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ABSTRACT OF DISSERTATION 

 

 

 

CHEMOENZYMATIC STUDIES TO ENHANCE THE CHEMICAL SPACE OF 
NATURAL PRODUCTS 

 

        Natural products provide some of the most potent anticancer agents and offer a 

template for new drug design or improvement with the advantage of an enormous chemical 

space. The overall goal of this thesis research is to enhance the chemical space of two 

natural products in order to generate novel drugs with better in vivo bioactivities than the 

original natural products. 

        Polycarcin V (PV) is a gilvocarcin-type antitumor agent with similar structure and 

comparable bioactivity with the principle compound of this group, gilvocarcin V (GV). 

Modest modifications of the polyketide-derived tetracyclic core of GV had been 

accomplished, but the most challenging part was to modify the sugar moiety. In order to 

solve this problem, PV was used as an alternative lead-structure for modification because 

its sugar moiety offered the possibility of enzymatic O-methylation. We produced four PV 

derivatives with different methylation patterns for cytotoxicity assays and provided 

important structure-activity-relationship information. 

        Mithramycin (MTM) is the most prominent member of the aureolic acid type 

anticancer agents. Previous work in our laboratory generated three MTM analogues, MTM 

SA, MTM SK, and MTM SDK by inactivating the mtmW gene. We developed new MTM 

analogues by coupling many natural and unnatural amino acids to the C-3 side chain of 

MTM SA via chemical semi-synthesis and successfully made some compounds with both 



ii 
 

improved bioactivity and in vivo tolerance than MTM. Some of them were consequently 

identified as promising lead-structures against Ewing’s sarcoma. 

        The potential of selectively generating novel MTM analogues led us to focus on a key 

enzyme in the biosynthetic pathway of mithramycin, MtmC. This protein is a bifunctional 

enzyme involved in the biosynthesis of TDP-D-olivose and TDP-D-mycarose. We clarified 

its enzymatic mechanisms by X-ray diffraction of several crystal complexes of MtmC with 

its biologically relevant ligands. Two more important post-PKS tailoring enzymes involved 

in the biosynthesis of the MTM side chains, MtmW and MtmGIV, are currently under 

investigation. This would not only give us insight into this biosynthetic pathway but also 

pave the way to develop potentially useful MTM analogues by engineered enzymes.  
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CHAPTER 1: BACKGROUND INFORMATION 

1.1 Natural products 

        Natural product sources, whether from microbes, plants, fungi, or marine organisms, 

have long been used by humans to explore for potential medicines against diseases. The 

history of natural products usage can be traced back to prehistoric times, and their benefits 

were passed down by word of mouth and then recorded by writing systems of the ancient 

civilizations, such as the Mesopotamian, Egyptian, Chinese, Indian, and Greek cultures. 

Today, natural products still provide some of the most potent anticancer and antibiotic 

agents and offer templates for new drug design and improvement. Among 1,073 approved 

small-molecule drugs for all diseases worldwide from 1981 to 2010, 686 drugs (64%) were 

discovered or derived from natural products.[1] Large polypeptides and vaccines either 

isolated from an organism/cell line or produced by biotechnological methods in a surrogate 

host can also be regarded as natural products. The importance of all natural products for 

drug discovery and development is still greater than just translational natural products if 

these biomolecules are included among the collection of natural products. Modern 

medicine is the product of thousands of years’ worth of accumulation of natural product 

research, and natural products will continue to be an important source for new drug 

discovery in the future. 

        Natural products may be classified into six categories based on their building blocks 

and biosynthetic routes: fatty acids and polyketides (1 and 2), terpenoids and steroids (3 

and 4), alkaloids (5), phenylpropanoids (6), specialized amino acids and peptides (7), and 

specialized carbohydrates (8) (Figure 1).[2] In general, bioactive natural products are 

secondary metabolites that are not directly involved in the normal growth, development, or 

reproduction of organisms and appear only in a limited number of organisms. They differ 

from primary metabolites, such as nucleic acids and proteinogenic amino acids, which play 

a key role in all living systems.  

        Small-molecule compounds from natural sources play four significant roles in today’s 

pharmaceutical industry.[3] First of all, chemical space is the space spanned by all 

energetically stable molecules and chemical compounds in all possible topological 

isomers, and is a factor in measuring the chemical diversity of a specific group of 
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compounds. The chemical space of natural products is much larger than that of synthetic 

compounds and can cover most of the chemical space of the current marketed drugs, 

especially those that are difficult to produce commercially by synthetic means.[4] This 

indicates that chemists could create compounds with improved structural diversity by 

mimicking some properties of natural products. Natural products could also be used as 

prototypes or models for chemists to synthesize drugs possessing similar biological 

relevance with the parent compounds. Moreover, natural products also provide basic 

compounds for slight modifications to generate more active or less toxic analogues. Our 

studies on polycarcin V and mithramycin are good examples. Last but not least, natural 

products could serve as starting compounds for chemical or enzymatic syntheses to 

generate potent drugs that are not easily obtained by other methods. For example, taxol, a 

very potent anticancer agent that was isolated only from the bark of the scarce Pacific yew, 

was synthesized from baccatin III via an oxazoline intermediate.[5] Because baccatin III 

was found in the leaves of fast-growing yew species, this method prevented precious 

Pacific yew from extinction and provided an abundant source of starting material for the 

synthesis of taxol.  
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Figure 1. Six categories of natural products 

 

1.2 Streptomyces and Polyketides 

Streptomyces is the largest genus of Actinobacteria and the type genus of the family 

Streptomycetaceae. Streptomyces are Gram-positive bacteria possessing high-GC-content 

genomes and usually found in soil as spores but ubiquitous in nature.[6] Members of the 

genus Streptomyces produce a great number of clinically potential anticancer and antibiotic 

agents, such as neomycin and chloramphenicol, because of their rich and complex 

secondary metabolism. Even though some Streptomyces spp. infect humans and plants, this 

genus rarely contains pathogens.[6] Therefore, like E. coli, Streptomyces is a good choice 

for scientists to overexpress specific proteins or produce natural products, such as 

polyketides.  
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Polyketides are a large family of natural products that are found in many bacteria, fungi, 

plants, insects, sponges, and even animals. Because of their unparalleled range of 

biological activities and enormous commercial value, they are potential lead-structures for 

new drug discovery to treat many kinds of diseases. Many clinically or commercially 

important agents are polyketides, including erythromycin A, spinosyn, tetracyclines, and 

lovastatin. In bacteria, they are biosynthesized from acyl-CoA precursors by polyketide 

synthases and are reasonably divided into three basic classes based on their biosynthetic 

pathways (Figure 2).[7] Type I polyketides (9 and 10) are often macrolides produced by 

multifunctional enzymes that are organized into many modules working non-iteratively to 

complete one cycle of elongation of the polyketide chain (Figure 3a). Type II polyketides 

(11 and 12) are often aromatic molecules produced by the iterative action of one or several 

multienzyme complexes that can carry out many cycles of elongation of the polyketide 

chain (Figure 3b). Type III polyketides (13 and 14) are usually small (monocyclic or 

bicyclic) aromatic molecules produced by acyl carrier protein (ACP)-independent and 

iterative homodimeric enzymes (Figure 3c). In addition, recent literature suggests that the 

biosynthetic pathways of polyketides are more diverse in both mechanism and structure 

than the basic three classes, such as type I-type II, type I-type III, FAS-PKS, and PKS-

NRPS. (Structure 15 – 17).[8]  

Despite the enormous success of pharmaceutical polyketides, there is a growing need 

for the discovery of novel drugs to inhibit the development of drug-resistant pathogens and 

emerging, infectious microorganisms. However, the structures of polyketides are often too 

complicated to be efficiently generated by total synthetic strategies. Extensive research on 

the natural, biosynthetic pathways of polyketides has offered another avenue towards new 

drug discovery or drug diversification. Using genetic and biochemical information, natural 

product chemists cannot only generate novel polyketide derivatives but also enhance their 

chemical space through combinatorial biosynthesis or chemoenzymatic modification. 

These methods utilize various strategies to modify natural products or their biosynthetic 

pathways toward the generation of “unnatural” products. 
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Figure 2. Examples of drugs biosynthesized via three basic classes of polyketides. 
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1.3 Biosynthesis of type-II polyketides 

        This dissertation focuses on two important type II polyketides, gilvocarcin V and 

mithramycin. Both of these polyketides are potential anticancer agents, but certain side-

effects have seriously limited their clinical utility. This motivated us to try improving these 

compounds through combinatorial biosynthesis and chemoenzymatic modification. Either 

way requires a deep fundamental understanding of the biosynthetic processes of the 

compounds of interest. Therefore, the general information about type II polyketide 

synthase (PKS) and post-polyketide synthase (post-PKS) tailoring enzymes will be 

described below. 

 

Type II polyketide synthase 

        Polyketide biosynthesis shares a common biosynthetic logic with fatty acid 

biosynthesis. For example, they both originate from simple building blocks such as acetyl-

coenzyme A (ACoA) and malonyl-coenzyme A (MCoA) through repetitive 

decarboxylative Claisen thioester condensations. An activated acyl starter unit is extended 

with MCoA or MCoA-derived units, and this process typically requires the participation 

of a β-ketoacyl synthase (KS), an activated acyl carrier protein (holo-ACP) and a 
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malonyl/acyltransferase (MAT/AT).[9] The elongation cycle is repeated in both pathways 

until the backbone reaches a predetermined chain length at which point the thioester-bound 

substrate will be removed from the enzyme by hydrolysis. In fatty acid biosynthesis, every 

cycle of the elongation reaction catalyzed by the fatty acid synthase (FAS) is followed by 

a reduction cycle composed of β-ketoreduction, dehydration, and enoyl reduction steps to 

produce a fully saturated backbone (Figure 5). The enzymes that participate in this 

reduction cycle are a ketoreductase (KR), dehydratase (DH), and enoyl reductase (ER).[2] 

In contrast to fatty acid biosynthesis, the reduction cycle is optional in the polyketide 

biosynthesis. The reduction cycle is usually maintained to varying degrees in the 

biosynthetic pathway of type I polyketides but omitted in the pathways of type II and type 

III polyketides (Figure 3).[7] Moreover, the polyketide backbones undergo many different 

kinds of modifications by post-PKS tailoring enzymes to create great structural complexity.  
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Figure 5. The mechanism of the fatty acyl synthase reaction. 
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        Type II PKSs are only found in prokaryotes, especially in actinomycetes. The typical 

composition of the minimal enzymes required for the functionality of type II PKS are two 

ketosynthase units (KSα and KSβ) and an acyl carrier protein (ACP). These three proteins 

form a multi-enzyme complex to assemble the chain of the backbone, and KSβ (also named 

chain length factor, CLF) determines the chain length. The formation of type II polyketide 

is initiated by the loading of an activated ACP with MCoA by a malonyl-CoA:ACP 

transacylase (MCAT), borrowed from the native fatty acid biosynthetic pathway, and 

subsequently this intermediate undergoes decarboxylation to form an acetate ACP 

complex. The acetate starter unit is transferred from ACP to the KSα subunit. An additional 

unit of MCoA is loaded onto the ACP which then undergoes decarboxylative Claisen 

condensation with the acetate primed KSα to catalyze the first elongation step. The product 

of the extension reaction is found on the ACP, but it will be transferred from ACP back to 

the KSα for the next round of elongation (Figure 3). This process is repeated until the 

predetermined chain length is achieved. As for more complicated type II PKS, other 

enzymes, such as ketoreductases, cyclases (CYC), and aromatases (ARO), also interact 

with the minimal PKS to form a larger enzyme complex and modify the nascent poly-β-

keto-thioester intermediate to determine the folding, cyclization, and aromatization pattern 

(Figure 6).[7] This is the origin of the structural diversity of type II PKS derived polyketide-

derived cores. 
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Figure 6. The type II PKS is usually an enzyme complex composed of KSα, KSβ, ACP, 

and other proteins that can modify the backbone. 

 

Polyketide tailoring enzymes 

         Type II PKS derived cores are further functionalized to obtain higher structural 

complexity by post-PKS tailoring reactions, including reactions of reduction, oxidation, 

glycosylation, methylation, halogenation, and addition of deoxysugars (Figure 6).[8a] The 

physical-chemical properties of polyketides are dramatically changed by this process and 

become “activated” by these post-PKS enzymes. For example, chromomycin A3 (CHM), 

a highly potent anticancer agent from Streptomyces, binds to GC-rich regions of DNA to 

prevent DNA transcription. Degradation studies revealed that CHM analogues lost some 

of the sugars on the side chains and were less active than the parent compound because the 

aglycone of CHM did not bind to DNA.[10] The importance of the post-PKS tailoring 

enzymes naturally caught natural product chemists’ attention and prompted the 

development of combinatorial biosynthetic investigations in which thousands of modified 

polyketides were generated with different pharmacological properties or improved 

bioactivity profiles.[11] The post-PKS tailoring reactions related to the topics of this thesis 

are briefly discussed below.  
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Deoxysugar biosynthesis 

        Monosaccharides is extremely important for microorganisms because sugars are not 

only used to generate energy but also utilized by glycosyltranferases (GTs) in glycosylation 

reactions to produce secondary metabolites. A majority of secondary metabolites are 

modified with sugar moieties that are deoxygenated to various degrees prior to their 

utilization by GTs. The most common sugar in nature is α-D-glucose (18), a fully 

oxygenated sugar, and it is widely used in living organisms as a precursor for the 

biosynthesis of other sugars. In the beginning, a phosphate group is transferred from ATP 

to 6-OH of α-D-glucose to generate α-D-glucose-6-phosphate (G6P, 19) which is 

interconverted with α-D-glucose-1-phosphate (G1P, 20) by phosphoglucomutase. 

Nucleotidyl diphosphate (NDP)-D-glucose synthase is responsible for appending an NDP 

species to G1P, thereby producing an “activated” NDP-D-glucose (21). The NDP used in 

this reaction could be any nucleotide (NTP), but TTP is the most commonly utilized 

nucleotide for the deoxysugar biosynthesis in microorganisms. If no further modification 

is required, the activated TDP-D-glucose (TDPG) could be used directly by GTs to decorate 

natural products, such as glycopeptide antibiotics.[12] However, TDP-D-glucose is typically 

deoxygenated by TDP-D-glucose 4,6-dehydratase to produce the common intermediate for 

all 6-deoxysugar biosynthetic pathways, TDP-4-keto-6-deoxy-D-glucose (22). TDP-4-

keto-6-deoxy-D-glucose is a branch point and undergoes further modifications to generate 

different kinds of deoxysugars by additional deoxysugar biosynthetic enzymes, including 

dehydratases, epimerases, group transferases, and ketoreductases (Figure 7).[13] 

        Decorating natural products with deoxysugars significantly changes the physical-

chemical properties, and consequently, such modifications are not only useful for 

structural-activity-relationship (SAR) investigations but also useful for combinatorial 

biosynthesis. It is possible to construct various deoxysugar genes from the same or different 

pathways on a single vector and express it by E. coli to generate desired NDP-deoxysugars. 

With substrate-flexible GTs, natural product chemists have rationally designed specific 

deoxysugar containing natural product analogues.[14a, 13, 14b] 
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Figure 7. Biosynthetic pathway of deoxysugars. 

 

Glycosylation 

        Glycosylation is one of the most important post-PKS tailoring reactions because it can 

activate marginally active or inactive polyketide-derived cores. This type of reaction is 

usually carried out by GTs which transfer an NDP-activated sugar (the glycosyl donor) to 

polyketide-derived cores (the glycosyl acceptor). On occasion, this reaction requires one 

or more proteins as helper enzymes to assist GTs in transferring sugars efficiently, and 

many scientists are working to understand the interaction between GTs and their helper 

enzymes.[15] Although, glycosylation was always suggested to be a unidirectional reaction, 

some O-glycosylation reactions are reversible, depending on the functionality of the 

GTs.[16]  

        GT transfers sugars to polyketide-derived cores by forming O-, N-, S-, or C-glycosidic 

bonds. O-Glycosides are formed frequently and only a minority of N-, S- and C-glycosides 

exist in secondary metabolites. However, the classification of GTs is based on amino acid 

sequence similarities rather than the type of glycosidic bonds. Because of the fast-growing 

genome sequencing techniques, GTs currently are now grouped into more than 90 families, 

and this number continues to grow.[17] Even though there is low homology in amino acid 

sequences of GTs, only two general types of protein folds, GT-A and GT-B, have been 
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observed for all of the three-dimensional structures of GTs reported thus far. The GTs with 

GT-A fold have two closely abutting β/α/β Rossmann domains while the β/α/β Rossmann 

domains of the other group with GT-B fold usually face each other and are flexibly 

linked.[17] In addition, GTs can be classified into two groups based on the stereochemical 

outcomes of the reactions that form a new glycosidic bond between the sugar and the 

polyketide-derived core. The configuration of the anomeric center of the glycosyl donor is 

either inverted or retained after being transferred to the glycosyl acceptor. The reaction 

mechanism of inverting GTs is a direct-displacement SN2-like reaction in which the 

nucleophile of the glycosyl acceptor is deprotonated by the GT and then attacks the 

anomeric carbon to displace the NDP leaving group (Figure 8a).[17] Retaining GTs usually 

adopt double-displacement mechanism to retain the conformation of the anomeric carbon 

of the sugar donor. Retaining GTs first attack and tether the glycosyl donor to the enzymes 

via a similar mechanism with inverting GTs. The second displacement occurs when the 

other catalytic functional group of the enzyme deprotonated the glycosyl acceptor which 

then can attack the glycosyl donor and form a glycosidic bond (Figure 8b).[17] The 

stereochemical outcome of a glycosylation cannot be predicted by the folding type of the 

enzyme, and generally, inverting GTs are much more common in nature.[17] 

        GTs plays an important role in combinatorial biosynthesis, and the substrate-flexible 

GTs are invaluable tools for the generation of novel natural product derivatives. For 

example, one of the oligosaccharide-forming GTs, LgtC, is both a donor and a glycosyl 

acceptor-flexible GT. When utilizing unnatural sugars as glycosyl donors or acceptors, it 

can catalyze the formation of α(1-2), α(1-3), or α(1-4) linkage between two sugars with 

high-level regio- and stereoselectivity to produce different kinds of disaccharide chains.[18] 

This example clearly shows the immense potential of GTs in diversification of natural 

products.  
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Figure 8. Two stereochemical types of glycosylation reaction 

 

Methylation 

        The post-PKS tailoring process of polyketides often involves methylation to decorate 

O, N, S, or C atoms and produce O-, N-, S-, and C-tethered methyl groups. This reaction is 

catalyzed by methyltransferases (MTs) which usually utilize S-adenosyl-methionine 

(SAM, 23) as a methyl donor in the polyketide biosynthetic pathways (Figure 9). 

Methylation can be involved in the modification of either polyketide-derived cores or sugar 

moieties, such as L-axenose, L-mycarose, L-nogalose, L-oleandrose, etc. In the sugar 

biosynthetic pathways, methylation usually occurs prior to the glycosylation step, but 

sometimes it can happen to sugars that have been already transferred to the aglycones.[19] 

Because methyl groups can block H bonds, MTs are also useful enzymes for the 

combinatorial biosynthesis or SAR investigations. 
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Reduction 

        Reduction is a common reaction occurring in the post-PKS tailoring process. 

Ketoreductases, which can convert a ketone to a secondary alcohol, are the most frequently 

found reductases in the polyketide biosynthetic pathways.[19-20] The required cofactor is 

usually NADPH, but some reductases may utilize NADH. After the reduction, an 

unsaturated C-C bond can be introduced into the structure by dehydrogenases to create 

additional structural complexity. Inactivation of the genes of reductases is also a good 

strategy toward producing novel polyketide derivatives, especially when the parent 

compound contains ketone group(s) in the structure. For example, the last step in the 

biosynthetic pathway of mithramycin (MTM) is reduction of the C-3 side chain with two 

ketone groups by a ketoreductase, MtmW. Inactivation of mtmW led to the production of 

three unnatural mithramycin analogues with better anticancer bioactivity and in vivo 

tolerance than the parent compound as discussed in Section 3.1.[21] 

 

1.4 Gilvocarcin 

Introduction 

        Gilvocarcin V (GV, 2), a product of Streptomyces griseoflavus Gö 3592 and other 

Streptomyces spp., is the most important member of the gilvocarcin-type aryl-C-
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glycosides, a subgroup of the angucycline family of antibiotics that share an oxidatively 

rearranged polyketide-derived benzo[d]naphtho[1,2-b]pyran-6-one core with O- or C-

glycosidically linked sugars at various positions.[14b] This unique natural product was first 

reported as toromycin without complete structural characterization by Mizuno and 

coworkers from the culture broth of S. collinus in 1980.[22] Shortly thereafter, other 

structural-related natural products, such as gilvocarcin M (25), gilvocarcin E (26), 

chrysomycin V (27), polycarcin V (PV, 28), ravidomycin V (29), FE35A (30), Mer1020 

dC (31), BE-12406A (32), were discovered, and all are referred to as gilvocarcin-type aryl-

C-glycosides (Figure 10).[14b] These structures have variations in the C-8 side chain, 

usually a single methyl, ethyl, or vinyl functional group, and this is the origin of the M, E, 

and V abbreviations used for GV-type aryl-C-glycosides.  
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Figure 10. Diversity of gilvocarcin-type anticancer drugs. 

        In addition, all bioactive members of this family possess a C-glycosidically linked 6-

deoxyhexose moiety in the C-4 position, and the sugar moiety can be either a furanose 

(Figure 10, I) or pyranose (Figure 10, II, III, and IV). It is worth noting that 6-deoxy-L-
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hexose (28 and 32) is a rare sugar moiety in this family while most of the sugar moieties 

are in D-form (25-27 and 29-31). There are two possible mechanisms of C-glycosylation 

that have been proposed, O-glycosylation followed by Fries-like O/C rearrangement 

(Figure 11, route A) and direct C-glycosylation (Friedel-Crafts-like reaction) (Figure 11, 

route B ).[23] Even though the exact mechanism remains unsolved, most literature supports 

the direct reaction of C-glycosylation, because O/C rearrangement is chemically 

unfavorable for some C-glycosides.[23-24] The sugar moiety of GV, D-fucofuranose (Figure 

10, I), is transferred to the polyketide-derived core through C-glycosylation, which results 

in excellent chemical stability. The stability is because C-glycosides are relatively resistant 

to spontaneous and enzyme-catalyzed hydrolysis (glycosidase). This fact provides an 

opportunity to improve the in vivo half-life of medicinal O-glycosides by replacing their 

O-glycosidic bonds with C-glycosidic bonds. Moreover, some scientists had demonstrated 

that switching an O-glycosyltransferase (O-GT) to a C-glycosyltransferase (C-GT) by 

engineering the active-site motifs is possible because of the structural similarity of the 

active sites between the C- and O-GTs.[24] The engineered C-GT still could recognize the 

same glycosyl donor and acceptor of the natural O-GT. 
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Figure 11. Two proposed mechanisms of enzymatic C-glycosylation.  

 

        GV’s remarkable antitumor and antibacterial activity in vivo with low toxicity is due 

to a unique, dual mechanism-of-action. First, a photochemical [2+2] cycloaddition of the 

vinyl side chain with thymine residues of DNA promoted by near-UV or visible blue light 

results in a covalent binding to DNA, which in turn leads to single-strand scissions.[25] The 

bioactivity of GV is also attributed to protein-DNA association resulting from an additional 

interaction with histone H3, a core component of the histone complex, for which the sugar 

moiety, D-fucofuranose (Figure 10, I), was proposed to form H bonds. The resulting tight 
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interaction between the histone complex and DNA by these antibiotics leads to growth 

inhibition of cancer cells (Figure 12).[26] 

 

 

Figure 12. Proposed in vivo mechanism of gilvocarcin V resulting from binding to DNA 

(red) and histone H3 (blue). 

 

        Despite intense studies, mainly by researchers of the US National Cancer Institute, a 

clinical application of GV was never achieved, to a great extent due to its poor solubility 

and the necessity of activation by light of ~ 400 nm wavelength, which limits tissue 

penetration.[27] While modest modifications on the polyketide-derived tetracyclic core can 

be accomplished through chemo-enzymatic methods, an alternative route for further 

diversification is through variations in the sugar moieties.[28a, 28b, 27b, 28c-e] Several chemical 

or enzymatic approaches to the synthesis of C-aryl glycosides and spiro-C-aryl glycosides 

exist, but so far none of them could be used to modify the sugar moiety of GV, D-

fucofuranose (Figure 10, I), specifically without changing the polyketide-derived 

tetracyclic core.[29a, 28e, 29b] Even though different sugar moieties could be transferred to the 

tetracyclic core in vivo by using GilGT, the native glycosyltransferase of the gilvocarcin 

biosynthetic pathway, or other C-glycosyltransferases, such as RavGT and PolGT, from 

the ravidomycin and polycarcin biosynthetic pathways, respectively, these variations did 
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not improve GV, and SAR information regarding the interaction of the deoxysugar moiety 

and histone H3 is missing.[27a] 

 

Biosynthetic pathway 

        The tetracyclic core of GV is biosynthesized via the polyketide biosynthetic pathway, 

particularly a type II PKS (polyketide synthase). Its building blocks are either one unit of 

acetyl-CoA or propionyl-CoA and 9 units of malonyl-CoA. The first isolation and analysis 

of biosynthetic gene cluster of GV was carried out with S. griseoflavus Gö 3592, and 27 

open reading frames (ORFs), including genes encoding the polyketide synthase, post-PKS 

tailoring enzymes, and deoxysugar biosynthetic enzymes, were discovered.[30] S. 

griseoflavus Gö 3592 is resistant to genetic modification, but heterologous expression of 

the gil cluster through cosmid cosG9B3 in S. lividans TK24 is feasible so that we could 

confirm the enzymatic function by gene inactivation or in vitro assay.[30] 

        In the biosynthetic pathway of GV, UWM6 or homo-UWM6 (33), which is tethered 

with ACP, is usually regarded as the first angular-tetracyclic type intermediate, and a 

multioxygenase complex (consisting of GilOI, GilOII, GilOIII, and GilOIV) plays a key 

role in the following post-PKS biosynthetic steps (Figure 13).[28d, 31] GilOIV catalyzes 2,3-

dehydration to produce homoprejadomycins (34) that undergoes a second 4a,12b-

dehydration by GilOI to give dehydrohomorabelomycins (35). GilOII, a monooxygenase, 

works consecutively, first adding a 5-OH group and then inserting an O atom between C-

5 and C-6, a Baeyer-Villiger reaction that yields structure 36 followed by the C-C bond 

cleavage to generate structure 37.[32] The exact substrate of GilOIII is unclear, but this 

enzyme is responsible for the vinyl group formation, possibly through hydroxylation and 

subsequent dehydration on the propionyl-CoA derived ethyl side chain.[27a] GilMT, a 

typical SAM-dependent O-methyltransferase, is responsible for the decarboxylation and 

methylation on the hydroxyl group of the phenyl ring. The products (38) undergo quinone 

reduction, hemiacetal formation, and O-methylation to give pre-defucogilvocarcins (39) 

with the assistance of a pivotal enzyme, GilM. GilM cooperates with GilR, providing the 

reduced FADH2 to help the regeneration of FADH2 after the reactions.[33] Inactivation of 

gilR led to the accumulation of pregilvocarcins (40) and showed not only that GilR was 
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responsible for the lactone formation but also that the C-glycosylation reaction occurred 

prior to this lactone formation.[34]  
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Figure 13. Proposed biosynthetic pathway of gilvocarcins (2, 25, and 26). (GilOIII is 

responsible for the formation of the vinyl group, but the exact substrate remains unclear.) 

 

        The attachment of the furanose sugar moiety is another unclear part of GV 

biosynthesis. Furanose sugars are rare in polyketide derived natural products.[27a] Our 

previous research on the gil gene cluster discovered three putative deoxysugar biosynthetic 

enzymes encoded by the genes gilD, gilE, and gilU and a putative glycosyltransferase, 

encoded by gene gilGT. These enzymes are responsible for the biosynthesis and attachment 

of the sugar moiety.[30] GilD and GilE work together to form TDP-4-keto-6-deoxy-D-

glucose (22), a common branching point in the biosynthesis of deoxysugars, then GilU 

installs an axial 4-OH group to give TDP-D-fucose (43) (Figure 14). Presumably an 
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uncharacterized enzyme carries out ring contraction of TDP-D-fucose and completes the 

biosynthesis of TDP-D-fucofuranose (44) that would be utilized by GilGT as glycosyl 

donor. This GilGT reaction is a rare C-glycosylation while most of the glycosylated 

polyketides are O-glycosides.[27a, 35] With a special furanose moiety attached to the 

polyketide-derived core through rare C-glycosylation, the investigations on GilGT and 

SAR information regarding the sugar moiety have a high potential for the discovery of 

novel GV-type analogues. 
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Figure 14. Proposed biosynthetic pathway of TDP-D-fucofuranose in E. coli O52 (blue) 

and S. griseoflavus (red). 

 

1.5 Mithramycin 

Introduction 

        Mithramycin (MTM, 11), the first member of the aureolic acid family, was first 

discovered as a product of several actinomycetes in the 1950s. MTM possesses excellent 

anticancer activity and a unique mode of action. All members of the aureolic acid family 
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are glycosylated aromatic polyketides with yellow color and fluorescence under UV light, 

and their structures consist of a tricyclic core moiety with a unique dihydroxy-methoxy-

oxo-pentyl side chain attached at position C-3.[21] Moreover, they have two oligosaccharide 

side chains bound to the aromatic polyketide-derived core with all monosaccharide 

building blocks belonging to the 2,6-dideoxysugar family and are comprised of different 

combinations of D-olivose, D-oliose, D-mycarose, L-chromose B, and O-methylated or O-

acetylated derivatives through α-(1, 3) glycosidic bonds. Some compounds, such as MTM, 

UCH9 (45), durhamycin A (46), chromomycin A3 (47), olivomycin A (48), and 

chromocyclomycin (49), have an additional methyl or isobutyl residue at position C-7 

(Figure 15).[36] 
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Figure 15. Primary members of the aureolic acid family. 
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        MTM acts by binding the DNA minor groove in regions with high GC content, and 

this interaction is carried out by forming a dimer under the assistance of a metal ion with a 

+2 oxidation state, such as Mg2+ or Ni2+ (Figure 16).[37] The hydroxyl groups on the 

aglycone of MTM can form many H bonds with the guanine amino protons of DNA.[36, 38] 

Moreover, the complex of Mg2+(MTM)2 and DNA can be stabilized by the three side chains 

of MTM. The disaccharide and dihydroxy-methoxy-oxo-pentyl side chains can interact 

with DNA phosphate backbone while the trisaccharide side chain wraps across the DNA 

minor groove.[39] Sp1 transcription factors have been related to the control of cell growth, 

survival, and differentiation so that their over-expression usually results in uncontrollable 

development of tumors.[40] Mg2+(MTM)2 has been shown to form a complex with 

promoters that are regulated by transcription factors Sp1, and the transcription of the proto-

oncogenes can be shut down.[36] This gives MTM and other members of the aureolic acid 

family strong antitumor activity against many types of cancer cell lines. In addition, many 

investigations have shown that MTM can inhibit calcium resorption in osteoclasts, render 

cells sensitive to apoptosis mediated by tumor necrosis factor-a-related apoptosis-inducing 

ligand (TRAIL), exert neuroprotective effects in normal cells, and repress cigarette-smoke 

induced ABCG2 efflux pumps, one of the markers of cancer stem-like cells.[41] Therefore, 

MTM is not only a promising natural product for clinical usage in the anticancer treatment 

but also an excellent lead-structure for drug discovery. 
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Figure 16. The proposed structure of a Mg2+-coordinated mithramycin dimer complex. 
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        MTM has been used in the treatment of testicular cancer, Paget’s bone disease, and 

hypercalcemia, but its clinical usage is limited because of the unspecific and serious side-

effects, such as hepatic, gastrointestinal, bone marrow, and renal toxicities.[42] The 

commercial production of MTM was discontinued, and MTM is currently used in basic 

investigation for structural modification and discovery of new clinical potentials. However, 

the interest in MTM has recently been renewed from several reports of new uses and 

bioactivities, especially its antitumor activity to suppress the growth of Ewing sarcoma 

family of tumors (ESFTs) in xenograft-bearing mice.[14a] NIH developed a high-throughput 

screening (HTS) to evaluate more than 50,000 compounds to search for potential 

candidates that inhibit the Ewing sarcoma breakpoint region 1 and Friend leukemia virus 

integration 1 (EWS-FLI1) transcription factor and thereby suppress ESFTs. In 2011, it was 

reported that mithramycin is the only lead-structure which could inhibit ESFTs efficiently 

and specifically in vitro with IC50 between 10 and 15 nM.[43] This discovery suggested that 

mithramycin acts on the previously believed undruggable target, EWS-FLI1. Efforts are 

ongoing to clarify the mechanism of action, improve its bioactivity, and improve in vivo 

tolerance by chemical semi-synthesis or combinatorial biosynthesis.  

 

Biosynthetic pathway 

        The biosynthetic gene cluster of MTM was isolated and characterized from S. 

argillaceus ATCC 12956 in the 1990s, and most of the genes have been mutated by 

insertional inactivation to confirm their functions and formulated a biosynthetic pathway 

(Figure 17).[44] The building blocks of the polyketide-derived core of MTM are one ACoA 

and nine MCoA, which undergo ten cycles of condensation reaction to generate a linear 

decaketide, that is aromatized in the first two rings by MtmQ aromatase and then cyclized 

at the third ring by MtmY cyclase to generate a tricyclic anthrone (50). MtmOII oxygenase 

introduces two hydroxyl groups onto the core prior to the cyclization at the fourth ring by 

MtmX cyclase, in which a tetracyclic intermediate, 4-demethylpremithramycinone (51), is 

generated. Premithramycinone (PMC, 52), the last nonglycosylated intermediate in the 

biosynthetic pathway, is produced through methylation of 51 by MtmMI. Because all 

members of the aureolic family possess a tricyclic or tetracyclic core moiety derived from 
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PMC, PMC is a branching point for the biosynthetic pathways of this family, where 

decoration with different kinds of deoxysugars will occur on this important intermediate.[36] 

        The components of the two oligosaccharide side chains of MTM are three D-olivose, 

one D-oliose, and one D-mycarose. The only difference between D-olivose and D-oliose is 

the conformation of the hydroxyl group at the position C-4 while D-mycarose has an 

additional methyl group at the C-3 position. The common intermediate of the deoxysugar 

biosynthetic pathways, TDP-4-keto-6-deoxy-D-glucose (22), is generated from G1P (41) 

by MtmD and MtmE. mtmV encodes a TDP-4-keto-6-deoxy-D-glucose-2,3-dehydratase 

which creates a keto group at the C-3 position. The chemically unstable product of MtmV 

is reduced by an uncharacterized enzyme to yield TDP-4-keto-2,6-dideoxy-D-glucose (57), 

the branching point for the biosynthesis of all MTM deoxysugars.  

        MtmU is a reductase, which can directly reduce the keto group of TDP-4-keto-2,6-

dideoxy-D-glucose to generate TDP-D-oliose (58).[45] Previous homology searches based 

on the amino acid sequence revealed that MtmC shared high sequence similarity with many 

SAM-dependent C-methyltransferases from different biosynthetic pathways of 

deoxysugars. Subsequently, the recombinant protein was shown to convert 57 to 60 hence 

functioning as a methyltransferase. However, the in vitro assay showed that MtmC also 

functions as a ketoreductase to reduce the keto group of TDP-4-keto-2,6-dideoxy-D-

glucose and produce TDP-D-olivose (59). This indicates that MtmC is a bifunctional 

enzyme and utilized as a reductase and methyltransferase.[45] The generation of TDP-D-

mycarose (61) requires two steps – methylation followed by reduction carried out by MtmC 

and MtmTIII, respectively. TDP-D-mycarose possesses an unstable structure because its 

hydroxyl group at position C-3 may attack the TDP group to remove the nucleoside by 

forming 1,2-cyclic phosphate group, by which the production of this sugar could not be 

detected by UV.[46] Through an in vitro assay with a mixture of MtmC, MtmTIII, MtmGIV 

with premithramycin A2 (54) as a starter, the generation of premithramycin A3 (55) 

confirmed the function of these three enzymes.[46b]  
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Figure 17. Proposed and simplified biosynthetic pathway of mithramycin. 
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Figure 18. Proposed biosynthetic pathways of the MTM sugars.[45, 46b] 
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        The biosynthesis of the trisaccharide side chain, which is composed of three different 

deoxysugars, including D-olivose, D-oliose, and D-mycarose, is formed prior to the 

disaccharide side chain (Figure 17). It is worth noting that only four GTs, MtmGI, 

MtmGII, MtmGIII, and MtmGIV, are involved in the five glycosylation steps. Our 

previous investigations demonstrated that MtmGIV is responsible for two different sugar 

transfers, leading to premithramycin A1 (53) and A3 (55), through close cooperation with 

MtmC (Figure 19).[46b] MtmGIII acts between the glycosylation reactions catalyzed by 

MtmGIV, in which TDP-D-oliose is utilized as a glycosyl donor toward the generation of 

premithramycin A2 (54).  Premithramycin A1 can also be recognized as a glycosyl 

acceptor by CmmGIII from the biosynthetic pathway of chromomycin A3 (47).[36] 

Premithramycin A2 is decorated with a methyl residue at position C-7 by MtmMII, but the 

exact substrate of this enzyme remains ambiguous because premithramycin A3 is also 

recognized as a substrate. The last two glycosylation steps in MTM biosynthesis are 

achieved by a stepwise deoxysugar transfer of two D-olivose units. In situ feeding 

experiments revealed that MtmGI and MtmGII are responsible for the attachment of the 

first and second D-olivose moiety, respectively, leading to premithramycin A4 and 

premithramycin B (PreB, 56).[47] Even though PreB possesses almost all of the functional 

groups in MTM, its bioactivity is much lower than MTM because MTM has a unique 

pentyl side chain which can interact with the DNA phosphate backbone. The conversion 

from tetracyclic into tricyclic compounds (from 56 to 11) is a Baeyer-Villiger oxidation, 

leading to an oxidative cleavage of the fourth ring by the BVMO, i.e. MtmOIV in the case 

of MTM biosynthesis.[48] The last step of the MTM biosynthesis is a reduction catalyzed 

by MtmW to reduce the keto group at position C-4' in order to stabilize the pentyl side 

chain.[21] Because more and more post-PKS tailoring enzymes are identified as being 

multifunctional and co-dependent on other tailoring enzymes, like MtmGIV and MtmC, 

there are many intriguing questions waiting for investigation in order to clarify the 

formation process of all MTM side chains. 
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Figure 19. Cooperation between MtmGIV and MtmC during the formation of 

premithramycin A1 and premithramycin A3. 

 

1.6 Summary 

        Polyketides are one of the major sources of natural products for new drug discovery 

with examples found in use throughout the pharmaceutical, agricultural, and chemical 

industries. However, natural products are not originally produced for human consumption 

so that they may need to be modified for specific purposes. The most common method is 

chemical total- and semi-syntheses, but synthetic routes toward large natural products are 

extremely difficult and may be more complicated when the natural products contain 

complex structures including sugar moieties. Combinatorial biosynthesis is a potential 

alternative to chemical synthesis and enables the rational design of natural products for 

improved bioactivity and in vivo tolerance. The understanding of their biosynthetic 
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pathways is required for this approach, and clarifying the enzymatic mechanisms of the 

proteins involved in the biosynthetic pathway can benefit protein engineering to generate 

unnatural products. The overall goal of our laboratory is to elucidate the multi-step 

biosynthetic pathways of natural products produced by bacteria, fungi, or plants with 

particular emphasis on enzymatic mechanisms. We generate modified natural product 

drugs through genetic engineering (pathway engineering and combinatorial biosynthesis), 

enzymatic or chemical semi-synthesis. 

        GV and MTM are both type II polyketides with excellent anticancer activities against 

several cancer cell lines, but their severe drawbacks had limited the clinical usage. GV is 

only soluble in DMSO and needs UV-visible light for activation so that GV is usually used 

in the treatment of skin diseases. Many scientists had modified the polyketide-derived core 

of GV by chemical semi-synthesis and also transferred novel deoxysugars to the core with 

substrate-flexible GTs, but the SAR information regarding the sugar moiety is still missing. 

The drawback of MTM is the unspecific and severe toxicity for normal cells, and this has 

resulted in MTM being withdrawn from the clinics. The recently discovered inhibition of 

ABCG2 (ATP-binding cassette sub-family G member 2) efflux pump and the cancer-

specific hybrid transcription factor, EWS-FLI1, by MTM has attracted scientists to re-

investigate this old anticancer antibiotic. This has likewise renewed interest in MTM to 

enhance the specificity and in vivo tolerance. The primary goals of this thesis research is 

to solve the above-mentioned challenges, and we hope that our research results could 

contribute useful ideas for further rational drug design of both GV and MTM. 

 

1.7 Specific aims 

        The objectives of the research are to (a) provide the missing SAR information 

regarding the sugar moiety of GV; (b) improve the anticancer bioactivity and in vivo 

tolerance of MTM; (c) characterize the enzymatic mechanisms of a bifunctional enzyme 

involved in the deoxysugar biosynthesis, MtmC. To achieve these goals, the following 

specific aims were addressed: 
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        Specific aim 1a: Find a model with a sugar moiety that we are able to modify 

specifically with enzymes. 

        Specific aim 1b: Evaluate the anticancer activity of GV analogues and use the 

bioassay data to infer SAR information regarding the sugar moiety. 

        Specific aim 2a: Carry out large-scale purification of mithramycin SA (MTM SA) 

and couple several natural and unnatural primary amines to the carboxylic group of MTM 

SA. 

        Specific aim 2b: Evaluate the anticancer activity of MTM SA derivatives and identify 

what kind of side chain on the primary amine may improve the bioactivity as well as the in 

vivo tolerance. 

        Specific aim 3a: Generate crystals of MtmC complexed with the substrate (TDP-4-

keto-2,6-dideoxy-D-olivose (57) or TDP) and cofactors (NADPH or SAM) to obtain 

structural data by X-ray diffraction. 

        Specific aim 3b: Solve the structure of the crystal complexes and establish the 

enzymatic mechanisms.  

        Specific aim 3c: Confirm the proposed enzymatic mechanisms by kinetic studies on 

the wild-type and mutant MtmC.  
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CHAPTER 2: STUDY AND USE OF ENZYMES FOR MODIFICATION OF 

POLYCARCIN V 

2.1 In vitro modification of the L-rhamnosyl moiety of polycarcin V 

        The sugar moiety of GV, D-fucofuranose, was shown to interact with histone H3, 

probably leading to DNA-protein association in vivo and resulting in DNA scissions during 

the replication and transcription processes.[26] Therefore, it is important to clarify how the 

sugar moiety forms H bonds with histone H3 in order to enhance the noncovalent 

interactions and make GV a better anticancer agent. However, TDP-D-fucofuranose is a 

rare deoxysugar in nature, and its biosynthetic pathway has been only discovered in E. coli 

O52 and Streptomyces spp. which can produce gilvocarcins.[30, 49] Scientists have not yet 

found any enzymes that can modify the functional groups on this sugar (Figure 10, I) 

because the chemical routes to modify it are complicated and not regio-selective. 

Therefore, it is very difficult to obtain SAR information regarding the sugar moiety of GV. 

        In order to solve this problem, we hope to identify a model compound that is 

composed of the same polyketide-derived core as GV but also with a sugar moiety that is 

more common than D-fucufuranose. Our previous work has shown that GilGT is a 

substrate-flexible GT and could be used to transfer L-rhamnopyranose, a common sugar in 

nature, to the core. The product of the reaction was an isomer of GV, polycarcin V (PV, 

56). Additionally, the following cytotoxicity assay revealed that PV possessed comparable 

anticancer bioactivity with GV.[14b] Moreover, PV (56) can be readily isolated from wild-

type Streptomyces polyformus so that it is an ideal alternative model of GV for SAR 

investigations of the sugar moiety.[50]  

 

2.2 Experimental design 

        PV offered the possibility of enzymatic O-methylation of the sugar moiety, since 

many L-rhamnose-O-methyltransferases are known. Unlike the rare sugar D-fucofuranose, 

an L-rhamnopyranose moiety, usually as mono, di-, and per-O-methylated derivatives, is 

commonly found in polyketides, such as in the steffimycin (57), elloramycin (58) and 

spinosyn (59) pathways (Figure 20).[51] Thus, it was decided to investigate the substrate 
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flexibility of O-methyltransferases from such pathways in order to modify the sugar moiety 

of PV in vitro, and to synthesize mono- (60-62), di- (63-65), and per-methylated (66) PV 

derivatives (Figure 21). It was expected that the methoxy groups might modify the 

interaction between the sugar moiety and histone H3 (Figure 12), thereby providing some 

SAR information.[26] Since PV is the natural by-product of the GV producer S. polyformus, 

this compound could be easily produced to serve as a control standard.[50b] For these 

reasons, we chose PV as an alternative to GV for initial SAR studies regarding the sugar 

moiety, expecting some insight into how the three hydroxyl groups of the sugar function. 

 

O

O

OH OCH3

OCH3

O

HO

OH

H3C
HO

O

OHHO
HO

H3C
O

O

OH OCH3

OCH3

gilvocarcin V, 2 polycarcin V, 56

O

O

O

OH

O

OH
OCH3

CH3

OHCH3
H3COOC

O

O

OCH3
H3CO

H3CO
H3C

elloramycin A, 58

O

O

O
H3CO

OH OH O

OH
CH3

OCH3

O

OCH3
HO

HO
H3C

steffimycin, 57

H

H

H

O

O
O
O

CH3

CH3

OOH3C
N

H3C

H3C O
H3CO CH3

OCH3OCH3

spinosyn A, 59  

 

Figure 20. Gilvocarcin V, polycarcin V, and other natural products with L-

rhamnopyranose sugar moiety 
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Figure 21. Polycarcin V and its derivatives. 

 

2.3 Results 

In vitro reactions with auxiliary O-methyltransferases  

        Three auxiliary O-methyltransferases (O-MTs), StfMII from the steffimycin producer 

S. steffisburgensis NRRL 3193, and ElmMII and ElmMIII from the elloramycin producer 

S. olivaceus Tü 2353, were used to methylate the L-rhamnopyranose moiety of PV and 

produce 2'-O-methyl-polycarcin V (60), 3'-O-methyl-polycarcin V (61), 2', 3'-di-O-

methyl-polycarcin V (63), and 3', 4'-di-O-methyl-polycarcin V (64) (Figure 21 and 22). 

Other O-MTs, for example, one from the spinosyn pathway failed to modify the L-

rhamopyranose moiety of PV, and all attempts failed to find an O-methyltransferase able 

to methylate 4'-OH without the presence of 3'-methoxy group. Thus, 62 and 65 could not 

be generated. The genes encoding these enzymes were constructed in the vector pET28a(+) 

to fuse with a N-terminal His∙Tag and over-expressed by E. coli BL21 (DE3). After being 

purified with the IMAC column, enzymes (40 µM) and starter compounds (200 µM) were 

incubated in a mixture containing 50 mM KH2PO4, 20 mM MgCl2, and 2 mM S-adenosyl 

methionine (SAM) at 28 °C for 16 hrs. Low yields of the in vitro reactions were the most 

consistent problem in preparing enough PV derivatives for bioassays. The instability of the 

enzymes usually led to premature reaction termination or even precipitation of both, 

enzymes and products. The maximum yield of every O-methylation step was about 20%, 

but the production of 2',3'-di-O-methyl-polycarcin V (63) was unexpectedly low, just ~5%. 

We assumed that this phenomenon might have resulted from the tendency of GV-type 
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compounds to self-assemble through intermolecular stacking in an aqueous solution.[52] 

The studies were further hampered because PV is actually only a small by-product of the 

GV biosynthesis pathway of S. polyformus. The average yield was ~0.5 mg L-1, and 

required a multi-step purification process including liquid-liquid partition, normal phase 

silica gel chromatography, and semi-preparative HPLC. Various attempts to increase the 

production of PV were met at best with moderate success. For example, media variations 

or adding supplementary scandium, a rare earth element that was shown to stimulate 

antibiotic production in Streptomyces spp. by 2 - 25 fold at low concentrations (10-100 

µM) to the culture broth, only moderately increased the average yield of PV. Because of 

these obstacles, we were not able to produce sufficient 2',3',4'-tri-O-methyl-polycarcin V 

(66) for cytotoxicity assay.[53] 

 

 

Figure 22. HPLC traces of gilvocarcin V and polycarcins. a) GV, 2 (RT = 15.52 min, AUC 

= 312,942); b) PV, 56 (15.71 min, 464,750); c) 2'-O-methyl-polycarcin V, 60 (17.00 min, 

429,135); d) 3'-O-methyl-polycarcin V, 61 (17.03 min, 278,817); e) 2', 3'-di-O-methyl-

polycarcin V, 63 (19.04 min, 61,550); f) 3', 4'-di-O-methyl-polycarcin V, 64 (20.85 min, 

129,134). A254: absorbance at 254 nm. RT: retention time. AUC: area under curve. 
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Structure elucidation of the polycarcin V derivatives:  

        The structures of 60, 61, 63, and 64 were analyzed through NMR spectroscopy 

(Tables 1 and 2) and high resolution mass spectrometry. HR-MS data directly revealed the 

occurrence of mono- and di-O-methylation while two-dimensional gHMBC spectra 

confirmed the methyl group/s to be transferred to the desired position/s of the sugar moiety. 

HR-EI-MS data of 2'-O-methyl-polycarcin V (60) and 3'-O-methyl-polycarcin V (61) were 

consistent with the molecular formula of C28H28O9, indicating [M]+∙ m/z = 508.1717 and 

508.1730 (calculated 508.1733) for structure 60 and 61, respectively. Their 1H and 

gHMBC spectra also showed one additional methoxy signal at 2.67 ppm and 3.48 ppm, 

which could be assigned as 2'- and 3'-methoxy group of the sugar moiety for 60 and 61, 

respectively (Table 1 and 2). Similarly, for 3',4'-di-O-methyl-polycarcin V (64), the 

presence of 3' and 4'-methoxy groups could be confirmed by both HR-EI-MS ([M]+∙ m/z, 

observed 522.1898, calculated 522.1890) and NMR data which indicated two additional 

methoxy signals at 3.55 and 3.62 ppm in the 1H spectrum and correlations with 3' and 4'-

proton in gHMBC spectrum (Tables 1 and 2). However, because of the poor synthetic yield 

of derivative 63 (< 5%), we were unable to confirm the structure by 2D NMR and instead 

relied only on its 1H NMR spectrum (Table 1) and mass spectrometry data to demonstrate 

the presence of 2' and 3'-methoxy groups. HR-ESI-MS data of 63 was consistent with a 

molecular formula of C29H31O9, showing [M+H]+ m/z = 523.1961 (calculated 523.1968) 

and [M-H]- m/z = 521.1809 (calculated 521.1812). The 1H NMR spectrum showed four 

methoxy signals, and they could be assigned to two different groups based on the chemical 

shift values, one (δH = 4.26 and 4.27) representing the 10- and 12-methoxy groups of the 

polyketide-derived tetracyclic core, and the other (δH = 3.17 and 3.50) representing the 

methoxy groups of the sugar moiety. 
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Table 1. 1H NMR data (500 MHz) for 60, 61, 63, 64 
Compound           60a                    61a             63b 64c 

Position δH (J in Hz) 
1     

1-OH   9.79, s 9.71, s 
2 6.89, d (8.0) 6.88, d (8.0) 6.98, d (8.5) 7.05, d (8.5) 
3 7.83, d (8.5) 7.82, d (8.0) 7.97, d (8.5) 7.96, d (8.5) 
4     
4a     
4b     
6     
6a     
7 7.83, brs 7.82, brs 8.09, brs 8.09, brs 
8     
9 7.40, brs 7.37, brs 7.78, brs 7.37, brs 
10     

10-OCH3 4.08, s 4.04, s 4.27, s 4.12, s 
10a     
10b     
11 8.26, s 8.23, s 8.65, s 8.45, s 
12     

12-OCH3 4.06, s 4.04, s 4.26, s 4.11, s 
12a     
1' 5.81, brs 5.72, brs 5.87, brs 5.92, brs 
2' 3.79, d (3.0) 4.48, d (2.5) 3.96, d (3.5) 4.65, d (3.0) 

2'-OCH3 2.67, s N/A 3.17, s N/A 
3' 4.03, dd (3.0, 9.5) 3.78, dd (3.0, 9.0) 3.77, dd (3.0, 9.5)   3.94, dd (3.0, 9.5) 

3'-OCH3 N/A 3.48, s 3.50, s 3.55, s 
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4' 3.41, t (9.5) 3.57, t (9.0) 3.56, m (4.3, 9.0, 
9.0) 

3.25, t (9.5) 

4'-OCH3 N/A N/A N/A 3.62, s 
5' 3.56, dd (6.0, 9.5) 3.60, dd (6.5, 9.5) 3.47, dd (5.5, 9.0) 3.57~3.62, m 
6' 1.47, d (6.0) 1.47, d (5.5) 1.36, d (5.5) 1.43, d (6.5) 
1''   6.78, dd (11.0, 

17.5) 
6.76, dd (11.5, 

18.0) 
6.97, dd (12.3, 

16.3) 
6.80, dd (11.0, 

18.0) 
2'' 5.45, d (10.5) 5.43, d (11.0) 5.49, d (11.0) 5.45, d (10.5) 

 5.98, d (17.5) 5.96, d (18.0) 6.14, d (18.0) 5.95, d (17.5) 
a The solvent used for NMR experiments was 5% DMSO-d6 in 95% methanol-d4. 
b The solvent used for NMR experiments was acetone-d6. 
c The solvent used for NMR experiments was chloroform-d1. 
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Table 2. 13Ca and gHMBC data (500 MHz) for 60, 61, 64 
Compound 60b 61b 64c 

Position δC, mult.d gHMBC δC, mult. gHMBC δC, mult. gHMBC 
1 154.8, C 3-H 153.5. C 3-H 153.8, C 3-H 
2 113.3, CH  113.1, CH  114.0, CH  
3 130.1, CH 1'-H 130.6, CH 1'-H 130.5, CH  
4 127.1, C 2-H, 1'-H 126.0, C 2-H, 1'-H 110.6, C 2'-H 
4a 123.7, C 3-H 123.1, C 3-H 125.7, C 1'-H 
4b 143.0, C 11-H 141.9, C 11-H 142.8, C 11-H 
6 161.1. C 7-H 160.1, C 7-H 160.1, C  
6a 122.3, C  122.3, C  122.3, C  
7 120.4, CH 9-H 120.3, CH 9-H 120.3, CH  
8 140.3, C 2"-H 139.2, C 2"-H 139.2, C  
9 115.2, CH 7-H 115.2, CH 7-H 115.5, CH  
10 158.8, C 10-OCH3 157.5, C 10-OCH3 157.5, C 10-OCH3 

10-OCH3   56.8, CH3    56.8, CH3    57.6, CH3  
10a 124.1, C 7-H, 9-H, 

11-H 
123.0, C 7-H, 9-H, 

11-H 
123.0, C  

10b 113.4, C  113.4, C  113.4, C  
11 102.8, CH  102.6, CH  103.5, CH  
12 153.4, C 11-H, 12-

OCH3 
152.5, C 11-H, 12-

OCH3 
157.5, C 12-OCH3 

12-OCH3   56.6, CH3    56.5, CH3    57.6, CH3  
12a 116.2, C 2-H, 11-H 115.2, C 2-H, 11-H 115.9, C 11-H 
1'   78.4, CH 3-H   78.9, CH 3-H   78.4, CH  
2'   84.9, CH 2'-OCH3   69.3, CH    70.2, CH  

2'-OCH3   61.7, CH3 2'-H      N/A N/A      N/A N/A 
3'   76.1, CH 2'-H, 4'-H   85.4, CH 3'-OCH3   85.7, CH 3'-OCH3 

3'-OCH3      N/A N/A   56.9, CH3    58.3, CH3  
4'   74.9, CH 2'-H, 6'-H   73.3, CH 2'-H, 5'-H, 

6'-H 
  83.5, CH 4'-OCH3, 

6'-H 
4'-OCH3      N/A N/A      N/A N/A   62.1, CH3  

5'   77.8, CH 1'-H, 6'-H   78.0, CH 1'-H, 6'-H   75.1, CH 6'-H 
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6'   18.7, CH3 4'-H, 5'-H   18.6, CH3    19.6, CH3  
1'' 136.5, CH 7-H, 9-H 136.4, CH 7-H, 9-H 136.5, CH  
2'' 117.0, CH2  116.9, CH2  118.0, CH2  

a 13C NMR data was inferred from gHSQC and gHMBC spectra. 
b The solvent used for NMR experiments was 5% DMSO-d6 in 95% methanol-d4. 
c The solvent used for NMR experiments was chloroform-d1. 
d multiplicity 
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Cytotoxicity assays 

        The bioactivity of the new PV derivatives compared to the natural products GV (2) 

and PV (56) were assessed by cytotoxicity assays against cancer cell lines from two human 

lungs (A549 and H460) and two human colons (HCT-116 and HT-29) (Table 3). Docetaxel 

and SN-38 (active metabolite of irinotecan) were included to compare our analogues to 

standard clinical treatments for lung and prostate cancers, respectively. The following order 

of activity (from high to low) was observed: 3'-OMe-PV (61) > PV (56) > 3',4'-di-OMe-

PV (64) > GV (2) > 2'-OMe-PV (60) > 2',3'-di-OMe-PV (63).  
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Table 3. Cytotoxic activities (GI50) of various gilvocarcin/polycarcin derivatives in 

comparison with two established anticancer drugs against human lung and colon cancer 

cell lines. (This experiment was carried out by Dr. Jamie Horn. in Dr. Markos Leggas’s 

laboratory) 

 

 

 
           Compound                                          Cytotoxicity (GI50, nM) 
 A549 H460 HCT-116 HT-29 

Docetaxela 1.9 3.3   

SN-38b 4.4 37.4 

GV (2) 510.7 287.6 193.6 596.8 

PV (56) 281.3 129.4 70.4 203.5 

2'-OMe-PV (60) 789.5 452.9 526.6 1140.0 

3'-OMe-PV (61) 77.2 33.4 25.3 135.3 

2',3'-di-OMe-PV (63) 5.0 x 108 2.6 x 108 6.4 x 108 7.6 x 108 

3',4'-di-OMe-PV (64) 269.0 273.5 167.4 459.5 

     
                          a used as control for human lung cancer cell lines A549 and H460;  
                          b used as control for human colon cancer cell lines HCT-116 and HT-29 
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2.4 Discussion 

        Interestingly, the polyketide-derived benzo[d]naphtho[1,2-b]pyran-6-one core 

attached to the L-rhamnose moiety (PV, 56) was more active than GV (2, with D-

fucofuranose moiety), possibly because the L-rhamnopyranose might better interact with 

histone H3 than the D-fucofuranose. Monomethylation had different effects on the lead-

structure 56. O-methylation of the 2'-position (2'-O-methyl-polycarcin V, 60) led to 

decreased activity. While, O-methylation of the 3'-position (3'-O-methyl-polycarcin V, 61) 

increased the activity. This indicated the importance of 2'-OH of L-rhamnopyranose to 

target interaction, and the necessity of a H-bond donor group in 2’-position. Modifying 3'-

OH with nonpolar functional groups (reducing 3'-O to a H-bond acceptor only) seems to 

improve the interaction between the L-rhamnopyranose sugar moiety and its biological 

target, presumably histone H3. Although we could not find an enzyme that could 

selectively O-methylate the 4'-position (to yield 4'-O-methyl-polycarcin V, 62) for 

comparison, it is still reasonable to conclude that 2'-OH is the most important proton donor 

for the binding of PV to histone H3 because the 4'-OMe of 3', 4'-di-O-methyl-polycarcin 

V (64) did not decrease the activity of this compound as much as observed in the other di-

methylated polycarcin V, 2', 3'-di-O-methyl-polycarcin V (63), the weakest PV derivative. 

We initially hypothesized that two proton donors were required to stabilize the interaction 

between L-rhamnopyranose and histone H3. However, if this hypothesis were true, 3', 4'-

di-O-methyl-polycarcin V (64) should be much less active. Compound 64 is only 

marginally weaker than PV. This suggests that the interaction between 2'-OH and histone 

H3 might be strong enough to overcome potential negative effects resulting from the 

elimination of other proton donor groups. Another possible explanation is that modifying 

4'-OH with nonpolar groups could improve this interaction. According to the HPLC 

analysis, the structural isomers GV, PV and 2'-O-methyl-polycarcin V (60), 3'-O-methyl-

polycarcin V (61), respectively, have similar polarity indicated by very close HPLC 

retention times. On the other hand, 2',3'-di-O-methyl-polycarcin V (63) is clearly more 

polar than 3', 4'-di-O-methyl-polycarcin V (64), because the HPLC retention time of 

compound 63 significantly differs from that of compound 64 (Figure 22). This information 

indicated that 2'-OH and 4'-OH have different physical and chemical properties, which may 

contribute or lead to the observed effects on the bioactivity after their methylation. Finally, 
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the cytotoxicity assays revealed an interesting phenomenon – the colon cancer HT-29 cell 

line is relatively more resistant against these gilvocarcin-type drugs than all other tested 

cell lines. 

        In conclusion, using suitable enzymes we generated four PV derivatives with different 

combinations of methoxy groups at the sugar moiety for SAR studies. These derivatives 

may prove useful for further development of new gilvocarcin-type aryl-C-glycosides. 

Despite the inability to obtain 4'-methoxy and 2',4'-dimethoxy PV derivatives (62 and 65), 

we still obtained important information from the data of the cytotoxic assays against four 

different cancer cell lines. The H-donor/H-acceptor properties of the sugar moiety of 

gilvocarcin-type aryl-C-glycosides likely play an important role in their binding to histone 

H3. Indeed, it is possible to produce more active derivatives from the natural products by 

modifying the sugar moieties. Moreover, we noticed somewhat unexpectedly that the new 

mono-methylated-PV derivatives are partly soluble and di-methylated-PV derivatives are 

completely soluble in nonpolar solvents. Their solubility is still far from a more desirable 

water solubility, but it is an improvement compared to the natural products GV and PV, 

which are only soluble in DMSO. This is the first report of specific enzymatic modification 

on the sugar moiety of gilvocarcin-type aryl-C-glycosides, which provides not only SAR 

information for further drug discovery and development, but is also another good example 

of the combinatorial biosynthetic enzymology approach in pharmaceutical sciences. 

 

2.5 Materials and methods 

General experimental conditions 

        All operations were performed under ambient atmosphere. All organic solvents, such 

as chloroform, dichloromethane, ethyl acetate, and methanol, were purchased from Fisher 

Scientific Co. (Hampton, NH, USA). All chemicals used for the preparation of culture 

broth or reaction solution were obtained from Fisher Scientific Co. or Acros Organics Co. 

(Belgium), except S-adenosyl methionine (SAM), which was purchased from Nature Made 

Nutritional Products Co. (Northridge, CA, USA). The water used in this research was 

distilled and further purified with Millipore water purification system (Millipore Co., 
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Billerica, MA, USA). Analytical thin layer chromatography (TLC) was conducted on silica 

gel 60-F254 from EMD Chemicals Inc. (Darmstadt, Germany), and TLC plates were 

visualized under UV light at 254 nm. The silica gel (ultra pure, 40-60 µm, 60 Å) used for 

the flash column chromatography was purchased from Acros Organics Co.  

        Escherichia coli strains XL1 Blue (Stratagene, La Jolla, CA, USA) and BL21 (DE3) 

(EMD 4 Biosciences) were used as the hosts for general DNA cloning and over-expression, 

respectively. Vector pET28a(+) (Novagen, Darmstadt, Germany) was used for protein 

over-expression. Cultivation, DNA cloning, and transformation in E. coli were carried out 

with standard protocols. The wild type Streptomyces polyformus was obtained from Dr. C. 

Hertweck and Dr. I. Sattler at the Leibniz Institute for Natural Product Research and 

Infection Biology, Hans-KnÖll-Institute (HKI), Beutenbergstr. 11a, D-07745, Jena, 

Germany. 

        1H, gHSQC, and gHMBC spectra were recorded using Varian Inova 500 spectrometer 

at a magnetic field strength of B0 11.74 T (Varian, Inc., Palo Alto, CA, USA). Chemical 

shifts are quoted in parts per million (ppm) relative to TMS. J values are recorded in Hz. 

All D-containing solvents, such as DMSO-d6, chloroform-d1, methanol-d4, and acetone-

d6, were purchased from Cambridge Isotope Laboratories Inc. (Boston, MA, USA) or 

Sigma-Aldrich Co. (St. Louis, MO, USA). A photodiode array detector (Waters 2996) 

along with a Micromass ZQ 2000 mass spectrometer (Waters Corporation) equipped with 

and electrospray ionization (ESI) probe was used to detect the molecular ions and identify 

the compounds (Waters Co., Milford, MA, USA). 

        1H NMR, gHMBC, and gHSQC spectra of PV derivatives, 60, 61, 63, and 64, were 

recorded on a Varian Inova 500 spectrometer in either 5% DMSO-d6 in 95% methanol-d4, 

acetone-d6, chloroform-d1 (Tables 1 and 2). MS analysis was carried out by MS facilities 

at University of Kentucky. 

 

Bacterial strains, culture conditions, and plasmids 

        Both GV and PV were purified from the wild type S. polyformus which was first 

inoculated on solid M2 medium (4 g/liter glucose, 10 g/liter malt extract, 4 g/liter yeast 
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extract, 1 g/liter CaCO3, and 20 g/liter agar) and then transferred to SG liquid media (20 

g/liter glucose, 10 g/liter soytone, 2 g/liter CaCO3, 1 mg/liter cobalt chloride, 175 µM Sc, 

pH 7.2) for incubation at 28 °C for 7 days. No antibiotics were added when culturing wild 

type S. polyformus. E. coli XL1 Blue and BL21 (DE3) were both grown in Lysogeny Broth 

(LB) supplemented with appropriate antibiotics. 

 

Expression and purification of proteins 

        The genes encoding StfMII, ElmMII, and ElmMIII were constructed in the vector 

pET28a(+) purchased from Novagen for protein over-expression. All proteins contain an 

N-terminal 6 × His tag and could be purified with immobilized metal affinity 

chromatography (IMAC). After amplifying the DNA in E. coli XL1 Blue, plasmid isolation 

was carried out with GeneJet plasmid miniprep kit (Fermentas, Waltham, MA, USA) and 

then used to transform E. coli BL21 (DE3) competent cells for protein over-expression. 

1% volume of seed E. coli BL21 (DE3) culture with desired plasmid was inoculated into 1 

liter of LB supplemented with 50 µg/mL kanamycin (final concentration) and then 

incubated at 37 °C until OD600 value reached 0.4~0.6. The addition of 100 µM β-D-1-

thiogalactopyranoside (IPTG, final concentration) induced protein over-expression, and 

target proteins were obtained after overnight incubation at 18 °C. E. coli BL21 (DE3) cell 

pellets were collected by centrifugation (4000 rpm for 25 min) at room temperature, 

washed twice with 20 mL lysis buffer (50 mM KH2PO4, 300 mM KCl, 10 mM imidazole, 

pH 8.0), re-suspended in 30 mL lysis buffer for high-pressure French press, and finally 

centrifuged at 16,500g for 35 min at 4 °C to remove cell debris. The supernatant containing 

target proteins was loaded on IMAC column (TALON affinity resin, Clontech Laboratories 

Inc.) that had been equilibrated with 10-fold volume lysis buffer in advance. Impurities and 

target proteins were eluted by washing buffer (50 mM KH2PO4, 300 mM KCl, 20 mM 

imidazole, pH 8.0) and elution buffer (50 mM KH2PO4, 300 mM KCl, 250 mM imidazole, 

pH 8.0), respectively. After concentrating the elution with Millipore Amicon 30K 

ultracentrifugal filters, all proteins were desalted with reaction buffer (50 mM KH2PO4, 

150 mM NaCl, 30% glycerol, pH 7.5) and used immediately for in vitro reactions. Protein 

concentrations were determined with Bradford reagent while their sizes were confirmed 
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with sodium dodecylsulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analyses. 

The measured sizes of purified proteins were in agreement with calculations (Figure 23). 

 

 

                    

Figure 23. SDS-PAGE analysis of purified proteins used in this study. Lane 2, StfMII 

(45.61 kD); Lane 3, ElmMII (45.61 kD), Lane 5, ElmMIII (31.21 kD). (Lane 1 and 4 are 

SAHH and ElmMI, respectively. They were used to increase the yield of in vitro reactions 

but did not work.) 

 

Production and purification of polycarcin V 

        The spores of the wild type S. polyformus on solid M2 medium was used to inoculate 

100 liters of liquid SG medium in 250-mL baffled Erlenmeyer flasks (100 mL SG per 

flask). After 7 days of fermentation at 28 °C with shaking (250 rpm), the culture broth of 

SG media was centrifuged at 4000 rpm for 25 min to collect cell pellets that were extracted 

with methanol by sonication. Methanol was then removed from the supernatant under 

vacuum, and the residue was re-suspended in the aqueous portion of SG media before 

100 kD 

75 kD 

50 kD 

37 kD 

25 kD 

     1           2                                        3                                      4                    5      
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extraction with ethyl acetate (EtOAc). After removing EtOAc with rotary evaporator, the 

extract was passed through normal-phase silica gel column and eluted with 1-liter fractions 

of 0, 4, and 5% methanol in dichloromethane. Fractions containing gilvocarcins and 

polycarcins were dried under vacuum and further purified through semi-preparative high-

performance liquid chromatography (Waters HPLC system, consisting of a controller, a 

2487 Dual λ Absorbance Detector, a 1525EF Binary HPLC Pump, and a column: 

SunFireTM Prep. C18 5 µm 10 × 250 mm; 32.5 min at a flow rate of 2.5 mL/min, UV 

monitoring absorbance at 254 and 360 nm). Gradient used: solvent A: water with 2% 

formic acid, solvent B: acetonitrile. Solvent B was increased from 25% to 65% (min 0 to 

10), then from 65% to 100% (min 10 to 21), then was decreased back to 25% within 3 

minutes, and kept at 25% for the last 8.5 min. 

 

In vitro methylation reaction conditions and purification of the products 

        All in vitro reactions were carried out in the same condition: 500 µL aliquot containing 

50 mM KH2PO4 (pH 7.4), 20 mM MgCl2, 2 mM S-adenosyl methionine (SAM), 200 µM 

substrate, 40 µM methyltransferase, and ddH2O (doubly distilled water). The reaction 

solutions were incubated at 28 °C for at least 16 hrs and then extracted with EtOAc three 

times before further purification by semi-preparative HPLC with the same program, as 

described above. All compounds submitted to cytotoxic assays were at least 95% pure 

obtained by one more purification with analytical HPLC and confirmed with LC-MS. 

(Waters HPLC system, consisting of a controller, a 2996 photodiode array detector, and a 

2695 Separations Module, Micromass ZQ, and a column: Symmetry® C18 5 µm 4.6 × 250 

mm column; 29 min runs at a flow rate of 0.5 mL/min). Gradient used: solvent A: water, 

solvent B: HPLC-grade acetonitrile. Solvent B was increased from 25% to 100% (min 0 to 

15), kept at 100% for 9 min, before it was decreased back to 25% within 2 minutes (min 

24 to 26), and kept at 25% for the last 3 min. 
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Cytotoxicity assay 

        This cytotoxicity assay was carried out by Dr. Jamie Horn in Dr. Markos Leggas’s 

laboratory at the University of Kentucky. H460 and A549 cells were obtained from ATCC 

(Manassas, VA). HCT-116 and HT-29 were a gift from Dr. Qing-Bai She at the University 

of Kentucky. Docetaxel and SN-38 were commercially available from LC-Laboratories 

and Tocris, respectively. Powdered RPMI-1640 media, McCoy’s 5A media, resazurine 

sodium salt and molecular-grade DMSO were from Sigma-Aldrich. The panel of 

polycarcin analogues was tested for their cytotoxic activity in human lung and colon cancer 

cell lines at concentrations ranging from 0.1 to 10,000 nM. All drug solutions were 

prepared in amber tubes and, all drug treatments were carried out under red light. Lung 

cancer cells (H460 and A549) were grown in RPMI-1640 (pH 7.4) with 10% FBS (v/v) 

and 1% streptomycin/penicillin (v/v), whereas the colon cancer cell lines (HCT-116 and 

HT-29) were cultured in McCoy's 5A (pH 7.4) containing the same supplements. Cells 

were seeded into 96-well plates at densities yielding exponential growth over a 96 hr 

experimental time period, specifically at 1,000 (H460), 2,000 (A549 and HCT-116) or 

5,000 (HT-29) cells/well in 100 µL of the appropriate media. The cells were allowed to 

adhere at 37 °C, and 5% CO2 for 24 hr. The following day concentrated drug solutions in 

1.1% DMSO and 98.9% RPMI-1640 were prepared by serial dilution of 10 mg/mL drug 

stocks in DMSO and were added to the cells. Cell viability was assessed in a subset of 

wells following drug/diluent addition and at the end of treatment in all cells (10 µL of 1 

mM resazurine in PBS, pH 7.4).  Resazurine was allowed to react for 3 hr at 37 °C (5% 

CO2) and fluorescence (590 nm emission/560 excitation) was measured with a 

spectrophotometer. GI50 parameters and best-fit lines were obtained by nonlinear 

regression analysis using a dose-response-inhibition equation in Prism 5.04 (GraphPad 

Prism). 

 

 

  

Copyright © Jhong-Min Chen 2015 
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CHAPTER 3: CHEMICAL DERIVATIZATION OF MITHRAMYCIN 

3.1 Modification of mithramycin SA with primary amines 

        Synthetic and semisynthetic approaches toward the generation of unnatural products 

can be complemented by combinatorial biosynthesis whereby the biosynthetic pathway of 

the parent compounds are altered in the host through gene inactivation, expression or 

recombination. MTM is an example of how to utilize combinatorial biosynthesis and 

chemical modification to generate improved anticancer agents. 

        The definition of combinatorial biosynthesis is that the biosynthetic pathway of 

natural products are modified by genetic engineering with nature’s biosynthetic machinery 

in order to produce new and altered structures in vivo.[54] David Hopwood and colleagues 

are the first group to carry out combinatorial biosynthesis in Streptomyces to produce 

unnatural antibiotics by cloning some or all genes from the biosynthetic pathway of 

actinorhodin into the producers of medermycin and dihydrogranaticin, respectively.[55] Our 

laboratory also used this approach to generate new MTM analogues in 2003, including 

MTM SK (67), MTM SDK (68), and MTM SA (69), through inactivation of the mtmW 

gene, a gene encoding a ketoreductase carrying out the last step in the MTM biosynthetic 

pathway.[21] Compared to the parent compound, MTM SK (67) and MTM SDK (68) have 

shortened side chains by one carbon at the 3-position while the side chain of MTM SA (69) 

is the shortest and possesses a carboxylic group. MTM SK and MTM SA are formed 

through a Favorskii-like rearrangement and retro-aldol-type cleavage, respectively, of the 

reactive intermediate, mithramycin DK.[21] 

        As is well-known, the importance of the C-3 side chain for the anticancer activity had 

been identified by several in vitro and in vivo bioassays. MTM SK and MTM SDK showed 

higher anticancer bioactivity and better in vivo tolerance than MTM, but MTM SA was 

significantly less active.[56] These results indicate that the C-3 side chain is in part 

responsible for the interaction between MTM and the DNA-phosphate backbone. One of 

the reasons of the decreased bioactivity of MTM SA might be that its carboxylic group is 

too short and carries a negative charge in the physiological environment, a disadvantage 

for interactions with the naturally negative-charged DNA-phosphate backbone. 

Nevertheless, its carboxylic acid moiety provides a chance for chemical modification. Our 
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hypothesis is that the bioactivity of MTM SA can be improved by modifying the C-3 side 

chain with primary amines through a semi-synthetic approach. This probably can also 

introduce new functionalities into the C-3 side chain, for example, a new functional group 

that can interact with a specific protein.[57] 
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Figure 24. Generation of novel MTM analogues by inactivation of mtmW. 

 

3.2 Experimental design 

        In 2011, Maria N. Preobrazhenskaya and co-workers modified olivomycin SA at the 

C-3 side chain to generate novel olivomycin analogues.[57c] Their chemical conditions of 

the coupling reaction was adopted in this study, but we decided to try more primary amines 

in order to expand the chemical space of MTM as large as possible. For all the initial trials, 

2 mg of MTM SA was used to make sure that the specific primary amines could be 

transferred to its carboxylic group. The details of the reaction condition are: MTM SA was 

mixed with 3 equivalents of the desired primary amines for side-chain modification, 3 

equivalents of DIPEA (70), 2 equivalents of PyBOP (71), and the solvent DCM. All 

reactions started at 4 oC and were checked by LC-MS after 16 hrs. DIPEA was used as a 

base to deprotonate the carboxylic group of MTM SA while PyBOP was used as a coupling 

reagent to transfer the desired primary amines onto the deprotonated carboxylic group 
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(Figure 25). In order to confirm that the decreased bioactivity of MTM SA results from 

the negative-charged carboxylic group, we carried out an esterification reaction to convert 

the carboxylic acid group to a methyl ester group. The reaction conditions are described as 

follows: MTM SA was mixed with 2 folds of TMSCHN2 and 20% methanol in toluene at 

room temperature and then incubated for 30 min (Figure 26). The production of MTM SA 

methyl ester was confirmed with LC-MS. 
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Figure 25. The chemical mechanism of the coupling reaction between MTM SA and 

primary amines. 
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Figure 26. The chemical mechanism of esterification reaction with TMSCHN2. 
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3.3 Results 

Modification of mithramycin SA with primary amines 

We created a library of 16 MTM analogues by coupling a methyl group (72) and 15 

different compounds with a primary amine functional group to MTM SA (Figure 27). The 

primary amines we used in this study are 1-amino-2-propanone (73), cystamine (74), N,N-

dimethylethylenediamine (75), D-glucosamine (76), methyl hydrazine (77), L-alanine 

methyl ester (78), L-cysteine methyl ester (79), L-glycine methyl ester (80), L-histidine 

methyl ester (81), L-lysine t-Bu ester N-benzyl carbamate (82), L-phenylalanine methyl 

ester (83), L-serine methyl ester (84), L-tryptophan methyl ester (85), L-5”-Br-tryptophan 

methyl ester (86), L-tyrosine methyl ester (87), and L-valine methyl ester (88) (Figure 27). 

All amino acids used in this study possess a methyl group to protect the carboxylic group 

to increase the efficiency and yield of the products. 
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Figure 27. MTM analogues derived from MTM SA 

 

Cytotoxicity assays 

        The cytotoxicity of some MTM analogues, including structure 73, 74, 75, 77, 78, 79, 

80, 88, was tested against the A549 non-small cell lung cancer cell line in Dr. Younsoo 

Bae’s laboratory at the University of Kentucky’s College of Pharmacy (Table 4). And, 

MTM SK (67) and MTM SA (69) were used as controls for comparison. This bioassay 

revealed that modifying the C-3 side chain of MTM SA with amino acids, L-alanine, L-
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cysteine, L-glycine, and L-valine, could significantly improve the anticancer bioactivity. 

IC50 values of these four MTM analogues (78, 79, 80, 88) are comparable to MTM SK 

(67), but the bioactivity of structure 79 is not as impressive as other analogues. The lower 

bioactivity of structure 79 is probably due to the polar thiol side chain on the cysteine (pKa 

= 8.33). Our hypothesis is that the modification of the side chain with non-polar amino 

acids can yield products with better anticancer activity.         

 

Table 4. The IC50 values of MTM analogues against the A549 cell line in vitro (This 

experiment was carried out by Dr. Daniel Scott in Dr. Bae’s laboratory.) 

MTM analogues IC50 (µM) 

MTM SK (67) 0.28 ± 0.11 

MTM SA (69) 8.70 ± 0.37 

73 N/Aa 

74 N/Aa 

75 2.70 ± 0.22 

77 8.80 ± 1.69 

78 0.36 ± 0.12 

79 1.00 ± 0.19 

80 0.55 ± 0.11 

88 0.80 ± 0.20 

                                        a Not active. 

         

        In order to confirm this hypothesis, we modified the C-3 side chain of MTM SA with 

more primary amines and also carried out esterification to convert the carboxylic group to 

an ester (72, 76, 81, 82, 83, 84, 85, 86, and 87). The amino acids used here were L-histidine, 

L-lysine, L-phenylalanine, L-serine, L-tryptophan, and L-tyrosine containing protecting 

group(s) to prevent the coupling reaction occurring at undesired position(s). All products, 

except MTM SA-5”-Br-Trp (86) were shipped to the National Cancer Institute (NCI) at the 

National Institutes of Health (NIH) for 60-cell line screens (one-dose) in order to identify 

their medicinal potentials (Table 5-1 and 5-2).[58] 
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        The number reported for the one-dose assay is the cell growth percent of treated cells 

relative to both the no-drug control and the time zero number of cells. This allows scientists 

to measure growth inhibition (values between 0% and 100%) as well as lethality (values 

less than 0%) of their compounds. According to the data of NCI 60 cell line screens (one-

dose), the compounds showing the lowest values of the average cell growth percent are 

MTM SA methyl ester (72), MTM SA-Lys-2PGs (82), MTM SA-Phe (83), and MTM SA-

Trp (85) (Figure 28). The number of the cell growth percent of structure 72, 83, and 85 are 

two folds lower than the parent compound, MTM. While structure 82, the most promising 

MTM analogue, is nearly six folds lower than MTM. The anticancer activity of MTM SA-

Ala (78) is comparable with MTM, but modification of MTM SA with D-glucosamine, L-

glycine, L-tyrosine, L-valine (structures 76, 80, 87, and 88) could not make the products 

stronger than the parent compound. MTM SA-His (81) is the poorest MTM analogue but 

a good example that supports our hypothesis: modifying the C-3 side chain of MTM SA 

with non-polar amino acids can generate MTM analogues with better anticancer activity.  
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Table 5-1. The cell growth percent (%) data of National Cancer Institute (NCI) 60 cell line 

screen (one-dose) of MTMa and its analogues. (This experiment was carried out by NCI 

researchers in NCI.) 

 

 MTM 
(11) 

MTMSA 
(69) 

72 76 78 80 

Leukemia cell lines 

CCRF-CEM 3.90 23.77 2.91 2.98 14.48 17.99 
HL-60(TB) 3.90 41.33 -33.54 19.37 20.80 41.02 

K-562 6.80 11.75 4.16 -4.31 7.10 10.20 
MOLT-4 6.20 1.78 -9.54 22.09 0.97 -2.56 

RPMI-8226 -14.50 6.67 -17.50 5.17 -5.91 2.86 
SR 10.50 10.36 4.74 -34.07 7.81 11.13 

Non-small cell lung cancer 

A549/ATCC 2.70 13.73 8.71 8.35 7.05 7.82 
EKVX 16.80 31.30 9.91 4.23 21.86 20.21 

HOP-62 7.50 20.65 6.33 -11.35 12.98 21.63 
HOP-92 -1.50 24.74 -15.60 10.78 3.12 9.61 

NCI-H226 10.80 0.86 -41.85 -9.00 -21.48 -10.01 
NCI-H23 -28.90 -0.12 -47.33 -3.19 -31.12 -16.76 

NCI-H322M 5.90 21.59 12.34 -1.78 11.42 15.73 
NCI-H460 2.60 11.19 4.95 -10.85 7.28 9.15 
NCI-H522 -44.70 -3.78 -30.26 -11.69 -26.04 -19.00 

Colon cancer 

COLO 205 -67.50 -12.53 -37.16 -0.46 -20.51 -17.64 
HCC-2998 N/A -37.76 -32.87 -4.02 -43.97 -42.26 
HCT-116 5.30 6.04 3.51 -4.14 4.37 3.52 
HCT-15 6.70 38.68 7.16 2.16 19.35 31.45 
HT29 0.20 7.12 3.61 4.31 3.99 3.78 
KM12 -5.70 7.07 1.50 -7.56 5.08 6.86 

SW-620 -25.10 19.12 8.04 -0.61 10.15 12.69 
CNS cancer 

SF-268 12.30 29.26 3.86 -10.59 14.07 21.14 
SF-295 19.10 11.22 -10.64 -19.08 3.96 6.85 
SF-539 -20.20 -23.07 -41.55 0.56 -33.18 -28.66 
SNB-19 13.30 10.82 4.99 -12.15 8.48 9.40 
SNB-75 -56.90 -55.12 -79.32 -23.55 -63.81 -51.74 

U251 9.40 10.09 2.62 -17.57 7.45 9.93 
Melanoma 

LOX IMVI 7.00 -6.05 -23.96 -7.56 -27.43 -15.50 
MALME-3M -54.60 -10.40 -58.02 5.81 -49.31 -35.34 

M14 -71.50 -8.35 -71.50 5.65 -23.86 -32.07 
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MDA-MB-435 -62.90 1.21 -62.45 7.66 -39.33 -39.22 
SK-MEL-28 N/A -5.84 -38.04 6.13 -37.75 -17.16 
SK-MEL-5 N/A -17.25 -69.51 -29.80 -67.36 -44.60 
SK-MEL-2 -43.90 N/A N/A 11.21 N/A N/A 
UACC-257 4.40 7.77 -11.21 9.17 -0.39 6.03 
UACC-62 -58.60 -68.10 -58.50 -7.62 -52.83 -65.19 

Ovarian cancer 

IGROV1 -21.00 35.43 28.01 -10.18 22.76 31.99 
OVCAR-3 3.00 10.04 6.49 8.29 5.02 3.71 
OVCAR-4 8.20 19.69 3.96 4.39 0.16 2.95 
OVCAR-5 -54.90 17.55 18.76 11.31 13.54 16.44 
OVCAR-8 N/A 13.55 10.22 -5.61 9.19 12.40 

NCI/ADR-RES 44.40 74.05 42.74 10.03 75.42 88.20 
SK-OV-3 35.30 23.66 21.00 -3.70 22.63 24.30 

Renal cancer 

786-0 2.90 10.27 9.07 -1.29 -4.86 -2.99 
A498 N/A -55.67 -42.88 3.77 -66.47 -74.31 

ACHN 3.70 2.89 4.79 1.15 -1.98 -1.39 
CAKI-1 17.20 25.66 14.83 -1.65 27.50 43.54 
RXF 393 5.90 -57.11 -72.98 -4.38 -70.26 -75.43 
SN12C 24.80 15.32 9.04 -10.66 11.49 13.69 
TK-10 9.90 24.24 13.66 1.54 13.10 21.04 
UO-31 -4.40 8.85 -9.90 -13.47 5.72 10.90 

Prostate cancer 

PC-3 10.50 19.70 -23.33 -7.96 8.21 12.93 
DU-145 24.70 21.53 10.17 7.19 13.20 17.16 

Breast cancer 

MCF7 -3.60 7.44 8.90 -12.84 8.55 7.64 
MDA-MB-231/ATCC 14.60 19.95 -8.44 -0.80 18.36 21.50 

HS 578T N/A -1.09 -10.53 -26.09 -7.37 -6.65 
BT-549 -19.90 -41.87 -32.91 -5.36 -32.48 -44.27 
T-47D 7.20 12.84 4.00 -4.44 2.98 11.29 

MDA-MB-468 N/A -16.72 -45.55 -20.04 -36.22 -22.30 
Mean -5.52 5.25 -12.57 -3.10 -5.33 -0.79 

  Delta 65.98 73.35 66.75 30.97 64.93 74.64 

Range 115.90 142.15 122.06 56.16 145.68 163.63 
a Tested independently in September, 2014 
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Table 5-2. The cell growth percent (%) data of National Cancer Institute (NCI) 60 cell line 

screen (one-dose) of MTMa and its analogues. (This experiment was carried out in NCI 

and their researchers.) 

 

 81 82 83 85 87 88 

Leukemia cell lines 

CCRF-CEM 50.11 3.09 4.07 5.66 11.08 7.92 
HL-60(TB) 53.14 -0.25 -9.07 -8.66 8.20 52.39 

K-562 32.09 5.35 5.63 4.37 7.28 5.81 
MOLT-4 73.20 -12.61 -5.77 0.76 -1.80 1.35 

RPMI-8226 58.17 -5.01 -16.52 -5.61 -5.59 -1.18 
SR 36.73 7.17 7.89 4.93 9.70 -8.16 

Non-small cell lung cancer 

A549/ATCC 67.64 -25.72 6.81 12.68 4.32 7.37 
EKVX 57.59 -25.08 -2.04 3.61 21.48 25.26 

HOP-62 46.09 -15.01 4.37 9.74 19.30 6.44 
HOP-92 33.97 -82.64 -17.47 -13.87 12.24 -18.92 

NCI-H226 50.03 -75.53 -32.96 -38.58 -17.59 -23.39 
NCI-H23 34.36 -42.60 -28.50 -20.32 -38.60 -6.89 

NCI-H322M 78.18 20.22 7.54 6.45 11.13 24.78 
NCI-H460 37.98 -17.59 4.92 6.58 6.99 -6.19 
NCI-H522 16.36 -16.04 -30.70 -28.15 -19.54 -20.03 

Colon cancer 

COLO 205 24.26 -20.68 -36.70 -39.47 -22.83 13.78 
HCC-2998 50.26 -5.55 -45.16 -46.79 -66.97 11.21 
HCT-116 40.52 -63.94 1.85 3.71 4.11 4.79 
HCT-15 95.18 26.60 5.61 15.91 47.47 23.91 
HT29 59.30 2.05 4.24 4.98 3.68 6.32 
KM12 58.78 -62.67 -5.45 0.36 5.68 4.63 

SW-620 57.51 3.71 6.79 6.98 11.29 16.61 
CNS cancer 

SF-268 70.38 -61.51 -2.00 -10.10 20.74 6.33 
SF-295 46.78 -89.48 -9.46 -6.35 7.09 -32.53 
SF-539 44.05 -32.03 -35.68 -35.30 -27.11 -22.44 
SNB-19 50.81 -51.57 4.82 7.09 8.72 8.43 
SNB-75 27.11 -94.27 -86.82 -88.46 -52.49 -24.30 

U251 38.30 -82.26 2.62 6.13 7.18 -28.07 
Melanoma 

LOX IMVI 13.73 -62.85 -18.20 -3.17 -31.25 -76.22 
MALME-3M 44.68 -69.38 -54.85 -47.04 -42.98 -12.28 

M14 69.79 -69.80 -60.78 -60.18 -20.22 5.18 
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MDA-MB-435 47.43 -69.79 -69.37 -71.91 -26.78 18.86 
SK-MEL-28 41.47 -55.72 -27.03 -27.90 -26.62 -1.86 
SK-MEL-5 24.86 -97.67 -78.02 -72.10 -53.27 -74.28 
SK-MEL-2 N/A N/A N/A N/A N/A N/A 
UACC-257 78.78 -5.47 -16.21 -5.00 2.42 3.21 
UACC-62 23.32 -62.69 -56.64 -52.75 -53.13 -65.12 

Ovarian cancer 

IGROV1 75.11 22.18 25.50 23.41 31.17 32.34 
OVCAR-3 66.63 24.77 5.70 4.79 5.52 15.26 
OVCAR-4 101.60 43.15 1.44 0.34 7.27 13.44 
OVCAR-5 91.60 -77.93 8.60 15.26 10.58 2.67 
OVCAR-8 64.91 12.90 7.42 11.00 9.74 12.60 

NCI/ADR-RES 106.09 73.20 51.64 76.71 85.64 69.65 
SK-OV-3 74.85 -52.69 17.05 18.22 20.74 20.42 

Renal cancer 

786-0 63.78 -89.85 0.65 1.54 1.98 -21.25 
A498 25.89 -89.88 -40.34 -52.77 -63.17 -83.20 

ACHN 68.91 -2.61 -8.69 0.57 4.06 0.32 
CAKI-1 90.64 22.64 15.34 19.53 69.45 20.04 
RXF 393 54.59 -85.93 -75.04 -85.94 -71.54 -67.98 
SN12C 58.21 -7.42 4.42 10.57 13.27 13.20 
TK-10 55.81 -9.57 6.76 8.12 23.48 21.70 
UO-31 79.65 10.50 -7.79 -6.63 18.06 7.39 

Prostate cancer 

PC-3 61.03 3.14 -9.57 -10.39 13.44 18.77 
DU-145 55.43 26.52 11.82 12.53 15.76 7.21 

Breast cancer 

MCF7 35.00 3.56 3.21 5.98 8.15 6.73 
MDA-MB-231/ATCC 71.82 -71.80 -8.99 -14.03 19.52 10.86 

HS 578T 34.10 -16.42 -16.74 -13.57 -9.20 -13.93 
BT-549 60.60 -79.72 -62.36 -53.44 -36.92 -20.69 
T-47D 49.44 7.20 2.51 8.07 4.63 10.17 

MDA-MB-468 72.66 -37.55 -36.75 -48.83 -25.52 -3.89 
Mean 55.11 -28.45 -13.26 -11.03 -2.04 -1.62 

Delta 41.38 69.22 73.56 77.43 69.50 81.58 

Range 92.36 170.87 138.46 165.17 157.18 152.85 
a Tested independently in September, 2014 
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Figure 28. The averages of cell growth percent (%) of MTM and MTM analogues. This 

column chart is edited based on the data of NCI 60 cell line screen (one-dose). (All 60 cell 

line screen was carried out by NCI researchers in NCI.) 

 

Structure elucidation of the mithramycin analogues 

        We did structure elucidation with HR-MS and NMR for ten bioactive MTM analogues 

(structure 72, 78, 80, 81, 82, 83, 85, 86, 87, and 88), which showed better anticancer 

bioactivity than the parent compound, MTM. HR-MS was performed by the University of 

Kentucky Mass Spectrometry Facility. All observed HR-MS data of MTM analogues 

matched the calculated molecular weight values and, thereby, were consistent with the 

occurrence of the coupling reaction with the desired primary amines and the esterification 

reaction with a methyl group (Table 6). 
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Table 6. HR-MS data of bioactive MTM analoguesa (HR-MS analysis was carried out by 

MS facilities at the University of Kentucky) 

 

MTM 

analogue 

Molecular formula 

(HR-MS) 

Calculated M.W. Observed M.W. 

72b [C50H72O23Na]+ 1063.4362 1063.4367 

78c [C53H77NO24Na]+ 1134.4733 1134.4745 

80c [C52H75NO24Na]+ 1120.4577 1120.4558 

81c [C56H79N3O24Na]+ 1200.4951 1200.4970 

82c [C67H96N2O26Na]+ 1367.6149 1367.6104 

83c [C59H81NO24Na]+ 1210.5046 1210.5050 

85c [C61H82N2O24Na]+ 1249.5155 1249.5181 

86b [C61H80N2O24Br]- 1303.4284 1303.4283 

87c [C59H81NO25Na]+ 1226.4995 1226.5005 

88c [C55H81NO24Na]+ 1162.5046 1162.5037 
a Only bioactive MTM analogues were checked with HR-MS. 

b HR-ESI-MS, negative mode, [M – H]- 
c HR-MALDI-TOF-MS, positive mode, [M + Na]+ 

 

        The structures of the most active MTM analogues, including structure 72, 78, 80, 82, 

83, 85, 86, and 88, were further confirmed through 1H, gHSQC, and gHMBC NMR. The 

NMR signals of the coupling primary amines and methyl group are marked with bold text 

and also colored in red. All NMR spectra were recorded by 500 MHz Agilent NMR as 

described in Chapter 2.5. 

 

 

 

 

 



63 
 

O

OH OH O

O
OCH3H

O

O
H3C

HO
O

O
HO

O

CH3
O

H3C
HO
H3C

OH

O
H3C

HO
O

O
H3C

HO
HO

H3C
O

1A

1C1E

1

4
105

9

1' CH3

 

 

Table 7. NMR data (500 MHz) of MTM SA methyl ester (72)a 

Position δH (J in Hz) δCb, mult.c HMBC 
1  (203.5, C)d  
2 4.66, d (14.0) 77.7, CH  
3 2.47 – 2.55 (m, 1 H) 45.1, CH  
4 2.64, dd (3.8, 16.3) 

3.05, d (17.5) 
28.3, CH2  

4a  (136.5, C)d  
5 6.70, s 102.0, CH 112.0, 117.8,  
6  160.2, C  
7  112.0, C  

7-CH3 2.13, s 8.5, CH3 112.0, 156.4, 160.2 
8  156.4, C  
8a  108.8, C  
9  (164.5, C)d  
9a  109.2, C  
10 6.81, s 117.8, CH 28.3, 102.0 
10a  (139.6, C)d  
1' 4.34, d (2.0) 78.8, CH 28.3, 45.1, 59.5, 174.2 

1'-OCH3 3.49, s 59.5, CH3 78.8 
2'  174.2, C  

2'-OCH3 3.81, s 52.5, CH3 174.2 
1A 5.30, d (9.0) 97.6, CH  
2A 1.82, m, (12.0) 

2.44 (m, 1H) 
37.8, CH2  

 
3A 3.73 – 3.79 (m, 2H) 80.6, CH  
4A 3.10, t (9.0) 76.2, CH 18.3, 80.6 
5A 3.50 – 3.59 (m, 2H) 72.0, CH  
6A 1.35, d (6.5) 18.3, CH3 76.2 
1B 4.73, dd (1.5, 9.5) 99.6, CH  
2B 1.53 – 1.64 (m, 3H) 

2.19, m (1.5, 5.0, 12.5) 
40.7, CH2 99.6 

78.1 
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3B 3.69 – 3.73 (m, 2H) 71.9, CH  
4B 2.97, d (9.0) 78.1, CH 18.1 
5B 3.32 – 3.39, (m, 2H) 73.6, CH  
6B 1.32, d (5.5) 18.1, CH3 73.6, 78.1 
1C 5.06, d (9.0) 101.8, CH  
2C 1.53 – 1.64 (m, 3H) 

2.59, dd (4.5, 12.0) 
38.1, CH2  

3C 3.73 – 3.79 (m, 2H) 80.8, CH  
4C 3.05, t (8.8) 76.7, CH 18.5, 73.4, 80.8 
5C 3.50 – 3.59 (m, 2H) 73.4, CH  
6C 1.34, d (5.5) 18.5, CH3 73.4 
1D 4.68, dd (2.0, 10.5) 99.8, CH  
2D 1.80, m (12.0) 

1.96 (m, 1H) 
33.1, CH2  

 
3D 3.88, m (3.0, 4.8, 12.3) 77.2, CH  
4D 3.69 – 3.73 (m, 2H) 70.5, CH 77.2 
5D 3.63 – 3.69 (m, 1H) 72.0, CH 70.5 
6D 1.31, d (6.5) 16.8, CH3 70.5 
1E 4.98, dd (2.0, 9.5) 98.8, CH 77.2 
2E 1.53 – 1.64 (m, 3H) 

1.92, dd (2.0, 13.5) 
45.2, CH2 98.8 

71.7, 77.7 
3E  71.7, C  

3E-CH3 1.25, s 27.3, CH3 45.2, 71.7, 77.7 
4E 2.93, d (9.5) 77.7, CH 18.8, 71.7 
5E 3.32 – 3.39 (m, 2H) 73.1, CH  
6E 1.27, d (6.5) 18.8, CH3 77.7 

a The solvent used for NMR experiments was methanol-d4. 
b 13C NMR data was inferred from gHSQC and gHMBC spectra. 
c multiplicity 
d The numbers in the bracket are cited from the reference.[59] We did only 1H, gHSQC, and gHMBC experiments for this 

compound, and no C-H correlations in the gHMBC spectrum which can indicate the chemical shift values of these 
carbons. 
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Table 8. NMR data (500 MHz) of MTM SA-Ala (78)a 

Position δH (J in Hz) δC, mult.b HMBC 
1  204.2, C  
2 4.42, d (11.5) 78.5, CH  
3 2.45 – 2.56 (m, 2H) 45.0, CH  
4 2.45 – 2.56 (m, 2H) 

2.60 – 2.73 (m, 1H) 
28.3, CH2  

4a  136.4, C  
5 6.34, s 102.1, CH 108.5, 111.8, 118.1 
6  160.1, C  
7  111.8, C  

7-CH3 2.09, s 8.9, CH3  
8  156.7, C  
8a  108.5, C  
9  164.9, C  
9a  109.0, C  
10 6.45, s 118.1, CH 28.3, 102.1, 108.5, 109.0 
10a  139.6, C  
1' 4.13, s 81.0, CH 28.3, 45.0, 60.4, 78.5, 174.1 

1'-OCH3 3.59 (bs, 4H) 60.4, CH3 81.0 
2'  174.1, C  
4' 4.56, m (7.0) 49.8, CH 17.8, 174.1, 174.4 

4'-CH3 1.52, d (7.0) 17.8, CH3 49.8, 174.4 
5'  174.4, C  

5'-OCH3 3.75, s 53.1, CH3 174.4 
1A 4.94 – 5.13 (m, 3H) 97.6, CH  
2A 1.75 – 1.87 (m, 2H) 

2.36 – 2.45 (m, 1H) 
38.2, CH2 100.1 

 
3A 3.77 – 3.84 (m, 2H) 81.0, CH  
4A 3.03 – 3.12 (m, 2H) 76.5, CH 18.8, 73.4, 81.0 
5A 3.44 – 3.52 (m, 1H) 73.4, CH  
6A 1.33, d (6.5) 18.8, CH3 73.4, 76.5 
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1B 4.65 – 4.78 (m, 2H) 100.1, CH  
2B 1.55 – 1.66 (m, 3H) 

2.18 – 2.26 (m, 1H) 
40.9, CH2  

72.2, 78.3 
3B 3.59 (bs, 4H) 72.2, CH  
4B 2.98, t (9.0) 78.3, CH 18.4, 72.2, 73.8 
5B 3.36 – 3.44 (m, 2H) 73.8, CH  
6B 1.34, d (6.5) 18.4, CH3 73.8, 78.3 
1C 4.94 – 5.13 (m, 3H) 102.4, CH  
2C 1.55 – 1.66 (m, 3H) 

2.60 – 2.73 (m, 1H) 
38.5, CH2 100.3 

3C 3.77 – 3.84 (m, 2H) 81.2, CH  
4C 3.03 – 3.12 (m, 2H) 76.7, CH 19.0, 73.6, 81.2 
5C 3.36 – 3.44 (m, 2H) 73.6, CH  
6C 1.39, d (5.5) 19.0, CH3 73.6, 76.7 
1D 4.65 – 4.78 (m, 2H) 100.3, CH 81.2 
2D 1.75 – 1.87 (m, 2H) 

1.96 – 2.02 (m, 1H) 
33.3, CH2  

3D 3.86 – 3.93 (m, 1H) 77.4, CH  
4D 3.68 – 3.72 (bs, 2H) 70.6, CH 17.3, 33.3, 77.4 
5D 3.65 (m, 1H) 72.2, CH 70.6 
6D 1.31, d (6.5) 17.3, CH3 70.6 
1E 4.94 – 5.13 (m, 3H) 99.1, CH 77.4 
2E 1.55 – 1.66 (m, 3H) 

1.93, d (13.0) 
45.4, CH2 99.1 

71.9, 78.1, 99.1 
3E  71.9, C  

3E-CH3 1.25, s 27.4, CH3 45.4, 71.9, 78.1, 99.1 
4E 2.93, d (10.0) 78.1, CH 18.9, 27.4, 71.9, 72.0 
5E 3.68 – 3.72 (bs, 2H) 72.0, CH  
6E 1.27, d (6.5) 18.9, CH3 72.0, 78.1 

a The solvent used for NMR experiments was methanol-d4. 
b multiplicity 
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Table 9. NMR data (500 MHz) of MTM SA-Gly (80)a 

Position δH (J in Hz) δC, mult.b HMBC 
1  216.2, C  
2 4.36 (bs, 1H) 78.7, CH  
3 2.44 – 2.58 (m, 2H) 45.2, CH  
4 2.44 – 2.58 (m, 2H) 

2.82, d (11.0) 
28.1, CH2  

4a  136.9, C  
5 6.22, s 102.0, CH  
6  159.8, C  
7  111.6, C  

7-CH3 2.10, bs 8.9, CH3  
8  156.7, C  
8a  108.6, C  
9  164.1, C  
9a  109.1, C  
10 6.48, s 118.2, CH 102.0, 108.6, 109.1 
10a  139.5, C  
1' 4.13 (bs, 2H) 81.2, CH 28.1, 45.2, 60.4, 175.2  

1'-OCH3 3.56 (bs, 4H) 60.4, CH3 81.2 
2'  175.2, C  
4' 3.99, d (17.5) 

4.13 (bs, 2H) 
41.8, CH 175.2 

5'  171.9, C  
5'-OCH3 3.80 (bs, 5H) 52.9, CH3 171.9 

1A 4.87 (overlap, 1H) 97.3, CH  
2A 1.74 – 1.82 (m, 2H) 

2.36, bs 
38.3, CH2 100.0 

 
3A 3.80 (bs, 5H) 80.9, CH  
4A 3.07, t (8.5), 2H 76.5, CH 73.3, 80.9 
5A 3.36 – 3.48 (m, 3H) 73.3, CH  
6A 1.32, d (6.0), 2H 18.8, CH3 73.3, 76.5 
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1B 4.63 – 4.80 (m, 2H) 100.0, CH  
2B 1.53 – 1.68 (m, 3H) 

2.22 (m, 1H) 
40.9, CH2  

3B 3.56 (bs, 4H) 72.2, CH  
4B 2.98, t (8.8) 78.2, CH 18.4, 72.2, 73.9 
5B 3.36 – 3.48 (m, 3H) 73.9, CH  
6B 1.35, d (6.0) 18.4, CH3 73.9, 78.2 
1C 4.97 – 5.15 (m, 2H) 102.5, CH  
2C 1.53 – 1.68 (m, 3H) 

2.62, d (7.5) 
38.4, CH2  

3C 3.80 (bs, 5H) 81.2, CH  
4C 3.07, t (8.5), 2H 76.7, CH 81.2 
5C 3.36 – 3.48 (m, 3H) 73.6, CH  
6C 1.42, bs 18.9, CH3 73.6 
1D 4.63 – 4.80 (m, 2H) 100.3, CH  
2D 1.74 – 1.82 (m, 2H) 

1.89 – 2.01 (m, 2H) 
33.3, CH2  

3D 3.89, d (11.5) 77.5, CH  
4D 3.71 (bs, 2H) 70.6, CH 77.5 
5D 3.63 – 3.68 (m, 1H) 72.2, CH  
6D 1.32, d (6.0), 2H 17.3, CH3 70.6, 72.2 
1E 4.97 – 5.15 (m, 2H) 99.1, CH 77.5 
2E 1.53 – 1.68 (m, 3H) 

1.89 – 2.01 (m, 2H) 
45.4, CH2 99.1 

71.9, 78.1 
3E  71.9, C  

3E-CH3 1.25, s 27.4, CH3 45.4, 71.9, 72.0, 78.1 
4E 2.93, d (9.5) 78.1, CH 18.9, 72.0 
5E 3.71 (bs, 2H) 72.0, CH  
6E 1.27, d (6.5) 18.9, CH3 71.9, 72.0, 78.1 

a The solvent used for NMR experiments was methanol-d4. 
b multiplicity 
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Table 10. NMR data (500 MHz) of MTM SA-Lys-2PGs (82)a 

Position δH (J in Hz) δCb, mult.c HMBC 
1  (203.5, C)d  
2 4.74, d (12.0) 77.9, CH 45.2, 102.0 
3 2.58, d (10.5) 45.2, CH  
4 2.72 – 2.80, m (overlap) 

2.92 – 3.08 (m, 5H) 
28.8, CH2  

136.2 
4a  136.2, C  
5 6.92, bs (overlap) 102.9, CH 28.8, 102.9, 108.9, 109.6, 112.0, 

118.2, 140.2, 160.9 
6  160.9, C  
7  112.0, C  

7-CH3 2.14, s 8.4, CH3 112.0, 157.2, 160.9 
8  157.2, C  
8a  108.9, C  
9  (164.5, C)d  
9a  109.6, C  
10 6.92, bs (overlap) 118.2, CH 28.8, 102.9, 108.9, 109.6, 112.0, 

118.2, 140.2, 160.9 
10a  140.2, C  
1' 4.17, d (1.5) 81.3, CH 28.8, 45.2, 60.8, 77.9, 172.5 

1'-OCH3 3.62, s 60.8, CH3 81.3 
2'  172.5, C  
4' 3.22 – 3.38 (m, 3H) 42.1, CH 157.9 
5'  157.9, C  
6'  82.8, C  

6'-CH3 1.48, s 29.0, CH3 29.0, 82.8 
1'' 1.25 – 1.35 (m, 15H) 

1.60 – 1.68 (m, 2H) 
31.3, CH2 31.0, 70.0, 72.2, 73.8, 74.0, 76.6, 78.7 

2'' 1.50 – 1.60 (m, 4H) 25.0, CH2 33.0 
3'' 1.25 – 1.35 (m, 15H) 31.0, CH2 31.0, 70.0, 72.2, 73.8, 74.0, 76.6, 78.7 
4'' 1.87 – 1.98 (m, 4H) 33.0, CH2  
6''  158.0, C  
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7'' 5.05, s 67.0, CH2 129.1, 129.3, 129.9, 139.1, 158.0 
8''  139.1, C  
9'' 7.22 – 7.40 (m, 5H) 129.1, CH 129.1, 139.1 
10'' 7.22 – 7.40 (m, 5H) 129.9, CH 129.1, 139.1 
11'' 7.22 – 7.40 (m, 5H) 129.3, CH 129.1, 139.1 
1A 5.40, d (9.8) 97.8, CH  
2A 1.74 – 1.86 (m, 2H) 

2.43, dd (5.5, 12.5) 
38.7, CH2  

 
3A 3.69 – 3.78 (m, 2H) 82.5, CH  
4A 3.04, t (9.3) 76.6, CH 19.1, 73.8, 82.5 
5A 3.52 – 3.61 (m, 2H) 73.8, CH  
6A 1.25 – 1.35 (m, 15H) 19.1, CH3 31.0, 70.0, 72.2, 73.8, 74.0, 76.6, 78.7 
1B 4.63 – 4.72 (m, 2H) 101.1, CH 82.5 
2B 1.50 – 1.60 (m, 4H) 

2.17, ddd (2.0, 4.5, 12.5) 
41.0, CH2 101.1 

 
3B 3.52 – 3.61 (m, 2H) 72.5, CH  
4B 2.97, t (8.3) 78.7, CH 18.9, 72.5 
5B 3.22 – 3.38 (m, 3H) 74.0, CH  
6B 1.25 – 1.35 (m, 15H) 18.9, CH3 31.0, 70.0, 72.2, 73.8, 74.0, 76.6, 78.7 
1C 5.14, d (9.0) 102.0, CH 77.9 
2C 1.60 – 1.68 (m, 3H) 

2.52, dd (4.8, 12.8) 
39.0, CH2 82.9, 102.0 

82.9 
3C 3.63 – 3.69 (m, 2H) 82.9, CH  
4C 3.01, t (8.8) 76.8, CH 19.1, 82.9 
5C 3.22 – 3.38 (m, 3H) 74.0, CH  
6C 1.25 – 1.35 (m, 15H) 19.1, CH3 31.0, 70.0, 72.2, 73.8, 74.0, 76.6, 78.7 
1D 4.63 – 4.72 (m, 2H) 101.4, CH 82.9 
2D 1.74 – 1.86 (m, 2H) 

1.87 – 1.98 (m, 4H) 
33.7, CH2 77.9, 101.4 

 
3D 3.90, ddd (3.0, 5.0, 12.0) 77.9, CH  
4D 3.69 – 3.78 (m, 3H) 70.0, CH 17.8, 77.9 
5D 3.63 – 3.69 (m, 2H) 72.2, CH  
6D 1.25 – 1.35 (m, 15H) 17.8, CH3 31.0, 70.0, 72.2, 73.8, 74.0, 76.6, 78.7 
1E 4.97, dd (1.8, 9.8) 99.1, CH 45.5, 77.9 
2E 1.50 – 1.60 (m, 4H) 

1.87 – 1.98 (m, 4H) 
45.5, CH2 99.1 

71.9, 77.9 
3E  71.9, C  

3E-CH3 1.22, s 28.2, CH3 45.5, 71.9, 72.2, 77.9 
4E 2.95, d (9.0) 77.9, CH  
5E 3.69 – 3.78 (m, 3H) 72.2, CH 77.9 
6E 1.23, d (5.5) 19.5, CH3 45.5, 71.9, 72.2, 77.9 

a The solvent used for NMR experiments was acetone-d6. 
b 13C NMR data was inferred from gHSQC and gHMBC spectra. 
c multiplicity  
d The numbers in the bracket are cited from the reference.[59] We did only 1H, gHSQC, and gHMBC experiments for this 

compound, and no C-H correlations in the gHMBC spectrum which can indicate the chemical shift values of these 
carbons.  
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Table 11. NMR data (500 MHz) of MTM SA-Phe (83)a 

Position δH (J in Hz) δCb, mult.c HMBC 
1  (203.5, C)d  
2 4.39, t (11.5) 78.3, CH 44.8, 102.2 
3 2.29 – 2.48 (m, 3H) 44.8, CH  
4 2.00 – 2.08 (m, 1H) 

2.29 – 2.48 (m, 3H) 
27.9, CH2 78.3, 108.9, 136.7 

 
4a  136.7, C  
5 6.43, bd (1H, J = 22) 101.9, CH 108.4, 111.8, 118.0, 160.4 
6  160.4, C  
7  111.8, C  

7-CH3 2.09, s 8.9, CH3 111.8, 156.9, 160.4 
8  156.9, C  
8a  108.4, C  
9  (164.5, C)d  
9a  108.9, C  
10 6.27, bd (1H, J = 20.5) 118.0, CH 27.9, 101.9, 108.4, 108.9, 

139.3 
10a  139.3, C  
1' 4.05, s 81.0, CH 27.9, 44.8, 60.2, 78.3, 174.2 

1'-OCH3 3.47, s 60.2, CH3 81.0 
2'  174.2, C  
4' 4.83, m (overlap) 54.5, CH  
5'  173.1, C  

5'-OCH3 3.78, s (overlap, 5H) 52.9, CH3 173.1 
1'' 3.24, dd (11.0, 14.0) 

3.34 – 3.44 (m, 3H) 
37.2, CH2 54.5, 130.3, 139.0 

54.5, 130.3, 139.0 
2''  139.0, C  
3'' 7.25 – 7.40 (m, 5H) 130.3, CH 37.2, 127.8, 129.6, 130.3, 

139.0 
4'' 7.25 – 7.40 (m, 5H) 129.6, CH 37.2, 127.8, 129.6, 130.3, 

139.0 
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5'' 7.25 – 7.40 (m, 5H) 127.8, CH 37.2, 127.8, 129.6, 130.3, 
139.0 

1A 5.13, bs 98.0, CH  
2A 1.74 – 1.89 (m, 2H) 

2.29 – 2.48 (m, 3H) 
38.2, CH2 81.0, 98.0 

 
3A 3.83 – 3.93 (m, 2H) 81.0, CH  
4A 3.13, t (8.8) 76.5, CH 18.9, 73.2, 81.0 
5A 3.54 – 3.67 (m, 3H) 73.2, CH  
6A 1.41, d (5.5) 18.9, CH3 73.2, 76.5 
1B 4.76, d (10.0) 100.3, CH 81.0 
2B 1.52 – 1.68 (m, 3H) 

2.23, dd (4.0, 12.0) 
40.7, CH2 72.0, 100.3 

72.0, 78.0 
3B 3.54 – 3.67 (m, 3H) 72.0, CH  
4B 2.98, t (9.0) 78.0, CH 18.2, 72.0, 73.8  
5B 3.34 – 3.44 (m, 3H) 73.8, CH 72.0, 78.0 
6B 1.34, d (6.0) 18.2, CH3 73.8, 78.0 
1C 5.03, d (9.5) 102.2, CH  
2C 1.52 – 1.68 (m, 3H) 

2.61, d (8.5) 
38.2, CH2 102.2 

76.6, 80.6 
3C 3.78, s (overlap, 5H) 80.6, CH  
4C 3.07, t (17.5) 76.6, CH 18.9, 73.3, 80.6 
5C 3.34 – 3.44 (m, 3H) 73.3, CH  
6C 1.37, d (5.5) 18.9, CH3 73.3, 76.6 
1D 4.69, d (9.5) 99.8, CH 80.6 
2D 1.74 – 1.89 (m, 2H) 

1.98 (d, 11.0) 
33.1, CH2 77.2, 100.3 

3D 3.83 – 3.93 (m, 2H) 77.2, CH  
4D 3.66 – 3.75 (m, 2H) 70.3, CH 33.1, 77.2 
5D 3.54 – 3.67 (m, 3H) 72.0, CH 17.1, 70.3, 100.3 
6D 1.29, d (6.0) 17.1, CH3 70.3, 72.0 
1E 4.99, d (9.0) 99.0, CH 45.2, 77.2 
2E 1.52 – 1.68 (m, 3H) 

1.93, d (13.0) 
45.2, CH2 99.0 

27.2, 71.8, 77.7, 99.0 
3E  , C  

3E-CH3 1.25, s 27.2, CH3 45.2, 71.8, 77.7, 99.0 
4E 2.93, d (9.5) 77.7, CH 18.9, 71.8  
5E 3.66 – 3.75 (m, 2H) 71.8, CH 77.7, 99.0 
6E 1.27, d (6.0) 18.9, CH3 71.8, 77.7 

a The solvent used for NMR experiments was methanol-d4. 
b 13C NMR data was inferred from gHSQC and gHMBC spectra. 
c multiplicity 
d The numbers in the bracket are cited from the reference.[59] We did only 1H, gHSQC, and gHMBC experiments for this 

compound, and no C-H correlations in the gHMBC spectrum which can indicate the chemical shift values of these 
carbons. 
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Table 12. NMR data (500 MHz) of MTM SA-Trp (85)a 

Position δH (J in Hz) δCb, mult.c HMBC 
1  (203.5, C)d  
2 4.43, d (11.5) 77.4, CH 44.6, 102.1 
3 2.29, d (13.0) 44.6, CH  
4 1.73 – 1.98 (m, 5H) 

2.32 – 2.42 (m, 1H) 
27.2, CH2 77.4, 80.8, 117.9, 135.9 

 
4a  135.9, C  
5 6.56, s 101.7, CH 108.2, 111.3, 117.9, 159.6 
6  159.6, C  
7  111.3, C  

7-CH3 2.14, s 8.7, CH3 111.3, 156.4, 159.6 
8  156.4, C  
8a  108.2, C  
9  (164.5, C)d  
9a  102.1, C  
10 5.93, s 117.9, CH 27.2, 101.7, 108.2, 139.1 
10a  139.1, C  
1' 4.06, s 80.8, CH 27.2, 44.6, 59.9, 77.4, 173.9 

1'-OCH3 3.47, s 59.9, CH3 80.8 
2'  173.9, C  
4' 4.95 – 5.02 (m, 2H) 53.1, CH 173.2, 173.9 
5'  173.2, C  

5'-OCH3 3.81, s 52.8, CH3 173.2 
2'' 7.21, s (overlap) 124.1, CH 110.9, 112.3, 119.3, 128.5, 

137.8 
3''  110.9, C  
3''a  128.5, C  
4'' 7.66, d (7.5) 119.3, CH 110.9, 112.3, 122.7, 128.5, 

137.8 
5'' 7.21, t (7.5) (overlap) 122.7, CH 110.9, 112.3, 119.3, 128.5, 

137.8 
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6'' 7.06, t (7.5) 119.9, CH 110.9, 112.3, 124.1, 128.5, 
137.8 

7'' 7.43, d (8.0) 112.3, CH 119.9, 124.1, 128.5 
7''a  137.8, C  
8'' 3.37 – 3.43 (m, 2H) 

3.50, dd (4.3, 15.3) 
28.0, CH2 53.1, 110.9, 124.1, 128.5 

53.1, 110.9, 124.1, 128.5 
1A 5.32, d (9.0) 97.7, CH  
2A 1.73 – 1.98 (m, 5H) 

2.48, dd (4.0, 10.5) 
37.9, CH2 97.7 

76.0, 80.3 
3A 3.65 – 3.78 (m, 4H) 80.3, CH  
4A 3.04, t (9.0) 76.0, CH 18.2, 73.2, 80.3 
5A 3.32 – 3.34 (m, 1H) 73.2, CH  
6A 1.44, d (6.0) 18.2, CH3 73.2, 76.0 
1B 4.65, dd (1.5, 9.5) 99.7, CH 80.3 
2B 1.50 – 1.66 (m, 3H) 

2.22 (m, 1H) 
40.4, CH2 71.4, 99.7 

71.4, 77.8, 99.7 
3B 3.65 – 3.78 (m, 4H) 71.4, CH 77.8 
4B 2.98, t (9.0) 77.8, CH 17.6, 71.4, 73.2 
5B 3.65 – 3.78 (m, 4H) 73.2, CH  
6B 1.31 – 1.37 (m, 6H) 17.6, CH3 73.2, 77.8 
1C 5.04, d (9.5) 101.8, CH  
2C 1.50 – 1.66 (m, 3H) 

2.56, dd (4.0, 11.0) 
37.9, CH2 80.5, 101.8 

76.0, 80.5, 101.8 
3C 3.83 – 3.93 (m, 2H) 80.5, CH 76.0  
4C 3.14, t (8.8) 76.0, CH 18.2, 73.4, 80.5 
5C 3.37 – 3.43 (m, 2H) 73.4, CH  
6C 1.31 – 1.37 (m, 6H) 18.2, CH3 73.2, 76.0 
1D 4.78, dd (1.0, 9.5) 100.0, CH 80.5 
2D 1.73 – 1.98 (m, 5H) 

1.73 – 1.98 (m, 5H) 
33.0, CH2 77.0, 100.0 

70.2, 77.0, 100.0 
3D 3.83 – 3.93 (m, 2H) 77.0, CH 100.0 
4D 3.65 – 3.78 (m, 4H) 70.2, CH 77.0 
5D 3.54 – 3.64 (m, 3H) 71.4, CH 16.8, 70.2 
6D 1.29, d (6.5) 16.8, CH3 70.2, 71.4 
1E 4.95 – 5.02 (m, 2H) 98.8, CH 27.5, 44.8, 77.0  
2E 1.50 – 1.66 (m, 3H) 

1.73 – 1.98 (m, 5H) 
44.8, CH2 71.4, 98.8  

71.4, 77.4, 98.8 
3E  70.0, C  

3E-CH3 1.24, s 27.5, CH3 44.8, 71.4, 77.4, 98.8 
4E 2.92, d (9.5) 77.8, CH 18.2, 71.4 
5E 3.54 – 3.64 (m, 3H) 71.4, CH 70.0, 98.8 
6E 1.26, d (6.5) 18.2, CH3 77.8, 71.4 

a The solvent used for NMR experiments was methanol-d4. 
b 13C NMR data was inferred from gHSQC and gHMBC spectra. 
c multiplicity 
d The numbers in the bracket are cited from the reference.[59] We did only 1H, gHSQC, and gHMBC experiments for this 

compound, and no C-H correlations in the gHMBC spectrum which can indicate the chemical shift values of these 
carbons. 
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Table 13. NMR data (500 MHz) of MTM SA-5”-Br-Trp (86)a 

Position δH (J in Hz) δCb, mult.c HMBC 
1  (203.5, C)d  
2 4.60 – 4.72 (m, 4H) 77.0, CH 44.3, 101.3 
3 2.39 (m, 1H) 44.3, CH  
4 2.09 – 2.14 (m, 1H) 

2.62 – 2.73 (m, 1H) 
27.3, CH2  

136.0 
4a  136.0, C  
5 6.78, d (7.5) 101.7, CH 108.2, 111.2, 117.3, 159.5 
6  159.5, C  
7  111.2, C  

7-CH3 2.14, bs 8.4, CH3 111.2, 159.5 
8  (157.2, C)d  
8a  108.2, C  
9  (164.5, C)d  
9a  108.7, C  
10 6.27, s 117.3, CH 27.3, 101.7, 108.2, 108.7 
10a  140.2, C  
1' 4.10, d (1.5) 80.4, CH 27.3, 44.3, 60.1, 77.0, 171.8 

1'-OCH3 3.49, s 60.1, CH3 80.4 
2'  171.8, C  
4' 4.92 – 4.99 (m, 2H) 53.0, CH 27.3, 172.6 
5'  172.6, C  

5'-OCH3 3.76, s 52.6, CH3 172.6 
2'' 7.42, s 126.1, CH 111.0, 130.2, 136.0 
3''  111.0, C  
3''a  130.2, C  
4'' 7.90, d (2.0) 121.9, CH 111.0, 112.4, 124.8, 136.0 
5''  112.4, C  
6'' 7.32, dd (1.8, 8.8) 124.8, CH 112.4, 114.0, 121.9, 136.0 
7'' 7.49, d (8.5) 114.0, CH 112.4, 124.8, 130.2 
7''a  136.0, C  
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8'' 3.36 – 3.47 (m, 3H) 27.5, CH2 53.0, 111.0, 126.1, 130.2, 
172.6 

1A 5.47, m 97.3, CH  
2A 1.84 – 1.97 (m, 3H) 

2.46 – 2.54 (m, 2H) 
37.9, CH2 81.3, 97.3 

81.3 
3A 3.83 – 3.92 (m, 2H) 81.3, CH  
4A 3.11, t (9.0) 75.7, CH 18.7, 73.1, 81.3 
5A 3.62 – 3.74 (m, 5H) 73.1, CH  
6A 1.41, d (6.0) 18.7, CH3 73.1, 75.7 
1B 4.78, dd (2.0, 9.5) 100.3, CH 81.3 
2B 1.50 – 1.64 (m, 3H) 

2.21, ddd (1.5, 4.5, 12.0) 
40.3, CH2 100.3 

 
3B 3.54 – 3.62 (m, 1H) 71.9, CH  
4B 2.91 – 3.04 (m, 3H) 77.8, CH 18.2, 73.0 
5B 3.36 – 3.47 (m, 3H) 73.0, CH  
6B 1.25 – 1.34 (m, 12H) 18.2, CH3 73.0, 77.8 
1C 5.10, d (9.5) 101.3, CH  
2C 1.50 – 1.64 (m, 3H) 

2.46 – 2.54 (m, 2H) 
38.3, CH2 101.3 

81.7 
3C 3.62 – 3.74 (m, 5H) 81.7, CH   
4C 2.91 – 3.04 (m, 3H) 76.0, CH 18.2, 73.0, 81.7 
5C 3.22 – 3.34 (m, 1H) 73.0, CH  
6C 1.25 – 1.34 (m, 12H) 18.2, CH3 73.0, 76.0 
1D 4.60 – 4.72 (m, 4H) 100.6, CH  
2D 1.78, dd (12.0, 22.0) 

1.84 – 1.97 (m, 3H) 
32.8, CH2 100.6 

77.0 
3D 3.83 – 3.92 (m, 2H) 77.0, CH  
4D 3.62 – 3.74 (m, 5H) 69.3, CH 17.1, 32.8, 77.0 
5D 3.62 – 3.74 (m, 5H) 71.2, CH  
6D 1.25 – 1.34 (m, 12H) 17.1, CH3 69.3, 71.2 
1E 4.92 – 4.99 m (2H) 98.4, CH 27.3, 77.0  
2E 1.50 – 1.64 (m, 3H) 

1.84 – 1.97 (m, 3H) 
44.7, CH2 98.4 

70.7, 77.0 
3E  70.7, C  

3E-CH3 1.20 – 1.24 (m, 6H) 27.3, CH3 44.7, 70.7, 71.2, 77.0, 98.4 
4E 2.91 – 3.04 (m, 3H) 77.0, CH  
5E 3.62 – 3.74 (m, 5H) 71.2, CH 77.0 
6E 1.20 – 1.24 (m, 6H) 18.7, CH3 44.7, 70.7, 71.2, 77.0 

a The solvent used for NMR experiments was acetone-d6. 
b 13C NMR data was inferred from gHSQC and gHMBC spectra. 
c multiplicity  
d The numbers in the bracket are cited from the reference.[59] We did only 1H, gHSQC, and gHMBC experiments for this 

compound, and no C-H correlations in the gHMBC spectrum which can indicate the chemical shift values of these 
carbons.  
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Table 14. NMR data (500 MHz) of MTM SA-Val (88)a 

Position δH (J in Hz) δC, mult.b HMBC 
1  202.8, C  
2 4.53, d (10.0) 78.2, CH  
3 2.37 – 2.58 (m, 3H) 45.0, CH  
4 2.37 – 2.58 (m, 3H) 

2.81 – 2.90 (m, 1H) 
28.5, CH2  

4a  136.3 C  
5 6.42 (bs, 2H) 102.0, CH  
6  160.2, C  
7  111.9, C  

7-CH3 2.08 (bs, 3H) 8.9, CH3  
8  156.8, C  
8a  108.7, C  
9  150.5, C  
9a  109.0, C  
10 6.42 (bs, 2H) 118.0, CH  
10a  139.6, C  
1' 4.17, s 81.3, CH 28.5, 45.0, 60.4 

1'-OCH3 3.60 (bs, 5H) 60.4, CH3 81.3 
2'  174.3, C  
4' 4.44, d (3.5) 59.1, CH 173.4 
5'  173.4, C  

5'-OCH3 3.77 (bs, 5H) 52.9, CH3 173.4 
6' 2.32 (m, 1H) 31.8, CH 19.2, 20.1, 59.1 
7' 1.05, d (6.5) 20.1, CH3 19.2, 31.8, 59.1 
8' 1.05, d (6.5) 19.2, CH3 20.1, 31.8, 59.1 

1A 5.17, d (7.0) 97.6, CH  
2A 1.74 – 1.88 (m, 2H) 

2.37 – 2.58 (m, 3H) 
38.2, CH2  

 
3A 3.77 (bs, 5H) 81.0, CH  
4A 3.03 – 3.13 (m, 2H) 76.5, CH 18.8 
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5A 3.47 – 3.53 (m, 1H) 73.4, CH  
6A 1.26 – 1.44 (m, 5H) 18.8, CH3 73.4, 76.5 
1B 4.65 – 4.75 (m, 2H) 100.2, CH  
2B 1.52 – 1.65 (m, 3H) 

2.17 – 2.24 (m, 1H) 
40.9, CH2  

3B 3.60 (bs, 5H) 72.2, CH  
4B 2.97, t (9.3) 78.3, CH 18.3, 72.2, 73.8 
5B 3.34 – 3.42 (m, 2H) 73.8, CH  
6B 1.26 – 1.44 (m, 5H) 18.3, CH3 73.8, 78.3 
1C 5.06 (bs, 1H) 102.2, CH  
2C 1.52 – 1.65 (m, 3H) 

2.58 – 2.67 (m, 1H) 
38.4, CH2  

3C 3.77 (bs, 5H) 81.2, CH  
4C 3.03 – 3.13 (m, 2H) 76.7, CH 18.8, 73.6 
5C 3.34 – 3.42 (m, 2H) 73.6, CH  
6C 1.26 – 1.44 (m, 5H) 18.8, CH3  
1D 4.65 – 4.75 (m, 2H) 100.2, CH  
2D 1.74 – 1.88 (m, 2H) 

1.95 – 2.02 (m, 1H) 
33.3, CH2  

3D 3.85 – 3.93 (m, 1H) 77.5, CH  
4D 3.68 – 3.73 (bs, 2H) 70.6, CH  
5D 3.60 (bs, 5H) 72.2, CH  
6D 1.26 – 1.44 (m, 5H) 17.3, CH3 70.6 
1E 4.99, d (9.0) 99.1, CH  
2E 1.52 – 1.65 (m, 3H) 

1.92, d (13.0) 
45.4, CH2 99.1 

71.9, 78.1 
3E  71.9, C  

3E-CH3 1.25, s 27.4, CH3 45.4, 78.1, 99.1 
4E 2.93, d (9.5) 78.1, CH 18.9, 72.0 
5E 3.68 – 3.73 (bs, 2H) 72.0, CH  
6E 1.26 – 1.44 (m, 5H) 18.9, CH3 72.0, 78.1 

a The solvent used for NMR experiments was methanol-d4. 
b multiplicity  
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3.4 Discussion 

        MTM analogues obtained in this study with the best activity are MTM SA methyl 

ester (72), MTM SA-Lys-2PGs (82), MTM SA-Phe (83), and MTM SA-Trp (85). By 

comparing these compounds, we could explore some possibilities regarding the MTM 

structure that may be beneficial for the design of next-generation MTM analogues. These 

potential ideas are described as follows: 

 

MTM SA (69) and MTM SA methyl ester (72) 

        The C-3 side chain of MTM is an important functional group for the anticancer 

bioactivity because it is supposed to interact with the DNA phosphate backbone. Our 

hypotheses about the poor bioactivity of MTM SA are that the shortened side chain is a 

disadvantage for the interaction, or that the carboxylic group on the side chain carries a 

negative charge in the physiological environment which leads to electric repulsion from 

the negatively charged phosphate groups on the DNA backbone. In order to test the 

hypotheses, we carried out an esterification reaction on MTM SA in order to mask the 

carboxylic functional group with a single methyl group. We found that the MTM SA 

methyl ester was one of the most potent MTM analogues that we had obtained from this 

study. Therefore, the data were consistent with the hypothesis about electric repulsion 

instead of side chain length because the C-3 side chain of the MTM SA methyl ester is still 

the shortest one among all MTM analogues. 

 

MTM SA-Phe (83), MTM SA-Trp (85), and MTM SA-Tyr (87) 

        MTM SA-Phe and MTM SA-Trp have similar potency as the MTM SA methyl ester, 

but the anticancer bioactivity of MTM SA-Tyr is lower than MTM. These compounds 

share a common trait in their structures of the C-3 side chain – they all contain a 

hydrophobic aromatic ring which may improve the interaction of the C-3 side chain with 

DNA through hydrophobic stacking with the pyrimidine and purine functional groups of 

DNA nucleobases. Compared to MTM SA-Phe, MTM SA-Tyr contains one additional 

hydroxyl group that could be utilized as a proton donor, but its bioactivity is obviously 

lower than MTM SA-Phe. Thus, this H bond is not necessary for the interaction between 

the C-3 side chain and DNA. 
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        Moreover, our co-workers’ unpublished work has shown that both MTM SA-Phe and 

MTM SA-Trp possessed higher specificity toward Ewing’s sarcoma than parent 

compound, MTM. Our newest hypothesis is that there is a specific interaction between the 

C-3 side chain of the two compounds and the protein FLI1 (the DNA-binding domain of 

the transcription factor EWS-FLI1). The aromatic residues could play a crucial role in the 

formation of the drug-DNA-transcription factor ternary complex. 

 

MTM SA-His (81) and MTM SA-Lys-2PGs (82) 

        The pKa value of the imidazole functional group of L-histidine is approximately 6.04. 

This indicates that in a physiological environment, a relatively small shift in pH value will 

change the average charge of MTM SA-His. This analogue is non-polar in an environment 

with a pH value above 6, but its chemical and physical properties may become different 

when some unknown factors, released by either cancer or normal cells, have made the 

environment more acidic. Therefore, it is difficult to anticipate the in vivo anticancer 

behavior of MTM SA-His. 

        In comparison to MTM SA-His, MTM SA-Lys-2PGs (the compound possessing the 

longest non-polar C-3 side chain among all MTM analogues) showed the strongest 

anticancer bioactivity in the NCI 60 cell line screen (one-dose). One of the possible 

explanations is that, like structure 83 and 85, the N-benzyl carbamate could enhance the 

interaction between the C-3 side-chain and DNA through hydrophobic stacking with the 

pyrimidine and purine functional groups. Moreover, the non-polarity of the lysine group 

may offer the C-3 side chain good physical and chemical stability. This is an advantage for 

the anticancer activity. The last possible idea is that an uncharacterized protease in the 

cancer cell could hydrolyze the peptide bond on the C-3 side chain of this compound and 

release the basic amino group of lysine (pKa = 10.67). The positively charged C-3 side 

chain may enhance lysine’s interaction with the DNA phosphate backbone, which is 

negatively charged in the physiological environment. 

 

MTM SA-Ala (78), MTM SA-Gly (80), and MTM SA-Val (88) 

        Coupling L-alanine, L-glycine, and L-valine to the C-3 side chain of MTM SA 

improved the anticancer bioactivity because these amino acids not only converted the 
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negatively charged carboxylic group to a non-polar functional group in order to enhance 

its interaction with DNA. Moreover, the only structural difference of the three amino acids 

is in the side chain at the Cβ position. L-alanine and L-valine have a methyl and isopropyl 

group, respectively, while L-glycine does not have any side chain. The approximately 

equivalent anticancer bioactivity of the coupling products (78, 80, and 88) indicates that 

changes in the aliphatic side chains at the Cβ position do not have any significant difference 

in the anticancer bioactivity or in vivo tolerance. 

 

Summary         

        In conclusion, MTM is a very potent anticancer agent with special mechanisms. 

However, its clinical utilization is limited by several side effects. Our laboratory produced 

three second-generation MTM analogues, MTM SK, MTM SDK, and MTM SA, with 

combinatorial biosynthesis. Both MTM SK and MTM SDK possess better anticancer 

activity and in vivo tolerance than the parent compound, but MTM SA, the major product 

accumulated in the culture broth, shows poor bioactivity. Through chemical semi-

synthesis, we coupled several natural and unnatural primary amines and amino acids to the 

C-3 side chain of MTM SA and generated new MTM analogues showing some useful SAR 

information for further drug design on MTM. Moreover, our unpublished data showed that 

MTM SA-Trp and MTM SA-Phe may possess better anticancer activity, specificity, and 

in vivo tolerance than MTM SK in the treatment of ESFT cancer cell lines. Therefore, these 

third-generation MTM analogues can be used as lead-structures to generate the next-

generation MTM analogues.  

 

3.5 Materials and methods 

General materials 

        Trimethylsilyldiazomethane (TMSCHN2), cystamine, methyl hydrazine, L-alanine 

methyl ester hydrochloride, L-cysteine methyl ester hydrochloride, L-glycine methyl ester 

hydrochloride, L-serine methyl ester hydrochloride, L-tryptophan methyl ester 

hydrochloride, L-tyrosine methyl ester hydrochloride, L-valine methyl ester hydrochloride, 

benzotriazol-1-yl-oxytripyrrolidinophosphonium hexafluoro-phosphate (PyBOP), DMSO 
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(molecular biology grade, ≥ 99.9%), Dichloromethane (DCM), N,N-

diisopropylethylamine (DIPEA), were purchased from Sigma-Aldrich (St Louis, MO, 

USA). 1-amino-2-propanone was purchased from Waterstone Tech (Carmel, IN, USA). 

N,N-dimethylethylenediamine was purchased from TCI America (Portland, OR, USA). L-

phenylalanine methyl ester hydrochloride was purchased from Fluka of Sigma-Aldrich (St 

Louis, MO, USA). L-histidine methyl ester hydrochloride and D-glucosamine was 

purchased from Acros of Fisher Scientific (Hapmton, NH, USA). L-tryptophan 5-Br methyl 

ester hydrochloride was purchased from CHEM-IMPEX INT’L INC (Wood Dale, IL, 

USA). L-lysine t-Bu ester N-benzyl carbamate hydrochloride was purchased from Merck 

KGaA (Darmstadt, Germany).  Methanol (MeOH), acetonitrile (ACN), celite, C18 RP 

silica gel, tryptic soy broth (TSB), LB broth, Difco agar, sucrose, potassium sulfate, 

magnesium chloride, glucose, casamino acids, yeast extract, MOPS, and trace elements 

were purchased from Fisher Scientific (Hampton, NH, USA). Steptomyces argillaceus 

ATCC 12956 was purchased from ATCC (Manassas, VA, USA). 

 

Biosynthesis of MTM SA 

        MTM SA was produced by a procedure reported previously.[60] S. argillaceus M7W1 

(mtmW minus) was inoculated on R5A agar and incubated at 28 oC for 7 days or until 

spores formed. The spores were then used as seeds to inoculate 100 mL of TSB and allowed 

to grow for 24 hours in an orbital shaker at 28 oC, 250 rpm. 3 ~ 4 mL of TSB was transferred 

to 100 mL of R5A (40 flasks) after 24-hr incubation. The cultures in R5A media were 

grown for 7 days in an orbital shaker at 28 oC, 250 rpm while the production of MTM SA 

was monitored with HPLC. After 7-day incubation, the cells were collected by 

centrifugation (4000 rpm for 25 min) at room temperature to separate the cell pellet and 

culture broth. The cell pellet was resuspended and sonicated in MeOH in order to extract 

the secondary metabolites, including MTM SA. Following the cell lysis, the cellular debris 

was filtered off, and MeOH was evaporated from the filtrate to concentrate the extract and 

combined with the culture broth. n-BuOH was used to extract MTM SA from this mixture 

(three times) and then evaporated after forming an azeotrope with water. The dried extract 

was re-dissolved in water and loaded onto a 5 × 12 cm C18 reverse-phase column that had 

been equilibrated with 10 column volumes of water. We purified MTM SA by adopting 
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the following procedure: washing column with 10% ACN in water, followed by a 

fractionation of ACN in water from 20% to 50%, and then followed by 100% ACN. After 

checking every fraction with LC-MS, the fractions containing MTM SA were mixed and 

dried before further purification with semi-preparative HPLC. We finally obtained 

approximately 80% pure MTM SA (~ 10 mg/ L) for chemical semi-synthesis. 

 

Chemical reaction conditions and purification of the products 

        The C-3 side chain of MTM SA was modified with several natural and unnatural 

primary amines and amino acids through a coupling reaction. After trying several different 

reaction conditions, we found that PyBOP was the most efficient coupling reagent for this 

coupling reaction, and DIPEA could deprotonate the terminal carboxylic acid group of 

MTM SA efficiently. The details of the reaction condition were as follows: 10 mg MTM 

SA was mixed with 3 folds of desired primary amines for side-chain modification, 3 folds 

of DIPEA, 2 folds of PyBOP, and the solvent DCM. All reactions were initiated at 4 oC 

and, the production of MTM analogues was checked with LC-MS after 16 hr. After the 

reactions were complete, the organic solvent was removed. The dried sample was re-

dissolved in MeOH for silica gel open column chromatography to purify MTM analogues 

with the following procedure: silica gel column was equilibrated with 100% DCM, 

followed by fractionation of MeOH in DCM from 5% to 65%, and then followed by 100% 

MeOH. The eluent was collected and checked with normal phase thin layer 

chromatography (TLC) to identify fractions with the desired products. After we combined 

all fractions containing the MTM analogues together and removed the organic solvent, 

semi-preparative HPLC was used to isolate the individual compounds (Waters HPLC 

system, as described in Chapter 2.5). Gradient used: solvent A: water with 2% formic acid, 

solvent B: acetonitrile. Solvent B was increased from 25% to 70% (min 0 to 19), then from 

70% to 90% (min 19 to 21), then from 90% to 100% (min 21 to 23), and maintained 100% 

for 8 minutes (min 23 to 31), then decreased back to 25% within 2 minutes (min 31 to 33), 

and kept at 25% for the last 2.5 min (min 33 to 35.5). 
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Cytotoxicity assays 

Cytotoxicity assay in Dr. Younsoo Bae’s laboratory at the University of Kentucky 

        This cytotoxicity assay was carried out by Dr. Daniel Scott at Dr. Younsoo Bae’s 

laboratory in the University of Kentucky.[59] A549 cells were cultured as specified from 

ATCC at 37 oC, 5% CO2. The cells were added into a 96-well plate (5000 cells/well) and 

permitted to attach for 24 hr. After 24-hr culture, media were replaced with the side chain 

modified MTM analogues containing media at differing concentrations ranging from 10 

µM to 1 × 10-4 µM. The cells were incubated with the drug-containing media for 72 h total 

(n = 8). Cell viability was determined using a resazurin assay that signifies mitochondrial 

metabolic activity in living cells.[61] About 10 µL of a 1 mM resazurin solution in 

phosphate-buffered saline (PBS) was added to the control and analogues-treated cells at 

the end of the treatment period. Cell viability was determined 3 h later by reading the 

fluorescence at 560 nm (Ex)/590 nm (Em). The fluorescence signals were quantified using 

a Spectramax M5 plate reader (Molecular Devices, Sunnyvale, CA, USA) equipped with a 

SoftMax-Pro software. Cytotoxicity was determined by calculating the half maximal 

inhibitory concentration (IC50) of each sample. 

 

NCI 60 cell line screen (one-dose) at NCI in the NIH 

       This 60 cell line screen (one-dose) was carried out by Dr. Jürgen Rohr’s collaborators 

at NCI in the NIH.[58] All samples were shipped to NCI at 4 oC and then stored at -20 oC 

before the assay. The information about the methodology of the in vitro cancer screen, 

sample handling and preparation,  cell lines used in the screen, and data analysis have been 

already published on NCI’s website (http://dtp.cancer.gov/branches/btb/ivclsp.html). 
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CHAPTER 4: STRUCTURAL INVESTIGATION INTO MTMC 

4.1 Structural insight into MtmC         

        The structure of MTM (11) is composed of a tricyclic polyketide-derived core with 

two alkyl side chains and five sugar moieties (three D-olivoses, one D-oliose, and a D-

mycarose) attached as disaccharide and trisaccharide chains. The trisaccharide chain is 

important for the anticancer activity of MTM because it appears to be evolutionarily 

optimized for binding DNA in a minor groove of GC-rich regions. Luz E. Núñez and co-

workers transformed S. argillaceus M7W1 (mtmW minus) with pMP3*BII, a sugar plasmid 

encoding all genes necessary for the biosynthesis of TDP-D-digitoxose, and successfully 

generated a new MTM analogue with lower anticancer activity but two folds better in vivo 

tolerance than MTM SK, a standard used to evaluate the toxicity of MTM analogues. The 

replacement of the last sugar moiety on the trisaccharide side chain of this new compound, 

demycarosyl-3D-β-D-digitoxosylmithramycin SK, with D-digitoxose revealed that 

modifying this side chain could change the bioactivities of MTM.[14a] While it is difficult 

to modify sugar moieties through chemical semi-synthesis, protein engineering of the 

enzymes involved in the biosynthesis of this trisaccharide side chain is a promising method 

to generate more MTM analogues. In order to find a better method, we are working to 

collect more information about the enzymatic mechanism through X-ray crystallography 

of these enzymes. 

        Our previous work had demonstrated that MtmC (46.6 kD) is a bifunctional enzyme 

involved in the biosynthesis of both TDP-D-olivose and TDP-D-mycarose.[45] MtmC can 

generate both substrates of MtmGIV by either reducing the C-4 keto group or transferring 

a methyl group to the C-3 position of the TDP-4-keto-2,6-dideoxy-D-olivose (TDP-KOL) 

(Figure 18).[46b] Therefore, MtmC was hypothesized to cooperate with another bi-

functional enzyme, MtmGIV, in the biosynthesis and positioning of the two sugars by 

forming a multifunctional enzyme complex. In this, MtmGIII acts by transferring the 

middle sugar, D-oliose, to premithramycin A1 (Figure 19).[47] With this hypothesis, we 

started to investigate all three enzymes’ interactions with each other using X-ray 

crystallography. We expect to gain further insights in the protein-protein interactions, the 

biochemical mechanisms of the reactions, and the substrate channeling inside this proposed 
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enzymatic complex, MtmC-MtmGIV. The enzymatic mechanism of MtmC, the first piece 

of the puzzle of this complicated biosynthetic pathway, are described in this chapter. 

 

4.2 Experimental design 

        MtmC was soluble in E. coli BL21 (DE3) and could be purified easily by Ni2+ affinity 

column chromatography, followed by FPLC for further purification. In order to clarify the 

reductase and methyltransferase functions of this enzyme, we obtained and determined 

crystal structures of apo-MtmC, binary and trinary complexes of MtmC with its 

biologically relevant ligands (Figure 18). When forming the binary complexes, we tried to 

generate crystal complexes of MtmC with two different co-substrates (SAM or NADPH), 

an alternative to the real substrate (TDP), and a co-product of methylation (SAH). 

Moreover, MtmC was also soaked with one of the co-substrates (SAM and NADPH), one 

of the substrates (TMP, TDP, and TDP-KOL) toward the generation of trinary complexes. 

Because MtmC showed high catalytic activity of methylation in our previous studies, we 

had to soak this protein with SAH and TDP-KOL at the same time, rather than SAM and 

TDP-KOL. Otherwise, the reaction would happen, and no crystal would be generated. 

Compared to the methyltransferase function, MtmC needed approximately 16 hours to 

catalyze the reduction of TDP-KOL.[45] NADPH might loosely bind to MtmC so that the 

catalytic activity of MtmC would be lower. In order to clarify this hypothesis, we soaked 

MtmC with both SAH and NADPH to understand which co-substrate possessed stronger 

affinity to MtmC. After obtaining the preliminary structural information and identifying 

the key amino acid residues for catalysis of MtmC, we generated some mutant MtmCs by 

point mutation for kinetic investigations. Through the comparison between wild-type and 

mutant MtmCs, we confirmed our inferences about the enzymatic mechanism of MtmC. 

 

4.3 Results 

Homologues of MtmC 

        When doing a BLAST search for MtmC homologues, we obtained a list of many 

bacterial SAM-dependent C-methyltransferases, and most of them belong to bacterial class 
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I family of SAM-dependent sugar C-methyltransferases.[62] The MtmC homologues whose 

functions had been clarified or postulated are listed in Table 15, and the multiple sequence 

alignment of MtmC and the listed homologues is shown in Figure 29. Among these MtmC 

homologues, TcaB9 from the biosynthetic pathway of Micromonospora chalcea for D-

tetronitrose in tetrocarcin A is the only homologue whose structure and function was 

characterized.[63] Because TcaB9 is a mono-functional C-3' methyltransferase, the 

structural information of MtmC could not only explain its special bi-functional 

mechanisms in detail but also reveal divergent structural features of this family of C-

methyltransferases responsible for recognition of specific sugar substrates. 
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Table 15. MtmC and its homologuesa 

Protein Bacterium Sugar product Pathway product Max 

score 

MtmC Streptomyces 
argillaceus 

D-mycarose/D-
olivose 

mithramycin  

SnogG2[64] 
(SnoG) Streptomyces 

nogalater 
nogalose nogalamycin 557 

SibM[65] Streptomyces 
sibiricum 

sibiromycin sibiromycin 443 

CloU[66] Streptomyces 
roseochromogenes 

DS 12.976 

5-methyl-L-
rhamnose 

clorobiocin 425 

NovU[67] Streptomyces 
spheroids (niveus) 

NCIB 11891 

L-novioseb novobiocin 421 

CouU[68] Streptomyces 
rishiriensis DSM 

40489 

L-novioseb coumermycin A1 409 

ORF14/SmtA
[69] 

Amycolatopsis 
orientalis 

L-epivancosamine chloroeremomycin
vancomycin 

282 

TcaB9[63] Micromonospora 
chalcea 

D-tetronitrose tetrocarcin A 280 

TiaS2[70] Dactylosporangium 
aurantiacum subsp. 
hamdenensis NRRL 

18085 

modified D-
rhamnose 

Tiacumicin B 236 

AviG1[71] Streptomyces 
viridochromogenes 

Tü57 

L-mycarose Avilamycin A 196 

TylCIII[72] Streptomyces 
fradiae 

L-mycarose tylosin 185 

EryBIII[73] Saccharopolyspora 
erythraea 

L-mycarose erythromycin 167 

a The homologues are listed in the order of their max score of BLAST with MtmC. 
b Novobiocin and coumermycin A1 contain the same deoxysugar moiety. 
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Figure 29. Multiple sequence alignment of MtmC and its homologues. 
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Overview of crystal structures of MtmC with its substrates and co-factors 

        Through crystallization, we obtained and determined structures of three binary 

complexes (MtmC-SAM, MtmC-SAH, and MtmC-TDP) and two ternary complexes 

(MtmC-SAH-TDP-4-keto-D-olivose and MtmC-SAH-TDP) (Figure 30). We failed to 

generate any crystal of apo-MtmC with good quality suitable for X-ray diffraction 

experiment, likely because of the flexibility of the active site involved in the substrate and 

co-substrate binding. The overall structures of MtmC and TcaB9 are similar, and the TcaB9 

structure was used as a template to determine the structures of MtmC binary and ternary 

complexes (molecular replacement approach).[63] 

        Like TcaB9, the overall structure of MtmC is a monomer with a tripartite fold. The 

N-terminal domain ranging from residue 1 to 60 is composed of a β-sheet and extensive 

regions lacking secondary structure where a Zn2+ ion was bound tightly to four conserved 

cysteine residues (Cys13, Cys16, Cys56, and Cys59) (Figure 30 A). The conformation 

type of the central (residues 69-288) and the C-terminal domains (residues 289 – 423) are 

Rossman-type fold with a co-substrate and a substrate binding site, respectively. In all of 

the binary and ternary complexes, the ligands were very clearly resolved in the strong omit 

Fo – Fc electron density map (Figure 30). We found that their structures are similar to each 

other except a region of the central domain (residues 76 – 84), whose residues can interact 

with SAM/SAH and the sugar moiety of the substrate. The structural differences in this 

region are described in detail in the following two sections. 
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Figure 30. Cartoon representation of crystal structures of MtmC with its biologically 

relevant ligands. The ligands are shown as sticks and colored based on the type of elements. 

(C: yellow, O: red, S: orange, P: pink, N: blue, Zn: green cyan) The N-terminus is colored 

blue white; the central domain is colored wheat; the C-terminus is colored yellow orange; 

the sensor loop is colored lemon; the zinc ion is colored green cyan. (A) Overall structure 

of MtmC-SAH-TDP-4-keto-D-olivose (MtmC-SAH-TDP-KOL). The close-up views of 

(B) MtmC-SAH, (C) MtmC-SAM, (D) MtmC-TDP, (E) MtmC-SAM-TDP. (The 

structures of MtmC crystal complexes was resolved by Dr. Tsodikov and Dr. Hou in Dr. 

Tsodikov’s laboratory.) 
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MtmC-SAM and MtmC-SAH complexes 

        The conformation of the binary complexes, MtmC-SAM and MtmC-SAH, are similar. 

In their crystal structures, the central domain contains a conserved binding pocket that is 

very similar with the one of TcaB9 for the cofactor and its product (Figure 30 B and C). 

However, we observed a striking structural difference in the conformation of a loop region, 

which is located between residues 76 and 84 of MtmC and will be called as sensor loop. 

The backbone of the sensor loop in MtmC can switch its conformation based on whether 

the substrate or co-substrate occupies their respective binding pockets. In contrast, the 

conformation of this region in TcaB9 does not show any significant changes in its crystal 

structures of binary or ternary complexes with the co-substrate, substrate, or products.[63, 

74] This difference was more obvious when we compared the binary and ternary complexes 

of MtmC. 

        When only SAM/SAH or only TDP is bound to the binding pocket of MtmC, the 

conformations of the sensor loop allows relatively open access to the active site for ligands 

from outside (Figure 30 B, C, and D). In contrast, the binding of both SAM and TDP to 

their respective binding pocket makes the sensor loop adopt a conformation closer to the 

active site in order to catalyze the methyl-transfer reaction (Figure 30 E). This idea is 

supported by the MtmC-SAH-TDP-KOL complex, in which the sensor loop fits in the 

closest state and sterically blocks the dissociation of the ligands from the active site (Figure 

30 A). 

 

MtmC-SAH-TDP-KOL, MtmC-SAM-TDP, and MtmC-TDP structures 

        In order to mimic the reaction intermediate prior to the catalytic methyl transfer by 

MtmC, we generated two ternary complexes MtmC-SAH-TDP-KOL and MtmC-SAM-

TDP to observe a number of interactions between the amino acid residues and the substrate 

(Figure A and E).[63] These interactions are similar to those observed in the ternary 

complex TcaB9-SAH-TDP-3-amino-2,3,6-trideoxy-4-keto-D-glucose, but the residue 

which forms a van der Waals contact between its Cβ-methylene group and the 5-methyl 

group of the sugar is His178 instead of Asn177 in TcaB9 (Figure 31). The 3-OH group of 
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TDP-KOL is located in a relatively hydrophilic environment and can form H bonds with 

the side chains of Glu225 and His182 (Figure 31). Tyr77, an amino acid residue on the 

sensor loop, can also form a weak H bond with this hydroxyl group (with an O-O distance 

of 3.35 Å), but its conformation does not change significantly in different crystal 

complexes (Figure 31). The amino acid residue acting as the catalytic acid for the catalytic 

methyl transfer in TcaB9 is His225, which forms a hydrogen bond with the 4-keto group 

of the TDP-KOL while the residue that plays the same role in MtmC is His226 (Figure 

31). The methylation catalyzed by MtmC occurs with inversion of stereochemistry at the 

C-3 position of the substrate, and this is supported by the structure of the ternary complex 

in which the 3-OH group of the sugar points toward the sulfur atom of SAH (Figure 31). 

In contrast, the 3-amino group of TDP-3-amino-2,3,6-trideoxy-4-keto-D-glucose in the 

ternary complex of TcaB9 points away from the SAH, indicating that methylation carried 

out by this enzyme happens with stereochemical retention. 
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Figure 31. Active site of the ternary complex, MtmC-SAH-TDP-KOL. Amino acid 

residues involved in the catalysis of methylation are shown and marked here. (C: yellow, 

O: red, S: orange, P: pink, N: blue, Zn: green cyan) H bond are marked as dashed lines. 

(The structure of MtmC in complex with the substrate (TDP-KOL) and co-product (SAH) 

was resolved by Dr. Tsodikov and Dr. Hou in Dr. Tsodikov’s laboratory.) 

 

        The sensor loop and the Tyr79 residue in it can exhibit a progression of conformation 

states in the complexes including MtmC-SAM/SAH, MtmC-TDP, MtmC-SAM-TDP, and 

MtmC-SAH-TDP-KOL. When MtmC only binds to SAM or SAH, Tyr79 points out of the 

active site (Figure 32 A). When only TDP occupies the binding pocket of MtmC, the 

conformation of the sensor loop remains unchanged, but Tyr79 rotates by 130o where it 

does not interact with the TDP phosphates (Figure 32 C). Compared to the MtmC-SAM 

and MtmC-SAH complexes, the conformation of the sensor loop in the MtmC-TDP 

complex is partially disordered, and this indicates that this sensor loop undergoes an order-

disorder transition when binding and releasing SAH (Figure 30 D). This is probably 
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because Tyr77, Tyr79, and Thr81 in this loop form a part of the cofactor binding interface, 

which can be observed in the ternary complexes (Figure 32). In the MtmC-SAM-TDP 

complex, the backbone of the sensor loop around Tyr79 is moved toward the active site for 

catalysis of the methyl transfer, but Tyr79 points out of the active site probably in order to 

prevent its aromatic ring from being located in an unfavorable charged environment of the 

TDP phosphate groups. In this conformation, Tyr79 does not interact with either SAM or 

TDP (Figure 32 B). In the complex MtmC-SAH-TDP-KOL, the sensor loop remains in 

the same position and conformation while the side chain of Tyr79 moves closer to the 

substrate (Figure 32 D). Its position is different from that in the MtmC-SAM complex by 

180o and at an appropriate position to cap the substrate by the steric contact between its 

phenol ring and the nonpolar sugar-β-phosphate junction as well as the formation of a H 

bond between the hydroxyl group of Tyr79 and the α-phosphate (Figure 31). In this 

conformation, Tyr79 can also interact sterically with SAH. The conformation of the sensor 

loop and Tyr79 in this ternary complex, MtmC-SAH-TDP-KOL, is similar to what we have 

observed in all structures of TcaB9 no matter whether it binds to the co-substrate, substrate, 

or products. In other words, compared to TcaB9, MtmC shows conformational plasticity 

of the sensor loop and its residues, especially Tyr79. Besides, we have observed that water 

molecules fill the empty co-substrate or substrate binding pockets in all of the complexes, 

except MtmC-SAH-TDP-KOL. Specifically, a water molecule is invariably found in place 

where the 3-OH group of the TDP-KOL is positioned in the MtmC-SAH-TDP-KOL 

complex (Figure 32 A, B, and C). 
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Figure 32. The conformational changes of Y79 residue in (A) MtmC-SAM, (B) MtmC-

SAM-TDP, (C) MtmC-TDP, and (D) MtmC-SAH-TDP-KOL complexes. The sensor loop 

is colored in black, except the Y79 residue that is colored in yellow, i.e. as in the Figure 

30 and 31. (C: black/yellow, O: red, S: orange, P: pink, N: blue, Zn: green cyan). The water 

molecule is shown as a sphere with blue color. (The structures of MtmC crystal complexes 

was resolved by Dr. Tsodikov and Dr. Hou in Dr. Tsodikov’s laboratory.) 

 

Methyltransferase activity of wild-type and mutant MtmCs 

        In order to confirm the importance of Tyr79 for the enzymatic mechanisms of MtmC, 

we measured the rate of SAH formation upon the generation of TDP-4-keto-D-mycarose 

(60) through in vitro assays. In order to understand the importance or Tyr79, we evaluated 

the relative activity of wild-type MtmC and its mutants instead of measuring their kinetic 

properties.[45] We found that both of the MtmC mutants (Tyr79Ala and Tyr79Phe) were 

approximately 6.25-fold less active than the wild type (Figure 33). This data supported our 

proposed role for Tyr79 residue in positioning the substrate in the appropriate orientation 
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for catalysis through the interaction between its hydroxyl group and the α-phosphate of the 

TDP moiety in the substrate (Figure 31 and 32 D). 

 

 
Figure 33. Relative activity of wild-type MtmC and its mutants (Tyr79Ala and Tyr79Phe), 

relative to that of the wild-type enzyme. 

 

4.4 Discussion 

        MtmC and MtmGIV are important enzymes with multiple functions involved in the 

biosynthesis of the trisaccharide side chain of MTM. Understanding of their enzymatic 

mechanisms is necessary toward generation of novel MTM analogues through protein 

engineering. As a stepping stone to elucidate how these two enzymes cooperate, we 

generated and determined the binary and ternary crystal complexes of MtmC with its 

biologically relevant ligands. According to the amino acid sequence and crystal structure, 

MtmC possessed a highly conserved TDP-sugar binding pocket in the bacterial class I 

family SAM-dependent sugar C-methyltransferases. The only access to the sugar moiety 

without any major protein conformational change is via the SAM-binding channel so that 

MtmC must use the same channel to bind either NADPH or SAM, depending on the 
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catalytic function. Our structural data and biochemical data show that the sensor loop of 

MtmC, especially the Tyr79 residue, likely plays an important role in removal of water 

from the active site, the control of substrate and co-substrate binding, and product release. 

With the ability to form a bidentate interaction with both the sugar and the TDP moieties 

of the substrate, Tyr79 is a key amino acid residue for MtmC to discriminate TDP-sugar 

from TDP or other ligands from the environment. The absence of this interaction in the 

complex MtmC-SAM-TDP supports this idea. Moreover, the hydrogen bond formation 

between the hydroxyl group of Tyr79 and the TDP moiety is an important factor for the 

catalytic turnover because the catalytic turnover of the Tyr79Phe mutant is obviously less 

active than the wild type. The interaction between Tyr79 and SAM is also probably 

beneficial for the catalysis. 

        The active site of TcaB9, a monofunctional methyltransferase, is too constricted for 

binding of any co-substrate larger than SAM, like NADPH, because its Tyr78, a 

homologous residue to Tyr79 of MtmC, is always located inside the active site (the “in” 

conformation). We propose that MtmC has uniquely evolved to accommodate NADPH by 

swinging the conformation-flexible Tyr79 out of the active site to create more room for 

NADPH binding (the “out” conformation). Tyr78 of TcaB9 does not undergo this kind of 

conformational change and thereby it cannot utilize NADPH for reduction reaction. We 

built a model of MtmC with NADPH binding to the co-substrate pocket in the Tyr79 “out” 

conformation with the ribose ring of SAM or SAH occupying the same site (Figure 34). 

In this model, the nicotinic acid moiety of NADPH is in place of the phenol ring of Tyr79 

in the “in” conformation while its adenine base is exposed to the environment. This is 

because the co-substrate binding pocket of MtmC is highly conserved to mainly 

accommodate SAM, like other homologous enzymes in this family.  When determining the 

structure of the crystals grown or soaked with NADPH or NADPH and the substrate, we 

observed only partial density for NADPH. This reflects a fact that NADPH may be only 

loosely bound to MtmC, and the affinity is insufficient for building its structure in the 

active site of MtmC for crystal generation. 
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Figure 34. Model of the MtmC-NADPH-TDP-KOL complex. In this model, the 

conformation of MtmC from the structure of MtmC-SAM was used. (This model was 

generated by Dr. Tsodikov in Dr. Tsodikov’s laboratory.) 

        In conclusion, MtmC possesses conformational flexibility that its other homologues 

do not have so that MtmC can utilize both SAM and NADPH as cofactors to catalyze 

reduction and methylation on TDP-KOL. While both the sugar donors (59 and 61) for the 

biosynthesis of the first and third sugar moieties on the trisaccharide side chain of MTM 

are generated and transferred by MtmC and MtmGIV, the biosynthesis of the second sugar 

moiety, D-oliose (58), seems independent and not involved in the cooperation between 

MtmC and MtmGIV. However, there are still many intriguing questions that need to be 

answered. For example, how is the product of the first MtmC/MtmGIV reaction passed 

onto MtmGIII and then back to MtmC/MtmGIV? Is it possible that MtmC, MtmGIV, 

MtmTIII, and MtmGIII are assembled into a large multienzyme complex through 

uncharacterized protein-protein interactions? We hope that these questions could be 

answered in the near future. 
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4.5 Materials and methods 

General materials 

        Thymidine 5′-monophosphate (TMP) disodium salt hydrate, thymidine 5′-

diphosphate (TDP) sodium salt, β-nicotinamide adenine dinucleotide phosphate (NADPH) 

reduced tetra(cyclohexylammonium) salt, MES, ammonium acetate, and PEG 4000 were 

purchased from Sigma-Aldrich, Co. (St. Louis, MO, USA). NdeI, XhoI, buffers for 

restriction enzymes, S-adenosylmethionine solution (32 mM) was purchased from New 

England Biolabs, Inc. (Ipswich, MA, USA). Tris-acetate-EDTA (TAE) buffer, tris base, 

agarose, ethidium bromide, ampicillin sodium salt, and Slide-A-Lyzer® dialysis cassette 

(20 K MWCO, 0.5 – 3.0 mL capacity) were purchased from Thermo Fisher Scientific, Inc. 

(Hampton, NH, USA). Vector pET22b(+) was purchased from Novagen of Merck KGaA 

(Darmstadt, Gemany). The QuikChange kit for site-directed mutation and Pfu Ultra DNA 

polymerase were purchased from Agilent Technologies, Inc. (Santa Clara, CA, USA). 

DNA polymerase for high-GC content DNA was purchased from Clontech Laboratories 

from Takara Bio, Inc. (Otsu, Shiga, JP). All necessary primers for PCR were synthesized 

by Integrated DNA Technologies, Inc. (Coralville, IA, USA). 24-well protein crystal 

growth trays were purchased from Hampton Research Corp. (Aliso Viejo, CA, USA). 

HisTrapTM HP column for protein purification was purchased from GE Healthcare of 

General Electric, Co. (Fairfield, CT, USA). The column installed on FPLC was a size-

exclusion Sephacryl S-200 column, also purchased from GE Healthcare. Microscope used 

to observe crystal formation was purchased from Nikon, Co. (Shinagawa, Tokyo, JP). 

Liquid nitrogen used to rapidly freeze crystals was purchased from Scott Gross Company, 

Inc. (Lexington, KY, USA). PCR was carried out in our laboratory with the PCR machine, 

GeneAmp® PCR system 2700, purchased from Applied Biosystems of Thermo Fisher 

Scientific, Inc. (Hampton, NH, USA). DNA sequencing was carried out by ACGT, Inc. 

(Wheeling, IL, USA) and GENEWIZ, Inc. (South Plainfield, NJ, USA). The type of the 

FPLC machine (BioLogic DuoFlow) used for protein purification was purchased from Bio-

Rad Laboratories, Inc. (Hercules, California, U.S.A). The UV spectrophotometer, UV-

1800, used to determine the protein concentration was purchased from Shimadzu Corp. 

(Kyoto, JP)  X-ray diffraction experiments were carried out by the staff of sectors 21 and 



102 
 

22 of the Advanced Photon Source at the Argonne National Laboratory (Argonne, IL, 

USA). Other general materials used in this study are described in Chapter 2.5. 

 

Protein expression and putification 

        The original published sequence of the mtmC gene from S. argillaceus contained 

several mistakes; the corrected DNA sequence was deposited into GenBank as entries 

GUSub26196 and GUSub26197 for the nucleotide and amino acid sequences in 2014 

November, respectively. mtmC was constructed in the vector pET22b(+) purchased from 

Novagen for protein over-expression. The protein contains an N-terminal 6 × His tag and 

could be purified with immobilized metal affinity chromatography (IMAC). After 

amplifying the mtmC gene in E. coli XL1 Blue, plasmid isolation were carried out with 

GeneJet plasmid miniprep kit and then used to transform E. coli BL21 (DE3) competent 

cells for protein over-expression. 1% volume of seed E. coli BL21 (DE3) culture with 

desired plasmid was inoculated into 1 liter of LB supplemented with 100 µg/mL ampicillin 

(final concentration) and then incubated at 37 °C until OD600 value reached 0.2~0.3. The 

E. coli culture was transferred to 18 °C for additional 90-minute incubation, followed by 

the addition of 100 µM β-D-1-thiogalactopyranoside (IPTG, final concentration) to induce 

protein over-expression, and target proteins were obtained after overnight incubation at 18 

°C. E. coli BL21 (DE3) cell pellets were collected by centrifugation (4000 rpm for 25 min) 

at room temperature, washed twice with 20 mL lysis buffer (40 mM Tris, 400 mM NaCl, 

10% glycerol, 2 mM β-ME, pH 8.0), re-suspended in 25 mL lysis buffer for sonication, 

and finally centrifuged at 16,500g for 35 min at 4 °C to remove cell debris. The supernatant 

containing target proteins was loaded on HisTrapTM HP column that contains Ni2+ and had 

been equilibrated with 10-fold volume lysis buffer in advance. Impurities and target 

proteins were eluted by washing buffer (40 mM Tris, 400 mM NaCl, 10% glycerol, 2 mM 

β-ME, 20 mM imidazole, pH 8.0) and elution buffer (40 mM Tris, 400 mM NaCl, 10% 

glycerol, 2 mM β-ME, 200 mM imidazole, pH 8.0), respectively. We used Slide-A-Lyzer® 

dialysis cassette (20 K MWCO) to dialyze the protein in dialysis buffer (20 mM Tris, 100 

mM NaCl, 10% glycerol, 2 mM β-ME, pH 7.5), followed by concentration with Millipore 

Amicon Ultra-15 ultracentrifugal filters (30K) to approximately 80 µM. MtmC which was 

desalted through dialysis was used for in vitro assays instead of generating crystals. For 
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crystallization, the purified protein was further purified with a size-exclusion Sephacryl S-

200 column (GE Healthcare) equilibrated in 40 mM Tris-HCl (pH 8.0, adjusted at room 

temperature), 100 mM NaCl, and 2 mM β-ME. The fractions were checked with SDS-

PAGE gel, and samples containing the desired protein were mixed and concentrated by 

using an Amicon ultracentrifugal filters to 12 mg/mL. The measured sizes of purified 

proteins were in agreement with the calculated size (Figure 35).  

 

 
Figure 35. MtmC sample before purification by FPLC and the 12nd - 20th fractions 

collected from FPLC experiment. 

 

Crystallization, data collection, and crystal structure determination 

        In the beginning, we followed a sparse incomplete factorial screen (Hampton 

Research Crystal Screen) to search for an initial crystallization condition by vapor diffusion 

in hanging drops at 21 °C. After optimizing the initial condition, we set drops containing 1 

µL of MtmC (12 mg/mL) with 1 mM co-substrate or substrate and 1 µL of the reservoir 

solution (100 mM MES, pH 5.5, 200 mM ammonium acetate, and 16% PEG 4000). The 

growing crystals were gradually transferred into the cryoprotectant buffer (100 mM MES, 

pH 5.5, 200 mM ammonium acetate, 16% PEG 4000, and 20% glycerol) and frozen in 

liquid nitrogen immediately. 

        X-ray diffraction data were collected at 100 K at beamlines 21ID-G (for MtmC-SAM-

TDP crystals) and 22ID (for other crystals) of the Advanced Photon Source at the Argonne 

75 kD 
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National Laboratory and then processed with HKL2000.[75] The structure of the MtmC-

SAM-TDP complex was resolved by using molecular replacement with MOLREP with the 

structure of TcaB9, one of the homologues of MtmC which had been resolved structurally, 

as a search model.[76] The obtained structure was then iteratively rebuilt and refined with 

COOT and REFMAC.[77] The structures of the co-substrate (SAM) and substrate (TDP) 

were modeled without uncertainty into strong omit Fo – Fc electron density. The refined 

structure of MtmC-SAM-TDP complex was used as a starting point to rebuild and refine 

all other structures of MtmC complexes. The data collection and refinement statistics are 

listed in Table 16. Crystal structures resolved in this study were deposited in the Protein 

Data Bank (PDB) as entries 4RV9 (MtmC-SAH), 4RVD (MtmC-SAM), 4RVF (MtmC-

TDP), 4RVG (MtmC-SAM-TDP), and 4RVH (MtmC-SAH-TDP-KOL). 

 

Site-directed mutagenesis of MtmC 

        In order to confirm our ideas about the enzymatic mechanism of MtmC, a site-directed 

mutant of the key amino acid residue for the reaction, Tyr79, to replace it with either Phe 

or Ala was prepared by Dr. Hou in Dr. Tsodikov’s laboratory. MtmC Tyr79Phe and MtmC 

Tyr79Ala mutants were generated by using the QuickChange kit. We followed the 

manufacturer’s protocol to incorporate the desired mutations into the plasmid, pET22b(+)-

mtmC. The plasmids containing mutant mtmC gene were shipped to the University of 

Kentucky DNA Sequencing Core for confirmation and used E. coli XL1 Blue to generate 

more plasmids. MtmC mutants was overexpressed in E. coli BL21 (DE3) and then purified 

like the wild-type MtmC for in vitro kinetic assay (Figure 36). 
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Figure 36. SDS-PAGE gel of the MtmC Tyr79Ala and MtmC Tyr79Phe mutants after 

dialysis. 

 

Methyltransferase activity assays 

        The product of the 3-methylation reaction by wild-type MtmC, TDP-4-keto-D-

mycarose, could not be observed likely because the axial 3-OH group generated 

concomitantly with 3-methylation attacked the proximal phosphate to cleave the 

phosphodiester bond of TDP, resulting in the loss of UV absorbance.[46b] The cleaved TDP 

would be mixed with other TDP that originally presented in the sample, and it was difficult 

to precisely measure the formation of the product. For this reason, we monitored formation 

of the coproduct SAH. Kinetic assays were conducted for the wild-type and mutant MtmC 

(Tyr79Phe and Tyr79Ala) by HPLC (Waters 600 system, consisting of a controller, a 

Waters 996 photodiode array detector, and a Delta 600 pump). A 100 μL reaction mixture 

contained 25 mM Hepes (pH 7.5), 50 mM NaCl, 1 mM EDTA, 90 μM TDP-KOL, 2 mM 

SAM, and 5 μM MtmC. The blank control that was used to subtract the background 

contained the same ingredients but did not include any MtmC. The reactions were initiated 

by the addition of enzyme and the mixtures incubated at 22 °C, to minimize the 

nonenzymatic degradation of SAM; 50 μL aliquots were quenched at 60 and 300 min (in 

the range where the SAH concentration increased linearly over time) with 5 μL of 1.5 g/mL 
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trichloroacetic acid (final concentration of 13.6% (w/v)) and then incubated on ice for 10 

min. After centrifugation at 13000 rpm for 3 min, 50 μL of the supernatant was passed 

through a Phenomenex Kinetex 5 μm EVO C18 100 Å column (250 mm × 4.6 mm) and 

eluted isocratically in 10 mM ammonium formate with 5% methanol (pH 3.0) at a rate of 

0.8 mL/min. The area under the chromatogram absorbance peak at 260 nm corresponding 

to SAH was measured. The rate of conversion of SAM to SAH for the wild-type enzyme 

and the two mutants was calculated from the 60 and 300 min data points. 
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Table 16. X-ray diffraction data collection and structural refinement statistics (This table was edited by Dr. Hou and Dr. Tsodikov.) 

 MtmC-SAH-TDP-KOL MtmC-SAM-TDP MtmC-SAM MtmC-SAH MtmC-TDP 
      

Data Collectiona 

space group I4122 I4122 I4122 I4122 I4122 
no. of monomers per 
asymmetric unit 

1 1 1 1 1 

unit cell dimensions      
            a, b, c (Å) 135.4, 135.4, 127.3 134.7, 134.7, 127.8 134.8, 134.8, 129.7 134.2, 134.2, 130.0 134.2, 134.2, 132.3 
            α, β, γ (deg) 90, 90, 90 90, 90, 90 90, 90, 90 90, 90, 90 90, 90, 90 
resolution (Å) 50 – 2.35 (2.39 – 2.35) 50 – 2.3 (2.34 – 2.30) 50 – 2.2 (2.24 – 2.20) 50 – 2.2 (2.24 – 2.20) 50 – 2.7 (2.8 – 2.7) 
I/σ 28.2 (2.5) 40.3 (4.7) 39.9 (3.2) 41.8 (3.7) 25.2 (3.3) 
completeness (%) 95.7 (98.9) 99.5 (100) 100 (100) 99.0 (100) 100 (100) 
redundancy 6.6 (6.5) 9.8 (10) 8.1 (8.2) 9.6 (9.8) 9.7 (10.0) 
Rmerge 0.075 (0.61) 0.077 (0.499) 0.064 (0.625) 0.087 (0.627) 0.129 (0.676) 
no. of unique reflections 21204 24771 28993 28774 16056 

Structural Refinement 

resolution (Å) 40 – 2.35 40 – 2.3 40 – 2.2 40 – 2.2 40 – 2.7 
R (%) 20.6 21.2 21.4 20.3 20.9 
Rfree (%) 23.1 23.8 25.7 24.1 24.8 
rmsd from ideal      
            bond lengths (Å) 0.005 0.005 0.006 0.006 0.005 
            bond angles (deg) 1.01 1.08 1.13 1.1 0.97 
ramachadran plotb (% 
residues by region) 

     

            most allowed 98.1 97.1 92.2 97.8 90.5 
            additional allowed 1.9 2.9 7.3 2.2 8.7 
            generously allowed 0 0 0.6 0 0.3 
            disallowed 0 0 0 0 0.6 (two residues)c 

a Values in parentheses refer to data for the highest-resolution shell. 
b PROCHECK statistics.[78] 
c The outliers (His178 and Ser82), which are both in or near the active site, fall in the immediate vicinity of the allowed regions of the Ramachandran plot, within the uncertainty of 

the modest resolution of the MtmC-TDP structure. His178 faces the active site pocket, and its conformation may be somewhat strained by binding of the unnatural TDP ligand; 
Ser82 is in the sensor loop and is somewhat disordered in this complex. 
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CHAPTER 5: SUMMARY AND FUTURE DIRECTIONS 

        In this dissertation, the second and third chapters describe the generation of new 

natural product analogues with better biological activities by chemoenzymatic methods. 

The fourth chapter, we focus on the structural determination of MtmC’s crystal complexes 

and the enzymatic actions. The insights we obtained are summarized as follows: 

5.1 Specific aim 1: Study and use of enzymes for modification of polycarcin V. 

        We used polycarcin V (PV) as a model compound for the SAR investigation regarding 

the sugar moiety. Three heterologous, but substrate-flexible methyl transferases were used 

to generate four new PV derivatives. According to the cytotoxicity assay, the interaction 

between the L-rhamnopyranose of PV and histone H3 might be stronger than the D-

fucofuranose of GV. In addition, we found that 2'-OH of L-rhamnopyranose is a necessary 

proton donor for the H bond formation with histone H3. On the other hand, modifying 

either 3'-OH or 4'-OH with methyl groups might improve the interaction.  

        Our findings provide a new opportunity for the improvement of GV-type aryl-C-

glycosides. Literature shows that the vinyl side chain of gilvocarcin V is not as important 

as scientists originally proposed because gilvocarcin M (with methyl side chain) still 

possesses antibiotic and anticancer activities.[79] In addition, the vinyl group could be 

replaced by either an epoxide or oxime group without losing anticancer activity.[27b] In 

comparison, 2',3'-di-OMe-PV lost its anticancer activity after 2'- and 3'- hydroxyl groups 

of the sugar moiety were converted to methoxy groups. This reveals an interesting 

hypothesis – the sugar moiety may be more important for the anticancer activity than the 

vinyl side chain. Therefore, it is important to understand how the sugar moiety interacts 

with the proposed target, histone H3, because Akira Matsumoto and colleagues did not 

provide any details about it.[26] Looking for the future, scientists need to generate crystal 

complexes of PV and major histone H3 variants.[80] The structural insights explored from 

these crystals may provide helpful information not only to explain the data of our 

cytotoxicity assay but also to confirm the importance of the sugar moiety of PV. If the 

anticancer activity of polycarcin V primarily comes from the sugar moiety, the clinical use 

of GV-type aryl-C-glycosides would not be limited to regional skin diseases. Scientists 

could replace the vinyl side chain of PV, which needs UV-visible light for activation, with 
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other functional groups which also help the anticancer behaviors in order to improve its 

bioactivity and/or water solubility. 

5.2 Specific aim 2: Chemical derivatization of mithramycin. 

        After purifying MTM SA from the culture broth of S. argillaceus M7W1, we used 

PyBOP as the reagent to couple MTM SA with several natural and unnatural primary 

amines. In addition, we used TMSCHN2 to transfer a methyl group onto the carboxylic 

acid group of MTM SA and generated MTM SA methyl ester. According to the data of the 

cytotoxicity assay and NCI 60 cell line screen, MTM SA methyl ester, MTM SA-Phe, 

MTM SA-Trp, and MTM SA-Lys-2PGs are the most potential MTM SA analogues. Our 

hypothesis is that modifying MTM SA with amino acids with aromatic rings could improve 

the anticancer activity. The possible explanation is that the aromatic rings could enhance 

the interaction between the C-3 side-chain and DNA through hydrophobic stacking with 

the pyrimidine and purine functional groups. In addition, MTM SA-Trp and MTM SA-Phe 

are potential lead structures against Ewing’s sarcoma because of their excellent specificity 

and in vivo tolerance.  

        Looking for the future, we would like to improve the bioactivities of MTM SA-Phe 

and MTM SA-Trp against Ewing’s sarcoma because MTM was reported as the only lead 

structure, which could act on the previously believed undruggable target (EWS-FLI1).[43] 

In order to achieve this goal, we need to understand the mechanism of the two MTM 

analogues and explain why they can show higher specificity and in vivo tolerance than the 

parent compound. Our hypothesis is that the aromatic ring on their modified C-3 side 

chains can specifically interact with the FLI1 domain. If our hypothesis is true, the aromatic 

ring could be further modified to improve the compound-protein interaction. We and our 

collaborators are working to generate crystal complexes of MTM analogues, FLI1, and 

short DNA sequences in order to demonstrate this hypothesis. Moreover, the recently 

discovered MTM analogue, demycarosyl-3D-β-D-digitoxosylmithramycin SK, showed 18 

folds higher maximum tolerated dose in animal experiments and better anticancer activity 

than MTM.[14a, 81] This is the most potent MTM-type antitumor antibiotic so far. This 

reveals that modification of the sugar E is a valuable strategy for the development of novel 

MTM analogues. If we could find a method to modify the sugar E of both MTM SA-Phe 
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and MTM SA-Trp, these compounds may show higher potential for the clinical treatment 

against Ewing’s sarcoma. Compared to chemical methods, combinatorial biosynthesis and 

enzymatic modification are more feasible and efficient methods for this work. 

5.3 Specific aim 3: Structural investigation into MtmC. 

        We obtained three binary and two ternary complexes of MtmC with its co-substrate 

(SAM), substrates (TDP or TDP-4-keto-D-olivose), and co-product (SAH) for X-ray 

diffraction experiments. The quality of these crystal complexes was sufficient to provide 

structural information of MtmC in the range of 2.2 – 2.7 Å resolution. Moreover, the 

ligands were very clearly resolved in the strong omit Fo – Fc electron density map in all of 

the binary and ternary complexes. The sensor loop of MtmC, especially the Tyr79 residue, 

possesses conformational flexibility to move “in” and “out” of the active site. In order to 

confirm the importance of the Tyr79, we generated two MtmC mutants, Tyr79Phe and 

Tyr79Ala. Both of them showed approximately 6.25 times lower catalytic activity than the 

wild-type MtmC. Our biochemical data had proved the importance of the hydrogen bond 

formation between the hydroxyl group of Tyr79 and the α-phosphate group of TDP moiety 

in the substrate. Moreover, because MtmC possessed a highly conserved TDP-sugar and 

SAM binding pocket and there is no other channel which can allow NADPH to approach 

the substrate, MtmC must use the same co-substrate binding pocket to accommodate either 

NADPH or SAM, depending on the catalytic function. Therefore, we proposed that MtmC 

has uniquely evolved to accommodate NADPH, a co-factor larger than SAM, by swinging 

the conformation-flexible Tyr79 out of the active site to create more room for NADPH 

binding. However, the mechanism of the reduction reaction is still under investigation. 

        There are many intriguing questions waiting for investigations in order to clarify the 

formation process of MTM’s trisaccharide side chain. Recent literature suggests that post-

PKS tailoring enzymes can be multifunctional and co-dependent on other tailoring 

enzymes. Our previous work also showed that MtmC cooperated with MtmGIV during the 

formation of premithramycin A1 and premithramycin A3, and MtmGIII acts between the 

two glycosylation reactions catalyzed by MtmGIV (Figure 19).[45, 46b] Moreover, our 

unpublished data also indicated that MtmOIV and MtmW worked together during the 

formation of the C-3 side chain (Figure 17). Looking for the future, we would like to 
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identify the biochemical mechanisms as well as the protein-protein interaction between 

these post-PKS tailoring enzymes by crystallography and in vitro assays. When 

overexpressing mtmGIII, mtmGIV, and mtmW genes in E. coli BL21 (DE3), we found that 

these proteins formed inclusion bodies. This problems could be resolved by co-expressing 

chaperones and glycosyltransferases together, and, thereby, chaperones would assist the 

3D-structural folding of the glycosyltransferases. In addition, after analyzing the amino 

acid sequence of MtmW, we found that MtmW contained three hydrophobic amino acids 

on the N-terminal side, but its homologs don’t. These are potential membrane anchors, 

since MtmOIV/MtmW play also an important role to activate the metabolites towards DNA 

binding. It is likely that the membrane anchor ensures that the MtmOIV/MtmW proteins 

are near an efflux membrane channel to avoid damage of the DNA of the bacterial cell. 

The solubility of MtmW could be improved by removing these extra amino acids. With 

these great progresses, we hope that our questions could be answered in the near future. 

These information may not only help identify how the substrates and products are 

transferred between different enzymes but also solve the remaining mystery of MtmC’s 

reduction mechanism in this dissertation. Maybe someday in the future, we would be able 

to generate more MTM analogues with refined sugar moieties and C-3 side chain by using 

engineered post-PKS tailoring enzymes. 

5.4 Conclusions  

        In conclusion, natural products will continue to be an important source for new drug 

development, especially the small-molecule agents. Their chemical space is larger than 

synthetic compounds and could be expanded through chemical synthesis and combinatorial 

biosynthesis in order to improve their bioactivity, specificity, and in vivo tolerance. With 

the high-speed development of synthetic biology, protein engineering, and organelle 

engineering, scientists will be able to use living cells as a platform to generate new natural 

products in the future. This is not only a good method to modify natural products efficiently 

but also a new opportunity to decrease the usage of hazardous chemicals to protect our 

environment. 
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APPENDICES 

 

Appendix 1. ESI-MS spectrum (positive mode) and summary of HR-EI-MS data of 2'-O-methyl-polycarcin V (60)  
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Appendix 2. 1H NMR spectrum of 2'-O-methyl-polycarcin V (60) (*: signals from minor impurities)  

* * 



 
  

114 

 

 

 

Appendix 3. gHSQC NMR spectrum of 2'-O-methyl-polycarcin V (60) 
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Appendix 4. gHMBC NMR spectrum of 2'-O-methyl-polycarcin V (60) 
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Appendix 5. ESI-MS spectrum (positive mode) and summary of HR-EI-MS data of 3'-O-methyl-polycarcin V (61) 
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Appendix 6. 1H NMR spectrum of 3'-O-methyl-polycarcin V (61) (*: signals from minor impurities)  

* 

* 
* 
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Appendix 7. gHSQC NMR spectrum of 3'-O-methyl-polycarcin V (61) 
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Appendix 8. gHMBC NMR spectrum of 3'-O-methyl-polycarcin V (61) 



 
  

120 

 

Appendix 9-1. HR-ESI-MS spectrum (positive mode) of 2',3'-di-O-methyl-polycarcin V (63) 
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Appendix 9-2. HR-ESI-MS spectrum (negative mode) of 2',3'-di-O-methyl-polycarcin V (63) 



 
  

122 

 

Appendix 10. 1H NMR spectrum of 2',3'-di-O-methyl-polycarcin V (63) (*: signals from minor impurities)  

* 

* 

* 

* 
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Appendix 11. ESI-MS spectrum (positive mode) and summary of HR-EI-MS data of 3',4'-di-O-methyl-polycarcin V (64) 
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Appendix 12. 1H NMR spectrum of 3',4'-di-O-methyl-polycarcin V (64) (*: signals from minor impurities)  

* 

* 

* * * 

* 
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Appendix 13. gHSQC NMR spectrum of 3',4'-di-O-methyl-polycarcin V (64) 
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Appendix 14. gHMBC NMR spectrum of 3',4'-di-O-methyl-polycarcin V (64) 
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Appendix 15. HR-ESI-MS spectrum of MTM SA methyl ester (72) 
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Appendix 16. 1H NMR spectrum of MTM SA methyl ester (72) (*: signals from minor impurities)  
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Appendix 17. gHSQC NMR spectrum of MTM SA methyl ester (72) 
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Appendix 18. gHMBC NMR spectrum of MTM SA methyl ester (72) 
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Appendix 19. HR-MALDI-TOF-MS spectrum of MTM SA-L-alanine methyl ester (78) 
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Appendix 20. 1H NMR spectrum of MTM SA-L-alanine methyl ester (78) (*: signals from minor impurities) 
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Appendix 21. 13C NMR spectrum of MTM SA-L-alanine methyl ester (78) 
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Appendix 22. gHSQC NMR spectrum of MTM SA-L-alanine methyl ester (78) 
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Appendix 23. gHMBC NMR spectrum of MTM SA-L-alanine methyl ester (78) 
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Appendix 24. HR-MALDI-TOF-MS spectrum of MTM SA-L-glycine methyl ester (80) 
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Appendix 25. 1H NMR spectrum of MTM SA-L-glycine methyl ester (80) 
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Appendix 26. 13C NMR spectrum of MTM SA-L-glycine methyl ester (80) 
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Appendix 27. gHSQC NMR spectrum of MTM SA-L-glycine methyl ester (80) 
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Appendix 28. gHMBC NMR spectrum of MTM SA-L-glycine methyl ester (80) 
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Appendix 29. HR-MALDI-TOF-MS spectrum of MTM SA-L-histidine methyl ester (81) 
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Appendix 30. HR-MALDI-TOF-MS spectrum of MTM SA-L-lysine t-Bu ester N-benzyl carbamate (82) 
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Appendix 31. 1H NMR spectrum of MTM SA-L-lysine t-Bu ester N-benzyl carbamate (82) (*: signals from minor impurities) 

* 



 
  

144 

 

Appendix 32. gHSQC NMR spectrum of MTM SA-L-lysine t-Bu ester N-benzyl carbamate (82) 
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Appendix 33. gHMBC NMR spectrum of MTM SA-L-lysine t-Bu ester N-benzyl carbamate (82) 
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Appendix 34. HR-MALDI-TOF-MS spectrum of MTM SA-L-phenylalanine methyl ester (83) 
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Appendix 35. 1H NMR spectrum of MTM SA-L-phenylalanine methyl ester (83) (*: signals from minor impurities)  

* 
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Appendix 36. gHSQC NMR spectrum of MTM SA-L-phenylalanine methyl ester (83) 
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Appendix 37. gHMBC NMR spectrum of MTM SA-L-phenylalanine methyl ester (83) 
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Appendix 38. HR-MALDI-TOF-MS spectrum of MTM SA-L-tryptophan methyl ester (85) 
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Appendix 39. 1H NMR spectrum of MTM SA-L-tryptophan methyl ester (85) (*: signals from minor impurities)  
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Appendix 40. gHSQC NMR spectrum of MTM SA-L-tryptophan methyl ester (85) 
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Appendix 41. gHMBC NMR spectrum of MTM SA-L-tryptophan methyl ester (85) 
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Appendix 42. HR-ESI-MS spectrum of MTM SA-L-5”-Br-tryptophan-methyl ester (86) 
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Appendix 43. 1H NMR spectrum of MTM SA-L-5”-Br-tryptophan-methyl ester (86) (*: signals from minor impurities)  
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Appendix 44. gHSQC NMR spectrum of MTM SA-L-5”-Br-tryptophan-methyl ester (86) 
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Appendix 45. gHMBC NMR spectrum of MTM SA-L-5”-Br-tryptophan-methyl ester (86) 
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Appendix 46. HR-MALDI-TOF-MS spectrum of MTM SA-L-tyrosine methyl ester (87) 



 
  

159 

 

Appendix 47. HR-MALDI-TOF-MS spectrum of MTM SA-L-valine methyl ester (88) 
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Appendix 48. 1H NMR spectrum of MTM SA-L-valine methyl ester (88) (*: signals from minor impurities)  
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Appendix 49. 13C NMR spectrum of MTM SA-L-valine methyl ester (88) 
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Appendix 50. gHSQC NMR spectrum of MTM SA-L-valine methyl ester (88) 
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Appendix 51. gHMBC NMR spectrum of MTM SA-L-valine methyl ester (88) 
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