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ABSTRACT 

A method for solving the inverse geometrical problem is presented by reconstructing the 

unknown subsurface cavity geometry using boundary element methods, a genetic algorithm, and 

Nelder-Mead non-linear simplex optimization. The heat conduction problem is solved utilizing 

the boundary element method, which calculates the difference between the measured temperature 

at the exposed surface and the computed temperature under the current update of the unknown 

subsurface flaws and cavities. In a first step, clusters of singularities are utilized to solve the 

inverse problem and to identify the location of the centroid(s) of the subsurface 

cavity(ies)/flaw(s). In a second step, the reconstruction of the estimated cavity(ies)/flaw(s) 

geometry(ies) is accomplished by utilizing an anchored grid pattern upon which cubic spline 

knots are restricted to move in the search for unknown geometry.  Solution of the inverse 

problem is achieved using a genetic algorithm accelerated with the Nelder-Mead non-linear 

simplex. To optimize the cubic spline interpolated geometry, the flux (Neumann) boundary 

conditions are minimized using a least squares functional. The automated algorithm successfully 

reconstructs single and multiple subsurface cavities within two dimensional mediums. The solver 

is also shown to accurately predict cavity geometries with random noise in the boundary 

condition measurements. Subsurface cavities can be difficult to detect based on their location. By 

applying different boundary conditions to the same geometry, more information is supplied at the 

boundary, and the subsurface cavity is easily detected despite its low heat signature effect at the 

boundaries. Extensions to three-dimensional applications are outlined. 
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INTRODUCTION 

Forward problems are defined as well posed, and require five specifications which are as 

follows: governing equation for field variable, physical properties, boundary conditions, initial 

condition(s) and system geometry [2], [13], [14]. The inverse geometrical problem is one of 

many inverse problems that arise in engineering today. This problem is broadly classified into 

the inverse problem category. The inverse problem differs from the forward problem in that one 

of the forward problem specifications is unknown, and there is at least one over specified 

condition. In most cases, including the inverse geometric problem, this over specified condition 

arises at the boundary, which lends itself to the boundary element method (BEM).  

Subsurface cavity detection and geometry reconstruction methods using BEM have been 

well documented within the past decade [1], [3]. These methods are non- intrusive, and have 

been successfully proven to detect sub surface cavities, as well as predict its shape. In these 

problems the governing equation, physical properties, boundary conditions, initial conditions and 

external geometry are known, leaving the internal cavity wall geometry unknown. The boundary 

conditions at the cavity walls are also considered to be known as adiabatic, or very close to 

adiabatic. This can be attributed to the extremely low thermal conductivity of the material or 

void within the cavity. Radiation would have an effect on these subsurface cavity boundary 

conditions at high temperatures, however, has been omitted because the temperature ranges 

should be kept relatively low. 

An efficient way to detect cavity shape and location was proposed by E. Divo in 2004 

[2]. In his article the inverse geometric problem is stated much like the one in this article, and the 

use of point source clusters is employed to search for subsurface cavities in 2-D and 3-D 
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geometries by minimizing the first order boundary condition at the exposed surface. The 

efficiency of his model comes from lack of grid reconstruction. Rather than actually 

reconstructing the cavity walls during the optimization, a search for the adiabatic condition is run 

with the optimized cluster location and shape in place to act as the void within the medium. The 

shape is simplified to be elliptical to lower optimization parameters, and the technique has 

proven to be successful. Application of these techniques requires thermal imaging of the exposed 

surface with the use of infrared scanners as shown in Figure 1. At this point the boundary 

conditions at the exposed surface are over specified, and the internal cavity location and shape is 

unknown. 

 

Figure 1: Problem setup using IR scanner to measure thermal footprint at the exposed boundary. 
Image provided by E. Divo et al [2] 

 

It is also possible to utilize elastics rather than heat conduction to search for these 

cavities. Kassab et al [3] present a solution using elastostatics and the boundary element method. 
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Rather than minimizing the Neumann or Cauchy boundary conditions of the heat transfer 

problem, the strains and deformations at the exposed surface boundaries are minimized. This 

paper also proposes a variety of differently shaped anchored grid patterns (AGP) that adapt to the 

shape of the internal cavity [3].  

Another solution to this inverse problem is to use the method of fundamental solutions 

(MFS) rather than the boundary element method (BEM), proposed by A. Karageorghis [5]. In 

one these methods, Karageorghis utilizes a moving pseudo-boundary technique to detect void 

location and boundary location. The heat conduction equation and Neumann boundary condition 

minimization are also utilized similar to this articles approach. High resolution of these cavity 

boundaries are obtained by using radial polar parameterization, which simply searches for points 

radially around the cavity center [5], [8]. This technique causes high number of parameters to be 

optimized which can lead to longer calculation times and instability. Karageorghis also proposed 

a solution to cavity detection within plane linear elastic bodies. The same MFS and radial polar 

parameterization technique is used; however, the boundary conditions to be minimized are 

described by the elastic properties of the medium. Boundary deformity, strain, levels are 

minimized to optimize the cavity location and shape [7]. 

In this thesis, a higher resolution algorithm for cavity shape is proposed by using an 

anchored grid pattern to map a cubic spline that wraps itself around the cavity. The boundary 

element method is used to solve the forward heat transfer problem at each step of the overall 

inverse problem that in turn employs simplex optimization techniques. First, the boundary 

element method code developed for this thesis is validated by using simple tests involving the 

encompassing general heat conduction equation. Since the problem at hand involves the use of 
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heat signatures, the conduction equation is used and reduced to the Laplace equation due to the 

steady state and constant property assumptions. A temperature field that satisfies the Laplace 

equation is imposed, and the method is validated by matching exterior and interior points of 

temperature and heat flow. In essence, the boundary element calculations are being compared to 

the analytical Laplace equation solution for the test problems. This simple approach can also be 

used to check point source influences by using the same procedure, except the general equation 

is now non-homogeneous.  

The automated algorithm for reconstruction of cavity geometry starts by searching for its 

general location using clusters of sources/sinks that satisfy the heat flux (Neumann) boundary 

conditions. These cluster(s) must locate themselves within the cavity or outside of the medium to 

satisfy the Laplace equation. The boundary element method is used to solve the forward 

problem, while the simplex method optimizes the location of these source/sink clusters. Once the 

cavity location is determined, the same steps are used to predict the geometry’s shape using 

cubic spline interpolation. By using an anchored grid pattern, the cavity is shaped using eight 

splines, to which the surface is attached [1]. This pattern is placed at the center of the detected 

cavity, adiabatic boundary conditions are applied to this cubic spline surface, and the spline 

lengths are optimized to satisfy the heat flux (Neumann) boundary conditions. This application 

has also been extended to include multiple cavities, and unknown subsurface boundary 

conditions. This study has been successful in adding shape resolution to the Efficient Singularity 

Super Position Technique [2], and should be extended to 3-D geometries using these same 

techniques. The concept of multiple boundary condition set (MBCS) optimization was also used 

to effectively to enhance sensitivity and detect complicated geometrical shapes and locations.  
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SOLUTION PROCEDURE 

 To begin to understand the solution to the geometric problem, a layout for the automated 

algorithm is presented. First, the forward problem is solved using boundary elements with the 

source/sink clusters to imitate subsurface cavity behavior. Second, the clusters are moved to the 

cavity location with the help of the genetic algorithm method. Once the cavity is located, an 

anchored grid pattern replaces the clusters, and a new surface is created to guess at the cavity 

geometry. These anchored grids are then optimized with the Nelder-Mead simplex method until 

the Neumann boundary conditions, that have been over specified, agree with the boundary 

element solution. 

1) Set up problem parameters and initial guesses for the cavity location 

2) Solve forward problem using BEM  

3) Optimize the cavity location using the genetic algorithm 

4) Use optimized location for central spline knot of cubic interpolation and set up 

initial guesses for the cavity geometry 

5) Solve forward problem using BEM 

6) Optimize the cavity geometry using the Nelder-Mead simplex 

The forward problem solver: Boundary element method 

As stated previously, the general equation to be solved is the homogeneous Laplace 

equation, equation 1, where T is the temperature at the point (x, y) with in the medium Ω. 

                                                          ∇2𝑇(𝑥,𝑦) = 0  𝑖𝑛  Ω ( 1 ) 
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The boundary element method solves for T(x, y) numerically by discretizing the boundary into 

several elements. Green’s second identity is applied and a free space test function, T*, is 

introduced to the Laplace equation. It is then integrated over the surface elements, Γ, as shown in 

equation 2 [8]. 

                           𝐶(𝑖)𝑇(𝑖) + ∑ ∮ 𝑇𝑞∗𝑑𝛤𝛤𝑗
=𝑁

𝑗=1 ∑ ∮ 𝑇∗𝑞𝑑𝛤𝛤𝑗
𝑁
𝑗=1  𝑤ℎ𝑒𝑟𝑒 𝑞∗ = 𝑑𝑇∗ ( 2 ) 

The temperature for the given point “i“ has been solved by integrating over the surface elements 

labeled “j“, where N is the number of surface elements. “C” is termed the jump coefficient, 

which is determined as 0.5 for completely smooth elements. Since T and q are constant over the 

element, they are taken out of the integral, and the test functions are labeled accordingly as 

shown in equations 3 and 4.  

                                                             𝐻𝑖𝑗 = ∮ 𝑞∗𝑑𝛤𝛤𝑗
 ( 3 ) 

                                                             𝐺𝑖𝑗 = ∮ 𝑇∗𝑑𝛤𝛤𝑗
 ( 4 ) 

Once the elements have been discretized, equation 2 can be written in the standard form as 

equation 5 [8]. 

                                                      ∑ 𝐺𝑖𝑗𝑞𝑗𝑁
𝑗=1 = ∑ 𝐻𝑖𝑗𝑇𝑗𝑁

𝑗=1  ( 5 ) 

This formulation does not take into consideration point sources, however, the point sources can 

be simply added to the right hand side of this equation. Equation 6 shows the added point sources 

to the general equation, where {B} is the source vector shown in equation 7 [12]. 

                                                        [𝐺]{𝑞} = [𝐻]{𝑇} + {𝐵} ( 6 ) 

                                        𝐵𝑖 = ∑ 𝑄𝑗
2𝜋

𝑁𝑠
𝑗=1 ∗ 1

2
∗ [�𝑥𝑖 − 𝑥𝑗�

2
+ �𝑦𝑖 − 𝑦𝑗�

2
] ( 7 ) 
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The standard procedure to solve equation 6 is to move all the unknown boundary conditions to 

the same vector and use matrix multiplication to simplify. This simplification leads to equation 8, 

and is easily solved using pivoting methods for multiple sets of equations. 

                                                                  [𝐴]{𝑥} = {𝑏} ( 8 ) 

The solution for “{x}” represents the unknown boundary conditions that are being solved for. 

Using this solution and equation 2 the entire solution is formed. 

Geometry reconstruction: Cubic spline interpolation 

 To reconstruct the subsurface cavity geometry, a cubic spline interpolator generates a 

surface around a central point provided by the efficient hole finding optimization [2]. The first 

step is to define the anchored pattern as to which the cubic splines will attach themselves. Eight 

splines are defined to be positive, be equally separated and extend from the central knot as 

shown in Figure 2. The ends of these splines define the cubic spline endpoints, and continuity 

conditions define the shape. Since the angles between each spline are fixed and the shape is 

periodic, polar coordinates are used to define the locations along the cubic splines. According to 

Pollard and Kassab [1], the location along the cubic spline surface can be defined by equation 9, 

        𝑟(𝜃) = 𝑀𝑖−1
(𝜃𝑖−𝜃)3

6∆𝜃𝑖
+ 𝑀𝑖

(𝜃−𝜃𝑖−1)3

6∆𝜃𝑖
+ �𝑟𝑖−1 −

𝑀𝑖−1∆𝜃𝑖
2

6
� 𝜃𝑖−𝜃

∆𝜃𝑖
+ (𝑟𝑖 −

𝑀𝑖∆𝜃𝑖
2

6
) 𝜃−𝜃𝑖−1

∆𝜃𝑖
 ( 9 ) 

where “r” is the radial position along the polar coordinate system which depends on “θ”, the 

angle along the polar coordinate system. The “i” corresponds to the intervals between each 

spline, adding up to eight in this case. The spacing between each spline is defined as ∆𝜃𝑖 = 

𝜃𝑖 − 𝜃𝑖−1, which is considered to be fixed in these problems. The continuity conditions, 

mentioned previously, state that the first and second derivatives at the spline endpoints are 

continuous from interval to interval. The periodic condition states that the first location is equal 
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to the last location. These conditions lead to a set of tri-diagonal equations shown in equation 10, 

11 and 12. This simple set of equations is solved during the optimization using the Thomas 

algorithm. 

                                                              2𝑀1 +  𝜆𝑀2 = 𝑑1 ( 10 ) 

                                      𝜇𝑖𝑀𝑖−1 + 2𝑀𝑖 +  𝜆𝑖𝑀𝑖+1 = 𝑑𝑖        𝑖 = 2,3, … . ,7 ( 11 ) 

                                                              𝜇8𝑀7 + 2𝑀8 = 𝑑8 ( 12 ) 

The coefficients are defined by Pollard and Kassab’s cubic spline anchored grid pattern [1]. 

 

 

Figure 2: Cubic spline interpolation representation 
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Geometry optimization technique: Nelder-Mead simplex 

 The inverse problem requires an iterative method that aids in the search for the 

subsurface cavity geometry by minimizing the least squares functional comparing the second 

order (Neumann) boundary conditions. Since the forward problem is computationally expensive 

for complete grid reconstruction, the Nelder-Mead simplex method is ideal due to minimal 

forward problem calculations per iteration. The first step in any optimization technique is to 

define how the unknown parameters are altered to minimize the function/problem being 

analyzed. The simplex method is defined by the number of unknown parameters that are of 

interest. The “simplex” is a geometrical figure with N + 1 points and N dimensions, where ‘N’ is 

the number of parameters. For example, in a two dimensional problem the simplex is a triangle, 

and in a three dimensional problem the simplex is a tetrahedron [10]. As for the solution 

marching logic, the simplex can be manipulated by expansion, contraction and reflection. These 

three tools are utilized to move the solution with the highest residual error around the solutions 

of low residual error to find a new minimum. In essence, the simplex is moved in a downhill 

manner until a tolerance between solutions is reached.  

 The single cavity problem with known internal boundary conditions requires nine initial 

guesses of eight parameters. These eight parameters define the shape of the internal cavity. The 

cubic spline creates high resolution without the drawback of unknown parameter increases. 

Calculation time is thereby reduced, and the simplex optimization becomes more stable. To 

minimize these unknown parameters a least squares functional is defined by comparing the 

Neumann boundary conditions at the surface. Equation 13 defines this functional, where {r} is 

the array containing all of the spline lengths of the AGP, 𝑞𝑐 and 𝑞𝑚 are the BEM calculated and 
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IR measured flux of each boundary element respectively, Nsc is the scale factor and Ne is the 

number of boundary elements at the surface. 

                                                  𝐿𝑆𝐹({𝑟})  =  ∑ 1
𝑁𝑠𝑐

(𝑞𝑐 − 𝑞𝑚)𝑖2 + 𝛼(𝑟)𝑁𝑒
𝑖=1  ( 13 ) 

                                          𝐿𝑆𝐹({𝑟}, {𝑇𝑐𝑎𝑣})  =  ∑ 1
𝑁𝑠𝑐

(𝑞𝑐 − 𝑞𝑚)𝑖2𝑁𝑒
𝑖=1 + 𝛼(𝑇, 𝑞, 𝑟) ( 14 ) 

                                

𝛼(𝑇, 𝑞, 𝑟) =  �
0  𝑖𝑓  𝑇𝑚𝑖𝑛 < 𝑇𝑐𝑎𝑣 < 𝑇𝑚𝑎𝑥 𝑎𝑛𝑑 𝑞𝑚𝑖𝑛 < 𝑞𝑐𝑎𝑣 < 𝑞𝑚𝑎𝑥

𝑣𝑎𝑙𝑢𝑒 𝑂(𝑞, 𝑡) 𝑖𝑓  𝑟𝑐𝑎𝑣 < 0 𝑜𝑟 𝑟𝑐𝑎𝑣 𝑖𝑠 𝑜𝑢𝑡𝑠𝑖𝑑𝑒 𝑡ℎ𝑒 𝑠𝑦𝑠𝑡𝑒𝑚 𝑤𝑎𝑙𝑙𝑠
𝑣𝑎𝑙𝑢𝑒 𝑂(𝑞, 𝑡) 𝑖𝑓  𝑇𝑐𝑎𝑣 < 𝑇𝑚𝑖𝑛,𝑇𝑐𝑎𝑣 > 𝑇𝑚𝑎𝑥, 𝑞𝑐𝑎𝑣 < 𝑞𝑚𝑖𝑛 𝑎𝑛𝑑 𝑞𝑐𝑎𝑣 > 𝑞𝑚𝑎𝑥 

 ( 15 ) 

Tcav and qcav are the temperature and heat flux boundary conditions at the cavity walls 

respectively. The {Tcav } array defines the temperatures of each boundary element along the 

cavity wall. If the boundary conditions of the cavity are also part of the unknown parameters, 

shown by equation 14, the optimization method becomes unstable without the use of the ‘α’ 

function, equation 15. This ‘α’ function requires the simplex method to confine its search within 

the limits that have been setup using educated guesses. In most cases, when there is no heat 

generation, the temperature within the medium should not reach temperatures higher or lower 

than that of the surface. Since the cavity is located within the medium, and is most likely filled 

with a material of much lower thermal conductivity, the heat flux values at this surface are very 

low relative to the heat flux within the medium. Educated guesses for the maximum and 

minimum heat flux values are chosen using these principles. Once these limits are exceeded, a 

value on the order of the temperature and flux calculations is added to the least squares function 

(LSF). This addition keeps the simplex optimizer away from those unstable values.  

 Logic behind choosing the initial N + 1 guesses is also addressed during the optimization 

technique. The user provides one educated initial guess for the geometric solution to the 
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problem. The optimizer then chooses the remaining initial guesses by scaling the geometry, and 

randomly adding mutations to the scale. The cavity geometry must fit within the medium, so a 

method for checking geometry stability is proposed. Points along the cavity wall must be 

contained within the medium, so it can be said that the angles made between each boundary 

element along the exposed surface will add to 2π. If the point lies outside the medium, this 

summation becomes zero. Figure 3 shows how these angles add up to 2π when the point is 

located within the medium and zero when the point is located beyond the medium. 

 

Figure 3: Left - graphical representation of logic employed to keep AGP points within medium. 
Right - point located beyond the medium. 

 

To calculate these angles appropriately, the connections between the points of the exposed 

surface and cavity walls are treated as vectors. Simple vector algebra states that the angle 

between any two rays can be expressed by equation 16. 
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                                                               cos(𝜃𝑖) = 𝑟𝑖+1∗𝑟𝑖
|𝑟𝑖+1||𝑟𝑖|

 ( 16 ) 

From equation 16, riand ri+1 are the successive vectors shown in Figure 3. 

 The convergence criteria of the simplex method consists of parameter comparison, and 

LSF residuals. As the simplex marches downhill, the N + 1 parameter sets begin to converge to a 

single set. Once the changes between each set reaches a tolerance set by the user, the 

optimization stops, and the solution is analyzed. If the solution did not yield a low residual 

between the Neumann conditions, the weighting parameters for the contraction, expansion, and 

reflection tools are tweaked. Once the residual condition is satisfied, the solution to the inverse 

geometry problem is found.  

 Multiple boundary condition sets (MBCS) can also be used to increase the resolution of 

the exposed surface without having to add more boundary element locations to the geometry. In 

a simple example, two boundary condition sets are used as shown in Figure 4. Two identical 

geometries are imposed with separate boundary conditions to increase the number of boundary 

conditions being minimized. Essentially two sets of boundary conditions are used to solve one 

inverse geometric problem. The new LSF looks quite similar to equation 13 with the exception 

of a second set of boundary conditions. Equation 17 defines the MBCS minimization functional. 

                      𝐿𝑆𝐹({𝑟})  = �∑ 1
𝑁𝑠𝑐

(𝑞𝑐 − 𝑞𝑚)𝑖2𝑁𝑒
𝑖=1 �

𝑆𝐸𝑇 1
+ �∑ 1

𝑁𝑠𝑐
(𝑞𝑐 − 𝑞𝑚)𝑖2𝑁𝑒

𝑖=1 �
𝑆𝐸𝑇 2

 ( 17 ) 

This technique is not restricted to two sets, and can be extended further with the implication of 

speed loss due to increased calculation times. Each set requires an additional forward problem 

solution per iteration. 
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Figure 4: Multiple boundary conditions sets experiment 
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NUMERICAL EXAMPLES 

Case 1: Boundary element method testing 

The geometry being tested is a hexagon with two interior holes. The geometry is split into 

16 constant elements, and a BEM solver is used to compute the heat flux at the boundaries as a 

result of forced temperature boundary conditions. See Figure 5 for this test geometry. 

 

Figure 5: Case 1 geometry of hexagon with two cavities 

 

To verify the BEM results, the calculated heat flux is compared to the actual imposed 

heat flux at each point along the boundary. The error in these calculations is due to the low 

resolution of the boundary elements. These comparisons are shown in Figure 6. As the figure 

shows, the difference between the calculated and imposed conditions are minimal, which proves 

that the BEM being used has successfully calculated the temperature field and boundary 

conditions. Higher resolution elements can be used to minimize the error, which is demonstrated 

in Case 2.  
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Figure 6: Case 1 analysis of error in flux calculations using BEM 

 

Case 2: Source and high resolution testing 

The geometry being tested is a solid annulus with 64 boundary elements. This high 

resolution is chosen to decrease the error that was encountered in the previous BEM testing in 

Case 1. This case also includes sources within the medium of the annulus. Figure 7 depicts the 

annulus geometry along with source locations within the medium. 
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Figure 7: Case 2 geometry of annulus with source locations 

 

The main purpose of this test is to confirm the BEM calculations involving point source 

locations within the medium. It is also interesting to see the decrease in calculation error when 

using higher resolution boundary elements. As Figure 8 shows, the error between the imposed 

and calculated flux boundary conditions is nearly non-existent.  

 

Figure 8: Case 2 analysis of error in flux calculations using BEM 
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Case 3: Cavity detection testing 

The cavity location is found by introducing a source into the medium, and optimizing the 

heat flux output of the measureable surfaces. In this example the outer surface and inner surface 

geometries are known and measureable. The cavity is then found by using a Nelder-Mead 

simplex method to optimize the location and strength of the test source. The following four 

figures (Figure 9, Figure 10, Figure 11 and Figure 12) depict the iterative steps taken to find the 

cavity.  

 

Figure 9: Case 3 first guess source locations 
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Figure 10: Case 3 third iteration source locations 

 

Figure 11: Case 3 twentieth iteration source locations 
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Figure 12: Case 3 final solution source locations 

 

In Figure 10, the first cluster of sources is thrown away from the geometry, and the 

second and third clusters begin to move toward the cavity. Figure 11 depicts the same 

movements as Figure 10. The first cluster is moving farther away, whereas the other two are 

moving toward the cavity. The last figure, Figure 12, verifies that the clusters have found their 

way into the cavity, and the first cluster has gotten so far away it no longer affects the solution. It 

should also be noted that by observing the calculated temperature and heat flow magnitude 

contour plots, Figure 13 and Figure 14, the cavity location can be determined. 
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Figure 13: Case 3 temperature field with source term of final solution 

 

Figure 14: Case 3 heat flow magnitude with source term of final solution 
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Case 4: Geometry reconstruction testing 

Once the center of the cavity is found using point source techniques, the surface of the 

cavity is generated. The cavity surface is created by guessing radial values of an anchored grid 

pattern using a periodic cubic spline interpolation. Points along the cubic spline are then selected 

and segmented into BEM surface elements. In this particular example, 32 elements have been 

created. The forward problem can now be solved using the anchored grid pattern as the interior 

cavity. The cavity geometrical parameters are then optimized using a Simplex method.  Figure 

15, Figure 16 and Figure 17 depict the iterative process 

 

Figure 15: Case 4 initial guess of cavity geometry 
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Figure 16: Case 4 intermediate iteration of cavity geometry 

 

Figure 17: Case 4 final solution of cavity geometry 
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In Figure 15, the initial guess for the geometry is much larger than the actual cavity. The 

splines in each figure were used to calculate the geometry surface using the cubic spline 

interpolation explained above. Figure 16 is one of the intermediate steps taken to optimize the 

cavity geometry. The solution is then verified in Figure 17. 

Case 5: Single cavity reconstruction experiment 

This next experiment involved realistic boundary conditions of both temperature and heat 

flux values.  An irregular shaped cavity was imposed with a very low constant heat flux at the 

surface. The outer boundary is insulated on the top and bottom walls, whereas the temperature is 

imposed at the left and right surfaces of the outer boundary. As in the previous example, the hole 

is found using point source techniques. Once the location is found, the surface generator takes 

over and optimizes the cavity geometry. The optimizer is initialized with two initial guesses as 

shown in Figure 18. The AGP splines are then used to generate the cavity surface and section 

into boundary elements. 
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Figure 18: Case 5 geometry and initial guess locations 

 

Figure 19: Case 5 optimization process 50% complete 
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Figure 20: Case 5 optimization process 75% complete 

 

Figure 21: Case 5 final solution, no noise in measurements 

 

After several iterations, the unknown cavity surface was found. Figure 19 and Figure 20 

depict the intermediate steps taken to arrive at the optimized solution. The final solution is shown 

in Figure 21, which is observed to have high accuracy. While the BEM is optimizing the 
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geometry based on surface heat flow measurements, it is also minimizing the temperature and 

heat flux contours. Figure 22 and Figure 23 show the difference between the initial guess and 

final solution temperature contours. The same can be said about the heat flux magnitude contours 

in both the initial guess and final solution heat maps in Figure 24 and Figure 25. 

 

Figure 22: Case 5 initial guess temperature plot 
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Figure 23: Case 5 final solution temperature plot 

 

Figure 24: Case 5 initial guess heat flow magnitude plot 
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Figure 25: Case 5 final solution heat flow magnitude plot 

 

Case 6: Single cavity reconstruction with noisy measurements experiment 

In practical applications where experiments provide the over-specified conditions 

required to solve the inverse problem, the exact boundary conditions cannot be measured 

exactly. To simulate these conditions noise was added to the exact boundary conditions on the 

exterior surfaces (the boundary conditions that would be measured with instrumentation). Three 

separate experiments were carried out to observe the behavior of resultant cavity geometry based 

on noisy measurements. First, one percent error was added to the flux boundary conditions and 

the final solution is shown in Figure 26. It is observed that there are some deviations from the 

correct cavity geometry, which are incurred by the noisy data. 
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. 

Figure 26: Case 6 with 1% noise in flux boundary conditions 

 

Second, a two percent error was added to the flux boundary conditions. Similar results were 

found and shown in Figure 27. As expected, the larger error measurements lead to larger 

deviations in the cavity geometry being optimized. It is also interesting to note that the largest 

deviations occur in the parts farthest from the surface.  As the cavity size reduces, or gets farther 

from the outer boundary, it becomes more difficult to detect due to its low effect on the heat 

signature. This is the motivation for the use of multiple boundary conditions to increase the 

resolution of the inverse problem algorithm as will be demonstrated in the last section of this 

chapter. 
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Figure 27: Case 6 with 2% noise in flux boundary conditions 

 

The last noise experiment involved one percent error in both the temperature and flux readings. 

The BEM optimizer successfully approximates the cavity geometry with small error as Figure 28 

implies. 

 

Figure 28: Case 6 with 1% noise in both the temperature and flux boundary conditions 
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Case 7: Multiple cavity reconstruction experiment 

Multiple cavities can also be discovered using the same principles previously discussed, 

but with multiple cavity surface generators. In this experiment, two cavities were placed inside 

an arbitrarily shaped object, as shown in Figure 29. Boundary conditions were then applied, and 

the remaining boundary conditions were found using BEM. The interior boundary conditions can 

also be unknown. Rather than assuming the cavities to be insulated and known, the boundary 

conditions can also be found by adding them as parameters to the simplex optimizer. The 

boundary conditions must be restricted to reasonable values to reach a stable solution.  

 

Figure 29: Case 7 initial guess of two cavity 80 parameter optimization 
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Figure 30: Case 7 final solution of 80 parameter optimization 

 

It is observed that the exact solution to this multiple cavity problem has not been found. 

A local minimum was found using the simplex method; however, as depicted in the Figure 30, 

this solution was not expected. Different methods for moving toward a global minimum are 

needed for multiple cavity problems that involve boundary condition optimization.  A genetic 

algorithm should be applied to solve this local minimum issue. This error is a result of the large 

number of parameters being optimized in the two cavity case. In this particular example, there 

are 80 parameters being optimized: 16 for the geometry, and 64 for the boundary conditions.  

Since the internal cavities do not provide much conductivity, the heat flow through the 

cavity can be closely approximated to zero. The 80 parameter problem has now been reduced to 

16 geometrical parameters, and the simplex method runs much smoother to find the global 

minimum. The problem being solved is shown in Figure 31. These particular boundary 

conditions are chosen to create a temperature field that will show large differentiations on the 
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boundaries due to interior cavities. The internal cavities are found using the simplex method and 

are shown in Figure 32. The calculated cavities are a close match to the test geometry that was 

set up as an experiment, but there are some deviations due to the approximations incurred from 

constant element BEM. Creating a higher resolution geometry would help to remove some of 

this error. Figure 33 shows steady convergence of the two cavity problem. The convergence 

criterion for this case was set to 10E-06. The final solution was found in 623 iterations using the 

Simplex method.  

 

 

Figure 31: Case 7 geometry and boundary conditions 
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Figure 32: Case 7 final solution of 16 parameter optimization 

 

Figure 33: Case 7 convergence plot of 16 parameter optimization 
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Case 8: Notch cavity reconstruction experiment 

Cavity geometries with non-circular shapes are also of interest when detecting unknown 

cavities. The star shaped anchored grid pattern (AGP) comes into question when the shape of the 

cavity has sharp edges, turns or corners. Figure 34 outlines the geometrical setup used to test the 

star shaped AGP against notch shaped cavities. The block is a 10x10 unit structure with 40 

boundary elements along the exposed surface. The exposed surface boundary conditions were 

chosen to create a temperature field that would be highly affected by the internal notch. The 

internal cavity is represented by 29 boundary elements with known adiabatic wall conditions. 

 

Figure 34: Case 8 experimental setup one 

 

 The shape optimization in this case did not accurately predict the shape of the notch. This 

error is due to the AGP shape itself. As the splines are trying to find their way to the correct 

solution, they end up crossing the actual cavity walls twice due to the sharp corner of the notch. 
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The AGP was successful in following the general shape of the notch, especially on the right side 

of the notch where there is no sharp corner. Figure 35 depicts the calculated cavity over the 

actual cavity. Star shaped AGP setups are not sufficient in predicting these types of shapes; 

however, they lend themselves to the idea of differently shaped anchored grid patterns. Antennae 

shaped patterns are proposed in Kassab et al [3] in their research involving elastostatic geometry 

optimization, much like the shape depicted in Figure 36. 

 

Figure 35: Case 8 final solution to the notch cavity search using one set of boundary conditions 

 

Figure 36: Antennae pattern anchored grid pattern concept 
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Case 9: Multiple boundary condition set optimization 

 Multiple boundary condition setups help to alleviate the error incurred by using star 

shaped anchored grid patterns. As discussed in the ‘solution procedure’ section, multiple 

boundary condition setups can be used to increase the resolution of the exposed boundary 

without adding more boundary elements. In case 9, the same notch geometry is used from case 8, 

as well as the boundary conditions for the first setup, Figure 34. The second boundary condition 

setup is displayed in Figure 37. The same geometry is used; however, the boundary conditions 

along the exposed surface have been changed to create a different thermal footprint for the 

optimizer to minimize. 

 

Figure 37: Case 9 experimental setup two 

 

 Figure 38 suggests the final solution to the cavity geometry in case 9 is much better than 

the case 8 solution. The star AGP correctly identifies the right portion of the notch, but it has 
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severe issues with the corner section of the notch. The interpolator compensates by cutting in and 

out of the correct geometry, but does not predict the sharp corner of the notch. As stated in case 

8, a different AGP design should be implemented when cavities of this shape are encountered. 

To properly assess the validity of the predicted geometry, the least squares functional can be 

analyzed by comparing its value to zero and the values being optimized. In this case, those 

optimized values are the flux conditions at the boundary. In case 8 the values stayed around 5.25, 

and in case 9 those values dropped to 1.25. For the sake of comparison, the cases that involved 

successful geometry reconstructions had least square values of 0.01 or less. 

 

Figure 38: Case 9 final solution to the notch cavity using multiple boundary condition sets when 
optimizing the cavity parameters 
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Case 10: MBCS using environmentally realistic boundary conditions 

 To further prove MBCS optimization techniques a more realistic boundary condition 

setup is used. Up to this point the boundary conditions that have been applied to the test 

geometries have been chosen to create distinct heat signatures which are easily detected at the 

surface. 

 

Figure 39: Case 10 boundary condition setup 
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If the cavity location or shape does not cause significant heat signature differences it may be 

difficult to locate. Hence, MBCS is proposed to solve this problem, as discussed in Case 9. These 

techniques can be extended to actual experiments, which would involve convective boundary 

conditions rather than imposed Cauchy conditions. The experimental setup involves the same 

10x10 unit square; however, the cavity has been moved to the corner to limit the sensitivity of 

the cavity’s effect along some of the square’s boundaries. Figure 39 displays the four different 

boundary condition setups that are used in this experiment. In all four setups a heat flux is 

applied to one side, while the other three sides are subjected to convection conditions at room 

temperature. Simply put, a heater is placed on one side of the square while the rest of the sides 

are free to interact convectively with its surroundings. The heater is then moved to the next side 

and the rest of the sides interact convectively. This procedure increases the sensitivity of the 

cavities effect on the boundaries, even with difficult cavity locations or poor boundary 

conditions. First, setup 1 and 2 are used to compute the cavity geometry using MBCS. Figure 40 

provides the results from this two boundary set problem. As the results indicate, the cavity 

geometry is successfully predicted at all edges except for top left side of the diamond. This error 

is a result of poor boundary condition setup with respect to the location and shape of the cavity. 

To prove the effectiveness of MBCS beyond two boundary condition sets, setups 1 to 4 are used 

to calculate the cavity geometry. Figure 41 depicts the four boundary set solution and the result 

speaks for itself. The cavity geometry is predicted with high accuracy due to increased resolution 

provided by the four sets of boundary conditions. Separately, each boundary condition set is 

inefficient in its use for optimization; however, when all four sets are combined the needed 

information is exceeded. 
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Figure 40: Case 10 two set MBCS optimization solution 

 

Figure 41: Case 10 four set MBCS optimization solution 
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CONCLUSION 

An automated algorithm for detecting cavities and reconstructing their shape has been 

successfully tested and used in hypothetical experiment setups. Boundary element code testing 

methods have also been explored and used to check the solver code used in these solutions. 

Constant elements were also proven to be accurate enough to detect the shape of the cavity 

through optimization by increasing the resolution of the boundary elements. Single and multiple 

cavity problems were introduced with simple and complex geometries to test the performance of 

the automated system. The system performed to expectations by successfully increasing the 

resolution of subsurface cavity geometry prediction. Multiple boundary condition set 

optimization also succeeded in increasing the resolution of the problem without adding boundary 

elements to the surface. Complicated cavity geometry and location difficulties have proven to be 

avoidable with MBCS. These techniques can be extended to 3-D geometries, and shows 

promising calculation speeds due to the low parameter counts being optimized.  

Unknown boundary conditions on the subsurface cavities were also explored in case 7 of 

this article, and proved to be troublesome for the Nelder-Mead simplex method. A more robust 

optimizer should be used in these unknown boundary condition problems to yield accurate 

results. The question of a unique solution arises in these problems, but they have been solved by 

adding penalty functions to the least squares functional.  
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