
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=ucgs20

Journal of Computational and Graphical Statistics

ISSN: 1061-8600 (Print) 1537-2715 (Online) Journal homepage: https://www.tandfonline.com/loi/ucgs20

Parameter Estimation in Hidden Markov Models
With Intractable Likelihoods Using Sequential
Monte Carlo

Sinan Yıldırım, Sumeetpal S. Singh, Thomas Dean & Ajay Jasra

To cite this article: Sinan Yıldırım, Sumeetpal S. Singh, Thomas Dean & Ajay Jasra
(2015) Parameter Estimation in Hidden Markov Models With Intractable Likelihoods Using
Sequential Monte Carlo, Journal of Computational and Graphical Statistics, 24:3, 846-865, DOI:
10.1080/10618600.2014.938811

To link to this article:  https://doi.org/10.1080/10618600.2014.938811

© 2015 The Author(s). Published by Taylor &
Francis.© 2015 Sinan Yıldırım, Sumeetpal S.
Singh, Thomas Dean, and Ajay Jasra.

Published online: 16 Sep 2015.

Submit your article to this journal Article views: 2075

View related articles View Crossmark data

Citing articles: 2 View citing articles 

https://www.tandfonline.com/action/journalInformation?journalCode=ucgs20
https://www.tandfonline.com/loi/ucgs20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/10618600.2014.938811
https://doi.org/10.1080/10618600.2014.938811
https://www.tandfonline.com/action/authorSubmission?journalCode=ucgs20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=ucgs20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/10618600.2014.938811
https://www.tandfonline.com/doi/mlt/10.1080/10618600.2014.938811
http://crossmark.crossref.org/dialog/?doi=10.1080/10618600.2014.938811&domain=pdf&date_stamp=2015-09-16
http://crossmark.crossref.org/dialog/?doi=10.1080/10618600.2014.938811&domain=pdf&date_stamp=2015-09-16
https://www.tandfonline.com/doi/citedby/10.1080/10618600.2014.938811#tabModule
https://www.tandfonline.com/doi/citedby/10.1080/10618600.2014.938811#tabModule


Parameter Estimation in Hidden Markov
Models With Intractable Likelihoods Using

Sequential Monte Carlo

Sinan YILDIRIM, Sumeetpal S. SINGH, Thomas DEAN, and Ajay JASRA

We propose sequential Monte Carlo-based algorithms for maximum likelihood esti-
mation of the static parameters in hidden Markov models with an intractable likelihood
using ideas from approximate Bayesian computation. The static parameter estimation
algorithms are gradient-based and cover both offline and online estimation. We demon-
strate their performance by estimating the parameters of three intractable models, namely
the α-stable distribution, g-and-k distribution, and the stochastic volatility model with
α-stable returns, using both real and synthetic data.

Key Words: Approximate Bayesian computation; Maximum likelihood estimation.

1. INTRODUCTION

The hidden Markov model (HMM) is an important statistical model used in many
fields including bioinformatics (Durbin et al. 1998), econometrics (Kim et al. 1998), and
population genetics (Felsenstein and Churchill 1996); see Cappé, Moulines, and Rydén
(2005) for a recent overview. An HMM is comprised of a latent process {Xt }t≥1 and an
observed process {Yt }t≥1. The latent process is a Markov chain with an initial density ηθ and
the transition density fθ , that is,

Xt ∈ X ⊆ Rdx , X1 ∼ ηθ (·), Xt |(X1:t−1 = x1:t−1) ∼ fθ (·|xt−1). t ≥ 2. (1)

It is assumed that ηθ (x) and fθ (x|x ′) are densities onX with respect to a dominating measure
denoted generically as dx. The observation at time t is conditionally independent of all
other random variables given Xt = xt and its conditional observation density is gθ (·|xt ) on
Y with respect to the dominating measure dy, that is,

Yt ∈ Y ⊆ Rdy , Yt |{xi}i≥1, {yi}i≥1,i �=t ∼ gθ (·|xt ), t ≥ 1. (2)
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The law of the HMM is parameterized by a vector θ taking values in some compact subset
� of the Euclidean space Rdθ .

In this article we focus on HMMs where the probability density gθ (y|x) of the obser-
vations is intractable. By intractable we mean that gθ (y|x) cannot be evaluated (or it is
computationally prohibitive to calculate). However, we are able to generate samples from
gθ (·|x) despite its intractability.

We will denote the actual observed random variables of the HMM as ŷ1, ŷ2, . . . and
assume that they are generated by some unknown θ∗ ∈ � which is to be estimated. The
maximum likelihood estimate of θ∗ given ŷ1:n is

θML = arg max
θ∈�

pθ (ŷ1:n),

where pθ (ŷ1:n) is the probability density, or the likelihood, of the observations ŷ1:n, and
from (1)–(2), is given by

pθ (ŷ1:n) =
∫
X n

ηθ (x1)gθ (ŷ1|x1)

[
n∏
t=2

fθ (xt |xt−1)gθ (ŷt |xt )
]
dx1:n. (3)

Even when X is a finite set, pθ (ŷ1:n) cannot be evaluated because gθ (y|x) is intractable.
There is a sizeable literature on the use of sequential Monte Carlo (SMC) methods, also
known as particle filters, to evaluate the gradient of pθ (ŷ1:n) with respect to θ , which
is subsequently used to compute its maximizer; see for example, the review in Kantas
et al. (2009). However, these methods require a tractable gθ (y|x) and they are not directly
applicable when this density is intractable. We thus propose new SMC-based maximum
likelihood estimation (MLE) algorithms to fill this void. We handle the intractablegθ (y|x) by
drawing on ideas from approximate Bayesian computation (ABC), an inference technique
initially developed for Bayesian models with an intractable likelihood; see Marin et al.
(2012) for a recent review. Our static parameter estimation algorithms are gradient based
and cover both offline (or batch) and online estimation.

Recently Ehrlich, Jasra, and Kantas (2013) proposed a gradient-based MLE algorithm for
HMMs with an intractable observation density gθ (y|x). The authors estimate the gradient,
with respect to θ , of the following approximation of the likelihood pθ (ŷ1:n) in (3)

Eθ

{
n∏
t=1

IBεŷt (Yt )

}
, (4)

where Bεŷi denotes the ball of radius ε centered at ŷi . (See Section 2 for more details on the
approximate likelihood (4).) Ehrlich, Jasra, and Kantas (2013) estimated the gradient of (4)
using a finite difference approximation where (4) itself, for various values of θ , is calculated
using SMC. The major advantage of our method over that of Ehrlich, Jasra, and Kantas
(2013) is that we characterize the gradient of (4) directly, by using available information
on how the intractable gθ (y|x) is simulated from, and subsequently approximate it using
SMC, thus avoiding the added error of a finite difference approximation. Our online MLE
algorithm is asymptotically unbiased (as our numerical results indicate) as the number of
particles increases whereas the same cannot be said for Ehrlich, Jasra, and Kantas (2013)
due to the finite difference approximation; their numerical results indicate a significant bias
that does not diminish with increasing data, even when pθ (ŷ1:n) can be calculated exactly
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as they illustrate for a linear Gaussian state-space model (see Ehrlich, Jasra, and Kantas
2013, Fig. 2). Also, as observed from the results in Ehrlich, Jasra, and Kantas (2013), the
variance of the parameter estimates of their recursive MLE algorithm does not diminish
with more data while ours does (see the discussion in Section 3.1).

Static parameter estimation for HMMs with intractable state and observation densities
have been addressed in a Bayesian context by Campillo and Rossi (2009). Campillo and
Rossi (2009) used the so-called convolution particle filter, which uses ideas from kernel
density estimation to replace the intractable densities needed for the weight evaluation in the
particle filter with their kernel estimates, to sequentially estimate the posterior distribution
of θ∗. While an SMC-based Bayesian approach can potentially produce good estimates
of θ∗ for short data lengths, at least for tractable models where standard particle methods
apply, particle degeneracy does bias the estimation results for long datasets (Andrieu,
Doucet, and Tadić 2005; Kantas et al. 2009). In contrast, our methods do give rise to
practically consistent estimators as our numerical results indicate.

Finally, we remark that MLE using ABC is studied in the recent work (Rubio and
Johansen 2013), but in a non-HMM setting where the likelihood of data ŷ given θ is
intractable. The authors form a kernel density estimate of the likelihood from θ samples
drawn from the ABC posterior distribution. They propose maximizing the kernel density
estimate as an approximation to MLE. Unlike Rubio and Johansen (2013), we consider the
HMM setting and our methods do not need samples of θ .

The remainder of this article is organized as follows. The theory that underpins our MLE
methodology is detailed in Section 2, and in Section 3 we describe its SMC implementation.
Numerical examples using both simulated and real datasets are given in Section 4. The
numerical work covers three intractable models, namely the α-stable distribution, g-and-k
distribution, and the stochastic volatility model with α-stable returns. Finally, Section 5
provides a discussion of other possible methods for parameter estimation in HMMs when
both state and observation densities are intractable.

2. THE ABC MLE APPROACH FOR PARAMETER ESTIMATION

The particle filter sequentially approximates the sequence of posterior densities
{pθ (x1:t |Y1:t = ŷ1:t )}t≥1 of the HMM {Xt, Yt }t≥1 using a weighted discrete distribution
with N support points forX1:t which are called particles. At each time t, the particles are re-
sampled according to their current weights, and then the resampled particles are propagated
independently of each other using a proposal transition density rθ (xt+1|xt ). The particles
are then reweighed to correct for the discrepancy between pθ (x1:t+1|Y1:t+1 = ŷ1:t+1) and
the law of the proposed particles which is pθ (x1:t |Y1:t = ŷ1:t )rθ (xt+1|xt ). This is standard
importance sampling and the assumption in the weight correction step is that the law of
each resampled particle at time t is pθ (x1:t |Y1:t = ŷ1:t ), which is an erroneous but pro-
gressively correct as N is increased (Chopin 2002; Crisan and Doucet 2002; Del Moral
2004). In the implementation of the particle filter the normalizing constants of the sequence
of target posteriors are not needed but calculating the new weights requires gθ (ŷ|x) to
be tractable. Del Moral (2004) showed that the weights of the particle approximation
of {pθ (x1:t |Y1:t = ŷ1:t )}t≥1 can be used to obtain an unbiased estimate of the likelihoods
{p(Y1:t = ŷ1:t )}t≥1. See the Appendix for an example code for a particle filter.
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Jasra et al. (2012) considered the problem of constructing an SMC approximation
of the filter pθ (xt |Y1:t = ŷ1:t ), which is the marginal of the particle approximation for
pθ (x1:t |Y1:t = ŷ1:t ), for an HMM with an intractable observation density gθ (y|x). Since
it is not possible to calculate the weights of the particle filter for such an HMM where
gθ (y|x) is intractable, they proposed a particle filter approximation for the extended HMM
{(Xt, Yt ), Y εt }t≥1 where the joint process {Xt, Yt }t≥1, which is now the latent process of the
extended HMM, is defined by (1) and (2) and the new sequence {Y εt }t≥1 is

Y εt = Yt + εVt , Vt ∼iid Unif
(
B1

0

)
, t ≥ 1, (5)

where Bry denotes the ball of radius r > 0 centered at y ∈ Rdy and Unif(B) is the uniform
distribution over the set B. Then, the density

pθ∗
(
xt |Y ε1:t = ŷ1:t

)
of the extended HMM is regarded as an approximation for pθ∗ (xt |Y1:t = ŷ1:t ) where ε >
0 reflects the error of the approximation and this error diminishes as ε → 0; see also Calvet
and Czellar (2012); Martin et al. (2014) for theoretical results on this approximation. Note
that pθ∗ (xt |Y ε1:t = ŷ1:t ) does not coincide with pθ∗ (xt |Y1:t = ŷ1:t ) because ŷ1:t obeys the
law (1)–(2) and not (5). Jasra et al. (2012) remarked that pθ∗ (xt |Y ε1:t = ŷ1:t ) is the ABC
approximation for the filter of an HMM. Furthermore, they showed it is straightforward to
approximate pθ∗ (xt |Y ε1:t = ŷ1:t ) with a bootstrap particle filter.

Consider now the extended HMM {(Xt, Yt ), Y εt }t≥1 specified by (1), (2), and (5) and
let pθ (Y ε1:n = y1:n) denote the probability density (or likelihood function) of the process
{Y εt }t≥1 evaluated at some y1:n ∈ (Rdy )n. (See (12) for the precise expression of this density.)
Dean et al. (2014) studied the theoretical properties of the following maximum likelihood
estimate of θ∗:

θεn = arg max
θ∈�

pθ
(
Y ε1:n = ŷ1:n

)
. (6)

(We remark that (4) is pθ (Y ε1:n = ŷ1:n) when the Lebesgue volumes of the balls
Bεŷ1
, . . . , Bεŷn are omitted from the latter.) Dean et al. (2014) called the procedure (6)

ABC MLE. (The use of the acronym ABC is to emphasis that it is the same approximate
likelihood which is being maximized here.) The bootstrap particle filter of Jasra et al. (2012)
provides an unbiased SMC approximation of the likelihood pθ (Y ε1:n = ŷ1:n) and this likeli-
hood may be maximized by evaluating the approximation over a grid of values for θ . This,
however, is clearly not practical as the dimension of θ increases, has no straightforward
extension for recursive estimation and is not an accurate convergent method.

Dean et al. (2014) showed that the ABC MLE (6) leads to a biased estimate of the
parameter vector θ∗ in the sense that as n → ∞, θεn will converge to some point θ∗,ε �=
θ∗ ∈ � and that this bias can be made arbitrarily small, that is, θ∗,ε → θ∗ as ε → 0. Dean
et al. (2014) showed that the bias is O(ε); Dean and Singh (2011) refined this to O(ε2). The
bias of ABC MLE is due to the fact that the observed sequence ŷ1, ŷ2, . . . is the outcome of
the law (2) for θ = θ∗ and not (5). Dean et al. (2014) suggested removing the bias of θεn in
(6) by adding noise to the real data and then computing the maximum likelihood estimate,
that is, let v1, . . . , vn be a realization of iid samples from Unif(B1

0 ) and let

yεt = ŷt + εvt , 1 ≤ t ≤ n. (7)
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Note that the noisy data yε1:n now obey the law of {Y εt }t≥1 when θ = θ∗. Therefore, the
procedure

θεn = arg max
θ∈�

pθ
(
Y ε1:n = yε1:n

)
, (8)

which will be called noisy ABC MLE from now on, can now produce a consistent estimator
of the parameter vector θ∗ as n → ∞. This result proved by Dean et al. (2014) can be
interpreted as the frequentist equivalence of Wilkinson’s observation that the ABC posterior
distribution is exact under the assumption of model error (Wilkinson 2013).

Finally, Dean et al. (2014) also remarked that the use of other types of noise in (5) is
possible without compromising the asymptotics of noisy ABC MLE, that is,

Y εt = Yt + εVt , Vt
iid∼ κ, t ≥ 1, (9)

where κ is a smooth centred density. (Accordingly, noisy ABC MLE in (8) is performed
with the noise corrupted observations (7) where now vi are realizations of iid samples
from κ.) As we show, a continuously differentiable κ is important for the development of
practical gradient-based MLE techniques. In this work we choose κ to be the probability
density of zero-mean unit-variance Gaussian random variable. Other choices are possible
(but not investigated) and our framework would still be applicable.

We remark that although the theoretical basis for ABC MLE was established in Dean et al.
(2014), the authors do not propose a practical methodology for implementing ABC MLE in
their work; this is indeed an important void to be filled. In this article we demonstrate how,
by using ideas from Poyiadjis, Doucet, and Singh (2011), both batch and online versions
of noisy ABC MLE can be implemented with SMC.

3. IMPLEMENTING ABC MLE WITH SMC

We assume that for all (x, θ ) ∈ X ×� there exist a distribution on some auxiliary space
U with a tractable density νθ (·|x) with respect to du and a function τθ : U × X → Y such
that one can sample from gθ (·|x) by first sampling U ∈ U from νθ (·|x) and then applying
the transformationU → τθ (U, x); that is, the law of τθ (U, x) is gθ (·|x). From this it follows
that the process {Y εt }t≥1 in (9) can be equivalently generated as

Y εt = τθ (Ut,Xt ) + εVt , Vt
iid∼ κ, t ≥ 1, (10)

where {Xt }t≥1 is the hidden state of the original HMM given by (1) andUt ∼ νθ (·|Xt ) for all
t. We will implement SMC- based MLE for the following HMM: Let {Zt := (Xt,Ut )}t≥1 be
the latent process and

{
Y εt

}
t≥1 in (10) be the observation process. The initial and transi-

tion densities for {Zt }t≥1 (with respect to the dominating measure dz = dxdu) and the
observation density of {Y εt }t≥1 (with respect to the Lebesgue measure on Rdy ) are

πθ (z) = ηθ (x)νθ (u|x), qθ (z
′|z) = fθ (x

′|x)νθ (u
′|x ′), hεθ (y|z) = 1

ε
κ

(
y − τθ (z)

ε

)
,

(11)
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where z = (x, u) and z′ = (x ′, u′). The density of the observed process Y ε1:n of this HMM
evaluated at some y1:n is

pθ (y1:n) :=
∫
Zn

πθ (z1)hεθ (y1|z1)

[
n∏
t=2

qθ (zt |zt−1)hεθ (yt |zt )
]
dz1:n, (12)

where Z = X × U . Note that pθ (·) in (12) is indeed the likelihood function pθ (Y ε1:n = ·) to
be maximized with respect to θ in ABC MLE in Section 2; see (6) and (8). Moreover, all
the densities declared in (11) are tractable and differentiable functions of θ (provided that
fθ , νθ , and τθ are differentiable with respect to θ ).

Henceforth, we will work exclusively with the HMM {Zt, Y εt }t≥1 defined in (11). As
discussed before, we corrupt the real measurements ŷ1, ŷ2, . . . with a single realization of
independent samples v1, v2 . . . from a θ -independent probability density κ , that is,

yεi = ŷi + εvi,

to obtain a realization of the observed process of the HMM {Zt, Y εt }t≥1.

3.1 GRADIENT ASCENT

One well-known MLE algorithm is the following iterative gradient ascent method which
updates the parameter estimate θj using the rule

θj = θj−1 + γj∇ logpθj−1 (yε1:n), (13)

where θ0 ∈ � is an arbitrary initial estimate. Here {γj }j≥1 is a sequence of step-sizes sat-
isfying the constraints

∑
j≥1 γj = ∞ and

∑
j≥1 γ

2
j ≤ ∞ so as to ensure that the algorithm

converges to a local maximum of logpθ (yε1:n). The term ∇ logpθ (yε1:n) is shorthand for the
Rdθ -valued vector

∇ logpθ
(
yε1:n

)
:= ∂ logpθ

(
yε1:n

)
∂θ

,

which is also called the score vector, and is given by Fisher’s identity (see Cappé, Moulines,
and Rydén 2005)

∇ logpθ
(
yε1:n

) =
∫
Zn

[
n∑
t=1

∇ log qθ (zt |zt−1) + ∇ loghεθ
(
yεt |zt

)]
pθ

(
z1:n|yε1:n

)
dz1:n (14)

with the convention that qθ (z1|z0) = πθ (z1) = ηθ (x1)νθ (u1|x1). Note that the method in
(13) uses the whole dataset yε1:n at every parameter update step, which makes it a batch
method. An alternative to it is the following online gradient ascent method which updates
the parameter estimate every time a new data point is received

θn = θn−1 + γn∇ logpθn−1

(
yεn|yε1:n−1

)
, (15)

where

∇ logpθn−1

(
yεn|yε1:n−1

) = ∇ logpθn−1

(
yε1:n

) − ∇ logpθn−1

(
yε1:n−1

)
. (16)

While the subscript θn−1 indicates that ∇ logpθ (yεn|yε1:n−1) is evaluated at θ = θn−1, a
necessary requirement for a truly online implementation is that the previous values of
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θ estimates (i.e., other than θn−1) are also used in the evaluation of ∇ logpθn−1 (yεn|yε1:n−1) (Le
Gland and Mevel 1997).

It is important to note that, for both the batch method (13) and the online method
(15), we require that the transition density of {Zt }t≥1 be tractable and differentiable with
respect to θ , which is precisely why we propose to work with {Zt, Y εt }t≥1 rather than
{(Xt, Yt ), Y εt }t≥1 whose state transition density contains the intractable gθ . (We discuss
suitable alternatives when the state transition density is intractable in Section 3.3.)

It is apparent from (13) and (15) that an SMC implementation of these MLE algorithms
hinges on the availability of a particle approximation of the score in (14). Poyiadjis, Doucet,
and Singh (2011) discussed two methods to estimate the score using the SMC approximation
of the full posterior pθ (z1:n|yε1:n). One method is nothing more than the substitution of the
law pθ (z1:n|yε1:n) in (14) with its particle approximation and has a cost, like the particle filter
itself, which is O(N ). We will refer to this estimate of the gradient as the O(N ) method
(Poyiadjis, Doucet, and Singh 2011, Algorithm 1). Due to resampling step of the particle
filter there is a lack of unique samples in the particle approximation of pθ (z1:m|yε1:n) for
m much smaller than n, which is called particle degeneracy in the literature. Poyiadjis,
Doucet, and Singh (2011) showed that the variance of this O(N ) score estimate, where
the variance is computed with respect to the particles being sampled while the observation
sequence is held fixed, grows quadratically with time. While this may not be an issue for
the batch method in (13), it is not suitable for online estimation (15) since the variance of
the resulting estimate of ∇ logpθn−1 (yεn|yε1:n−1) grows linearly with time n.

As an alternative to this standard O(N ) score estimate, Poyiadjis, Doucet, and Singh
(2011) propose an O(N2) estimate of the score computed using the same particle approxi-
mation to pθ (z1:n|yε1:n) which aims to avoid the particle degeneracy problem mentioned. We
will refer to this as the O(N2) method (Poyiadjis, Doucet, and Singh 2011, Algorithm 2).
The authors experimentally show that the variance of the score estimate now grows linearly
in time n while the variance of the resulting estimate of ∇ logpθn−1 (yεn|yε1:n−1) is time-
uniformly bounded (i.e., does not grow); a proof of the latter fact can be found in Del Moral,
Doucet, and Singh (2011). Therefore, the SMC implementation of ∇ logpθ (yεn|yε1:n−1) we
adopt for online estimation (15) is the O(N2) method.

Finally, we mention that the score (13) can also be estimated using a fixed-lag method
which would have a computational cost which is O(N ) and a variance which grows linearly
in time. However, there is the added error introduced by not smoothing beyond a certain
lag; see Kantas et al. (2009) for a review of static parameter estimation techniques.

3.2 CONTROLLING THE VARIANCE OF THE GRADIENT ESTIMATE

If the Monte Carlo estimates of the gradient terms have high or infinite variances, we
expect failure of the gradient ascent methods. We can stabilize the variance by transforming
the observed data, but without compromising the identifiability of the model, and then add
noise as discussed in noisy ABC. This approach to stabilizing the variance is novel as the
issue of infinite variance has not been reported before in the SMC literature.

This issue of the potential for infinite variance (prior to stabilizing by adopting a specific
transformation) can be perfectly exemplified by the problem of learning the parameters of a
distribution from a sequence of iid random variables which we now discuss. Let {Yt }t≥1 be
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an iid sequence with an intractable probability density gθ (y) on Y . For any θ , assume Yt can
be sampled from gθ by first generating Ut ∈ U from the density νθ (u) and then followed by
the application a certain transformation function τθ : U → Y , that is, the law of τθ (Ut ) is
gθ . (The α-stable process is generated precisely in this way; see Example 1) We are given a
realization ŷ1, ŷ2, . . . from θ∗ and the latter is to be estimated. Let yεt be the noise corrupted
observed sequence as in (9). In the context of the discussion in Section 3, the aim is to
maximize the likelihood of the noisy observations yε1:n (generated from the true model θ∗)
using the parametric family of HMMs {Ut, Y εt }t≥1. Since {Ut }t≥1 are iid the batch (13) and
online (15) update rules become, respectively,

θj = θj−1 + γj

n∑
t=1

∇ logpθj−1 (yεt ) and θn = θn−1 + γn∇ logpθn−1

(
yεn

)
.

hεθ in (11) becomes hεθ (y|u) = 1
ε
κ

(
y−τθ (u)

ε

)
and

∇ logpθ (y
ε) = ∫

Y
[∇ log νθ (u) + ∇ loghεθ (y

ε |u)
]
pθ (u|yε)du, (17)

where pθ (u|yε) ∝ hεθ (y
ε |u)νθ (u). Therefore, ∇ logpθ (yεn) can be estimated using an N-

sample Monte Carlo approximation to pθ (u|yεn), for example, with either MCMC or impor-
tance sampling. One important point to note about this iid case is that the O(N2) method
becomes O(N ).

We now calculate the variance of the Monte Carlo estimate of (17) at θ = θ∗ given
N iid samples from pθ (u|yεn). (Note that in the numerical examples we actually use
importance sampling to sample from pθ (u|yεn) but the following calculation is done as-
suming iid samples are available for illustrative purposes.) Dropping the index t, given
a noise corrupted measurement Y ε generated from the true model θ∗, and iid samples

U1, . . . , UN
iid∼ pθ∗ (u|Y ε), an estimate of ∇ logpθ∗ (Y ε) is

1

N

N∑
i=1

1

ε2
∇τθ∗ (Ui)[Y

ε − τθ∗ (Ui)] + ∇ log νθ∗ (Ui).

We are interested in the variance of this quantity with respect to the law of (U1:N, Y
ε).

We consider the case where ∇ log νθ∗ (U ) has a finite second moment; for example, see
the example to follow. Then, the sum above has a finite second moment if and only
if ∇τθ∗ (Ui) [Y ε − τθ∗ (Ui)] has a finite second moment with respect to the joint law of
(Ui, Y ε). One can show that

Eθ∗
[{∇τθ∗ (Ui)[Y

ε − τθ∗ (Ui)]}2
] = ε2Eθ∗ [{∇τθ∗ (Ui)}2]. (18)

If the second moment of ∇τθ∗ is infinite (or very high), we may circumvent this instability
problem by transforming the actual observed process from θ∗ using a suitable one-to-one
function ψ : Y → Ys prior to adding noise. That is, we replace (9) with the following
transformed noise corrupted process

Y εt = ψ(Yt ) + εVt , Vt
iid∼ κ, t ≥ 1. (19)

The conditional density hεθ (y|u) becomes

hεθ (y|u) = 1

ε
κ

(
y − ψ[τθ (u)]

ε

)
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and the right-hand side of (18) now is ε2Eθ∗ [{∇ψ(τθ∗ (Ui))}]. (Note that this transformation
can cause a loss of efficiency due to “squeezing” observations in a smaller interval and
rendering the noisy data less informative about the original samples, hence θ∗.) In this
article we use ψ = tan−1 throughout, and in the following example we show how (18) is
infinite but subsequently stabilized with this transformation.

Example 1. (The α-stable distribution) Let A(α, β, μ, σ ) denote the α-stable distribu-
tion. The parameters of the distribution,

θ = (α, β, μ, σ ) ∈ � = (0, 2] × [−1, 1] × R × [0,∞),

represent the shape, skewness, location, and scale, respectively. One can generate a random
sample fromA(α, β, μ, σ ) by generatingU = (U1, U2), whereU1 ∼ Unif (−π/2, π/2) and
U2 ∼ Exp (1) are independent, and setting

Y = τθ (U ) = στα,β (U ) + μ.

The mapping τα,β is defined in Chambers, Mallows, and Stuck (1976)

τα,β (U ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
Sα,β

sin[α(U1 + Bα,β)]

[cos(U1)]1/α

(
cos[U1 − α(U1 + Bα,β )]

U2

)(1−α)/α

, α �= 1

X = 2

π

[(π
2

+ βU1

)
tanU1 − β log

(
U2 cosU1
π
2 + βU1

)]
, α = 1,

where

Bα,β = tan−1
(
β tan πα

2

)
α

Sα,β =
(

1 + β2 tan2 πα

2

)1/2α
.

Although it is hard to show for α and β, we can show that

Eθ

[{
∂

∂σ
τθ (U )

}2
]

= Eθ [{τα,β(U )}2] = ∞

unless α = 2. Therefore, it is not desirable to run the gradient ascent method for the process
{Y εt }t≥1 with Y εt = Yt + εVt since the variance of the gradient estimate will be infinite.
Instead, we use the transformation ψ = tan−1, that is, Y εt = tan−1(Yt ) + εVt to make the
gradient ascent method stable. One can indeed check that for the parameter σ

Eθ

[{
∂

∂σ
ψ[τθ (U )]

}2
]

= Eθ

[{
τα,β (U )

1 + τθ (U )2

}2
]
< ∞.

We also verify numerically in Section 4 that the gradients with respect to the other param-
eters α, β are stabilized with ψ = tan−1 (while we can show that Eθ [{∂τθ (U )/∂μ}2] = 1).

3.3 OTHER MLE METHODS FOR HMMS WITH AN INTRACTABLE DENSITY

Although not as general as the gradient ascent MLE approach, the expectation-
maximization (EM) algorithm may be available for some models, at least for a part of
the parameters in θ , if the joint density pθ (z1:n, y

ε
1:n) belongs to an exponential family. Both
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O(N ) and O(N2) batch and online EM algorithms can be devised using SMC; details of
such algorithms can be found in Cappé (2009) and Del Moral, Doucet, and Singh (2009).

There are other gradient MLE methods in the literature that are available for implement-
ing noisy ABC MLE and we have discussed the technique of Ehrlich, Jasra, and Kantas
(2013) in the introduction. One advantage of their finite difference method is that it is
essentially a gradient-free technique as it bypasses having to calculate the derivatives with
respect to θ of the state transition and observation densities of the HMM and thus can cope,
without modification, with an intractable state transition density. Another gradient-based
method that uses SMC to approximate the gradient of the log-likelihood without the need to
calculate the derivatives of the HMMs densities is the iterated filtering algorithm of Ionides,
Bhadra, and King (2011). In particular, one can use iterated filtering for {(Xt, Yt ), Y εt }t≥1 or
{(Xt,Ut ), Y εt }t≥1 to estimate ∇ logpθ (yε1:n). However, the method does not have an exten-
sion to online estimation. Another downside is that the algorithm requires an increasing
number of particles versus iteration for convergence.

Coquelin, Deguest, and Munos (2009) studied an HMM with a tractable observation
density gθ (y|x) but an intractable state transition density fθ (x ′|x). Assume one can generate
from fθ (·|x) by sampling U fromμθ (·|x) and using a differentiable functionFθ : X × U →
X such that Fθ (U, x) ∼ fθ (·|x). The gradient of the log-likelihood in such HMMs can
be estimated using the infinitesimal perturbation analysis (IPA) approach proposed by
Coquelin, Deguest, and Munos (2009), provided that μθ (·|x), Fθ (u, x), and gθ (y|x) are
differentiable with respect to θ as well as the state variable x. We can straightforwardly
adopt the IPA approach with our noisy ABC MLE to deal with a fully intractable model,
where both the state transition and the observation densities are intractable. However, IPA
is a path space method and suffers from particle degeneracy. This will lead to the variance
of the estimate of the score in (14) increasing quadratically in time like the O(N ) method in
Poyiadjis, Doucet, and Singh (2011). As the authors mentioned, fixed-lag smoothing could
be use to control this variance growth but at the cost of a small bias.

4. NUMERICAL EXAMPLES

In this section we demonstrate the performance of the gradient ascent methods described
in Section 3 on the iid α-stable and g-and-k models as well as the stochastic volatility model
with α-stable returns.

4.1 MLE FOR IID α-STABLE RANDOM VARIABLES

We first consider the problem of estimating the parameters of an α-stable distribution
A(α, β, μ, σ ) (developed in Example 1) from a sequence of iid samples. Several methods
for estimating parameter values for stable distributions have been proposed, including a
Bayesian approach based on ABC; see Peters, Sisson, and Fan (2011). In this example we
consider estimating these parameters using the online gradient ascent method to implement
noisy ABC MLE. Since the only discontinuity in the transformation function τθ for gener-
ating an α-stable random variable is at α = 1, we can safely use the gradient ascent method
for estimating θ∗ with α∗ being not in the close vicinity of 1.
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Figure 1. Histograms of estimates of ∇ logpθ (yεi ), 1 ≤ i ≤ 105 computed at θ = (1.5, 0.2, 0, 0.5) where yεi =
tan−1(ŷi ) + 0.1vi , ŷi

iid∼ A(1.5, 0.2, 0, 0.5), vi
iid∼ N (0, 1).

As recommended in Example 1, we transform the observations using ψ = tan−1 for
stability. To check, numerically, whether the transformation in (19) with ψ = tan−1 stabi-
lizes the gradients, we can look at the empirical distribution of the Monte Carlo estimates
of ∇ logpθ (Y εi ) after transforming the observations Yi . For this purpose, we generate
105 samples ŷi from A(1.5, 0.2, 0, 0.5) and vi from κ for i = 1, . . . , 105, and for each
sample we estimate ∇ logpθ (yεi ), where yεi = tan−1(ŷi) + εvi , with ε = 0.1, using self-
normalized importance sampling with N = 1000 samples generated from νθ . Figure 1
shows the histograms of the Monte Carlo estimates of ∇ logpθ (yεi ) which confirms that the
transformation does stabilize the gradients.

The outcome of online gradient ascent method to implement noisy ABC MLE for the
same dataset is shown in Figure 2. A trace plot of the sequence of gradient estimates (as θ is
adjusted) is also shown as further confirmation of the stability of the estimated gradients.

The next experiment contrasts the ABC MLE and noisy ABC MLE solutions for the
same dataset. The results in Figure 3 compare the online θ∗ estimates averaged over 50

Figure 2. Online estimation of α-stable parameters (top figure) from a sequence of iid random variables using
online gradient ascent MLE and the corresponding online gradient estimates of the incremental likelihood (bottom
figure). θ∗ = (α∗, β∗, μ∗, σ ∗) = (1.5, 0.2, 0, 0.5) is indicated with a horizontal line. At the bottom: Gradient of
incremental likelihood for the α-stable parameters.
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Figure 3. ABC MLE and noisy ABC MLE estimates of the parameters of the α-stable distribution (averaged over
50 runs) using the online gradient ascent algorithm for the same dataset. For noisy ABC MLE, a different noisy
data sequence obtained from the original dataset is used in each run. θ∗ = (α∗, β∗, μ∗, σ ∗) = (1.5, 0.2, 0, 0.5) is
indicated with a horizontal line.

independent runs for both algorithms. Each run used the same dataset but a new realization
of particles. The outcome of this comparison is that ABC MLE yields biased estimates for
the shape and skewness parameters α and β whereas the bias is not present in noisy ABC
MLE.

4.2 MLE FOR g-AND-k DISTRIBUTION

The g-and-k distribution is defined by the following parameterized quantile (or inverse
distribution) function Qθ

Qθ (u) = F−1
θ (u) = A+ B

[
1 + c

1 − e−gφ(u)

1 + e−gφ(u)

]
(1 + φ(u)2)kφ(u), u ∈ (0, 1), (20)

where φ(u) is the uth standard normal quantile. The parameters

θ = (g, k,A,B) ∈ � = R × (−0.5,∞) × R × [0,∞)

are the skewness, kurtosis, location, and scale, and c is usually fixed to 0.8. Therefore,
one can generate from the g-and-k distribution by first sampling U ∼ Unif(0, 1) and then
returning τθ (U ) = Qθ (U ) (Rayner and MacGillivray 2002).

Bayesian parameter estimation for the g-and-k distribution using ABC was recently
proposed by Fearnhead and Prangle (2012). We consider online MLE for θ using the noisy
ABC likelihood. Note thatQθ in (20) is differentiable with respect to θ and so the gradient
ascent method is applicable. To avoid gradients with very high variances resulting from
the factor

(
1 + φ(u)2

)k
in Qθ , similar to the case of α-stable distribution, we transform

the actual observations using ψ = tan−1 and add noise with ε = 0.1. In our experiments
it was noticed that our method performs better when the location parameter A is closer
to 0, which must be a result of the nonlinear behavior of the transformation function
tan−1. Therefore, whenever possible, it is suggested to estimate A using some (possibly
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Figure 4. Mean and the variance (over 50 runs) of noisy ABC MLE estimates using the online gradient ascent
algorithm. Same noisy data sequence used in each run. θ∗ = (g∗, k∗, A∗, B∗) = (1, 0.5, 10, 2) indicated by
horizontal lines.

heuristic) method (such as using the mean of the first few samples) as a preprocessing step,
subtract the heuristically estimated value Â of A from the samples, perform MLE on the
(approximately) centred data, and then add back Â to the estimated location obtained by
the MLE algorithm.

Figure 4 shows the results of online gradient ascent method (15) to implement noisy
ABC MLE for estimating θ∗ = (1, 0.5, 10, 2). In the figure we observe the mean and
log-variance of 50 runs on the same noisy transformed data sequence. (Therefore, the
accuracy and the variance of the estimates correspond to the performance of the Monte
Carlo approximation of the gradients ∇ logpθ (yεi ).) Self-normalized importance sampling
is used withN = 1000 samples generated from νθ . From the results in Figure 4, we can see
that the bias introduced by the finite number of particles is negligible forN = 1000 and that
the variance of the algorithm reduces in time suggesting the convergence of the estimates
in each run to essentially the true parameter values.

The next experiment shows how the noisy ABC MLE can be implemented with the
batch gradient ascent method (13) when the dataset is too small for the online method
to converge. A detailed study of MLE for g-and-k distribution can be found in Rayner
and MacGillivray (2002) where MLE methods based on numerical approximation of the
likelihood itself are investigated. We generated 500 datasets of size n = 1000 from the
same g-and-k distribution with θ∗ = (2, 0.5, 10, 2) and executed the batch gradient ascent
method with ε = 0.1 on each dataset. Again, self-normalized importance sampling is
used with N = 1000 samples. The upper half of Figure 5 shows the estimation results
with noisy ABC MLE versus number of iterations for a single dataset. Note that for
short datasets, θ∗ is usually not the true maximum likelihood solution. The lower half of
Figure 5 shows the distributions (histograms over 20 bins) of the converged maximum
likelihood solution for θ∗. The mean and variance of the estimates for (g, k,A,B) are
(2.004, 0.503, 9.995, 1.996) and (0.0151, 0.0021, 0.0052, 0.0213), respectively. Compa-
rable values for these moments at this particular θ∗ and data size n were also obtained in
Rayner and MacGillivray (2002, Table 3).
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Figure 5. Top: Noisy ABC MLE estimates of g-and-k parameters from a sequence of 1000 iid random vari-
ables computed using the batch gradient ascent algorithm. θ∗ = (g∗, k∗, A∗, B∗) = (2, 0.5, 10, 2) indicated by
horizontal lines. Bottom: Empirical distributions of the estimates over 500 datasets.

4.3 THE STOCHASTIC VOLATILITY MODEL WITH SYMMETRIC α-STABLE RETURNS

The stochastic volatility model with α-stable returns (SVαR) is a financial data model
(Lombardi and Calzolari 2009). The hidden process {Xt }t≥1 represents the log-volatility
in time whereas the observation process {Yt }t≥1 is the log return values. The model for
{Xt, Yt }t≥1 with parameters θ = (α, φ, σ 2

x ) is

Xt = φXt−1 + St , St ∼ N (
0, σ 2

x

)
, Yt = exp(Xt/2)Wt, Wt ∼ A(α, 0, 0, 1).

This model is an alternative to the stochastic volatility model with Gaussian returns to
account for an observed series which is heavy-tailed and displays outliers. For more dis-
cussion on the model as well as a review of methods for estimating the static parameters
of such models, see Lombardi and Calzolari (2009) and the references therein. These ex-
isting methods for parameter estimation in SVαR are batch and suitable for only short
data sequences. We simulated a scenario where a very long data sequence generated from
this model with θ∗ = (1.9, 0.9, 0.1) is being received sequentially. We used online gradient
ascent method (15) to find the noisy ABC MLE solution for this data sequence, where the
O(N2) method (Poyiadjis, Doucet, and Singh 2011, Algorithm 2) with N = 500 particles
was used to estimate (16). Again, we transform the actual observations with the function
ψ = tan−1 and then add noise. Figure 6 shows the online estimates of θ∗ for 2 × 106 data
samples. The estimates seem to converge after around 5 × 105 samples and are accurate.
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Figure 6. Online estimation of SVαR parameters using online gradient ascent algorithm to implement noisy
ABC MLE. θ∗ = (α∗, φ∗, σ 2,∗

x ) = (1.9, 0.9, 0.1) indicated with horizontal lines.

4.4 OFFLINE NOISY ABC MLE FOR REAL DATA

We now consider a real data experiment, where the data are the daily GBP-DEM
exchange rates between 01.01.1987 to 31.12.1995 containing 3287 samples o1, . . . , o3287;
these data are considered in Lombardi and Calzolari (2009). Log-returns r1:3286 are obtained
by rt = 100 log(ot+1/ot ), 1 ≤ t ≤ 3286. The observations, ŷ1:3285, are the residuals of the
AR(1) process that is fitted to r1:3286. (We used the same model and dataset as Lombardi and
Calzolari (2009) to compare our results with theirs.) The SVαR model above is assumed
for ŷ1:n, where the hidden process has an extra parameter δ:

Xt = φXt−1 + δ + St , St ∼ N (
0, σ 2

x

)
,

hence, θ = (α, φ, σ 2
x , δ).

We implemented noisy ABC MLE using batch gradient ascent (13) with the
O(N ) method (Poyiadjis, Doucet, and Singh 2011, Algorithm 1) with N = 2000 parti-
cles to approximate (14). To measure the variability of the estimates as a function of the
realization of added noise and the ε value, we repeated the estimation with ε = 0.05,
ε = 0.1, and ε = 0.2, separately, where for each ε we ran the method with 10 different
added noise realizations. For all runs, we terminated the batch gradient ascent algorithm
after 20, 000 iterations.N = 2000 particles were used to evaluate the gradients at each iter-
ation. Figure 7 (top) shows the estimates versus number of iterations, where the trajectories
for different noisy datasets for the same value of ε are superimposed. Also, the bottom
part of Figure 7 shows the boxplots of the estimates of θ∗ for different ε values, where the
boxplots for each ε were created from the converged estimates of θ∗ (the average of the
estimates at the last 1000 iterations) obtained from 10 different noisy datasets generated
using that value of ε. For the ease of explanation, we will denote them as

θ
(1)
0.05, . . . , θ

(10)
0.05; θ

(1)
0.1, . . . , θ

(10)
0.1 ; θ

(1)
0.2, . . . , θ

(10)
0.2 , (21)



SMC PARAMETER ESTIMATION IN HMMS WITH INTRACTABLE LIKELIHOODS 861

Figure 7. Top: results for noisy ABC MLE implemented by the O(N ) batch gradient MLE algorithm for three
different values of ε. Estimates vs number of iterations for different noisy datasets are superimposed for the same
value of ε. Bottom: boxplots of the batch ABC MLE estimates vs ε. The boxplot for each ε was created from
θ

(1)
ε , . . . , θ

(10)
ε , the converged estimates obtained from the trace plots at the top.

where θ (i)
ε is the converged estimate obtained from the ith noisy dataset that was generated

using ε.
Figures 7 suggests a tradeoff between accuracy in the estimates and computational

efficiency in the following sense. A smaller value of ε is expected yield less biased estimates
(with respect to the maximizer of the true likelihood of the real data) with less variance (with
respect to the added noise) provided that the maximization arg maxθ∈� pθ (Y ε1:n = yε1:n) is
performed exactly, that is, with infinitely many N and infinitely many number of parameter
updates. On the other hand, smaller ε results in the decrease of the effective sample size in
the SMC algorithm and hence increases the variance of the SMC estimate of the gradient
of the log-likelihood. The effect of this on our results is the larger variance in the estimates
obtained with ε = 0.05 compared to those obtained with ε = 0.1 (which would eventually
be smaller if the maximization were performed exactly). In conclusion, for a fixed batch
data size and a given amount of computational resource, one must optimize the tradeoff
between the (average) accuracy and the variability in the estimates, for which the effective
sample size of the particles could be used as a rule of thumb.

Lombardi and Calzolari (2009) fit the same model to the same dataset
using the indirect estimation method and their estimates of θ∗ was θind :=
(1.7963, 0.9938, 0.09402,−0.0076), which is slightly different to our results. Both meth-
ods (theirs and ours) aim for the maximum likelihood solution, which suggests that it would



862 S. YILDIRIM ET AL.

Figure 8. Left: Logarithm of the 10 different SMC estimates (with N = 20,000) of pθ (Y ε1:n = ŷ1:n), ε = 0.01.
Each color represents a different ε value which was used to obtain the noisy datasets and the ABC MLE estimates
from them. For the blue, red, and black points, their horizontal axis locations correspond to the α components of
θ

(1)
ε , . . . , θ

(10)
ε for ε = 0.05, ε = 0.1, and ε = 0.2, respectively. Similarly, the horizontal axis location of the black

points is the α component of the estimate of θ∗ obtained using the indirect estimation method. Right: Empirical
cumulative distribution plots for model checking: for each ε value, θ is taken to be the mean of θ (1)

ε , . . . , θ
(10)
ε .

be sensible to compare the likelihood of the true data sequence for the estimates of θ∗ ob-
tained from both methods. However, this is not possible since neither pθ (Y1:n = ŷ1:n) nor
an unbiased Monte Carlo estimator of it is available. Instead, we compared the unbiased
SMC estimates of the ABC likelihoods pθ (Y ε1:n = ŷ1:n) using an ε small enough to make the
effect of model mismatch negligible (see the discussion of model mismatch error in Section
2) for comparison and N large enough to ensure that the variability of the SMC estimate of
the likelihood across the particle realizations is not too much; for these reasons we chose
ε = 0.01 and N = 20,000. (See the Appendix for the details of the implementation.) The
left-hand side of Figure 8 shows the logarithms of the 10 independent SMC estimates of
pθ (Y ε1:n = ŷ1:n) calculated at the value of each estimate in (21). For comparison, the results
are shown with 10 independent SMC estimates of pθ (Y ε1:n = ŷ1:n) at θ = θind. The figure
shows that noisy ABC MLE has improved the results of Lombardi and Calzolari (2009)
for all values of ε that we used, in the sense that almost all the estimates resulting from the
ABC MLE method yields a higher likelihood of the dataset to which the model is fitted.

Finally, we perform a simple model check for by considering the conditional cumulative
distribution functions

Fθ,t (ŷt ; ŷ1:t−1) := Pθ (Yt ≤ ŷt |Y1:t−1 = ŷ1:t−1), t = 1, . . . , n

at the values of θ∗ estimated using noisy ABC MLE and indirect estimation in Lombardi
and Calzolari (2009). Since {Fθ,t (Yt ;Y1:t−1)}1≤t≤n are iid uniform random variables on
[0, 1] (Diebold, Gunther, and Tay 1998), we expect the probability plot (for the uniform
distribution) of the population {Fθ,t (ŷt ; ŷ1:t−1)}1≤t≤n to approximate the y = x line under
the hypothesis that ŷ1:n is generated from the SVαR model {Xt, Yt }t≥1. However, we are
unable to perform these calculations for the original HMM due to the intractability of
gθ (y|x). Instead, we use the modified HMM {(Xt, Yt ), Y εt }t≥1 but with ε small enough for
one to neglect the difference between the two models (as in the previous experiment). The
probability plots at the right-hand side of Figure 8 were generated from the SMC estimates



SMC PARAMETER ESTIMATION IN HMMS WITH INTRACTABLE LIKELIHOODS 863

of

Fε,θ,t (ŷt ; ŷ1:t−1) := Pθ (Y
ε
t ≤ ŷt |Y ε1:t−1 = ŷ1:t−1), t = 1, . . . , n,

(see the Appendix for details), with ε = 0.01 and N = 20,000, for four different values
of θ : the first three are the means of θ (1)

ε , . . . , θ
(10)
ε for ε = 0.05, ε = 0.1, and ε = 0.2,

respectively, and the fourth one is θind. The probability plots are all close to the y = x line
which justifies the SVαR model; they also indicate that there is more agreement between
the SVαR model and the data when θ is the noisy ABC MLE solution than when it is the
maximum likelihood solution of the indirect estimation method.

5. DISCUSSION

In this article, we have presented SMC implementations of MLE for HMMs with an
intractable observation density. We showed how SMC versions of both batch and online
gradient ascent algorithms can be used to implement ABC MLE and noisy ABC MLE and
how a further transformation of the data can stabilize the variance of the SMC gradient
estimate. We have shown that SMC implementations of the methodology in Dean et al.
(2014) is practical and yields convergent and accurate estimates of θ∗ even when the exact
procedures in Dean et al. (2014) are replaced by their SMC counterparts.

We have implemented noisy ABC MLE in our experiments. In general though there is
a choice to be made between ABC MLE or noisy ABC MLE, which may be resolved by
taking into account the mean squared error (MSE) of the estimate of θ∗. For long datasets,
noisy ABC MLE may be more appropriate since it removes the asymptotic bias of ABC
MLE (which is O(ε2) (Dean and Singh 2011)) so that the MSE is dominated roughly by
1/n times the variance of the central limit theorem (CLT). Noisy ABC MLE suffers from
an O(ε2) increase in CLT variance over the ideal MLE procedure (Dean et al. 2014). For
shorter datasets, ABC MLE would be more appropriate owing to the fact that the bias of
ABC MLE is O(ε2) and we may end up introducing more error to the estimate of θ∗ (in
the MSE sense) by adding noise to the data.

APPENDIX

Algorithm A.1. SMC for estimating pθ (Y ε1:n = ŷ1:n) and {Fε,θ,t (ŷt |ŷ1:t−1)}1≤t≤n
Begin with pθ (ŷ0) = 1. For t = 1, . . . , n,

• Prediction: for i = 1, . . . , N , sample z(i)
t = (x(i)

t , u
(i)
t ) as follows:

– If t = 1, sample x(i)
1 ∼ ηθ (·), u(i)

1 ∼ νθ (·|x(i)
1 )

– If t > 1, sample x(i)
t ∼ fθ (·|x̄(i)

t−1), u(i)
t ∼ νθ (·|x(i)

t ).

• Weighting: for i = 1, . . . , N , calculate the unnormalized weights w(i)
t = hε(ŷt |z(i)

t )

• Likelihood estimate: Update the likelihood estimate by pNθ (ŷ1:t ) = pNθ (ŷ1:t−1) 1
N

∑N

i=1 w
(i)
t .
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• Conditional cumulative distribution function: Calculate

FN
ε,θ,t (ŷt ; ŷ1:t−1) = 1

N

N∑
i=1

w(i)
t

∫ ŷt

−∞
hε(y|z(i)

t )dy

• Resampling: Sample {x̄(i)
t }1≤i≤N from {x(i)

t }1≤i≤N using the weights {w(i)
t }i=1,...,N .
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