does not shift depending on nominal value of 

parameters, since it is the lower frequencies that are easily excited. Table 1 shows some higher 

and lower natural frequencies of the linear model obtained in Cases III and VI using different 

nominal values of structural parameters.  
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Table 1: Natural frequencies of linear models III and VI 

Natural Frequency (rad/sec) Case III Model Case VI Model 

High Frequencies 

16.8 22.5 

5.93 5.94 

4.94 4.96 

Low Frequencies 

2.42 2.42 

2.21 2.21 

1.16 1.16 
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CHAPTER SEVEN: GENETIC ALGORITHM FOR FLUTTER 
PERFORMANCE OPTIMIZATION 

In this chapter, the results obtained by applying Genetic Algorithm as an optimization 

tool are presented, along with a brief description of how the Genetic Algorithm works.  

How the Algorithm Works 
Genetic Algorithm is a global optimization tool, which is based on natural selection 

method. The algorithm first creates a random population and at the same time checks which set 

of the initial population matches best for as the solution to the optimization problem. The 

algorithm then creates new population in the new generation based on the fitness of the previous 

population. In the new generation, some of the set are chosen based on the best sets in previous 

iteration, which are called elite child. Also some populations are created by making random 

changes to the previous population. This is called mutation. Some other populations are created 

by combining the populations in the previous step. This is called crossover.   

Results Obtained Using Genetic Algorithm 
In this part of the thesis, Genetic Algorithm was applied to find the best parameter set in 

order to improve the damping characteristic of the system. One of the least damped modes was 

found to have a damping ratio of 0.0072, and this was improved to 0.008 by finding proper 

parameters via the Genetic Algorithm. This result demonstrates that the damping characteristics 

of the system can be improved by tuning the parameters using Genetic Algorithm. Table 2 shows 

the optimum parameter values as obtained by the Genetic Algorithm.  
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Table 2: Genetic Algorithm results 

Parameter Original Value(s) Optimum Value(s) 

Frequency for bending mode 1.5 1.4375 

Frequency for twist mode 3.3 3.2195 

Position of the elastic axis 0.55 0.5947 

Position of the C.G. 0.35 0.34854 

Position of the C.P. 0.35 0.3916 

Damping ratio for bending 0.035 0.0304 

Damping ratio for twist 0.035 0.0376 

Empirical Coefficients for rotor deviation 0.61, 0.32 0.544, 0.231 

Empirical Coefficients for rotor loss 1.8842, 0.5053, 0.1219 1.935, -0.573, 0.1219 

Empirical Coefficients for stator loss 0.7429, 0.1450, 0.0951 0.6939, 0.05999, 0.09025 

 

Presented in Figure 20 below is the iterative progress of the results in Genetic Algorithm.  

 

Figure 20: Genetic Algorithm iterations 

0 5 10 15 20 25 30 35 40 45 500

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Generation

Fi
tn

es
s 

va
lu

e

Best: 1.0139e-005 Mean: 1.0283e-005

 

 

Best fitness
Mean fitness



 38 

CHAPTER EIGHT: SUMMARY AND CONCLUSION 

In this thesis, the Mu tool is applied to analyze the robustness of a gas turbine compressor 

blade in terms of flutter. In this analysis, uncertainties, such as the ones arising from unmodeled 

dynamics, model order reduction, linearization, and imperfectly known parameters, are all 

considered. The nominal model and uncertainty bounds used in the Mu analysis are obtained via 

the Monte Carlo simulation based on a linearized model reduced from a publically available two 

dimensional, incompressible flow model coupled with structural dynamics. Consideration of 

uncertainty on the empirical coefficients in the model essentially accounts for the modeling error.  

To do an accurate robust performance analysis using Mu tool, a model that can capture 

the physical phenomenon approximately is necessary. The Mu tool can make strong claim about 

robustness by utilizing a well developed mathematical framework. However, it can give very 

accurate results, if the robustness analysis with respect to parametric uncertainties is done based 

on a nearly-accurate model. In case of absence of an accurate model, the uncertainty bound on 

the nominal model would be high and a design using Mu tool could be too conservative. With a 

high accuracy model and the steps shown in this thesis, the robust performance of the 

compressor blades can be determined accurately and used by designers to predict safe operation 

conditions such that unstable operation regions can be avoided. 

Future works will include validation of the results using the experimental results found in 

open literature. The physical phenomenon of flutter being very complicated, it is often very 

difficult to accurately capture the relevant system dynamics in a mathematical model, and hence 

a robust controller is highly desirable to ensure satisfactory performance under the presence of 

uncertainty due to inaccurate model. The future endeavor of this research would include 

development of a robust controller for suppressing flutter in turbomachinery.   
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APPENDIX: EQUATIONS USED IN COLLOCATION METHOD 
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The following time-derivatives are then derived based on the approximation made in Eq. 

(42) to (46): 
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The spatial-derivatives are then derived: 
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The mixed derivatives are found as follows: 
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Based on the above coordinates shown in Eq. (15) to Eq. (18), the following derivates are 

found: 
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Following derivatives of the path lengths, as shown in Eq. (13) and Eq. (14) are then 

found: 
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Partial derivates related to the control volume deformation are then found as follows: 
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