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ABSTRACT 

There are two theoretical approaches to the nature of attentional resources.  One 

proposes a single, flexible pool of cognitive resources; the other poses there are multiple 

resources.  This study was designed to systematically examine whether there is evidence 

for multiple resource theory using a counting task consisting of visual, auditory, and 

tactile signals using two experiments.  The goal of the first experiment was the validation 

of a multi-modal secondary loading task.  Thirty-two participants performed nine 

variations of a multi-modal counting task incorporating three modalities and three 

demand levels.  Performance and subjective ratings of workload were measured for each 

of the nine conditions of the within-subjects design.  Significant differences were found 

on the basis of task demand level, irrespective of modality.  Moreover, the perceived 

workload associated with the tasks differed by task demand level and not by modality.  

These results suggest the counting task is a valid means of imposing task demands across 

multiple modalities.

The second experiment used the same counting task as a secondary load to a 

primary visual monitoring task, the system monitoring component of the Multi-Attribute 

Task Battery (MATB).  The experimental conditions consisted of performing the system 

monitoring task alone as a reference and performing system monitoring combined with 

visual, auditory, or tactile counting.  Thirty-one participants were exposed to all four 

experimental conditions in a within-subjects design.  Performance on the primary and 

secondary tasks was measured, and subjective workload was assessed for each condition.  
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Participants were instructed to maintain performance on the primary task, irrespective of 

condition, which they did so effectively.  Secondary task performance for the visual-

auditory and visual-tactile conditions was significantly better than for the visual-visual 

dual task condition.  Subjective workload ratings were also consistent with the 

performance measures.  These results clearly indicate that there is less interference for 

cross-modal tasks than for intramodal tasks.  These results add evidence to multiple 

resource theory.  Finally, these results have practical implications that include human 

performance assessment for display and alarm development, assessment of attentional 

reserve capacity for adaptive automation systems, and training.
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CHAPTER 1: INTRODUCTION 

 

When humans enter the world at birth, we are virtually blind.  Our vision is coarse 

and unrefined, unable to resolve medium or high spatial frequencies.  In this early phase 

of development, much of our knowledge of the world is acquired through the sense of 

touch – through feeling, grabbing, and mouthing.  However, the dominance of touch 

diminishes as the distance senses develop further to the extent that we become primarily 

visual creatures (Schiffman, 1996).  Empirically, this is exemplified through the visual 

dominance effect, which is a strong inclination to attend to visual inputs as compared to 

other modalities (Posner, Nissen, & Klein, 1976; Rock & Victor, 1964).   

Notwithstanding, our other sensory modalities still verify reality and are essential 

to our survival.  Binaural hearing facilitates the localization and identification of sound 

sources, informing the eyes where to look and what to expect (Blake & Sekuler, 2004).  

Once objects are close in proximity, the skin senses allow us to gather information about 

texture, temperature, or weight.  Touch can also serve as an alerting mechanism, telling 

us when objects are in our immediate space, irrespective of gaze, masking noise, or smell.  

Despite our multi-modal nature, most technological interfaces rely primarily upon vision 

and secondarily upon audition.  In many cases, system users are required to perform 

multiple tasks simultaneously that require coding and manipulating information presented 

through a single sensory modality, typically vision.  However, if too much information is 

presented to that modality, the user’s attentional capacity can be exceeded, resulting in 
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performance decrements with potentially serious consequences.  Attentional capacity 

limitations restrict the amount of information that is coded and moved into short-term or 

working memory (Robinson-Riegler & Robinson-Riegler, 2004).  Any reduction in spare 

attentional capacity would manifest itself through primary performance measures or 

signal detection sensitivity (Parasuraman, 1979). 

 

A Single, Flexible Pool of Attention or Multiple Resources 

Attention has been long recognized as a limited capacity system (James, 1890).  

One way of managing these limitations is by shifting information from an overloaded 

sensory modality to one with untapped reserve capacity.  However, this approach is 

rooted in two suppositions: 1) Attention is a limited capacity resource, and 2) Attentional 

capacity can be distributed among sensory modalities.  Kahneman (1973) and Wickens 

(1984) review a number of studies that suggest when task demands are low, task 

performance is high, and when task demands increase, deficits in task performance 

likewise increase.  Parasuraman (1979) found that increasing event rates in a signal 

detection task resulted in decreased signal detection sensitivity, which suggests that the 

observers’ reserve attentional resources were depleted. 

Figure 1 provides a basic graphical depiction of information-processing, which 

includes the role of attentional capacity.  This depiction is largely a synthesis of 

information processing theories by Kahneman (1973) and Deutsch and Deutsch (1963).  

Stimuli are detected by the sense organs when their energetics sufficiently meet or exceed 

sensory thresholds.  Information regarding the stimuli is coded and processed, which 

includes basic analyses of features such as intensity ranges, just noticeable differences 
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(JNDs), and according to late-selection theory, the stimuli are identified (Deutsch & 

Deutsch, 1963).  These stimuli can then be selected for attentional focus; however, our 

ability to do so is contingent upon the availability of attentional capacity. 

 

 

 

 

 

Figure 1. A depiction of information processing from detection through attentional focus. 

 

Kahneman’s Unitary Resource Model of Attention 

Two major perspectives are pertinent to the study of attentional capacity.  One is 

the unitary resource approach, which proposes that attention can be conceptualized as a 

single pool (Kahneman, 1973).  Resources are drawn from the pool for different stages of 

information processing, and so long as spare capacity is available, they can be allocated 

towards any number of concurrent tasks (Moray, 1967).  See Figure 2 for a depiction of 

Kahneman’s Capacity Theory.  Kahneman purports that any “interference between tasks 

is due to insufficient response of the system to demands, and to the narrowing of attention 

when effort is high” (p. 16).  In other words, deficits in dual task performance result from 

task demands having exceeded the available capacity.  The amount of available capacity 

varies, contingent upon factors such as arousal. 

Kahneman acknowledges the presence of a modality effect, wherein it is more 

difficult to detect targets on the same modality versus different modalities.  However, he 
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stops short of actually dividing attentional resources by modality, suggesting that 

attention is simply divided flexibly across tasks.  Subsequent incarnations of this notion 

are present in Norman and Bobrow (1975), Johnston and Heinz (1978), Navon and 

Gopher (1979), and more recently, Young and Stanton (2002). 

 

 

Figure 2.  Kahneman's Unitary Resource Model of Attention. From D. Kahneman 
(1973). Attention and Effort. Englewood Cliffs, New Jersey: Prentice Hall. 

 
 

Posner and Boies (1971) describe processing capacity as one of the three 

component processes of attention.  The capacity view of attention is a popular one and 

serves as the basis for many empirical studies.  For example, Proctor and colleagues 

conducted a series of studies examining attention and processing capacity using a dual-

task paradigm consisting of a letter-matching task and various secondary tasks.  Proctor 
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(1978) found that participants could not maintain an active visual-memory code while 

performing a visual addition task.  He concluded that central processing was not critical 

for maintaining the visual memory code, but rather some modality-specific processing 

system associated with attending to visual stimuli must be responsible.  In a subsequent 

investigation, Proctor and Proctor (1979) used visual letter-matching as a primary task 

and paired it with an auditory or a visual probe detection task.  Participants were 

instructed they would receive probe signals exclusively visually or auditorily, but 25% of 

the time the probe signals were presented unexpectedly to a different modality.  They 

found that participants could effectively detect unexpected auditory stimuli, but they 

lacked the capacity to process unexpected visual stimuli, presumably due to the demands 

of the primary visual task. 

Duncan, Martens, and Ward (1997) compared attentional capacity limitations 

within and between vision and audition.  Visual attentional capacity was tested using a 

detection task in which target words were embedded into streams of letter strings.  

Auditory attentional capacity was tested using a dichotic listening task in which streams 

of word sounds with embedded word targets were presented.  A mixed-modality 

condition was employed in which a visual and an auditory stream were presented 

simultaneously.  Target detection accuracy was significantly better for the mixed-

modality condition as compared to the intramodal task conditions.  Further, an additional 

“cost” in the form of time-locked interference was observed.  For successive intramodal 

targets, a reduction in target detection performance lasting several hundred milliseconds 

was seen following each successful detection.  This is consistent with Telford’s (1931) 

psychological refractory period paradigm and the attentional blink phenomenon 
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(Raymond, Shapiro, & Arnell, 1992; Shapiro, Arnell, & Raymond, 1997).  However, 

Duncan et al. did not observe the effect for cross-modal targets, suggesting that the 

depletion of attentional resources is modality-specific.  

Talsma and colleagues found a similar result using the Rapid Serial Presentation 

Paradigm (RSVP; Talsma, Doty, Strowd, & Woldorff, 2006).  They recorded evoked 

potentials during the presentation of visual, auditory, or audiovisual letter streams.  

Letter-stream-elicited steady-state evoked potentials were the largest for the audiovisual 

condition as compared to single modality conditions.  Talsma and colleagues concluded 

that attentional capacity is larger between two modalities as compared to a single 

modality. 

 

Wickens’ Multiple Resource Theory 

Perhaps the most prominent proponent of multiple resource theory is Wickens 

(1984, 2002) with his multiple resource theory of human performance.  Although it is not 

a theory of attention, per se, it attempts to explain the modality effects observed in 

attentional research using dual tasks.  Wickens’ theory divides resources according to 

modalities, codes, stages, and responses (see Figure 3).   
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Figure 3. Wickens' Multiple Resource Model of Attention. From C. D. Wickens (1984). 
Processing resources in attention. In R. Parasuraman & R. Davies (Eds.), Varieties of 
Attention (pp. 63-102). London: Academic Press. 

 
 

According to the classic model, a stimulus can be accepted through either the 

visual or auditory modality.  The stimulus can be spatial or verbal in nature.  Once 

perceived, it is coded as either a verbal or a spatial representation, and it enters the 

working memory stage of information-processing.  A response to the stimulus is then 

generated, which can be manual or vocal.  Any time tasks simultaneously tax a single 

resource, there is potential for interference and degraded performance.  Consequently, the 

encoding of sensory information from two simultaneous tasks is more efficient when they 

do not share the same modality or central processing code.  It explains why the 

performance of dual cross-modal tasks (e.g., visual-auditory) is generally easier and more 

efficient than the performance of dual intramodal tasks (e.g., visual-visual or auditory-

auditory) .  The implication present in Wickens’ model is that attentional resources are 
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allocated independently to each modality.  It is noteworthy that, to date, his model is 

inclusive of vision and audition only.  However, Wickens’ omission of a tactile resource 

pool in his model is understandable, as it is likely due to the paucity of data comparing 

attentional capacity for vision, audition, and touch. 

There is empirical evidence supportive of Wickens’ model, particularly with 

regards to the performance benefits associated with cross-modal tasks as opposed to 

intramodal tasks.  For example, a study by Wickens (1976) incorporated a primary 

tracking task paired with either an auditory detection task or a constant pressure haptic 

task.  Participants used a control stick to keep a moving cursor over a stationary target in 

the center of an oscilloscope screen.  A secondary auditory detection task was presented 

periodically, requiring participants to respond vocally when a near-threshold tone had 

been detected.  Alternatively, a force application task was administered, requiring 

participants to maintain pressure on a force sensitive control using visual feedback 

presented on voltmeter display.  He found that the auditory detection task interfered less 

with a manual tracking task than did a constant pressure task, even though it was deemed 

more difficult.  The implication is that tracking and constant pressure tasks required the 

same modality, and consequently, competed for the same resources. 

Findings from other studies also support multiple resource theory.  For example, 

Spelke, Hirst, and Neisser (1976) found that participants could simultaneously read and 

comprehend a written message while listening and transcribing words presented 

auditorily.  Rollins and Hendricks (1980) examined the simultaneous processing of visual 

and auditory verbal information.  They found that when two auditory verbal messages are 

presented simultaneously, performance is enhanced when one of the messages is also 
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presented visually.  The implication is that two auditory verbal messages draw from the 

same resource pool, and presenting one of the messages visually facilitates tapping into 

an unused resource with available reserve capacity.  Isreal (1980) found greater 

intramodal interference between simultaneous tracking and reaction time tasks as 

opposed to when the tasks were cross-modal.  Likewise, Parkes and Coleman (1990) 

found evidence of intramodal resource competition.  They presented guidance cues to 

drivers and found greater task interference from cues presented visually rather than 

auditorily.  As driving is primarily a visual task, the finding that visual rather than 

auditory cues interfered with driving performance is consistent with Wickens’ theory. 

 

Baddeley’s Model of Working Memory 

There is a degree of commonality between Wickens’ multiple resource theory and 

Baddeley’s model of working memory (Baddeley, 1992; Baddeley & Hitch, 1974).  

Baddeley proposes a multi-modal division of working memory wherein visual/spatial 

information is maintained in the visuospatial sketchpad and auditory/verbal information 

is maintained in the phonological loop.  The attentional energetics required for receiving 

sensory information, perceiving and coding it, and then directing it into the appropriate 

working memory component is the responsibility of the central executive.  The model 

does not include any type of working memory representation for tactile information.  Any 

form of tactile information would be recoded into a spatial and/or verbal representation.  

For example, a person reading Braille might retain information regarding the 

spatiotemporal pattern of running their fingertip over the raised bumps in the visuospatial 

sketchpad as a spatial representation.  However, the person would also code those tactile 
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patterns into verbal representations and maintain them in the phonological loop in order 

to remember what they had read.  As such, it is logical that a tactile-specific component 

of working memory is not incorporated into the model. 

It is important to note that the vestibular system and the chemical senses are not 

included in any of these models.  Although these senses provide information critical to 

our survival, few display technologies make use of them.  The few systems that appeal to 

the chemical senses are primarily low-bandwidth virtual environment systems to increase 

immersion.  At the point of this writing, there are no known displays that provide 

informational inputs into the vestibular system.  Consequently, these are beyond the 

purview of the current investigation. 

 

Neurophysiological Evidence for Multiple Resource Theories of Attention 

Although the cognitive and performance models do not directly address evidence 

of a trimodal division of resources, there is some evidence in the neurophysiological 

literature.  The data suggest that multi-modal attentional mechanisms reside primarily in 

the cortical regions responsible for processing sensory input for the relevant modality, as 

opposed to some central mechanism (Burton, Sinclair, Hong, Pruett, & Whang, 1997).  

For example, Burton and Sinclair (2000) recorded average firing rates (AFRs) for 

neurons responding to vibrotactile versus auditory stimuli in an attentional task in 

monkeys.  The monkeys were presented with simultaneous vibrotactile stimulation on 

both hands; however, they were trained to attend only to one of their hands.  They found 

significantly greater levels of activity in the somatosensory cortex corresponding to the 

attended hand versus that of the unattended hand, even though both hands were presented 
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simultaneously with identical vibrotactile stimuli.  Further, the presentation of auditory 

cues (distractors) had little impact on AFRs for the attending hemisphere. 

Driver and colleagues (e.g., Driver & Spence, 1998; Eimer & Driver, 2000; Eimer 

& Forster, 2003) have investigated cross-modal links in spatial attention between vision, 

audition, and touch.  Driver and Spence (1998) propose that spatial attention arises in a 

task-relevant area of the brain and spreads to cortical regions representing other 

modalities.  The implication here is that modality-specific attentional modules exist; 

however, these modules are interconnected and only act semi-independently.  Macaluso, 

Frith, and Driver (2000) conducted a study using positron emission tomography (PET).  

Their participants engaged in a selective spatial attention task in which they were 

presented with either light flashes or vibrotactile stimuli.  All signals were presented on 

the right side of the participant.  Conditions in which they attended to tactile stimuli only 

with their eyes closed resulted in activity in the left superior postcentral gyrus.  However, 

more widespread activity was seen when participants engaged in the same task with their 

eyes open, as the PET showed activity in the left intraparietal sulcus.  When participants 

engaged in visual attentional tasks, activity was observed in the left intraparietal sulcus 

and left occipitotemporal junction.  This research is supportive of Spence and Driver’s 

(1998) notion that sustained attention can operate at either a cross-modal or an intramodal 

level.  It is important to note that none of these investigations has examined all three 

modalities (i.e., vision, audition, and touch) simultaneously.  For example, Malusco et al. 

(2000) used vision and touch, but not audition, and Eimer and Forster (2003) used touch 

alone. 
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Eimer, van Velzen, and Driver (2002) examined interactions in spatial attention 

for vision, audition, and touch; however, the visual signals only served as a cuing 

mechanism rather than as a signal in the primary detection task.  They measured event-

related potentials (ERPs) in a multi-modal attentional task in which auditory or tactile 

signals were presented to the left or right side of participants.  The signal was preceded 

by a visual cue intended to direct their attention to the side and modality to which the 

target signal would be presented.  During some trials, non-target signals were presented 

to an unattended side and modality.  They found that ERP modulation was greatest for 

the side to which attention was cued.  From a behavioral perspective, unattended signals 

could be ignored.  However, the ERP evidence suggested interactions between sensory 

modalities.  Specifically, visual and auditory ERPs were observed during touch-relevant 

tasks.  During auditory-relevant tasks, visual ERPs were observed, but tactile ERPs were 

not.  Eimer and colleagues (2002) concluded that selective attention must be both 

supramodal and multi-modal, consistent with Driver and Spence’s (1998) aforementioned 

proposition of localized activity followed by a spread to adjacent cortical regions. 

Although the research discussed above focuses on cortical activity, it is worth 

noting that the cerebellum has been implicated in attentional switching between 

modalities for time-dependent tasks (Allen, Buxton, Wong, & Courchesne, 1997; 

Courchesne et al., 1994).  Moreover, it is also important to note that there are no 

cerebellar projections of taste and smell, suggesting that its function might be reserved 

for spatial senses.  More recently, however, the role of the cerebellum in attentional 

switching has been called into question.  For example, Ravizza and Ivry (2001) and 
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Bischoff-Grethe, Ivry, and Grafton (2002) suggest the role of the cerebellum might be for 

switching between alternative responses rather than between sensory inputs. 

 

Goals of the Present Research 

Although the evidence supports the concept of multi-modal attentional resources, 

no studies have sought to determine the relative capacities of these resource pools across 

three sensory modalities.  Therefore, the primary goal of this investigation is a multi-

modal comparison of the attentional capacities of vision, audition, and touch.  However, 

one should not presuppose the independence of the resource pools.  Therefore, the second 

goal of this research is to gather evidence regarding the relative independence of the 

resource pools.
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CHAPTER 2: EXPERIMENT 1 

Introduction 

The first step toward evaluating attentional reserve capacity across three sensory 

modalities is to develop the methodology in order to do so.  This requires a task that is 

capable of presenting information independently through vision, audition, and touch.  It is 

equally important that the cognitive component imposed by this task should remain the 

same, irrespective of the modality of signal presentation.  A task that can be adapted for 

this use is the Multi-Sensory Workload Assessment Protocol (M-SWAP).  M-SWAP is a 

multi-modal complex counting task capable of presenting visual, auditory, and 

vibrotactile signals.  It is an extension of the complex counting tasks developed by 

Jerison (1955, 1956), later expanded by Kennedy (1971), and integrated into the 

Performance Evaluation Tests for Environmental Research (PETER) battery (Kennedy & 

Bittner, 1980).  More recently, Mouloua, Rinalducci, Hancock, and Brill (2003) used the 

visual component of the counting task to evaluate the workload associated with the use of 

telematic devices, such as cellular telephones and car stereos.

As it is a counting task, the cognitive component is identical, irrespective of the 

modality through which the targets are presented.  Moreover, it is capable of presenting 

three levels of task demand, which offers additional flexibility for “filling” reserve 

attentional capacity under a variety of operating circumstances.  Any performance 

differences on this task can potentially serve as an indication of differential attentional 
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capacity, particularly if they are on the basis of sensory modality.  A secondary goal of 

this experiment is to gather evidence to further validate the protocol through use of 

subjective workload measures. 

 

Research Hypotheses 

Given the theoretical nature of the complex counting task, the following 

hypotheses were generated: 

• Performance differences would be dependent upon task demand, but not modality. 

• Subjective ratings of workload would differ as a function of task demand and not 

modality. 

 

Method 

Participants 

Prior to data collection, a power analysis was conducted.  Assuming a desired 

power of .80, a medium expected effect size, and α = .05, a minimum sample size of 24 

would be required to observe an effect (Cohen, 1977).  A sample of 36 undergraduate 

psychology students was recruited from the University of Central Florida.  However, the 

data from four of these participants could not be used for the experiment due to 

performance issues related to one of the research tasks (see Results for more detail), 

paring the sample down to 32 (13 males, 19 females).  Ages ranged from 19 to 36 years 

of age (M = 22.1, SD = 3.6).  All were in good health, and none indicated the presence of 

any type of sensory or motor disability that might influence the results of the study.  
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Students were compensated with either money at the rate of $10/hour or extra course 

credit at the standard psychology department rate of one credit per half hour.  This 

experiment was approved by the University of Central Florida Institutional Review Board 

(see Appendix A), and all participants were treated in accordance with the ethical 

guidelines for human use in research. 

 

Apparatus and Materials 

Multi-Sensory Workload Assessment Protocol (M-SWAP) 

M-SWAP is a multi-modal counting task consisting of visual, auditory, and 

vibrotactile components and a response box.  For the visual component, an InterAct color 

liquid crystal (LCD) mobile monitor was used.  The display was 5 in. (measured 

diagonally) and was mounted on a wall 16 in. above a desktop surface at approximately 

eye level (see Figure 4) such that it subtended a visual angle of approximately 9.2° 

horizontally and 6.9° vertically. 
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Figure 4. An over-the-shoulder perspective of the experimental setup with the wall-
mounted visual display. 

 

The auditory component of M-SWAP was presented through Sennheiser Model 

HD-280 PRO studio headphones.  The headphones incorporate a circumaural closed-back 

design, which provides 32 dB of attenuation to reduce ambient sounds. 

The tactile component of M-SWAP was presented via a custom-built wearable 

vibrotactile display.  It consisted of a 2 in. Velstretch® belt and three EAI model C2 

Tactors (Engineering Acoustics, Inc. Winter Park, FL).  The 17 g tactors incorporate a 

center-surround design such that a 7 mm plunger-like contactor is preloaded against the 

skin to provide sinusoidal vibration at 250 Hz with a maximum displacement of 1.02 mm.  

The contactor has 1 mm of separation from a non-moving surround provided by the tactor 

housing (see Gescheider, Capraro, Frisina, Hamer, & Verrillo, 1978).  The tactors were 

secured to the belt using adhesive-backed Velcro® that had been stuck to the backs of the 

devices (see Figure 5). 
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Figure 5. A Model C2 tactor secured to a Velstretch® belt 

 
 
Prior to the application of the Velcro®, a hole was punched into its backing to facilitate 

the movement of the center contactor.  The use of Velcro® allows the tactors to be 

moved to provide a custom fit for the person wearing the belt. 

The tactors were driven by an Instek® Model GFG-8210 Function Generator 

whose output was amplified using a Velleman Model P2637 Supermini 2.5-Watt Power 

Amplifier.  This amplified signal was directed to a particular tactor via an 8-channel 

mechanical relay board with a parallel port PC interface (Model K74; www.kitsrus.com).  

The response box consisted of three standard joystick-style momentary switches 

mounted onto the top surface of a plastic enclosure.  The buttons were aligned in a row 

horizontally, with a spacing of 2 cm (3 cm from center of a button to the next adjacent 

button; see Figure 6).  It was connected to a PC via a standard joystick game port. 
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Figure 6. The three-button response box. 

 
M-SWAP is administered via proprietary software developed by RSK 

Assessments, Inc.  It is capable of presenting the Jerison counting task (1955, 1956) via 

any combination of three modalities: vision, audition, and touch.  The signals for visual 

counting consist of three white boxes arranged in a horizontal line against a blue 

background.  Each subtends a visual angle of approximately 2.7° horizontally and 1.4° 

vertically from a distance of 25 in.  The three signals flash for 250 ms in a random 

sequence with random interstimulus intervals such that each of the three signals was 

presented an average of five, six, or eight times per minute.  The task has three levels of 

demand, which vary depending upon the number of information channels that must be 

monitored.  For example, low demand visual counting requires participants to count the 

number of times white boxes are presented on the left side of the display and respond 

after every fourth signal by pressing the left response button.  The moderate demand task 

requires participants to count two information channels simultaneously and 

independently (left and center boxes), and respond by pressing the appropriate button 

(left or center) after each fourth presentation, respectively.  The high demand task is 

administered similarly; participants must count separately three channels and respond by 

hitting the appropriate button after the fourth presentation of each signal. 
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The auditory version of M-SWAP has three simple tones, each at a different 

frequency.  The low tone is 100 Hz, and the middle and high tones are 900 and 1800 Hz, 

respectively.  Auditory counting is performed in a similar manner as is described for the 

visual counting task, each signal presented at random for 250 ms.  It also has three 

demand levels contingent upon how many of the three channels are monitored. 

The tactile version of M-SWAP uses three loci of vibration as signals, each 

presented for 250 ms.  Tactors are placed such that they are situated on the far left, center, 

and far right of the abdomen (see Figure 7).   

 

 
Figure 7. The three-tactor array, as worn by a participant.  The dotted-lines show the 
approximate locations of the tactors. 

 
 
The reasons for this configuration are two-fold.  First, the spacing between loci is 

sufficiently wide to facilitate spatial discrimination, consistent with the findings of 

Cholewiak, Brill, and Schwab (2004).  Second, the three-locus linear array is analogous 

to the spatial configuration of signals used in M-SWAP’s visual component and the 

metaphoric configuration of the pitches used in M-SWAP’s auditory component. 
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The M-SWAP software was run on a Gateway Solo Laptop Computer with a 

Pentium II 266 MHz processor, 32 MB system RAM, and 4 MB video RAM.  The laptop 

had an integrated composite video output jack for sending the signal to the portable LCD 

display used for this experiment. 

Research using an earlier incarnation of the visual and auditory counting tasks 

suggests test-retest reliability is .79 to .94 for 10-minute to 20-minute blocks (Kennedy, 

1971; Kennedy & Bittner, 1980).  Pilot testing suggests the test-retest reliability of the 

revised trimodal counting task is consistent with these data (r = .96 for five-minute 

blocks; Brill, Mouloua, Hancock, Gilson, & Kennedy, 2003). 

NASA Task Load Index (NASA-TLX) 

Subject workload was measured using Hart and Staveland’s (1988) NASA Task 

Load Index (NASA-TLX), a paper and pencil questionnaire capable of providing global 

or multi-dimensional assessments of workload (see Appendix B for specific task 

instructions).  The NASA-TLX is comprised of two components. First, participants rate 

mental demand, physical demand, temporal demand, effort, frustration, and performance 

using six visual-analog scales (VASs).  Second, they make a series of pair-wise 

comparisons between the aforementioned descriptors.  The VAS ratings are measured 

and converted to a percentage.  The frequency with which each descriptor is selected in 

the pair-wise comparisons serves as a weighting mechanism for the VAS ratings and is 

used to calculate global workload.  Using this standard scoring methodology, NASA-

TLX scores can range from zero to one-hundred. 
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Design and Procedure 

A 3 X 3 within-groups design was employed for this experiment (3 modalities X 3 

demand levels).  Participants performed all nine conditions (representing the nine 

variations of M-SWAP) plus a tenth “dummy” block wherein they performed the high-

demand tactile counting task a second time.  The order in which the tasks were performed 

was determined using an order-10 Latin Square (see Appendix C), a technique used to 

distribute more evenly carryover effects in repeated-measures designs (Williams, 1949).  

An order-10 Latin Square was desirable over an order-9 because it resulted in fewer 

sequence orders.  An order-9 Latin Square produces 18 sequences, where as an order-10 

produces 10 sequences.  The desire to use the order-10 Latin Square necessitated the use 

of the “dummy” block.  The use of the order-10 Latin Square was additionally 

advantageous as it reduced the overall N required to assign multiple participants to each 

task order.   

Participants were welcomed to the laboratory and given a brief overview of the 

study.  They were asked to read the informed consent statement (see Appendix D), given 

an opportunity to ask questions or voice any concerns, and signed the forms indicating 

their desire to proceed with the experiment.  Participants then completed a demographics 

form and a basic medical history to ensure their eligibility for the experiment (see 

Appendix E).  Persons with sensory or motor disabilities that might influence the results 

of the experiment (i.e., impaired or uncorrected vision, impaired hearing, reduced tactile 

sensitivity, or impaired motor functioning affecting the arms, hands, or digits) were 

excluded from participation in the study and offered minimal compensation for their 

time. 
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For people who were eligible to continue participating in the study, their girth was 

measured at a height of approximately 1 in. above the navel using a standard tailor’s cloth 

measuring tape.  These data were recorded and divided by four, resulting in each 

individual’s metric for spacing tactor loci on the M-SWAP vibrotactile display.  

Participants were then asked to change into a 5.7 oz 100% white cotton t-shirt.  The t-

shirts were used to ensure standardization of the material between the tactors and the 

skin.  They were instructed to avoid selecting a t-shirt that was too large so as to avoid 

wrinkles and folds in the material that could affect vibrotactile sensitivity.  The 

experimenter left the room and closed the door in order to give the participant privacy to 

change into his or her t-shirt.  The room was also locked from the outside to prevent an 

accidental intrusion.  Once a participant finished changing, the vibrotactile belt was 

placed onto the abdomen at a height of 1 in. above the navel and stretched until slightly 

snug, such that the tactors were loaded against the skin with approximately 50 g of force.  

Participants were then seated for the duration of the experiment at a small desk that was 

placed against a wall. 

Next, participants engaged in a cross-modal matching procedure to ensure that the 

signals were equated for perceptual loudness (Stevens, 1959).  Participants donned 

headphones and were presented with visual and auditory signals from M-SWAP.  Using 

the method of adjustment, a standard psychophysical technique (Fechner, 1860, as cited 

in Green & Swets, 1966), participants were instructed to use the volume knob on the 

laptop computer running the M-SWAP software to make the auditory tones as loud as the 

visual blocks were bright.  Once the participant indicated satisfaction with the 

adjustment, the experimenter restarted the task and presented visual and tactile signals.  
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Participants were instructed to make the tactile signals as perceptually loud as the visual 

blocks were bright.  To minimize the influence of acoustic cues associated with the 

vibrotactile display, participants wore foam earplugs and inactive studio headphones 

simultaneously.  When asked, none indicated being able to hear anything, including the 

sound signature of the tactors. 

Once participants finished the cross-modal matching procedure, they were given 

instructions for M-SWAP (see Appendix F).  They engaged in three practice blocks, each 

lasting one minute, in which they performed the low demand visual, auditory, and tactile 

counting tasks, respectively.  Participants who reached 100% performance by the end of 

the third practice block were permitted to proceed with the experiment. 

Participants were then presented with ten blocks of the counting task.  Each block 

was five minutes in duration.  After each block, participants were asked to complete the 

NASA-TLX to rate their perceived workload for the task they had just performed. 

Once the experiment was completed, participants were given privacy once again 

to change out of the laboratory t-shirt and into their regular clothes.  They were debriefed 

and were given the option of signing up for a follow-up experiment.  The total duration of 

the experimental session was 90 minutes.

 

Results 

The data were screened for normality and equal variance (see Appendix G for 

skewness and kurtosis statistics).  Data screening indicated that four participants were 

statistical outliers and were skewing the data; their performance on the 3-channel 

auditory counting task approximated three standard deviations from the sample mean.  
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Further, a note had been made in these participants’ files on the basis of comments they 

had made during the experiment debrief regarding their ability to discriminate the 

auditory tones.  As a result, these participants’ data were excluded from all analyses. 

The data output from the M-SWAP software provides each participant’s hits, 

misses, and false alarms for each task performed.  These data were compared against the 

total number of signals presented to derive the number of correct rejections.  Raw 

frequencies of hits, misses, false alarms, and correct rejections were then converted into a 

proportional rate.  These data were then used to calculate percent correct as the primary 

metric of counting performance. The descriptive statistics are presented in Table 1.  

 

Table 1. Descriptive Statistics for Percent Correct on M-SWAP as a function of Modality 
and Demand Level. 
 Modality 
Demand Level  Visual  Auditory  Tactile 
 M SD N 

 
 M SD N  M SD N 

Low .94 .06 32 
 

 .95 .10 32  .95 .05 32 

Moderate .89 .10 32 
 

 .88 .13 32  .90 .09 32 

High .83 .12 32  .80 .13 32  .84 .14 32 
 

 

All statistical analyses were performed at an alpha level of .05 unless otherwise 

noted.  A 3 X 3 repeated-measures analysis of variance (ANOVA) was computed for 

percent correct on the counting task.  The independent variables were modality (visual, 

auditory, and tactile) and task demand level (low, moderate, and high).  Task order was 

coded and treated as an experimental variable to test for the presence of carryover effects.  

The results indicate a main effect of task demand level, F(2, 60) = 26.7, p < .001, η2 = 
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.46.  No main effect of modality, F(2, 60) = 0.16, p > .05, η2 = 0.002, and no interactions 

between modality and task demand level were observed, F(4, 120) = 1.0, p > .05, η2 = 

0.01.  Further, no interactions between demand level and task order were found, F(2, 60) 

= 0.15, p > .05, η2 = 0.002. 

Planned comparisons were computed and indicated that, irrespective of modality, 

percent correct was significantly higher at the low task demand level than at the moderate 

or the high task demand levels, as was predicted.  Further, percent correct for the high 

task demand condition was significantly lower than either of the other two task demand 

conditions, t(248) = 5.48, p < .001. 

The NASA-TLX questionnaires were scored and global workload ratings were 

computed. The descriptive statistics are presented in Table 2. 

 

Table 2. Descriptive Statistics for Global NASA-TLX Scores across Condition. 

 Modality 
Demand Level  Visual  Auditory  Tactile 
 M SD N 

 
 M SD N  M SD N 

Low 31.1 17.6 32 
 

 29.3 19.0 32  33.9 19.3 32 

Moderate 48.1 21.2 32 
 

 52.1 21.6 32  52.6 19.9 32 

High 66.7 18.7 32  67.9 18.6 32  65.3 18.7 32 
 

A 3 X 3 repeated-measures ANOVA was performed for workload ratings for the 

counting task.  As with the previous analysis, the independent variables were modality 

and task demand level.  A significant main effect of demand level on workload ratings 

was observed, F(2, 60) = 139.4, p < .001, η2 = .81.  No main effect of modality, F(2, 60) 

= 0.77, p > .05, η2 = .001, and no interactions between modality and task demand level 
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were observed, F(4, 120) = 1.17, p > .05, η2 < .001.  Also, no interactions between 

demand level and task order were found, F(2, 60) = 0.21, p > .05, η2 < .001. 

Planned comparisons indicated that, across modalities, perceived workload was 

significantly lower for the low task demand conditions than for the moderate and high 

task demand conditions.  Further, the perceived workload for high demand conditions 

was significantly higher than for the low or moderate demand conditions, t(248) = 8.10, p 

< .001. 

 

Additional Analyses 

Traditional signal detection metrics of sensitivity (d’) and response bias (β) were 

calculated (see Macmillan & Creelman, 2005) for M-SWAP signal detection data from 

all nine conditions, the means for which are presented in Tables 3 and 4. 

 

Table 3. Descriptive Statistics for d-prime for M-SWAP Performance across Condition. 

 Modality 
Demand Level Visual  Auditory  Tactile 

 M SD N 
 

 M SD N  M SD N 

Low 4.24 1.59 32 
 

 4.59 1.45 32  4.67 1.33 32 

Moderate 3.40 1.56 32 
 

 3.50 1.80 32  3.37 1.56 32 

High 2.31 1.16 32  2.07 1.27 32  2.77 1.56 32 
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Table 4. Descriptive Statistics for beta for M-SWAP Performance across Condition. 

 Modality 
Demand Level  Visual  Auditory  Tactile 
 M SD N 

 
 M SD N  M SD N 

Low 1.06 0.99 32 
 

 1.13 1.48 32  0.83 0.86 32 

Moderate 1.09 1.07 32 
 

 0.83 1.02 32  1.03 0.86 32 

High 1.96 1.97 32  1.49 1.19 32  1.13 1.01 32 
 

 

A 3 x 3 repeated-measures ANOVA was computed with d-prime as the dependent 

variable; demand and modality were the independent variables.  A significant main effect 

of demand was found, F(2, 60) = 17.4, p < .001, η2 = .37.  No main effect of modality 

was found, and no interactions with task order were observed.  Post hoc analysis (LSD) 

showed that d-prime for low demand counting was significantly higher than that of 

moderate counting, which was higher than that of high demand counting (p < .001).  An 

ANOVA of beta values could not be performed because of wide differences in 

variability, which violated the assumptions for the test.  

 

Discussion 

The results clearly indicate that M-SWAP imposes demand differentially 

depending upon how many channels one counts, suggesting the demand manipulation 

was successful.  In addition, the failure to find a main effect of modality of the primary 

task is equally as interesting, as it bodes well for the use of M-SWAP in applied contexts.  

The presence of significant modality effects would have indicated that the demand 

imposed by the visual, auditory, and tactile counting tasks is not equivalent, rendering 
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any cross-modal comparisons unfair.  However, these differences were not observed, and 

given the small effect size (η2 = .01), a substantially large sample size would be required 

to find one, making the probability of committing a Type II error increasingly likely.  

Consequently, it is reasonable to conclude that performing M-SWAP consumes 

approximately the same quantity of cognitive resources, irrespective of the modality, so 

long as comparisons are made within the same task demand level.  This conclusion is 

bolstered by the pattern observed in the subjective workload data, wherein differences 

were found on the basis of task demand level and not modality.  These data followed a 

predictable ascending stair-step pattern as task demand level increased, which is 

supportive of the validity of the counting task.  A graphical model conceptualizing the 

demand imposed by M-SWAP by modality can be seen in Figure 8.  

 

Visual 
Resources 
Consumed

Auditory 
Resources 
Consumed

Tactile 
Resources 
Consumed

M-SWAP Task Demand Level
ML H ML H ML H

Spare 
Capacity

 
Figure 8. Theoretical model of resource consumption by M-SWAP across three sensory 
modalities and three task demand levels. 
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The significant differences in sensitivity are also interesting.  They suggest that 

increases in task demand levels led to a reduction in spare capacity, which manifested in 

the form of decreased sensitivity.  Although no a priori hypotheses were made with 

regards to sensitivity, these results are logical.  It suggests that as demand levels 

increased, attentional capacity for accepting incoming sensory information decreased.  It 

would be interesting to determine if increasing signal strength in the high demand 

conditions would improve sensitivity.  However, this seems an unlikely scenario; the 

signals used in this research are already at superthreshold levels, and the increased 

“noise” resulting in decreased sensitivity is cognitive in nature (from workload) rather 

than issues of sensation. 

From a theoretical perspective, these results neither suggest nor preclude the 

existence of multiple resource pools.  The data can be explained from two equally valid 

perspectives: 

1) Performing the multi-modal counting task draws the same quantity of 

resources, each from its respective pool. 

2) Performing the multi-modal counting task draws the same quantity of 

resources, but each is drawing from a unitary resource (e.g., Kahneman, 1973). 

The key to assessing whether multiple resource pools exist is to test multi-modal 

attention in a dual task situation.  The results of this first experiment suggest that M-

SWAP is a valid loading task for differentiating reserve capacity across sensory 

modalities.  However, further investigation is required to determine whether drawing 
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resources away from one pool results in a reduction of capacity in another, which is the 

goal of the second experiment. 

 



32 

CHAPTER 3: EXPERIMENT 2 

Introduction 

Although there is some evidence supporting multiple resource theories, the issue 

is far from settled.  Nonetheless, human factors practitioners must deal regularly with 

issues of resource availability and attentional reserve capacity.  One method of measuring 

attentional reserve capacity is the secondary-task technique.  The technique is rooted in 

the assumption that the performance of a primary task will consume a certain amount of 

resources.  The notion is that if the operator is capable of performing the task more or less 

perfectly, it is likely that some residual attentional capacity exists.  In order to determine 

how much reserve capacity is present, a secondary task is loaded to consume the 

remaining resources.  The approach requires that operators attempt to maintain 

performance on the primary task and only perform the secondary loading task with any 

remaining resources.  If the operator can perform both the primary and secondary tasks 

perfectly, then some reserve capacity must be present.  Under this scenario, the secondary 

task demand level can be increased in order to determine how much reserve capacity is 

present.  A model depicting the relationships between available capacity, primary-task 

demand levels, and three secondary loading task demand levels is shown in Figure 9.  

The amount of available capacity shown in the model is fixed; however, in reality this 

amount can change based upon a variety of factors, such as task proficiency, fatigue 

(Hancock & Warm, 1989) or arousal levels (Kahneman, 1973).
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Primary Task 
Demand Level

Secondary Task 
Demand Level

Spare Capacity 

Secondary Task Demand Level

ModerateLow High

 
Figure 9. Theoretical model of spare capacity consumed by a primary task and a 
secondary loading task with three demand levels. 

 
 

One way of determining whether multi-modal attention is divided into multiple 

pools versus a unitary resource is through use of this secondary task approach: tax one 

sensory modality with a task and then place demands successively upon the other 

remaining modalities with a secondary task.  If the secondary task imposes demand 

equally across sensory modalities, any differences in secondary task performance would 

suggest differential reserve capacity (i.e., multiple pools of varying sizes).  However, if 

no modality effects are observed, the results can potentially be interpreted from both 

unitary resource and multiple resource perspectives. 

The approach taken here is that of a traditional dual task protocol (e.g., Ogden, 

Levine, & Eisner, 1979; Rolfe, 1973).  A primary visual task is performed, and a 

secondary loading task is added periodically.  The secondary task can either share or 

appeal to a different sensory modality from that of the primary task.  Even though a 
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secondary task is added, participants are asked to maintain performance on the primary 

task. 

For the purposes of this experiment, the primary task is a visual monitoring task.  

M-SWAP will serve as a secondary loading task.  The clear advantage of using M-SWAP 

in this context is the ability to present a secondary task to any of three modalities while 

imposing a consistent level of task demand. 

 

Research Hypotheses 

Assuming that performance on the primary task was maintained at a consistent 

level, irrespective of the presence of a secondary task, the following was predicted:   

• Auditory and tactile counting task performance would be significantly 

better than visual counting task performance, as simultaneously 

performing two visual tasks would draw from the same resource. 

• It was not known whether differences would be observed between 

auditory and tactile counting performance.  Finding a performance 

difference would offer support for multiple resource theories of attention.  

Simultaneously failing to find differences and observing a low effect size 

can be interpreted as support for the unitary resource model.  

• Subjective workload ratings for performing two intramodal tasks would be 

significantly higher than ratings for two cross-modal tasks or performing 

one task. 
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• It was not known whether differences would be found between subjective 

workload ratings for auditory and tactile counting. 

 

Method 

Participants 

A sample of 35 undergraduate psychology students was recruited from the 

University of Central Florida.  However, due to the aforementioned outlier issue, four 

participants were excluded from all analyses, resulting in N = 31 (13 males, 18 females).  

All had participated in the previous experiment.  Ages ranged from 19 to 36 years of age 

(M = 21.8, SD = 3.3).  All were in good health, and none indicated the presence of any 

type of sensory or motor disability that might influence the results of the study.  Students 

received their preference of either money at the rate of $10/hour or extra course credit at 

the standard psychology department rate of one credit per half hour as compensation for 

their participation. 

 

Apparatus and Materials 

Multi-Attribute Task Battery 

The system monitoring component of the Multi-Attribute Task Battery (MATB; 

Comstock & Arnegard, 1992) served as the primary visual task for this experiment (see 

Appendix H for task instructions).  It consists of four bars arranged horizontally, each 
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with a fixed scale and a moving pointer that represents the temperature and pressure 

gauges for two engines of an aircraft (see Figure 10).  

 

 

Figure 10. Screen capture of the system monitoring component of the MATB. 

 
 

The gauges normally move up and down independently from one another within 

two tick marks of the center line, indicating normal operation.  If a gauge moves outside 

this safe region, the participant resets it by hitting the appropriate key on a standard PC 

keyboard.  The first four function keys of a standard QWERTY PC keyboard are mapped 

to the four gauges to facilitate participants’ responses and reduce confusion. 

A red light is present to serve as an alarm, indicating when one of the gauges 

moves out of the safe range.  However, the reliability of this alarm is adjustable, allowing 

the experimenter to manipulate the demand imposed by the task.  Alarm unreliability 

forces participants to monitor the gauges rather than monitoring the indicator light and 

then scanning the gauges.  For the present experiment, the alarm reliability was set at 

60%.  This value was chosen based upon the results of pilot testing.  As the visual 

monitoring task was serving as a primary task in a dual-task experimental paradigm, a 

moderate amount of task demand was required; however, the monitoring task could not 
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be too demanding or participants would not have any reserve capacity to allocate to a 

secondary task. 

The MATB monitoring task was presented on a Dell 17 in. LCD monitor.  The 

monitor was positioned on a desk such that the monitoring task was positioned below the 

LCD presenting the M-SWAP visual counting task (see previous apparatus and materials 

section for specific details regarding the positioning of the M-SWAP visual display).  

This positioning was chosen because it was the closest possible placement of the two 

visual displays to facilitate dual task performance (Wickens, 1984). 

Multi-Sensory Workload Assessment Protocol (M-SWAP) 

M-SWAP served as the secondary task for this experiment.  See the apparatus and 

materials section for the previous experiment for specific details regarding this task. 

NASA-Task Load Index (TLX) 

Global subjective workload ratings were assessed using the NASA-TLX.  See the 

apparatus and materials section for the previous experiment for specific details. 

 

Design and Procedure 

A four-condition completely within-groups design was used for this experiment.  

The order in which the four conditions were present varied using an order-4 Latin Square.  

Participants were randomly assigned to a task order using a random number generator 

prior to the experiment. 

Since this was the second experiment in the series, all participants had previously 

been in the laboratory.  They were welcomed back and reminded that their participation 
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was voluntary.  Participants changed into a laboratory t-shirt, were fitted with the tactile 

belt, and were seated at a desk.  Participants engaged in the cross-modal matching 

procedure for M-SWAP, as was described for the previous experiment. 

Participants were given instructions for M-SWAP and performed three 1-minute 

blocks as practice.  Each block presented one of the three modalities, but only at the 

moderate task demand level.  A moderate task demand level was chosen based upon the 

results of pilot testing and to avoid ceiling and basement effects. 

After practicing M-SWAP, participants were given instructions for the visual 

monitoring task of the MATB.  They engaged in a five minute practice block at 60% 

alarm reliability and were permitted to proceed with the experiment if their performance 

met or exceeded 90%. 

Participants were then asked to perform the MATB monitoring task, and they 

were told that the counting task would be presented periodically.  They were instructed to 

perform the counting task, if possible, but only if it did not take away from performing 

the MATB monitoring task.  The MATB monitoring task was presented for 20 minutes, 

which was divided into four five-minute blocks, each representing an experimental 

condition.  One block consisted of performing the MATB monitoring task by itself.  The 

remaining three blocks consisted of performing simultaneously the MATB monitoring 

task and each of the three M-SWAP modalities at moderate demand.  After each block, 

the MATB monitoring task was paused, and participants were asked to complete the 

NASA-TLX for that block. 

After the experiment, participants were given privacy to change back into their 

regular clothing.  They were debriefed regarding the full purpose of the experiment series 
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and thanked for their participation.  The total duration of the experiment was 

approximately one hour. 

 

Results 

The data were screened for normality and equal variance (see Appendix I for 

skewness and kurtosis tables), which resulted in the exclusion of the same four outliers as 

occurred in the previous experiment (see the previous Results section).  The primary 

metric for MATB monitoring performance was percent correct, which was calculated for 

each block based upon traditional signal detection data (i.e., hits, misses, false alarms, 

and correct rejections).  Percent correct was calculated for all three M-SWAP blocks in 

the same manner as described for the previous experiment.  The NASA-TLX 

questionnaires were scored using standard procedures to obtain global workload ratings 

(see Tables 5 -7 for the descriptive statistics for these measures). 

 

Table 5. Descriptive Statistics for Percent Correct on MATB across Condition 

Condition M SD N 
Single Task, No Counting .94 .09 31 

 
Dual-Task, Visual Counting .88 .13 31 

 
Dual-Task, Auditory Counting .92 .13 31 

 
Dual-Task, Tactile Counting .92 .08 31 
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Table 6. Descriptive Statistics for Percent Correct on M-SWAP across Condition 

Condition M SD N 
Dual-Task, Visual Counting .68 .13 31 

 
Dual-Task, Auditory Counting .77 .15 31 

 
Dual-Task, Tactile Counting .80 .13 31 

 

 

Table 7. Descriptive Statistics for Global NASA-TLX Scores across Condition 

Condition M SD N 
Single Task, No Counting 40.0 20.2 31 

 
Dual-Task, Visual Counting 77.7 13.1 31 

 
Dual-Task, Auditory Counting 69.4 17.6 31 

 
Dual-Task, Tactile Counting 67.9 20.6 31 

 
 
 

Primary Task Performance 

As was done in the first experiment, all data analyses were performed at an alpha 

= .05.  A repeated-measures ANOVA was performed with percent correct on the MATB 

monitoring task as the dependent variable and experimental condition as the independent 

variable.  Task order was coded and treated as a second independent variable to test for 

the presence of carryover effects.  No main effect of condition, F(3, 90) = 1.71, p = .170, 

η2 =.05, and no interactions between task condition and task order were observed, F(9, 

81) = 1.79, p > .05, η2 = .015. 
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Secondary-Task Performance 

A repeated-measures ANOVA was performed with percent correct on M-SWAP as the 

dependent variable and experimental condition as the independent variable.  A significant 

main effect of experimental condition was found, F(2, 90) = 10.66, p < .001, η2 = .29.  

Planned comparisons were made based upon the a priori hypothesis that auditory and 

tactile counting performance would be significantly better than visual counting 

performance.  The hypothesis was supported: percent correct was significantly lower for 

visual counting (M = .65, SD = .13) than for either auditory (M = .75, SD = .15) or tactile 

counting (M = .78, SD = .13), t(60) = 4.52, p < .001.  No differences were expected (nor 

were they found) between the percent correct for auditory and tactile counting, t(60) = 

0.90, p = .347.  See Figure 11 for a graphical depiction of these results.  No interactions 

between percent correct and task order were observed, F(6, 52) = 0.85, p > .05, η2 = .09. 
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Figure 11. Mean percent correct on M-SWAP as a function of condition.  The error bars 
represent standard deviations. 

 

Perceived Workload Ratings 

The NASA-TLX scores were also analyzed using a repeated-measures ANOVA.  A 

significant main effect of experimental condition was observed, F(3, 90) = 54.2, p < .001, 

η2 = .39.  Planned comparisons tested, and subsequently confirmed, the hypothesis that 

workload ratings for the “no counting” MATB condition (M = 40.0, SD = 20.2) were 

significantly lower than that of the dual task conditions using visual counting (M = 77.6, 

SD = 13.1), auditory counting (M = 69.4, SD = 17.6), or tactile counting (M = 67.9, SD = 

20.6), t(90) = 12.31, p < .001.  Further, workload for the dual task condition with visual 
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counting was rated significantly higher than for the dual task conditions with auditory or 

tactile counting, t(90) = 3.30, p < .01 (see Figure 12 for a graphical depiction of the 

results).  No interactions between NASA-TLX scores and task order were found, F(9, 81) 

= 1.71, p > .05, η2 = .06. 
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Figure 12. Mean Global NASA-TLX scores by condition.  The error bars represent 
standard deviations. 
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Additional Analyses 

Response times on the MATB were analyzed, the mean values of which can be 

seen in Table 8. 

 

Table 8. Mean Response Time for MATB Visual Monitoring Task across Condition. 

Condition M SD N 
Single Task, No Counting 2.63 0.97 31 

Dual-Task, Visual Counting 3.20 1.15 31 
 

Dual-Task, Auditory Counting 2.68 1.04 31 
 

Dual-Task, Tactile Counting 3.23 1.35 31 
 
 
 

A repeated-measures ANOVA was computed, and no differences were observed, 

indicating that response time did not differ significantly as a function of experimental 

condition.  D-prime and beta were computed for MATB task performance for all four 

conditions.  The descriptive statistics are presented in Tables 9 and 10. 

 

Table 9. Descriptive Statistics for d-prime for MATB Performance across Condition. 

Condition M SD N 
Single Task, No Counting 5.13 1.42 31 

 
Dual-Task, Visual Counting 4.28 1.91 31 

 
Dual-Task, Auditory Counting 5.00 1.88 31 

 
Dual-Task, Tactile Counting 4.40 1.63 31 
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Table 10. Descriptive Statistics for beta for MATB Performance across Condition. 

Condition M SD N 
Single Task, No Counting 0.93 0.24 31 

 
Dual-Task, Visual Counting 1.10 0.32 31 

 
Dual-Task, Auditory Counting 0.97 0.22 31 

 
Dual-Task, Tactile Counting 1.02 0.32 31 

 

A repeated-measures ANOVA was performed to determine if significant 

differences were present between d-prime values by condition.  No differences were 

found, F(3, 90) = 2.1, p = .10.  An additional repeated-measures ANOVA was computed 

to determine if significant differences were present between beta values by condition.  A 

significant main effect of condition was found, F(3, 90) = 3.43, p = .02, η2 = .10  Post hoc 

analysis (LSD) indicated that beta for MATB performance in the dual visual task 

condition was significantly higher than that of the single visual task condition (p < .01) or 

of the dual visual-auditory task condition (p < .05). 

D-prime and beta were computed for M-SWAP performance across all three 

conditions for which it was incorporated as a secondary task.   The descriptive statistics 

are shown in Tables 11 and 12. 

 

Table 11. Descriptive Statistics for d-prime for M-SWAP Performance across Condition. 

Condition M SD N 
Dual-Task, Visual Counting 1.20 1.05 31 

 
Dual-Task, Auditory Counting 1.93 1.56 31 

 
Dual-Task, Tactile Counting 2.17 1.34 31 
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Table 12. Descriptive Statistics for beta for M-SWAP Performance across Condition. 

Condition M SD N 
Dual-Task, Visual Counting 1.53 0.54 31 

 
Dual-Task, Auditory Counting 1.16 0.73 31 

 
Dual-Task, Tactile Counting 1.48 1.11 31 

 
 

A repeated-measures ANOVA was computed to determine if significant 

differences were present between M-SWAP d-prime values by condition.  A significant 

main effect of condition was found, F(3, 60) = 7.0, p = .002, η2 = .19.  Pairwise 

comparisons (LSD) indicated that participants were significantly more sensitive to tactile 

counting (p < .001) and auditory counting (p < .05) than for visual counting.  An 

ANOVA for beta values could not be computed because the wide degree of variance in 

between conditions, which violated the assumptions for the test.  

 

Discussion 

Experiment 2 used a classic secondary loading task paradigm, and consequently, 

it was necessary to confirm that participants maintained performance on the primary task 

in order to make certain that the secondary task was consuming reserve capacity.  Had the 

participants reallocated the amount of effort dedicated to the primary task, thereby 

making allowances for performing the secondary task, then the validity of any 

comparisons of secondary task performance might be called into question.  However, this 

was not the case; no differences in primary task performance were found using either 

percent correct or response time as indicators. 
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It was hypothesized that performance on a secondary auditory or tactile task 

would be significantly better than performance on a secondary visual task.  The data 

support this hypothesis, and in light of Wickens’ model (1984, 2002), it is a reasonable 

expectation.  Additionally, the finding that participants exhibited greater sensitivity to 

and better performance for the tactile and auditory counting tasks over the visual 

counting task suggests further that greater attentional capacity was available to perform 

cross-modal counting.  Two visual tasks draw from the same resources, whereas an 

auditory or tactile task coupled with a visual task draw from different resource pools.  

The results could also be influenced by the placement of the visual displays, and although 

they were situated as closely together as possible (combined display area in visual angle 

subtense was approximately 9.2° horizontally and 22.9° vertically from a distance of 25 

in.), it is difficult to perform two visual tasks simultaneously because we can only look in 

one place at once.  However, Burke, Gilson, and Jagacinski (1980) found that people can 

effectively monitor two visual displays across a variety of spatial separations.  Moreover, 

Wickens’ (2002) most recent update to his multiple resource theory suggests people can 

effectively engage in dual visual tasks if each is presented to a different visual channel 

(i.e., focal versus ambient vision). 

No hypothesis was generated regarding differences between secondary auditory 

and tactile task performance because there is little basis for these comparisons in the 

literature.  Finding a difference between the two would have lent further support to 

multiple resource theory, and it would have implied one of two things: 1) the capacities 

of the auditory and tactile modalities differ, or 2) modality-specific resource pool 

capacities are interconnected and dependent, meaning drawing from one resource pool 
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can influence the capacity of another.  Although no differences were observed in 

performance and perceived workload between the visual-auditory and visual-tactile task 

conditions, a slight trend was found in which performance was slightly better and 

workload was slightly lower for the tactile dual task condition as compared to the 

auditory condition.  A power analysis was performed to determine the sample size 

required to observe significant differences in M-SWAP performance (percent correct) 

and perceived workload scores.  Assuming a desired power level of .80, a sample of 62 

participants would be needed to see a difference in performance; however, the sample 

size required to observe a difference in perceived workload scores is N = 164. 

The hypotheses related to perceived workload were supported.  Differences were 

observed between a dual visual-visual task and the other dual task conditions (visual-

auditory and visual-tactile).  However, no differences in perceived workload were seen 

between the cross-modal dual task conditions.  Given that no performance differences 

were seen between the two cross-modal dual task conditions, it is not unreasonable to 

expect perceived workload to follow suit. 

The data lead to two possible conclusions.  Principally, there are independent 

resource pools for audition and touch, and their capacities are approximately the same.  

Alternatively, there is a unitary resource pool (e.g., Kahneman, 1973), and the tasks drew 

approximately the same quantity of resources as they had comparable levels of demand.  

At present, there is insufficient basis for a clear preference for one conclusion over the 

other; however the trend suggesting differential cross-modal capacity is supportive of the 

former.
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CHAPTER 4: GENERAL DISCUSION 

 

The overall purpose of this investigation was to determine if modality-specific 

attentional resources exist and whether they are independent from one another.  Although 

several aspects of this investigation are unique, it is the inclusion of a loading task 

incorporating three sensory modalities that is first and foremost.  The data support 

multiple resource theory, though the results are not unassailable due to the potential 

constraints of monitoring simultaneously two visual displays.  Nonetheless, this research 

led to the validation of a multi-modal secondary task protocol, M-SWAP, which has 

value from applied and methodological perspectives.  The data demonstrate that M-

SWAP can be used for assessing attentional reserve capacity for vision, audition, and 

touch - a capability offered by no other measure (Meshkati, Hancock, Rahimi, & Dawes, 

1995). 

 

Applications of this Research 

M-SWAP was designed specifically for evaluating attentional reserve capacity in 

applied environments, and as such, it has the potential for use in many human factors 

applications.  Three exemplars are discussed below: 
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Multi-Modal Alarm and Display Design 

One application is in the domain of multi-modal alarm and display design.  

Decisions regarding the incorporation of a new alarm or display element in an 

environment should be data-driven, especially if the capability exists for presenting the 

new information through different sensory modalities.  Human factors practitioners could 

periodically administer M-SWAP as a secondary loading task while operators perform 

their current tasks.  An analysis of primary and M-SWAP task performance data would 

indicate through which modality (or modalities) the operators are most receptive to new 

information.  Take the instance of integrating a new alarm in the cockpit of an airplane.  

The new alarm could be visual, auditory, or tactile in nature.  Given the current nature of 

the cockpit, there is a potential risk that the pilot will fail to detect yet another visual 

signal from amongst the plethora of visual displays.  Further, detection of an auditory 

alarm could be problematic due to masking from radio communications, other auditory 

signals, and noise.  Consequently, it is reasonable to suspect that a tactile alarm might 

offer the greatest likelihood of detection provided that the signal is sufficiently louder 

than ambient noise levels (e.g., vibration of aircraft).  However, this decision should be 

made empirically.  Using M-SWAP and high fidelity flight simulation, a pilot could fly 

through all of the phases of flight, from take-off to landing.  M-SWAP would be serve as 

a secondary task, presenting intermittently visual, auditory, or tactile signals.  An analysis 

the M-SWAP performance data would indicate which modality (or modalities) offers the 

attentional reserve capacity necessary for reliable detection of the new alarm. 
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Operator Status Assessment and Adaptive Automation 

Another application of M-SWAP is the assessment of operator state.  Several 

factors can influence an operator’s capacity for performing a task.  Among these are 

stress, workload, fatigue, and level of expertise (see Hancock & Desmond, 2001).   

Irrespective of the cause, M-SWAP could be used to evaluate whether an operator’s 

capacity for task performance is compromised or degraded.  These data would feed into 

an adaptive automation system that would either alleviate task demands to match the 

available capacity or remove them altogether in the event of operator incapacitation. 

A specific potential application is an automated drowsy driver countermeasure 

system.  The National Highway Traffic Safety Administration (NHTSA) has estimated 

that driver fatigue and sleepiness were involved in an average of 56,000 vehicle crashes 

per year in the United States in the mid-1990s, over 1,500 of which resulted in fatalities 

(Expert Panel on Driver Fatigue and Sleepiness, 1997).  A variety of factors contribute to 

driver drowsiness, including time of day (Folkard, 1997; Lenné, Triggs, & Redman, 

1997; Maycock, 1997), sleep debt (Brown, 1994; Fell & Black, 1997), and vehicular 

motion itself (Brill, Hancock, & Gilson, 2003; Graybiel & Knepton, 1976; Lawson & 

Mead, 1998).  M-SWAP could be integrated into a vehicle, requiring the driver to 

perform the task periodically to assess his or her state.  Alert drivers would theoretically 

have the reserve capacity to perform the task.  Drowsy (or otherwise impaired) drivers 

would exhibit performance decrements.  In the event their performance failed to meet a 

predetermined criterion, an automated system would engage to reduce task demands 

ranging from temporarily disabling distracting technologies (e.g., radio) to safely pulling 

the car off the road. 
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Evaluation of Automaticity and Training Effectiveness 

As operators become more proficient in performing a task, the performance of the 

task eventually becomes automatic and requires fewer cognitive resources (Posner & 

Snyder, 1975).  Consequently, automaticity of task performance is associated with 

increased reserve capacity.  Along with primary task performance measures, M-SWAP 

could be used as a training aid, serving as a secondary indicator of automaticity. 

On the subject of automaticity, the data from this study, as well as prior studies 

using the complex counting task, suggest that performance on M-SWAP does not become 

automatic.  None of the prior studies using the complex counting task have observed 

learning effects, which is an extraordinary and unique quality among performance 

measures.  This is a topic that should be investigated further.  The potential utility of a 

performance-based assessment measure that is evidently resistant to learning and practice 

effects is tremendous. 

 

Limitations of the Present Research 

There are limitations to the present research, which must be considered when 

interpreting its results and conclusions.  This research uses a multi-modal secondary 

loading task - a counting task.  One of the requirements for selecting a task for these 

experiments was that the signals provided to participants must be visual, auditory, and 

tactile in nature.  A secondary, but equally important, requirement was that the cognitive 

component of the task had to be the same, irrespective of the sensory modality through 

which the signals were presented.  These requirements were met through the use of M-
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SWAP; however, there are specific implications associated with the use of a counting 

task, particularly when one looks beyond the levels of attention and sensory coding to 

short-term/working memory.  The signals presented in the counting task were spatial in 

nature, with the possible exception of the auditory counting task.  The auditory counting 

task was pitch-based, which is an abstraction of spatial separation.  The tally of target 

signals presented was maintained in working memory as a verbal code.  This was 

supported anecdotally by participants who indicated they kept count through subvocal 

rehearsal (e.g., Baddeley, 2002; Baddeley & Hitch, 1974).  It is possible that different 

results might have been obtained by using a verbal task that required spatial 

representation; however, this is largely irrelevant.  Until a tactile language is developed 

and there are people who are equally proficient in its use as they are with written 

language and speech, a task such as a spatial counting task is the most feasible manner of 

parsing multi-modal attentional allocation and reserve capacity. 

 

Directions for Future Research 

There are many directions for future research, but this discussion will be limited 

to only a few exemplars.  From the perspective of methodology, these experiments have 

exposed a potential flaw in M-SWAP.  It was noted in the method section of both 

experiments that the data for four of the original 36 participants were excluded from 

analyses because they could not reliably discriminate between the middle and high tones 

of the auditory counting task.  This was not evident in the practice data because only the 

low demand version was used, which did not require this discrimination.  The middle and 

high tones are 900 Hz and 1800 Hz, respectively, and form a musical octave.  An octave 
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represents a doubling of frequency, but they have the same “tone chroma” or note of the 

musical scale (Blake & Sekuler, 2005).  A future investigation should examine 

developing an alternative auditory counting task.  One option is to use pitches in a 

manner similar to that of the current task, but simply avoid the octave issue by selecting 

different frequencies.  Another option is to use spatial audio, which would, in essence, 

reform the auditory task to be more analogous to the visual and tactile counting tasks, so 

that they use signals on the left, center, and right rather than low, middle, and high.  

Whether a monotone spatialized auditory counting task would be equally effective in 

imposing the demand as would the pitch-based counting task needs to be determined 

through empirical testing.  Of course, another approach is to keep using the current 

version of the auditory counting task and simply improve participant selection procedures 

to make certain they can accurately discriminate the pitches, as the auditory counting task 

has been established in its current incarnation for over 35 years. 

Another direction for future research is to determine if M-SWAP performance is 

predictive of actual performance in an applied setting.  An earlier discussion proposed 

using M-SWAP as a protocol for assessing an operator’s receptivity to alarm or display 

information.  One could use M-SWAP for a preliminary evaluation of signal receptivity 

and then compare those data against actual signal detection performance.  This would 

provide valuable data regarding the predictive validity of M-SWAP, and it would provide 

system designers with a powerful tool for making design decisions (such as through what 

modality an alert or alarm should be presented for the greatest likelihood of detection) 

based upon direct empirical evidence, rather than “best estimations” from the scientific 

literature. 
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The final direction for future research deals with the theoretical issues pertaining 

to this research.  The present work attempted to differentiate attentional reserve capacity 

through a secondary loading task, but aside from an instance of resource competition for 

dual visual tasks, no differences were found.  It is possible that increasing the demand 

level of the secondary loading task might reveal differences in reserve capacity.  

However, there is already evidence of reduced spare capacity in the dual-task scenario.  A 

within-groups cross experiment analysis revealed that the mean percent correct for 

moderate demand counting was approximately 10-12% lower when performed as a 

secondary loading task (Experiment 2) as compared to baseline performance as a primary 

task (Experiment 1), irrespective of modality.  This suggests that the amount of resources 

required for performing the moderate-demand counting task at baseline levels exceeded 

the available capacity.  Therefore, taxing these resources further through use of the high-

demand counting task still might not reveal any differences, unless these tasks draw 

resources at differential rates by modality. 

Future research should also investigate modality-specific reserve capacity as a 

function of the primary task.  The primary task used here was a visual monitoring task.  It 

would be interesting to see what patterns of resource availability and competition emerge 

through use of an auditory or tactile primary task.  Moreover, it would be interesting to 

see how primary tasks requiring different codes (i.e., verbal versus spatial) might 

influence secondary task performance across modalities. 

A final way of examining multi-modal attentional capacity is through sustained 

attention research rather than a divided-attention approach, as was employed in the 

present research.  M-SWAP could be adapted to serve as a multi-modal vigilance task.  
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Any modality differences in the vigilance decrement, a decrease in effective vigilance 

performance across time, would be suggestive of differential attentional capacity. 

 

Summary 

This research was designed to investigate the nature of attentional capacity using 

a multi-modal approach.  The first experiment used a counting task as a primary task in 

order to validate the task.  The second experiment used the same counting task as a 

traditional secondary loading task in tandem with a primary visual monitoring task to 

gather evidence regarding potential differences in attentional capacity by modality.  The 

results suggest that attentional capacity is multi-modal, and the capacities are 

approximately the same sizes with a slight trend towards greater capacity for tactile 

signals.  However, the results do not completely preclude the possibility of multi-modal 

attention being a function of allocation from a unitary resource.  Further research is 

required to investigate these constructs and determine the true nature of our attentional 

resources. 
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APPENDIX A: INSTITUTIONAL REVIEW BOARD APPROVAL 
LETTER 
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APPENDIX B: NASA-TLX INSTRUCTIONS AND SCRIPTS 
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 NASA-TLX Scripts 
 
 
First Administration 
 
“I need you to make some ratings regarding the task you just performed.  On the first 
page, place a single vertical mark on each line representing the extent to which that factor 
influenced your performance.  For example, consider how mentally demanding the task 
was (low versus high) and place a mark on the line.  Then, consider how physically 
demanding the task was (low versus high) and place a mark on the line, and so on.  On 
the second page, circle one member of each pair that indicates which factor influenced 
your performance the most.  For example, consider whether it was more mentally 
demanding or physically demanding and circle one of the pair.  Then consider whether it 
was more a matter of time pressure (temporal demand) or mental demand that influenced 
your performance, and so on until one member of each pair is circled.  So that you know 
exactly what I want you to rate, please read over this list of rating scale definitions before 
making your ratings.  Any questions?” 
 
 
 
Subsequent Administrations 
 
“I need you to make some ratings regarding the task you just performed.  Consider the 
most recent time you performed the task and place a mark on each line representing the 
extent to which that factor influenced your performance.  Then, on the second page, 
circle one member of each pair that indicates which factor influenced your performance 
the most.  Please refer to the list of rating scale definitions in case you need reminded of 
to what each factor refers.” 
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APPENDIX C: ORDER-10 LATIN SQUARE DESIGN WITH TASK 
SEQUENCES
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Task 
Order

A 1 2 10 3 9 4 8 5 7 6
B 2 3 1 4 10 5 9 6 8 7
C 3 4 2 5 1 6 10 7 9 8
D 4 5 3 6 2 7 1 8 10 9
E 5 6 4 7 3 8 2 9 1 10
F 6 7 5 8 4 9 3 10 2 1
G 7 8 6 9 5 10 4 1 3 2
H 8 9 7 10 6 1 5 2 4 3
I 9 10 8 1 7 2 6 3 5 4
J 10 1 9 2 8 3 7 4 6 5

Task 
Order Modality Demand

A VL VM D VH TH AL TM AM TL AH 1 = VL Visual Low
B VM VH VL AL D AM TH AH TM TL 2 = VM Visual Moderate
C VH AL VM AM VL AH D TL TH TM 3 = VH Visual High
D AL AM VH AH VM TL VL TM D TH 4 = AL Auditory Low
E AM AH AL TL VH TM VM TH VL D 5 = AM Auditory Moderate
F AH TL AM TM AL TH VH D VM VL 6 = AH Auditory High
G TL TM AH TH AM D AL VL VH VM 7 = TL Tactile Low
H TM TH TL D AH VL AM VM AL VH 8 = TM Tactile Moderate
I TH D TM VL TL VM AH VH AM AL 9 = TH Tactile High
J D VL TH VM TM VH TL AL AH AM 10 = D Dummy Trial

Order 10 Latin Square

Order 10 Latin Square                            (with 
Condition Assignments)

Legend
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APPENDIX D: INFORMED CONSENT STATEMENT 
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Informed Consent Statement 
 
Project Title: Comparison of Multiple Resource Capacities through Use of a Multi-
sensory Counting Task 
 
Primary Investigator(s): Mr. Chris Brill and Dr. Richard Gilson 
 
Overview: This experiment is intended to help develop a new measure of mental 
workload across the senses.  If you choose to participate in this study, you will be asked 
to perform a counting task in which random signals will be presented visually (blocks on 
a computer screen), auditorily (musical tones), and tactually (mild vibration against the 
skin – like a vibrating cell phone or pager).  You will be asked to respond by pressing a 
button. 
 
If I choose to participate, what will I be asked to do? 
You will be asked to provide a brief medical history to make sure you are eligible for 
participation in the study.  The history primarily asks about conditions or medications 
that might be related to sensory deficits (e.g., loss of hearing, reduced skin sensitivity) 
and motor ability.  You may refuse to answer any questions that make you feel 
uncomfortable. 
 
You will be asked to wear one of the laboratory protective research garments (shirts).  
Participants are asked to wear our protective garments for two reasons: 1) Because of the 
construction and expense of the vibration devices (tactors), they cannot easily be cleaned.  
Therefore, the best way to keep them clean is to prevent them from touching the skin.  2) 
Since the tactors do not touch the skin, we must standardize the material between the 
tactors and the skin.  This way we can accurately compare participant performance.  Of 
course, you will be given privacy to change into the protective garment. 
 
To ensure accurate placement of the tactors, your abdomen will need to be measured 
using a cloth measuring tape.  The researcher will then fit you with the tactor belt.   
 
The researcher will then seat you at a computer workstation, and you will be provided 
with more specific instructions on how to perform the counting task.  You will have the 
opportunity to ask for clarification if any aspect of the task is confusing. 
 
Once you are finished with the experiment, the researcher will once again give you 
privacy to change back into your regular clothes.  Since the experiment involves a second 
session, the researcher will ask you about scheduling a follow-up. 
 
The second experimental session involves performing the same counting task only you 
will be asked to perform simultaneously a visual monitoring task using a second 
computer. 
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What steps are being taken to ensure my privacy? 
All information you provide will be kept confidential.  Written information (e.g., surveys, 
forms, etc.) is kept in a locked file cabinet.  A numerical code will be used for all 
electronic information (e.g., performance data) so that your identity cannot be linked with 
the data file. 
 
Are there any risks associated with participating in this experiment? 
The experiment does not require you to perform actions beyond that experienced in 
everyday life.  The tactors used for vibration stimuli are commercially available, and they 
are not much different from devices used in vibrating cell phones and pagers.  Therefore, 
this protocol is deemed minimal risk. 
 
What if I have questions about the experiment or its procedures? 
You may ask questions about the experiment at anytime.  If you have questions after the 
experiment session has ended, you may contact Chris Brill at CATRlab@netscape.net or 
(407) 823-2298. 
 
Who do I contact if I have questions about participants’ rights? 
Questions or concerns about the research participants' rights may be directed to the 
UCFIRB Office, University of Central Florida Office of Research, Orlando Tech Center, 
12443 Research Parkway, Suite 302, Orlando, FL 32826. The phone number is (407) 
823-2901. 
 
How long does the experiment last? 
It varies from person to person, but a typical time commitment for the first session is 
approximately 1½ hours.  The duration for the second session is approximately 1 hour. 
 
Will I receive any compensation for participating in this experiment? 
Some instructors offer extra credit for participating in experiments, but this is at your 
instructor’s discretion.  If your instructor approves, you will receive extra credit for 
participating in this experiment.  The standard rate in the psychology department is 1 
credit for every half hour of participation.  If you choose, you can receive monetary 
compensation instead of extra credit at the rate of $10 per hour. 
 
Is there anything else I need to know? 
You must be 18 years of age or older to participate in this experiment.  You are free to 
withdraw from the experiment at anytime without any negative consequences; however, 
you will only be compensated for the amount of time you spent participating in the 
experiment. 
 
If you believe you have been injured during participation in this research project, you 
may file a claim with UCF Environmental Health & Safety, Risk and Insurance Office, 
P.O. Box 163500, Orlando, FL 32816-3500 (407) 823-6300.  The University of Central 
Florida is an agency of the State of Florida for purposes of sovereign immunity and the 
university's and the state's liability for personal injury or property damage is extremely 
limited under Florida law.  Accordingly, the university's and the state's ability to 



66 

compensate you for any personal injury or property damage suffered during this research 
project is very limited. 
 
I have read the procedure described above.  I voluntarily agree to participate in the 
procedure and I have received a copy of this description. 
 
__________________________________ 
Participant’s Signature        
Date 

 

 
__________________________________ 
Witness’ Signature (Research Assistant)      
Date 

 
____________________      ______ 
PI’s Signature               Date 
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APPENDIX E: DEMOGRAPHICS AND MEDICAL HISTORY FORMS 
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UCF Tactile Research Laboratory 
Demographics and Medical Questionnaire 

 
This survey was designed to obtain information about our research participants prior to 
their serving in our studies.  We need the medical information to help us interpret your 
results.  This contact information sheet is separated from the rest of your file to maintain 
confidentiality.  ALL data collected in this laboratory is to be kept confidential.  This 
page will be separated from the actual medical history questionnaire so that no one can 
link the information you provide with your identity.  Your contact information will only 
be used in the event we have some follow-up questions or need to schedule a subsequent 
laboratory session. 
 
 
Name: __________________________________ Date: _____________ 

Address:  _________________________________ Sex (circle one):  M / F 

               _________________________________ Age: ___________ 

               _________________________________ Handedness:  L / R   

  

Phone Number: ___________________________  

 
E-mail Address: ___________________________ 

 

  

 
Measurements (taken by experimenter): 
 
Lower Circumference: ________ cm 
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Medical History Questionnaire 
 
1.  Have you had any of the following conditions that affected your arms, wrist, hands, or 
fingers?  If yes, please indicate how much the condition interferes with your activities 
now and which side: 
0= Not at all    1 = A little   3 = A great deal    L = Left Side   R = Right Side    
Skin disorders (e.g., pressure sores, severe burns) Yes / No 0 1 2 L R 
Peripheral neuropathy Yes / No 0 1 2 L R 
Carpal Tunnel Syndrome Yes / No 0 1 2 L R 
Broken/injured (indicate: left arm, wrist, hand, or 
fingers) 

Yes / No 0 1 2 L R 

Cuts requiring sutures (indicate: left arm, wrist, hand, 
or fingers) 

Yes / No 0 1 2 L R 

Pinched Nerve Yes / No 0 1 2 L R 
Hand-Arm Vibration Syndrome or Vibration White 
Finger 

Yes / No 0 1 2 L R 

 
Other: _________________________________________________________________ 
 
2.  Have you experienced any numbness, tingling, or pain in your extremities, particularly 
in your hands and fingers that has not been explained by any of the above conditions?   
Yes / No 
 
If yes, please explain what body part(s) are affected and to what extent:  
________________________________________________________________________ 
 
3.  Are you currently taking any medication that might affect your motor coordination, 
particularly use of your arms, hands, or fingers?  Yes / No 
 
If yes, please list below: 
 
Medication Name     Reason Taken 
 
_____________________________  ___________________________________ 
 
_____________________________  ___________________________________ 
 
 
4.  Is there anything else (injuries, illnesses) that might affect your ability to use your 
arms, hands, or fingers?  Yes / No  
 
If yes, please explain what body part(s) are affected and to what extent: 
________________________________________________________________________
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APPENDIX F: EXAMPLE M-SWAP SCRIPTS WITH TASK 
INSTRUCTIONS AND COMPUTER COMMANDS
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Script for Counting Task:  VISUAL 
 
PRACTICE 
Type the following:   mswap –V –L:1 –S:ID #  -D:L 
 
“For this task, you will be presented with a random series of three boxes positioned on 
the left, center, or right of the screen.  Your task is to count the number of times you see 
the left box, and press the left button after every fourth one.  You might occasionally 
think there is a pattern, but there really isn’t one - you really have to count.  Do you have 
any questions?  This time you’re doing this for practice.  To lower the risk of distraction, 
please place these hearing protectors in your ears.” 
 
LOW DEMAND 
Type the following:  mswap –V –L:5 –S:ID #  -D:L 
 
“For this task, you will be presented with a random series of three boxes positioned on 
the left, center, or right of the screen.  Your task is to count the number times you see the 
left box, and press the left button after every fourth one.   Do you have any questions?  
To lower the risk of distraction, please place these hearing protectors in your ears.” 
 
MODERATE DEMAND 
Type the following:   mswap –V –L:5 –S:ID #  -D:M 
 
“For this task, you will be presented with a random series of three boxes positioned on 
the left, center, or right of the screen.  Your task is to count the number of left and center 
boxes, and press the left and center buttons, respectively, after every fourth one.  This 
means you need to count the number of times you see the left boxes and press the left 
button after every fourth one, while simultaneously counting the number of times you see 
the center boxes and pressing the center button after every fourth one.  Do you have any 
questions?  To lower the risk of distraction, please place these hearing protectors in your 
ears.” 
 
HIGH DEMAND 
Type the following:   mswap –V –L:5 –S:ID #  -D:H 
 
“For this task, you will be presented with a random series of three boxes positioned on 
the left, center, or right of the screen.  Your task is to count the number of left, center, and 
right boxes, and press the left, center and right buttons, respectively, after every fourth 
presentation.  This means you need to count the number of times you see the left box and 
press the left button after every fourth one, while simultaneously counting the number of 
times you see the center box and pressing the center button after every fourth one, and 
likewise pressing the right button after every fourth box on the right.  Do you have any 
questions?  To lower the risk of distraction, please place these hearing protectors in your 
ears.” 
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Script for Counting Task: AUDITORY 
 
PRACTICE 
Type the following:   mswap –A –L:1 –S:ID #  -D:L 
 
“For this task, you will be presented with a random series of three pitched tones: low, 
middle, and high.  Your task is to count the number of times you hear the low tone, and 
press the left button after every fourth one.  You might occasionally think there is a 
pattern, but there really isn’t one - you really have to count.  Do you have any questions?  
This time you’re doing this for practice.  Please put the headphones on now.” 
 
LOW DEMAND 
Type the following:   mswap –A –L:5 –S:ID #  -D:L 
 
“For this task, you will be presented with a random series of three pitched tones: low, 
middle, and high.  Your task is to count the number times you hear the low tone, and 
press the left button after every fourth one.   Do you have any questions?  Please put the 
headphones on now.” 
 
MODERATE DEMAND 
Type the following:   mswap –A –L:5 –S:ID #  -D:M 
 
“For this task, you will be presented with a random series of three pitched tones: low, 
middle, and high.  Your task is to count the number of low and middle tones, and press 
the left and center buttons, respectively, after every fourth one.  This means you need to 
count the number of times you hear the low tone and press the left button after every 
fourth one, while simultaneously counting the number of times you hear the middle tone 
and pressing the center button after every fourth one.  Do you have any questions?  
Please put the headphones on now.” 
 
HIGH DEMAND 
Type the following:   mswap –A –L:5 –S:ID #  -D:H 
 
“For this task, you will be presented with a random series of three pitched tones: low, 
middle, and high.  Your task is to count the number of low, middle, and high tones, and 
press the left, center and right buttons, respectively, after every fourth one.  This means 
you need to count the number of times you hear the low tone and press the left button 
after every fourth one, while simultaneously counting the number of times you hear the 
middle tone and pressing the center button after every fourth one, and likewise pressing 
the right button after every fourth high tone.  Do you have any questions? Please put the 
headphones on now.” 
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Script for Counting Task:  TACTILE 
 
PRACTICE 
Type the following:   mswap –T –L:1 –S:ID #  -D:L 
 
“For this task, you will be presented with a random series of vibratory taps positioned on 
the left, center, or right side of your body.  Your task is to count the number of times you 
feel the left tap, and press the left button after every fourth one.  You might occasionally 
think there is a pattern, but there really isn’t one - you really have to count.  Do you have 
any questions?  This time you’re doing this for practice.  To lower the risk of distraction, 
please place these hearing protectors in your ears.” 
 
LOW DEMAND 
Type the following:   mswap –T –L:5 –S:ID #  -D:L 
 
“For this task, you will be presented with a random series of vibratory taps on the body 
positioned on the left, center, or right side of your body.  Your task is to count the 
number of times you feel the left taps, and press the left button after every fourth one.  Do 
you have any questions?  To lower the risk of distraction, please place these hearing 
protectors in your ears.” 
 
MODERATE DEMAND 
Type the following:   mswap –T –L:5 –S:ID #  -D:M 
 
“For this task, you will be presented with a random series of vibratory taps positioned on 
the left, center, or right side of your body.  Your task is to count the number of left and 
center taps, and press the left and center buttons, respectively, after every fourth one.  
This means you need to count the number of times you feel a left tap and press the left 
button after every four one, while simultaneously counting the number of times you feel a 
center tap and pressing the center button after every fourth one.  Do you have any 
questions?  To lower the risk of distraction, please place these hearing protectors in your 
ears.” 
 
HIGH DEMAND 
Type the following:   mswap –T –L:5 –S:ID #  -D:H 
 
“For this task, you will be presented with a random series of vibratory taps positioned on 
the left, center, or right side of your body.  Your task is to count the number of left, center 
and right taps, and press the left, center and right buttons, respectively, after every fourth 
one.  This means you need to count the number of times you feel a left tap and press the 
left button after every four one, while simultaneously counting the number of times you 
feel a center tap and pressing the center button after every fourth one, and likewise 
pressing the right button after every fourth tap on the right.  Do you have any questions? 
To lower the risk of distraction, please place these hearing protectors in your ears.”
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APPENDIX G: EXPERIMENT 1 SKEWNESS AND KURTOSIS 
STATISTICS FOR M-SWAP PERCENT CORRECT AND NASA-TLX 

SCORES 
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Skewness and Kurtosis Statistics for M-SWAP Percent Correct by Condition 
 

Condition  Skewness Kurtosis 
Modality, Demand Level N Statistic Std. Error Statistic Std. Error 

 
Visual, Low Demand 32 -.540 .414 -.830 .809 

 
Auditory, Low Demand 32 -4.468 .414 22.715 .809 

 
Tactile, Low Demand 32 -.948 .414 .333 .809 

 
Visual, Moderate Demand 32 -1.484 .414 3.655 .809 

 
Auditory, Moderate Demand 32 -1.746 .414 2.820 .809 

 
Tactile, Moderate Demand 32 -.855 .414 -.298 .809 

 
Visual, High Demand 32 -.752 .414 -.518 .809 

 
Auditory, High Demand 32 -.921 .414 .773 .809 

 
Tactile, High Demand 32 -1.701 .414 4.272 .809 

 
 
 
 

Skewness and Kurtosis Statistics for Global NASA-TLX Scores by Condition 
 

Condition  Skewness Kurtosis 
Modality, Demand Level N Statistic Std. Error Statistic Std. Error 

 
Visual, Low Demand 32 .570 .414 .401 .809 

 
Auditory, Low Demand 32 .738 .414 .396 .809 

 
Tactile, Low Demand 32 -.023 .414 -1.233 .809 

 
Visual, Moderate Demand 32 -.122 .414 -.179 .809 

 
Auditory, Moderate Demand 32 -.132 .414 -.069 .809 

 
Tactile, Moderate Demand 32 -.133 .414 -.389 .809 

 
Visual, High Demand 32 -1.023 .414 .927 .809 

 
Auditory, High Demand 32 -.650 .414 .101 .809 

 
Tactile, High Demand 32 -.490 .414 -.638 .809 
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APPENDIX H: MATB VISUAL MONITORING TASK INSTRUCTIONS 
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MATB - Monitoring Task Script 
 
 
“In this task, you will be required to monitor the upper-left display on your 
screen for possible malfunctions.  This display consists of 4 dials simulating the 
temperature and pressure gauges of the two engines of an aircraft.  T1 
represents the Temperature and P1 represents the Pressure of Engine 1.  T2 and 
P2 represent the temperature and pressure of Engine 2.  Normally, the pointer 
indicates a good state of the two engines by fluctuating one mark below or 
above the central line.  However, from time to time, the monitoring system fails, 
which you will notice whenever the pointer of each of the four dials fluctuates by 
2 or more marks below or above the central line.  When this happens, a red 
warning light comes on to indicate that a malfunction is about to occur; 
therefore, you will need to pay attention to this display in order to respond as 
quickly and accurately as possible.” 
 
“Your task is to detect any malfunction(s) in the temperature and pressure dials 
by pressing the appropriate button as quickly and as accurately as possible.  T1 
stands for temperature of engine 1 and P1 stands for pressure of engine 1.  T2 
stands for temperature of engine 2 and P2 stands for pressure of engine 2.  Do 
you have any questions?” 
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APPENDIX I: EXPERIMENT 2 SKEWNESS AND KURTOSIS 
STATISTICS FOR MATB PERCENT CORRECT, M-SWAP PERCENT 

CORRECT, AND GLOBAL NASA-TLX SCORES 
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Skewness and Kurtosis Statistics for MATB Percent Correct by Condition 
 
Skewness Kurtosis Condition 

  N Statistic Std. Error Statistic Std. Error 
Single Task, No Counting 

31 -1.174 .421 .072 .821 

Dual Task, Visual Counting 
31 -1.100 .421 .736 .821 

Dual Task, Auditory Counting 
31 -1.714 .421 2.253 .821 

Dual Task, Tactile Counting 
31 -.379 .421 -1.279 .821 

 

 
Skewness and Kurtosis Statistics for M-SWAP Percent Correct by Condition 

 
Skewness Kurtosis Condition 

  N Statistic Std. Error Statistic Std. Error 
 
Visual Counting 31 -.124 .427 -1.344 .833 

 
Auditory Counting 31 -.550 .427 -.158 .833 

 
Tactile Counting 31 -.615 .427 -.273 .833 

 
 
 
 

Skewness and Kurtosis Statistics for Global NASA-TLX Scores by Condition 
 
Skewness Kurtosis Condition 

  N Statistic Std. Error Statistic Std. Error 
 
Single Task - MATB, 
No Counting Task 

31 .185 .421 -1.028 .821 

 
Dual Task – MATB,  
Visual Counting Task 

31 -.471 .421 .304 .821 

 
Dual Task – MATB,  
Auditory Counting Task 

31 -.552 .421 -.251 .821 

 
Dual Task – MATB,  
Tactile Counting Task 

31 -.883 .421 .218 .821 
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