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ABSTRACT OF DISSERTATION 

 

 

 

POLYMORPH FORMATION OF TOLFENAMIC ACID: AN INVESTIGATION OF 

PRE-NUCLEATION ASSOCIATION 

 

The majority of pharmaceutical products are formulated as solids in the crystalline state. 

With the potential to exist in different crystalline modifications or polymorphs, each solid 

form bears its own physical and chemical properties, influencing directly bioavailability 

and manufacturability of the final dosage form. In view of the importance of crystalline 

form selection in the drug development process, it is imperative for pharmaceutical 

scientists to work arduously on various aspects of polymorphism, ranging from 

fundamental understanding of the phenomenon at the molecular level to practical 

utilization of a specific crystalline form. One common feature of organic crystals is the 

existence of distinct molecular conformations in different polymorphic structures, known 

as conformational polymorphism. Conformational polymorphs are routinely observed in 

drug development, produced when crystal growth conditions vary. Crystallization from 

solution involves nucleation and crystal growth, the mechanisms that influence the 

polymorphic outcome. The embryonic solute aggregate has been recognized to play a 

critical role in dictating the final crystal structure, and solution conditions are also known 

to drastically influence the self-association behavior of solute molecules during 

crystallization, affecting crystal packing of organic molecules. For the crystal growth of 

conformational polymorphs, changes in molecular conformation not only determine the 

growth kinetics, but also influence the nature and strength of interactions present in the 

crystal structures. How conformation and intermolecular interaction affect each other 

underlines the intricacy and the wonder of crystal growth of the organic. Thus, the overall 

goal of this research is to provide the fundamental understanding of the extent to which 

solution conditions influence the molecular conformation in the solid-state of a model 

drug, tolfenamic acid. By combining experimental studies with advanced computational 

tools, this dissertation offers novel insights into solution species during pre-nucleation 

and molecular packing of conformational polymorphs of tolfenamic acid. In-depth 

understanding of the underlying connection between molecular conformation and crystal 

packing will help advance the knowledge required for rational control of crystal growth.  
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Chapter 1 – Introduction 

Of the many states of matter in which a substance can reside, the solid state is the most 

commonly encountered and thus the most relevant phase in pharmaceutical development. 

The majority of pharmaceutical materials, either the active pharmaceutical ingredients 

(APIs) or the excipients, are produced and stored as solids. Additionally, most common 

drug products are manufactured and formulated as solid-dosage forms, such as tablets 

and capsules. Drugs for parenteral application are formulated as lyophilized products and 

dry powder inhalers are becoming popular for delivery of respiratory products.
1,2

 Solid 

oral dosage forms offer greater chemical stability than liquid formulations, low 

manufacturing costs, high throughput, and patient compliance.  

Based on the order of molecular packing, solids are classified into two major classes of 

crystalline forms and amorphous forms. In the crystalline state, molecules arrange into a 

highly regular fashion.
1
 This molecular order extends in three dimensions over short and 

long ranges.  In the amorphous state, on the other hand, only short-range order is found in 

neighboring molecules, and this regularity extends over distances of 1-10 nm. Crystalline 

forms are the focus of this dissertation. Most pharmaceutical products on the market, like 

most formulations in development, are in the solid crystalline form. Crystalline solids 

usually are selected and manufactured as APIs for several reasons, including purity, 

better physical and chemical stability, and ease of handling. This, however, does not 

mean that pharmaceutical solids, specifically crystalline solids, do not present their own 

challenges. Different crystalline forms of the same compound can exist and are termed 

polymorphs. An overview of polymorphism of organic crystals as it pertains to the 
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pharmaceutical industry, including current challenges and problems faced by 

pharmaceutical scientists, follows.       

1.1 Polymorphism 

Many drug substances and related organic compounds can exist as two or more 

crystalline phases that have different arrangements and/or conformations of the molecules 

in the crystal lattice,
3
 giving rise to the phenomenon of polymorphism. Polymorphism 

was recognized as early as 1822 from crystal morphologies of inorganic crystals.
4
 

Certainly by the 1960s, an increasing realization of the importance of polymorphism had 

emerged within the pharmaceutical community.
5
 Because polymorphs have different 

internal crystal structures, they may differ significantly in their physical and chemical 

properties.
1,6

 Diamond, graphite, and fullerenes are polymorphic forms (denoted 

allotropes) of carbon all exhibiting very different properties as a result of the distinct 

packing of the carbon atoms within the crystal structure. Cocoa butter can crystallize in at 

least five different crystal structures affecting the perception of the fine quality of 

prepared chocolate.
7
 These are but a few examples to emphasize the effect of differences 

in crystal structure on the properties of a solid. 

Attempts to estimate the frequency of polymorphism in pharmaceutical organic 

compounds revealed that approximately 80 percent of marketed drug molecules exist in 

multiple polymorphic forms.
8
 Another survey of 245 organic compounds reported that 

half were polymorphic.
9
 Regardless of the statistical percentages, the results support the 

oft-quoted statement by McCrone that the number of polymorphs discovered for each 

compound is proportional to the time and effort spent in research on that compound.
10
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Thus, it is not surprising that the widely used analgesic ibuprofen had shown no evidence 

of polymorph behavior, until a recent discovery under a wide range of crystallization 

conditions led to a second form.
11

 Yet drug polymorphism is a widespread phenomenon 

and continues to receive extensive academic and industrial attention, as highlighted by 

many books
1,3,8,12

 and special journal issues
13-16

 that are devoted to this topic. 

Given the strong interest in and importance of multiple crystalline forms, it is not 

surprising that considerable efforts would be made to predict the possible existence of 

polymorphs. The ability to predict the number of crystalline forms that can be expected in 

a given case does not yet exist, although not for lack of effort.
17

 The last two decades 

have seen enough of an increase in computer power to make the computational prediction 

of organic crystal structures a practical possibility, but polymorph prediction is still a 

long-term goal.
18

   

1.1.1 Conformational Polymorphism 

One common feature of organic crystals is the existence of distinct molecular 

conformations in different polymorphic structures, known as conformational 

polymorphism.
19

 The energy difference among polymorphs of an organic molecule can 

be 2 kcal/mol or even lower.
19,20

 This similarity in energy allows for conformationally 

flexible molecules to adopt different molecular arrangements in the various crystal 

structures. Conformational polymorphs are routinely produced when crystal growth 

conditions vary. The existence of distinctive molecular conformations in different 

polymorphic structures represents a unique opportunity for understanding the relationship 

between the structure of a material and the properties in question. 5-methyl-2-[(2-

nitrophenyl)amino]-3-thiophenecarbonitrile, known as ROY, is a conformationally 
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flexible molecule, which assumes distinctive molecular conformations in various packing 

arrangements.
21

 ROY has been crystallized in at least 10 polymorphs, seven with solved 

structures and three whose structures have not been solved. ROY crystals differ in color. 

Its crystal color is associated with the molecular conformation adopted by the constituent 

molecules in each crystal structure.   

1.1.2 Disappearing and Concomitant Polymorphism 

The interest in polymorphism arises from the opportunity to investigate subtle structure-

property relationships, since the solid-state properties of a material are closely linked to 

its three-dimensional crystal structure. Polymorphism is a source of both fascination and 

frustration. The latter derives from the difficulty in obtaining a specific polymorphic form 

consistently and reproducibly ‒‒ so-called disappearing polymorphs.
22

 The phenomenon 

of disappearing polymorphism has been explained in terms of kinetic and thermodynamic 

considerations.
22

 Initially, a kinetically favored crystal form may be produced as long as a 

more stable crystal is not isolated. If a thermodynamically more stable polymorph 

crystallizes, then the ability to obtain the metastable form may be compromised. There 

are well-documented cases
23,24

 of crystal forms that were observed over a period of time 

and not thereafter, as they were displaced by more stable polymorphs. Often, 

unintentional seeding is a factor in the phenomenon of disappearing polymorphs.
3
 Once a 

new form appears, the presence of seeds of that form may make the crystallization of the 

previously obtained polymorph very difficult under the same conditions. A seed may not 

necessarily be composed of the same molecule as the compound to be crystallized. Dust 

or other foreign particles can act as seeds in promoting crystallization. In any case, the 

phenomenon suggests a loss of control over the crystallization process. Substantial efforts 
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thereby have been devoted to the design of consistent and reliable crystallization 

processes to advance the trial-and-error experimentation. Real-time analysis using on-line 

sensors has become valuable in increasing crystal product quality as well as reducing the 

time to production. Various spectroscopic methods, such as attenuated total reflectance-

Fourier transform spectroscopy and Raman spectroscopy coupled with fiber optics, have 

been used for on-line monitoring during the operation of crystallization processes.
25,26

 

The conditions of a crystallization process can often lead to the production of multiple 

polymorphs called concomitant polymorphs
27

 due to an overlap of the occurrence 

domains for different polymorphs. The domain that allows solid forms to exist 

concomitantly is rarely known, as many growth conditions (i.e., solvent, supersaturation, 

temperature, and cooling) influence the crystallization outcome. Crystallization in 

polymorphic systems is governed by a combination of thermodynamic and kinetic 

factors. As such, the appearance of concomitant polymorphs may arise either because 

specific thermodynamic conditions prevail or because the kinetic processes have 

equivalent rates. A proper understanding of the underlying fundamentals of the processes 

leading to multiple solid forms could help in two main ways. First, chemists and chemical 

engineers could develop a more robust process for consistent isolation of a single, pure 

solid form; second, formulation chemists could select the appropriate crystal form based 

on structural and thermodynamic information. 

1.1.3 Thermodynamic Aspects of Polymorphism 

Polymorphs of an organic crystal have different energies and thermal stabilities. The 

thermodynamic stability relationship between different phases of a compound is 

governed by the Gibbs free energy (G), which is defined as: 
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           (1.1) 

where H is the enthalpy; T is the temperature; and S is the entropy. At a given 

temperature, the polymorph with the lowest free energy is the stable polymorph. There is 

only one thermodynamically stable polymorph under a given temperature and pressure, 

while the others are referred to as metastable forms. One important distinction is whether 

one form can transform reversibly to another at the so-called thermodynamic transition 

point or temperature. At the thermodynamic transition temperature two polymorphs have 

the same stability. Energy-temperature diagrams are commonly used to describe the 

thermodynamic behavior of polymorphs (Figure 1.1). Two crystalline forms are classified 

as enantiotropes if a reversible transition temperature is located below the melting 

temperatures of both polymorphs (Figure 1.1a). Below the transition temperature, Form I 

is more stable because the free energy of Form I is lower than that of Form II. In such a 

case, any transformation from the higher free energy form (Form II) to the lower free 

energy form (Form I) is exothermic below the thermodynamic transition temperature. 

Above the transition temperature, Form II is the stable solid phase. A polymorphic 

system is monotropic if the transition temperature is above the melting points of both 

polymorphs and the phase transformation can take place only in one direction. 

Throughout the temperature range, Form I is more stable (Figure 1.1b).     

A plot of the Gibbs free energy difference (ΔG) against the absolute temperature (T) 

gives complete and quantitative information on the stability relationship of 

polymorphs.
28,29

 The Gibbs free energy change and its temperature dependence can be 

experimentally determined from melting data (melting temperature and enthalpy of 

TS - H G 
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fusion). Thermodynamic rules also have been developed by Burger and Ramberger
30,31

 to 

qualitatively determine the enantiotropic or monotropic nature of the relationships 

between polymorphs. These rules are referred to as the heat of fusion and heat of 

transition rules and are based on calorimetric measurements. Other guidelines reported in 

literature include the density and infrared rules, but they are not generally applicable due 

to several notable exceptions.
31

 

In thermodynamic terms, only at the transition temperature can polymorphs have equal 

free energy and coexist in equilibrium; at any other temperature there will be a tendency 

to transform to the most stable structure because of the thermodynamic drive toward 

minimizing the free energy of the system. This implies that mixtures of two polymorphs 

have limited lifetimes, with transformation kinetics playing a role in those lifetimes.  
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Figure 1.1. Free energy diagrams for enantiotropic (a) and monotropic (b) polymorphic 

systems. G is the Gibbs free energy, H is the enthalpy, and T is the temperature. 

Subscripts I, II, and liq refer to polymorph I, polymorph II, and liquid phase, respectively, 

while subscripts t and m refer to transition and melting temperatures, respectively. 

(Adapted from Burger and Ramberger).
31
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1.1.4 Polymorph Transformations 

The physical stability of crystalline solid forms depends on environmental conditions. 

During product development, crystalline solids may be exposed to solvents, mechanical 

stress, or changes in temperature and humidity, each of which can induce phase 

transformations. As such, it is critical to identify the solid phases and to recognize the 

transitions between them under relevant conditions. A mechanistic understanding of 

phase transformations can facilitate rational formulation design and selection of robust 

processes to ensure consistent product manufacturing and performance.   

The rearrangement of molecules into a new structure during phase transformation may or 

may not involve a solvent or vapor phase. Considering a solid-solid physical transition, a 

four-step mechanism has been proposed: (a) molecular loosening in the initial phase; (b) 

formation of an intermediate solid solution; (c) nucleation of the new solid phase; and (d) 

growth of the new phase.
32

 In general, phase transitions via solid-state mechanisms are 

influenced by factors such as environment (e.g., temperature, pressure, and relative 

humidity), the physical characteristics of the crystal (e.g., crystal habit, size, and presence 

of defects), and the presence of impurities.  

If crystals grow from and remain in contact with solution, a phase transformation likely 

takes place via solution by dissolution and recrystallization.
33,34

 Solution-mediated phase 

transformation is a common and effective strategy to transform high-energy, metastable 

forms to more stable polymorphs, particularly in cases in which concomitant 

polymorphism
27

 occurs as the more stable phase grows at the expense of the less stable 

form. The phase transformation process involves three main steps: (a) dissolution of the 

metastable phase; (b) nucleation of the stable form; and (c) crystal growth of the stable 



10 

 

phase.
35

 Phase transformation in solution is encompassed by Ostwald’s Rule of Stages,
36

 

which describes a step-wise transformation from the metastable phase to a more stable 

form. The conversion is driven by the difference in free energy between the metastable 

and stable solid phases, which is generally reflected as the difference in solubility 

between the two phases. When a metastable polymorph is suspended in a solvent, 

dissolution proceeds to its solubility limit. Meanwhile, the dissolved solute creates a 

driving force for the crystallization of the stable polymorph. As such, the metastable form 

transforms into the stable polymorph via dissolution and crystal growth processes.  

The extent of conversion depends upon the amount dissolved with time, which in turn is 

related to the solubilities of the forms. Eventually the system reaches its 

thermodynamically most stable phase, when the stable polymorph is the only one that is 

present in the final suspension. 

1.2 Pharmaceutical Relevance and Implications of Polymorphism 

Crystal polymorphism is especially relevant to pharmaceutical development. The 

arrangement or packing of the molecules in a crystal can and does lead to alteration in the 

physical, chemical, and mechanical properties of the solid.
1,6

 Drug properties vital to the 

development of a quality drug product are bioavailability and solid-state stability. 

Solubility and dissolution rate are physical characteristics directly related to 

bioavailability. Differences in solubility may have implications on the absorption of the 

active drug from its dosage form
37

 by affecting the dissolution rate and possibly the mass 

transport of the molecules. Higher solubility and faster dissolution rate can lead to 

measurable increases in bioavailability
38

 and presumably therapeutic efficacy. However, 
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a solid form with higher solubility or faster dissolution rate is metastable and tends to 

convert to a thermodynamically more stable polymorph over time, as discussed in the 

previous section. The perceived physical and chemical instability of metastable forms, 

leading to inconsistent product quality, has limited their use in drug products. 

Development of a metastable crystal form can affect the pharmaceutical performance of a 

drug product, resulting in failures in a marketed product. A well-known example of the 

importance of controlling the polymorphic form is the antiretroviral drug Ritonavir.
39

 A 

more stable and less soluble crystalline phase appeared in the formulation that failed 

dissolution testing. Ultimately, the pharmaceutical product was withdrawn from the 

market because the manufacturing process was no longer able to consistently and reliably 

produce the desired polymorph. The product was then reformulated using the most stable 

polymorph. 

Despite the potential benefits of higher solubility associated with metastable forms, they 

are seldom the candidates of choice for formulation development.
2
 In general, significant 

resources are spent in the early development process to find the thermodynamically most 

stable polymorph.   

Selection of a desirable crystal form is an important step in the initial stage of drug 

development and is required to be in line with the quality-by-design initiatives 

encouraged by the Food and Drug Administration (FDA) and other regulatory agencies.
40

 

Polymorph screening is an essential activity. The intent is to uncover all possible 

crystalline forms and select an optimal solid form suitable for development. However, it 

is necessary to be aware that polymorph transformations may still occur in common 
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pharmaceutical processes (i.e., milling, wet granulation, drying, and compression), even 

when a stable crystal form is selected.
41

    

Because of the significance of polymorphism in the drug development process, numerous 

experimental observations have been made, stimulating interest in various topics ranging 

from practical utilization of a specific crystal form to fundamental understanding of the 

phenomenon. There has been great progress in controlling the crystal growth process in 

order to selectively obtain a desired polymorph or inhibit the growth of an undesired 

one.
42

 To gain control over the polymorph formation, an understanding of crystal growth 

is crucial. Therefore, the fundamentals of crystallization are discussed extensively in the 

next section. It is important to provide a general overview of nucleation of crystals from 

solution and to present challenges and limitations that led to focusing the research, 

conducted for the purpose of this dissertation, towards the early events of nucleation.    

1.3 Nucleation 

Crystallization from solution involves nucleation and growth. Nucleation starts from the 

formation of small embryos of a new crystalline phase in a supersaturated solution. A 

free energy penalty is generally associated with the appearance of the nuclei, because of 

the creation of the solid surface. Overcoming the nucleation energy barrier dynamically 

depends on supersaturation as well as molecular packing of nuclei. A solute will remain 

in solution until a sufficiently high level of supersaturation is developed to induce 

spontaneous nucleation. The extent of this supersaturation is referred to as the metastable 

zone width. In the concentration-temperature relationship (Figure 1.2), the lower line is 

the equilibrium solubility of the solute while the upper line is the metastable limit, which 
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is defined as the boundary of stability of a solution. Supersaturated solutions are thereby 

classified as either labile (if spontaneous nucleation occurs) or metastable (if it does 

not).
43

 In thermodynamic terms, a supersaturated solution is the one in which the solute 

chemical potential is higher than that of the crystalline solute. 

Early events of nucleation play a decisive role in determining the resultant crystal 

structure.
44,45

 A current viewpoint is that solute molecules may form supramolecular, pre-

nucleation species, which act as the precursors of crystal growth.
46

 The process of 

nucleation is complex in terms of theoretical description and experimental observation. 

The size of nuclei and the stochastic nature of the process make measurements of the 

actual event challenging; yet, nucleation has been recognized and described by various 

kinetic models, which can provide valuable insight into the nucleation process. 
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Figure 1.2. Schematic concentration-temperature diagram showing the equilibrium 

solubility curve (solid line) and the metastable zone limit (dashed line). (Adapted from 

Mullin)
43

 

 

1.3.1 Classical Nucleation Theory 

Classical nucleation theory (CNT) has been widely used in explaining nucleation 

kinetics.
47-49

 In a supersaturated solution, the formation of a new phase requires a free 

energy change (ΔG), which is given by the sum of the free energy change needed to 

create a new surface (ΔGs) and the free energy change for the phase change (ΔGv), 

according to the equation: 
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            (1.2) 

The change in surface free energy increases with the interfacial tension (γ) between the 

solid crystal surface and the surrounding solution, as well as the surface of the nucleus. 

The surface energy change is to be added to the system and is thus positive. On the other 

hand, the free energy change for the phase transformation is negative because the 

chemical potential of the crystalline phase is less than that of the solute in solution and is 

proportional to the volume. Therefore, for a spherical nucleus with radius r, the total free 

energy change depends on the competition between a decrease in the volume free energy 

change, which favors growth, and an increase in the surface free energy change, which 

favors dissolution, as shown in Figure 1.3. In the initial stage of nucleus formation, at a 

very small radius, the surface free energy term dominates over the volume free energy 

term and acts to destabilize the nucleus. As a consequence, the nucleus is unstable and 

tends to dissolve. However, at a sufficiently large radius, the energy reduction from the 

volume term becomes higher than the energy increase from the increased surface area. 

Under these conditions, the total free energy decreases continuously and growth becomes 

energetically favorable, resulting in the crystal formation. The radius where this transition 

occurs is known as the critical radius (rc) and the free energy change at the critical radius 

is called the activation barrier for nucleation (ΔGcrit).  
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Figure 1.3. Free energy diagram for nucleation. (Adapted from Mullin)
43

 

 

The rate of nucleation is expressed by the Arrhenius equation: 

           (1.3) 

where J is the rate of nucleation, which gives the number of nuclei formed per unit time 

and per unit volume; k is the Boltzmann constant; T is the absolute temperature; and A is 

the pre-exponential factor, which represents the number of molecules per unit volume 

(N0) multiplied by the frequency at which the nuclei become supercritical and transform 
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into crystals (ν0).
50

 In the case of nucleation from condensed phases the attachment 

frequency (ν0) is related to the diffusion process, according to the equation:
49

 

(1.4) 

where υ is the molecular volume; D is the monomer diffusion coefficient; C is the 

monomer concentration in the bulk solution; and n* is the number of molecules in the 

critical radius nucleus.   

Using the Gibbs-Thomson equation, ΔGcrit can be expressed as: 

           (1.5) 

where υ is the molecular volume; γ is the solid-liquid interfacial free energy; and S is the 

supersaturation, defined as the ratio of the actual solution concentration to the 

equilibrium solubility of the corresponding crystalline form. Note that as supersaturation 

increases, the free energy barrier to nucleation decreases, and in turn the rate of 

nucleation increases. 

In principle, the described theory has been derived by considering homogeneous 

nucleation, which occurs in the volume of ideally pure solutions (i.e., solutions 

containing only solvent and solute molecules). It is nonetheless notoriously difficult to 

avoid heterogeneous nucleation, which takes place in solutions containing impure 

molecules and/or foreign microparticles that can provide active centers for nucleation. In 

addition, the walls of a container can serve as surfaces for heterogeneous nucleation. The 

thermodynamic approach characterizes crystal growth by macroscopic quantities of 
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surface and bulk free energies, taking no account of any molecular features of a growing 

system. It assumes that the formation of embryos takes place by the addition of one 

monomer at a time. Because nucleation of the new phase is the result of fluctuations that 

bring together sufficient numbers of molecules to exceed the critical size, only the size 

criterion is used to decide whether aggregates become critical. Furthermore, CNT can 

neither identify nor be used to study the different pathways leading from solution to solid 

crystal.
51

 The solution-to-crystal phase transformation involves changes in both density 

and periodic structure. CNT assumes that the assembly of molecules proceeds in an 

ordered array as a result of simultaneous fluctuations in density and structure. As such, 

the molecular structure of a nucleus is the same as that of the final crystal. However, 

when a crystal’s embryo first appears, it may differ from the eventual bulk equilibrium 

phase, and subsequent changes to the new periodic structure may take place only during 

later stages of growth.
51

 

There are instances in which a crystal’s embryo is not the equilibrium phase that 

resembles the bulk crystal, simply because from a kinetic standpoint the energy barrier 

leading to a less stable, more disordered state is lower than the one leading to the most 

stable state. 

CNT regards nucleation of a metastable polymorph as bearing a smaller surface energy 

and subsequently overgrowing the most stable form (i.e., Ostwald’s Rule of Stages).
36

 

Yet there are cases of crystallization in which the most stable forms appear first.
52,53

 

According to CNT, once an embryo is formed it is committed to a particular polymorph. 

Yet there are cases in which multiple forms are produced simultaneously.
27

 Therefore, the 

situation as applied to polymorphic systems is by no means as clear as might be inferred 
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from CNT. Recent studies suggest that pre-nucleation aggregates or clusters exist in 

solution and may be structurally different from individually solvated solute 

molecules.
45,54

   

1.3.2 Two-Step Nucleation Model 

Recognition of the existence of pre-nucleation aggregates, as well as recent 

crystallization kinetic studies, have set the stage to move beyond CNT.
55,56

 

Computational simulations
57,58

 and experimental studies of proteins
55,59,60

 imply the 

possibility that nucleation comprises at least two stages: aggregation of solute molecules 

into a disorderly packed ensemble and subsequent reorganization of such a cluster from 

which crystals nucleate (Figure 1.4). 

Formation of a transient phase prior to transforming to the packing structure adopted by 

the bulk is a commonly observed feature, not only by macromolecular systems,
61

 but also 

by relatively small molecules.
62,63

 Indeed, the crystallization of calcium carbonate at 

room temperature in a pure solution proceeds by the nucleation of an amorphous 

precursor phase that later transforms to its lower energy crystalline counterpart.   
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Figure 1.4. Schematic diagram of the two-step nucleation model compared to the 

classical nucleation model. (Adapted from Erdemir et al.)
60

 

 

The applicability of the two-step mechanism was further deduced by non-photochemical 

laser-induced nucleation studies of glycine aqueous solutions.
64

 As a result of intense 

laser pulses shone on supersaturated solutions, the nucleation rate increased; in addition, 

depending upon the laser polarization state, different glycine polymorphs (γ and α) 

preferentially nucleated. These observations imply alignment of molecules in existing 

pre-nucleation clusters in the solution, thus aiding the clusters in organizing into a 

crystal-like entity. If the nuclei form by successive aggregation of molecules in an 

ordered manner as proposed by CNT, induced alignment of molecules would not cause a 

significant change in the structure of already ordered aggregates, nor lead to the 

crystallization of distinct polymorphs.  

A kinetic model has been developed to describe the two-step nucleation mechanism.
65

 

Unlike the kinetic model of CNT, the kinetic model of the two-step mechanism accounts 

for a correct temperature dependence of the nucleation rate. The incorrect temperature 

dependence of CNT can be explained by two physical features that are omitted from 
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CNT.
66

 First, the interfacial free energy of a nucleus should depend on curvature. In 

contrast, the interfacial free energy of a nucleus is considered to be the same as that of an 

infinite planar surface. Second, the nucleation barrier should vanish at the metastable 

limit, where the solution loses stability.  

The nucleation rate law of the two-step mechanism is based on the assumption that in the 

supersaturated solution an intermediate disordered cluster is formed with a temperature-

dependent and concentration-dependent rate, u0(C,T). This ensemble can dissociate back 

into the solution with rate u1(T) or transform into an ordered crystal nucleus with rate 

u2(T). The process can be described by the energy landscape picture (Figure 1.5). The 

probability of finding the system in state i = 0, 1, or 2 at time t is Pi(t); then a parameter τ 

that determines the mean time to create one crystalline nucleus in a steady-state process is 

defined as: 

           (1.6) 

Thus, the parameter τ for the transition from state 0 to state 2 is given by: 

           (1.7) 

The rates u0, u1, and u2 depend on temperature as: 

           (1.8) 

Therefore, the steady-state nucleation rate (J) can be calculated by: 
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                                 (1.9) 

where U0, U1, and U2 are pre-exponential factors that account for formation and decay of 

the transient cluster and formation of the ordered crystalline nucleus, respectively. G0, G1, 

and G2 represent the energy barriers required for formation of the disordered cluster, 

decay of the disordered cluster, and formation of an ordered crystalline nucleus, 

respectively.  

 

 

Figure 1.5. Free energy along the pathway for nucleation of crystals from solution. G0, 

G1, and G2 are the energy barriers for formation of the intermediate cluster, decay of the 

disordered cluster, and formation of an ordered crystal nucleus. (Adapted from Pan et 

al.)
65
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A free energy advantage may be gained by forming a transient cluster and subsequent 

crystallizing, instead of following the classical route directly from individual solute 

molecules to the formation of structured crystalline nuclei.
67

 Correspondingly, the 

nucleation rate is only determined by the assembling kinetics of transient clusters.
68

 Such 

a theorem contradicts the paradigm of CNT.
56,69

 

The two-step nucleation theory helps explain nucleation kinetics. Its applicability relies 

on the availability of disordered clusters in the homogenous solutions prior to nucleation. 

While such clusters have been demonstrated for several protein systems and for calcium 

carbonate solutions, it is likely that not all solutions would support the existence of such a 

transient phase with poorly defined properties allowing the nucleation of crystals within 

them. The main criticism of the two-step nucleation model is the physical meaning of the 

transient, disordered phase. Since this model does not consider the molecular restructure 

in the intermediate cluster, no insight into formation of distinct crystalline forms is 

gained.
69

 Therefore, the use of this kinetic model will not help address how growth 

conditions (i.e., solvent, additives, and trace impurities) can affect crystal growth. From a 

dynamic perspective, association of solution species to form pre-nucleation aggregates is 

considered an important initial step. Nonetheless, formation of a crystalline phase may 

occur through successive aggregation of pre-assembled growth units, rather than the 

monomer addition model, as suggested by CNT, or the structural organization within the 

disordered phase, as proposed by the two-step nucleation model.
54
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1.4 Mechanistic Understanding of Polymorph Formation  

1.4.1 Pre-Nucleation Association 

Pre-nucleation aggregates may not necessarily be randomly packed; rather, they may bear 

a resemblance to the structure adopted by the subsequently crystallized solid phase. The 

concept of pre-nucleation aggregates was promoted by Etter
44

 and Weissbuch.
45

 

Molecules self-assemble into various states of association in the solution phase; the most 

stable (i.e., most populated) association of molecules gets carried out in the 

crystallization process. This has been reported in the growth of 2,6-dihydroxybenzoic 

acid crystals.
70

 It was found that carboxylic acid dimers were present predominately in 

toluene from which a dimer-based crystal form was produced, while polymeric associated 

species appeared to dominate in chloroform, leading to a hydrogen-bonded catemer 

observed in the harvested crystal structure. Similar behaviors were observed for tetrolic 

acid.
71

 Hydrogen-bonded dimers were present in chloroform, giving rise to a dimeric 

polymorph; dimers were absent in ethanol, from which a catemer-based crystal was 

obtained. 

Molecular simulation approaches, which were applied to study the early stages of 

molecular association of tetrolic acid, supported the experimental observations.
72

 Weak 

interactions (i.e., low solvation free energy) between the solvent and tetrolic acid 

molecules prompted two solute molecules to assemble into a hydrogen-bonded cyclic 

dimer. This explained why crystals obtained from chloroform pack into a dimer-based 

structure. As solute-solvent interactions became stronger (i.e., high solvation free energy) 

the formation of dimer motifs from two solute molecules was unfavorable. As such, 

strong solute-solvent interactions caused tetrolic acid molecules to crystallize into a 
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catemer-based structure. Similarly, molecular modeling of 5-fluorouracil
73

 in 

nitromethane have shown that initial nucleation of the metastable Form II was directed by 

the self-association of solute molecules to form hydrogen-bonded dimers. In wet 

nitromethane and in water, interactions of water molecules with 5-fluorouracil hindered 

the formation of hydrogen-bonded dimer motifs, leading to the crystallization of the 

polymorphic Form I. 

Solution chemistry of glycine also has been extensively studied.
74-76

 Based on 

observations by atomic force microscopy and grazing incidence X-ray diffraction,
45,77

 it 

is suggested that glycine molecules in neutral aqueous solutions behave primarily as 

hydrogen-bonded dimers, resulting in a crystal structure in which the dimer motif is 

retained. Note that the speculation, mainly based on the measurement of the nucleation 

process at the crystal-liquid interface, was most recently questioned by Huang, et al.
78

 

Freezing point depression and diffusion coefficient measurements of supersaturated 

aqueous solutions of glycine have revealed that the solutions are mainly monomeric 

glycine. The dominant concentration, but not the exclusive presence of glycine 

monomers, brings into question the common perception of long-lived hydrogen-bonded 

cyclic dimers as the predominant solution species, serving as units of crystal growth. Yet 

the finding is consistent with the idea of an equilibrium among the states of association in 

solution (i.e., monomer and dimer for glycine); nucleation and subsequent crystal growth 

drive that equilibrium to the product phase. 

Together these models suggest a hierarchy of clustering, from individual molecules 

through dimers to higher-order association species with the critical mass of a nucleus and 

subsequent crystal formation. Although these efforts provide indirect and/or direct 
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evidence for the existence of pre-nucleation association, the molecular mechanism of 

nucleation mainly remains speculative and poorly understood. There is a need to address 

fundamental questions of how each kind of assembly interacts to give rise to the ultimate 

production of various crystalline forms. In addition, most of the polymorphic systems 

studied were organic molecules with different packing motifs in the crystal structure. To 

date, very little information is available on polymorphic systems exhibiting distinct 

molecular conformations in different crystal structures. For that reason, molecular details 

of the specific arrangement of molecules in the associated species and of how molecular 

conformation affects the self-assembly process are lacking.  

1.4.2 Solution Conformation 

Determinations of crystal structure of flexible molecules carry the caveat that the crystal 

lattice conformation is not necessarily identical with that found in solution.
79

 Moreover, 

all energetically accessible conformations of an organic molecule should be present in 

solution. The population distribution of all conformers is a function of the energy 

associated with each conformer and the energy gained from the interaction of the 

molecule with its surroundings.   

Saito et al.
80

 recently probed molecular association in solutions of p-acetanisidide and 

concluded that molecules associate to form hydrogen bonding motifs similar to those in 

the crystallizing solid form. The conformation adopted by the molecules within the 

aggregates was nonetheless different from the molecular conformation found in the 

crystal. There are many studies showing crystal lattice conformations differing from 
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solution conformations.
81-83

 In such cases, the solution conformation has to adopt the 

conformation suitable for crystal packing before integrating into the crystal surface.   

For systems having low energy barriers between conformers (i.e., lower than 2 kcal/mol), 

intermolecular interactions can facilitate a change of molecular conformation into one 

that is suitable for crystal packing. On the one hand, a molecule prefers to take its most 

energetically favorable conformation; on the other hand, the molecule may have to adjust 

its spatial arrangement in order to satisfy intermolecular hydrogen bonding.  The energy 

of a conformational change is often comparable with that of intermolecular interaction. 

Thus, it is very likely that the lattice crystal features a high-energy conformer to 

accommodate orientation requirements imposed by certain growth synthons; 

intermolecular interactions supply the energy to stabilize the more highly energetic 

molecular conformation.
79,84

   

It seems plausible to think that when the solution conformation differs from the lattice 

conformation, the transition between conformers may affect the nucleation kinetics. 

Specifically, this is important when the energy barrier between conformers is higher than 

2 kcal/mol. For such systems, it is believed that multiple conformers in solution decrease 

the population of the conformer that crystallizes.
85

 This in turn can reduce the degree of 

supersaturation and thus the crystal nucleation rate. The literature contains a few reports 

relating the difficulty of crystallization to the presence of multiple conformations in 

solution. For instance, the slow crystallization of conformational polymorphs of alditols 

(e.g., sorbitol and iditol) has been attributed to the high energy barrier of conversion 

between conformers.
86

 As such, it is likely that only one conformer, referred to as the 

right conformer, integrates into the crystal surface. Conformers that do not integrate into 
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the crystal surface may act as impurities. It is believed these impurities preferentially 

adsorb at specific crystal faces. The adsorbed impurity essentially replaces the host 

molecules and hinders or slows adsorption of more solute molecules to this face. The 

change in growth kinetics occurs because the impurity molecule emerges from the crystal 

surface in a different orientation than the host molecule, disrupting the previous repeating 

pattern.
87

      

1.4.3 Control of Polymorph Formation 

The control of the nucleation process is the ultimate means of controlling polymorph 

formation. Several approaches for controlling nucleation rely on the concept that the 

crystal structure must reflect the state or states of association in solution. Selective 

nucleation of polymorphs has been pursued through the use of “tailor-made” additives.  

It is believed these tailor-made or structurally similar additives interact with the pre-

nucleation aggregates of a specific polymorph and inhibit their growth. Consequently, 

unaffected phases, although less stable, will grow.
45,88

 Davey and coworkers advanced 

the idea of conformational mimicry for controlling the polymorphism of 

conformationally flexible molecules.
89

 Using rigid additives that mimic the molecular 

conformation in the stable β polymorph of L-glutamic acid, they were able to selectively 

prevent its appearance and, thus, crystallize the metastable α polymorph. 

Related molecular level strategies for controlling nucleation of organic crystals hinge on 

rational design of surfaces that can provide sites for a stereochemically induced (i.e., 

epitaxial) nucleation of a given crystal. Several types of nucleation-promoting surfaces 

have been studied, including two-dimensional ordered surfaces,
90

 molecular single-
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crystal surfaces,
91

 and polymer surfaces.
92

 On these surfaces, polymorph selectivity is 

thought to be achieved through either a structural lattice matching
93

 or intermolecular 

interactions
94

 at the crystal-substrate interface. The first theory relies purely on geometric 

principles and suggests that matched interactions between the substrate and the matching 

lattice plane of a growing nucleus lead to reduced activation energy for nucleation, 

causing selective and oriented growth of a single polymorph. The second theory proposes 

that chemical interactions direct the nucleation of crystals subsequently grown from the 

surface. Carter and coworkers reported that self-assembled monolayer substrates, bearing 

hydroxyl group functionality, selectively stabilize the nuclei of polymorph III of 

anthranilic acid due to specific hydrogen bonding between contacting planes of the 

substrate and nucleant.
95

 Therefore, the assembly of molecules in solution, as well as in 

the solid-state, underpins much of the research field in polymorphism. The subject is 

driven by the understanding of intermolecular interactions and their use to control crystal 

structures.  

1.5 Statement of Problems 

Although there has been considerable progress in controlling the nucleation process on a 

molecular level, understanding of the nucleation mechanism is still challenging both 

computationally and experimentally. Advances in computational methods, although 

promising, are not yet sophisticated enough for studying the nucleation of a molecular 

crystal from solution, which requires a comprehensive consideration of numerous degrees 

of freedom introduced by solvent, conformation of the molecule, and multiple molecules 

in the asymmetric unit cell.
96

 Also, the length and time scales of the nucleation process 
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span many orders of magnitude, making it difficult for a given modeling technique to 

capture all aspects. From the experimental viewpoint, detecting the occurrence of nuclei 

formation is not an easy task due to limitations in the resolution of currently available 

instruments. Critical nuclei usually consist of hundreds of molecules and typically are 

only a few nanometers in size.
43

 By the time a crystal nucleus appears, it has already 

grown to macroscopic size. Thus, the nucleation mechanism can only be inferred from 

the pre-nucleation solution chemistry or the post-nucleation observation, when crystals 

are harvested. 

The pre-nucleation approach explains polymorph formation from a thermodynamic point 

of view, while kinetic factors are overlooked. However, polymorph formation is known 

to be affected by a wide variety of growth conditions, including type of solvent,
97-99

 

supersaturation,
100

 temperature,
101

 and use of additives.
53,102

 Little is known regarding the 

mechanism of the self-assembling process of crystallization under various growth 

conditions. As such, why a unique crystal structure is formed in a specific solvent or why 

some molecular compounds tend to crystallize in multiple polymorphs concomitantly 

under the same conditions remains unanswered. 

Besides the intricate kinetic effects, nucleation of organic molecules from solution 

presents additional complexities stemming from flexible molecular conformations and 

weak intermolecular interactions. The association state of molecules in solution is 

believed to play a critical role in polymorph formation.
54

 However, in conformational 

polymorphism, how the molecular conformation in solution evolves during nucleation 

leading to different conformers in final crystal structures remains largely unanswered. 

The crystallizing molecular species can undergo a degree of conformational change when 
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transferring from the solution to the solid-state. Any conformational changes raise the 

question of whether they occur due to packing constraints (e.g., with the incorporation of 

the molecule into the crystal surface) or whether they are the outcome of rearrangements 

in the pre-nucleation process.   

To date much of the research into the conformations of a molecule has focused on 

identifying similarities or differences between the crystal lattice and solution 

conformations,
81,103

 without necessarily investigating the properties and magnitudes of 

the forces that stabilize a particular molecular conformation. One of the most challenging, 

yet underexplored aspects is the influence of molecular conformation on intermolecular 

interactions.  

Organic crystals are defined as supramolecular entities in which the structural units are 

repeated regularly and indefinitely in three-dimensions in space. A crystal structure is 

held by intermolecular interactions whose subtle diversity in strength and directionality is 

governed by packing motifs and the conformational flexibility of the molecule.
79,104

 

These intermolecular interactions define the solid-state structure and determine the 

polymorphism of an organic system.
105

 Still, how intermolecular interactions intervene 

during the nucleation step, by and large, remains unknown. More importantly, in 

conformational polymorphism one of the challenges is to improve our understanding of 

how the balance between conformational energy and intermolecular interaction 

determines the self-assembly and the precise result of crystallization. Thus, evaluating the 

extent to which molecular conformation influences intermolecular interactions in 

conformational polymorphs will provide insights into understanding the molecular 

mechanism of polymorph formation of organic crystals.   
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1.6 Objectives 

The overarching goal of this dissertation is to gain a molecular-level understanding of the 

extent to which solution conditions during crystallization influence the conformational 

polymorphism of drug molecules, using tolfenamic acid as a model solute. Specifically, 

molecular details of solution conformations of tolfenamic acid and its intermolecular 

interactions are investigated. 

The major hypothesis to be tested is that solution conditions affect the molecular 

conformation of the model compound necessary for the formation of the most stable 

associated species during the pre-nucleation self-association process. The following 

specific aims will be pursued in order to test this hypothesis: 

1) Determine if solution conditions in the crystallization medium influence the 

polymorph formation. 

When the molecule in question is conformationally flexible, various crystallization 

conditions can lead to conformational polymorphs.
3,106

 Polymorphism can be controlled 

by understanding the dependence of crystallization behavior of polymorphs on crystal 

growth conditions. The extent to which initial solute concentration and temperature 

govern the formation of polymorphs of tolfenamic acid will be determined.  

2) Determine if solution conditions affect the self-association behavior of solute 

molecules. 

Carboxylic acids can form intermolecular aggregates. In the solution and solid phases, 

associations mainly involve hydrogen-bonded cyclic dimers.
107-110

 In polar solvents, 

hydrogen bonding with solvent molecules occurs along with dimer formation. This 
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suggests that solution conditions can disrupt or promote particular hydrogen bonding 

networks. The effect of changing concentration and temperature on the molecular 

association of tolfenamic acid will be investigated by ultraviolet (UV) and nuclear 

magnetic resonance (NMR) techniques. 

3) Determine if solution conditions affect the conformation of solute molecules in the 

solution-state. 

Solution conditions can lead to structural changes as imposed by interactions of the 

molecule with its surroundings. Therefore, it is desirable to probe the effect of solution 

conditions on the molecular conformation. Molecular conformations existing in solution 

and possible conformational variation will be monitored by NMR techniques as a 

function of solute concentration and temperature. Conformations of the model compound 

in the crystalline state will be analyzed by computational means. 

4) Evaluate how the molecular conformation affects hydrogen bonding strength.      

Crystal structure investigations
79,84

 have shown that hydrogen-bonded crystals may 

feature high-energy conformers to satisfy orientation requirements and to interact more 

strongly with neighboring molecules. This suggests that the energy of a molecule’s 

conformation can be correlated with the energy of its intermolecular interactions. 

Intermolecular interaction strength between tolfenamic acid molecules will be calculated 

in the gas phase as well as in the condensed phase by using advanced computational 

tools. The electronic properties of the molecular system will be characterized by utilizing 

density functional theory concepts in order to understand the fundamental cause that 

drives one conformer to form stronger interactions with respect to another. 
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In the following chapters, the results from each specific aim will be presented and 

discussed. The purpose is to provide an in-depth discussion about experimental 

observations in the solid and solution states, which drove the need for the development of 

computational methods to further test and support the hypothesis.  
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Chapter 2 – Polymorph Formation of Tolfenamic Acid 

In this chapter, preparation and characterization of tolfenamic acid polymorphs will be 

presented. This laboratory published a manuscript that highlighted experimental evidence 

of the effect of growth conditions, exemplified by supersaturation, on the structural 

outcome of tolfenamic acid crystals.
111

 The published manuscript included a thorough 

characterization of each polymorph using a combination of analytical techniques. In this 

chapter, temperature will be added as a kinetic factor to further investigate the influence 

of growth conditions on the preferential formation of each polymorph via crystallization 

from solution.  

2.1 Introduction 

Polymorphism of drug compounds plays a key role in formulation and manufacturing 

design; screening of polymorph structures is therefore one of the major undertakings in 

the pharmaceutical industry.
1,8

 Because of this, precise control of a specific polymorph is 

critical for achieving desired solubility and stability requirements. Success in preparing 

various polymorphs frequently hinges on appropriate control of the kinetics of 

crystallization. The highly dynamic nature of crystallization may lead to variation and 

lack of reproducibility in the crystallized product. Also, various growth conditions can 

cause modifications in the preferential formation of polymorphs during crystallization 

from solution with the consequences that physical and chemical properties of different 

polymorphs can affect dosage form performance and manufacturing reproducibility.
3
 



36 

 

Such solution conditions include supersaturation ratio, temperature, solvents, and 

additives/impurities.
112

 

Factors that influence the crystallization pathway have been identified. In some cases, the 

kinetics and mechanisms of nucleation and crystal growth have been rationalized. The 

role played by solvents or additives in controlling polymorph formation has been 

approached according to the theory
98

 that the selective adsorption of solvent or additive 

molecules to certain faces of a polymorph will prevent nucleation or slow growth of that 

polymorph, such that growth of other polymorphs may be favored. Based on this theory, 

specific solute-solvent interactions have been shown to direct the polymorph outcome in 

the crystallization of several compounds, including sulfathiazole,
113

 sulfamerazine,
33

 and 

2,6-dihydroxybenzoic acid.
70

  

Empirical rules, such as Ostwald’s rule of stages,
36

 have often been applied to explain the 

effect of supersaturation and temperature on polymorph formation of organic molecules. 

For instance, the effect of supersaturation on the crystallization kinetics of 

phenylbutazone polymorphs has been explained on the basis of the competition between 

the rates of nucleation and crystal growth of the polymorphs.
100

 Specifically, at low 

supersaturation, the relative nucleation rates of the polymorphs determined the 

polymorph selectivity while at high supersaturation the nucleation rates of 

phenylbutazone polymorphs were almost equal, so that the relative crystal growth rates 

determined the polymorph outcome.  

However, this argument fails to address the effect of conformation on the growth kinetics 

of different polymorphs. Conformational polymorphs are routinely observed in drug 

development, and are often produced when solution conditions during crystal growth 
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vary. Of importance to this research, the conformation assumed by the solute molecule 

may be affected by growth conditions resulting in distinctive crystalline states. With 

respect to the kinetics of crystallization, a distribution of conformations in solution could 

potentially influence the critical nucleation and crystal growth steps. Overall, little is 

known about the mechanism by which growth conditions affect the polymorph formation 

of conformationally flexible molecules.   

In this research, the model solute selected was tolfenamic acid (TFA, Figure 2.1). TFA 

belongs to the class of nonsteroidal anti-inflammatory drugs (NSAIDs), derived from N-

phenylanthranilic acid. Five structurally characterized polymorphs of TFA have been 

reported in the literature, displaying conformational polymorphism.
114,115

 Crystals of 

Forms I and II were grown from a solution in ethanol, whereas those of Forms III, IV, 

and V were obtained using polymers as heteronuclei. Crystal structures of Forms I and II 

belong to the monoclinic space groups P21/c and P21/n (a non-standard setting of the 

space group P21/c), respectively; both structures contain one molecule in the asymmetric 

unit (R indices of the crystal structures of Forms I and II determined by single-crystal X-

ray diffraction are 5.2 percent and 2.9 percent, respectively).
114

 Form III exhibits the 

same space group as Form I, that is, P21/c, but with Z' = 2, whereas Forms IV and V 

crystallize in the space group Pī with Z' = 3 and Z' = 1, respectively.
115

 

In this research, the two most frequently encountered structures, Form I (colorless) and 

Form II (yellow), were produced and studied. The conformation of the molecules in Form 

I and Form II differs mainly in the torsion angle τ1 (-74.9° and -142.6° of Forms I and II, 

respectively, denoted in Figure 2.1). Similar hydrogen-bonded dimer motifs between 

neighboring carboxyl groups exist in the two polymorphs (Figure 2.2). The 
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conformational polymorphism and similar molecular packing made TFA an interesting 

molecule for studying the influence of growth conditions on the crystallization outcome. 

 

 

Figure 2.1. Molecular structure of TFA, defining the torsion angle τ1 differing among the 

conformers.  
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Figure 2.2. Hydrogen bonding dimer motifs of TFA Form I (a) and Form II (b).
114

 

Hydrogen bonds are denoted as dashed line. 
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2.2 Materials and Methods 

2.2.1 Materials 

Tolfenamic acid (TFA, MW = 261.70, > 97 percent purity) was purchased from TCI 

America (Portland, OR) and was recrystallized from ethanol to obtain Form I. TFA Form 

II was crystallized by rapid cooling of an ethanol solution to 25° C. The phase purity was 

verified by powder X-ray diffraction. Ethanol (> 99.9 percent purity) was obtained from 

Decon Labs, Inc. (King of Prussia, PA) and was used without further treatment. The 

water content in the organic solvent was evaluated using Coulometric Karl-Fisher 

titration (Metrohm USA Inc., Riverview, FL) and was determined to be less than 0.1 

percent. Polytetrafluoroethylene (PTFE) syringe filters (13 mm and 0.45 μm pore size) 

were purchased from Millipore, Inc. (Milford, MA) and PTFE syringe filters (0.2 μm 

pore size) were purchased from Corning Life Sciences (Tewksbury, MA). 

2.2.2 Powder and Single-Crystal X-Ray Diffraction 

The polymorph purity and identification were assessed by powder X-ray diffraction 

(PXRD) using a diffractometer (Multiflex, Rigaku Co., The Woodlands, TX) with a Ni-

filtered Cu Kα radiation operating at 40 kV and 44 mA. Samples were scanned over a 2θ 

range of 5 - 40° at the rate of 2 °/min with a step size of 0.02°. Reference powder patterns 

of TFA crystals were simulated with Mercury 1.4 (The Cambridge Crystallographic Data 

Centre, Cambridge, UK) based on respective single-crystal structures
114

 for comparison 

with experimental data. 

Single-crystal X-ray diffraction was also used to identify TFA solid phases. Data 

collection was carried out at 90 °K on a Nonius κCCD diffractometer (Madison, Wi) with 
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Mo Kα radiation (λ = 0.71073 Å). Cell refinement and data reduction were done with the 

Scalepack and Denzo-SMN programs.
116

 Structure solution and refinement were 

achieved using the Shelxtl package.
117

 

2.2.3 Differential Scanning Calorimetry (DSC) 

Thermograms of TFA Forms I and II were recorded using a Q20 DSC (TA Instruments, 

New Castle, DE) equipped with a liquid nitrogen cooling system. The temperature scale 

and heat flow were calibrated by measuring the onset temperature and the enthalpic 

response of an indium standard. Samples (3-5 mg) were respectively placed in 

hermetically sealed aluminum pans and heated from 40 °C to 240 °C at a heating rate of 

20 °C/min. In all experiments, the DSC cell was purged with helium at 25 mL/min. Data 

were analyzed with TA Universal Analysis software (version 4.5A, TA Instruments). 

2.2.4 Hot Stage Microscopy (HSM) 

Phase transformations of TFA crystals were observed using a polarizing microscope 

(Olympus BX51 with 10x magnification, Olympus America, Inc., Center Valley, PA) 

equipped with a hot stage (HSC302, Instec, Inc., Boulder, CO). Single-crystals of pure 

Forms I and II were sealed in capillary tubes and heated from 25 °C to 240 °C at a 

heating rate of 20 °C/min. Selected images were taken at various time intervals in order 

to observe any transformations. The sealed capillary helped to prevent sublimation and 

simulated the high vapor pressure condition inside a hermetic DSC pan.   
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2.2.5 Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) 

Spectroscopy 

Infrared spectra of the crystals were collected with a FTS-7000e FTIR spectrometer 

(Varian, Inc., Palo Alto, CA) equipped with a deuterated triglycine sulfate (DTGS) 

detector and a PIKE MIRacle ATR ZnSe accessory. Each spectrum represented 32 co-

added scans measured at a spectral resolution of 8 cm
-1

 over the wavenumber range of 

4,000-600 cm
-1

. A background spectrum (without the sample) was collected under the 

same experimental conditions and was subtracted from each sample spectrum. Spectral 

data were acquired with Varian Resolutions Pro software. 

Mixtures of pure TFA Forms I and II, composed of known ratios of the two polymorphs, 

were prepared by gently mixing a total weight of 100 mg to obtain a set of standards for 

the construction of a standard curve for quantitative polymorph analysis. Each calibration 

sample was analyzed in triplicate.  

2.2.6 Solubility Determinations 

The solubility of TFA Form I was measured over the temperature range 4 to 55 °C in 

ethanol. For TFA Form II, only solubility data measured in ethanol at 37 °C were 

obtained. An amount of the pure solid polymorphs well in excess of their saturation 

solubilities was allowed to equilibrate with approximately 3 mL of solvent in a 7 mL 

borosilicate vial. The sealed vial was rotated in an incubator (VWR Scientific, Inc., San 

Francisco, CA, for measurements at 25 °C, 37 °C, 45 °C, and 55 °C; New Brunswick 

Scientific, Inc., Enfield, CT, for measurements at 4 °C and 10 °C) set at the desired 

temperature for at least 72 hours. An aliquot of the saturated solution was then withdrawn 
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at regular time intervals (1, 2, 4, 6, 8, 12, 24, 36, 48, 60, and 72 hours), filtered through a 

PTFE filter (0.45 μm pore size), and diluted to an appropriate concentration for 

spectrophotometric UV analysis at 286 nm (Shimadzu 1800, Shimadzu Scientific 

Instruments, Inc., Columbia, MD). The maximum concentration of the dissolved 

metastable form, before declining toward the corresponding plateau value of the stable 

form, was assumed as its apparent solubility. Equilibration was reached when the 

concentration of three consecutive measurements differed less than 2 percent. Residual 

solid phase after equilibration in ethanol solution for 72 hours was identified by PXRD 

analysis. The solubility measurements of each sample were determined at least in 

triplicate and errors are reported as standard deviations. Solubility data at 37 °C were 

used to define the initial supersaturation ratio (i.e., ratio between solute concentration in 

the solution and equilibrium solubility) with respect to Form I in ethanol in the 

crystallization experiments at the corresponding temperature. 

2.2.7 Grinding and Slurry Experiments 

Solvent-drop grinding of pure Forms I and II was carried out using ethanol at 25 °C. In 

separate experiments, pure Forms I and II were transferred into a mortar and pestle and 

subjected to grinding while a few droplets of ethanol were added intermittently. 

Similarly, a 1:1 polymorphic mixture of the two polymorphs was subjected to grinding in 

the presence of ethanol. The ground samples were analyzed by PXRD. 

A slurry of TFA Form II (30 mg) was prepared in a 7 mL borosilicate vial with 1 mL of 

ethanol. The slurry was then stirred under ambient conditions for 12 hours. The solid 

phase was examined by PXRD at the end of the equilibration period. 
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2.2.8 Crystallization Experiments 

Crystallization of TFA was performed at 37 °C and 0 °C. Experiments were carried out 

using a 100 mL three neck flask with an impeller stirring at 100 rpm. Solutions were 

prepared by dissolving the required amounts of TFA Form I in ethanol at about 60 °C or 

25 °C. Following complete dissolution at 60 °C, the solutions at various concentrations 

(supersaturation) were filtered through a warmed 0.2 μm syringe filter, transferred to the 

three neck flask, and then cooled rapidly to 37 °C by a temperature-controlled water bath. 

Solutions dissolved at room temperature were filtered through a 0.2 μm syringe filter, 

transferred to the three neck flask, and then quench-cooled to 0 °C by use of an ice bath. 

Liquid-phase samples were removed through a 0.45 μm syringe filter at known time 

intervals, diluted, and analyzed by UV spectroscopy for the solute concentration 

measurement. Samples of the solid phase were also taken at predetermined time intervals, 

dried, and subjected to ATR-FTIR spectroscopy for polymorphic composition analysis. 

The solid isolated from the suspension was also analyzed with PXRD to identify the form 

of the solid. 

To test the validity of the crystallization method, experiments were conducted by 

dissolving TFA Form II in ethanol in order to evaluate whether the structure of the 

starting, dissolved material would affect crystallization kinetics. When supersaturated 

solutions come into contact with solid surfaces, such as syringe filters, nucleation and/or 

adsorption may occur. Formation of such induced nuclei may accelerate and/or affect the 

crystallization behavior of the drug. Thus, to ensure that no (detectable) nucleation 

occurred during the filtration step and that all particles were dissolved, solutions were 

maintained at the heating temperature for one hour. The stopper of the round-bottomed 
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flask was wrapped with Parafilm
®

 to prevent evaporation of the solvent during heating. 

Subsequently, solutions were cooled without filtration. The rate of stirring of the 

suspensions was strictly controlled in all the experiments.   

Seeding experiments were performed by adding 1 percent (w/w) (based on the total mass 

of TFA) of dried, ground seed crystals of either Form I or II to ethanol solutions at 

various supersaturation ratios. After the seeds were suspended in the solutions, the stirrer 

was turned on and the stirring rate was adjusted to the designated rpm. The solutions 

were then rapidly cooled to 37 °C or 0 °C, and changes in solution concentration as well 

as in solid composition were monitored over time, as previously described for the 

unseeded experiments.  

2.3 Results and Discussion 

2.3.1 Characterization of Tolfenamic Acid Polymorphs 

Both TFA Forms I and II prepared in our laboratory resulted in similar needle-like 

morphology (Figure 2.3). Shown in Appendix 1 is the growth morphology prediction of 

TFA Forms I and II. Solubility of TFA Form I was determined in ethanol as a function of 

temperature (Figure 2.4). TFA solubility increased with temperature. This common trend 

reflects the expected increase in solubility of organic molecules with temperature as 

predicted by thermodynamics.
118

 No change in the polymorph identity, verified by 

PXRD, was observed in the solid phases recovered from the solubility study. Solubility 

profiles of TFA Forms I and II were measured in ethanol at 37 °C and plotted against 

time (Figure 2.5). The solution concentration when Form II was used as the starting 

material increased until it reached a maximum around the solubility of the metastable 
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polymorph, which should be regarded as an “apparent” value because thermodynamic 

equilibrium could not be reached when measuring the metastable Form II. The 

concentration declined toward the corresponding plateau value of the stable Form I and 

remained at that concentration thereafter for 72 hours, showing a typical solvent-

mediated phase transformation.
35

 The residual solid samples were verified to be Form I 

regardless of the starting materials. The thermodynamic solubility of Form I in ethanol 

was then estimated to be 86.1 ± 0.9 mM at 37 °C, while the apparent value of Form II 

was 95.6 ± 0.8 mM.  

 

 

Figure 2.3. Optical micrographs of TFA Form I (a) and Form II (b). 
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Figure 2.4. Variation of the measured solubility with temperature for TFA Form I. 

 

 

Figure 2.5. Solubility profiles of TFA Forms I and II in ethanol at 37 °C. Error bars 

represent standard deviation (n=3). 
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The relative stability of Forms I and II was inferred by the solvent-mediated phase 

transformation, as well as experiments of solvent-drop grinding, slurry crystallization, 

and thermal analysis. When Form II was subjected to grinding at room temperature in the 

presence of ethanol in a mortar and pestle, conversion to Form I occurred after one hour, 

as monitored by PXRD (Figure 2.6). No phase conversion was observed for the pure 

Form I. When a mixture of the two polymorphs was subjected to ethanol-assisted 

grinding, phase transformation occurred readily to give Form I within 20 minutes. In 

addition, a slurry of pure Form II converted to Form I in eight hours at 25 °C.  

 

 

Figure 2.6. Powder X-ray diffraction patterns of TFA Form II subjected to ethanol-

assisted grinding. Calculated patterns of Forms I and II are also shown for comparison. 
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A DSC thermogram (Figure 2.7) of Form I showed melting of the crystal at the onset 

temperature of 212.5 °C; the enthalpy of melting was 157.1 J/g. Form II showed two 

endothermic peaks. The first one with an enthalpy of 4.3 J/g and the onset temperature of 

141.8 °C appeared to be a solid-solid phase transition to Form I (inset of Figure 2.7) and 

the second one at the onset temperature of 212.7 °C was the melting of the transformed 

Form I. 

 

 

Figure 2.7. DSC thermograms of pure TFA Forms I and II. The inset shows the small 

endotherm due to phase transition of Form II.  

 

 

 



50 

 

Thermal behavior of Forms I and II was further studied by hot stage microscopy. Their 

phase behaviors echo the DSC experiments. Form I underwent melting at 213.3 °C with 

no other phase transitions observed. However, the Form I crystal became opaque and 

looked damaged. When the Form I crystal was heated, new crystals formed at 204.8 °C 

due to sublimation (Figure 2.8a). In the encapsulated capillary tube, the water vapor 

could not escape readily and, thus, built up in the enclosed environment. The resulting 

high water vapor pressure induced the formation of crystals that were verified to be Form 

I by single-crystal X-ray diffraction. The crystals were of the monoclinic space group 

P21/c with a = 4.800(1), b = 31.991(1), c = 7.972(3) Å, and β = 105.2(3)°. These values 

were in agreement with the literature.
114

 No visual changes in crystal habit were observed 

during heating single-crystal of Form II, but the crystal turned colorless and opaque and 

remained solid throughout, corresponding to a phase change. As such, Form II underwent 

a solid-solid phase transition at 145.0 °C and converted to Form I, which then started to 

melt at 211.8 °C (Figure 2.8b). All these experiments indicate that Form I of TFA is the 

thermodynamically stable polymorph over a temperature range of 25 – 213 °C. 
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Figure 2.8. Hot stage microscopy snapshots showing melting of Form I at 213.3 °C, 

formation of new Form I crystals due to sublimation at 204.8 °C (a), and the solid-solid 

phase transition from Form II to Form I at 145.0 °C (b). 

 

2.3.2 Concomitant Polymorph Formation of Tolfenamic Acid 

Crystallization of TFA was conducted in ethanol by cooling from 60 °C to 37 °C. TFA 

concentration profiles were obtained at supersaturation ratios of S = 1.55, 1.70, and 1.95, 

respectively (Figure 2.9). The solute concentration, detected by UV absorption, decreased 

with time, which indicates nucleation and growth of crystals. The process was monitored 

until the concentration reached progressively stable values. The final solute concentration 

values were in agreement with the solubility of Form I measured at 37 °C. The figure also 

marks the apparent solubility of Form II.  
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Figure 2.9. Time dependence of concentration measured at 37 °C during rapid cooling of 

TFA from ethanol at various initial supersaturation ratios (S), 1.55, 1.70, and 1.95. The 

weight percentages of Form I in the collected crystal samples are plotted correspondingly 

as dashed lines. Solubility values of the two polymorphs are marked as well. 

 

Crystallized solid samples were collected and analyzed to determine the polymorph 

composition. PXRD analysis verified the solid-phase identity of these samples (Figure 

2.10), obtained at a supersaturation ratio of S = 1.55 and isolated immediately after 

nucleation. The peak at 10.2° indicates that Form II was present in the sample. In later 

collected samples, the peaks at 5.5° and 11.7° appeared, suggesting that any crystal of 

Form II had transformed to Form I. ATR-FTIR spectra of pure Forms I and II, as well as 

of known mixtures, were obtained (Figure 2.11a) for quantifying the ratio between the 

two polymorphs. The Form II spectrum exhibited a unique vibrational band at 1,521 cm
-1

 



53 

 

that clearly distinguished it from the Form I spectrum. The peak at 1,327 cm
-1

 was chosen 

as a reference due to its insensitivity to the phase composition. The standard curve 

(Figure 2.11b, R
2
 of 0.996) was generated by plotting the ratio of the band intensities 

against the weight percentage of Form II in the known solid mixture samples. 

Accordingly, the solid composition of collected solid samples at various time points was 

determined by FTIR analysis (Figure 2.9, superimposed with the solute concentration 

profiles). At a lower supersaturation ratio (S = 1.55 or 1.70), the metastable Form II was 

initially obtained, followed by its transformation to the most stable Form I, likely via a 

dissolution-recrystallization mechanism (i.e., solvent-mediated phase transformation).
35

 

When S = 1.55, the solid-phase composition showed no onset presence of Form I and the 

solute concentration kept at the solubility line of Form II between 30 and 60 minutes. 

Over the course of the transformation, a decrease in the amount of Form II was associated 

with a concurrent increase in the quantity of Form I while the concentration shifted to the 

solubility of Form I. As the supersaturation increased, a mixture of both polymorphs was 

produced and, particularly when S = 1.95, Form I became dominant and the solute 

concentration dropped to its solubility line quickly at the beginning of the experiment. 

The results indicate a greater tendency to crystallize Form I by increasing the initial 

solute concentration. When S = 1.55 or 1.70, the solvent-mediated phase transformation 

from Form II to Form I may take dozens of minutes. Instead, when S = 1.95 the 

appearance of Form I took a few minutes. 
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Figure 2.10. Powder X-ray diffraction patterns of TFA Forms I and II obtained at S = 

1.55. Calculated patterns of Forms I and II are also shown for comparison. 
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Figure 2.11. Infrared spectra of TFA polymorphs (a) and standard curve of the relative 

composition of Form II in a mixture of TFA polymorphs (b). Measurements were done in 

triplicate to determine the standard curve. 

 

 



56 

 

Two sets of experiments that were carried out to evaluate the validity of the 

crystallization procedure included the use of Form II as the starting material and the 

cooling to 37 °C without filtering the dissolved solutions. When the supersaturation ratio 

was low, the preferential formation of Form II via crystallization from solution was 

achieved in both sets of experiments. Using Form II as the initial solid phase, at S = 1.55, 

the solute concentration initially decreased and then remained constant up to 60 minutes 

at a concentration corresponding to the apparent solubility of Form II (Figure 2.12a). 

Similar results were observed when samples were recrystallized from solutions without 

filtration (Figure 2.12b). When the supersaturation ratio increased, the solute 

concentration initially dropped rapidly and approached a concentration below the 

apparent solubility of Form II in both sets of experiments. The solid-phase composition 

of the sample collected at the beginning of the experiments was about 30 percent (w/w) 

of Form I (when S = 1.93 for the experiment performed by dissolving Form II and when 

S = 1.85 for the experiment performed without filtration) (data superimposed in Figures 

2.12a and 2.12b). Thus, both Form I and Form II crystallized by increasing the initial 

solute concentration. The results of these control experiments suggest that neither the 

initial polymorph of the drug nor the filtration play a noticeable role in the crystallization 

process. Up to this point, the TFA crystallization behavior can be ascribed to the effect of 

drug concentration.   
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Figure 2.12. Time dependence of concentration measured at 37 °C during crystallization 

of TFA from ethanol solutions conducted by dissolving Form II at various initial 

supersaturation ratios (S), 1.55, 1.75, and 1.93 (a) and without filtration at various initial 

supersaturation ratios (S), 1.55, 1.70, and 1.85 (b). The weight percentages of Form I in 

the collected crystal samples are plotted correspondingly as dashed lines. Solubility 

values of the two polymorphs are marked as well. 
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Although the final outcome of the crystallization experiments was the same (production 

of Form I), at least two distinct mechanisms of crystal growth are plausible depending on 

the supersaturation. First, at high supersaturation the appearance of Form I crystals may 

not be a result of phase transformation from Form II, but rather a consequence of direct 

nucleation. Form I crystals subsequently may increase the conversion of Form II crystals. 

Second, the metastable polymorph initially crystallizes at all concentrations, but the 

conversion to the stable Form I may be faster at high supersaturation than at low 

supersaturation, meaning that the growth rate of the stable polymorph is concentration-

dependent and increases as initial drug concentration increases.  

Therefore, to elucidate the governing mechanism responsible for the observed polymorph 

formation, seed crystals of both polymorphs were respectively introduced into solutions 

at the onset of cooling (Figure 2.13). Addition of Form I seeds resulted in an abrupt 

decrease of solution concentration, consistent with crystal growth of the seeds, until the 

solute concentration eventually reached the solubility of TFA Form I (Figure 2.13a). This 

was in agreement with the solid-phase composition determined by ATR-FTIR analysis 

(superimposed in Figure 2.13a), where for all supersaturations the solid-phase was 

entirely constituted by Form I. Following seeding with Form II crystals (Figure 2.13b), 

the metastable polymorph first predominated and then slowly converted to Form I. 

During the polymorph transformation, the solute concentration stayed at the apparent 

solubility of Form II until the metastable crystals had completely dissolved and the 

concentration approached the solubility of Form I. Consequently, the relative percentage 

of the solid Form I increased during the transformation. No significant difference was 

found between the phase turnover when S = 1.55 or 1.70. When S = 1.95, a small amount 
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of Form I, about 9 percent relative to Form II, also crystallized upon seeding with Form 

II, possibly due to nucleation of Form I despite the seeding. Overall, seeding crystals are 

able to essentially circumvent the primary nucleation step, particularly at low 

supersaturation. The experiments also rule out the possibility of competitive growth of 

the two polymorphs that may be affected by the solute concentration. If the two forms 

possess different concentration-dependent growth rates, seeding or no seeding should not 

affect the crystallization outcome. This, however, is not what was observed, and the 

results further confirm that in the unseeded crystallization experiments, the nucleation 

mechanism is influenced by the solute concentration and that nucleation of the most 

stable form at high supersaturation apparently disobeys Ostwald’s Rule of Stages.
36
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Figure 2.13. Time dependence of concentration measured at 37 °C during rapid cooling 

of TFA from seeded ethanol solutions at various initial supersaturation ratios (S), 1.55, 

1.70, and 1.95 with seeds of Form I (a) and seeds of Form II (b). The weight percentages 

of Form I in the collected crystal samples are plotted correspondingly as dashed lines. 

Solubility values of the two polymorphs are marked as well. 
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Crystallization experiments were also performed by quench-cooling using an ice bath. By 

rapidly cooling ethanol solutions from 25 °C to about 0 °C, a mixture of the metastable 

Form II and the stable Form I was obtained irrespective of the initial TFA concentration 

(Figure 2.14). The solute concentration dropped from the initial value. The decrease in 

the measured solute concentration was due to an increase in the number of crystals in 

suspension. However, the decrease in solute concentration was slower for the sample at 

low initial concentration. The time period in which crystals were first observed was taken 

as the induction time. In the system at low initial concentration, the induction period was 

prolonged and no crystal formation occurred for approximately the first 30 minutes of the 

process. This induction period was reduced as the initial value of solute concentration 

increased. Information about the polymorphic form of the crystallizing solids was 

extracted from ATR-FTIR spectra, as previously described. At the initial phase of 

crystallization, the solid-phase composition revealed the presence of about 13 percent 

(w/w) and 18 percent (w/w) of Form I at lower and higher solute concentrations, 

respectively (Figure 2.14, superimposed with the solute concentration profiles). The 

percentage of Form I slightly increased when the solute concentration increased. The 

initial dip in the solute concentration profile of both systems was indeed consistent with 

nucleation of Form I. These nuclei of Form I set the starting point for the transformation 

process. As Form II crystals grew, the solution concentration decreased below the 

solubility of Form I and, thus, Form II crystals began to dissolve themselves. The 

dissolution of Form II created a localized supersaturation that allowed the other crystal 

form, Form I, to grow at the same time Form II crystals were dissolving. The percentage 

of Form I in the crystallized product increased as solvent-mediated phase transformation 
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progressed. Ultimately, the solid composition reached its final state, together with the 

solute concentration profile, which stabilized at the solubility of Form I. 

 

 

Figure 2.14. Time dependence of concentration measured at 0 °C during rapid cooling of 

TFA from ethanol at different initial concentrations. The weight percentages of Form I in 

the collected crystal samples are plotted correspondingly as dashed lines.  

  

When comparing unseeded crystallization experiments performed at 37 °C (Figure 2.9) to 

those carried out at 0 °C (Figure 2.14), the former systems exhibit much shorter induction 

periods than the latter systems. The induction period refers to the time that elapses after 

the creation of supersaturation in solution until a new phase is detected.
119

 Due to the 

bulk nature (i.e., the nuclei cannot be observed directly because of their small dimensions 
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and, thus, one must rely on the macroscopic clusters) of the off-line analytical 

measurements described herein, the crystallization measurements at higher temperature 

are more likely to stem from the already-grown crystals, particularly regarding those 

when S = 1.95. In this case, direct nucleation and subsequent growth of Form I may occur 

soon after the onset of cooling, thus giving rise to the dramatic increase in the amount of 

Form I in the product phase. However, these observations do not invalidate the nucleation 

mechanism being the determining step of the polymorph formation of TFA. In fact, the 

crystallization experiments yield an increased amount of the stable Form I when the 

initial solute concentration increases, whether crystallization occurs at 37 °C or 0 °C. 

Note that although the isothermal conditions at 0 °C were not tightly maintained by a 

temperature controlled system during either of the two experiments, the same thermal 

gradient was applied in the experiments performed at different temperatures (i.e., 37 °C 

and 0 °C), respectively. For that reason, thermal conditions should not cause changes in 

the underlying mechanism of the polymorph formation. In order to verify the above 

statement, seeding experiments were performed using seed crystals of both polymorphs.    

After seeding with TFA Form I crystals the solute concentration decreased, until it 

eventually approached a steady-state concentration (Figure 2.15a), which possibly 

corresponds to the solubility of Form I at the defined temperature. Accordingly, the solid-

phase composition profiles (superimposed in Figure 2.15a) showed that Form I 

precipitated regardless of the initial supersaturation and persisted over the duration of the 

crystallization process. This was consistent with crystal growth of the seeds. Thus, Form I 

seeds were able to suppress the formation of the metastable phase and to produce the 

Form I crystals exclusively. During the first minutes following the introduction of Form 
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II seeds (Figure 2.15b), no spontaneous nucleation of the stable Form I was observed in 

metastable suspensions, which could be attributed to the growth of the metastable crystals 

already in suspension. Initially, Form II dominated before undergoing solvent-mediated 

phase transformation to Form I. The time at which the appearance of Form I crystals 

occurred corresponded to the increase of Form II to Form I turnover that was not 

significantly different for either of the experiments at different supersaturations. During 

the polymorph transformation, the solution concentration tended towards a plateau value, 

indicating that saturation with respect to Form II was reached, until the metastable 

crystals disappeared to be replaced by the stable crystals and in turn, the solute 

concentration reached its final level. Form I crystals eventually were isolated. 

In the seeded crystallization experiments performed at 0 °C, the observed induction times 

were substantially shorter at the same initial concentration values when compared to the 

unseeded experiments. The induction period is a composite of the time required for the 

formation of nuclei and their growth to a detectable size. In the presence of seed crystals, 

only growth is expected to occur and this results in shorter induction times being 

observed. The crystal growth of the already present polymorph, added to the system as 

seed crystals, is favored irrespective of the initial solute concentration. This implies that 

the polymorph obtained by unseeded crystallizations is controlled by nucleation.  
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Figure 2.15. Time dependence of concentration measured at 0 °C during rapid cooling of 

TFA from seeded ethanol solutions at different initial concentrations with seeds of Form I 

(a) and seeds of Form II (b). The weight percentages of Form I in the collected crystal 

samples are plotted correspondingly as dashed lines. 

 



66 

 

2.4 Unanswered Question  

In this section, the crystallization results of the model solute, TFA, will be discussed. To 

assess the effects of solute concentration and temperature on polymorph outcomes, 

crystallization experiments were conducted at different starting concentrations and 

temperatures, respectively. An increasing solute concentration resulted in a reduced Form 

II mass fraction and, thus, biased the polymorph outcome toward the most stable Form I. 

The biggest question to address is why the most stable polymorph of TFA was obtained 

when crystallized from highly supersaturated ethanol solution by cooling to either 37 °C 

or 0 °C temperature. Seeding experiments revealed that the polymorph formation was 

controlled by nucleation kinetics and not by crystal growth kinetics. 

According to CNT, the effect of supersaturation or temperature on the polymorph 

selectivity is determined by the relative nucleation rates of the polymorphs.
27,43

 The TFA 

polymorph behavior was qualitatively explained by the nucleation theory. The starting 

point for a discussion of the nucleation kinetics is the free energy diagram for 

crystallization of a dimorphic system (Figure 2.16).
27

 For the considered system, Form I 

is the most stable polymorph and Form II is the metastable polymorph. There will be a 

critical radius (rc) and an activation barrier for nucleation (ΔGcrit) corresponding to each 

crystalline form. The polymorph that bears the smallest surface energy (likely the 

metastable Form II) crystallizes first. Although the stable Form I may have the greater 

thermodynamic drive to crystallize, Form II may nucleate first due to its higher 

nucleation rate. A similar concept should be applied to the TFA system. Accordingly, the 

driving force for precipitation increases as the solute concentration increases. TFA Form 

II should crystallize, particularly at high supersaturation, if it bears the lower surface 
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energy and, thus, the lower activation energy for nucleation. However, direct nucleation 

of the stable TFA Form I occurred from the crystallization at higher supersaturation.  

 

 

Figure 2.16. Schematic representation of the free energy diagram for nucleation of a 

dimorphic system, showing the activation barriers for nucleation of Forms I and II. 

(Adapted from Bernstein et al.)
27

 

 

The induction time often is used as a macroscopic measurement of the nucleation time. 

The induction time allows for the identification of the underlying nucleation mechanism 

of a given compound. Also, it allows for a connection to be made between nucleation 

theory and experimental observations. However, the reproducibility of the measurements 
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is questionable because it depends on the technique used to detect the formation of a new 

phase. As such, the measurements could lead to erroneous results during the ex-situ 

crystallization method employed herein. Also, the induction time is not a fundamental 

property of the system being studied and may not provide a systematic understanding at 

the molecular-level of the polymorph formation of TFA. For those main reasons, the 

induction time was not analyzed in the attempt to determine the relative nucleation rates 

of TFA polymorphs. Conversely, an understanding of the observed crystallization 

behavior could be obtained by studying pre-nucleation events in solution. The chemistry 

of the putative interactions of TFA and its intrinsic properties will be covered in the 

following chapters.  

2.5 Summary 

Crystallization of TFA polymorphs in ethanol was found to be affected by growth 

conditions, such as initial solute concentration and temperature. Both TFA polymorphs 

crystallize concomitantly under the same conditions. At high temperature and low 

supersaturation ratio, the metastable Form II was obtained, while at high supersaturation 

ratio, the most stable Form I started to be produced. At low temperature, an increasing 

solute concentration resulted in a reduced amount of Form II in the polymorphic mixture.   

Results from seeding experiments showed that nucleation is the underlying mechanism 

responsible for the observed polymorph formation of TFA. However, the effect of 

solution conditions in the crystallization medium highlighted the limitation of CNT in 

explaining the nucleation process. Pre-nucleation events may hold the key to achieving a 

detailed molecular understanding of the polymorph formation of TFA.  
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Sections of this chapter were previously published.
111

 Reprinted with kind permission 

from Springer Science + Business Media: Pharmaceutical Research, Mattei, A, Li T 

2012, Polymorph formation and nucleation mechanism of tolfenamic acid in solution: An 

investigation of pre-nucleation solute association, 29(2): 460-470. Copyright © 2012 

Springer Science + Business Media. 
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Chapter 3 – Investigation of Solution Chemistry of Tolfenamic Acid 

The focus of this chapter is to study the association behavior of tolfenamic acid (TFA) 

molecules in ethanol solution. The rationale lies in the fact that, prior to the cooling of 

crystallization, the TFA ethanol solutions were undersaturated but of different 

concentrations. The extent of self-association as a function of concentration and 

temperature will be studied. The variation in concentration and temperature may affect 

how solute molecules behave in solution and consequently result in nucleation of the 

distinct species. In addition, the effect of concentration and temperature on the 

conformation of solute molecules in solution will be probed.    

3.1 Introduction 

Molecules in solution readily form associations through non-covalent interaction, such as 

hydrogen bonding, dipole-dipole, and electrostatic and hydrophobic interactions. The 

nature of the associated species in solution is strongly dependent upon the solvent used. 

The effect of solvent on intermolecular interaction is related to the way the solute 

molecules interact in solution. For instance, in non-polar solvents, molecules containing a 

carboxyl group poorly interact with the solvent and solute-solute interactions are favored 

even at low solute concentrations. On the other hand, molecules containing a carboxyl 

group in polar solvents highly interact with solvent molecules and solute-solvent 

interactions are stabilized with respect to solute-solute interactions.
107

 

Molecular association in solution also depends on the structure of the carboxylic acid. 

Acetic acid associated species have been determined to be hydrogen-bonded dimers in 
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acetonitrile solutions with a self-association equilibrium constant in the range 10
2
 kg of 

solvent/mol.
107

  At a low solute concentration, indomethacin does not self-associate to 

form hydrogen-bonded dimers in acetonitrile and ethanol solutions due to stronger solute-

solvent hydrogen bonding, but as concentration increases indomethacin molecules 

become more closely associated in solution to form dimers via the carboxyl group.
120,121

     

Several spectroscopy-based methodologies, including UV, FT-IR, and NMR have been 

used to investigate the association behavior of small organic molecules in 

solution.
70,122,123

 The studies focus only on the size of the associated species, but not on 

the structural information at the molecular level. All lack detailed information about the 

orientation of specific functional groups in the associated species. In this chapter, the 

formation of associated species will be evaluated by spectroscopic techniques, including 

UV and NMR. Moreover, the conformation of the interacting molecules in solution will 

be deduced from qualitative and quantitative Nuclear Overhauser Effect measurements, 

which can allow the microenvironment of a functional group to be probed. This 

information will be complemented with size information, derived from pulsed gradient 

spin-echo NMR experiments.   

3.2 Materials and Methods 

3.2.1 Materials 

TFA was purchased from TCI America (Portland, OR) and was recrystallized from 

ethanol to obtain pure Form I. Ethanol (> 99.9 percent purity) was obtained from Decon 

Labs, Inc. (King of Prussia, PA) and was used as received. Potassium chromate (≥ 99 

percent) was purchased from Sigma-Aldrich, Inc. (St. Louis, MO). Tetramethylsilane 
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(TMS), ethanol-d6 (99 percent D, anhydrous), and D2O (99.9 percent D) were purchased 

from Cambridge Isotope Laboratories, Inc. (Andover, MA).  

3.2.2 UV Spectroscopy 

UV spectroscopy measurements were carried out over the concentration range 5.76 x 10
-5

 

– 2.30 x 10
-2

 M in ethanol at room temperature. Appropriate amounts of the drug were 

added to volumetric flasks and diluted with absolute ethanol. Each sample was prepared 

in triplicate. Absorbance spectra of the resultant solutions were recorded in a 

spectrophotometer (Shimadzu 1800, Shimadzu Scientific Instruments, Inc., Columbia, 

MD) with quartz cells (New Era Enterprises, Inc., Vineland, NJ) of path length 10, 1, or 

0.1 mm at 346 nm, when appropriate. The band at 346 nm corresponds to the n-π* 

electronic transition of TFA that is suitable to study the mode of molecular assembly.
124

 

The path length of a cuvette was calibrated using standard potassium chromate solutions. 

This was done because of the non-interacting properties of potassium chromate 

solutions.
125

 Values (± standard deviation) thus determined for the path length were 9.99 

± 0.02, 1.01 ± 0.01, and 0.11 ± 0.01 mm. From the absorbance of solutions, apparent 

molar absorptivities were calculated as a function of solute concentration.  

3.2.3 NMR Spectroscopy 

All NMR spectra were collected at 600 MHz on an Inova NMR spectrometer (Varian-

Agilent, Inc., Palo Alto, CA) equipped with a conventional triple-axis HCN probe. 

Temperature was controlled by an external unit that pre-conditions the variable 

temperature (VT) gas (Model TC-84, FTS Systems, Stone Ridge, NY). Data were 

processed and analyzed using VnmrJ software version 2.2D.      
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3.2.3.1 1
H-NMR Spectroscopy 

TFA Form I was dissolved in ethanol-d6 at concentrations ranging from 1.5 to 69 mM. 

The choice of drug concentrations was limited by the signal-to-noise ratio for the lowest 

concentration and stability of the solution, with respect to crystallization for the highest 

concentration. 
1
H-NMR spectra employed a 90° excitation pulse followed by 1.4 s of data 

acquisition and then a 7.5 s delay for relaxation (T1 values ranged from 1.6 s up to 2.5 s). 

Spectra were the result of averaging 16 scans and were acquired at temperatures ranging 

from 10 °C to 55 °C. When measuring samples at 37 °C and 55 °C, a vortex plug 

(Wilmad LabGlass, Vineland, NJ) was inserted into a 5 mm NMR tube to prevent solvent 

evaporation. Chemical shifts were referenced to the methyl protons of ethanol, which 

resonate at 1.11 ppm relative to the internal TMS at 0 ppm. The solvent signal chemical 

shift can vary by less than 0.001 ppm/°C,
126

 and thus can be reliably used as reference. 

3.2.3.2 Pulsed Gradient Spin-Echo (PGSE) NMR 

The self-diffusion coefficients of TFA in ethanol-d6 solutions were measured using the 

pulsed gradient spin-echo (PGSE) NMR technique.
127

 Two magnetic field gradient pulses 

were applied to examine the effects of translational motion of nuclei on the signal 

intensity. Self-diffusion coefficients were obtained by a linear least-squares fitting of the 

attenuation of the NMR echo signal intensity according to the Stejskal-Tanner 

equation:
127
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Here, I and I0 are the intensities of the resonance in the NMR spectrum measured with 

and without the magnetic field gradient, respectively; γ is the gyromagnetic ratio of the 

observed nucleus (it is 4258 Hz/G for 
1
H); δ and G are the duration and amplitude of the 

gradient pulses, respectively; Δ is the time period during which diffusion occurs; and D is 

the self-diffusion coefficient. The duration of the magnetic field pulse gradients (δ) was 

set to 2 ms. The diffusion time (Δ), equal to δ+d2+2pw90+d5+d0 in the pulse sequence 

(Figure A2.1 in Appendix 2), was 500 ms. The gradient amplitude (G) was incremented 

from 1 to 51 Gauss/cm in 32 linear steps. The pulsed field gradient strength was 

calibrated with the residual 
1
H signal in 99.9 percent D2O, for which the self-diffusion is 

1.90 x 10
-9

 m
2
/s at 25 °C.

128
 Calibration experiments were performed by relating the 

gradient driver control parameter, usually a digital-to-analog conversion (DAC) value, g, 

to the resultant gradient strength, G (G = κg). The peak intensity data of the residual 

HDO resonance were analyzed via linear fit to Eq. (3.1) as a function of g
2
 to obtain κ 

using the known diffusion coefficient of D2O. The gradient calibration constant was 

found to be (1.14 ± 0.02) x 10
-2

 Gauss/cm/DAC. Solutions of TFA in ethanol-d6 were 

injected into a 5 mm NMR tube with a coaxial capillary containing D2O for calibration. 

Such an experimental set-up was utilized in order to perform calibration during each set 

of experiments and to minimize the effect of convection currents caused by small 

temperature gradients within the sample.
129

 Drug solutions were also spiked with TMS 

(0.4 mM) to be used as an internal standard for diffusion measurements to account for 

viscosity changes.
130

 The number of transients acquired varied from 16 for the 

supersaturated solutions (65 and 69 mM) to 128 for all of the other concentrations. All 

diffusion measurements were determined at least in triplicate and obtained with the 
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sample temperature regulated at 25 °C. Post-acquisition processing included baseline 

correction before measuring the resonance amplitude of each peak in the data set. To 

improve the accuracy of the measurements, six peaks corresponding to the TFA molecule 

were used independently to calculate the diffusion coefficient; thus, the final determined 

diffusion coefficient represents an average of 18 measurements. A solution containing 

neat ethanol-d6 and TMS was also analyzed in order to measure the diffusion coefficients 

of ethanol and TMS. 

3.2.3.3 Nuclear Overhauser Effect Spectroscopy 

The Nuclear Overhauser Effect (NOE) corresponds to the fractional change in peak 

integration of one NMR resonance when a neighboring resonance is saturated. The effect 

depends strongly on the internuclear distance (r), in that the fractional peak integral 

change is proportional to r
-6

. One-dimensional (1D) NOE experiments were performed at 

TFA concentrations of 1.5, 10.4, and 62.5 mM in ethanol-d6 at 25 °C. Spectra of 64 scans 

were acquired using a rectangular pulse to selectively perturb proton frequencies with 

different mixing times (τm) ranging from 0 to 4.6 s. NOE build-up data were fitted to the 

following exponential function:
131

 

           (3.2)  

where R is the total longitudinal relaxation rate constant of both nuclei; σ is the cross-

relaxation rate that represents the rate at which NOE is transferred between two nuclei; 

and τm is the duration of the cross-relaxation between two nuclei. The NOE is a sensitive 

measure of the distance between observed and perturbed nuclei. As such, the 
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corresponding internuclear distances were subsequently calculated by comparing cross-

relaxation rates σis with σref according to the equation:
131

 

           (3.3) 

where σref and rref are the reference cross-relaxation rate and the reference distance, 

respectively, for a pair of protons separated by a known distance; and σis and ris are the 

cross-relaxation rate and the distance, respectively, for a pair of protons of interest whose 

distance is to be calculated. NOE build-up experiments served as a means of both 

estimating proton-proton distance and choosing the appropriate mixing time to be used in 

Nuclear Overhauser Effect Spectroscopy (NOESY) experiments. Because incorrect 

choice of the mixing time can cause absence of observable signals, it is necessary to 

ensure the mixing time lies within the linear growth region of the NOE enhancement in 

order to maximize the NOE signal and the efficacy of the experiment.
132

 

Two-dimensional Nuclear Overhauser Effect Spectroscopy (2D-NOESY) was performed 

on solutions of TFA in ethanol-d6 at varying concentration and temperature. The pulse 

sequence used in NOESY experiments consists of three 90° pulses (Figure A2.2 in 

Appendix 2). The t1 evolution time was systematically incremented to provide chemical 

shift information along the F1 dimension. NOESY spectra for each sample were recorded 

with a mixing time of 0.8 s; 2074 data points were collected in the F2 dimension and 200 

in the F1 dimension and 56 scans were time-averaged for each t1 increment. NOESY 

spectra were weighted using a Gaussian function in both the F1 and F2 dimensions prior 

to Fourier transformation. 
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3.2.4 Data Analysis 

Non-linear least-squares regression analyses were performed using the software program, 

Scientist (Micromath Scientific Software, St. Louis, MO). The lack-of-fit test analysis 

was performed using Scientist and Microsoft Excel. Data are reported as mean ± standard 

deviation. 

3.3 Results and Discussion 

3.3.1 Association Behavior of Tolfenamic Acid 

3.3.1.1 UV Absorptivity Measurements 

To understand the solution chemistry of the system, UV spectroscopy was performed to 

identify the occurrence and extent of association of TFA solute molecules in ethanol as a 

function of concentration (below the solubility). By measuring UV absorbance at 

different concentrations, the molar absorptivity was calculated and plotted as a function 

of concentration (Figure 3.1). Hypochromic deviation from the Beer-Lambert law is 

evident, suggesting self-association of solute molecules.
133

 The total absorbance may be 

regarded as a sum of individual species in the solution: 

           (3.4) 

where ε is the apparent molar absorptivity determined from the experimental absorbance; 

and εm and εn are the molar absorption coefficients of monomers and n-mer aggregates of 

solute molecules, respectively. In addition, n is the size of n-mer aggregates (i.e., 2 for 

dimer); K1,n is the self-association equilibrium constant of the aggregation; C is the 
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overall solute concentration; and Cm is the monomer concentration. The equilibrium 

constant and the molar absorption coefficient of the aggregate species were used as fitting 

parameters. The best fit of the experimental data based on Eq. (3.4) could then be 

obtained (solid line in Figure 3.1) with a correlation coefficient of 0.98. The calculated 

value (± standard deviation) of K1,n was found to be (1.38 ± 0.34) x 10
2
 M

-1
 and the 

corresponding n equals 2. The fraction of molecules present in dimers can be expressed 

as follows: 

           (3.5) 

Consequently, the extent of dimer formation was derived, indicating the trend of dimer 

association as the solute concentration increases (dashed line in Figure 3.1). Note that the 

derived model assumes that dimers are the only species in equilibrium with monomer 

over the concentration range employed. Higher-order association species are plausible. 

Therefore, to determine the probability of the formation of aggregates of a higher order 

than dimers, the molar absorptivity versus drug concentration profile was fit to Eq. (3.4) 

with varying the size of n-mer aggregates (i.e., n=2 and 3). A statistical lack-of-fit test 

analysis was performed for the model fitting and the results of the analysis are shown in 

Table 3.1. Although both models do not meet the requirements of the lack-of-fit test 

analysis (Fcalculated < Fcritical), the rank order of the models based on their calculated F 

values indicates that the dimerization model (i.e., n=2) provides the best fit for TFA 

molar absorptivity profile. The evidence obtained from this study is not sufficient to 

support any one model unequivocally. Nevertheless, formation of higher-order 

association species seems unlikely or negligible. 
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Figure 3.1. Concentration dependence of the molar absorptivity of TFA at λmax = 346 

nm. The solid line is a fit of the data according to Eq. (3.4); the dimer fraction is also 

shown as dashed line versus the total TFA concentration. Error bars represent standard 

deviation (n=3).   

 

Table 3.1. Lack-of-fit statistical analysis of TFA molar absorptivity profiles with varying 

the size of n-mer aggregates (n).  
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3.3.1.2 NMR Chemical Shift Measurements 

 The 
1
H chemical shift is sensitive to subtle changes in the local environment of the 

molecule and it is often used to study molecular association.
134,135

 A molecular 

association event often manifests itself by perturbations in peak positions in the NMR 

spectrum. Therefore, 
1
H-NMR was performed on a series of concentrations of TFA at 25 

°C. The aromatic region of the 
1
H-NMR spectra of TFA at concentrations of 1.5 and 62.5 

mM showed a chemical shift variation when the solution was diluted (Figure 3.2). 

Specifically, the chemical shifts of all protons were shifted to stronger fields with 

increasing concentration of TFA, suggesting that molecular association was involved. 

The chemical shift changes of three selected resonances as a function of molar drug 

concentration were fit to the model that considers a single associated species to be in 

equilibrium with the monomer, as follows:   

           (3.6) 

where δobs is the measured chemical shift; δm and δn are the chemical shifts of the 

monomer and n-mer aggregate, respectively; C is the total TFA concentration; Cm is the 

molar concentration of the monomer; n is the size of n-mer aggregates; and K1,n is the 

equilibrium constant of the self-association. The equilibrium constant and the chemical 

shift of the aggregate species were used as fitting parameters. Monomer and aggregate 

species in the solution seem to be in fast exchange with respect to the NMR time scale 

because either distinct resonances due to both species or line broadening cannot be 

observed in the proton spectra. Thus, the observed chemical shift can be expressed as the 

weighted average of the monomer and aggregate chemical shifts. The concentration-
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dependent chemical shift profiles (Figure 3.3, solid line) were fit well using n=2 (i.e., the 

dimerization model). A statistical lack-of-fit test analysis was performed for the model fit 

and the results indicated that a monomer-dimer model conforms to the requirements of 

the test, with the F-statistical value less than the F-distribution at the significance level of 

α = 0.05 (Table 3.2). A lack-of-fit test for a monomer-trimer model showed sufficient 

statistical evidence that there was lack of fit. Thus, the model was considered to be 

unsuitable for the analysis of the chemical shift data. The self-association equilibrium 

constants (K1,2) obtained independently from the curve fitting of different aromatic 

protons were consistent and an average value was found to be (0.31 ± 0.07) x 10
2
 M

-1
, 

which is different from that obtained previously in studies of UV measurements. Such a 

discrepancy in the derived self-association constant may stems from at least two 

possibilities. First, a different concentration range is employed. A narrow concentration 

range was used for UV measurements and the estimated association constant may depend 

upon the concentration range used. Second, the dimerization model proved to have 

limitations with UV data based on the statistical analysis.  
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Figure 3.2.
 1

H-NMR spectra of TFA in ethanol-d6 at 25 °C recorded at 1.5 mM (a) and 

62.5 mM (b); resonances for characteristic peaks are highlighted. Chemical structure and 

the numbering system of TFA are shown in the inset. 
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Figure 3.3. Dependences of the chemical shifts for H7 (a), H15 (b), and H30 (c) on the 

concentration of TFA at 25 °C. Error bars show the standard deviation of three 

independent samples. The solid lines represent the best fit obtained using Eq. (3.6). 
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Table 3.2. Lack-of-fit statistical analysis of TFA chemical shift profiles at 25 °C with 

varying the size of n-mer aggregates (n). Correlation coefficients for the model fits (R
2
) 

are also reported.  

 

 

Studies were conducted to evaluate how temperature affects the self-association of TFA 

molecules. Intuitively, if there is an increase in the thermal motion of molecules, there 

should be a decrease in the probability that the molecules would form dimers. The 

concentration dependence of the chemical shifts of TFA protons was measured at varying 

temperatures. Similar to the measurements carried out at 25 °C, when changing 

temperature, the chemical shifts of the three selected protons decreased as concentration 

increased (Figure 3.4). The proton H30 exhibited a greater change in chemical shift as 

temperature was varied (Figure 3.4c). This means that H30's chemical environment is 

more affected than that of other aromatic protons by the association of TFA molecules. 

The chemical shifts versus concentration profiles were fit to a dimerization model 

according to Eq. (3.6) to estimate the self-association equilibrium constant at various 

temperatures. The estimated association constants of TFA molecules were (0.47 ± 0.14) x 

10
2
 M

-1 
at 10 °C, (0.09 ± 0.05) x 10

2
 M

-1 
at 37 °C, (0.04 ± 0.04) x 10

2
 M

-1
 at 55 °C. As 

such, the fraction of TFA molecules existing as dimer in solution was calculated from Eq. 

(3.5) and plotted as a function of total drug concentration at different temperatures 
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(Figure 3.5). At low temperature, the fraction of dimer is relatively high, but significantly 

reduces with increasing temperature to give a concomitant increase in concentration of 

the monomer species in solution. The analysis of the temperature dependence of the 

association constants enabled the thermodynamic parameters of TFA molecular self-

association to be estimated. The enthalpy and entropy of TFA self-association were 

estimated from the van’t Hoff plot (Figure 3.6). The magnitude of the enthalpy of 

formation of TFA dimers in ethanol solution was -45.0 kJ/mol and the entropy was 1.25 x 

10
2
 J/mol. The negative sign of the enthalpy of dimerization indicates that the formation 

of TFA dimers in ethanol solution is enthalpically favored. The negative value of the 

enthalpy of dimerization may be determined by intermolecular interactions, specifically 

hydrogen bonding, which will be discussed in the following chapters. 
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Figure 3.4. Dependences of the chemical shifts for H7 (a), H15 (b), and H30 (c) on the 

concentration of TFA at 10 °C, 37 °C, and 55 °C. The solid lines represent the best fit 

obtained using Eq. (3.6). 
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Figure 3.5. Molar fraction of TFA dimer estimated at different temperatures from Eq. 

(3.5). 
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Figure 3.6. Van’t  Hoff plot of the self-association constant (K1,2) for TFA in ethanol-d6. 

 

The results suggest that TFA molecules self-associate in ethanol solution to form dimers. 

The observed trend of the chemical shifts is consistent with two possible structures of 

dimers. First, the formation of hydrogen-bonded dimers between neighboring carboxyl 

groups may increase the electron density on the protons of the anthranilic ring and the 

effect is reflected in a chemical shift decrease of these protons.
121,136

 Second, the 

formation of π-π interactions affords the “ring current” effect on the aromatic protons, 

which shift to decreased chemical shifts
137

 As a result of the major difference in the 

chemical shift of H30 with temperature, hydrogen-bonded dimer is the plausible geometry 

that can be extracted from the data available. At this point, the results are more consistent 

with a role for H30 in determining the structure of the associated species. To further assess 
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the structural properties of the associated species, NMR self-diffusion coefficient 

measurements and NOESY experiments were conducted. 

3.3.1.3 Diffusion Coefficient Measurements 

The solution behavior of TFA in ethanol-d6 was investigated by determining the 

concentration dependence of the self-diffusion coefficient at 25 °C using PGSE NMR 

methodology. The study relies on the fact that association phenomena, which involve 

changes in hydrodynamic radii of the molecule, can be monitored through changes in 

diffusion. The diffusion coefficient is related to the hydrodynamic radius through the 

Stokes-Einstein equation, assuming the solute to be spherical: 

(3.7) 

where D is the diffusion coefficient; k is the Boltzmann constant; T is the temperature; η 

is the viscosity of the solution; and r is the hydrodynamic radius.  

Hydrodynamic radii calculated from experimental diffusion coefficients have mainly 

been utilized in structure assignment procedures.
131

 It is nonetheless necessary to account 

for changes in the viscosity of the solution before drawing conclusions about any changes 

in the hydrodynamic radii. In order to obtain information about size that is independent of 

the solution viscosity, tetramethylsilane (TMS) was used as the internal standard in the 

solutions of TFA at different concentrations. This was done because of TMS's non-

interacting properties, making it possible to correct the measured diffusion values for any 

changes in the viscosity.
130
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The measured diffusion coefficients of ethanol and TMS in the reference solution of neat 

ethanol-d6 were (1.01 ± 0.01) x 10
-9

 m
2
/s and (1.34 ± 0.03) x 10

-9
 m

2
/s, respectively. The 

diffusion coefficient of ethanol was in good agreement with the literature reported value 

in bulk ethanol if it scaled with solvent viscosity.
138

 The diffusion coefficient of TMS 

was determined as drug concentration increased (Figure 3.7 solid circles). The relatively 

constant diffusion values of TMS upon increasing drug concentration indicated that the 

viscosity of the solution was only slightly affected by modification of the solution 

composition. Indeed, the viscosity values were nearly constant throughout the 

concentration range used (open circles superimposed in Figure 3.7). The medium 

viscosity was determined using the Stokes-Einstein equation and considering the 

hydrodynamic radius of TMS constant for different concentrations. The diffusion 

coefficient of TFA, obtained after correction for the viscosity variations in the solution (η 

x D), varied non-linearly with increasing concentration; such a change in diffusion can be 

mainly attributed to the formation of solute-solute associated species (Figure 3.8). 
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Figure 3.7. Concentration dependence of the diffusion coefficients of TMS in solution of 

ethanol-d6 at 25 °C (solid circles). The diffusion coefficients of TMS in TFA-containing 

solutions were normalized by the diffusion coefficient of TMS in the reference solution 

of neat ethanol-d6 and TMS. Viscosity of TFA solutions is shown at 25 °C (open circles). 

 

In all of the studies, the signal attenuation as a function of the pulsed gradient amplitude 

was fit to the mono-exponential Stejskal-Tanner function (Figure A2.3 in Appendix 2). In 

literature, a bi-exponential fitting function has been applied when the investigated 

chemical species are present in two different populations and the molecular exchange 

between them is slow on the time scale of Δ (i.e., diffusion time).
129,139

 The excellent fit 

of the mono-exponential function to the data can be explained by a rapid chemical 

exchange between species existing in different association states. For that reason, the 
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measured diffusion coefficient was considered as a weighted average of the diffusion 

coefficients of the monomer and dimer.    

 

Figure 3.8. Concentration dependence of the diffusion coefficients of TFA corrected by 

viscosity in ethanol-d6 solutions at 25 °C. Error bars show the standard deviation (n=18). 

The solid line represents a fit of the data to Eq. (3.8). The dashed vertical line 

corresponds to the saturated concentration of TFA in ethanol.   
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The dependence of diffusion coefficient on concentration was modeled according to the 

following equation: 

(3.8) 

where D'obs is the observed diffusion coefficient; and D'm and D'd are the diffusion 

coefficients of TFA monomer and dimer, respectively. Note that the diffusion 

coefficients, D', are corrected for changes in the solution viscosity. C is the total TFA 

concentration; Cm is the molar concentration of the monomer; and K1,2 is the self-

association equilibrium constant, derived from the concentration dependence of the 

chemical shifts at 25 °C. The diffusion coefficients of the monomer and dimer were used 

as fitting parameters. The mathematical model gave a good fit (Figure 3.8 solid line) and 

the corresponding statistical analysis is shown in Table 3.3. The diffusion coefficients of 

the monomer and dimer were estimated to be (7.38 ± 0.05) x 10
-10

 and (5.10 ± 0.05) x 10
-

10
 cP m

2
/s, respectively. The ratio of the diffusion coefficient of the dimer to that of the 

monomer can be used as a signature of the molecular association process. The approach 

is to assume that monomer has a spherical shape, whereas dimer, resembling two spheres 

in contact, takes on the shape of a prolate ellipsoid. The ratio for the formation of TFA 

dimer was found to be 0.69, which is in reasonable agreement with the theoretical value 

of 0.71 obtained by approximating the monomer-monomer interaction as a hard-sphere 

molecular contact.
140

 The hard-sphere model has been applied to estimate the association 

state of both proteins
141

 and small molecules.
140

 The hydrodynamic radii, which are not 

dependent upon the solution viscosity, were thereby calculated using the Stokes-Einstein 

equation and plotted as a function of TFA concentration in order to detect the extent to 
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which the molecular size may change over the concentration range studied (Figure 3.9). 

The results support that the monomer-dimer model is the predominant association 

process and that higher-order association species are insignificant based on molecular 

size measurements.  

 

Table 3.3. Lack-of-fit statistical analysis of TFA diffusion coefficient profiles at 25 °C 

with n=2 being the size of n-mer aggregates. Correlation coefficient for the model fit (R
2
) 

is also reported. 
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Figure 3.9. Hydrodynamic radii of TFA molecules in ethanol-d6 solution as a function of 

drug concentration. 

 

3.3.2 Concentration and Temperature Dependence of Molecular Conformation 

TFA exhibits conformational flexibility; the two major conformers of the crystal 

structures, Forms I and II, differ mainly in the orientation of the chlorinated aromatic 

ring. NOE methodology is typically employed in structural analysis as a means to 

characterize the spatial relationship between two nuclei that are located within 5 Å. Since 

the NOE depends upon internuclear separations, it is also a tool for studying 

intermolecular interactions. Thus, NOE experiments were performed to seek evidence for 
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conformational changes in solution and, specifically, to elucidate the spatial arrangement 

of TFA molecules in the dimer state that is formed in solution. 

In 1D-NOE experiments, selective saturation of H9 produced NOEs on H15 and H7, which 

belong to the anthranilic ring (Figures 3.10a and 3.10c). Note the clean and well-resolved 

NOE peaks with a flat baseline. The NOE generated at H15 by saturation of H9 was used 

as a reference value because these protons belong to a region of the molecule that is 

considered to be invariant in the two TFA conformations. In the spectrum at 62.5 mM, 

NOE was observed from H30 to the methyl group, which nonetheless showed to be very 

weak in the spectrum at 1.5 mM (Figures 3.10b and 3.10d). Cross-relaxation rates of H15 

and H30 were then estimated following saturation of H9 and the methyl group, 

respectively, by fitting the NOE build-up curves according to Eq. (3.2) (Figure 3.11).   

Various factors may perturb NOE intensities, including additional cross-relaxation 

pathways or spin diffusion, selective polarization transfer from inhomogeneous 

inversions, and variation in effective rotational correlation time between spins.
142

 For 

organic molecules, tumbling rapidly in non-viscous solvents (i.e., in the extreme 

narrowing limit) NOEs are roughly independent of the correlation time. TFA described 

herein falls within the extreme narrowing regime. Also, NOE build-up curves for the 

selected proton pairs do not exhibit a sigmoidal behavior (i.e., an induction period 

characteristic of spin-diffusion)
132

 in the initial stage of NOE enhancement (Figures 3.11a 

and 3.11b). Thus, all interactions were treated as direct NOE enhancements. The 

interproton distance H9-H15 was measured from the reported crystal structures
114

 and was 

used to calculate the distance between protons of interest according to Eq. (3.3). The 

apparent distance between H30 and the methyl protons describes TFA conformational 
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flexibility and allows the Form I and II conformers to be distinguished as it reflects the 

orientation around the N-C bond in the chlorinated phenyl moiety. The interproton 

distance methyl-H30 will likely reflect an r
-6

 population-weighted average of the cross-

relaxation rates. At the lowest analyzed concentration of 1.5 mM, the time-dependent 

build-up of NOE effect for the selected H30 and methyl protons could not be constructed 

because the interaction from H30 to the methyl protons is too weak or not persistent 

enough (Figure 3.11b). This indicates that in a solution at low concentration, the selected 

pair of protons is at a larger distance than the allowable distance for NOE measurement. 

Molecular conformations in which two protons are at a larger distance than 5 Å are not 

sufficiently populated or are too short-lived. In the flatter Form II conformer, the distance 

of closest approach between H30 and the methyl protons is 4.5 Å.
114

 For the solution 

concentrations of 10.4 and 62.5 mM, the experimental distance between H30 and the 

methyl protons was found to be about 3.0 Å, which is close to that observed in the crystal 

structure of the Form I conformer (i.e. 2.9 Å).
114

 If flexible molecules exhibiting multiple 

conformations in solution are interconverting rapidly on the NMR time scale, then 

conformational exchange will lead to an average of the observed NOEs for each 

corresponding interproton distance in each conformer. In any case, given that the 

experimental distance between H30 and the methyl protons is comparable to the value 

corresponding to the Form I conformer in the crystal structure, the precision obtained is 

significant. As such, a twisted conformation exists in solution.   
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Figure 3.10. One-dimensional NOE spectra of 1.5 mM TFA in ethanol-d6 (a, b) due to 

selective saturation of H9 and H30, respectively, and of 62.5 mM in ethanol-d6 (c, d) due 

to selective saturation of H9 and H30, respectively. The inset shows the conformers of 

TFA Forms I and II together with the numbering system. 
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Figure 3.11. NOE build-up curves at different TFA solution concentrations between 

selected pairs of protons H9-H15 (a) and H30-methyl (b) of TFA as a function of the 

mixing time. Solid lines represent fits to the data according to Eq. (3.2). 
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The 2D-NOESY spectra acquired at 25 °C displayed a comprehensive map of close 

contacts within the molecule (Figure 3.12). All NOE cross-peaks had opposite phases to 

the diagonal, indicating that these arose from positive NOE enhancements, as expected 

for a molecule of small size. The 2D-NOESY spectrum of a 62.5 mM TFA solution 

showed relatively strong correlations between aromatic protons (i.e., H9-H15, H9-H7, H30-

H15, and H22-H29) as well as a cross-peak between H30 and the methyl protons (Figure 

3.12a). The data indicate a favored conformation in which the methyl protons are closer 

in space to the proton at the anthranilic ring, H30. It is noteworthy that all observed cross-

peaks correspond to intramolecular interactions; no additional cross-peaks between 

aromatic protons of neighboring molecules related to π-π intermolecular interactions are 

observed (i.e., H7-H30). The 2D-NOESY spectrum of 1.5 mM solution showed prominent 

cross-peaks between aromatic protons. Nonetheless, the intramolecular NOE interaction 

between H30 and the methyl protons was significantly weakened (Figure 3.12b). Possible 

reasons include:  

1) the signal-to-noise ratio may be lowered at this low drug concentration;  

2) drug molecules, being predominantly in the monomer state, undergo 

sufficiently rapid rotational motions in solution on the NMR time scale 

that the distance between H30 and the methyl protons cannot remain below 

5 Å; and  

3) drug molecules preferably adopt a more planar conformation.   

To learn whether the observed intramolecular interaction depends on the preferred 

arrangement of the molecule in solution, 2D-NOESY spectra were acquired at varying 

concentrations and cross-peak volumes were quantified.  
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A characteristic peak of TFA Form II (i.e., H30-H29) overlaps with other peaks. As a 

consequence of the cross-peak H30-methyl being the sole conformational characteristic 

peak, the outlined NMR studies will only detect the relative ratio with respect to Form I 

conformer. At different solution concentrations a quantitative interpretation of 2D-

NOESY data was accomplished by measuring the cross-peak volumes involving H30-

methyl and H9-H15 and the diagonal-peak volumes of H30 and H9. A square region 

enclosing each pertinent peak was chosen. Spectral noise, and thus the error in peak 

volume measurements, was estimated by measuring the volume integrals of empty 

regions of 2D-NOESY spectra and subtracted from the cross- and diagonal-peak 

volumes. The diagonal-peak volumes were then divided by their values in the solution at 

the lowest analyzed concentration of TFA. The obtained scaling factor was used to 

normalize the cross-peak volumes in order to correct for concentration effects. Lastly, the 

characteristic cross-peak volume corresponding to H30–methyl protons was divided by 

the reference cross-peak volume for H9-H15 and the ratio was used as indication of the 

relative ratio of Form I to Form II or of dimer to monomer in solution. 

The 2D-NOESY spectra were also acquired at 10 °C (Figure 3.13), 37 °C (Figure 3.14), 

and 55 °C (Figure 3.15). At 10 °C, the 2D-NOESY spectra of 62.5 and 1.5 mM TFA 

solutions showed a cross-peak between H30 and the methyl protons. However, the 

specific NOE interaction between H30 and the methyl protons was significantly weakened 

as temperature increased and at 55 °C the interaction was difficult to observe. For each 

set of temperature cross-peak volumes were quantified as described above.   
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Figure 3.12. 2D-NOESY spectra of 62.5 mM (a) and 1.5 mM (b) TFA in ethanol-d6 acquired at 25 °C. The interested cross-

peak H30-methyl protons and the reference cross-peak H9-H15 are marked by arrows. The corresponding 
1
H-NMR spectrum is 

shown at the left side of the 2D-NOESY spectrum. 
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Figure 3.13. 2D-NOESY spectra of 62.5 mM (a) and 1.5 mM (b) TFA in ethanol-d6 acquired at 10 °C. The interested cross-

peak H30-methyl protons and the reference cross-peak H9-H15 are marked by arrows. The corresponding 
1
H-NMR spectrum is 

shown at the left side of the 2D-NOESY spectrum. 
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Figure 3.14. 2D-NOESY spectra of 62.5 mM (a) and 1.5 mM (b) TFA in ethanol-d6 acquired at 37 °C. The interested cross-

peak H30-methyl protons and the reference cross-peak H9-H15 are marked by arrows. The corresponding 
1
H-NMR spectrum is 

shown at the left side of the 2D-NOESY spectrum. 
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Figure 3.15. 2D-NOESY spectra of 62.5 mM (a) and 1.5 mM (b) TFA in ethanol-d6 acquired at 55 °C. The interested cross-

peak H30-methyl protons and the reference cross-peak H9-H15 are marked by arrows. The corresponding 
1
H-NMR spectrum is 

shown at the left side of the 2D-NOESY spectrum. 
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At 25 °C, when TFA concentration increased, the relative ratio of the Form I conformer 

or of dimers increased, as indicated by an increase in the cross-peak volume involving 

H30 and the methyl group (Figure 3.16). Similar trends were viewed when the ratio of 

cross-peak volumes was measured at different temperatures and plotted as a function of 

TFA concentration. At 10 °C, the relative ratio increased as a function of drug 

concentration. Also, lowering temperature caused a large variation in favor of the Form I 

conformer or dimers with respect to the data obtained at 25 °C. At higher temperatures, 

the cross-peak volume ratio did not change significantly as a function of drug 

concentration. While there were small differences in the cross-peak volume ratios of the 

two highest concentrations employed, more prominent trends are observed within each 

concentration. The results indicate that at low concentration and/or high temperature, 

molecules prefer to remain monomeric or to adopt a conformation where H30 is not in 

close proximity to the methyl group. When solute concentration increases and/or 

temperature decreases, molecules form dimers or adopt a conformation where the 

functional groups (i.e., H30 and methyl group) come to close proximity. The twisted Form 

I conformer is likely to be favored or at least competitive with the Form II conformer.  

The conformational behavior is in line with the dimer formation of TFA molecules as a 

function of concentration and temperature. These experimental observations led us to 

hypothesize that solution conditions determine self-association of TFA and play a major 

role in shifting conformational population in favor of the twisted Form I. To assess the 

significance of solute association versus a possible conformational change, the cross-peak 

volume ratio versus TFA concentration profiles were fit to a dimerization model 

according to the equation: 
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           (3.9)  

where Vobs is the measured cross-peak volume ratio; Vm and Vd are the cross-peak 

volume ratios of TFA as monomer and dimer, respectively; C is the total TFA 

concentration; Cm is the molar concentration of the monomer; and K1,2 is the self-

association equilibrium constant determined from the regression analysis of chemical 

shift measurements, depending on the temperature. Vm and Vd were used as fitting 

parameters.   

The model fits the experimental data for cross-peak volume profiles of each set of 

temperature conditions (Figure 3.16 solid lines). Self-association equilibrium constant 

values, corresponding fitting parameters, and correlation coefficients of the model fits are 

summarized in Table 3.4. The cross-peak volume ratio of the monomer (Vm) is purely 

intramolecular whereas the cross-peak volume ratio for the dimer (Vd) can have both 

intramolecular and intermolecular contributions. The values of Vm range from 0.11 and 

0.17 at higher and lower temperatures, respectively. That suggests an H30-methyl distance 

that is 1.4 to 1.3 times longer than the H9-H15 distance. Specifically, the H30-methyl 

distance of TFA in the monomer state is 3.50 Å and 3.15 Å at higher and lower 

temperatures, respectively (Table 3.4). At high temperatures, both small values of the 

association constants and large values of the cross-peak volume ratio for the dimer (Vd) 

indicate that TFA molecules exist predominantly in the monomer state. As temperature 

decreases or concentration increases, TFA molecules form more dimers and the H30-

methyl distance becomes shorter. This short H30-methyl distance, and thus, a 

conformation where the chlorinated aromatic ring is very close to the H30 proton at the 

C

)(CK2VCV
V
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anthranilic ring, acquires greater prominence at lower temperature when dimerization 

also becomes more favorable. Overall, the equilibrium conformer is different at lower 

temperature than at higher temperature. The ensemble of conformers present at lower 

temperature either contains more of a conformer with a short H30-methyl distance or has a 

shorter H30-methyl distance. Note that the molecular conformation within the dimer also 

seems to be temperature dependent. Because of the low correlation coefficient values, the 

main limitation of this simple model is that monomer and dimer are assumed to be the 

predominant species in solution regardless of their respective molecular conformations. 

Yet the assumption is justified by considering the fast exchange limit between all 

conformations and interacting molecules, thus resulting in averaged populations. It is 

difficult to pinpoint the precise molecular nature; however, the salient point is that there 

exists a correlation between the extent of self-association and solution conformation, 

wherein a conformer with a shorter H30-methyl distance is present under the solution 

conditions that favor dimer formation.   
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Figure 3.16. Concentration dependence of the ratio between the characteristic cross-peak 

H30-methyl and the reference cross-peak H9-H15 at different temperatures. The solid lines 

are fits of the experimental data according to Eq. (3.9) for each set of temperature 

conditions.   
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Table 3.4. Self-association equilibrium constants determined from chemical shift measurements at different temperatures, 

corresponding fitting parameters, calculated distance H30-methyl in the monomer and dimer states, and correlation coefficients 

obtained by fitting cross-peak volume ratio versus concentration profiles to Eq. (3.9). 
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3.4 Conclusion 

TFA molecules self-associate in ethanol solutions. Two experimental methodologies, 

such as UV and NMR, were employed to probe the association behavior of TFA.  One 

limitation from UV absorptivity measurements was the difficulty in drawing conclusions 

from the data. The main reason was the narrow range of concentration that could be 

analyzed. This disadvantage made investigating the association of solute molecules by 

NMR a necessity.   

NMR chemical shift measurements of the drug in ethanol solutions of various 

concentrations indicated that solute molecules exist as monomers at low concentration 

but form more dimers when the concentration increases. The contribution of higher-order 

associated species was negligible over the concentration range employed. The size of the 

aggregates obtained from self-diffusion coefficient measurements was consistent with 

dimer formation when concentration increased. Prominent changes in NMR chemical 

shifts of H30 proton with temperature and the absence of NOE interproton cross-peaks 

corresponding to aromatic π-π interactions made hydrogen-bonded dimers the preferred 

mode of molecular association.  

NOE intramolecular interactions were utilized for conformational analysis of TFA in 

solution. Depending upon concentration and temperature, the methyl group is closer to 

H30 proton at the anthranilic ring. The results suggested the existence of interconversion 

between TFA conformations in solution. Additionally, the higher cross-peak volume 

between protons of interest, the greater the extent of dimer formation was.  Therefore, the 

study provided evidence for a short H30-methyl intermolecular distance in TFA dimers in 
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addition to a temperature-dependent shift of the average H30-methyl intramolecular 

distance in TFA monomers wherein relatively short distances were observed at low 

temperature.   
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Chapter 4 – Effect of Molecular Conformation on the Electronic 

Properties and Intermolecular Interaction 

The goal of this chapter is to decipher the intrinsic relationship between conformational 

flexibility and intermolecular interaction in TFA polymorphs by utilizing electronic 

calculations. The focus lies in the recognition of the molecular conformation that has the 

potential to form stronger intermolecular interactions in TFA crystal structures. 

4.1 Introduction 

Polymorph screening is increasingly assisted by computational techniques to identify all 

possible physical forms and to select the most suitable polymorph for drug 

development.
12,143,144

 It is well known that the formation of distinct crystal structures 

from the same molecule is greatly influenced by thermodynamic and kinetic factors, such 

as type of solvent
97-99

 and use of additives.
53,102

 Little is known, however, regarding the 

fundamental mechanism of the self-assembling process of crystallization under various 

growth conditions. Still, high-performance computation has and will play an important 

role in advancing the field of organic crystals to allow examination of molecular events 

and interactions of crystal packing. 

In conformational polymorphs of organic molecules, molecular conformation and 

intermolecular interaction affect each other from an energetic standpoint. A specific 

crystal structure reflects a delicate energy balance or compromise between intermolecular 

forces that are responsible for the structural arrangements and molecular conformations 

that are adopted by molecules in the crystal.
104

 It is known that the energy difference 
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between possible polymorphs of an organic molecule can be 2 kcal/mol or even lower.
19-

21
 Thus, a small conformational energy change can result in a totally different crystal 

packing motif.
145

 Conversely, a particular intermolecular interaction arrangement, for 

instance, imposed by some specific solvent environment, may call for a unique 

conformation in the resultant crystal.
146

 Hydrogen bonding is undoubtedly the most 

critical force in holding organic molecules in the solid state, not only due to its strength 

but also to its highly directional nature.
147,148

 Understanding of the energy relationship 

between a molecule’s conformation and its intermolecular interactions is imperative to 

the field of crystal growth and the utmost aim of rationalizing polymorph formation and 

predicting crystal structures. 

Density functional theory (DFT) offers an alternative computational method from the 

traditional ab initio wavefunction techniques for calculating molecular energies and 

properties. It can provide fairly accurate estimates of molecular energies at much lower 

computational cost. Based on the idea that the electron density is the fundamental 

quantity for describing atomic and molecular ground states,
149,150

 many electronic 

concepts have been developed for studying chemical reactivity and molecular interaction. 

The framework and development of these concepts constitute the so-called conceptual 

density functional theory.
151-153

 By calculating and examining how the electronic 

structure of a molecular system responds to electronic perturbation (e.g., change of the 

number of electrons in the system), the intrinsic behavior of the molecule interacting with 

other systems, physically and chemically, can be uncovered. As the theory bridges the 

gap between physicochemical properties and underlying structural causes, it allows 

studies of chemical reactivity and molecular interaction from the viewpoint of electron 
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density and its derivatives. The conceptual DFT is being actively developed and 

embraced for studying chemical reactivity.
154-158

 A few attempts have been made by our 

group to characterize intermolecular interactions of organic crystals,
159-161

 demonstrating 

great potential for studying molecular packing. 

In Chapter 2, crystallization of TFA Forms I and II from solution was shown to be 

affected by growth conditions. In Chapter 3, self-association and conformation of TFA 

molecules in solution were extensively studied based on spectroscopic techniques. It 

seems plausible that TFA molecules adopt a conformation similar to that found in Form I. 

In this chapter, electronic calculations and DFT analyses of the conformational 

polymorphism of TFA will be presented. It was important to use a methodology that 

could either allow for a more robust evaluation or corroborate experimental results, since 

a molecular-level understanding of the nucleation mechanism of TFA has yet to be 

reached. A molecule's electronic properties can provide insights into intermolecular 

interaction and consequent molecular packing in the solid-state. Therefore, our 

hypothesis was constructed based on the fundamental relationship between molecular 

conformation and intermolecular interaction. We believe that during the self-association 

process TFA solute molecules can take on a conformation suitable for the formation of 

stronger hydrogen-bonded associated species. The results in this chapter will provide 

support to our hypothesis by utilizing DFT-based concepts and natural bond orbital 

(NBO) analysis to characterize electronic structures of the molecule and examine how the 

conformational flexibility impacts crystal packing.  
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4.2 Theory and Methods 

4.2.1 Theoretical Background of Density Functional Theory (DFT) 

Within the framework of conceptual DFT, several electronic concepts have been 

developed for defining a molecule’s interacting capabilities with other molecules.
153,162-

164
 Two pertinent functions utilized in this chapter are the Fukui function and dual 

descriptor (the calculation details are given in the next section). The electronic Fukui 

function, f(r), is defined as the change in electron density, ρ(r), with the change in the 

total number of electrons, N, at constant external potential, v(r):
152,165

  

(4.1) 

The external potential is defined by nuclear charges and positions of a given molecular 

system. Because of the discontinuity of the number of electrons,
166,167

 the Fukui function 

can be evaluated by finite difference. As such, the nucleophilic Fukui function, f
+
(r), and 

the electrophilic Fukui function, f
—

(r), are introduced as: 

    

           (4.2) 

In these equations, ρ
+
(r), ρ

-
(r), and ρ

0
(r) represent the electron densities of anionic, 

cationic, and neutral species of a given molecular system, respectively.
152

 The Fukui 

functions can be approximated as the electron densities of the frontier orbitals (LUMO, 

)r(

(r)
(r)

vN
f 
















(r)(r)(r)(r)
HOMO

0   f

(r)(r)(r)(r)
LUMO

0   f



117 

 

the lowest unoccupied molecular orbital, and HOMO, the highest occupied molecular 

orbital), because the depletion of electrons generally occurs at the HOMO while the 

addition of electrons occurs at the LUMO. Examples of these functions for a single TFA 

molecule clearly illustrate the similarity between the HOMO (Figures 4.1a and 4.1g of 

Form I and II conformers) and f
—

(r) (Figures 4.1c and 4.1i) and between the LUMO 

(Figures 4.1b and 4.1h) and f 
+
(r) (Figures 4.1d and 4.1j). Regions that have large Fukui 

functions are susceptible to electronic perturbation and bear large polarizability. On the 

other hand, the electron density (Figures 4.1f and 4.1l) seems to be just indicative of the 

shape of the molecule. 

Another DFT concept is the dual descriptor or second-order Fukui function, f
(2)

(r),
164

 

which is defined as the second derivative of the electron density with respect to the 

number of electrons: 

           (4.3) 

The physical meaning of f
(2)

(r) is made clear by considering the finite difference 

approximation:
152,168

  

(4.4) 

It is shown that f
(2)

(r) is positive at electrophilic regions that prefer to accept electrons and 

negative at nucleophilic regions that prefer to donate electrons. Figures 4.1e and 4.1k 

depict dual descriptor isosurfaces, illustrating both electrophilic and nucleophilic regions 
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of the conformers in Forms I and II, respectively. Consequently, the dual descriptor can 

be regarded as the electron distribution between the LUMO and the HOMO. 
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Figure 4.1. Highest occupied molecular orbital (a and g), lowest unoccupied molecular 

orbital (b and h), electrophilic Fukui function (c and i), nucleophilic Fukui function (d 

and j), dual descriptor (e and k), and electron density (f and l) isosurfaces of a single TFA 

molecule taken from Forms I and II.
114

 The values of isosurfaces are 0.02 e/bohr
3
 for the 

frontier orbitals and electron density and 0.002 e/bohr
3
 for the Fukui functions and dual 

descriptor, respectively. 
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Because the Fukui functions and dual descriptor are local functions at every point (r) in 

space, it is chemically more convenient to examine nucleophilic or electrophilic centers 

associated with individual atoms. For this purpose, condensed Fukui functions have been 

proposed,
169,170

 analogous to using atomic charges for partitioning the electron density. 

The condensed Fukui functions can be calculated as: 

        

           (4.5) 

             

Here, qα
+
, qα

-
, and qα

0 
and nα

+
, nα

-
, and nα

0 
denote the atomic charges and atomic 

populations on the anionic, cationic, and neutral molecular systems, respectively.
169

 

Various population analysis schemes, including Mulliken,
171

 Hirshfield,
172

 and natural 

bond orbital (NBO),
173,174

 can be used to partition or condense electron density into 

individual atoms. The still popular Mulliken population analysis has a disadvantage in 

that the results are sensitive to the basis set and that the calculated population can have 

unphysical negative numbers. The NBO charges prove to be robust in electron population 

analysis
175

 and will be utilized to calculate the DFT properties. 
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4.2.2 Computational Methodology 

4.2.2.1 Conformational Energy 

The conformational flexibility of TFA was studied by performing a potential energy scan 

in the gas phase as a function of the torsion angle, τ1. Single molecules of TFA extracted 

from Form I and Form II crystal structures,
114

 were fully optimized in order to identify 

the most stable conformation. The global energy minimum conformer was subsequently 

used for scanning τ1 from -180° to +180° with a step size of 2.5°. At each step, all bond 

lengths, bond angles, and other torsion angles were allowed to be fully optimized. Energy 

of each conformation at a fixed τ1 and otherwise fully optimized was then calculated. It 

was computed in the gas phase as well as in ethanol and tetrachloromethane, which were 

modeled using the polarizable continuum model (PCM) within the self-consistent 

reaction field theory.
176,177

 The calculations were performed by the B3LYP functional
178

 

with basis sets of 6-311G(d,p) and 6-311++G(d,p) for the structural optimization and 

conformational analysis, respectively, using the Gaussian 03 program package.
179

 

4.2.2.2 Condensed Fukui Functions 

Electronic structure and properties of each τ1-fixed and otherwise fully optimized 

conformer were calculated in the gas phase and in solvent media. Condensed Fukui 

functions were calculated according to Eq. (4.5), based on partial atomic charges by 

natural bond orbital (NBO) analysis.
174

 NBO calculation was also used to obtain donor-

acceptor stabilization energies by the second-order perturbation theory.
173,174

 The donor-

acceptor energy describes quantitatively the electronic bonding-antibonding interaction, 

providing further intuition about local bonding strengths and intramolecular stability. 
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Isosurfaces of electronic properties of a single TFA molecule were constructed with 

GaussView 4.0.
180

 

It is worth pointing out that conventional DFT calculation methods cannot fully consider 

dispersion energy,
181,182

 which may account for a considerable portion of intermolecular 

interactions of organic molecules and crystals.
161,183

 Electronic concepts by conceptual 

DFT, on the other hand, may be better suited for characterizing molecular interactions. In 

particular, the Fukui function, defined as a second-order derivative of electronic energy, 

is capable of revealing intermolecular, non-covalent interactions.
161

 It is directly related 

to local polarizability of a molecular system
184

 and, more importantly, is associated with 

interactions due to partially sharing electrons (i.e., hydrogen bonding). 

4.2.2.3 Intermolecular Interactions 

4.2.2.3.1 Hydrogen Bonding 

Hydrogen-bonded dimer motifs exist in the crystal structures of TFA polymorphs. In 

order to calculate the difference in hydrogen bonding strength between the two Forms, 

the two dimer configurations were taken directly from the respective crystal structures of 

TFA polymorphs.
114

 Each dimer then underwent constrained optimization with τ1 and the 

intermolecular distances between oxygen atoms of the hydrogen-bonded carboxyl groups 

held constant while all other bond distances, bond angles, and other torsion angles were 

allowed to be optimized. The optimization was carried out at the level of B3LYP/6-

31G(d,p) using the Gaussian 03 package.
179

 Root-mean-square (RMS) values of 

Cartesian coordinates of TFA dimers due to the optimization were insignificant, 0.021 

and 0.009 Å for Form I and II dimers, respectively, indicating that the optimization 

preserved the dimer configurations, particularly the τ1 angle, from the crystal structures 
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and corrected minor structural uncertainties, mainly the hydrogen positions that were 

assigned by single X-ray structure determination.  

Intermolecular interaction energies of the optimized cyclic dimers were then calculated in 

the gas phase at three different levels of B3LYP/6-31+G(d,p), MP2/6-31+G(d,p), and 

M06-2X/6-31+G(d,p) to ensure that the conclusions were not dependent upon the 

method. The basis set with diffuse orbitals was selected to improve the description of 

hydrogen bonding.
185

 The basis set superposition error was corrected by the counterpoise 

method
186

 when calculating the intermolecular energies.  

The structural optimization of Form I and II dimers was also carried out with only τ1 held 

constant while allowing all bond distances, including the intermolecular distances 

between oxygen atoms of the hydrogen-bonded carboxyl groups, all bond angles, and 

other torsion angles to adjust. The purpose of this optimization was to verify whether the 

distances between oxygen atoms could affect intermolecular interaction energy when 

they were kept fixed during optimization.  

In addition, to determine the energy minimum of the hydrogen-bonded dimers the 

intermolecular distances between oxygen atoms (2.648 Å and 2.644 Å in the crystal 

structures of Form I and II dimers, respectively) were systematically changed. The 

geometries for a given system were first optimized with τ1 and the intermolecular 

distances between oxygen atoms of the hydrogen-bonded carboxyl groups held constant 

while all the other parameters were allowed to be optimized. Intermolecular interaction 

energies of the optimized hydrogen-bonded dimers were then calculated. 
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4.2.2.3.2 π-π Stacking 

Hydrogen-bonded dimers of TFA Forms I and II pack through π-π stacking. In order to 

calculate the energy of this type of interaction, the geometry of Form I and II dimers 

interacting via π-π stacking was taken directly from the respective crystal structures of 

TFA polymorphs.
114

 Each dimer underwent optimization of the hydrogen atoms in order 

to correct minor structural artifacts of the crystal structures. A constrained optimization 

of the π-π stacking dimers with the main torsion angle fixed could disrupt the parallel 

arrangement of the molecules in the dimer and, thus, could not reproduce the structure 

found in the crystal lattice. The optimization was carried out at the level of B3LYP/6-

31G(d,p) using the Gaussian 09 package.
187

 

Intermolecular interaction energies of the optimized dimers were then calculated in the 

gas phase at three different levels of B3LYP/6-31+G(d,p), MP2/6-31+G(d,p), and M06-

2X/6-31+G(d,p) to evaluate the effects of the computational methods on the calculated 

energy. Traditional DFT methods, such as the B3LYP functional,
178

 perform poorly for 

π-π stacking interactions. Conversely, a dispersion-corrected DFT method, such as the 

M06-2X functional,
188

 has been shown to give more reliable energy estimations for a 

variety of systems dominated by dispersion forces, including benzene aggregates. To 

correct for the basis set superposition error, the counterpoise procedure
186

 was applied in 

the calculation of the intermolecular energies. 

4.2.2.3.3 Lattice Energy 

Lattice energies of the two TFA polymorphs were calculated with an empirically 

augmented DFT method.
189,190

 A typical DFT method cannot fully consider van der 

Waals interactions.
181,182,191

 To circumvent the limitation, the crystal structures were 
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firstly optimized with the lattice parameters held constant while allowing fractional 

coordinates of all atoms to adjust. This approach proved fairly acceptable because of the 

long-range, weak, and un-directional nature of van der Waals forces that have little 

impact on fractional coordinates when the lattice parameters are kept fixed during 

optimization.
189,190

 The basis set used was B3LYP/6-21G(d,p); no diffuse orbitals were 

included due to potential instability introduced to Bloch functions. RMS values of 

optimized Cartesian coordinates were 0.011 and 0.026 Å for Forms I and II, respectively, 

demonstrating that the optimization corrected minor structural uncertainties likely 

induced by hydrogen positions that were assigned by single X-ray structure 

determination. The single-point energy of optimized crystal structures was then 

calculated and, according to the optimized atomic coordinates, the van der Waals energy 

component was included post priori. The van der Waals energy was evaluated by a 

damped analytical model that was based on interatomic distances and empirical 

parameters.
192,193

 The lattice energy was derived as the difference between the total 

corrected energy of a crystal system and the lowest energy of a fully optimized single 

molecule in vacuum. A periodical quantum mechanical program, CRYSTAL06,
194

 was 

used for the optimization and energy calculations of TFA crystal structures. Energy 

convergence for the calculations was set at 10
-7

 Hartree. RMS values of the energy 

gradient and atomic displacement were set at 0.0001 and 0.0003 atomic units, 

respectively.   
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4.3 Results and Discussion 

4.3.1 Molecular Conformational Analysis 

The molecular conformation in TFA polymorphs differs mainly in the torsion angle τ1 at 

the chlorinated aromatic ring portion, not in the anthranilic acid moiety (Figure 4.2). The 

conformational energy of TFA was plotted against τ1 (Figure 4.3). The global energy 

minimum for the single molecule is located at -142°, which corresponds to the conformer 

in Form II. A shallow minimum at -75° contains the conformer in Form I. As the 

molecules in TFA polymorphs reside closely to the energy minima (within 2 kJ/mol in 

gas phase as well as in solvent media), the polymorphism of TFA apparently stems from 

the conformational variance of the molecule itself. It is worth mentioning that the 

conformational analysis revealed a very low energy difference between conformers; thus, 

the three new, recently found polymorphs
115

 should not represent a surprise, and the 

possibility of further polymorphs cannot be ruled out. In fact, the torsion angles, τ1, of the 

conformers in these crystals are -138.4° and 126.8° in Form III (Z' = 2), -115.8°, -125.9°, 

and -134.1° in Form IV (Z' = 3), and -125.1° in Form V; the conformational energy 

difference among these conformers is again within a few kJ/mol (Figure 4.3). This 

supports the oft-quoted McCrone argument that the number of polymorphs discovered for 

a given compound is dependent on the time and effort spent in research on that 

compound.
10
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Figure 4.2. Overlay of the two conformers of TFA from Form I, green; Form II, blue.  

Torsion angles, τ1 and τ2, are denoted. 
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Figure 4.3. Conformational energy of a single TFA molecule as a function of τ1 in the 

gas phase, ethanol, and tetrachloromethane. The torsion angles of Forms I and II are 

marked along the X-axis. 

 

The bonding-antibonding interaction energies were calculated between the lone pair of 

the amino group and the carboxylated aromatic ring, as well as between the lone pair and 

the chlorinated aromatic ring. Because of the molecule’s symmetry around τ1, only the 

energies corresponding to negative values of torsion angle, τ1, are shown in Figure 4.4. 

For any conformation, the bonding-antibonding interaction energies between the lone 

pair and the carboxylated aromatic ring (Figure 4.4a) were significantly stronger than 

those between the lone pair and the chlorinated aromatic ring (Figure 4.4b). This 

indicates that the nitrogen atom has a greater tendency to donate electrons to the 
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carboxylated aromatic ring, thus forming a π-conjugated system in the anthranilic 

portion. Indeed, the chemical bonds calculated by NBO were sp
2.48

 and sp
2.70

 for the N-C 

in the anthranilic and N-C in the chlorinated phenyl moieties, respectively. Moreover, the 

Form II conformer exhibited higher bonding-antibonding interaction energy values 

between the nitrogen lone pair and chlorinated aromatic ring than Form I (i.e., 117.07 and 

79.96 kJ/mol for Forms II and I, respectively). As such, the two aromatic rings bridged 

by the amino group are almost coplanar in the molecular conformation of Form II (τ1 = -

142.6° and τ2 = 15.4° in Form II versus τ1 = -74.9° and τ2 = 5.4° in Form I). A closer 

examination of the energy contribution from the π-conjugation as defined by τ2 (Figure 

4.4a) revealed that this stabilizing orbital interaction is determinant in conformations 

when τ1 is between -142° and -55°, suggesting that the torsion angle, τ1, must be in this 

range in order for the π-conjugation to be retained. The main factor responsible for this 

behavior is the steric hindrance between the hydrogen at the meta position of the 

carboxylated aromatic ring and the hydrogen or the methyl group at the ortho positions of 

the chlorinated aromatic ring. The steric factor prevents the anthranilic moiety from 

remaining planar and the extent of non-planarity is illustrated by a systematic variation of 

τ2 values as τ1 changes (Figure 4.5). Significant departure from planarity of the 

anthranilic moiety occurred with τ1 lying beyond -142° and -55°, in line with the 

bonding-antibonding interaction energy (Figure 4.4). Thus, although τ1 mainly 

determines the TFA conformational flexibility, strong cooperation is observed between 

neighboring torsion angles, τ1 and τ2. More importantly, the nitrogen lone pair 

delocalization toward the two aromatic rings accounts for the molecule’s conformational 

distribution. 
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Figure 4.4. Donor-acceptor stabilization or bonding-antibonding interaction energies as a 

function of τ1 between the nitrogen lone pair and the carboxylated aromatic ring (a), 

between the nitrogen lone pair and the chlorinated aromatic ring (b), and between the 

carbonyl oxygen lone pairs and the amino group (c). 

  

The TFA molecule also forms an intramolecular hydrogen bond between the hydrogen 

bonding donor amino group and the acceptor carbonyl oxygen. To examine the extent to 

which this feature influences molecular conformation and structural stability, the 

bonding-antibonding interaction energies between the carbonyl oxygen lone pairs and the 

amino group were plotted as a function of τ1 (Figure 4.4c). The values were 45.77 and 

52.80 kJ/mol for Forms I and II, respectively. The larger intramolecular hydrogen 

bonding contribution in the Form II conformer indicates that its anthranilic acid portion is 

more constrained by the intramolecular hydrogen bonding, contributing to the coplanarity 

of the whole molecule. This further implies that the TFA molecule is more inclined to 
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adopt a planar conformation; such preference arises primarily from the conjugation or 

delocalization of the lone pair on the amino group to bridge the two aromatic rings and, 

in turn, forms a stronger intramolecular hydrogen bonding. 

 

 

Figure 4.5. τ2 as a function of τ1 in respective τ1–fixed conformers that are fully 

optimized. 

 

Intermolecular interaction competes with intramolecular hydrogen bonding, resulting in 

variation in conformation. To study the deterministic effect by the molecule’s 

conformation on the intermolecular interaction strength, condensed Fukui functions were 

calculated. Dual descriptor magnitudes as a function of the torsion angle, τ1, were 

obtained for the carbonyl oxygen and the hydroxyl oxygen atoms (Figure 4.6). In the gas 
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phase, the dual descriptors of the carbonyl oxygen were found to be 0.060 e in Form I 

and 0.078 e in Form II, meaning that the atom in Form I is less electrophilic and offers a 

greater capacity to donate electrons to an electron-deprived hydrogen forming a stronger 

hydrogen bond (Figure 4.6a). Conversely, being part of a π-conjugated system and being 

further stabilized by intramolecular hydrogen bonding, the carbonyl group in Form II 

becomes a relatively poor hydrogen bonding acceptor. The positive value of the dual 

descriptor of the carbonyl oxygen stems from the local dominance of the LUMO (i.e., 

lowest unoccupied molecular orbital) over the HOMO (i.e., highest occupied molecular 

orbital). In fact, the LUMO was mainly delocalized on the anthranilic moiety while the 

HOMO spanned almost the whole molecule, but less significantly the carboxyl group 

(Figure 4.1). 

In addition, the carbonyl oxygen had the lowest dual descriptor value (i.e., highest 

capability to donate its valence electrons) when τ1 = ± 90°, a position that completely 

disrupted the π-conjugation between the amino group and the chlorinated aromatic ring. 

Dual descriptor isosurfaces further clarify the assessment (Figure 4.7). In agreement with 

the condensed values, a more pronounced nucleophilic region was shown around the 

carbonyl oxygen of the molecular conformation when τ1 = -90° (Figure 4.7b). This region 

thereby contributes considerably to the intermolecular interactions. In comparison, a 

larger distribution of the electrophilic nature of dual descriptor enclosed the hydrogen 

bonding moiety of the conformation when τ1 = -10°, showing the lowest susceptibility to 

electron donation (Figure 4.7d). The two conformers in Forms I and II displayed dual 

descriptors in-between (τ1 = -142.6° or -74.9°; Figures 4.7a and 4.7c). Therefore, the 

conformational flexibility around τ1, the π-conjugation defined by τ2 (i.e., the planarity of 
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the anthranilic moiety), and the electronic distribution determine in cohort the most 

favorable conformers that can strengthen intermolecular contacts. 

 

 

Figure 4.6. Condensed dual descriptors of the carbonyl oxygen (a) and hydroxyl oxygen 

(b) of a single TFA molecule as a function of τ1. The values of each conformation were 

calculated in the gas phase, ethanol, and tetrachloromethane, respectively. 
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Figure 4.7. Dual descriptor isosurfaces of fully optimized conformers when τ1 is kept at -

142.6° (a), -90° (b), -74.9° (c), and -10° (d). Electrophilic regions are shown in pink and 

the nucleophilic regions in brown. The values of isosurfaces are 0.001 e/bohr
3
.   
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To further understand the solvent effect on the intermolecular hydrogen bonding, 

condensed Fukui functions were calculated in two solvent media of different polarities, 

namely, ethanol and tetrachloromethane. As expected, the dual descriptor values of the 

carbonyl oxygen increased in the solution phase as compared with the gas phase (Figure 

4.6a), indicating that its electron-donating capability becomes weakened upon solvation, 

specifically in a polar medium. Similarly, the dual descriptors of the hydroxyl oxygen in 

the gas phase were 0.017 e in Form I and 0.021 e in Form II; they increased by 0.5 

percent and 1 percent when computed in tetrachloromethane and in ethanol, respectively 

(Figure 4.6b). Note that the solvent effect was evaluated implicitly. Nonetheless, the 

general conclusion regarding the intrinsic connection between the molecule’s 

conformation and intermolecular hydrogen bonding strength holds. 

4.3.2 Intermolecular Interaction Energy in the Gas Phase 

4.3.2.1 Hydrogen Bonding Interaction 

Both crystal structures of TFA polymorphs consist of cyclic, hydrogen-bonded dimers. 

The intermolecular hydrogen bonding energy of Form I and II dimers, composed of 

monomers A and B, was computed in the gas phase as follows: 

(4.6) 

where Ehydrogen bonding is the energy of hydrogen bonding interactions; Edimer is the total 

energy of the cyclic dimer; Emonomer A and Emonomer B are the individual energies of the 

monomers. The monomer energies were computed in the basis set of the dimer so that the 

results were corrected for the mathematical artifact called basis set superposition error. 

)E(EEE
phase gas B,monomer phase gas A,monoomer phase gas AB,dimer bondinghydrogen  


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When performing optimization with the intermolecular distances between oxygen atoms 

of the hydrogen-bonded carboxyl groups held constant, the hydrogen bonding energy of 

the Form I dimer calculated by B3LYP was -37.65 kJ/mol per hydrogen bond (or -75.31 

kJ/mol for two hydrogen bonds in a dimer), while that of the Form II dimer was -34.60 

kJ/mol. Hydrogen bonding energy values calculated by MP2 were -33.72 kJ/mol and -

31.08 kJ/mol of Form I and Form II dimers, respectively. M06-2X calculations yielded 

energy values of -41.15 kJ/mol and -38.19 kJ/mol for Form I and Form II dimers, 

respectively. Results for the methods tested are summarized in Table 4.1. All of the 

methods indicate that the dimer of Form I is stronger, by about 3 kJ/mol, than that of 

Form II. Increased magnitudes of hydrogen bonds calculated by the M06-2X method can 

be attributed mainly to a substantial improvement of the description of dispersion effects. 

Nonetheless, the calculations suggest that the conventional DFT method provides fairly 

reliable estimates of the hydrogen bonding energy. Studies
195-197

 employing DFT as a 

means to study hydrogen-bonded complexes also concluded that the method performs 

reasonably well in describing hydrogen bonding interactions when compared to ab initio 

wavefunction-based methods and experimental data. For that reason, the DFT 

methodology will be applied to the characterization of intermolecular interactions in the 

solution phase that will be described in Chapter 5.  
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Table 4.1. Hydrogen bonding energy values of Form I and Form II dimers calculated in 

the gas phase at different levels of theory. 

 

 

When the intermolecular distance was optimized, the hydrogen bonding energy values 

calculated by B3LYP were -37.73 kJ/mol and -34.94 kJ/mol of Form I and Form II 

dimers, respectively. The results agree well with those obtained by using the 

intermolecular distance from the corresponding crystal structures at the same level of 

theory. This implies that the optimization strategy was able to produce reliable distances 

between oxygen atoms, close to those in the crystal structures of Forms I and II (i.e., 

2.643 Å and 2.650 Å in the optimized Form I and II dimers as compared to 2.648 Å and 

2.644 Å in the crystal structures of Form I and II dimers, respectively). Furthermore, the 

hydrogen bonding energy was examined as a function of the intermolecular distance 

between oxygen atoms of the cyclic dimers (Figure 4.8). When the intermolecular 

distance between oxygen atoms decreased, the intermolecular interaction got 

strengthened and the hydrogen bonding energy decreased. The stability of the cyclic 

hydrogen-bonded dimers increased with shorter intermolecular distances and the energy 

of Form I and II dimers reached a minimum located at the same distance as that found in 

the respective crystal structures (data superimposed in Figure 4.8). This implies that the 

hydrogen-bonded dimers in the crystal structures correspond to the most stabilizing 

arrangements. When two molecules are sufficiently close to each other, repulsive 
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interactions take place accounting for the increase in energy of the system, despite the 

increasing hydrogen bonding strength.  
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Figure 4.8. Hydrogen bonding energy of Form I (a) and Form II (b) dimers as a function 

of the intermolecular distance between oxygen atoms of the carboxyl groups. The 

stability energy of Form I (a) and Form II (b) dimers is also shown versus the 

intermolecular distance. Energies were calculated at the level of B3LYP/6-31+G(d,p) 

after constrained optimization. 
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4.3.2.2 π-π Stacking Interaction 

The crystal structure analysis of TFA polymorphs reveals π-π stacking interactions 

between aromatic rings of neighboring molecules.
114,115

 The distances between aromatic 

rings are 4.826 Å and 3.836 Å in the crystal structures of Form I and II dimers, 

respectively. As such, energetic quantification of these interactions was important for 

comparison with the strength of hydrogen bonding. Interaction energies of Form I and II 

dimers calculated by B3LYP
178

 and MP2
198

 methods were positive (i.e., destabilizing). 

The positive numbers can be due to the limitation of B3LYP and MP2 methods in 

describing dispersion interactions.
181,182,199,200

 Indeed, π-π stacking interactions largely 

depend on dispersion forces. The M06-2X method may be better suited for computing 

interaction energies dominated by dispersion forces, although the method is empirical and 

may overestimate the energy values.
188

 The π-π stacking energy of the Form I dimer, 

calculated by M06-2X, was -16.69 kJ/mol while that of the Form II dimer was -23.80 

kJ/mol. The ability of the M06-2X functional to consider dispersion forces allows for an 

adequate description of π-π stacking interactions between TFA molecules. The results 

indicate that π-π stacking in the Form II dimer is stronger, by about 7 kJ/mol, than that in 

the Form I dimer. Still, the energies of π-π stacking are lower in absolute value than those 

of one hydrogen bond, suggesting that intermolecular hydrogen bonding of TFA dimers 

is a more relevant contribution compared to π-π stacking. The π-π interaction energy 

values for the methods tested are summarized in Table 4.2. 
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Table 4.2. π-π stacking energy values of Form I and Form II dimers calculated in the gas 

phase at different levels of theory. 

 

 

4.3.2.3 Lattice Energy 

The lattice energies of Forms I and II were computed to be -137.50 and -135.72 kJ/mol, 

respectively, supporting the fact that Form I is more stable than Form II.  The calculation 

contradicts the claim that Form II is the stable low temperature polymorph.
114

 The 

calculated lattice energy of Form I is very close to a reported experimental value of the 

sublimation enthalpy of Form I, 128.4 kJ/mol at 298 K,
201

 which yields a derived lattice 

energy value of -133.4 kJ/mol (see reference 189
 
for the derivation). 

4.3.3 Relationship between Molecular Conformation and Hydrogen Bonding 

Interaction 

The electronic origin of the energy difference between hydrogen-bonded dimers of TFA 

polymorphs was explored. TFA molecular conformation does have a significant influence 

on the molecule’s electronic structure and, thus, on its intermolecular interacting 

capabilities. The conformational polymorphism of TFA results from the energy 

competition between intramolecular π-conjugation and intermolecular hydrogen bonding. 

By adopting a conformation that is not the most energetically stable, TFA molecules can 

strengthen intermolecular hydrogen bonding interactions in the crystal. The most stable 
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conformation in the TFA monomer is almost planar. When solute molecules form 

hydrogen-bonded dimers, a conformation with reduced delocalization of electrons is 

favored and a torsional strain in the molecule allows for stronger intermolecular 

interactions. When considering the conformational variation from the flatter conformer in 

Form II to the twisted conformer in Form I, the torsional strain raises the energy barrier 

by about 2 kJ/mol (Figure 4.3 as τ1 = -74.9° in Form I and -142.6° in Form II). The 

energy penalty for the rearrangement of the molecular conformation and for the 

consequent loss of π-conjugation is recovered by stronger hydrogen bonding (ca. 3 

kJ/mol calculated in gas phase by quantum mechanics). It is thereby reasonable to believe 

that a unique molecular conformation is a compromise in energy between π-conjugation 

and intermolecular interaction strength. Understanding molecular interaction and crystal 

packing necessitates electronic structure calculation and analysis, which can be further 

facilitated by utilizing DFT and NBO concepts. 

4.4 Conclusion 

Intermolecular hydrogen bonding interactions are stronger than π-π interactions. The 

conformational polymorphism of TFA is caused by the competition between 

delocalization of intramolecular π systems and enforcement of intermolecular hydrogen 

bonding. From an energetic standpoint, the TFA molecule prefers to remain relatively flat 

so as to maximize the molecular stability. On the other hand, due to its flexibility and low 

conformational energy barrier, the TFA molecule can assume a different conformation. 

The conformational re-arrangement is favored kinetically by a low energy barrier and is 

driven thermodynamically by the formation of stronger hydrogen bonding upon 
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dimerization. The impact of the conformational flexibility of TFA on intermolecular 

interactions is ultimately reflected in its crystal structures. By addressing the molecular 

and mechanistic aspects underlying the relationship between molecular conformation and 

intermolecular interaction, DFT concepts can yield considerable insight into the 

polymorph behaviors of this system. 

 

Sections of this chapter were previously published.
202

 Reprinted with kind permission 

from Elsevier: International Journal of Pharmaceutics, Mattei, A, Li T 2011, Interplay 

between molecular conformation and intermolecular interactions in conformational 

polymorphism: A molecular perspective from electronic calculations of tolfenamic acid, 

418(2): 179-186. Copyright © 2011 Elsevier. 
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Chapter 5 – Energy Evaluation in an Explicit Solvent Model 

The goal of this chapter is to apply the knowledge obtained in Chapter 4 on the electronic 

structure of each TFA conformer and intermolecular interaction in the gas phase to 

determine whether intermolecular interaction strength changes with solvent. The solvent 

is an important factor in understanding the mechanism of polymorph formation. 

Therefore, a method to explicitly model solvent molecules will be developed; energy of 

solute molecules and their intermolecular interaction in solution also will be calculated. 

5.1 Introduction 

It is established that solvents can significantly affect polymorphism of organic 

crystals.
97,98

 Both the dynamic and thermodynamic properties of solute species are 

strongly influenced by the microscopic structure and organization of solvent molecules in 

the surrounding solution. A key to a detailed understanding of the mechanistic role 

played by the solvent in polymorph formation lies in the ability to model the interaction 

between solute and solvent molecules. Although the most practical approach for treating 

solvation effects is often experience combined with trial and error, computational 

methods can be used to consider solvent effects and help rationalize the experimental 

procedures.  

In recent years, there has been progress in developing techniques for including solvation 

effects in quantum mechanical calculations. These techniques differ in the level of detail 

used to describe molecules in solution.
203-205

 One possibility to include solvation effects 

in quantum mechanics calculations and thereby study molecules in solution is based on 
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continuum solvation models.
206

 Rather than describing each solvent molecule explicitly, 

the solvent is modeled as a continuous medium, characterized solely by a scalar, static 

dielectric constant. The solute molecule creates and occupies a cavity within this 

medium. The electrostatic interaction of a solute with the solvent depends upon the 

charge distribution and polarizability of the solute. The charge distribution of the solute 

molecule induces polarization of the medium and the resulting induced field in turn 

polarizes the solute molecule.  

The major problem with this continuum model is the inability to properly account for 

specific solute-solvent interactions, such as hydrogen bonding.
207

 The model can only 

empirically determine solvation free energies by using parameterized dielectric constants 

and molecular cavity sizes. Also, the properties of the solvent, including its dielectric 

constant and structure, are not the same in the immediate vicinity of the solute molecule 

as they are in the bulk. 

From a microscopic standpoint, solvation involves the formation of interactions between 

a solute and a solvent as well as a change in the interactions of the solvent molecules in 

the vicinity of the solute. Thus, a key to understanding solvation could be the 

determination of the structure adopted by solvent molecules around the solute. One 

means of elucidating the solvent shell structure, as well as of minimizing the limitations 

mentioned above, is to describe the solvent as discrete molecules, with which the 

interactions are treated explicitly. The ideal description of a solution would be a quantum 

mechanical treatment of the system, consisting of representative numbers of solute and 

solvent molecules. However, in practice, the interaction of a solute molecule with 

hundreds or even thousands of solvent molecules puts a considerable demand upon 
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computer resources. Molecular mechanical force fields are traditionally used in molecular 

dynamics simulations of organic and biological systems.
208

 They can provide valuable 

information on molecular structure and thermodynamic properties in solution, such as 

solvation free energy, which is obtained from the averages of all molecular positions 

generated during the simulation. In addition, molecular mechanics methods are 

computationally efficient. Yet changes in the electronic structure of a system require 

quantum mechanical treatment. Alternatively, the quantum mechanics (QM) and 

molecular mechanics (MM) could be combined so that the solute molecule, along with 

the first (or first two) solvation shell is treated by a QM model and the rest of solvent 

environment is represented by MM force fields.
203

 This makes it possible to deal more 

accurately with hydrogen bonding. 

Despite the wide acceptance of the quantum mechanics/molecular mechanics (QM/MM) 

method, a standard protocol has not been defined yet. There is a priori no limit to the 

level of theory that can be utilized for the treatment of the QM region. Thus, 

implementations of the QM/MM methods within the framework of ab initio
209

 or density 

functional
210

 theories have been reported. In this work, density functional theory (DFT) 

will be used because it has the advantage of including electron correlation effects and 

because it was utilized to calculate intermolecular interaction energies in the gas phase.  

The QM/MM approach was designed with two aims in mind: 1) to get a reliable energetic 

description of the conformational preference of the TFA molecule in solution and 2) to 

evaluate intermolecular interactions by taking into account the solvating environment. To 

accomplish these aims, the first step taken was to perform molecular dynamics 

simulations, which allowed for the minimization and sampling of the geometries of the 
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solute molecule necessary for the determination of the energies by QM/MM. When 

designing the method, it was realized that different specifications, such as charge 

distribution on molecular conformation, sampling, and size of the discrete QM region, 

needed to be defined. These critical factors will be evaluated together with the QM/MM 

capabilities and/or limitations. 

5.2 Theory and Methods 

5.2.1 Theoretical Background 

Before presenting computational details of the calculations, this section will provide a 

concise review on the combined QM/MM. In classical mechanics, the Hamiltonian 

function (Ĥ) is used to describe the total energy of the system. In an analogous manner, to 

calculate the energies and forces on each of the atoms in the QM/MM system, Ĥ is 

constructed and the time-independent Schrödinger equation is solved for the energy of 

the system (E) and the wavefunction for all the nuclei and electrons of the QM region 

(Ψ), according to the equation: 

                                                     (5.1) 

The wavefunction is a function of the coordinates of the electrons (r) and depends on the 

positions of both the quantum mechanical nuclei (Rα) and the molecular mechanical 

atoms (RM). Ĥ for the QM/MM system is written as follows:
211

 

(5.2) QM/MMMMQM ΗΗΗΗ




)R,RΨ(r, )R,E(R)R,RΨ(r, Η
MαMαMα


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where ĤQM is the Hamiltonian describing the quantum mechanical particles (i.e., 

electrons and nuclei) of the system and their interactions with each other; ĤMM denotes 

the MM region; and ĤQM/MM describes the interaction between the QM and MM regions. 

The expression of ĤQM/MM has contributions from electrostatic and van der Waals 

interactions. The total energy of the system (Etot) is evaluated by the expectation value of 

the Hamiltonian and is given as follows: 

(5.3) 

where Ψ is the electronic wavefunction of the QM region. The energy of the MM region 

(EMM) represents the solvent interaction energy and is determined by a standard MM 

force field. The total interaction energy between the QM and MM regions (EQM/MM) 

consists of contributions from both electrostatic and van der Waals terms. Since 

electronic structures of the solvent molecules in the MM region are not explicitly 

represented, the QM/MM van der Waals term is necessary to account for the electronic 

repulsion and dispersion interactions between both regions.
211

  An issue that has not been 

addressed concerns the treatment of hydrogen bonding interactions of the QM/MM 

boundary. Nevertheless, what is significant is that the QM/MM approach provides a 

practical means for quantum mechanical investigations in solution. 

QM/MMMMQMtot
EEEΨΗΨE 


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5.2.2 Computational Methods 

5.2.2.1 Force Fields and Molecular Models 

Molecular dynamics (MD) simulations were conducted using the Sander program and the 

general amber force field (GAFF) in the Amber 9 program suite.
212

  TFA Forms I and II 

in the monomer and dimer states, taken from their respective crystal structures,
114

 were 

built using the xLeap module of the Amber 9 program suite.
212

 Single molecules and their 

respective dimers were optimized with τ1 and the intermolecular distances between 

oxygen atoms of the hydrogen-bonded carboxyl groups held constant. The electrostatic 

potentials (ESPs) around the optimized structures were then utilized to obtain partial 

atomic charges for each TFA structure by the restricted ESP fitting (RESP) method.
213

 

Optimization and electrostatic potential calculations were carried out in solvent media of 

water, ethanol, and toluene with a polarizable continuum solvent model, within the self-

consistent reaction field theory.
176,177

 Partial atomic charges for molecules in water, 

ethanol, and toluene were obtained at two different levels of HF/6-31G(d) and 

B3LYP/cc-pVTZ.
214,215

 Two different levels of theory were utilized to evaluate the effect 

of polarization on the atoms. The polarization effect is important in the condensed phase, 

where the local electrostatic environment is significantly different than that in the gas 

phase because of the presence of neighboring atoms. The calculations for obtaining 

partial atomic charges were performed using the Gaussian 09 program package.
187

  

Systems of TFA in water, ethanol, and toluene were constructed by soaking single 

molecules or dimers, resembling Forms I and II, in a rectangular box. The minimum 

distances from the solute atoms to the surfaces of the boxes were set to 10 Å, 15 Å, and 

20 Å for water, ethanol, and toluene, respectively, with a total of approximately 500 
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solvent molecules.  The TIP3P model
216

 was employed for water molecules. The force 

field parameters for ethanol and toluene were obtained from R.E.DD.B. database.
217

  

5.2.2.2 Molecular Dynamics (MD) Simulations 

The solvated systems were subjected to energy minimization via 1,000 iterations of 

steepest-descent and conjugate gradient to eliminate possible bad contacts. The systems 

were then heated from 0 to 298 °K for 40 ps in the NVT ensemble followed by 

equilibration runs for 1 ns with a time step of 2 fs under constant pressure (1 atm) and 

temperature (298 °K). It is generally desirable to perform simulations in the NPT 

ensemble so that exact temperature control is obtained and experimental conditions may 

be mimicked.
218

 The absence of systematic changes in the densities and the generation of 

a stable MD trajectory for each of the simulated structures suggested that the 

equilibration time was sufficiently long. The final desired densities of the simulated 

structures were 0.99 g/cm
3
, 0.79 g/cm

3
, and 0.82 g/cm

3
 in water, ethanol, and toluene, 

respectively, in close agreement with the experimental values of solvent densities.
219

 

Simulations were performed under harmonic restraints on TFA with spring constants of 

50 kcal/mol/Å
2
 for τ1 and 40 kcal/mol/Å

2
 for distances between oxygen atoms of the 

hydrogen-bonded carboxyl groups. Moreover, simulations where monomers were 

allowed to rotate freely were performed. The SHAKE algorithm was used to fix all 

covalent bonds involving a hydrogen atom.
220

 Periodic boundary conditions were 

employed together with a 10 Å cutoff to treat long-range van der Waals and electrostatic 

interactions using the particle mesh Ewald method.
221

 The temperature was held constant 

by Langevin dynamics with a collision frequency of 1.0. Constant pressure was 

maintained using the Berendsen method with a relaxation time of 1.0 ps.
222

 The 
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coordinates of the simulated systems were collected every 50 ps during the equilibration 

MD stage. MD calculations created molecular trajectories that were used to examine 

solute conformations using the PTRAJ program implemented in Amber 9.
212

  

5.2.2.3 Quantum Mechanics/Molecular Mechanics (QM/MM) Calculations 

The final energy-minimized coordinates of each simulated structure were used as an 

initial geometry to carry out further optimization by using the Own N-layered Integrated 

molecular Orbital and molecular Mechanics (ONIOM) approach,
223

 a QM/MM scheme 

implemented in the Gaussian09 program.
187

 Two layers were defined in the ONIOM 

calculations. The high layer was calculated quantum-mechanically at the B3LYP/6-

31G(d,p) level and the low layer was calculated molecular-mechanically by using the 

Amber force field as utilized in MD simulations. The QM-treated high layer included the 

solute and solvent molecules located within 4 Å of the solute, whereas the rest of solvent 

environment was included in the MM-treated low layer. The minimum model size and, 

thus, solvent molecules that were included in the QM-treated high layer were inferred by 

the radial distribution function, calculated after MD simulations.  

τ1 and the intermolecular distances between oxygen atoms of the hydrogen-bonded 

carboxyl groups were held constant during the QM/MM geometry optimization. For 

comparison, QM/MM geometry optimizations on TFA monomers were also carried out 

with no bond length, angle, or torsion angle fixed. Intermolecular interaction energies 

between solute and solvent molecules, as well as among solute molecules, were then 

calculated at the B3LYP/6-31+G(d,p):Amber level. The basis set with diffuse orbitals 

was selected to improve the description of hydrogen bonding. The basis set superposition 

error was corrected by the counterpoise method
186

 when calculating the intermolecular 
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energies. The energies reported for each structure embedded in water, ethanol, or toluene 

come from the lowest value obtained over ten snapshots of two independent MD 

trajectories.  

5.3 Results and Discussion 

5.3.1 Comparison of the Atomic Charge Methods 

The solvent affects the charge distribution in the solute through polarization. As such, an 

evaluation of the partial atomic charges is crucial. Partial atomic charges for TFA Form I 

conformer are presented as example. The two sets of charges, obtained at different levels 

of theory, are highly correlated. Indeed, the correlation coefficient (R
2
) is 0.98 in water, 

ethanol, and toluene (Figure 5.1). This indicates that the two sets of charges for TFA 

Form I conformer are highly similar in all solvent media.  

However, linear regression analysis of the two sets of charges, obtained in different 

solvent media, yields a slope of 0.75, meaning that the partial atomic charges derived at 

the level of HF/6-31G(d) are larger in absolute value than those obtained at the higher 

level of B3LYP/cc-pVDZ. The HF/6-31G(d) method is expected to give large dipole 

moments and thereby enhance the solute polarity.
214

 Such atomic partial charges 

constitute an appropriate force field model for a solute in a polar solvent, such as water 

and ethanol, consistent with the role of both solvents in polarizing the solute molecule. 

Thus, charge set distribution derived at the HF/6-31G(d) level reflects properly the 

polarity of the environment. In addition, the use of the continuum solvent models in the 

quantum mechanical calculations made it possible to represent the solvent polarization 

effects in the point-charge models in a systematic manner. In a nonpolar solvent, such as 



153 

 

toluene, the partial atomic charges obtained at the HF/6-31G(d) level seem to be too 

polarized. The reason is because the charges derived using such an approach overestimate 

dipole moments and thereby implicitly include the solvent polarization to some extent. 

The results are consistent with observations reported in literature, where charges in 

hydrophobic solvents were as much as 20 – 25 percent lower than those in water.
215,224

 As 

such, in nonpolar solvents the partial atomic charges need to be corrected for the reduced 

polarization induced by the surrounding solvent. It is suggested that charge distributions 

derived at a higher level of theory (i.e. the B3LYP functional
178

 and the cc-pVDZ basis 

set) mimic better the condensed phase of nonpolar solvents.
215

 Therefore, partial atomic 

charges for TFA monomers and their corresponding dimers calculated at the level of 

HF/6-31G(d) in water and ethanol and at the level of B3LYP/cc-pVDZ in toluene were 

subsequently used in dynamics simulations. 
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Figure 5.1. Correlation of partial atomic charges for TFA Form I conformer determined 

by RESP fitting, where the electrostatic potentials were derived at the levels of theory of 

HF/6-31G(d) and B3LYP/cc-pVDZ in a continuum solvent model, water (a), ethanol (b), 

and toluene (c).   
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5.3.2 Molecular Conformations and Dynamics 

To understand structural information about the intermolecular interaction between solute 

and solvent molecules, an examination of the local environment surrounding the solute 

would be useful to ascertain the relative distribution of solvent molecules. The 

distribution of solvent molecules was explored by the radial distribution function (RDF), 

representing the relative probability of finding atoms of a solvent molecule at a certain 

distance from a specific atom of the solute molecule.
225

 RDF plots were generated for the 

hydrogen atoms in solvent molecules (e.g., water, ethanol, and toluene) with respect to 

the carbonyl oxygen of TFA (Figure 5.2). A maximum in the probability of locating a 

hydrogen atom of water or ethanol molecules within 2 Å of the carbonyl oxygen of TFA 

Form I and II conformers (Figures 5.2a and 5.2b, respectively) indicates that the carbonyl 

oxygen of TFA interacts with solvent likely via hydrogen bonding. In addition, a second 

solvation shell by water appears to be located within approximately 4 Å of the carbonyl 

oxygen of TFA. There are no preferential interactions between TFA Form I or II 

conformers and toluene. The carboxylic acid group does not form hydrogen bonding with 

toluene, which has both a poor hydrogen bond donor ability and poor hydrogen bond 

acceptor ability. RDF plots for hydrogen atoms of solvent molecules with respect to the 

carbonyl oxygen of TFA Form I and II dimers demonstrate a low probability of finding 

solvent molecules in the first solvation shell, as indicated by the absence of distinct peaks 

near the first shell distance of 2 Å (Figures 5.2c and 5.2d). Note that there is no 

remarkable difference in the solvation structures around the carbonyl oxygen between 

Form I and Form II conformers as well as between Form I and Form II dimers, when 

each structure is embedded in water, ethanol, or toluene.  
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Figure 5.2. Radial distribution function (RDF) plots between solvent molecules and the 

carbonyl oxygen of TFA Form I conformer (a), Form II conformer (b), Form I dimer (c), 

and Form II dimer (d) embedded in water, ethanol, or toluene calculated from the 

acquired MD trajectories. 

 

Thus far the structural properties that affect the drug’s ability to interact in the bulk 

solvent have been discussed. The objective of this work is to be able to determine 

intermolecular interaction energies using the explicit solvation models. Therefore, the 

structural models of the solvent around TFA conformers and their corresponding dimers 

that were obtained from MD simulations were used for the subsequent QM/MM 

calculations. Key solvent molecules to be included in the layer calculated quantum- 

mechanically along with the solute molecule were identified based on the analysis of the 

solute-solvent RDF. It is important to choose a proper size for the discrete model 
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calculated quantum-mechanically in order to increase the accuracy of the calculations. 

For that reason, the first two solvation shells surrounding the solute molecule within a 

distance of 4 Å from the carboxyl group of TFA were included in the QM-treated layer. 

Representative snapshots of the structural arrangement of TFA Form I and II conformers 

(Figures 5.3, 5.4, and 5.5) and Form I and II dimers (Figures 5.6, 5.7, and 5.8) are shown 

in the analyzed solvent media. During the dynamics run, both Form I and II conformers 

were also allowed to move freely (i.e., no restraining force was applied). In such a case, 

TFA conformation, which is described by the torsion angle τ1, existed mostly in a 

conformation resembling Form II. The most favorable torsion angle, τ1, can be found 

from the peak position in the probability distributions (Figure 5.9). Regardless of the 

initial conformation, the highest probability occurs for a conformation resembling Form 

II in water, ethanol, and toluene (i.e., τ1 near -135°). This behavior is in line with the 

Form II conformer being the most stable conformation. Representative snapshots of the 

structural arrangement of the TFA conformer when applying no restraining force are 

shown in Figures 5.10, 5.11, and 5.12. Further, these examples illustrate the treatment of 

the solution system by the QM/MM method. 
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Figure 5.3. Representative snapshots of TFA Form I conformer (a) and TFA Form II 

conformer (b) in water. The QM-treated layer of the system, including the solute 

monomer and solvent molecules within a distance of 4 Å from the carboxyl group, is 

represented in ball-and-bond model; the MM-treated layer of the system, including the 

rest of solvent molecules, is represented in stick model. 
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Figure 5.4. Representative snapshots of TFA Form I conformer (a) and TFA Form II 

conformer (b) in ethanol. The QM-treated layer of the system, including the solute 

monomer and solvent molecules within a distance of 4 Å from the carboxyl group, is 

represented in ball-and-bond model; the MM-treated layer of the system, including the 

rest of solvent molecules, is represented in stick model. 
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Figure 5.5. Representative snapshots of TFA Form I conformer (a) and TFA Form II 

conformer (b) in toluene. The QM-treated layer of the system, including the solute 

monomer and solvent molecules within a distance of 4 Å from the carboxyl group, is 

represented in ball-and-bond model; the MM-treated layer of the system, including the 

rest of solvent molecules, is represented in stick model. 
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Figure 5.6. Representative snapshots of TFA Form I dimer (a) and TFA Form II dimer 

(b) in water. The QM-treated layer of the system, including the solute dimer and solvent 

molecules within a distance of 4 Å from the carboxyl group, is represented in ball-and-

bond model; the MM-treated layer of the system, including the rest of solvent molecules, 

is represented in stick model.  



162 

 

 

Figure 5.7. Representative snapshots of TFA Form I dimer (a) and TFA Form II dimer 

(b) in ethanol. The QM-treated layer of the system, including the solute dimer and solvent 

molecules within a distance of 4 Å from the carboxyl group, is represented in ball-and-

bond model; the MM-treated layer of the system, including the rest of solvent molecules, 

is represented in stick model.  
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Figure 5.8. Representative snapshots of TFA Form I dimer (a) and TFA Form II dimer 

(b) in toluene. The QM-treated layer of the system, including the solute dimer and solvent 

molecules within a distance of 4 Å from the carboxyl group, is represented in ball-and-

bond model; the MM-treated layer of the system, including the rest of solvent molecules, 

is represented in stick model.  
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Figure 5.9. Probability distributions of the torsion angle τ1 for the two TFA fully 

optimized conformers, Forms I and II, in water (a), ethanol (b), and toluene (c). 
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Figure 5.10. Representative snapshot of the TFA fully optimized conformer in water. 

The QM-treated layer of the system, including the solute monomer and solvent molecules 

within a distance of 4 Å from the carboxyl group, is represented in ball-and-bond model; 

the MM-treated layer of the system, including the rest of solvent molecules, is 

represented in stick model.  
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Figure 5.11. Representative snapshot of the TFA fully optimized conformer in ethanol. 

The QM-treated layer of the system, including the solute monomer and solvent molecules 

within a distance of 4 Å from the carboxyl group, is represented in ball-and-bond model; 

the MM-treated layer of the system, including the rest of solvent molecules, is 

represented in stick model. 
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Figure 5.12. Representative snapshot of the TFA fully optimized conformer in toluene. 

The QM-treated layer of the system, including the solute monomer and solvent molecules 

within a distance of 4 Å from the carboxyl group, is represented in ball-and-bond model; 

the MM-treated layer of the system, including the rest of solvent molecules, is 

represented in stick model. 

  



168 

 

5.3.3 Sampling Scheme 

A central problem for molecular simulations is sampling the conformational space. Such 

sampling is necessary in flexible molecules to obtain the correct distributions of 

conformers, which, for example, may vary for a molecule in different solvents. A vast 

range of methods has been developed and applied to molecular systems in an attempt to 

enhance coverage of the thermally accessible conformational space. One of the methods 

is the umbrella sampling simulation, which determines the probability that the system 

would be in a given conformation.
212

 This is accomplished by dividing the pathway with 

external potentials (which are usually harmonic, hence the name "umbrellas") and 

sampling each part. Applying an external potential traps the molecule in one region along 

the reaction coordinates. In addition, the potential works to lower the energy barrier that 

exists between two conformations. In effect, umbrella sampling allows one to sample a 

particular section of the reaction pathway in which the molecular conformation is 

unfavorable.  

The efficacy and ability of an approach applied for sampling depends on the goals of the 

computation. The goal of this work is to calculate the energy of TFA conformers, 

specifically Forms I and II, in solution by QM/MM. It should be noted that the only 

purpose of performing MD simulation is to examine the dynamics of the solvent 

surrounding the solute molecule and the interaction between the solute and the solvent 

environment. We are only interested in the simulated structures because the total energies 

calculated by MD are not reliable, since they are the result of parameterized force fields. 

Therefore, the mode of sampling that was utilized was to collect ten snapshots of each 

simulated structure from multiple MD trajectories.
226

 Specifically, this strategy consisted 
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of generating trajectories starting from the same initial conformation, but with different 

initial velocity distributions. Two independent trajectories were generated. A concern 

guided the systematic search for a reliable sampling scheme: how many snapshots should 

be extracted in order to achieve a meaningful structural analysis of the results. In order to 

assess the consistency of the present scheme and the extent of structural stability of the 

solute conformation generated in the MD trajectories, the time evolution of the torsion 

angles (i.e., τ1, τ2, and τ3 denoted in Figure 5.13a) and of the energy of the TFA molecule 

was analyzed. The energy values were calculated by QM/MM. Torsion angle and energy 

profiles of the Form I conformer in water, ethanol, and toluene are shown as example 

(Figures 5.13 and 5.14).  

Despite the fact that the harmonic restraining force was applied only on the torsion angle 

τ1, neither τ2 nor τ3 deviates significantly. For the system in water, the overall spread of 

the torsion angles over time was relatively small, indicating that the TFA conformer did 

not undergo torsional transitions (Figure 5.13b). As such, the structural features of the 

Form I conformer were maintained during the simulations, perhaps because the system 

had settled in a local minimum of the conformational space. Similar results were obtained 

for the system embedded in ethanol or toluene (Figures 5.13c and 5.13d). Furthermore, 

the energy of the TFA conformer did not dramatically change among the snapshots 

acquired from the simulations; all the values were relatively close, falling within 10 

kJ/mol (Figure 5.14). The chosen sampling scheme led to ample consistency among 

snapshots of independent MD trajectories. It would be highly unlikely for the generated 

trajectories to exhibit structural deviation from the starting structure upon increasing the 

number of collected snapshots. This work is not intended to be the last word on sampling 
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efficiency and may represent a simplified approach. However, the question of the effect 

of sampling on the system stability and on the solute conformation has been addressed. 

Therefore, because of the reduced variability among the collected snapshots, the lowest 

energy of the solute molecule in solution was considered. The lowest energy structure 

was picked because it corresponded to the highest probability to be found within the 

Boltzmann distribution. 

 

 

Figure 5.13. Molecular structure of TFA, defining torsion angles τ1, τ2, and τ3 (a). 

Representative segments of conformational profiles for the three torsion angles of the 

simulated TFA Form I conformer embedded in water (b), ethanol (c), and toluene (d). 
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Figure 5.14. Time evolution of energies of TFA Form I conformer embedded in water 

(a), ethanol (b), and toluene (c). Snapshots were generated from two independent MD 

trajectories and then the energy values were obtained from QM/MM calculations. 
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5.3.4 Intermolecular Interaction Energies 

The energies of the MM-treated low layer, the QM-treated high layer, and the interaction 

between the two layers together with the total energy of a system constituted by the Form 

I conformer embedded in solvent media are shown in Table 5.1. The energies acquired at 

each level are additive. A careful examination on the calculated total energy of the 

system suggests that the quality of the result is controlled by the QM-treated high layer 

that includes the solute and solvent molecules located within 4 Å from the solute. This 

allows one to focus on the local structural factors and short-range interactions without 

necessarily considering the long-range interactions for the rest of the solvent 

environment.  

 

Table 5.1. Calculated energies of each layer defined in ONIOM calculations as well as 

the total energy for a snapshot of the TFA Form I conformer embedded in solvent media. 

The energy values are reported in Hartree-Fock (HF). 

 

 

Once the QM/MM method has been used to determine the energy of the system, the 

intermolecular interaction energy between solvent and the TFA molecule – more suitably 

called solvation energy (ΔEsolvation) – can be computed according to the following 

equation: 
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(5.4) 

where Esystem was obtained by the QM/MM method on the solute molecule in a given 

solvent system; Esolvent was obtained by the QM/MM method on the pure solvent; and 

Esolute, gas was obtained by the QM calculation on the solute molecule in the gas phase. 

Solvation energy was calculated for monomers and their respective dimers, resembling 

Forms I and II, as well as for monomers that were allowed to move freely.  

In water, the estimated solvation energy of the Form I conformer was -158.84 kJ/mol, 

while that of the Form II conformer was -176.40 kJ/mol. In ethanol, the solvation 

energies of the Form I and II conformers were computed to be -234.49 kJ/mol and -

242.74 kJ/mol, respectively. In a nonpolar solvent, such as toluene, the estimated 

solvation energies of the Form I and II conformers were -136.67 kJ/mol and -142.22 

kJ/mol, respectively. When no restraint was applied to the solute molecule, the solvation 

energies were -176.24 kJ/mol, -247.01 kJ/mol, and -141.62 kJ/mol in water, ethanol, and 

toluene, respectively. These energy values are close to those computed for the Form II 

conformer, confirming that during the entire simulation period the TFA molecule 

resembled the Form II conformational state regardless of the solvent polarity. The results 

are summarized in Table 5.2.  

 

 

 

 

)E(EEΔE
solventgas solute,systemsolvation
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Table 5.2. Calculated solvation energy values of TFA Form I and II conformers 

embedded in water, ethanol, and toluene. The energy of a fully optimized molecule (i.e., 

no restraining force was applied) is also reported in the three solvents. 

 

 

The rank order of solvation energy for TFA conformers is: 

E Solvation, ethanol < E Solvation, water < E Solvation, toluene 

By comparing the energy values in ethanol and toluene, the solvation energy is more 

negative as the solvent polarity increases, as measured by the increase in the dielectric 

constant. This is mainly because the carboxylic acid in TFA is better solvated in polar 

solvents than in nonpolar solvents, likely via hydrogen bonding, in tune with RDF plots 

(Figures 5.2a and 5.2b). However, the solvation energy in water is less negative than that 

in ethanol, although the polarity of water is higher than that of ethanol. As such, the 

macroscopic dielectric constants alone are unsuitable measures of the molecular, 

microscopic interactions.
227

 The reason the TFA molecule has a stronger interaction with 

ethanol and a lower interaction with water might be due to the greater amount of energy 

needed to make a solvent cavity to accommodate the TFA molecule in water than in 

ethanol. Other factors, nonetheless, must account for the large negative solvation energy 

values of both TFA conformers in ethanol. An ethanol molecule has a hydrocarbon group 

that cannot participate in hydrogen bonds and, thus, intermolecular hydrophobic 
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interactions may contribute to the structural stability of the solute in ethanol. Also, it is 

expected that in nonpolar toluene hydrophobic interactions between aromatic rings of the 

solute and the solvent molecules account for the main contribution of intermolecular 

interactions to the solvation energy. 

The net contributions of each type of interaction (i.e., hydrogen bonding vs. hydrophobic 

interaction) to the overall stability of the solute molecule in solution could not be 

inferred. To date, no literature study has been reported on the QM/MM capability to 

evaluate individual components of the solvation energies in solution. There is also 

uncertainty regarding the role of individual interactions in favoring one conformation 

over the other. Overall, the results indicate that in all of the solvents the Form II 

conformer, which represents the global energy minimum, interacts preferentially with 

solvent molecules. However, when computing the solvation energy of TFA dimers 

embedded in water, ethanol, and toluene Form I dimers are more stabilized than Form II 

dimers. The trend is reflected by lower (or more negative) values of solvation energy for 

Form I dimers than those for Form II dimers (Table 5.3). 

   

Table 5.3. Calculated solvation energy values of TFA Form I and II dimers embedded in 

water, ethanol, and toluene.  
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Solute-solute interactions via hydrogen bonding are expected to compensate for the loss 

of solvation (i.e., solute-solvent interactions) accompanying dimer formation.  The 

intermolecular hydrogen bonding energy of Form I and II dimers, composed of 

monomers A and B and embedded in solvent media, was computed as follows: 

(5.5) 

The hydrogen bonding strength in the Form I dimer was estimated to be -30.24 kJ/mol, -

33.30 kJ/mol, and -31.16 kJ/mol in water, ethanol, and toluene, respectively, while that in 

the Form II dimer was -28.15 kJ/mol, -30.90 kJ/mol, and -28.14 kJ/mol in water, ethanol, 

and toluene, respectively. The results, listed in Table 5.4, indicate that hydrogen bonding 

interaction is more favorable for the Form I dimer as compared to the Form II dimer by 

approximately 2-3 kJ/mol.  The largest difference in hydrogen bonding strength was 

obtained for the dimer in the toluene phase. Note that the energies reflect the formation of 

solute-solute interactions per hydrogen bond. Because solvation stabilizes the carboxylic 

group, the effects of hydrogen bonding interactions between solute molecules are smaller 

in the solution phase than in the gas phase.  

  

Table 5.4. Calculated hydrogen bonding energy values of TFA Form I and II dimers 

embedded in water, ethanol, and toluene. 
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Strong intermolecular hydrogen bonding between solute molecules may compete with 

intermolecular interactions between solute and solvent molecules, resulting in a 

conformational change to a structure that is more stable and more prone to form stronger 

aggregates. The determining factor for the structural rearrangement of a molecule in 

solution is its energy state. The molecule will adopt a conformation that yields 

energetically more favorable interactions with the solvent. At the same time, when 

solution conditions allow for the formation of association species a molecular 

conformation that maximizes intermolecular hydrogen bonding through dimer formation 

so as to minimize the energy will be preferred. The energies of Forms I and II in their 

monomer and dimer states are summarized in Table 5.5. Regardless of the solvent, the 

Form II conformer is the more stable conformation, confirming the results in the gas 

phase presented in Chapter 4. The Form II conformer is more stable than the Form I 

conformer by 12.1 kJ/mol, 3.7 kJ/mol, and 3.9 kJ/mol in water, ethanol, and toluene, 

respectively. Thus, the Form I conformer, being less stable, adapts to a solvent 

environment by adopting a more internally strained conformation able to strengthen 

interactions with another solute molecule. The net effect is that the Form I dimer is more 

stable in a solution phase. The Form I dimer is more stable than the Form II dimer by 

49.1 kJ/mol, 2.4 kJ/mol, and 4.5 kJ/mol in water, ethanol, and toluene, respectively. 

The energies of TFA existing as dimer were used to calculate the fraction of the 

population expected to occur in each configuration at 25 °C in ethanol, in order to 

corroborate the experimental results.  Because the energy difference between the two 

dimers in the ethanol phase was found to be 2.4 kJ/mol, the Form I dimer would 

contribute 72 percent of a Boltzmann population. This calculation agrees very well with 
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the experimental finding of a 62 percent fraction of dimers in the high concentration 

solution (discussed in Chapter 3), indicating the validity of the energy calculation that 

accounts for the explicitly modeled solvent molecules. 
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Table 5.5. Calculated energy values of TFA Forms I and II in their monomer and dimer states embedded in water, ethanol, and 

toluene. The energy values are reported in Hartree-Fock (HF). The energy difference between Form I and Form II in their 

monomer and dimer states embedded in water, ethanol, and toluene is also reported in kJ/mol. 
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5.4 Conclusion 

Although modeling the solvent as a continuum medium is still used to investigate 

solvation effects, its shortcomings prompted the need to evaluate the performance of 

other techniques, in which the solvent is explicitly taken into account. Thus, this chapter 

presented the computational methodology developed for calculating energies of the solute 

molecule and its intermolecular interactions in solution. A few observations indicated that 

the Form II conformer represents the preferred conformation adopted by TFA. First, 

when allowing either the Form I or Form II conformer to rotate freely, MD simulations 

revealed a higher probability for the occurrence of the torsion angle τ1 near the value 

corresponding to that found in the Form II conformer. The second observation comes 

from the energy calculation by the QM/MM approach. The Form II conformer forms 

more favorable interactions with solvent molecules. This accounts for the lower solvation 

energy of this conformer. Therefore, the Form II conformer is the more stable 

conformation in a solution phase. The results corroborate those obtained in the gas phase. 

Also, the preferred conformation of the TFA molecule does not depend on the solvent 

polarity.  However, when the TFA molecule exists in a dimer state the Form I dimer 

exhibits lower solvation energy and greater stability.  The conformational arrangement of 

the TFA molecule similar to that found in the Form I conformer is essential for the 

formation of stronger hydrogen bonding between solute molecules. 

 

 

 

Copyright © Alessandra Mattei 2012 
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Chapter 6 – Summary and Discussion 

The overall goal of this research is to determine the extent to which solution conditions 

influence the molecular conformation and how their effects are reflected in the resultant 

molecular packing arrangements of conformational polymorphs. In this chapter, the goal 

is to link the experimental results from Chapters 2 and 3 and the computational methods 

from Chapters 4 and 5. Therefore, all the results carried out through to Chapter 5 will be 

summarized so that the knowledge learned can be leveraged and the fundamental 

understanding of the formation of TFA polymorphs can be gained. 

6.1 Summary of the Results 

TFA has a flexible structure that can adopt various conformations. TFA prefers to take a 

planar conformation stabilized by π-conjugation, intramolecular hydrogen bonding, and 

intermolecular interactions between solute and solvent molecules. The TFA molecule can 

also adopt a more twisted conformation that makes the carboxyl group a better hydrogen 

bonding acceptor. The electronic properties of the TFA molecule, derived based upon the 

conceptual density functional theory, provided the underlying structural cause for the 

carbonyl oxygen in the strained conformer to be more willing to share its electrons, and 

consequently to be a better hydrogen bonding acceptor. Being local properties, the DFT-

based concepts describe the sensitivity of a molecular system to the electronic 

perturbation that may be caused by interacting with other molecules. A less pronounced 

distribution of the electrophilic region around the carbonyl oxygen of the twisted 
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molecular conformation imparts to the chemical moiety the strongest ability for the 

formation of hydrogen bonding interactions.  

Crystal structures of the crystallized Form I and Form II comprise only one conformer 

per crystal lattice. Form I and II conformers of TFA were considered the two molecular 

conformations in solution with significant contributions, because they correspond to the 

local and global minima, respectively, in the conformational energy distribution. 

Specifically, the calculations performed in ethanol phase revealed that the conformation 

present in the Form I crystal leads to a local minimum that is 3.7 kJ/mol higher in energy 

than the global minimum. Accordingly, molecular dynamics simulations provided further 

evidence that the conformation found in the Form II crystal is in fact more stable. As 

such, the population distribution of Form I and II conformers, which is a function of the 

conformational energy associated with each conformer, should favor a higher proportion 

of these two conformers with respect to other molecular conformations that may exist in 

solution.  

In a polar solvent and in the absence of solute-solute interactions, it might be expected to 

see TFA molecules in the stable Form II conformation. Particularly when monomers are 

the dominant solute species, the TFA molecule might assume the most stable 

conformation that is overall flatter and that resembles the conformation found in Form II. 

However, the ensemble of TFA conformers present in ethanol solution was characterized 

by a short distance between the methyl group on the chlorinated aromatic ring and the 

proton at the meta position on the anthranilic ring. Interestingly, a more twisted 

conformation gained greater prominence at lower temperature when self-association of 

solute molecules also became more favorable. Either a higher solute concentration or a 
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lower temperature enhanced solute-solute interactions and, thus, facilitated the formation 

of molecular association. Intermolecular interaction calculations supported the conclusion 

that hydrogen bonding interactions provided the driving force for the observed TFA 

association and that hydrogen-bonded dimers were the favored association mode of 

interacting molecules. In fact, the interaction energies involved in aromatic association 

were smaller than those involved in carboxylic acid association.  

It is thought that a molecule crystallizes in a conformation close to the global minimum 

of its potential energy surface. However, molecular conformations that do not correspond 

to a global energy minimum are observed in the solid state. Studies
81-83

 have shown that a 

molecule can change its conformation to adopt a conformation suitable for association 

and crystal packing before integrating into the crystal surface. Such a conformational 

change is related to intermolecular interactions.
79

 Biphenyls constitute a class of 

molecules known to be affected by systematic crystal packing effects.
228

 The biphenyl 

molecule without ortho substituents assumes a twisted conformation in the gas phase and 

in solution, but adopts a more planar conformation in its single known polymorph. 

Favorable packing arrangements are often associated with increased density, so a change 

in torsion angle values and, thus, in the conformation of the biphenyl molecule might be 

correlated with packing efficiency. In other words, a more planar conformation packs 

more densely than a twisted conformation. The observation is further supported by acene 

derivatives.
229

 Twisted conformations of acene molecules were found to correspond to 

potential energy minima and be more stable than untwisted conformers, which 

nevertheless crystallized preferentially and formed more favorable packing interactions in 

the solid-state. The studies reveal that the distribution of conformers found in crystals 
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may be different from the distribution expected from the intramolecular potential energy 

of conformational space. Therefore, crystallizations systematically favor conformations 

that would be rather improbable in the less-condensed phase.  

In concentrated ethanol solutions of TFA, in which solute-solute hydrogen bonding 

interactions become important, the Form II conformer would form weaker hydrogen-

bonded dimers. The hydrogen bonding in Form II is about 2 kJ/mol weaker than that in 

Form I. However, the stabilization by specific hydrogen bonding interactions can 

override conformational preferences of a molecule.
146

 As such, when solute contacts get 

strengthened and hydrogen-bonded dimers form, the TFA molecule adopts a 

conformation that is suitable to form stronger hydrogen bonds.  

The conformation of the molecule is susceptible to solution conditions and affects the 

overall energy state of the system.  The planar conformation that reflects the 

conformation found in the Form II crystal favors intramolecular hydrogen bonding and 

lowers the interaction energy for the solute with the solvent. The Form II conformer is 

more stabilized than the Form I conformer by 3.7 kJ/mol, as calculated in ethanol phase. 

The twisted conformation similar to the conformation found in the Form I crystal allows 

for strong intermolecular hydrogen bonding. Thus, hydrogen bonding intermolecular 

interactions can stabilize a conformation that is 3.7 kJ/mol above the lowest energy 

conformation.  Further, the twisted molecular conformation tends to minimize the energy 

of the dimer state. The Form I dimer is more stabilized than the hydrogen-bonded dimer 

found in Form II by about 2.5 kJ/mol, as computed in ethanol phase. 

The ultimate goal of this research is to investigate whether solution conditions, which 

influence the molecular conformation occurring in the self-assembled aggregates in 
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solution, in turn, affect the molecular conformation in the crystalline state, so as to form 

distinct polymorph structures. Therefore, the results obtained from solution chemistry are 

compared to the results from crystallization experiments in order to rationalize the 

polymorph formation of TFA. 

Cooling TFA solutions at 40 and 62 mM in ethanol led to the production of Form I and II 

mixtures, containing approximately 13 percent (w/w) and 18 percent (w/w) of Form I, 

respectively (Figure 2.14).  There was a slight increase of Form I in the composition of 

polymorphic mixtures as solute concentration increased. Based on NOESY 

measurements, in solutions at concentrations similar to those in the crystallization 

experiments and at the lowest analyzed temperature the distribution of conformers favors 

the twisted Form I conformation, which has a shorter distance between the methyl group 

on the chlorinated aromatic ring and the proton at the meta position on the anthranilic 

ring (Figure 3.16 and Table 3.4). The internal dynamics corresponding to rapid 

association/dissociation, as indicated by single peaks with averaged 
1
H-NMR chemical 

shifts, and the fast exchange between molecular conformations in solution indicate that 

the estimated values of proton distances are time-averaged over the possible 

conformations. However, the results indicate a correlation between the molecular 

conformation population present in solution and that found in the solid-state. The 

population of the Form I conformer in solution may reflect the contribution of this 

conformer to the resultant crystalline polymorph.  

The percentage of Form I obtained from samples crystallized at 37 °C was less 

comparable to the trend of the NOESY measurements obtained at the same temperature. 

Although the initial concentrations of the crystallization experiments performed at 37 °C 
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were beyond the concentration range employed in NOESY measurements, it is difficult 

to explain the dramatic increase up to 50 percent (w/w) of Form I crystals obtained at S = 

1.95 (Figure 2.9). One possible reason would arise from faster equilibration rates between 

conformers at elevated temperatures.
230

 If the population of the Form I conformer 

increases due to a faster equilibration rate, then crystallization of Form I would be 

expected to be accomplished in higher amounts. In order to estimate the influence of the 

population of the Form I conformer on crystallization with increasing temperature, the 

relative proton distances were determined at high temperatures. The trend of the NOESY 

data at 37 °C indicated a larger intramolecular distance between protons of interest in the 

population of monomers compared to the distances obtained at low temperatures. 

Therefore, the large increase of Form I in the solid-state was unexpected. A plausible 

reason for the large percentage of Form I crystals from solution at high supersaturation 

may be due to the faster nucleation and crystal growth achieved under these conditions. 

Thus, any precipitation observed should be considered in the evaluation that the crystal 

growth had already ensued.   

6.2 Proposed Nucleation Mechanism 

Given the results of the crystallization experiments, solute species in solution, and 

intermolecular interaction calculations, the proposed mechanism implies that, when a 

solution of low concentration gets cooled and becomes supersaturated, the solute 

monomers start to form nuclei. As the concentration increases, more self-association is 

warranted and more hydrogen-bonded dimers form in solution. For a thermodynamic 

reason, solute molecules need to form dimers as strongly as possible and, in the case of 
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TFA, the molecules have to adjust their monomer conformation in order to form stronger 

hydrogen bonds (ca. 5 kJ/mol increase as calculated in explicit ethanol phase). The 

energy penalty due to the conformational change (ca. 3.7 kJ/mol as calculated in explicit 

ethanol phase) can be recovered from gaining stronger hydrogen bonds. When the 

condition of nucleation is met (i.e., an undersaturated solution is cooled), molecular 

associated species start to form nuclei and initiate crystal growth. Thus, it can be 

concluded that, when a solution of TFA is rapidly cooled and reaches the nucleation 

conditions, the strongly interacted hydrogen-bonded dimers act as building blocks for the 

growth of the colorless Form I crystals. Still, the model does not consider the exclusive 

presence of dimers in the solution phase, but an equilibrium between the monomer and 

the dimer states; the nucleation and subsequent crystal growth drive that equilibrium to 

the product phases, giving rise to concomitant polymorphs. The key concept 

underpinning the argument is that solute molecules need to take on a conformation 

suitable for the formation of strong hydrogen-bonded dimers. 

The molecular conformation is sensitive to intermolecular interactions during crystal 

growth. As a concentration increase or a temperature decrease warrants further self-

assembly of solute molecules, the effect of solute concentration or temperature on 

promoting hydrogen-bonded dimer formation is manifested by the conformational change 

of the solute. The identified specific solute-solute interactions help elucidate the effect of 

solution conditions in the polymorph formation. The TFA molecule assumes a twisted 

conformation, which better exposes the carboxyl group in TFA for self-association and, 

thus, facilitates the formation of the most stable association species and the most stable 

crystal form. In other words, when the solvated monomers of TFA molecules start to be 
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convened into dimers, the molecular conformation needs to change in order to form more 

favorable intermolecular hydrogen bonding interactions in the solid-state. More 

importantly, this argument implies the utmost role of solute species in governing the 

polymorph formation from solution. 

The association of solute species to form pre-nucleation aggregates has been highlighted 

as an important initial step in the crystallization process. In addition, the focus of this 

dissertation has been devoted to the molecular conformation in the state of association of 

solute molecules in solution and in the final crystalline state. The criterion selected for 

investigating the relationship between solution conformation and the solid-state outcome 

was to match the trend of the ensemble of conformers in the solution phase with the 

fraction of the crystallized polymorph containing that conformer in the crystal lattice. 

There was a qualitative correspondence between the twisted conformation existing in 

solution and in the crystal structure. Thus, it might seem reasonable to conclude that the 

molecular conformation of TFA in solution reflects that in the solid-state. However, 

differences were observed between NMR measurements and crystallization outcome. 

Concomitant polymorphs crystallized under the same solution conditions. As a result, a 

direct correlation between pre-nucleation aggregates and polymorphic solid forms fell 

short.  

In the above analysis, the states of association in the solution phase are considered to be 

carried out in the crystallization process. The nucleation and crystal growth likely 

proceed via incorporation of the pre-nucleation aggregates, which serve as growth units, 

into the crystal structure (Figure 6.1). However, solute molecules do not assume static, 

fixed configurations and/or arrangements. The fundamental molecular steps that are 
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associated with nucleation and subsequent growth of organic crystals from solution are 

dynamic phenomena. Monomers or dimers in solution start to organize themselves into 

larger associated species. As the pre-nucleation association species grow in size to form 

critical nuclei, it is necessary to keep in mind that structural changes can still take place 

during the pathway to a macroscopic crystal. Therefore, rationalizing the polymorph 

formation based on pre-nucleation association alone may represent an oversimplification 

of what is really occurring in the crystallization process.  

 

 

Figure 6.1. Schematic of the nucleation and growth of a polymorphic system, involving 

the initial association in solution to form precursors (i.e., growth units), followed by 

formation of nuclei. Nuclei, which attain the critical size, continue to grow until a final 

crystal is achieved.   

 

From an experimental viewpoint, it would be desirable to be able to follow the evolution 

of solute species from the rearrangement of pre-nucleation aggregates to the formation of 

crystalline nuclei that continue to grow. There clearly is a challenge to develop 

methodologies that will enable the gap between the dynamics of solution entities and the 

formation of crystals to be bridged. The current methods are limited by their dependence 
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upon concepts emerging from a molecular prospective. While a direct correlation 

between pre-nucleation solute species and the final crystallized polymorph was difficult 

to make in some cases, there is confidence that the study of the conformational 

preferences of the solute species in solution helped advance the fundamental 

understanding of the underlying relationship between molecular conformation and crystal 

packing of TFA conformational polymorphs. Overall, this knowledge could serve as a 

guide to pharmaceutical scientists for rational control of crystal growth of organic 

molecules. 
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Chapter 7 – Conclusion and Future Directions  

Studying the nucleation process, which is the earliest stage of crystallization and a 

primary determinant of the structure and properties of the resultant product, represents a 

major challenge in polymorphism research. The essential difficulty is that the processes 

taking place are barely, or not at all, accessible to current experimental methods. The key 

focus of this dissertation has been a detailed analysis of the solute species in solution at 

the pre-nucleation stage. The extent to which solution conditions influenced the self-

association and the molecular conformation of the model, conformationally flexible 

solute was rigorously examined at a molecular level. The solution NMR methodology 

was applied to detect and quantify the presence of associated species and of the 

equilibrium conformer. The NMR measurements helped gain critical knowledge about 

the effect of solution conditions on the solute species and on the time-averaged molecular 

conformation adopted by the solute species. Upon change of solution conditions, TFA 

molecules self-associated by forming hydrogen-bonded dimers and adopted a twisted 

conformation. A mathematical model was applied to verify the correlation between the 

fraction of associated species and the population distribution of conformers.   

With this information in hand, the structural cause for the observed conformational 

distribution in solution was determined by utilizing electronic calculation. Further, 

intermolecular interactions of the molecular associated species (i.e., dimers), resembling 

the structural motifs in TFA crystal structures were calculated in the gas phase, as well as 

in the solution phase. The methodology in a solvent modeled explicitly was developed so 

there would be good control of the solvent effect on the intermolecular interaction.  
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Crystallization, which was affected by solution conditions, resulted in the selection of one 

conformer to be present in the crystal structure. Possible structural changes during the 

early stage of crystal growth cannot be ruled out. As such, consideration must be given to 

the studies that could further the polymorph behavior by accounting for structural 

changes that may occur in the stepwise self-assembly crystal growth process.      

The research presented in this dissertation provides a starting point for future studies. A 

more systematic approach to crystal growth calls for the development of suitable 

quantitative and noninvasive monitoring techniques. In the pharmaceutical industry, as 

well as in academia, the on-line monitoring with fiber optic Raman spectroscopy and 

Fourier transform infrared spectroscopy has been developed. The techniques have been 

used to achieve effective product quality control of crystal shape and size and to ensure 

consistent isolation of the desired polymorph. They also have been used to monitor both 

the solute concentration and the form composition of the crystals throughout the whole 

crystallization process. As such, more rigorous information on structural changes 

associated with the crystal growth of polymorphs from solution could be gained with the 

on-line approach. 

With a strong foundation of the contribution of different molecular conformations in the 

crystallization process, more small organic molecules can be investigated. Systems 

having a high energy barrier of transition between conformers can be evaluated to further 

test the effect of solution conditions on the molecular conformation in the solid-state of 

drug molecules. The studies are aimed at expanding the understanding of the relationship 

between the conformations of a flexible drug and crystal packing with the long-term goal 
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of controlling polymorphism based upon the molecular structural properties of the drug 

compound.  
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Appendices 

Appendix 1. Crystal Growth Morphology 

Growth morphology of a crystal is governed by the relative growth rates of its faces. The 

general rule is that faces that grow fast will become the minor faces. Conversely, faces 

that grow slow will develop as the major faces. 

A1.1 Methods 

The morphology of TFA Forms I and II was generated by the Materials Studio 3.5 

program (Accelrys, Inc., San Diego, CA) using the single-crystal X-ray data.
114

 The 

crystal habit faces expected to be dominant were identified from the crystal lattice 

geometry, using the Bravais Friedel Donnay Harker (BFDH) method.
231

 The Miller 

indices of two faces of TFA Form I single-crystals were verified using a powder X-ray 

diffractometer (Multiflex, Rigaku Co., The Woodlands, TX) with a Ni-filtered Cu Kα 

radiation (λ = 1.54178 Å). Samples were scanned over a 2θ range of 5 - 30° at the rate of 

0.5 °/min with step size of 0.02°.  

A1.2 Results 

The growth morphology analysis of TFA Form I reveals that the (010) face has the 

largest morphological importance and it thereby represents the largest part of the total 

surface area of the crystal. A tiny face for this polymorph of TFA is the (100) face, which 

could not be measured experimentally (Figure A1.1a). Note that the method may not be 

totally reliable. PXRD patterns confirm that the predominant face of the Form I crystal is 
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identified as (010) and a smaller face is (001) (Figure A1.1b). These results demonstrate 

that the crystal growth is slower along the direction of b-axis perpendicular to the (100) 

face. Conversely, the (001) face grows fast so that it is not a major face and does not 

appear in the morphology prediction.  The hydrogen-bonded dimers form a two-

dimensional sheet in the ac-plane. The growth morphology results of TFA Form II 

demonstrate that the largest growth face is (010), as shown in Figure A1.2.  
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Figure A1.1. Simulated growth morphology and crystal structure of TFA Form I. Crystal 

face indexing is highlighted (a). Powder X-ray diffraction patterns of the (001) and (010) 

faces of TFA Form I (b). 
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Figure A1.2. Simulated growth morphology and crystal structure of TFA Form II. 

Crystal face indexing of the predominant (010) face is highlighted. 
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Appendix 2. NMR Spectroscopy 

A2.1 PGSE NMR Method 

NMR exploits magnetic field gradients to measure the self-diffusion coefficient. Two 

magnetic field gradient pulses are employed and they are essential for correlating the 

translational motion of nuclei to the NMR signal intensity. Figure A2.1 shows a 

representation of how PGSE sequence measures diffusion. A 90° excitation pulse (pw) 

brings the magnetization into the XY plane. A field gradient (gt) is applied for a short 

time (δ=2 ms) so that nuclei experience a phase shift. A pair of 90° pulses can return the 

magnetization to the XY plane. Thus, the second field gradient can cancel the dephasing 

produced by the first gradient and refocus all nuclei, provided that no change of position 

has occurred. If diffusion occurs, the refocusing is not complete. This results in a 

remaining dephasing, which is proportional to the displacement during the diffusion time. 

In Figure A2.1 d0 – d5 are acquisition delays. Between the two field gradients the 

diffusion time is δ+d2+2pw90+d5+d0 during which molecules diffuse.     
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Figure A2.1. Pulse sequence used in PGSE NMR experiments. 
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A2.2 NOESY Method 

The NOESY experiment identifies resonances of protons 4 Å or less from one another. 

The sequence of NOESY consists of three 90° pulses. The first pulse creates transverse 

magnetization during the evolution time (d2). The second pulse produces longitudinal 

magnetization equal to the transverse magnetization component, orthogonal to the pulse 

direction. The mixing time (τm) is kept constant throughout the experiment. The third 

pulse creates the observable transverse magnetization from the remaining longitudinal 

magnetization (Figure A2.2). Note a 90° pulse at the beginning of the sequence. This 

serves to eliminate any net magnetization from the preceding iteration of the sequence 

and to start each scan with the same amount of magnetization. 
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Figure A2.2. Pulse sequence used in 2D-NOESY experiments. 
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A2.3 Spin-Echo Signal Attenuation Measurements 

Information on translational diffusion is encoded by varying the gradient strength for 

several values. The signal is detected as a free-induction decay, and Fourier transform 

with respect to time yields a spectrum with the peak intensities (Figure A2.3a). All of the 

resonances that belong to a pure component will decay exponentially at the same rate 

with respect to the square of the gradient strength. The signal decay for the nuclei of the 

drug was ideal (mono-exponential) and gave a good fit to Stejskal-Tanner exponential 

equation (Figure A2.3b). 
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Figure A2.3. Attenuation of the signals with increasing gradient strength when 

performing PGSE NMR experiments (a) and the representative Stejskal-Tanner 

exponential plot from the decay of H30 peak (b). 
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Appendix 3. Molecular Dynamics Code 

#Minimization 

&cntrl 

nmropt=1,ipnlty=1, 

imin = 1, 

ntr = 0, 

maxcyc = 5000, 

ncyc = 2000, 

ntpr = 100, 

cut = 10.0, 

ntb = 1 

/ 

&wt type='REST',istep1=1,istep2=5000, 

   value1=1.0, value2=1.0,&end 

  &wt type='END', &end 

  LISTIN=torsion_mi0.listin 

  LISTOUT=torsion_mi0.listout 

  DISANG=torsion.f 

 

#MD Heating Step from 0 to 298K 

&cntrl 

nmropt=1,ipnlty=1, 

imin=0, 

irest=0, 

ntx=1, 

ntb=1, 

ntr=0, 

nrespa=1, 

cut=10, 

ibelly=0, 

ntc=2,ntf=2, 

tempi=0,temp0=298, 

ntt=3,gamma_ln=1.0, 

nstlim=20000,dt=0.002, 

ntpr=500,ntwx=500,ntwr=500 

/ 

&wt type='REST',istep1=1,istep2=20000, 

   value1=1.0, value2=1.0,&end 

  &wt type='END', &end 

  LISTIN=torsion_he0.listin 

  LISTOUT=torsion_he0.listout 

  DISANG=torsion.f 
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#MD Equilibration Step at 298k 

&cntrl 

nmropt=1,ipnlty=1, 

imin=0, 

irest=1, 

ntx=5, 

ntb=2,ntp=1, 

ntr=0, 

nrespa=1, 

cut=10, 

ibelly=0, 

ntc=2,ntf=2, 

tempi=298, 

temp0=298,ntt=3,gamma_ln=1.0, 

nstlim=500000,dt=0.002, 

ntpr=500,ntwx=500,ntwr=500 

/ 

&wt type='REST',istep1=1,istep2=500000, 

   value1=1.0, value2=1.0,&end 

  &wt type='END', &end 

  LISTIN=torsion_eq0.listin 

  LISTOUT=torsion_eq0.listout 

  DISANG=torsion.f 
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