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More than 80% of lung cancer patients die from drug-resistant, metastatic 
disease. Our focus is to identify new drug targets and alternative therapeutic 
strategies to improve outcomes for this majority of lung cancer patients. We aimed 
to satisfy the need for new treatment approaches by leveraging the information 
gained from the development of two multigene biomarker predictors of Epidermal 
Growth Factor Receptor Inhibitors (EGFRI) response in Non-Small Cell Lung 
Cancer (NSCLC). From these data, we first identified TGFβ signaling as a possible 
modulator of EGFRI resistance and I hypothesized that TGFβ signaling 
participates in the development and maintenance of erlotinib-resistance and -
sensitivity and regulates the gene expression of the miRNA comprising the 
signature of response. To identify novel putative treatment strategies for 
overcoming EGFRI resistance, we leveraged the raw data used to build the 
EGFRI-response predictors of NSCLC cells with divergent EGFRI responses using 
mathematical and protein-protein interaction modeling to identify a network of 
deregulated proteins in EGFRI-resistant cells. From this analysis, we identified a 
drug combination that is kills EGFRI-resistant NSCLC cells and further study will 
confirm if this novel strategy translates into a clinically utilizable option for the 
treatment of EGFRI-resistant NSCLC. 
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CHAPTER 1 

A. LUNG CANCER OVERVIEW 

Overview of Cancer 

Cancer is a group of genetic diseases that are caused by DNA damage and epigenetic 

changes. These changes result in cells that are characterized by uncontrolled growth, 

unchecked survival, and invasion into surrounding and distant tissues.  

Cancers are classically characterized by six hallmarks with an additional two hallmarks 

and two tumor-enabling characteristics that are increasingly recognized (1):  

1) Growth signal autonomy: Normal cells require direction of external growth

factors to drive replication. Cancers circumvent this need by mutational loss of 

growth factor pathway regulation and sometimes autonomous secretion of and 

response to growth factors. 

2) Genomic instability: This is a tumor-enabling characteristic. Tumor cells

gain increasing numbers of mutations and epigenetic changes that are selected 

for by pressure over successive generations.   

3) Evasion of growth and proliferation inhibitory signals: The majority of the

body’s healthy cells are not actively dividing. This is due to their response to growth 

inhibitory signals that are required to maintain homeostasis and prevent unwanted 

growth. Cancers develop acquired mutations to evade these inhibitory signals. 

4) Tumor promoting inflammation: This is another tumor-enabling

characteristic. Pathways that respond to signals from the immune system that are 

intended to induce cell death are co-opted by tumors to enhance tumorigenesis 

and progression. 

5) Evasion of apoptosis, or programmed cell death: Normal cells undergo

apoptosis in response to events like DNA damage. Cancer cells evade apoptosis 

generally through loss of apoptotic regulators. 

6) Avoiding immune destruction: The immune system can play a role of

identifying and destroying emerging neoplasias. Tumors develop methods of 

locally disabling immune surveillance mechanisms.  
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7) Gain of unlimited replication potential: Normal cells are programmed to stop 

dividing (senesce) or undergo apoptosis following too many rounds of DNA 

replication and subsequent cell division events. 

8) Angiogenesis, or the formation of new blood vessels: All cells require blood 

vessels to supply oxygen and nutrients and cancer cells induce the formation of 

new blood vessels in order to supply their rapidly growing numbers. 

9) Deregulated cellular energetics: The perpetual proliferation of tumor cells 

requires increased energy metabolism from a variety of sources (e.g., 

carbohydrates or lipids) to produce additional ATP demand to fuel growth. They 

also require larger amounts of cellular building blocks like nucleotides. Tumor cells 

adjust cellular metabolism pathways to meet increased energy requirements by 

the tumor. 

10) Invasion and metastasis: The healthy cells only migrate for the purposes 

of development and wound healing. Cancer cells exploit the pathways that regulate 

these processes in order to invade surrounding tissues with the ultimate goal of 

colonizing tissues at distant sites from the initial, primary tumor site. 

 

Cancers are driven by a series of two types of mutations: 1) gain-of-function 

mutations including amplification events resulting in oncogenic drivers, also known as 

oncogenes, and 2) loss-of-function mutations resulting in loss of genes responsible for 

regulating proliferation and survival, known as tumor suppressors (1). Proto-oncogenes, 

or genes that can become oncogenic with a gain-of-function mutation in one copy of the 

gene, are often involved in growth and proliferation pathways. Tumor suppressor genes 

require the loss-of-function of at least one (for haploinsufficiency and lower gene dose), 

but more often two copies of the gene (complete loss) in the genome. Tumor suppressors 

are most often growth inhibitors, responsive to growth inhibitors, or related to DNA repair 

or cell cycle check points (2). Cancers were initially described as having an “oncogene 

addiction” when cell survival is dependent on the constant over-activation of oncogenic 

signaling pathways (3, 4). However, it is growing increasingly evident that tumors are 

incredibly heterogeneous. Therapeutically targeting only the “oncogene addiction” leads 

to resistance arising from the selection of tumor cells that have alternative means of 

functioning around the inhibited oncogene (4). Moreover, not all tumors have an evident 

single “oncogenic addiction” and it is clear that successful tumor treatment will require the 

therapeutic-targeting of multiple oncogenic drivers and sources of resistance 
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simultaneously or sequentially (4). These specific aberrations in the cancer genome are 

paramount to cancer genesis, adaptability and progression and will be described in depth 

later in this chapter. 

 

Cancer progression is marked by the extent of primary tumor invasion into the 

surrounding tissues. In the later stages, after heavily invading surrounding tissues, tumor 

cells gain the potential to survive beyond the stroma. This process primes them to enter 

nearby blood vessels (intravasation) and be transported to distant organs via the 

circulatory or lymphatic system (5). Following transport, cancer cells exit blood vessels by 

a process called extravasation and either lie dormant or begin colonizing near the site of 

exit (5). The colonization of distant organs is called metastasis and is a hallmark of the 

latest stages of the disease most often resulting in death (1, 5). Lung cancers are 

particularly deadly because the majority of patients present in the later stages of the 

disease where metastatic colonization is already in progress or distant lesions have 

already been confirmed (6).  

 

Lung Cancer Epidemiology 

 

Lung and bronchial cancers represent a significant health issue both in the United 

States as well as abroad and are the number one cancer killer in the world (7). Around 

14% of cancer diagnoses each year are lung and bronchial cancers (6, 8). Lung and 

bronchial cancers are second in the number of diagnoses in both men and women in the 

U.S. each year behind the gender specific cancers, prostate and breast (6, 8). However, 

26-28% of the cancer deaths each year are attributable to lung and bronchial cancers in 

both men and women, which exceeds that of any other cancer (6, 8). The high incidence 

of lung cancer mortality correlates with the fact that 80-85% of patients present in the later 

stages of the disease (6, 8). 

 

The Commonwealth of Kentucky has one of the highest incidences of lung cancer 

in the U.S. with an exceptionally high rate of lung cancer diagnoses in the rural, 

underserved, Appalachian communities (9). Eighty-two percent of lung cancer deaths are 

directly attributable to smoking (10). Frequent indirect smoke exposure also contributes to 

lung cancer development (10). The Commonwealth of Kentucky has one of the highest 

smoking rates in the U.S. (6, 7). Kentucky agriculture has historically relied heavily on 
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tobacco as a major state crop. The federal deregulation of tobacco occurred in the mid-

2000s causing many local farmers to stop growing the crop while the local economy 

suffered accordingly. Many Kentucky smokers still consider smoking to be a form of 

boosting the local economy despite the decrease in working tobacco farms. Other 

environmental sources of carcinogen exposure leading to lung cancer include radon, 

chloromethyl ethers, asbestos, arsenic and other outdoor pollution namely by industry and 

vehicles (11). Of these, high radon levels are also commonly seen in Kentucky (12). 

Moreover, reliance on the rural industry of coal mining exposes many residents of 

underserved Appalachia to additional industrial carcinogens including increased radon 

levels and heavy metal exposure at jobsites (11, 13). The mining industry also introduces 

these carcinogens into the environment where they are commonly found in the air, soil 

and in water runoff further compounding the problem (13).  

 

Lung cancers present as different histological subtypes that are broken down into 

two broad categories: 1) Small Cell Lung Cancers (SCLC) and 2) Non-Small Cell Lung 

Cancers (NSCLC) which encompass adenocarcinomas, bronchioalveolar carcinomas, 

squamous cell carcinomas, and large cell carcinomas. Adenocarcinomas represent the 

largest percentage of lung cancer cases (14).     

 

Common Driver Mutations in Lung Tumors  

 

 Tobacco smoke is the main contributing factor to DNA mutagenesis leading to lung 

cancer pathogenesis, but other environmental factors including radon, occupational lung 

carcinogens and indoor and outdoor pollution contribute to lung cancer development (11). 

The carcinogenic activity of tobacco smoke is largely caused by three specific groups of 

chemicals: 1) tobacco-specific nitrosamines, 2) polycyclic aromatic hydrocarbons, and 3) 

aromatic amines (15). As lung cancers are largely driven by carcinogen exposure resulting 

in DNA damage and epigenetic alterations, they are highly heterogeneous and have one 

of the highest numbers of somatic mutations among cancers (16, 17). This high level of 

heterogeneity among lung tumors complicates molecular testing efforts for drug 

assignment and leads to quick cancer evolution in response to treatment (18). 

 

In recent years, an increasing number of driver mutations in lung cancers have 

been identified. Growth promoting drivers of lung cancers currently known include Kirsten 
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rat sarcoma viral oncogene homolog (KRAS), the epidermal growth factor receptor 

(EGFR), BRAF, MEK-1, HER2, MET, multiple members of the PI3K/AKT/mTOR 

pathways, ALK, ROS1, and rearranged during transfection (RET) (19). Prominent tumor 

suppressors found to be inactivated in lung cancers that are currently known include p53, 

phosphatase with tensin homology (PTEN), members of the p16INK4A/RB pathway and 

STK11. Other less prevalent oncogenes currently being studied in NSCLC include 

fibroblast growth factor receptor 1 (FGFR1), discoidin domain receptor 2 (DDR2), MYC 

family member amplification, and amplification of BCL2 (19). 

 

 

The Oncogenic Drivers of the Hallmarks of Cancer in Lung Tumors 

 

 Most lung adenocarcinomas harbor known oncogenic driver mutations (20). The 

activation of proto-oncogenes into oncogenes often occurs by gene amplification, 

structural rearrangements forming fusion proteins with other genes, deletions and point 

mutations (19). Signaling by oncogenes often results in “oncogene addiction”, making 

those proteins ideal candidates for targeted therapy (3, 4). Unfortunately, the signaling 

pathways regulated by oncogenes and tumor suppressors are commonly interconnected 

and the mutational evolution of tumors in response to disease progression and/or 

therapeutic selection pressure adds complexity to this increasingly intricate relationship 

(19).  

 

 KRAS is a member of the RAS family of proto-oncogenes that include KRAS, 

NRAS, and HRAS. RAS family members encode G-proteins that bind guanosine 

diphosphate (GDP) in inactive form. Upon activation of an upstream receptor tyrosine 

kinase (RTK), they switch to bind guanosine triphosphate (GTP) allowing the activation of 

many downstream pathways (19). These pathways include the mitogen-activated protein 

kinase (MAPK) pathway through ERK and phosphoinositol-3-kinase (PI3K)/AKT/mTOR 

pathway (21). Activation mutations in KRAS are the result of mutations that alter the 

GTPase function of the protein hindering KRAS-GTP from being inactivated into KRAS-

GDP (19, 21). KRAS activation mutations occur in 25-40% of lung adenocarcinoma tumors 

making them the most common oncogenic alterations in lung adenocarcinomas (19, 22). 

Meta-analyses have shown that KRAS mutated tumors are resistant to EGFR inhibitors 

(EGFRI) as KRAS signaling is downstream of the EGFR RTK (23). Mutations in HRAS  
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Figure 1.1: Oncogenic driver mutations and percentage of occurrence in lung 

adenocarcinomas.  
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and NRAS are rare in lung adenocarcinomas (24). KRAS mutations are more common in 

western populations, males and smokers (25, 26). KRAS driver mutations very rarely 

occur in lung adenocarcinomas concurrently with EGFR activation mutations (27).  

 

 BRAF is a serine/threonine protein kinase that is downstream of KRAS signaling 

in the MAPK-ERK signaling pathway (28). Activated BRAF activates MEK1/2, and MEK1/2 

subsequently activates ERK1/2 which regulates transcription factors including c-Jun and 

ELK1 (28). BRAF mutations only occur in about 3% of NSCLC with mutual exclusivity from 

KRAS and EGFR mutations (19, 27). Similar to what is observed in melanoma and 

colorectal cancers, 50-75% of BRAF mutations in lung adenocarcinomas are the V600E 

activation mutation in the kinase domain of the protein (19, 29). Other BRAF mutations 

observed in the kinase domain include D594G and L596R and mutations also occur in the 

activation domain (G-loop) of the protein including G465V and G468A (28, 30).  

 

 MEK1 (also known as MAPK1) is a serine/threonine kinase downstream of RAS in 

the MAPK-ERK signaling cascade (31). Somatic mutations resulting in activation of MEK1 

are rare and found in less than 2% of lung adenocarcinomas. MEK mutations are most 

often activation mutations in exon 2 that is not part of the kinase domain (32). Importantly, 

NSCLC harboring these MEK1 mutations have been shown to be sensitive to anti-MEK 

therapies (32). 

 

 Human epidermal growth factor receptor 2 (HER2/ERBB2) is a member of the 

ERBB/EGFR family of receptor tyrosine kinases. HER2 does not commonly bind ligand 

directly as most ligands have a low affinity for the HER2 receptor (33). Instead, HER2 

binds to other ligand bound receptors of the same family and is a preferential 

heterodimerization partner by other ERBB family receptors (33, 34). HER2 signals through 

a variety of downstream signaling pathways including STAT, PI3K/ATK/mTOR, and 

MAPK-ERK (35). HER2 mutations in NSCLC are observed as an overexpression in 20% 

of cases, as an amplification in 2%, and activation mutations are only observed in 1-4% 

of NSCLC (36, 37).   

 

 MET, also known as hepatocyte growth factor receptor, is a proto-oncogene that 

encodes a membrane-spanning tyrosine kinase receptor (38). Like many other RTKs, 

MET binds its ligand and homodimerizes, which results in the activation of the tyrosine 
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kinase domain. It is able to activate Ras-MAPK-ERK, PI3K-AKT, and c-SRC pathways 

(38). MET amplification is a common mechanism of acquired resistance to EGFR inhibitor 

(EGFRI) treatment and is observed in ~20% (39, 40). MET amplifications are observed in 

treatment naïve patients in approximately 1-7% of tumors (40, 41). MET amplification 

occurrence has been reported as high as 21% in one study of a treatment-naïve cohort of 

western Europeans (all non-Asian), 93% of whom were smokers (42). MET amplification 

leading to acquired EGFRI resistance occurs by aberrant or unregulated PI3K-AKT 

signaling. Tumors harboring a MET amplification have been shown to drive and maintain 

the PI3K/AKT signaling cascade thereby bypassing EGFRI blockade (19). For this reason, 

one of the mechanisms proposed to overcome acquired EGFRI resistance in NSCLC is 

co-treatment with EGFRI and MET inhibitors (39). 

 

 The phosphoinositol-3-kinase (PI3K)/AKT and mTOR signaling pathways are 

responsible for cell survival, proliferation, differentiation, adhesion and motility and are 

also frequently mutated in NSCLC (43). Many of the receptor tyrosine kinases are able to 

activate this pathway including EGFR, MET, HER2, insulin-like growth factor receptor, 

platelet-derived growth factor receptor, and transforming growth factor receptor beta 

(TGFβ) (44). Activated RTKs recruit PI3K to the membrane where it is responsible for the 

phosphorylation of phosphatidylinositol 4,5-bisphosphate (PIP2) into phosphatidylinositol 

3,4,5-triphosphate (PIP3). Active PIP3 recruits AKT to the membrane where it can be 

phosphorylated by PI3K and/or mTOR (45). RAS family members have been shown to be 

able to activate PI3K directly contributing to the cross talk between PI3K/AKT/mTOR and 

MAPK-ERK signaling cascades (45). The PI3K/AKT/mTOR signaling pathway is 

commonly deregulated in NSCLC, and other cancers, with 50-70% of NSCLC harboring 

PI3K pathway member mutations (22, 44). Oncogenic mutations in PI3K and AKT have 

been reported with amplification of the PIK3CA gene, which encodes the alpha isoform of 

the PI3K catalytic subunit, most commonly observed (44). PIK3CA mutations largely 

involve the catalytic domain and occur in 1-3% of NSCLC (22). Mutations in AKT are rare, 

only being reported in 0.5-2% of NSCLC (22). Loss of PI3K regulation by the tumor 

suppressor component, PTEN, also occurs and will be discussed further below (45). 

 

 ALK is a receptor tyrosine kinase found commonly with a gain-of-function mutation 

in NSCLC resulting in constitutively active ALK signaling (46). ALK mutations are most 

commonly rearrangement mutations resulting in a fusion of the intracellular kinase domain 
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with a different gene, echinoderm microtubule associated protein-like 4 (EML4) (47, 48). 

ALK-EML4 fusion proteins come in a number of variants, but the most commonly 

described is the fusion of exons 1-13 of EML4 joined to ALK exons 20-29 (47, 49). Other 

partner genes besides EML4 have been described recently, but are less common (50). 

Active ALK signaling results in cell proliferation and apoptotic evasion mediated by 

JAK3/STAT3, RAS/MAPK-ERK, and PI3K/AKT signaling pathways (51). Oncogenic ALK 

mutations are susceptible to ALK inhibition by crizotinib (52) and have been found in 

approximately 4-8% of NSCLC (53). ALK rearrangements generally occur exclusively from 

EGFR and KRAS alterations, but instances of ALK rearrangements occurring 

concomitantly with EGFR mutations have been reported as a mechanism for EGFRI 

resistance (20, 47). 

 

 ROS1 is a proto-oncogene encoding a transmembrane receptor tyrosine kinase. 

Its kinase domain has high homology with that of ALK (54). Similar to ALK, ROS1 

mutations are most commonly gene rearrangements resulting in fusion proteins and are 

found in 1-3% of NSCLC (55, 56). A variety of fusion partners have been identified 

including, FIG, KDELR2, TPM3, SDC4, LRIG3, EZR, SLC34A2, and CD74 (50, 56). Early 

clinical evidence has suggested that NSCLC harboring ROS1 rearrangements are 

sensitive to the ALK/MET kinase inhibitor, crizotinib (55). 

 

 Rearranged during transfection (RET) is a proto-oncogene activated by 

chromosomal rearrangement resulting in oncogenic fusion RTK signaling (57). RET is 

most commonly found fused with KIF5B and RET fusions have been identified in 1-2% of 

NSCLC (58). Tumors harboring RET rearrangements are sensitive to several multi-kinase 

inhibitors, and recent in vitro evidence suggests that tumors harboring KIF5B-RET fusions 

are sensitive to RET inhibition (59).  

 

 

The Tumor Suppressors Commonly Lost in Lung Cancer  

 

 Tumor suppressor genes are important negative regulators of cell growth and 

proliferation, and a normal functioning cell requires two copies of these genes to function 

(60). Tumor suppressor genes were famously described as “anti-oncogenes” by Alfred 

Knudson in 1993 where he outlined a “two-hit” hypothesis describing how the loss of two 
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copies of a tumor suppressor gene resulted in carcinogenic activity (60). The first allele is 

most often lost by an inactivation mutation, epigenetic silencing or other aberrations, while 

the second allele is most commonly lost by loss of heterozygosity (LOH) when a region of 

a chromosome is lost by deletion, mitotic recombination, or non-reciprocal translocation 

(19). The most common tumor suppressor genes inactivated in NSCLC are TP53, PTEN, 

the p16INK4A/RB cell cycle regulating pathway, and serine/threonine kinase 11 (STK11). 

Others have been noted, FHIT and RASSF1A, but they are less prevalent in NSCLC than 

those listed and are discussed elsewhere. 

 

 The most commonly occurring gene mutation found in lung cancers is TP53. TP53 

mutations are found in up to 80-100% of small cell lung carcinomas and in up to 65% in 

non-small cell lung cancers, although a consensus on frequency varies (19, 61, 62). p53, 

the protein product of the TP53 gene, is responsible for making cell fate decisions in 

response to damaged DNA by upregulating genes responsible for DNA repair or apoptosis 

accordingly (63). It is also a transcription factor for a host of other genes (19). In healthy 

cells, DNA damage or other carcinogenic stress induces p53 expression, which promotes 

DNA repair or cell cycle arrest by inducing the expression of cyclin-dependent kinase 

inhibitors (64). For this reason, p53 plays a crucial role in determining cell fate between 

whether to repair DNA damage or undergo apoptosis (65). TP53 loss is most commonly 

due to a hemizygous deletion of the chromosomal locus in which it resides (19). TP53 loss 

of function also occurs when missense mutations in the DNA binding domain occur (62). 

TP53 mutations in NSCLC correlate with a history of smoking or environmental exposure 

to smoke (64, 66). TP53 mutations can occur concomitantly with EGFR and KRAS 

mutations (67). 

 

 A second commonly mutated tumor suppressor is phosphatase with tensin 

homology (PTEN). As discussed earlier, PTEN is a lipid and protein phosphatase 

responsible for inhibiting PI3K/AKT/mTOR signaling. It does this by dephosphorylating 

PIP3 back into PIP2 (68). 

 

STK11 (also known as LKB1) is a serine/threonine kinase responsible for inhibiting 

mTOR (69). As described above, components of the AKT/mTOR signaling pathway have 

been found to be deregulated in around 30% of lung adenocarcinomas (22). STK11 

activity is inhibited by a variety of deletion or other somatic mutations leading to inactive,  
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Figure 1.2: Tumor suppressors that are commonly lost in lung adenocarcinomas. 

Percentage of lung adenocarcinomas with each tumor suppressor loss. Occurrence laid 
over the oncogenic driver mutations in lung adenocarcinomas.    
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truncated proteins (70). Inactivation of STK11 specifically occurs in 11-30% of lung 

adenocarcinomas (22, 70, 71). STK11 inactivation mutations comprise the third most 

common mutation observed in lung adenocarcinomas behind p53 and KRAS (19, 70). It 

has been suggested that STK11 mutations correlate to smoking history. STK11 loss has 

also been correlated with the existence of KRAS mutations. Smoking status, KRAS 

mutations, and STK11 mutations are mutually exclusive of EGFR mutations (70, 71). 

 

 The p16INK4A/cyclin D1/CDK4/RB pathway is responsible for cell cycle progression 

between G1 and S phase and members of the pathway are commonly mutated in lung 

cancers (19). Retinoblastoma protein (Rb), encoded by the RB1 gene, mediates the G1/S 

transition of the cell cycle by sequestering the E2F1 transcription factor required for S-

phase entry until its phosphorylation (72). RB1 was the first tumor suppressor gene 

described in lung cancer (73). It is found to be inactivated in around 90% of lung 

carcinomas, but it is only inactivated in 10-15% of NSCLC (17). In NSCLC, perturbations 

in this pathway most commonly come from members upstream of RB resulting in hyper-

phosphorylation of the protein leaving the G1-S transition to occur unchecked. In NSCLC, 

these alterations occur in cyclin D1, CDK4 and the cyclin-dependent kinase inhibitor, 

p16INK4A (74). In normal signaling, p16INK4A is responsible for inhibiting phosphorylation of 

RB by cyclin D1 halting the cell cycle. p16INK4A is inactivated in approximately 80% of 

NSCLC (75, 76). Overexpression of cyclin D1 by gene amplification, epigenetics, or 

transcriptional upregulation is found in ~40% of NSCLC (77). 

  

Targeted Therapies in NSCLC 

 

 Targeted therapies are quickly becoming standard of care for lung cancers 

harboring oncogenic mutations. The majority of NSCLC patients present with tumors in 

the advanced stages of the disease (78). Until very recently, patients with advanced stage 

NSCLC were most often placed onto platinum-based chemotherapy regimens (29). 

Clinical trials examining the efficacy of various platinum-doublet combinations have 

revealed that improving the therapeutic benefit of conventional chemotherapies has hit a 

plateau. This has spurred forward the development of therapies that target specific 

oncogenic mutations to improve outcomes (29, 79). Several targeted therapies have 

become the standard of care for advanced NSCLC harboring specific mutations and they 

are described below. When paired with the development of diagnostic or companion 
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biomarkers, these targeted therapies have greatly improved treatment for some patients 

while the remainder are treated with the appropriate cytotoxic agents (29). Importantly, 

EGFR is commonly targeted in lung adenocarcinomas and will be covered more in depth 

in the EGFR section of this chapter. A discussion of the hallmarks of cancer with current 

FDA-approved drugs targeting them in lung cancer is presented below.  

  

Targeting Growth and Proliferation in NSCLC 

 

 Oncogenic KRAS mutations occur in 25-40% of NSCLC and are common in 

pancreatic, colorectal, serous ovarian and thyroid cancers, making them a desirable 

therapeutic target (80). Mutant KRAS is also an attractive target because it tends to occur 

exclusively of other driver mutations (e.g., EGFR, ALK) (81). Over the last three decades, 

attempts at targeting KRAS have been largely unsuccessful, and there are currently no 

KRAS inhibitors approved or in trials. Current methods of “targeting” mutant KRAS involve 

targeting the members of downstream pathways to eliminate oncogenic KRAS signal 

through them (81). These include inhibitors of MAPK-ERK and PI3K/AKT/mTOR pathways 

among others, and the FDA approved inhibitors of each of these targets are outlined below 

(81).    

 

Oncogenic ALK rearrangement mutations (described in the oncogenes discussion 

above) were first described in 2007 and have been found to occur in around 4-8% of 

adenocarcinoma patients (82). The first generation ALK inhibitor, crizotinib, was approved 

in 2011 for use in patients with advanced NSCLC harboring a confirmed ALK 

rearrangement mutation (83). A second generation ALK inhibitor, ceritinib, is 20 times 

more potent than crizotinib and has demonstrated promise in patients who progressed on 

crizotinib or were intolerant of crizotinib. It has also performed well in ALK-inhibitor-naïve 

patients (84). The other second generation ALK inhibitor, alectinib, has shown activity 

against the crizotinib resistance mutation (L1196M), reducing the size of both previously 

treated and untreated brain metastases (29). Both of the second generation ALK-inhibitors 

are indicated for use in patients who progressed on or were intolerant of crizotinib (29). 

Importantly, NSCLC that harbor ROS1 rearrangements have also been shown to be 

sensitive to crizotinib treatment, which suggests a possible dual role for the ALK inhibitor 

although it is not currently FDA-approved for use in ROS1 rearrangements (29). 
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 BRAF mutations occur in approximately 2-3% of NSCLC and are also a therapeutic 

target in lung cancers. Approximately 50-75% of the BRAF mutations observed in lung 

cancer are the V600E mutation that also occurs commonly in melanoma (85). V600K also 

occurs in 6-30% of melanomas (86), but it is very uncommon in NSCLC. Of the approved 

BRAF inhibitors, vemurafenib and dabrafenib have demonstrated significant activity in 

BRAF V600E and V600K mutant melanomas, so they are being explored for efficacy in 

NSCLC both alone and in conjunction with the MEK inhibitor, trametinib (29). Initial Phase 

II trials of trametinib combined with dabrafenib revealed an overall response rate of 63% 

(29). Vemurafenib has also demonstrated activity in NSCLC patients harboring a BRAF 

V600E mutation as a single agent (87, 88). While vemurafenib and dabrafenib are in trials, 

none are currently FDA approved specifically for the treatment of NSCLC. 

 

 The tissue-type specific drug approval by the FDA for targeted therapies has 

limited our ability to best match patients to targeted therapies (e.g., BRAF in lung). Off-

label use occurs, but this limits payment options leaving the majority of patients unable to 

receive these therapies unless they have been specifically designated for their specific 

tumor type and mutation status. An ongoing NCI trial, Molecular Analysis for Therapy 

Choice (MATCH), is currently working to identify whether actionable variants of 143 genes 

associated with cancer that match to 20 drugs in the study work in a non-tissue-specific 

manner (89). The study specifically aims to assign targeted therapies independent of 

anatomical tumor locations in any advanced or solid tumors or lymphomas that are 

refractory or with no standard therapy (89). Of the drugs described above, crizotinib is 

included for ALK and ROS1 rearrangements, while dabrafenib in conjunction with 

trametinib and trametinib alone are included for BRAF mutations. The EGFR/HER2 

inhibitor, afatinib (described in depth below), is also included for the treatment of 

EGFR/HER2 mutations (89). Other oncogenic mutations found commonly in lung cancers 

that are included are AKT and PIK3CA. Hopefully, this endeavor will end the “off-label” 

use of targeted therapies across tissue types. This would allow patients whose tumors 

harbor specific mutational statuses responsive to targeted therapies to receive them.    

 

Targeting Angiogenesis in NSCLC 

 

 As stated earlier, loss of growth and proliferation regulation is not the only 

commonality between tumors that allow them to grow and invade unchecked. One of the 
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drivers of lung cancer currently being targeted clinically is angiogenesis. Angiogenesis is 

the process by which cancer cells stimulate surrounding blood vessels to grow into and 

around a tumor supplying the oxygen and nutrients rapidly proliferating cells need to grow 

– it is also imperative for the development of metastatic lesions (1). The development of 

anti-angiogenesis therapies have been aimed at inhibiting the vascular endothelial growth 

factor (VEGF) receptor on local endothelial cells. These inhibitors intentionally target 

normal tissues is to prevent them from responding to stimuli coming from the tumor. 

Importantly, the opportunity to target the healthy cells to minimize tumor growth is a 

promising option because healthy cells are significantly less likely to develop resistance 

to a drug. There are currently two FDA-approved drugs that target the VEGF receptor in 

lung cancers: bevacizumab and ramucirumab. Both are monoclonal antibodies targeting 

the extracellular, ligand-binding domain of the VEGF receptor (29).    

 

Targeting the Immune Evasion Mechanisms of NSCLC 

 

 Immune evasion is also a commonality among tumors. In the past few decades, it 

has grown increasingly evident that the role of the tumor microenvironment, namely the 

interaction of the tumor cells with circulating immune cells, is critical for cancer growth and 

progression (90). Therapeutic targeting of tumor cell immune evasion has recently gained 

a lot of momentum as a first-line clinical option for patients with high PD-L1 expression 

(90). Inhibiting both of these interactions between the tumor and its surroundings are 

imperative to cutting tumors off from their resources and self-preservation methods. 

Evasion of the immune system is a key step in cancer development, specifically for 

NSCLC. Tumors overcome the immune responders (activated T cells, B cells, natural killer 

cells monocytes and dendritic cells) by over-expressing PD-L1 or PD-L2 ligand on their 

cell surface (90). The immune responder cells, CD4, CD8 and pro-B cells, express the 

receptor (PD-1) on their surface. The interaction between the receptor on the immune cell 

and the ligand on the tumor cell suppresses the anti-tumor immune response. This 

process is also known as T-cell exhaustion (90). By blocking the interaction of PD-L1 with 

the PD-1 receptor on immune cells, T-cell exhaustion is overcome allowing immune cells 

to maintain their tumor-cell killing function (91).  

 

There are currently three approved monoclonal antibodies targeting this interaction 

between immune cell receptors and the tumor cell blockade of immune response:   
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Drug Target 
Specific 

Mutations 
Stage 

Drugs Targeting Growth and Proliferation 

Crizotinib ALK/ROS1 Rearrangements in 
both 

Approved for 
ALK 

Ceritinib ALK Rearrangements Approved 
Alectinib ALK Rearrangements Approved 

Vemurafenib BRAF V600E and V600K Clinical trials 

Dabrafenib BRAF V600E and V600K 

Clinical trials 
alone and in 
combination 

with trametinib 
(MEK inhibitor) 

Gefitinib EGFR EGFR Exon 19 
Deletion or L858R Approved 

Erlotinib EGFR EGFR Exon 19 
Deletion or L858R Approved 

Afatinib EGFR/HER2/HER4 
EGFR Exon 19 

Deletion or L858R/ 
EGFR T790M 

Approved 

Dacomitinib EGFR/HER2/HER4 EGFR T790M Clinical trials 
Neratinib EGFR/HER2 EGFR T790M Clinical trials 

Osimertinib EGFR T790M EGFR T790M Approved 

Necitumumab EGFR None 

Approved in 
combination 

with 
gemcitabine 
and cisplatin 

Cetuximab EGFR None Clinical trials 

Drugs Targeting Angiogenesis 

Bevacizumab VEGFR None Approved 

Ramucirumab VEGFR None Approved 

Drugs Targeting Immune Evasion Mechanisms 

Nivolumab PD-1 High PD-L1 
Expression Approved 

Pembrolizumab PD-1 High PD-L1 
Expression Approved 

Atezolizumab PD-L1 High PD-L1 
Expression Approved 

 

Table 1.1: Targeted therapies in NSCLC.  
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nivolumab, pembrolizumab, and atezolizumab. Pembrolizumab (marketed as 

Keytruda) is an IgG4 isotype humanized monoclonal antibody targeting PD-1 molecules 

expressed on the surfaces of the immune cells (92). Nivolumab (marketed as Opdivo) is 

also a monoclonal antibody targeting PD-1 molecules on immune cell surfaces. It is a fully 

humanized IgG4 isotype antibody (93). The final immune checkpoint inhibitor currently 

approved for use in NSCLC is atezolizumab (marketed as Tecentriq) (90). Atezolizumab 

is a fully humanized IgG1 isotype monoclonal antibody targeting the PD-L1 ligand on the 

tumor surface rather than the PD-1 receptor on the surface of the immune cells (94). PD-

L1 expression levels are being investigated as a predictive biomarker with success in 

some tumor subgroups, but it does not appear that PD-L1 levels have prognostic value 

(90).  

B. EPIDERMAL GROWTH FACTOR RECEPTOR (EGFR) 

 

As stated earlier, EGFR is a common oncogenic driver of NSCLC. This body of work 

stems from the Black laboratory’s work in identifying predictive biomarkers of EGFR 

inhibitor success in NSCLC, and for this reason I have described it in depth below. 

 

 

EGFR Activation and Signaling 

 

EGFR is a transmembrane, receptor tyrosine kinase (RTK) that includes an 

extracellular ligand binding domain and an intracellular tyrosine kinase domain (95). EGFR 

is a member of the ErbB family of RTKs that are structurally similar.  They consist of an 

extracellular, ligand binding domain, a lipophilic membrane-spanning domain, and a 

cytoplasmic tyrosine kinase domain (96). EGFR and other members of the ErbB RTK 

family have varying affinities for multiple ligands. The extracellular growth factors with 

which they interact include epidermal growth factor (EGF), transforming growth factor 

alpha (TGFα), heparin-binding epidermal growth factor (HB-EGF), amphiregulin (AREG), 

epiregulin (97), and betacellulin (BTC) (98). Binding of the ligand results in receptor 

homodimerization or heterodimerization with other members of the EGFR/ErbB family of 

receptors resulting in autophosphorylation of the tyrosine residues of the kinase domain 

(96, 99, 100).  
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EGFR signal transduction occurs through MAPK-ERK, PI3K/AKT/mTOR, and 

STAT signaling pathways (99, 100). Importantly, signal transduction through these 

signaling pathways is not exclusively driven by EGFR in normal cells. Rather, EGFR 

belongs to a network of other RTKs that can activate common effectors (101). The 

complexity of these networks is growing constantly and the phenomenon is being 

described as ‘crosstalk’ amongst the signaling pathways and RTKs (102). This improves 

our understanding of compensatory signaling routes and the development and 

maintenance of targeted therapy-resistance. However, it also underscores the need for 

developing novel methodologies targeting multiple sources of tumor driving and drug 

resistance generating pathways. 

 

One of the pathways stimulated by EGFR activation is the MAPK-ERK pathway, 

with members RAS/RAF/MEK/ERK. The MAPK/ERK signaling pathway is specifically 

responsible for growth and proliferation, which is why it is commonly mutated in cancer 

(28, 67). EGFR activates this cascade by phosphorylating the KRAS GTPase using 

mediator proteins (e.g., SOS and GRB2) (103). Phosphorylated KRAS then 

phosphorylates BRAF, which in-turn phosphorylates MEK1/2, and finally MEK1/2 

phosphorylates ERK1/2. Phosphorylated ERK then translocates into the nucleus where it 

activates transcription factors associated with growth and proliferation (e.g., ELK1 and 

ETS1) (104). The MAPK-ERK pathway is ultimately responsible for regulating the 

expression of genes that drive growth and proliferation of the cell (e.g., MYC and JUN) 

(105, 106).  

 

EGFR signaling also activates the PI3K/AKT signaling pathway. The initial steps 

in PI3K/AKT signaling are described more in depth in the oncogenes and tumor 

suppressor sections above. The important thing to note about this signaling pathway is 

that AKT is able to activate a number of independent downstream pathways. In normal 

signaling, one role of AKT is the phosphorylation of the Bcl-2 family member, Bad, which 

ultimately leads to caspase activation and the induction of apoptosis (107). AKT can also 

signal through the mammalian target of rapamycin (mTOR), sometimes referred to as 

mechanistic target of rapamycin, which is responsible for regulating cell size and 

proliferation in non-cancerous cells (108). 
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Figure 1.2: EGFR Signaling Pathways.  
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A third signaling pathway driven by EGFR is the signal transducers and activators 

of transcription signaling pathway mediated by a family of STAT molecules (109). Until 

rather recently, STAT signaling was believed to be activated only by cytokine signals (e.g., 

interferon and interleukin family members) with its activation being mediated by the Janus 

Kinase (JAK) (110, 111). We now know that STAT proteins can also be indirectly activated  

by EGFR via SRC-mediated phosphorylation (112). Phosphorylation of a STAT molecule 

results in a homodimerization with a STAT family member of the same type, resulting in 

translocation of the complex into the nucleus and gene expression regulation (112). STAT 

family members are responsible for regulating the expression of genes promoting survival, 

growth and proliferation, immune response, angiogenesis and wound healing (113, 114). 

 

Importantly, these three signaling pathways do not encompass all of the signaling 

events regulated by EGFR, just those that are best characterized and are relevant to the 

contents of this dissertation. 

 

EGFR Mutations in Non-Small Cell Lung Cancers (NSCLC) 

 

 EGFR action as an oncogene impacts many cellular functions including 

proliferation, differentiation, invasion, survival, neovascularization and metastasis (100). 

EGFR mutations are found in a number of tumor types including NSCLC (19). In lung 

cancers, the majority of EGFR mutations occur in lung cancers of the adenocarcinoma 

histological subtype (25, 67) and are also most commonly found in younger patients who 

are female with no history of smoking (22, 115, 116). EGFR activation mutations have 

been identified in 10-15% of unselected western patients (20, 25). However, EGFR 

activating mutations occur more commonly in Asian populations and are observed in 30-

40% of lung tumors (67, 115). EGFR oncogenic mutations result in constitutive tyrosine 

kinase activation (117).   

 

In NSCLC, oncogenic mutations in the EGFR gene occur in the exons (18-24) that, 

when translated, comprise the tyrosine kinase domain of the protein (19). The most 

common of these mutations are the exon 19 frame deletion mutations, of which there are 

over twenty different variants that account for around 45% of the EGFR mutations in 

NSCLC (19). The second most common type of EGFR mutations are missense mutations, 

most commonly L858R in exon 21, accounting for approximately 40% of EGFR mutations 
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in NSCLC (67). Less common EGFR mutations (~5-10% of EGFR mutations in NSCLC) 

leading to EGFR inhibitor (EGFRI) resistance often involve in-frame duplications of 

insertions into exon 20 (26). Variant-III (EGFRvIII) mutations also occur (~3% of NSCLC) 

where the extracellular binding domain of EGFR is deleted, which prevents the EGF ligand 

from binding, but still results in aberrant downstream signaling (118). EGFRvIII, gene 

duplication mutations, and over-expression of EGFR protein occur more commonly in 

squamous cell carcinomas than in adenocarcinomas (119). 

 

Acquired resistance mutations are most often selected for in patients undergoing 

EGFRI treatments which lead to resistance. The most common of these is the T790M 

point mutation in exon 20, which results in an amino acid change from a threonine to a 

methionine. This interferes with the binding of reversible EGFRIs (120). The T790M 

mutation is found in approximately 50-60% of patients who develop acquired resistance 

to EGFRIs (120). Importantly, T790M mutations have been observed in treatment-naïve 

patients, so they are not exclusively driven by EGFRI treatment (20). Other common 

routes of EGFRI resistance occur through the activation of PI3K-AKT signaling pathway 

and this is most commonly achieved by amplification of MET (39). 

 

Mutations in EGFR are not the only mechanism by which aberrant EGFR signaling 

occurs in lung cancer. EGFR has also been found to be over-expressed, generally as a 

result of a genomic amplification event, with increased EGFR copy number observed in 

up to 50% of lung cancers (121). EGFR over-expression can also occur as a result of 

increased promoter activity or a decrease or loss of transcriptional or translational 

regulation mechanisms (122). EGFR over-expression results in increased EGFR activity 

with and without activating mutations present suggesting that the increased activity is likely 

due to the high volume of receptors in the membrane spontaneously dimerizing with one 

another at the cell surface (122, 123). Increased expression or cleavage-processing to 

mature form of ErbB family ligands has also been linked to increased EGFR stimulation 

through autocrine (cell to self) and paracrine (cell to immediate surrounding cells) dosing 

of growth-inducing ligands (124, 125). Finally, it has been suggested that EGFR 

heterodimerization to other ErbB RTK family members could be a contextual contribution 

to oncogenic signaling in tumors (122). Specifically, EGFR-ErbB3 heterodimerization has 

been described in NSCLC as a possible source of EGFR targeted therapy resistance (39, 

126). EGFR-ErbB3 dimers are imperative for EGFR regulation of PI3K/AKT. Specifically, 
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the ErbB3 tyrosine kinase domain differs from EGFR which allows the docking of PI3K 

directly to the kinase (127). EGFR-ErbB3 dimers are dissociated by EGFRIs, but the 

resultant under-activation of AKT signaling leads to compensatory over-expression of 

ErbB3. This shifts the receptor equilibrium, thereby reducing EGFRI response (127). 

 

Inhibition of EGFR in Lung Cancer Therapy 

 

 There are currently two main classes of drugs targeting EGFR (EGFRI) in cancer: 

1) small molecule inhibitors of the tyrosine kinase domain of EGFR (EGFR-TKIs) and 2) 

monoclonal antibodies that bind the extracellular ligand binding domain preventing the 

binding of EGF or other ErbB family ligands and activation of the receptor. Currently, only 

the small molecule inhibitors of EGFR are used in lung cancers and a review of EGFR-

targeting monoclonal antibodies in lung cancer and why they are not currently used is 

provided below. 

 

Small Molecule Inhibitors of EGFR 

 

Preclinical work in the development of EGFR inhibitors demonstrated that point 

mutations in the ATP binding pocket of EGFR could eliminate its tyrosine kinase activity 

(128-130). This led to the development of two competitive, reversible, ATP binding pocket-

targeting small molecules as the first generation of EGFR-TKI inhibitors: gefitinib (Trade 

name: Iressa) and erlotinib (Trade name: Tarceva) (130, 131). Early trials of the first 

generation EGFR-TKIs revealed that patients with no smoking history, Asian ethnicity and 

a tumor of adenocarcinoma histology were most likely to respond to treatment (132). It 

was determined later that patients exhibiting these clinical characteristics most often 

harbored the EGFR exon 19 deletion or exon 21 L858R activation mutations (3, 133). Due 

to these observations, the prospective Phase 3 trial was performed specifically in patients 

exhibiting these clinical characteristics in Asia (134). Mok et al. demonstrated that patients 

with a confirmed EGFR mutation had a significantly higher overall response rate and 

longer progression free survival when treated with gefitinib compared to the platinum-

based chemotherapy arm (134). They also demonstrated the gefitinib treatment arm of 

patients without an EGFR mutation had significantly lower overall response and a shorter 

progression free survival (134). This study established EGFR mutation status as a 

biomarker for EGFR-TKI patient selection (29, 135). Since then, a number of studies 
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comparing the first generation EGFR-TKIs, gefitinib and erlotinib, as well as second 

generation, afatinib, to platinum-doublet chemotherapies have consistently demonstrated 

superior overall response rates, progression-free survival, and quality of life in the targeted 

therapy arm (136-140). Retrospective analysis of some of these studies suggested that 

afatinib treatment offered greater overall survival in exon 19 deletion tumors over L858R 

tumors. However, the more recent LUX-Lung 7 trial designed to confirm prior study results 

did not observe the same effect (141, 142). Erlotinib was FDA-approved in 2004 for the 

treatment of NSCLC as a second or third line therapy. It was most recently redesignated 

in October 2016 for the treatment of locally advanced or metastatic NSCLC harboring 

EGFR exon 19 deletions or exon 21 L858R substitution mutations (143, 144). Notably, 

gefitinib received conditional FDA approval following Phase II trials in 2003, but approval 

was later withdrawn after negative Phase III results in unselected patients (145). In 2015, 

gefitinib was FDA-approved a second time, but only as a first line therapy in patients with 

metastatic, EGFR mutant NSCLC, and not in populations harboring other mutations (146). 

Importantly, a majority of patients on first-line EGFR-TKIs do progress between 10-15 

months following the start of treatment (29, 147). 

 

 The most common reason for progression is the development of secondary 

resistance mutations in EGFR. For this reason, the second generation of EGFR-TKI 

development has been largely centered around overcoming secondary mutations in 

EGFR. Selecting the treatment following progression on EGFRI relies heavily on being 

able to identify the source of resistance (147). Importantly, not all EGFR-TKI resistance 

mechanisms arise due to mutations in EGFR. Bypass-signaling by other RTKs (e.g., 

HER2 and ALK), downstream mutations (e.g., BRAF and PIK3CA), and phenotypic 

changes (e.g., EMT) are also sources of EGFR-TKI resistance (147, 148). As previously 

stated, T790M mutations are the most common acquired EGFR-TKI resistance mutations 

in NSCLC accounting for 50-60% of treatment-induced resistance (120). Because of this, 

the second generation of EGFR-TKIs aimed to comprehensively target this acquired 

resistance mutation (T790M) and other resistance sources (e.g., HER2, HER4) (145). 

Second generation small molecule inhibitors, afatinib, dacomitinib, and neratinib, are each 

irreversible inhibitors of the EGFR tyrosine kinase domain (147). Each targeted T790M 

mutations, had some overlap in the EGFR sensitivity conferring mutations, and all include 

some binding to the HER2/HER4 receptors which represent an additional source of 

potential resistance (147). While the in vitro study of each of these three drugs appeared 
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promising, clinical trials of the second-generation EGFR-TKIs in patients resistant to either 

of the first generation EGFR-TKIs only demonstrated a response rate of around 10% (149-

151). Additionally, adverse side effects were observed at drug concentrations too low to 

inhibit T790M mutated EGFR molecules in vivo (149-151). Currently, afatinib is the only 

second generation, small-molecule EGFR-TKIs approved for the treatment of advanced 

NSCLC harboring an exon 19 deletion mutation or an exon 21 L858R EGFR activation 

mutation (152). 

 

 The third generation of small molecule EGFR-TKIs are being designed specifically 

to target the T790M mutation more effectively than the second generation small 

molecules. Rather than targeting both mutant and wild-type EGFR and other conserved 

receptors (e.g., HER2 and HER4), these specifically target mutant EGFR (T790M, exon 

19 deletion, and exon 21 L858R substitution) with minimal impacts on wild-type EGFR 

(147). Importantly, this would theoretically limit adverse events, but minimal activity 

against wild-type EGFR highlights that these inhibitors will not be utilizable in patients with 

amplified/overexpressed EGFR. All third generation EGFR-TKI small molecule inhibitors 

are irreversible inhibitors of EGFR (147). Of them, only one (osimertinib) has been 

approved for the treatment of metastatic NSCLC with the EGFR T790M mutation (153). 

The rocelitinib study has been paused in Phase II/III trials due to side effects, and olmutinib 

is only approved in Asia. ASP8273 is in Phase III trials, and nazartinib, PF-06747775, 

avitinib, and HS-10296 are all in Phase I/II trials (147). As with first and second generation 

small molecule EGFR-TKIs, third generation inhibitors select tumor cells with novel or rare 

point mutations (e.g., C797S in exon 20 or L798I/Q in cis with T790M) leading to 

resistance (154-156). Most importantly, additional mechanisms of EGFR-independent 

resistance to third generation EGFR-TKIs are being reported (147). Activating mutations 

in NRAS (e.g., E63K) as well as amplification of wild-type NRAS and KRAS have been 

reported in osimertinib resistance. These mutations were also observed in gefitinib and 

afatinib resistance (157). It has been suggested that loss of the T790M population of cells 

led to the over-growth of cell populations with HER2 amplifications, PIK3CA mutations or 

BRAF V600E at the time of progression (158). Amplifications of HER2 and MET genes 

have also been described as mechanisms for overcoming T790M-targeting EGFR-TKIs 

(155). All of the resistance mechanisms described above in response to single-agent 

EGFR-TKIs underscore the need to target other pathways concurrently or sequentially 

with EGFRI-TKIs to minimize or eliminate resistance mechanisms. Very importantly, the 
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third generation of EGFR-TKIs are much better tolerated than the first and second 

generations and this observation has opened them to be explored as co-therapeutics with 

new studies and clinical trials currently in the planning stages (147). 

 

Targeting EGFR with Monoclonal Antibodies 

 

 Another therapeutic route for antagonizing EGFR signaling in NSCLC is the use of 

EGFR-targeting monoclonal antibodies. Anti-EGFR monoclonal antibodies work by 

targeting the ligand binding domain of EGFR and competitively block the interaction of 

EGFR with any of its ligands (159). Complexes of EGFR and anti-EGFR monoclonal 

antibodies are then internalized and degraded leading to a decrease in cell surface EGFR 

(160). It has also been suggested that this action could lead to antibody-dependent cellular 

cytotoxicity (161). EGFR-directed monoclonal antibodies currently being investigated are 

cetuximab, matuzumab, panitumumab, and necitumumab, but others are in development 

(160).  

 

Cetuximab has been studied in Phase II and III trials in combination with first-line 

chemotherapy in advanced NSCLC (162-164). Two Phase III trials, FLEX and BMS099, 

were opened to compare the combination of chemotherapy with cetuximab. The FLEX 

trial demonstrated improved overall survival with the combination treatment versus 

chemotherapy alone whereas BMS099 did not demonstrate an improvement in 

progression free survival (165, 166). Importantly, only the FLEX trial analyzed and 

considered EGFR expression levels as a point of comparison in survival computations. 

Patients expressing high EGFR levels that were treated with the combination of cetuximab 

and chemotherapy had a median survival of 12 months compared to 9.8 months in 

patients expressing low levels of EGFR, although this difference was not found to be 

statistically significant (121, 167). Though demonstrated in colorectal cancers, KRAS 

mutation status does not predict response rate, progression-free survival, or overall 

survival in NSCLC (168, 169). Necitumumab was analyzed in two Phase III trials as well: 

INSPIRE tested activity in advanced non-squamous cell NSCLC, and SQUIRE tested 

efficacy in squamous NSCLC (170, 171). The INSPIRE trial was prematurely closed due 

to an increased number of adverse events, grade 3 or higher, including fatal 

thromboembolic events and sudden/unexplained death (170). The SQUIRE trial 

demonstrated improved overall survival in the combination necitumumab arm compared 
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to chemotherapy alone (171). Currently, only necitumumab in combination with 

gemcitabine and cisplatin is FDA approved for use in lung cancer, specifically only in 

squamous histological subtype NSCLC (172, 173).  

 

 

C. TRANSFORMING GROWTH FACTOR BETA (TGFβ) BIOLOGY AND 

SIGNALING 

 

As stated before, the Black laboratory’s efforts have been centered on identifying 

predictive biomarkers for EGFR-TKI therapies. We also aim to leverage the genes 

comprising the biomarkers to identify novel treatment options for overcoming both inherent 

and acquired resistance to EGFR-TKIs in NSCLC. As will be described in more detail later, 

one of our gene signatures indicated TGFβ as a putative source of EGFR-TKI resistance. 

For this reason, I’ve included an in-depth look at TGFβ signaling and its role in cancer 

below. 

 

TGFβ is a ubiquitous cytokine that is active in a number of cell processes, and the 

majority of cell types contain the ability to secrete the ligand as well as the receptors to 

respond to it (174). TGFβ signaling is essential for development, cell differentiation, 

homeostasis and wound healing in adult tissues (175). TGFβ belongs to the TGFβ 

superfamily of receptors and transcription factors that has over thirty members. The TGFβ 

superfamily can be subdivided into two distinct signaling families: 1) TGFβ, activin, nodal 

and other factors and 2) growth and differentiation factors including the bone morphogenic 

proteins (BMPs) and the anti-muellerian hormone (AMH/MIS) (176-178). Other members 

of the TGFβ superfamily are responsible for embryonic stem cell differentiation, 

organogenesis, body axis formation and symmetry establishment during development 

(179). In the developed adult, TGFβ superfamily members are responsible for functions 

like gonadal regulation, muscle development, and bone growth and repair (179). TGFβ 

superfamily expression and signaling behavior is largely tissue-specific limiting their 

signaling in adult tissues (176). 

 

TGFβ Signaling 
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The Receptors  

 

TGFβ canonical signaling has three receptor types (TβR-I (type 1), TβR-II (type 2), 

and TβR-III (type 3)), three ligands (TGF-β1, TGF-β2, and TGF-β3), and three 

transcription factors (Smads 2, 3, and 4) (178, 180, 181). Importantly, TβR-III expression 

is tissue-specific and lung tissues and tumors have very low levels of the type 3 receptor 

expression (182). Outlined below are the activities of the TβR-I/II receptor complexes. The 

TGF-β1 ligand isoform has been specifically shown to activate canonical Smad (2,3,4) 

signaling via TβR-I and TβR-II interactions (183). TGF-β1 activates signaling by binding 

the type 2 receptor (175). The active, ligand-bound type 2 receptor then binds a type 1 

receptor forming a heterodimer where the type 2 receptor can transphosphorylate the type 

1 receptor (175). The active heterodimer then binds to a second type 1 and type 2 receptor 

resulting in a tetrameric complex of TGFβ receptors that can recruit, bind and activate 

Smad transcription factors (180).  

 

Canonical TGFβ Signaling 

 

The term ‘Smad’ is derived from embryonic development work in Drosophila on 

Mothers against decapentaplegic (MAD) and from SMA in C. elegans. In humans, the 

conserved equivalent is called SMA and MAD related protein, hence the name Smad. 

Smads 2 and 3, also known as the receptor Smads (R-Smads) due to their direct 

interaction with the TGFβ receptor complex, are phosphorylated by the active type 1 

receptor on the C-terminal SSXS motif contained within the MAD homology (MH) 2 domain 

(181). Phosphorylation of Smads 2 and 3 results in a conformational change of the protein. 

This reveals the MH1 domain containing the nuclear localization signal (NLS) and linker 

region by which the R-Smads can complex with Smad 4 (181). Unbound Smad 4 traffics 

between the cytoplasm and nucleus, and is the only Smad with a nuclear export signal 

(NES) (181). Active Smad heterocomplexes accumulate in the nucleus, presumably due 

to the masking of the NES on Smad 4 by the R-Smads (181, 183). Nuclear localization of 

active Smad complexes enables them to interact with various co-activators and co-

repressors resulting in either the induction or repression of TGFβ signaling pathway 

responsive genes respectively (183). Smad regulation of genes occurs specifically by their 

binding to Smad Binding Elements (SBEs) contained in the promoters of TGFβ signaling 

pathway responsive genes (181, 184). 
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Figure 1.3: TGFβ Signaling Pathways. 
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TGFβ signaling via the Smads is regulated by a variety of cellular mechanisms. 

Smad 2 and 3 must dock with the receptor for activation by TβR-I and the process of 

docking relies on several adaptor proteins including SARA, Hgs, and Dab2 (185-187). 

Activation of Smads 2 and 3 can also be blocked by the inhibitory Smad (Smad7) that 

impedes the phosphorylation of the R-Smads. Smad7 can do this with two mechanisms:  

1) It can physically bind TβR-I blocking the binding of the R-Smads (188), and 2) it recruits 

Smurf 1/2 (E3 ubiquitin ligase) to facilitate TGFβ receptor degradation (189). The R-

Smads also undergo linker region phosphorylation by other signaling effectors (e.g., ERK 

1/2, JNK, p38, Casein Kinase 1, and CDKs) that results in stabilization of active Smad 

signals (175, 190). Finally, Smad 2/3/4 complexes are disabled and disassembled by 

PPM1A phosphatase, followed by Smurf 1/2 polyubiquination, and proteosomal 

degradation (191, 192). The TGFβ receptor complex can also be regulated by proteins 

that associate with it. One of these, TGFβ-receptor-interacting protein 1 (TRIP-1), interacts 

with ligand bound TGFβ complexes and is phosphorylated by them (181). Increased levels 

of TRIP-1 represses TGFβ signaling and mutants of TRIP-1 have been shown to enhance 

TGFβ signaling (193).   

 

Normal TGFβ canonical signaling is involved in the regulation of cytostasis and 

autonomous growth suppression (175). TGFβ mediates cytostasis in the G1 Phase of the 

cell cycle by specifically initiating the downregulation of c-Myc (180, 194). Myc 

downregulation results from a complex of Smad 3, E2F4/5, and p107 bound to an SBE in 

the Myc promoter (194, 195). Smad 3 also regulates ID1 via a complex of Smad 3 and 

ATF3 bound to an ID1 promoter region SBE (196). In this context, this is a self-enabled 

activity of Smad 3 as it is also responsible for the induction of ATF3 expression (196). 

TGFβ also negatively influences cell proliferation by regulating the cyclin dependent 

kinase inhibitors p15INK4b and p21CIP (180, 194). Specifically, Smad 3 downregulation of 

Myc prevents the complex of Myc and Miz-1 from forming and thereby blocks p15 

transcription that is reliant on the Myc/Miz-1 complex (197). Then Smad 3 complexes with 

free Miz-1 and Sp1 to stimulate p15 transcription (197). TGFβ activation also results in the 

formation of Smad 2:3/Sp1/FoxO complexes that are responsible for transactivating the 

promoter of p21 (198).  

 

Non-Canonical TGFβ Signaling  
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 Like many RTKs, the TGFβ receptor is able to modulate a network of signaling 

pathways in addition to the canonical effectors. It is specifically able to activate the growth 

and proliferation pathways MAPK-ERK, MAPK-p38, and MAPK-JNK (199, 200). The role 

of TGFβ in MAPK-ERK signaling came to light after it was observed that Ras was rapidly 

activated by TGFβ ligand treatment in epithelial cells (201). The TβR-I/II complex can 

activate the MAPK-JNK and MAPK-p38 pathways via TGFβ-activated kinase 1 (TAK1). 

TAK1 can also activate the growth and survival kinases PI3K/AKT/mTOR and AKT/PKB 

as well as GTP binding effectors like RhoA, and Rac (202, 203). TGFβ signaling is known 

to repress NFκβ signaling in non-cancerous cells (204). It has also been implicated in 

mediating the activation of other kinases, including the focal adhesion kinase (FAK), Abl, 

and Src, by either direct activation or transcriptional control (205-207). 

 

 Activated TGFβ receptors can also influence signaling in many of these pathways 

via the Smads, which complicates our understanding of the TGFβ signaling network. 

Smad-mediated activation of the MAPK-p38 signaling cascade has been shown to induce 

Caspase-8 and Bid activation, resulting in apoptosis (208). TGFβ signaling can also 

induce apoptosis through other members of the mitochondrial Bcl-2 family, as well as via 

NFκβ, AKT, and MAPK-JNK intracellular moderators (209).  

 

The Role of TGFβ in Lung Cancer 

 

TGFβ Signaling Pathway Mutations in NSCLC 

 

 Mutations in the TGFβ signaling pathway members (e.g., Smads) do occur, but 

most are not commonly observed in lung cancers. Loss of TβR-III expression is commonly 

observed in lung cancers, which is not surprising as signaling via the TβR-III receptor has 

been shown to block cell motility and invasiveness in NSCLC (210). Smad 2 mutations 

are observed in 7% of lung cancers and are most commonly missense mutations 

impacting the Smad-complex-forming region of the MH2 domain or the DNA binding 

domain within the MH1 domain (211, 212).  

 

The “TGFβ paradox” 
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 As previously stated, TGFβ signaling plays an imperative role in cellular 

homeostasis and genomic stability by inducing cell cycle arrest, differentiation and 

apoptosis of cells. In the early stages of tumor development, TGFβ signaling maintains 

these roles, thus serving as a potent anti-cancer agent (213). In the later stages of tumor 

development, TGFβ signaling activity switches to promote cell growth, invasive ability, and 

ultimately metastasis. This dichotomous activity of TGFβ signaling has been rightly 

dubbed the “TGFβ paradox” (175). While many theories exist on how this switch occurs 

mechanistically, it is increasingly evident that the means by which the shift in TGFβ 

signaling activity occurs likely happens on a case-by-case contextual basis adding further 

complexity to this already enigmatic problem. Some of the mechanisms proposed to 

explain the shift in TGFβ signaling include the changes in miRNA expression such as the 

miR-106b-25 cluster (214, 215). Others have suggested that epigenetic changes altering 

TGFβ signaling activity (e.g., TGFβ receptor methylation or promoter over-activation 

depending on tissue-specific context) and target (e.g., ID1) expression result in the shift 

from anti- to pro-tumorigenic TGFβ signaling (179, 216). As further described below, TGFβ 

signaling results in the secretion of cytokine-stimuli into the tumor microenvironment and 

is activated in response to stimuli in the tumor microenvironment as well. The positive 

feedback loop between tumor cell TGFβ signaling and tumor-infiltrating immune cells that 

amplify the stimuli have also been described as a possible mechanism for the signaling 

switch to occur (217, 218). Finally, mutations in TGFβ signaling family members or 

regulators (e.g., p15INK4b deletion eliminating TGFβ regulation) have been suggested as a 

possible mechanism (213). What is evident is that there is neither a specific consensus 

across tumor models or TGFβ-paradox arms as to how the paradox arises, nor a 

methodology for accurately determining which arm is at play. This is incredibly important 

because while pro-tumorigenic TGFβ seems to be an obvious and promising target, 

unintentional targeting of anti-tumorigenic TGFβ signaling in unselected patient 

populations may be detrimental (179, 219).  

 

The Roles of TGFβ Driving the Hallmarks of Cancer  

 

1) Growth Signal Autonomy: While there is no known mechanism underlying the 

shift in TGFβ activity from growth suppressor to growth promoter, it has been 

postulated that it may be coupled to TGFβ’s ability to induce the expression of 

many cytokines, growth factors, and their receptors (175). TGFβ signaling 
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promotes the production of EGFR and PDGFR receptors as well as cytokines 

and ligands including: connective tissue growth factor (CTGF), bFGF, PDGF, 

and TGFα (175). The phosphorylation of the Smad 2/3 linker region by 

pERK1/2 is another source driving prolonged TGFβ signaling (175).   

 

2) Genomic Instability: The role of TGFβ signaling in the accumulation of genomic 

instability is more of an unintentional consequence than a direct action. 

Specifically, tumors overcome the regulation of cell cycle progression via Smad 

3 regulation of Myc, p15 and p21, which in turn impacts the DNA damage 

recognition and repair pathways as well as the cell fate decision (197, 220). 

TGFβ has also been shown to influence changes in the epigenome, which also 

lead to accumulating genomic instability. Specifically, Smad 2 has also been 

shown to complex with HDAC resulting in the silencing of targets such as p15 

(221).   

 

3) Evasion of Growth Suppressors: As stated earlier, normal TGFβ signaling 

plays a role in negative cell cycle regulation. Neoplastic mechanisms for 

overcoming cytostatic TGFβ activity include deregulated Myc expression, 

methyltransferase inactivation of p21 transcription, and aberrant PI3K/AKT 

signaling (197, 220, 222, 223). It has also been suggested that TβR-III and 

TGF-β3 likely play a role in suppressing unregulated TGFβ signaling (210). 

 

4) Tumor Promoting Inflammation: TGFβ ligands produced by cancer cells serve 

as an attractant for tumor-infiltrating monocytes and macrophages (224). 

These immuno-species are known for their ability to promote tumor invasion 

and metastasis in response to TGFβ signals from the tumor cells. They do this 

by stimulating angiogenesis and the breakdown of the extracellular matrix 

(225). They also secrete additional TGFβ ligand into the tumor 

microenvironment further stimulating the tumor and in turn more immuno-

species (225). Many other tumor microenvironment species also secrete and 

respond to TGFβ ligands (e.g., myeloid-derived suppressor cells) amplifying 

the TGFβ signal and driving TGFβ-metastasis (226). 
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5) Evasion of Apoptosis: TGFβ signaling is specifically involved in the induction 

of apoptosis in normal cells through both caspase-dependent and caspase-

independent means discussed above (209). Many of the aberrations 

characteristic of in the “TGFβ paradox” shift to pro-tumorigenic activity (e.g., 

p15INK4b loss) specifically lead to a loss in growth suppression activity by TGFβ 

(174).   

 

6) Avoiding Immune Destruction: TGFβ activity has been shown to suppress 

immunosurveillance by specifically inhibiting NK and cytotoxic T lymphocyte 

differentiation resulting in a decrease in the cytotoxic effectors they secrete, 

including: Fas ligand, perforin/granzyme, lymphotoxin-α, and interferon-γ (218, 

227-229). Moreover, TGFβ further inhibits the tumor-targeting ability of these 

two immune cell types by stimulating regulatory T cells in the tumor 

microenvironment (230). 

 

7) Unlimited Replication Potential: The shift of TGFβ signaling to pro-tumorigenic 

activity results in cell cycle regulation loss and is important to the acquisition of 

unlimited replication in cells (213). The shift also overcomes the ability of TGFβ 

to induce apoptosis using a variety of means (209). While these hallmarks of 

the “TGFβ paradox” shift do not truly result in unlimited replication potential (by 

means like telomerase overexpression), they do contribute by deregulation of 

the cell cycle and evasion of apoptosis.  

 

8) Angiogenesis: TGFβ signaling enhances tumor vascularization in a number of 

ways including the direct induction of key angiogenic factors including VEGF 

and CTGF (231, 232). TGFβ also plays a role in the maturation of new blood 

vessels. Smad 2/3 activation in response to TGFβ has been shown to correlate 

with genes involved in blood vessel maturation, including plasminogen 

activator inhibitor 1 (PAI-1) and fibronectin (233).    

 

9) Deregulating Cellular Energetics: TGFβ signaling plays a role in deregulating 

cellular energetics indirectly. TGFβ is specifically associated with the 

development of rigid tumor microenvironments that allow for the enhancement 

of cell selection and metastatic expansion (234). TGFβ signaling alters cellular 
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energetics to meet the need of a growing and changing tumor by regulating the 

expression of Lysyl oxidase (LOX) family members that are responsible for 

cross-linking extracellular matrix building-block proteins like collagen and 

elastin (175). In normal tissues, LOX family members play a role in embryonic 

development and organogenesis. Importantly, their pro- or anti-tumorigenic 

activity with respect to TGFβ signaling appears to correlate with the “TGFβ 

paradox”.  

 

10) Invasion and Metastasis: One of the best characterized role of TGFβ signaling 

in cancer is its ability to induce EMT, one of the initiating steps of metastasis. 

During EMT, cells lose their cellular polarity and adhesive properties and gain 

enhanced migratory and invasive capabilities. It has been shown that the 

induction of EMT by TGFβ relies on both Smad-dependent and Smad-

independent signals (174). TGFβ-driven EMT is associated with the expression 

of E-cadherin repressors Zeb1 and Zeb2 (235). Specifically, the Zeb proteins 

associate with other corepressors, including Smad 3 to repress the 

transcription of epithelial genes such as E-cadherin (E-cad) (236). Moreover, 

many non-canonical pathways downstream of TGFβ activation contribute to 

EMT induction in response to TGFβ signaling directly or pathway collaboration 

with TGFβ signaling. The downstream signaling pathways shown to be 

responsive to TGFβ or work in collaboration with TGFβ include MAPK-ERK, 

PI3K/AKT, Rho/ROCK, Hedgehog, and WNT signaling pathways (190, 237).  

 

Targeting TGFβ Signaling in Cancer: A Paradox Problem 

 

 Effectively targeting TGFβ signaling therapeutically in cancer without inducing side 

effects has been the unachievable goal of the TGFβ community for decades. TGFβ clearly 

plays a role in tumor progression by driving growth. However, more important when 

considering therapeutic value are the roles of TGFβ in vascularization, reciprocal immune-

stimulatory activities within the tumor microenvironment, as well as invasion and 

metastasis. As stated earlier, EMT is a process that not only complicates EGFRI 

sensitivity, but also complicates cancer treatment across tumor types (1, 147). In lung 

cancer alone, between 80-85% of patients present with a tumor that has already invaded 

nearby tissues or distally metastasized. This high percentage of advanced tumors is the 
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foremost reason why lung cancer treatments have such poor outcomes (6). For this 

reason, it is understandable why the field would aim to target one of the premiere drivers 

of tumor metastasis. Progress has been made in the last decade and a half towards 

understanding the enigma of the “TGFβ paradox” and the role TGFβ plays in driving tumor 

progression and metastasis will certainly keep it an attractive target moving forward (213). 

Unfortunately, many attempts have been made to target TGFβ clinically, and while they 

show promise in treating some tumors, they have devastating off-target effects in others 

(219). This is likely attributable to the role of TGFβ in normal cells. As stated earlier, TGFβ 

is specifically responsible for preventing cell growth, proliferation and survival in normal 

tissues following appropriate completion of development processes (175). Delineating the 

pro-tumorigenic activities of TGFβ from the anti-tumorigenic behaviors and determining 

how to identify and target them clinically is paramount to the success of TGFβ inhibitors 

(179).  

 

 Identifying which arm of the TGFβ-paradox is occurring continues to be enigmatic, 

so we need to seek out means of targeting pro-tumorigenic TGFβ signaling activities 

without targeting TGFβ directly. Recently, the activity of protein kinase CK2, also known 

as Casein Kinase 2 (CK2), has been linked to TGFβ-induced EMT as well as the 

development of acquired EGFRI resistance (238, 239). Initial clinical studies of its orally-

available inhibitor, CX-4945, suggest that treatment is well tolerated by patients unlike 

TGFβ inhibitors (240). For this reason, I explored it as an alternative avenue for 

overcoming EGFRI resistance and have compiled an overview of it below.    

 

 

D. CASEIN KINASE 2 (CK2) BIOLOGY 

 

The Kinase 

 

Casein Kinase 2 (CK2) is a protein kinase that is ubiquitously expressed in both 

healthy and cancerous cells (241). CK2 consists of two catalytic subunits (α and α’; gene 

IDs CSNK2A1 and CSNK2A2, respectively) and two regulatory subunits (both CK2β; gene 

ID CSNK2B) (241). The complete protein kinase CK2 holoenzyme can be any tetrameric 

arrangement of two α subunits and two β subunits (i.e. α2β2, αα’β2, α’2β2) (242). There is 
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also mounting evidence that CK2α and CK2α’ subunits have kinase activity in their 

monomeric forms, but the holoenzyme has a substantially higher affinity for substrates 

(243, 244). Live-cell fluorescent imaging revealed that the majority of CK2 subunits are 

not contained in holoenzyme, but are dispersed as single subunits throughout the cell 

(245). Once the formed holoenzyme, subunits are predicted to remain associated as the 

dissociation constant for the holoenzyme is incredibly low (246).  

 

CK2α and CK2β subunits have been shown to be essential for viability using 

murine knock-out studies. CK2α’ knock out mice are viable, but males of this genotype 

are sterile (247). This suggests that while CK2α may be functionally distinct from CK2α’, 

it is able to partially compensate for its loss (241). Loss of the CK2β subunit results in early 

embryonic lethality in mice (248). CK2 has been shown to play a role in spermatogenesis 

(247), organ development (248, 249), and it has been suggested that its function is 

imperative during embryogenesis (250). In adult tissues, CK2 levels have also been 

shown to increase during times of cell proliferation and return to basal expression levels 

following proliferation events (242). While CK2 is constitutively expressed in nearly all 

tissues, its basal levels are considered to be sparse compared to other kinases (251). 

Importantly, unlike CK2, most kinases are regulated by expression levels and, more 

specifically, by activation events like ligand binding. Since CK2 is constitutively active, low 

expression levels are likely important to moderating CK2 activity.   

 

What makes CK2 so unique is that unlike other proto-oncogenic kinases, CK2 is 

constitutively active without the aid of a gain-of-function mutation in both normal and 

cancer cells (252). Because CK2α subunits are constitutively phosphorylated, the source 

of regulation must be something other than an upstream kinase. One of the known 

mechanisms of CK2 regulation comes from the CK2β “regulatory” subunits, which have 

been shown to act in a stimulatory fashion unlike the name suggests in most cases (253). 

However, in very specific cases (e.g., calmodulin and MDM2), CK2β subunits have been 

shown to be potent inhibitors of CK2α phosphorylation of the substrate protein and, 

thereby, regulating the kinase activity of the α subunits (254, 255). The CK2 holoenzyme 

has very high affinity for most of its substrates compared to free subunits and it has been 

suggested that this ability to complex tightly with many of its substrates is bridged by the 

CK2 dimer portion of the enzyme (256, 257). For this reason, decreases in CK2β 

expression might lead to an imbalance of active substrates of CK2α monomeric activation  
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Figure 1.4: CK2 Signaling Pathways.  
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versus active substrates by the holoenzyme. CK2 is believed to be regulated by a 

combination of its subcellular location as well as its binding to other proteins or non-protein 

factors (255, 258). CK2 dynamically localizes to a variety of specific cellular compartments 

and/or organelles based on a diverse set of cellular conditions (259-261). Specifically, 

CK2 has been shown to shuttle between nuclear structures such as the chromatin and 

nuclear matrix in response to changes in growth stimuli (262, 263). It is also known to be 

dispersed throughout the cell during mitosis, which lends to the observation that its 

aberrant signaling is occurring in cancer cells where the mitotic process is recurring far 

more frequently than in normal cells (264). The protein degradation pathway has also been 

implicated in regulating its action (265).   

 

CK2 in Cancer 

 

 As stated earlier, CK2 expression levels are relatively stable and very small 

changes in its protein expression heavily impact the regulation of cellular homeostasis 

(242). Prior work has shown a link between CK2 subunit expression changes and the 

transformation of cells (266-268). CK2 subunits are upregulated in all cancers that have 

been profiled for its expression, including lung and bronchial, prostate, breast, colorectal, 

ovarian and pancreatic cancers (269). Increased CK2 activity from overexpression of the 

constitutively active kinase has been associated with aggressive tumor behavior (269, 

270). Additionally, CK2 has no known gain-of-function mutations that would drive 

neoplastic transformation (252). For this reason, the reigning opinion is that over-

expression of CK2 subunits leads to malignant transformation of cells, and this mechanism 

has been described as a “non-oncogene addiction” (271).  

  

 Perhaps most fascinating is that, across the literature, CK2 has been implicated 

for playing a role in the genesis and maintenance of every one of the classic as well as 

the emerging “hallmarks of cancer” (1): 

 

1) The Role of CK2 in Growth Signal Autonomy 

 

The global role of CK2 in cell signaling has been described as acting 

“horizontally” across a number of “vertical” signaling pathways both in cancer and 

in healthy cell signaling, thereby representing a means of pathway integration in 
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cancer cells (271, 272). CK2 has been shown to regulate common developmental 

signal transduction cascades known to be adulterated in tumorigenesis. 

Specifically, PTEN is phosphorylated by CK2 altering its stability and limiting its 

ability to regulate AKT signaling (273, 274). Similarly, CK2 drives AKT activation 

by phosphorylating it at a specific serine residue, Ser129, leading to 

hyperactivation of AKT signaling (275, 276). CK2 has also been shown to interact 

with the kinase suppressor of RAS (KSR) molecular scaffold required for the 

spatial regulation of MAPK-ERK signaling and its loss from that complex results in 

impaired RAF, MEK, and ERK activation (277). CK2 also influences a number of 

other signaling pathways responsible for aberrant growth and proliferation in 

tumors including JAK/STAT (278), NFκβ (279), fibroblast growth factor (FGF) (280, 

281), AKT/PKB signaling (275), Wnt signaling (279, 282), and Hedgehog signaling 

(283). Importantly, CK2 has been shown to connect many of these pathways acting 

as an intermediary effector in the network. Specifically, EGFR/ERK has been 

shown to stimulate WNT/β-catenin through CK2α (284).   

 

2) The Role of CK2 in Genomic Instability 

 

CK2 has been well described for its role in regulating the response to DNA 

damage. Perhaps the best described role of CK2 in the cell cycle is that it regulates 

the tumor suppressor, p53. It does so by CK2-mediated phosphorylation at serine 

392 in response to UV induced DNA damage (268, 285-287). Specifically, UV-

induced DNA damage induces the assembly of the CK2-hSPT16-SSRP1 complex 

(288). CK2 has also been shown to phosphorylate MDM2, which decreases its 

binding affinity for pRB and reduces its ability to direct p53 degradation (285, 289). 

Another important feature of CK2 activity that promotes the genomic instability 

fueling oncogenic transformation is that it would appear to play a crucial role in 

transcription and chromatin remodeling (290, 291). CK2 activity is also connected 

to all three RNA polymerase functions, DNA topoisomerase II, as well as a number 

of pre-mRNA transcription and splicing factors suggesting a further role in mRNA 

translation (292-295). It is believed that phosphorylation of transcription and 

splicing factors by CK2 likely changes their activity as well (296). CK2 has also 

been shown to facilitate DNA repair through phosphorylation of the XRCC1 

scaffolding protein required for single-strand break repair and base excision repair 
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(297) and plays a role in many cellular mechanisms that recognize and repair DNA 

damage and strand breaks (251). 

 

3) The Role of CK2 in the Evasion of Growth Suppressors 

 

CK2 also plays a role in the evasion of growth suppression by the negative 

regulation of tumors suppressors like PTEN and PML. PML is a tumor suppressor 

responsible for moderating the pathways involved in growth suppression, 

apoptosis and senescence, and it is most frequently lost in tumors by post-

translational mechanisms (298). CK2 promotes ubiquitin-mediated degradation of 

PML by phosphorylating it at Ser517 (298). CK2 has also been shown to 

phosphorylate the tumor suppressor PTEN at its C-terminus tagging it for 

proteasome-mediated degradation (274). Importantly, the CK2 phospho-site on 

PTEN is not the only one influencing the fate of PTEN (299). CK2 has also been 

recently identified for its ability to phosphorylate and inhibit the action of another 

member of the p53 tumor suppressor family, the TAp73 variant, promoting a 

cancer stem cell phenotype in head and neck cancers (300).   

 

4) The Role of CK2 in Tumor Promoting Inflammation 

 

CK2 has been shown to play a role in tumor-promoting inflammation 

pathways. Specifically, it has been shown to respond to reactive oxygen species 

(ROS) by interactions with p38, ultimately inducing NFκβ activation (301). Platelet 

activating factor (PAF) and tumor necrosis factor α (TNFα) also drive the activation 

of p38/CK2/NFκβ in response to ROS (301). CK2 has also been shown to 

modulate IL-6 expression in breast cancer. It has been suggested that IL-6 

stimulation induces CK2 to phosphorylate the EMT effector, TWIST, thereby 

stabilizing it (302, 303). This is an example of how CK2 can influence and respond 

to tumor microenvironment inflammation signals that promote tumor development. 

It has also been shown that CK2 interaction with JAKs is necessary for the 

induction of JAK/STAT signaling in response to inflammatory cytokines (278), and 

inhibition of CK2 prevents constitutive STAT signaling (304). Interestingly, CK2 

maintains epithelial characteristics in patients with chronic colitis preventing 

inflammation-driven apoptosis (305).  
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5) The Role of CK2 in the Evasion of Apoptosis 

 

CK2 has been implicated for globally regulating apoptotic pathways 

influencing Bid, Bad, Max, Faf1, Bcl-2 and Bcl-xL, caspase 2, caspase-inhibiting 

protein ARC, and the inhibitor of apoptosis proteins (IAPs), which include survivin 

(242, 263). Specifically, the activation of AKT/PKB signaling by CK2 has been 

shown to upregulate survivin expression by β-catenin (306). It has also been 

demonstrated that CK2 inhibition can sensitize breast tumor cells to TRAIL-

induced apoptosis mediated by the Apo2 ligand (307, 308). Moreover, targeting 

overexpressed CK2 in glioblastoma results in the suppression of pro-survival 

signaling pathways including PI3K/AKT, JAK/STAT, HSP90, Wnt, Hedgehog, and 

NFκβ (309). 

 

6) The Role of CK2 in Avoiding Immune Destruction 

 

The role of CK2 in the ability of cancer cells to avoid immune response is 

only coming to light very recently. Rather than a function in the cancer cells 

themselves, CK2 activity in regulatory T-cells (Tregcells) has been implicated for its 

role in helping tumor cells hide from immune responses. Specifically, it has been 

shown that CK2β ablation in the Tregcells of mice results in the induction of a 

cancer-killing inflammatory response called T helper type 2 (TH2) by dendrites 

responding to the differentiated Tregcells (310). CK2 is overexpressed in Tregcells, 

and its function specifically suppresses T-cell antigen receptor signaling in 

Tregcells. Ultimately, this results in the induction of the TH2 inflammatory response 

in the lungs (311). It has been suggested that global targeting of CK2 in cancer 

treatment could possibly have the secondary impact of inducing the TH2 response 

and eliciting an impactful anti-tumor immune response (311). 

 

7) The Role of CK2 in Replicative Immortality 

 

CK2 has been described as interacting with and/or phosphorylating many 

of the proteins involved in the regulation of the G1/S cell cycle checkpoint as 

described above. To date, CK2 interactions with p53 have not been shown to 
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differentiate between normal and mutant p53 as well, so it is not surprising that its 

action plays a role in replicative immortality in cancer cells expressing mutant p53 

(312, 313). It has been demonstrated in glioblastoma cells that CK2 inhibition is 

sufficient to induce p53-dependent cell cycle arrest and also results in sensitization 

of cells to TNFα-driven apoptosis (314). CK2 inhibition also resulted in increased 

telomerase activity and increased p53-dependent senescence, but importantly, 

these functions by CK2 inhibition were only observed in p53 wild-type cells (314). 

 

8) The Role of CK2 in Angiogenesis 

 

CK2 has been well described for its role in promoting angiogenesis in 

tumors. CK2 regulates hypoxia inducible factor-1α (HIF-1α), the main 

angiogenesis inducing pathway, in a variety of ways (315). It has been shown that 

inhibition of CK2 results in lower expression of HIF-1α during times of hypoxia 

because of increased p53 levels (316, 317). CK2 has also been shown to 

specifically phosphorylate Proline-Rich-Homeodomain protein (PRH) specifically 

blocking its ability to bind DNA. This action prohibits PRH from repressing VEGF 

and other components of VEGF signaling (318). FGF has also been implicated in 

angiogenesis and it is also a known binding partner of CK2β. The complex of FGF-

2 and CK2 has also been shown to drive CK2 kinase to act on nucleolin which is 

responsible for the synthesis and maturation of ribosomes (281). This relationship 

suggests that CK2 activity is likely also important for the production of FGF and 

VEGF signaling components (e.g., ligands, receptors). Finally, it has also been 

shown that PDGF signaling, a common growth factor player in angiogenesis, 

induced the expression of CK2α’ subunits.   

 

9) The Role of CK2 in Deregulating Cellular Energetics 

 

CK2 plays such an extensive role in the other hallmarks of cancer, so it is 

no surprise that it also may play a role in the metabolic reprogramming of cells 

required to compensate for the increased energy demands of developing tumors. 

Specifically, CK2 kinase activity has been described as regulating the purinosome, 

a multi-subunit complex responsible for purine synthesis in cells in response to 

changes in available nucleotides (319). CK2 has also been directly linked to the 
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hormonal regulation of carbohydrate metabolism as well as the regulation of other 

enzymes involved in carbohydrate storage and metabolism (320). Finally, CK2 

activity has been implicated in upregulating cytosolic levels of zinc, a secondary 

messenger implicated in many growth and proliferation pathways including AKT 

and ERK1/2 activation. CK2 phosphorylates the ZIP7 channel on the endoplasmic 

reticulum simulating it to open, thereby releasing stored zinc levels into the cytosol 

(321). 

 

10) The Role of CK2 in Invasion and Metastasis 

 

Recently, the greatest interest in CK2 as a tumor driver has been in its role 

in invasion and metastasis. CK2 has been shown to be an intermediate effector 

linking pERK activation by EGFR to the phosphorylation of α-catenin and the 

subsequent transactivation of β-catenin leading to invasiveness of tumor cells 

(284). CK2β down-regulation has been observed concurrently with dramatic 

changes in cell migration and adhesive properties (322). A genome-wide 

characterization of mRNA expression in CK2β-depleted breast cancer cells 

highlighted the upregulation of the core mesenchymal genes (CDH2, VIM, SNAIL1, 

TWIST1, ZEB1, ZEB2, etc.), and a down-regulation of the core epithelial genes 

(CDH1, CDH3, MUC1, etc.) (322). CK2β-depleted breast cells also demonstrated 

changes in a number of genes responsible for the necessary extracellular matrix 

and cytoskeletal alterations required for EMT (e.g., ADAM19, ADAM23, FN1, 

COL6A1) (322). 

  

Therapeutic Targeting of CK2 in Cancer 

 

 The initial trepidation in targeting CK2 came from the revelations that it interacts 

with a large fraction of the kinome, and when inhibited, might logically result in adverse 

events in patients. It has also been shown that knockouts of two of the three subunit types 

results in embryonic lethality (248, 249, 252). Despite this, the growing knowledge of the 

role of CK2 in tumorigenesis of many types of cancer led to the development of the orally-

available CK2 inhibitor, CX-4945 (Silmitatsertib), in 2010 (252). CX-4945 is in clinical 

Phase 1/2 trials in cholangiocarcinoma (240) (323). However, CK2 inhibition is currently 

not being investigated in lung cancers. 
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 CX-4945 treatment has been largely inconsequential as a single agent, likely 

because the majority of its roles in cancer can be compensated for by other kinases (252). 

Importantly, Franchin et al. demonstrated that CK2 null cells (α/α’(-/-)) still demonstrate 

pAKT S129 levels despite the fact that the Serine 129 residue is a specifically known CK2 

phosphosite (252, 324). This reinforces the notion that single-agent CK2 inhibition may 

continue to have poor efficacy as an anti-tumor therapy because compensatory signaling 

is readily activated. It also highlights that CK2 is a logical secondary signaling source that 

may be responsible for drug-resistance to current targeted therapies. A Phase 1/2 trial in 

cholangiocarcinoma is examining the combination of CX-4945 with gemcitabine and 

cisplatin (323) and combinations of CX-4945 and other targeted agents are currently being 

explored pre-clinically. 

 

 

E. PROJECT OVERVIEW 

 

The aim of our lab is to use pharmacogenomics to improve the clinical care of lung 

cancer patients. Specifically, we have used high-density genomic data generated from 

NSCLC cell lines with known sensitivities to EGFRI to do three things: 

 

1) Develop predictors of EGFRI-response in order to accurately stratify NSCLC 

patient response to EGFRI therapy. As stated earlier, clinically-utilized small 

molecule inhibitors of EGFRI are specifically designated for the treatment of 

tumors harboring specific EGFR mutations. Using single-gene mutation 

statuses to identify patient response does not encompass all putative 

responders, nor does it account for non-responders harboring the mutation of 

interest. Developing more robust predictors is paramount to accurately 

stratifying responders from non-responders. It can also identify the potential for 

resistance development in patients. 

 

2) Interrogate the deregulated genes and signaling pathways identified by gene 

expression predictors to gain a greater understanding of the biology governing 

response to EGFRI in NSCLC. Exploring the genes and pathways that indicate 
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drug-sensitivity provide essential knowledge for identifying the mechanisms by 

which resistance to therapy develops. We might also identify possible 

secondary targets for the treatment of EGFRI-resistant NSCLC.  

 

3) Leverage deregulated mRNA and miRNA genes to determine putative 

interactions that might be exploited to identify novel drug targets and 

methodologies for treating EGFRI-resistant NSCLC. We have developed a 

methodology for expanding the network in a disciplined manner to identify 

nodes connecting deregulated signaling pathways and cellular processes. 

Using this multi-faceted approach to identify deregulated networks, we are able 

to filter much of the “noise” generated by the heterogeneity among NSCLC 

lines in the genomic studies. From a translational standpoint, this is a 

particularly difficult hurdle in identifying novel drug targets and treatment 

strategies for lung tumors that harbor immense amounts of somatic mutations 

and expression level changes.  

 

The history of targeting EGFR and managing EGFRI resistance has been built on 

the philosophy of targeting “oncogene addictions” exclusively. While many NSCLC are 

reliant on overactive EGFR signaling, almost all eventually develop resistance to EGFR 

inhibitors because subpopulations of cells not requiring constitutively active EGFR 

signaling or with mutant, drug-resistant EGFR arise (29, 147). The second and third 

generations of EGFR inhibitors were built to overcome some of the resistance 

mechanisms that are acquired, but have essentially continued to monotherapeutically 

target EGFR (147). This strategy does not impact the development of other resistance 

mechanisms through other kinases and oncogenes (e.g., MET, ALK and ROS1), 

phenotypic changes (e.g., EMT), and alterations in downstream effectors (e.g., BRAF) 

(147, 148). Moreover, consecutive generations of EGFRI have also allowed the selection 

of novel resistance polymorphisms in well-characterized EGFRI antagonists (e.g., NRAS 

E63K and EGFR L798I/Q) (147, 154-156). Mechanisms of drug-resistance across every 

biological model from antibiotic-resistance in bacteria to anti-retroviral resistance among 

HIV/AIDS patients highlight that drug-resistance results from the selection of 

cells/organisms that have evolved means of bypassing drug efficacy. Complex eukaryotic 

organisms like humans have cells that possess many more avenues of circumventing 

specific nodes while achieving the same results in response to situations like genetic loss 
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or damage. While this behavior of compensatory signaling is imperative for human growth, 

development, and survival despite genetic defects, it is also exploited by tumor cells to 

overcome both innate and pharmacological anti-cancer strategies. Continuing our current 

method of simply modifying EGFR inhibitors with a focus on targeting only EGFR will likely 

always be met with resistance mechanisms that will continually evolve to overcome the 

newest anti-EGFRI. 

  

Early EGFRI-TKI efficacy prediction relied on the presence of EGFR activation 

mutations and KRAS activation status (3, 133, 143, 166, 169, 325, 326). This method of 

identifying responders did not segregate responders completely. To address this, our lab 

hypothesized that multivariate biomarkers could be used to better capture the EGFRI-

resistant and -sensitive phenotypes (327, 328). In line with our first aim to produce 

biomarker signatures of drug efficacy, the lab produced two different polygenic biomarkers 

predictive of EGFRI sensitivity, one of 180-mRNA and one of 13-miRNA genes (327, 328). 

Importantly, both are the product of larger lists of deregulated genes that distinguish the 

EGFRI-resistant and -sensitive phenotypes.  

 

The second goal of our lab is to interrogate the list of deregulated genes that stratify 

EGFRI-resistant and -sensitive cells. We do this to better understand the biology driving 

each phenotype, thereby rationally seeking alternative methods for targeting EGFRI-

resistance. Of the mRNA that were found to be deregulated for the generation of the 180-

mRNA signature, MAPK-ERK and PI3K/AKT/mTOR signaling were prominently 

represented (328). Because of this, our lab members have systematically interrogated the 

value of MEK and EGFR combinatorial therapy (329), the regulation of downstream ERK 

by deregulated dual-specificity phosphatases (DUSPs) (330), and the role of p110α 

isoform compensation in PI3K inhibitor compensation (331).  

 

The desire for a new perspective on the cellular deregulation stratifying EGFRI-

resistant and -sensitive cells led to the development of the second signature identifying 

response to the EGFR-TKI, erlotinib. Comprised of 13- deregulated miRNA genes, the 

additional signature was not only able to discriminate between EGFRI-resistant and -

sensitive cells, but was also able to distinguish clinical samples as primary or metastatic 

lesions (327). Bioinformatic analysis of the 13-miRNA genes comprising the signature 

revealed that they functionally converged on the TGFβ signaling pathway (327). As stated  
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Figure 1.5: Cross talk amongst TGFβ, EGFR, and CK2 Signaling.  
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earlier, phenotypic changes, like EMT, are sources of EGFRI resistance (148) and TGFβ 

is a known driver of the EMT program (332, 333). Moreover, many of the signature miRNA 

putatively control expression of EMT-related proteins (327). For this reason, the first 

hypothesis I proposed and tested was that the miRNA comprising the signature of 

response were transcriptionally regulated by canonical TGFβ signaling by Smad 

activation/repression (Chapter 2). Canonical TGFβ signaling by Smad activity could be 

responsible for controlling the expression of the miRNA that distinguish EGFRI-resistant 

from –sensitive cells.  

 

The second hypothesis I proposed and tested was that TGFβ signaling 

impacted EGFRI-resistance differently between EGFRI-resistant and -sensitive 

NSCLC (Chapter 3). 

 

The third aim of our lab is to leverage the gene expression data generated over 

time that is descriptive of the fundamental cellular differences between EGFRI-resistant 

and -sensitive cells using novel mathematical and computational methods. The two 

expression signatures were culled from larger lists of 1495 deregulated mRNA and 23 

deregulated miRNA genes. We chose to bolster current studies by considering inversely 

related miRNA:mRNA pairs.  The third aim I proposed and tested was whether mRNA 

and miRNA gene expression data interactions, whether physical or not, would 

identify nodes of cell signaling. These interactions and their protein-protein 

interacting partners may indicate new targets for novel treatment options (Chapter 

4). 

 

This work is a study of what we can learn about the biology of a tumor phenotype 

(e.g., EGFRI resistance status) by interrogating gene expression differences. I will 

demonstrate the value of cross-examining multiple levels of genomic data to identify 

meaningful networks of deregulated signaling. I will also demonstrate that meaningful 

therapeutic targets can be captured using basic mathematical characterization of 

“significantly deregulated genes”. Finally, I will propose a method for the targeted 

treatment of EGFRI-resistant lung tumors as identified by this new method of network 

analysis.  
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CHAPTER 2 

 

A. OVERVIEW 

 

Lung cancers are frequently diagnosed in later stages of disease progression with 

few treatment options available for patients. In the last decade, a number of targeted 

therapies have been developed against impactful oncogenic targets in lung cancer (e.g., 

EGFR, ALK, and ROS), but many tumors either lack an actionable oncogenic mutation or 

harbor an inherent resistance mutation (e.g., KRAS). Therefore, most patients receive a 

cytotoxic agent to which they may not respond (55, 83). Unfortunately, many patients with 

a targetable mutation eventually develop resistance to targeted therapy enforcing the need 

to couple or stage therapies to combat resistance. 

 

Genome scale sequencing and gene expression technologies have provided 

scientists and clinicians the tools to gather increasingly more specific insight on tumor 

heterogeneity thereby allowing for tumor-specific therapeutic decisions to be made. While 

the ability to characterize tumors at this level has revolutionized the concept of 

personalized cancer care, the breadth of information presents the dilemma of how to 

interpret molecular characteristics that are biologically relevant for treatment decisions. 

Recently, The Cancer Genome Atlas (TCGA) conducted genomic, transcriptomic, and 

proteomic profiling of 230 lung adenocarcinomas revealing that 73% of the tumors studied 

showed activation of the Ras/Raf cascade downstream of a Receptor Tyrosine Kinase 

(RTK) at the level of genomic alterations and gene expression, but only a subset of those 

tumors showed aberrant activation of this cascade at the protein level (334). This 

observation underscores the diversity within and between tumors reinforcing the need for 

multivariate predictors of drug response to overcome the failings of single biomarker 

methods of response prediction. 

 

One of the more commonly targeted oncogenic RTKs in Non-Small Cell Lung 

Cancers (NSCLC) is the Epidermal Growth Factor Receptor (EGFR). The EGFR inhibitor, 
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erlotinib, is indicated for use in patients harboring an EGFR-activating mutation (10-15% 

of patients) and is contraindicated for use in patients with mutated KRAS (25-30% of 

patients) (335). Using only these two markers to assign erlotinib treatment in NSCLC has 

yielded results that are modest at best (336). To augment the short-comings of KRAS and 

EGFR mutation status as the sole predictive metric, the Black laboratory showed that 

microRNA (miRNA) expression patterns in different cell lines could predict erlotinib 

resistance, reporting that a 13-miRNA gene signature could be used for these purposes 

(327). Our 13-miRNA gene signature of response is not only able to stratify NSCLC cells 

and tumor samples into erlotinib-sensitive and -resistant groups, but was also able to 

discriminate between primary and metastatic lesions. Understanding why the expression 

of these small RNA molecules can distinguish response to anti-EGFR therapy and 

discriminate metastatic lesions has implications for both prognostic and predictive clinical 

applications. 

 

MicroRNA are non-coding, small, RNA that regulate gene expression by pairing 

with complementary mRNA resulting in translation inhibition or degradation of the mRNA 

(337). miRNA play a role in a number of biological processes (e.g., growth, differentiation, 

and proliferation), so it is not surprising that endogenous expression levels are 

deregulated in cancer (338). Bioinformatic analysis of the 13-gene miRNA signature 

showed that many of the proposed target genes functionally converge on the TGFβ 

signaling pathway (327). For this study, we specifically focused on signature members 

miR-140, miR-141, and miR-200c due to their opposing expression between erlotinib-

sensitive and -resistant cell lines. The miR-200 family, including miR-200c and miR-141, 

is well-characterized for preventing EMT onset by targeting transcription factors (e.g., 

Zeb1 and 2) responsible for suppressing expression of epithelial characteristics, such as 

the E-cadherin (E-cad) adhesion proteins (332, 339-341). High expression of these two 

miRNA correlate with erlotinib-sensitivity in the 13-miRNA gene signature. Conversely, 

miR-140 is highly expressed in erlotinib-resistant cells and is predicted to target the TGFβ 

receptor and Smad 2 (327, 342). Importantly, these data demonstrate that opposing 

expression profiles and activities are necessary for EMT. 

 

The TGFβ signaling pathway is well documented for its role in the induction and 

potentiation of the mesenchymal phenotype in tumor cells (343). TGFβ is a ubiquitous 

cytokine that is active in a number of cell processes, and many of cell types secrete the 
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ligand and express the receptors to bind it (174). Activation of TGFβ signaling is 

accomplished by TGFβ ligands binding to the extracellular domain of TGFβII receptors. 

This allows it to recruit the TGFβI receptor and then bind a second pair of activated 

TGFβII/I receptors resulting in transautophosphorylation within the tetramer (179). 

TGFβ canonical signaling is mediated by Smads 2, 3, and 4, which bind to Smad 

Binding Elements (SBE) on DNA eliciting a transcriptional response (344). TGFβ 

potentiates the Epithelial to Mesenchymal Transition (EMT) in some cancer cells by 

signaling through a variety of other non-canonical pathways including PI3K/AKT and 

MAPK/ERK (190). Interestingly, several groups have noted that erlotinib sensitivity tends 

to correlate with the epithelial phenotype (345). Since TGFβ upregulates genes 

responsible for the activation of the EMT program (346), and because the miRNA 

signature is capable of stratifying between primary and metastatic lesions ex vivo (327), 

we hypothesize that TGFβ supports differential expression of the signature miRNA 

between erlotinib-resistant and -sensitive NSCLC. 

B. METHODS 

Cell Culture, Protein harvest, Immunofluorescence, and Western Blot 

A549, PC9, H460, and H1650 cell lines (NSCLC) were purchased from ATCC. 

They were cultured in RPMI 1640 supplemented with 10% FBS (USA Scientific) and 

maintained in a humidified incubator at 37 °C at 5% CO2. Cells were seeded in 6-well 

plates and were allowed to grow under maintenance media conditions for 48 hours prior 

to treatments. Cells undergoing 24 hours of treatment were plated 4 x 104 cells/well, and

72- and 168-hour treated samples were plated at 1 x 104 cells. Cells were treated with

SB-431542 (3 µM) (Selleck Chem) and/or TGFβ (5 ng/ml) (Cell Signaling Technologies) 

under minimal serum (1%) conditions for time frames specified. If treatment times 

exceeded 72 hours, treatment media was replenished at the 72-hour time point. Whole-

cell extracts were collected using RIPA buffer (50 mM Tris-HCl, 1% NP-40, 150 mM NaCl, 

1 mM EDTA, 0.25% DOC, 10% glycerol, in ddH2O) and protein content was quantified 
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using a BCA kit (ThermoFisher) prior to western blotting. Proteins were separated using 

SDS-PAGE and were transferred to a nitrocellulose membrane. Expression and/or 

activation of specific proteins (pSmad 2, tSmad 2, pSmad 3, tSmad 3, tSmad 4, α-tubulin, 

pERK1/2, tERK1/2, pAKT, tAKT, E-cad, Vimentin, N-cad, Zeb1) was assess by western 

analysis using antibodies purchased from Cell Signaling Technologies. 

Immunofluorescence was performed using Alexa Fluor-conjugated antibodies of the 

specific clone of E-cad and vimentin used for western blotting (Cell Signaling 

Technologies). Immunofluorescence was measured using the AMG EVOS microscope 

with built-in EVOS software (Thermo Fisher). Cell morphology images was recorded using 

the Zeiss AxioObserver Microscope and processed using the AxioVision software. 

 

Chromatin Immunoprecipitation (ChIP) 

 

ChIP assays were carried out with the Simple ChIP Plus Enzymatic Chromatin IP 

Kit (Cell Signaling Technologies) to measure Smad 4 binding to two putative SBE sites in 

the shared promoter of miRNA-141 and miR-200c at -1645/-1247 and - 1793/-1395 from 

each transcriptional start site, respectively. Cells were plated at 5 x 105 cells per dish in 

10 cm dishes for 48 hours prior to a media change to 1% FBS-containing RPMI +/- 5 ng/ml 

TGFβ1 treatment for 24 hours. After treatment, cells were cross-linked, processed, and 

digested as described in the Simple ChIP protocol (Cell Signaling Technologies). Samples 

were divided following digestion and chromatin complexes were immunoprecipitated with 

Smad 4 antibody (20 µl/ChIP) against a non-specific rabbit IgG (1 µl/ChIP) overnight and 

then pulled down with magnetic ChIP-grade protein G beads for 2 hours (Cell Signaling 

Technologies). Immunoprecipitated samples were washed, uncrosslinked, and DNA was 

prepared as described in the Simple ChIP protocol (Cell Signaling Technologies). SYBR 

Green qRT-PCRs (Applied Biosystems) were performed with negative-control α-Satellite 

and positive-control ID1 Smad 4-specific control primers against the experimental region 

containing the two putative SBEs in the shared promoter of miR-141/-200c (Forward: 

GCATTACTCAGCAAATCCTTAC; Reverse: CCCGACAGGTGATTGCC. Primers 

designed in-house and produced by IDT). Data was analyzed using the Percent Input 

method where signals from ChIP samples are represented as a percentage of the total 

chromatin input. Each individual experiment was replicated in triplicate for each primer set 

and processed using the 2% input method described in the Cell Signaling Technologies 

protocol. Data represented is for three biological replicates (n = 3). P-values were 
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generated using paired t-tests comparing each TGFβ treated sample to its respective 

untreated sample. 

 

Real-Time PCR Analysis of miRNA Expression 

 

Total small RNA was harvested from the cells using the mirVANA™ miRNA 

isolation kit (Life Technologies). cDNA was synthesized for U6, miR-140, miR-141, and 

miR-200c using the TaqMan MicroRNA Reverse Transcription kit and corresponding 

reverse transcription TaqMan primers for U6, miR-140, miR-141, and miR- 200c (Life 

Technologies). cDNA was then subjected to quantitative Real Time PCR (qRT-PCR) using 

TaqMan Mastermix II with no UNG, and corresponding TaqMan microRNA assay primers 

(Life Technologies). qRT-PCR were performed by a 7900HT Fast Real-Time PCR system 

(ABI) and all reactions were run in duplicate with corresponding positive and negative 

controls. The data was analyzed using a 5-way ANOVA following internal normalization of 

raw Ct values to the internal U6 as the normalization probe. 

 

Propidium Iodide (PI) and Flow Cytometry 

 

A549 and PC9 cells were subjected to the same treatments and time points as 

previously described. Specifically, cells were rinsed in PBS at point of harvest, trypsinized, 

and collected in a 15 ml conical tube. Cells are centrifuged at 1500 rpm and the 

supernatant is removed. Cells are washed once with cold PBS, pelleted, and the 

supernatant removed. Finally, the cell pellet was resuspended in 400 µl of cold PBS and 

then 1 ml of cold, 100%, molecular biology grade ethanol was added to each sample 

dropwise while gently vortexing and then samples were placed on ice for 30 minutes. Cells 

were pelleted by centrifugation and the supernatant removed, and then washed in cold 

PBS/1%BSA. The pellet was resuspended in 0.3 ml of PI solution (1X PBS/1% BSA/50 

µg/ml PI/0.5 mg/ml RNase A). Samples were incubated in the PI solution for at least 30 

minutes at 4 °C protected from light. Samples were assayed on the Attune Flow Cytometer 

acoustic focusing cytometer, and 10,000 cells from each sample were profiled for PI 

emission, and data was collected with the Attune-specific software provided (Applied 

Biosystems/ThermoFisher). Percentage of total cells in each phase of the cell cycle was 

determined using the cell cycle analysis platform in the FlowJo V10 software (FlowJo). 
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Statistics 

To analyze changes in endogenous gene expression data generated by qRT-PCR 

described above, a five-way ANOVA was performed using the following variables: 

treatment with TGFβ, treatment with SB-431542, time point, expression as internally 

normalized Ct values, and cell line, along with all interaction terms. The overall F-test, 

followed by partial F-tests were used to determine significant effects. Following the 

ANOVA, post-hoc comparisons were made for significant terms in the ANOVA using two-

sample t-tests to compare subgroups of interest. Tests were determined to be significant 

if p-values were less than 0.05. All analyses were performed in SAS Version 9.3 or above 

(SAS Institute Inc., Cary, NC). 

C. RESULTS 

Most Signature miRNA Promoters Contain Smad Binding Elements 

The promoter of each of the 13 signature miRNA was analyzed using 

chipMAPPER (347, 348) for putative SBEs (344, 349). Predicted SBEs were retained if 

they had conservative E-values (≤ 25) and a score greater than 3.0. SBEs matching these 

criteria were found in the promoter regions of twelve of the thirteen signature miRNA 

(Figure 2.7). The three signature miRNA genes we focused on in this study (miR-140, 

miR-141, and miR-200c) have multiple predicted SBEs within -2000 base pairs of 

transcriptional start site (Figure 2.1) (184, 344, 350). 

The activity of complexes containing Smad 2 and Smad 3 along with the DNA-

binding member, Smad 4, have been shown to have both positive and negative effects on 

transcription (351, 352). Since the signature miRNAs are differentially expressed among 

cell lines, the majority of their promoters contain putative SBEs, and the known dual 

behavior of TGFβ activity on gene expression, we hypothesized that the canonical TGFβ 

signaling pathway likely controls opposing expression levels of signature miRNA between 

erlotinib-sensitive and -resistant NSCLC lines. 
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TGFβ-mediated Smad Signaling has an Opposing Phenotype in Erlotinib Resistant 

and -Sensitive Cell Lines 

 

A549 and PC9 cell lines were selected as representative NSCLC cell lines due to 

their opposing erlotinib responses and opposing expression levels of the 3 candidate 

miRNA. A549 are inherently erlotinib-resistant because they harbor a KRAS activation 

mutation, and PC9 are erlotinib-sensitive treatment because they contain an activating 

exon 19 deletion in EGFR (328). 

 

We first examined the expression and activation of the Smad molecules, Smad 2, 

Smad 3, and Smad 4, after treatment with exogenous TGFβ ligand, an inhibitor of 

TGFβRII, SB-431542, or the combination in these cell lines (Figure 2.2A) by western blot 

to determine if these effectors could be responsible for signature miRNA regulation. In 

both A549 and PC9 after 24 hours of treatment, pSmad 2 and pSmad 3 levels are elevated 

in cells treated with TGFβ, and the effect was diminished in cells treated with SB-431542 

or the combination of SB- 431542 and TGFβ. Total Smad 2, Smad 3 and Smad 4 levels 

appear to be consistently expressed across treatments at 24 hours. There were no 

obvious levels of pSmad 2 or pSmad 3 in either cell line or in any treatment condition at 

the 72-hour treatment time point. Total Smad 2 and Smad 4 levels appear to be 

consistently expressed in both cell lines across both treatments. However, in both cell 

lines, tSmad 3 levels were diminished in cultures treated with TGFβ. 

 

At 168 hours, pSmad 2 levels were seen only in A549 treated with TGFβ. Phospho-

Smad 3 levels were not observed in either line at 168 hours. tSmad 2, tSmad 3, and Smad 

4 appear diminished in PC9 treated with TGFβ alone, and this phenotype was not 

observed in any other condition. A549 demonstrated similar expression of total Smad 

molecules across all treatment conditions. 

 

We observed the cyclical activation of Smad 2 in A549 while activation of Smad 3 

was observed early following initial stimulation, but did not return. In PC9, a different 

phenotype emerged with diminished levels of all Smad 2, Smad 3, and Smad 4 molecules 

by 168 hours. Taken together, these data suggest that the TGFβ canonical signals are 

managed differently in A549 and PC9. 
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TGFβ Treatment Induces an EMT Protein Expression Switch in A549 but not in PC9 

 

Like many, we observed that A549 cells treated with TGFβ undergo a 

morphological change with treatment and appropriately activate R-Smad proteins - a 

phenotype consistent with EMT. PC9 cells did not undergo these changes with TGFβ 

treatment, but interestingly, PC9 cells treated with the TGFβ inhibitor displayed an EMT 

intermediate phenotype known as “Metastable” (Figure 2.8) (353). For this reason, we 

assessed a panel of EMT protein markers to determine if the morphological changes 

observed were indicative of EMT progression and correlated with signature miRNA 

endogenous expression changes. 

 

A549 and PC9 were plated, treated, and harvested as described for protein 

measured by BCA assay prior to western blotting. Lysates were assessed for 

mesenchymal markers N-Cadherin (N-cad), Zeb1, and vimentin as well as the epithelial 

marker, E-cadherin (E-cad) to confirm if the morphological changes were consistent with 

EMT occurring (Figure 2.2B). As a comparison, we also profiled A549 and PC9 cells for 

E-cad and vimentin expression by immunofluorescence at 24- and 168-hour (7 days) time 

points (Figure 2.2C-F). mRNA levels of E-cadherin were examined in both cell lines at 24-

, 72- and 168-hour time points to fully capture the change in expression of this epithelial 

marker across time points (Figure 2.9I). 

 

In A549, TGFβ suppressed E-cad expression across each of the time points in the 

experiment, as expected. Conversely, vimentin expression increased over the time course 

of TGFβ treatment. N-cad and Zeb1 appear in the 72- and 168- hour time points, 

respectively, in TGFβ-treated A549. The immunofluorescence profile of E-cad expression 

at the 24 hour and 7 day –treated time points in A549 cells was consistent with the levels 

observed by western analysis. Vimentin levels increased in A549 cells also mirrored the 

western blot results (Figure 2.2C,D). 

 

In PC9, neither TGFβ stimulation nor its inhibition decreased E-cad expression or 

induced expression of the mesenchymal markers assessed. E-cad expression was 

consistent between the western and immunofluorescent assays. Vimentin expression was 

not observed by western or immunofluorescence assays (Figure 2.2E,F). Since PC9 

responded unexpectedly to treatment, we sought to determine if TGFβ directly regulated 
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the expression of two candidate miRNA genes in both A549 and PC9 by assessing if 

Smad 4 directly binds a shared putative SBE. 

 

TGFβ Induces Smad 4 Binding to Putative SBEs in the Promoter of mir-141/200c in 

Erlotinib-Sensitive Cells 

 

To test the impact of the observed deregulation of R-Smad activity in A549 and 

PC9 on candidate miRNA expression, we asked whether Smad 4 was directly binding the 

promoters of our miRNA genes. Smad 4 is the only member of the canonical-Smad family 

with a nuclear localization signal, and others have shown that it is required for any active 

Smad complex to translocate into the nucleus to regulate transcription. Direct regulation 

of gene expression by TGFβ-activated Smad complexes is expected to occur within 24 

hours of treatment (184). For these reasons, we only tested Smad 4 binding to the SBE 

locus after 24 hours of treatment by Chromatin Immunoprecipitation (ChIP). 

 

In A549 cells, TGFβ treatment induced a significant enrichment of the positive 

control, the ID1 promoter SBE, bound to Smad 4 (p = 0.0171). The mir-141/-200c promoter 

region was not significantly enriched in A549 cells in any treatment or antibody 

combination (Figure 2.3A). In PC9 cells, TGFβ treatment enriched both the positive 

control, ID1 (p = 0.0035), and the mir-141/-200c promoter containing the SBE locus (p = 

0.0006), suggesting that Smad 4 is bound to the shared promoter region in PC9 cells and 

not in A549 cells treated with TGFβ (Figure 2.3B). This observation led us to ask whether 

the observed DNA interaction between the Smad 4- containing complex and the SBE 

resulted in changes in endogenous levels of miR-141 or miR-200c. 

 

Time, Not Treatment, Alters the Expression of the Candidate microRNAs 

 

Activated Smad 2 and Smad 3 were present in both lines at 24h post-TGFβ 

treatment and pSmad 2 returned at 168h after treatment in A549. We have also shown 

that Smad 4 is expressed in all conditions and binds mir-141/200c promoter at 24 hours 

post-TGFβ treatment in PC9. For these reasons, we anticipated that differential 

expression of the signature miRNA genes would occur under these conditions as a result 

of TGFβ treatment. To explore this, A549 and PC9 were cultured and harvested as 

described and assessed for endogenous expression changes of three signature miRNA 
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genes, miR-140, miR-141, and miR-200c by qRT-PCR. Importantly, these experiments 

were performed in 1%-serum media to minimize the impact of exogenous cytokines. We 

tested each of the three miRNA profiled in the conditions indicated here in both 1% serum 

and 10% serum treatment conditions to confirm that the changes observed are not due to 

serum levels. Importantly, miRNA expression does not significantly differ between the two 

serum levels for any of these three miRNA (Figure 2.13). 

 

The miRNA expression trends did not differ significantly among treatment 

conditions, but differences across time points were observed (Figure 2.10). An initial 2-

way ANOVA comparing endogenous miRNA expression changes as internally-normalized 

Ct values within each cell line indicated that the most impactful variable governing 

endogenous expression change was the time of treatment. The 2-way ANOVA was not 

able to compare whether the expression changes correlated with other miRNA tested or 

the erlotinib- sensitivity status of a cell line. In order to capture this complexity, we used a 

5-way ANOVA to identify significant interactions between five variables: 1) miRNA 

expression (Ct values), 2) time point sample was taken, 3) TGFβ treatment addition, 4) 

SB-431542 treatment addition, and 5) cell line. All combinations of factors were 

simultaneously calculated (5-way ANOVA Input in Supplementary Table 1, Ct averages in 

supplementary file 1, Appendix I). The 5-way ANOVA revealed that treatments and miRNA 

expression levels are not related, and that the most influential experimental component 

was the time of treatment (Figure 2.4A and Figure 2.11). Figure 2.11 shows that individual 

miRNA expression follow the same trends across treatments over time. For simplicity, 

since expression trends did not differ drastically between treatments, we chose to present 

the overarching miRNA expression trends generated as averages of treatments in each 

individual cell line at each time point (Figure 2.4A). The table highlights the significance of 

endogenous expression changes among time points separated by miRNA gene in each 

cell line (Figure 2.4B). Taken together, these data demonstrate that treatment was not 

impactful in the changes in endogenous miRNA expression, but the time of treatment was. 

Importantly, individual miRNA expression changes did not correlate with the erlotinib 

sensitivity of each cell line. From these data, we hypothesized that the impact of the time 

of treatment may be directly related to the cell cycle position of the cells. 

 

Time, Not Treatment, Alters the Cell Cycle Position of A549 and PC9 Cells 
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To assess whether observed changes in miRNA expression correlate with cell 

cycle position, as a measure of time, A549 and PC9 cells were assessed for percentage 

of cells in each cell cycle position at each of the time points. Cells were treated and 

harvested as described for cell cycle analysis using propidium iodide staining and flow 

cytometry. For each sample, 10,000 events were counted to ensure percentages were not 

skewed by the differing number of cells present in each sample at the end of treatment. 

Overall proliferation following respective treatment times is shown in Figures 2.12 and 

2.13 as cell counts. 

 

Irrespective of treatment, the percentage of A549 cells in the G0-G1 phase of the 

cell cycle increased over time of treatment. PC9 cells behaved similarly (Figure 2.5). 

However, PC9 cells treated with TGFβ failed to continue to proliferate after 72 hours while 

the percentage of cells in G0-G1 changed. To understand the impact of time and treatment 

on percentage of cells in the G0-G1 phase of the cell cycle, a 2-way ANOVA was performed 

within each individual cell line to capture the most impactful factor influencing the trends. 

The ANOVA confirmed that the most important factor governing the increasing number of 

cells in of G0-G1 phase was cumulative time of treatment. In A549 cells, time of treatment 

significantly explained cells in the G0-G1 phase of the cell cycle (p<0.0001). In PC9, both 

treatment conditions (p<0.0001), time of treatment (p = 0.0002), and the interaction of the 

two variables (p = 0.0168) had a significant impact on the percentage of cells in the G0-G1 

phase of the cell cycle. Because cell cycle position interacted with time of treatment, we 

wondered whether a specific non-canonical signal transduction cascade downstream of 

TGFβ was activated that might impact cell cycle progression. 

 

TGFβ Activation of Non-Canonical Effectors ERK1/2 and AKT Differs Between A549 

and PC9 

 

Since miRNA endogenous expression changes appeared to correlate with 

changes in the cell cycle rather than TGFβ treatment, we endeavored to understand the 

impact of TGFβ treatment on non-canonical effectors known to drive growth and 

proliferation, Ras/MAPK and PI3K/AKT pathways. The same protein lysates profiled for 

the R-Smad effectors and EMT marker proteins in Figure 2.2 were assessed for both 

pERK1/2 and pAKT expression. Corresponding total protein expression of each across 
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the same treatments and time points described above were measured by western blot 

(Figure 2.6). In A549, pERK1/2 levels increase with TGFβ treatment across the time points 

while total protein levels remained constant. pAKT levels in A549 increased at the 24-hour 

time point, but then diminish across time points while total levels of the protein were 

constant. In PC9, pERK1/2 and pAKT levels were elevated at the 24-hour time point, but 

both diminish over time without a decrease in total protein levels in the cells treated with 

SB-431542 with and without co-treatment with TGFβ. Densitometry performed on these 

blots can be seen in Figure 2.14. These data suggest that the relationship between TGFβ 

and non-canonical growth and proliferation pathways and may explain why the changes 

in endogenous miRNA expression correlated with an increasing percentage of cells in the 

G0-G1 phase of the cell cycle. 

 

 

D. DISCUSSION 

 

In early stages of tumor development, TGFβ acts as a tumor suppressor 

preventing the proliferation, differentiation, and overall survival of the impacted cells. In 

later stages of tumor development, TGFβ shifts from tumor suppressive functions to 

promotion of tumorigenesis by driving the transcription of pro-EMT genes, which stimulate 

tumor cells to invade and metastasize (354, 355). The role of TGFβ signaling in EMT is of 

particular interest to our group because the 13-gene miRNA signature not only stratified 

NSCLC into erlotinib-sensitive and erlotinib-resistant groups, but was also able to 

discriminate between primary and metastatic tumors (327), and multiple members of the 

miRNA signature have been shown to play either a promoting or repressing role in EMT 

in NSCLC (332, 356, 357). For this reason, we endeavored to understand the role of TGFβ 

signaling on the expression of microRNA genes dysregulated in erlotinib-sensitive 

compared with erlotinib–resistant cell lines. 

 

TGFβ drives EMT by using the canonical signaling pathway, mediated by the R-

Smads, which upregulate transcription responsible for the repression of epithelial 

characteristics (190). Analysis of the TGFβ-driven R-Smad family members, showed a 

differential response to TGFβ treatment between the erlotinib-resistant, A549 cells, and 

erlotinib-sensitive, PC9 cells. Activated Smad 2 and Smad 3 expression was observed in 
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both cell lines at similar levels at early time points of treatment. At the 168-hour time point, 

activated Smad 2 levels return in A549 cells treated with TGFβ, compared to unchanging 

total Smad 2, Smad 3 and Smad 4 levels across treatments. In PC9 cells after 168 hours 

of TGFβ treatment, the total expression of all TGFβ effectors tested was reduced 

suggesting the impact of some negative feedback mechanism. TGFβ is known for 

promoting EMT in late stages of tumor development, but in the early stages, it functions 

in an anti-EMT capacity (355). We believe this cyclical pattern of TGFβ activation and R-

Smad molecule repression to be indicative of TGFβ acting in an anti-EMT capacity in these 

cells. 

 

To delve further into whether TGFβ treatment acted by different mechanisms 

between the two lines tested, we explored TGFβ-driven morphological changes and EMT 

marker protein expression changes. It is known that TGFβ treatment induces a very long, 

fibroblast-like phenotype in A549 cells (Figure 2.8) and western blot analysis of the EMT 

markers E-cad, vimentin, N-cad, and Zeb1 shows that TGFβ treatment induced a protein 

expression phenotype consistent with EMT (Figure 2.2B) (358). However, this study is the 

first to demonstrate biological differences in “epithelial” NSCLC cell lines, like PC9 cells, 

treated with TGFβ. In PC9 cells, the morphology after TGFβ treatment is unchanged. 

Interestingly, PC9 cells treated with the TGFβ inhibitor, SB-431542, with and without co-

stimulation with TGFβ develop a morphology consistent with an EMT-intermediate 

phenotype known as “metastable” suggesting that the inhibition of TGFβ in PC9 cells may 

play a role in the induction of EMT (Figure 2.8) (353, 359). This observation, as well as 

that of the change in expression of the R-Smads in these cells, is consistent with the 

TGFβ-paradox theory and also correlates with the signature’s ability to stratify primary and 

metastatic lesions. To test whether TGFβ inhibition induced EMT initiation in PC9 cells, 

we profiled EMT protein markers to determine if the morphological change was indeed 

indicative of an EMT intermediate. While PC9 cells treated with the TGFβ inhibitor, SB-

431542, undergo a morphological change consistent with EMT initiation, the western blot 

and immunofluorescence analyses revealed that the cadherin switch, that is essential for 

full-EMT, did not occur in response to treatment (360). Taken together, these data suggest 

that while TGFβ may act as a pro-tumorigenic, pro-EMT fashion in A549 cells, it may play 

an anti-EMT and protective role in PC9 cells because the inhibition of TGFβ did not induce 

a complete EMT transition in these cells. 
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Since A549 and PC9 cells appeared to represent either side of the TGFβ paradox, 

we sought to elucidate whether TGFβ directly regulated the expression of the candidate 

signature miRNA genes to understand whether the differing impact of TGFβ observed by 

R-Smad and EMT marker expression was also differentially regulating the expression of 

some of the signature miRNA genes. We expected TGFβ to directly regulate the 

expression of the signature miRNA and from there we expected to be able to triangulate 

a relationship between erlotinib- sensitivity, TGFβ signaling, and the 13-miRNA gene 

signature to determine therapeutically-relevant, secondary targets for overcoming 

inherent or acquired erlotinib-resistance. To test if TGFβ was directly influencing the 

expression of miR-200c and miR-141, we performed a ChIP assay to determine whether 

TGFβ induced the binding of Smad 4 to an SBE site in the shared promoter of mir-

200c/mir-141. These two miRNA genes have very different baseline expression profiles 

between the mesenchymal, A549, and epithelial, PC9, cell lines. We showed that TGFβ 

treatment induced Smad 4 interaction with the shared mir-141/mir-200c promoter only in 

PC9 cells. However, in PC9 cells endogenous miR-141 and miR-200c expression at 24 

hours after treatment showed no impact of any treatment condition, suggesting that TGFβ 

signaling may not be important in this context. Importantly, Smad 4 must be bound to 

activated Smad 2 or Smad 3 to carry out transcriptional control, and we did not test 

whether pSmad 2/3 was present with Smad 4. 

 

While we did not observe a change in endogenous expression of any of the three 

miRNA in response to treatment, we did observe that the change in expression of miR-

200c and miR-141 in response to changes in the time of treatment, and we believe that 

time is reflective of cell cycle position. Importantly, miR-200c and miR-141 are thought to 

be under coordinated transcriptional regulation because of an overlapping promoter 

region (361). Our data suggests that, at least in these treatment conditions and cell lines 

tested, miR-141 and miR-200c are not commonly regulated as is expected of genes that 

share a promoter region. We also observed that the trends in expression changes did not 

segregate the two erlotinib-resistant lines, A549 and H460 cells, from the two erlotinib-

sensitive lines, PC9 and H1650 cells, suggesting that changes in the expression of these 

miRNA did not correlate with erlotinib-resistance or EMT status (Figure 2.4 and Figure 

2.11). 

 

Using a 5-way ANOVA, we discovered that that the most important factor 
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governing the changes in endogenous miRNA expression was the time of treatment. Thus, 

we investigated whether cell cycle stage could impact the expression of these genes. In 

Figure 2.15, we interrogated the putative transcription factor binding sites of one cell cycle 

regulated effector, ELK1, using the ChipMAPPER algorithm (347, 348). The analysis 

revealed putative ELK1 sites in the promoters of 12 out of 13 of the miRNA genes profiled, 

supporting our hypothesis that cell cycle progression may control the expression of the 

candidate miRNA genes. Analysis of the cell cycle position of A549 and PC9 cells across 

the same treatments and time points revealed that as time of treatment increased, the 

percentage of cells in the G1-G0 phase of the cell cycle increased, except in TGFβ treated 

cells at the final time point (Figure 2.5). Importantly, the impact of treatment alone on cell 

cycle stage was only significant in PC9 cells (Figure 2.5). Figures 2.12 and 2.13 illustrate 

cell counts, reflective of doublings, in both 1% and 10% serum across treatment 

conditions. PC9 cells failed to continue to grow in the presence of TGFβ and 1% serum 

which may explain the reduction of cells in G1-G0 phase of the cell cycle at 168 hours. 

Further experimentation will be necessary to understand this modest but significant 

decline. 

 

Finally, because of the observation that cell cycle position may be important in 

expression of the miRNA examined in this study, we interrogated the activation of TGFβ 

non-canonical growth and proliferation pathways, Ras/MAPK and PI3K/AKT, to determine 

if they may play a role in the relationship of cell cycle position and endogenous miRNA 

expression. pERK activation increased across the time points in A549 cells, and its 

activation may influence the re-emergence of pSmad 2 levels at 168 hours  because pERK 

is  known to phosphorylate the linker region of Smad 2 to stabilize the signal (190). pERK 

signaling is also required for TGFβ- driven EMT, consistent with the increase in pERK 

signal in A549 cells undergoing TGFβ-induced EMT (353). PC9 cells harbor an EGFR-

activating mutation resulting in the constant expression of pERK and pAKT. Perhaps most 

interestingly, treatment with the TGFβ receptor inhibitor, SB-431542, resulted in the 

reduction of both signals regardless of co-treatment with TGFβ ligand. SB-431542 is a 

competitive ATP binding site kinase inhibitor and has been shown to disallow ERK, JNK, 

or p38 pathway activation from other signals or their response to serum (362). These data 

suggest that, at least in PC9 cells, the perpetual activation of ERK and AKT signals from 

active EGFR signaling may rely on basal activation from TGFβRII in order to persist. We 

anticipate testing this using a TGFβ-receptor knock-down to observe whether the same 
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impact on ERK and AKT signals is observed. 

 

Our future experiments will attempt to fill the gaps noted from this work. We will 

determine whether the remaining erlotinib-sensitive cell lines used to generate gene 

expression data have a similar response to long term TGFβ treatment even though we 

know that erlotinib-sensitive tumors also have metastatic capability. We will also determine 

if erlotinib response is altered by time in treatment as miRNA expression and cell cycle 

position were. We will test whether the expression of ELK1 in cells is important for cell 

cycle progression in this context because the shared promoter of mir-141 and mir-200c 

contains an ELK1 binding site. We might also determine if E2F sites are present and active 

because TGFβ-driven, DNA-binding Smad complexes have been shown to interact with 

cell cycle regulating elements (363, 364). Therefore, it is possible that Smad 4 binding to 

the SBE in PC9 cells does requires coordinate cell cycle regulation, through ELK1, to 

regulate the expression of miR-141. The presence of known cell cycle responsive 

elements in the promoters of most of the 13-signature miRNA suggests that the cell cycle 

may play a role in governing the expression levels of these miRNA genes. Understanding 

the mechanism of regulation of the signature miRNA genes might help us further 

understand whether TGFβ signaling is a driver of EMT and metastasis or a passenger 

alongside cell cycle-dependent regulation of these genes. 

 

E. CONCLUSIONS 

 

Our original hypothesis that TGFβ directly regulated the expression of the 

microRNA gene signature and that it modulated gene expression differently in erlotinib-

resistant versus erlotinib-sensitive cells was founded on a bioinformatics analysis of these 

genes with little regard for cellular context. We found that TGFβ is likely not directly 

responsible for control of the expression of the microRNA genes we tested. However, we 

still find it an attractive therapeutic target if we can understand the cellular or tumoral 

context wherein targeting this cytokine impacts NSCLC patient survival. 
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Figure 2.1: Signature microRNA genes contain SBE elements. Promoter analysis was 

conducted using the ChipMAPPER algorithm (347, 348). microRNA genes -140, -141, 

and -200 contain putative SBE elements as represented by the triangle with conservative 

E-values less than or equal to 25 and a score greater than 3.0. 
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Figure 2.2: Total Smad expression, Smad activation and EMT program marker 

expression varies with TGFβ or inhibitor treatment. Erlotinib-resistant, A549 cells, 

and erlotinib-sensitive, PC9 cells were plated, treated and harvested as described. 

Proteins were visualized by western blotting. All blots from the same samples; α-tubulin 

levels are representative controls for each sample. (A) Profiling of Smad family 

member expression and activation across time demonstrates changes in TGFβ 

canonical signaling. (B) EMT protein markers demonstrate program initiation and 

progression among treatment conditions. (C) A549 cells treated for 24 hours for E-

cadherin and vimentin expression by immunofluorescence (D) A549 cells treated for 7 

days for E-cadherin and vimentin expression by immunofluorescence (E) PC9 cells 

treated for 24 hours for E-cadherin and vimentin expression by immunofluorescence 

(F) PC9 cells treated for 7 days for E-cadherin and vimentin expression by 

immunofluorescence. 

 

 

A 
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CHAPTER 2  
 

68 
 

C 

 

D 

  



CHAPTER 2  
 

69 
 

E 

 

F 

 

 



CHAPTER 2  
 

70 
 

Figure 2.3: TGFβ induces Smad 4 binding to SBEs in the promoter of mir-200/141 

in PC9 cells. Chromatin immunoprecipitation was performed to identify whether a 

physical interaction between Smad 4 and a predicted SBE locus in the shared promoter 

of mir-200c/-141 resulted from TGFβ treatment. Normal rabbit IgG served as the 

antibody negative control and α-Satellite primers as the negative PCR control. ID1 locus 

immunoprecipitation was the positive control for Smad 4 binding. (A) In A549, positive 

Smad 4-ID1 association is observed with TGFβ treatment, but an Smad 4-SBE 

interaction is not. (B) In PC9, both Smad 4-ID1 and Smad 4-SBE interaction is 

observed. Significance was calculated using an unpaired t-test comparing TGFβ-

treated cells and -untreated samples with the same primer set. (n=3) 

 

A 
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Figure 2.3 (continued): TGFβ induces Smad 4 binding to SBEs in the promoter of 

mir-200/141 in PC9 cells. 

 

 

B 
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Figure 2.4: Time of TGFβ treatment reflects changes in endogenous miRNA gene 

expression. Changes in endogenous gene expression were analyzed using a five-

way ANOVA considering the variables: TGFβ treatment, SB-431542 treatment, time 

point, expression as internally normalized Ct values, and cell line, along with all 

interaction terms. (A) Data presented here is aggregated by averaging over treatments 

in order to capture overarching trends in miRNA and cell line patterns at multiple time 

points. Fine-scale trends were broken down by individual treatments as presented in 

Figure 2.10. (B) Comparison of the significance of endogenous expression changes 

between time point’s samples and by individual miRNA genes in each cell line. 

 

A 
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Figure 2.4 (Continued): Time of TGFβ treatment reflects changes in endogenous 

miRNA gene expression. 

 

B 

 Cell Line miRNA 24 vs 72 hours 24 vs 168 hours 
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A549 

miR-140 <0.0001**** 0.0002*** 

miR-141 <0.0001**** <0.0001**** 

miR-200c 0.0471* 0.0675 

 

H460 

miR-140 0.5221 0.0656 

miR-141 0.2548 0.0605 

miR-200c 0.9663 0.1077 
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n
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PC9 

miR-140 0.1875 0.5760 

miR-141 <0.0001**** <0.0001**** 

miR-200c 0.0561 0.0500* 

 

H1650 

miR-140 0.7751 <0.0001**** 

miR-141 0.4358 <0.0001**** 

miR-200c 0.7586 0.0051*** 
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Figure 2.5: A549 and PC9 cells exit the cell cycle regardless of treatment with 

TGFβ or SB-431542. The graph reflects the percentage of A) A549 or B) PC9 cell 

populations in G0-G1 phase of the cell cycle at 24, 72, and 168 hours following 

treatment. Significance was determined using an unpaired t-test comparing the 72- and 

168-hour time points individually to the 24-hour time point of the same treatment. (C) 

A two-way ANOVA was utilized to determine the significance of treatment and/or time 

point reflective of the percentage of cells in the G0-G1 phase of the cell cycle. 

 

A 
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Figure 2.5 (Continued): A549 and PC9 cells exit the cell cycle regardless of 

treatment with TGFor SB-431542. 

B 

C 

 

 

 

 

 

 

 

 

  

Source of 

Variation 
A549 PC9 

Interaction 0.0583 0.0168* 

Time <0.0001**** <0.0001**** 

Treatment 0.1042 0.0002*** 
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Figure 2.6: TGFβ modulation differentially impacts ERK and AKT activation 

between A549 and PC9. A549 and PC9 cells were plated, treated, and harvested as 

described in the methods. α-tubulin levels are representative of an individual lysate pool. 

Lysates profiled here are the same as in figure 2.2. ERK-MAPK and PI3K-AKT signaling 

are non-canonical signaling effectors of the TGFβ signaling pathway. All blots from the 

same samples; α-tubulin levels are representative of each sample. 
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Figure 2.7: Signature microRNA genes contain SBE elements. Promoter analysis was 

conducted using the ChipMAPPER algorithm (347, 348). Twelve out of thirteen of the 

signature microRNA genes contain putative SBE elements as represented by the triangle 

with conservative E-values less than or equal to 25 and a score greater than 3.0 (181, 

184).  
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Figure 2.8: TGFβ induces a mesenchymal phenotype in A549, but inhibition 

generates an EMT-intermediate phenotype in erlotinib-sensitive, PC9 cells. A549 

and PC9 cells were treated as described in the methods. Bright field images of cell 

morphology were acquired using the microscope and software described in the methods. 

(A) Shows full-sized bright-field images taken at 5X magnification, and (B) shows a closer 

representation of the morphology changes. Time is in hours. 

 

 

 A 

 

 

B 
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Figure 2.9: E-cad expression in response to treatment. (A) E-cad mRNA levels 

quantified by qRT-PCR  in A549 (n=1). (B) E-cad mRNA levels quantified by qRT-PCR 

in PC9 (n=1). mRNA levels are demonstrated as fold change relative to respective 

untreated samples which are standardized to a fold change of 1. 

 

 

A 
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Figure 2.9 (continued): E-cad expression in response to treatment. (A) E-cad 

mRNA levels quantified by qRT-PCR  in A549 (n=1). (B) E-cad mRNA levels quantified 

by qRT-PCR in PC9 (n=1). mRNA levels are demonstrated as fold change relative to 

respective untreated samples which are standardized to a fold change of 1. 

 

 

B 
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Figure 2.10: Normalized Ct values demonstrate that time change, not individual 

treatment, affects endogenous miRNA expression changes in A549 and PC9 cells. 

(A-F) Raw miRNA expression levels using qRT-PCR experiments as described in Figure 

4 and Supplemental Figure 5. 
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Figure 2.11: Time of treatment has the most significant influence on miRNA 

expression changes. Changes in endogenous gene expression were analyzed using a 

five-way ANOVA considering the variables: TGFβ treatment, SB-431542 treatment, time 

point, expression as internally normalized Ct values, and cell line, along with all interaction 

terms.   
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Figure 2.12: A549 cell counts following corresponding treatments and time points 

comparing growth in 1% and 10% serum media. (A) Untreated (B) +5ng/ml TGFβ (C) 

+3µM SB-431542 (D) +5ng/ml TGFβ +3µM SB-431542. Cells were plated at 1 x 104 

cells/well in a 6-well dish 48 hours prior to 0 hour treatment introduction and counted at 

the appropriate harvest time using a hemocytometer. (n=2) 

 

 

A 
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Figure 2.12 (continued): A549 cell counts following corresponding treatments and 

time points comparing growth in 1% and 10% serum media. (A) Untreated (B) +5ng/ml 

TGFβ (C) +3µM SB-431542 (D) +5ng/ml TGFβ +3µM SB-431542. Cells were plated at 1 

x 104 cells/well in a 6-well dish 48 hours prior to 0 hour treatment introduction and counted 

at the appropriate harvest time using a hemocytometer. (n=2) 

 

 

B 
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Figure 2.12 (continued): A549 cell counts following corresponding treatments and 

time points comparing growth in 1% and 10% serum media. (A) Untreated (B) +5ng/ml 

TGFβ (C) +3µM SB-431542 (D) +5ng/ml TGFβ +3µM SB-431542. Cells were plated at 1 

x 104 cells/well in a 6-well dish 48 hours prior to 0 hour treatment introduction and counted 

at the appropriate harvest time using a hemocytometer. (n=2) 

 

 

C 
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Figure 2.12 (continued): A549 cell counts following corresponding treatments and 

time points comparing growth in 1% and 10% serum media. (A) Untreated (B) +5ng/ml 

TGFβ (C) +3µM SB-431542 (D) +5ng/ml TGFβ +3µM SB-431542. Cells were plated at 1 

x 104 cells/well in a 6-well dish 48 hours prior to 0 hour treatment introduction and counted 

at the appropriate harvest time using a hemocytometer. (n=2) 

 

 

D 
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Figure 2.13: PC9 cell counts following corresponding treatments and time points 

comparing growth in 1% and 10% serum media. (A) Untreated (B) +5ng/ml TGFβ (C) 

+3µM SB-431542 (D) +5ng/ml TGFβ +3µM SB-431542. Cells were plated at 1 x 104 

cells/well in a 6-well dish 48 hours prior to 0 hour treatment introduction and counted at 

the appropriate harvest time using a hemocytometer. (n=2) 

 

 

A 
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Figure 2.13 (continued): PC9 cell counts following corresponding treatments and 

time points comparing growth in 1% and 10% serum media. (A) Untreated (B) +5ng/ml 

TGFβ (C) +3µM SB-431542 (D) +5ng/ml TGFβ +3µM SB-431542. Cells were plated at 1 

x 104 cells/well in a 6-well dish 48 hours prior to 0 hour treatment introduction and counted 

at the appropriate harvest time using a hemocytometer. (n=2) 

 

 

B 
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Figure 2.13 (continued): PC9 cell counts following corresponding treatments and 

time points comparing growth in 1% and 10% serum media. (A) Untreated (B) +5ng/ml 

TGFβ (C) +3µM SB-431542 (D) +5ng/ml TGFβ +3µM SB-431542. Cells were plated at 1 

x 104 cells/well in a 6-well dish 48 hours prior to 0 hour treatment introduction and counted 

at the appropriate harvest time using a hemocytometer. (n=2) 

 

 

C 
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Figure 2.13 (continued): PC9 cell counts following corresponding treatments and 

time points comparing growth in 1% and 10% serum media. (A) Untreated (B) +5ng/ml 

TGFβ (C) +3µM SB-431542 (D) +5ng/ml TGFβ +3µM SB-431542. Cells were plated at 1 

x 104 cells/well in a 6-well dish 48 hours prior to 0 hour treatment introduction and counted 

at the appropriate harvest time using a hemocytometer. (n=2) 

 

 

D 
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Figure 2.14: Densitometry of Figure 2.6 western blots. (A) pERK and tERK in A549 

(B) pERK and tERK in PC9 (C) pAKT and AKT in A549 (D) pAKT and AKT in PC9. Blots 

were quantified using ImageJ and quantification was calculated using the area under the 

curve measurements for each band using the same sized box sample for each to ensure 

consistency (n=1). 

 

 

A 
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Figure 2.14 (continued): Densitometry of Figure 2.6 western blots. (A) pERK and 

tERK in A549 (B) pERK and tERK in PC9 (C) pAKT and AKT in A549 (D) pAKT and AKT 

in PC9. Blots were quantified using ImageJ and quantification was calculated using the 

area under the curve measurements for each band using the same sized box sample for 

each to ensure consistency (n=1). 

 

 

B 
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Figure 2.14 (continued): Densitometry of Figure 2.6 western blots. (A) pERK and 

tERK in A549 (B) pERK and tERK in PC9 (C) pAKT and AKT in A549 (D) pAKT and AKT 

in PC9. Blots were quantified using ImageJ and quantification was calculated using the 

area under the curve measurements for each band using the same sized box sample for 

each to ensure consistency (n=1). 

 

 

C 
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Figure 2.14 (continued): Densitometry of Figure 2.6 western blots. (A) pERK and 

tERK in A549 (B) pERK and tERK in PC9 (C) pAKT and AKT in A549 (D) pAKT and AKT 

in PC9. Blots were quantified using ImageJ and quantification was calculated using the 

area under the curve measurements for each band using the same sized box sample for 

each to ensure consistency (n=1). 

 

 

D 
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Figure 2.15: Signature microRNA genes contain both putative SBE elements and 

putative ELK1 binding sites. Promoter analysis was conducted using the ChipMAPPER 

algorithm (348). Twelve out of 13 of the signature microRNA genes contain putative SBE 

elements as represented by the grey triangle with conservative E-values less than or equal 

to 25 and a score greater than 3.0. Twelve out of the thirteen signature miRNA also contain 

putative ELK1 binding sites meting the same inclusion criteria as represented by the blue 

triangles. 
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CHAPTER 3 

 

A. OVERVIEW 

 

Erlotinib is a small molecule Epidermal Growth Factor Receptor (EGFR) inhibitor 

that has been FDA approved for clinical use since 2004 (144). In October 2016, it was 

specifically redesignated by the FDA for the treatment of locally advanced or metastatic 

Non-Small Cell Lung Cancer (NSCLC) harboring EGFR exon 19 deletions or exon 21 

L858R substitution mutations (143). However, utilizing EGFR mutation statuses as the 

sole determinant of erlotinib treatment remains limiting because EGFR somatic mutations 

alone may not encompass all NSCLC that would respond to erlotinib. Further, the majority 

of responders do eventually develop resistance to erlotinib therapy (365).  

 

To encompass responders not captured by these EGFR mutations, prior work in 

the Black laboratory showed that estimating response to EGFRI can likely be improved by 

using multivariate gene expression patterns demonstrated in NSCLC cells and in a 

retrospective analysis of tumors (327, 328). From this work, a 13-gene miRNA signature 

predictive of response to the EGFRI, erlotinib, was identified (327). Bioinformatic analysis 

of the 13-gene miRNA signature revealed a functional convergence on the TGFβ signaling 

pathway, suggesting a relationship between the TGFβ and EGFR signaling pathways 

(327). The 13-gene miRNA signature of response was able to stratify cells and tumor 

samples into erlotinib-sensitive and -resistant groups and it discriminated primary tumors 

from metastatic lesions (327). Others have shown that NSCLC patient tumors that have 

undergone the Epithelial to Mesenchymal Transition (EMT) are largely erlotinib-resistant 

when compared with the epithelial-phenotype tumors (366). TGFβ is an inducer of EMT 

and it has also been shown to have paradoxical functions in tumorigenesis, as a tumor 

suppressor in early stages of the disease and as an oncogenic, pro-metastatic player in 

later stages (349, 350).  

 

In a previous study comparing the effects of TGFβ treatment between 

representative erlotinib-resistant and –sensitive NSCLC cell lines, I showed that erlotinib-

resistant, A549, and erlotinib-sensitive, PC9, cells show different activation and 



CHAPTER 3 
 

97 
 

expression profiles of the canonical TGFβ effectors, Smads 2, 3, and 4, as well as 

differential activation of non-canonical TGFβ signaling pathways (ERK-MAPK and PI3K-

AKT) after TGFβ treatment (367). As expected, TGFβ treatment induced a mesenchymal 

phenotype in A549 cells as evidenced by morphological changes and expression of EMT 

marker proteins (368). In PC9 cells, which maintain a baseline epithelial phenotype, 

inhibiting TGFβ with the TGFβ inhibitor, SB-431542, induced an EMT-intermediate 

morphological change even though EMT marker protein expression did not change (367). 

These results suggest that there are relationships between the induction of EMT by TGFβ, 

EMT and erlotinib resistance, and the expression of the 13 miRNA genes comprising the 

signature. 

 

For these reasons, we hypothesize that TGFβ induces EMT in erlotinib-resistant 

NSCLC and that inhibiting TGFβ signaling may sensitize these NSCLC to erlotinib 

treatment. 

 

 

B. METHODS 

 

Cell Culture 

 

NSCLC cell lines are from ATCC (A549) or gifted from the Haura laboratory (Moffitt 

Cancer Center, FL). All cells were cultured in RPMI 1640 (Life Technologies) 

supplemented with 10% Fetal Bovine Serum (FBS/serum) (USA Scientific), HEPES, 

glucose and pyruvate and maintained in a humidified incubator at 37 °C at 5% CO2 unless 

otherwise specified. Cells were seeded in-6 well plates and were allowed to grow in 10% 

serum-containing RPMI 1640 media conditions for 48 hours prior to treatments. Dishes 

were seeded with 1 x 104 cells and were treated with SB-431542 (3 µM) (Selleck Chem), 

LY-2109761 (3 µM) (Cayman Chem), and/or TGFβ (5 ng/ml) (Cell Signalling 

Technologies) under minimal serum (1% FBS) conditions for time frames specified. 

Treatment media was replenished at the 72-hour time point in 168-hour culture 

experiments.  

 

Transwell Migration Assay 
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Cells were pre-treated for 7 days as described above prior to plating for the viability 

assay. After pretreatment, cells were trypsinized and resuspended in serum-free RPMI 

1640 media. The top of the 96-well HTS Transwell permeable plate (Corning) membranes 

was coated with 600 µl of a collagen coating solution (750 µl 10X PBS, 14 µl culture-grade 

collagen, 3.2 µl 0.1 M NaOH, 6.73 ml dH2O) and incubated for 1 hour in the culture 

incubator at 37 °C. The collagen was aspirated, and the inserts were washed once with 

1X PBS. Next, the bottoms of each Transwell were blocked with 600 µl of a serum-free 

RPMI 1640 containing 0.1% BSA, and 100 µl of the blocking media was placed into each 

Transwell insert. Blocking continued in the culture incubator at 37 °C for at least 1 hour up 

to overnight. Following blocking, blocking medium is aspirated from the top and the bottom 

wells. Cells (1 x 103) were seeded on top of each Transwell in serum free media and 

allowed to migrate towards a bottom chamber containing RPMI 1640 and 1% serum for 

16 hours. At this time, membranes were fixed in 100% methanol and stained with 0.5% 

crystal violet in 100% methanol.  

 

Wound Healing Assay 

 

Cells were plated in 12-well plates at 5 x 105 cells/well to ensure confluence at time of 

wounding. Cells were incubated in maintenance media (RPMI 1640 containing 10% 

serum) for 24 hours following plating. After the initial 24-hour incubation, media was 

changed to RPMI 1640 and 1% serum with respective treatments for 24 additional hours. 

After 24 hours in treatments, cell monolayers were wounded using a 200 µl pipette tip and 

media was changed to fresh RPMI 1640 and 1% serum with corresponding treatment. 

Plates were marked to ensure the same point in the wound was analyzed each day. 

Wound healing was measured over 72 hours and imaged using the Zeiss AxioObserver 

Microscope and processed using the AxioVision software. Wounds were imaged at 24 

hour intervals for 72 hours total. Wound healing measurements are averaged from 3 

independent linear measurements across the field imaged per sample, per recording time.  

 

Cell Viability Assay  

 

Cells underwent pretreatment in 1% serum-containing RPMI 1640 with drug and/or 

cytokine for 7 days as described above to ensure that all EMT-like events occurring in 
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response to TGFβ treatment were fully realized prior to assessment of erlotinib response. 

After treatment, cells were trypsinized, counted, and plated at 3x103 cells/well in a 96-well 

plate in fresh treatments matching those from the 7-day period. After 36 hours adherence 

time, erlotinib was added in indicated concentrations. Drug treatment persisted for 72 

hours. After 72 hours, resazurin was added (100 µM final concentration) to each well, the 

plates were gently rocked for 1 minute and then incubated for 3 hours prior to reading. 

The plate was read for fluorescence at excitation, 560 nm, and emission, 590 nm, 

wavelengths using a Spectramax M5 and corresponding Spectramax X5 software 

(Spectramax).  

 

Data Processing and Statistics 

 

All graphical representations of data were made and analyzed using Prism Version 

7.00 (GraphPad). Significance points in viability assay data compare the points specified 

in each figure legend and in the results section. Significance was determined using 

unpaired t-tests. Values measured between biological replicates from all viability assays 

and wound healing assays were subjected to a Dixon’s Q test to eliminate outlier values.  

For the Transwell migration assay, ‘cells migrated’ values are the number of cells 

counted in five non-overlapping views per well, averaged from triplicate technical 

replicates per individual experiment by three separate viewers. Values determined by 

each individual were subjected to a Dixon’s Q-test outlier analysis prior to acceptance. 

 For the wound healing assay, ‘percent wound remaining’ was determined relative 

to respective 0 hour wound width. Four independent biological replicates were performed, 

and the four replicates were assessed for outliers using a Dixon’s Q-test. 

 For the viability assay, response to each treatment is normalized to cells from each 

corresponding treatment that were not subjected to erlotinib. Readings were also 

normalized to empty wells on each plate containing only media and resazurin. Data is the 

result of four biological replicate experiments (n=4). 

 

 

 

C. RESULTS 
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TGFβ Treatment Has Opposing Effects on Migration in Erlotinib-Sensitive versus 

Erlotinib-Resistant NSCLC Cells 

 

We first wanted to understand the long-term functional changes in erlotinib-

resistant, A549 cells, and erlotinib-sensitive, PC9 cells, subjected to long-term TGFβ 

treatment, and we assessed their migration ability using a Transwell Assay. TGFβ pre-

treatment induced a significant increase in A549 cells that migrated compared to untreated 

cells (Figure 3.1).  PC9 cells, pre-treated with TGFβ, demonstrated reduced migratory 

ability, but this effect was not found to be significant (Figure 3.1). Since TGFβ treatment 

induced migration in A549 cells, we next asked how TGFβ influenced wound healing ability 

of cells. 

 

TGFβ Inhibition Significantly Impairs Wound Healing Ability in PC9 Cells  

 

Another measurable characteristic of migratory ability is wound healing and we 

used this assay to determine the cellular response of A549 and PC9 cells to short-term 

TGFβ treatment. For this experiment, we also used the TGFβ receptor inhibitor, LY-

2109761, that targets both type I and II TGFβ receptors, unlike SB-431542, to determine 

whether differences observed could be attributed to partial TGFβ receptor inhibition. TGFβ 

treatment did not significantly change the wound healing ability of either cell line. 

Treatment with LY-2109761 significantly impaired the ability of A549 cells to migrate at 

the 48-hour time point (Figure 3.2A). PC9 cells treated with LY-2109761, with and without 

co-treatment with TGFβ, were significantly impaired in wound healing at the 48- and 72-

hour time points (Figure 3.2B).  

 

 

TGFβ Influences Erlotinib Resistance Differently between A549 and PC9 Cells 

 

We found that TGFβ induced an EMT-phenotype and increased chemotactic ability 

in A549 cells, but not in PC9 cells. Next, we aimed to determine if TGFβ treatment had an 

impact on erlotinib-sensitivity in each cell line. A549 cells pre-treated with TGFβ showed 

significantly increased erlotinib resistance at lower erlotinib concentrations, but at 10 µM 

and 30 µM erlotinib levels, TGFβ pre-treated A549 cells were significantly more sensitive 

to erlotinib than untreated A549 cells (Figure 3.3A). No significant impact was observed in 
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any combination of either TGFβ inhibitor with or without TGFβ ligand in A549 cells when 

compared to untreated A549 cells (Figure 3.3A). Most notably, PC9 cells that had 

undergone pre-treatment with TGFβ showed significant increased sensitivity to erlotinib 

(Figure 3.3B). Moreover, pre-treatment with either TGFβ inhibitor with or without TGFβ 

ligand significantly reversed the phenotype in PC9 cells (Figure 3.3B).  

 

 

D. DISCUSSION 

 

Bioinformatic analysis of a previously published 13-gene miRNA signature led us 

to explore the contribution of TGFβ with respect to EMT-progression and its relationship 

to erlotinib-sensitivity (327). Our previous work showed that TGFβ likely has opposing 

roles in relation to EMT-induction and erlotinib-resistance between erlotinib-resistant and 

-sensitive NSCLC cells. We observed that TGFβ treatment induced mesenchymal 

morphologies between 5-6 days of treatment (367), so we chose to pre-treat cells for 7 

days prior to the Transwell assay. We found that TGFβ pre-treatment in A549 cells 

significantly increased cell migration by Transwell assay. TGFβ pre-treatment in PC9 cells 

modestly decreased mobility, but this effect was not found to be significant. Changes in 

PC9 cell migration after SB-431542 pre-treatment were not observed (Figure 3.1). We 

also examined treatment with the TGFβ receptor type 1/2 inhibitor, LY-2109761, as a 

comparison to SB-431542 by wound healing (369). We found that LY-2109761 pre-

treatment also induces a morphological change in PC9 cells consistent with the EMT-

intermediate phenotype known as metastable (353) (Data not shown). However, we 

observed that LY-2109761 treatment, both alone and in conjunction with TGFβ, resulted 

in a significantly suppressed wound healing capability in PC9 cells which is inconsistent 

with an induction of EMT in PC9.   

 

It has been noted by many groups that NSCLC cells sensitive to erlotinib usually 

to have an epithelial phenotype and NSCLC cells resistant to erlotinib often have a 

mesenchymal phenotype (366). We have shown that TGFβ treatment induces EMT-

progression in erlotinib-resistant A549 cells and does not in erlotinib-sensitive PC9 cells 

(367). For this reason, we endeavored to understand whether modulating TGFβ activity 

contributed to changes in erlotinib sensitivity in the two cell lines. Most interestingly, PC9 
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cells pre-treated with SB-431542 or LY-2109761, with and without TGFβ treatment, 

showed significantly decreased erlotinib sensitivity. While these cells did not undergo an 

EMT-reprogramming as defined by EMT marker-protein expression, increased wound 

healing and increased migratory capabilities, our observation that the metastable 

morphology corresponds with significantly decreased erlotinib-sensitivity in PC9 cells is 

consistent with the observation that stable EMT intermediate phenotypes tend to be more 

drug resistant (353, 370). Importantly, we did not examine whether the phenotypes 

induced by TGFβ inhibitors correlated with changes in expression of EGFR or the rate of 

EGFR receptor turnover. We have demonstrated that extended treatment did result in a 

decrease of constitutively active ERK1/2 and AKT signaling (Figure 3.6). However, 

Supplementary Figure I-7 (Appendix I) demonstrates that the decreases in ERK and AKT 

signals in PC9 cells do not correlate with a cytostatic response by PC9 cells to TGFβ-

inhibition.      

 

Here, I have shown that TGFβ treatment influences erlotinib resistance in A549 

cells but TGFβ inhibitors in combination with erlotinib do not sensitize A549 cells to 

treatment. The novel observation of this work is that TGFβ-inhibition significantly 

decreased erlotinib-sensitivity in PC9 cells, whereas TGFβ ligand induced more cell death 

in conjunction with erlotinib than erlotinib did alone in PC9 cells. This indicates that TGFβ 

likely plays a role in the maintenance of erlotinib-sensitivity in PC9 cells. Importantly, this 

mirrors the observations of unsuccessful TGFβ inhibitor drug trials that cite side effects 

that are likely due to pro- and anti-tumorigenic activities of TGFβ signaling (179, 219). 

Accurately pinpointing which half of the TGFβ paradox is occurring and where is an 

ongoing effort that has not been well established at this point in time (352, 371). This work 

should be expanded into other NSCLC cell lines across the erlotinib-sensitivity spectrum 

to reveal if these observations are specific to erlotinib-sensitivity status or linked to other 

factors (e.g., KRAS mutation status).  

 

 

E. CONCLUSIONS 

 

While the relationship between the TGFβ and EGFR signaling networks suggests 

that TGFβ represents a logical secondary target for the prevention of EMT and subsequent 
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EMT-driven EGFRI resistance, the limitation of targeting TGFβ in unselected tumor 

populations is evidenced by the PC9 cell model. Until a diagnostic test capable of 

dissecting the TGFβ paradox exists, targeting TGFβ will remain an enigmatic and 

implausible target in NSCLC and other tumor types. Further study to dissect the 

mechanism of how TGFβ-inhibition significantly increases erlotinib resistance in PC9 cells 

could have important implications for elucidating and diagnosing the arms of the TGFβ 

paradox as well as the future of targeting TGFβ in lung cancers.  

 

 

 

Copyright © Madeline Krentz Gober, 2017 
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Figure 3.1: TGFβ treatment influences the migratory ability of A549 and PC9 cells. 

Cells were plated as described in cell culture methods with the treatments specified over 

a course of 7 days. Values graphed are the total number of migrated cells counted 

between five independent views of each well by three independent readers. Outliers 

between biological replicates, technical replicates, and individual readers were identified 

and excluded using a Dixon’s Q-test. Significance was determined by an unpaired t-test 

comparing each experimental treatment to its respective untreated values (n = 3). * 

indicates p-value is 0.05 ≥ p.   
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Figure 3.2: LY-2109761 alters wound healing capabilities of A549 and PC9 cells. (A) 

A549 and (B) PC9 cells were plated and treated as described in the methods. Percent 

wound remaining is calculated for each biological replicate compared to the respective 0 

hour wound size. Biological replicates were assessed for outliers using a Dixon’s Q-test 

(n=4). * indicates p-value is 0.05 ≥ p > 0.0001, ǂ indicates that p-value is ≤ 0.0001. 
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Figure 3.2 (continued): LY-2109761 alters wound healing capabilities of A549 and 

PC9 cells. (A) A549 and (B) PC9 cells were plated and treated as described in the 

methods. Percent wound remaining is calculated for each biological replicate compared 

to the respective 0 hour wound size. Biological replicates were assessed for outliers using 

a Dixon’s Q-test (n=4). * indicates p-value is 0.05 ≥ p > 0.0001, ǂ indicates that p-value is 

≤ 0.0001. 
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Figure 3.3: TGFβ treatment alters erlotinib response in A549 and PC9 cells. (A) A549 

and (B) PC9 cells were treated for 7 days prior to initiation of the proliferation assay and 

treated as described. * indicates p-value is 0.05 ≥ p > 0.0001, ǂ indicates that p-value is 

≤ 0.0001. (n=3) 

 

 

 

A 
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Figure 3.3 (Continued): TGFβ treatment alters erlotinib response in A549 and PC9 

cells. (A) A549 and (B) PC9 cells were treated for 7 days prior to initiation of the 

proliferation assay and treated as described. * indicates p-value is 0.05 ≥ p > 0.0001, ǂ 

indicates that p-value is ≤ 0.0001. (n=3) 

 

 

 

B 

 

 

 

 

 

 

 

Copyright © Madeline Krentz Gober, 2017 



CHAPTER 4 

109 

CHAPTER 4 

A. OVERVIEW 

Inhibitors of the epidermal growth factor receptor (EGFR) were introduced as a 

targeted therapy because some non-small cell lung cancers (NSCLC) are dependent on 

the EGFR oncogene for growth and proliferation (3). Further, it was observed that cells 

and tumors with KRAS activating mutations were inherently resistant to treatment with 

these inhibitors (EGFRI) (67). KRAS activation mutations are the most common mutation 

in lung adenocarcinomas and are observed in 25-40% of cases (19, 22). Methods for 

targeting KRAS that have been investigated include farnesyl transferase inhibitors that 

target the necessary association of KRAS with the cell membrane, but resistance 

mechanisms involving other transferases occur (372, 373). Antisense oligonucleotides, 

including engineered miRNA, have also been explored as a method for targeting mutant 

KRAS without disrupting the expression of non-mutant KRAS and some have been 

successful in pre-clinical testing (374, 375). The high prevalence of patients with this 

inherent EGFRI resistance mechanism has made targeting mutant KRAS a priority, but so 

far, significant clinical benefits have not been observed (375). To overcome the limitation 

of our inability to successfully target mutant KRAS directly at this time is to target the 

multiple pathways that KRAS influences downstream (376). 

In early EGFRI research on gefitinib and erlotinib, several groups found that many 

patients who were initially sensitive to first-generation EGFRI became resistant because 

tumor cells emerge after therapy with secondary mutations in the EGFR gene (e.g., 

T790M) and mutations in other molecules (e.g., MET) from compensating signaling 

cascades (377). Regardless, inherent and acquired resistance leaves many patients 

without treatment options (23). Second- and third-generation EGFRI have been developed 

to subvert some resistance mechanisms that can provide new therapeutic options for 

some patients, but next generation inhibitors have already been met with new resistance 

mechanisms (147). We believe that bioinformatics interrogation of existing gene 

expression data may reveal alternative therapeutic strategies to overcome both inherent 

(e.g., KRAS) and acquired EGFRI resistance (e.g., EGFR T790M) (378). 
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This laboratory previously developed two gene expression signatures of response 

to the EGFRI, erlotinib, with the hypothesis that patients without EGFR activating 

mutations may also respond to EGFRI, and those patients might be identified by particular 

gene expression phenotypes (327). Genes from the second EGFRI response signature, 

comprised of miRNA genes, not only predicted response to erlotinib but also intersected 

the TGFβ signaling cascade (327). These data suggested that response to EGFRI may 

be influenced by activation of TGFβ receptors, and inhibition of this signaling pathway 

could sensitize EGFRI-resistant tumor cells to erlotinib (327). However, other groups have 

tested this hypothesis in clinical practice and have been largely unsuccessful in targeting 

TGFβ, likely due to the competing pro- and anti- tumorigenic activities of the TGFβ axis 

(179, 219). Despite these shortcomings, efforts to target aberrant TGFβ signaling are 

ongoing (379).  

 

Further inspection of the interactions between the mRNA and miRNA signatures 

of erlotinib response revealed enzymatic activities that integrated both the EGFR and 

TGFβ signaling cascades. Casein kinase 2 (CK2) emerged as a potential target. CK2 is a 

multi-subunit kinase that can contribute to tumorigenesis when subunit expression is 

altered. CK2 exists mainly as a tetrameric holoenzyme consisting of any combination of 

two α or α’ subunits and two β subunits, but it has been suggested that the α and α’ 

subunits have monomeric kinase activity as well (243, 244). Interestingly, no oncogenic 

mutations have been found in CK2 kinase subunits, but deregulation of subunit expression 

levels might contribute to the oncogenic process (252). Moreover, it has been shown to 

be an upstream regulator of AKT/PI3K/mTOR, NFκβ, and JAK/STAT signaling cascades 

irrespective of the receptor tyrosine kinases shown to activate them (380). As stated 

earlier, EGFRI resistance is known to be caused by alterations in parallel signaling 

pathways, including the PI3K/AKT/mTOR and JAK/STAT (145). Therefore, we postulated 

that inhibition of CK2 might represent an alternative target for the treatment of NSCLC that 

are resistant to EGFRI. This strategy may provide some NSCLC patients an additional 

opportunity for therapeutic intervention. 

 

 

B. METHODS 

 

Cell Culture and Western Blotting 
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A549, H460, and H1650 (NSCLC) cell lines were purchased from ATCC. PC9 cells 

were a gift from the Haura lab (Moffitt Cancer Center, FL) Cells were cultured in RPMI 

1640 (Life Technologies) supplemented with 10% fetal bovine serum (FBS) (USA 

Scientific), HEPES, glucose and pyruvate and maintained in a humidified incubator at 

37°C at 5% CO2 unless otherwise specified. For western experiments, 1 x 104 cells were 

plated into a 12-well dish and allowed to adhere in RPMI 1640 containing 10% FBS for 48 

hours. Following the adherence period, cells were treated with the drug concentrations of 

CX-4945 (Cayman Chem) or AZD6244 (Astra Zeneca) in RPMI 1640 containing 1% FBS 

for the treatment durations indicated. Both adherent and non-adherent cells from each 

sample were harvested for total protein. Equal volumes of cell total cell extracts were 

loaded. Cleaved PARP and α-tubulin antibodies were purchased from Cell Signaling 

Technologies. 

 

Generation of miRNA and mRNA Expression Datasets  

 

mRNA and miRNA expression levels were measured in growing non-small cell 

lung cancer (NSCLC) cell lines using Affymetrix U133 2.0 microarrays (GSE31625) and 

Taqman cards from Applied Biosystems (ABI) (previously published data) (327, 328). We 

evaluated interactions among the 1495 mRNA genes and 23 miRNA that are significantly 

deregulated in erlotinib-sensitive compared with erlotinib-resistant NSCLC cells (327, 

328). 

 

Feasible Solutions (FS) Statistical Methodology with Work Flow and Protein-Protein 

Interaction Network Analysis 

 

The following analysis was performed by Dr. Arnold Stromberg and Josh Lambert 

(Department of Statistics, University of Kentucky): 

 

 Feasible Solutions (FS) was used to identify mathematical interactions in the 

expression data. We included mRNA that demonstrated higher expression (~800 

probeIDs) in the erlotinib-resistant cell lines, and we enumerated the possible solutions, 

or interacting miRNA, that resulted, regardless of direction of expression relative to the 

mRNA. The algorithm works as follows: 
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Consider fixing p+ explanatory variables in a preliminary model. Denote these 

variables Xp+. Let m(Y;Xp+) be an objective function that can be a measure of model 

quality i.e., R2; AIC; BIC; etc. We wish to find the k additional variables denoted Xk to add 

to the model that optimizes the objective function m(Y;Xp+;Xk). The FS algorithm attempts 

to solve this problem in the following way: 

 

1. Choose Xk randomly and compute the objective function m. 

2. Consider exchanging one of the k selected variables from the current model. 

3. Make the exchange that improves the objective function m the most. 

4. Keep making exchanges until the objective function does not improve. These 

variables Xp+;Xk are called a feasible solution. 

5. Return to (1) to find another feasible solution.  

 

We chose the 100 probeIDs with the lowest Prob>F (Supplementary Table II-1, 

Appendix II) for further biological evaluation by STRING analysis that was performed by 

Dr. Robert Flight (Markey Cancer Center, University of Kentucky). 

 

Using the miRNA:mRNA interactions described by FS modeling, the Affymetrix 

probesets were converted to Ensembl IDs.  STRING database v 10.0 (FS) (381) files 

specific for human proteins were downloaded for further processing. The Bioconductor 

v3.0 package (382) for Affymetrix(R) HGU133-plus2 chips (hgu133plus2.db v3.0.0) was 

used to translate Affymetrix (R) probeset identifiers to gene identifiers (symbols, gene 

names, Entrez IDs and ENSEMBL Proteins) in R  v3.3.2 (2016). From ENSEMBL protein 

IDs, the species ID 9606 was added to provide STRING protein IDs. The full set of 

STRING protein-protein interactions (PPI) were filtered to those with a combined score 

greater than 400, as well as individual scores greater than 400 in any one of the 

"experimental", "database", and "co-expression" evidences. From this subset of PPIs, the 

interactions with the original set of genes and their interactors (those genes within one 

edge or interaction) were extracted from the PPI database (Full list of initial genes 

extracted in Supplementary Table II-2, Appendix II). We were interested in interactions 

G1-X-G2, where G1 and G2 are from our list of proteins, X can be any protein that 

connects G1 to G2 (Full list of genes comprising the expanded network in Supplementary 

Table II-3, Appendix II). For each PPI, only a record that there was an interaction between 
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the two proteins was kept with no information on the number of evidences or the score of 

the interaction. STRING protein IDs were translated to gene IDs using the human 

database (org.Hs.eg.db v3.0.0) with Ensembl Protein (ENSEMBLPROT) as the query key 

(STRING protein identifiers are a combination of species ID and Ensembl protein ID). 

Cytoscape (383) and BioFabric (384) networks were constructed from these data. 

 

Within the induced network, communities of genes with shared and related 

functions (Supplementary Table II-7, Appendix II) were identified using the 

cluster_walktrap function in igraph 1.0.1 (385, 386). 

 

Cell Viability Assay 

 

Cells were plated at 3x103 cells/well in a 96-well plate in fresh treatments and 

allowed to adhere in RPMI 1640 containing 10% FBS for 36 hours. After 36 hours, CX-

4945 (Apex Bio) and AZD6244 (Astra Zeneca) was added in the final concentrations 

indicated in RPMI 1640 containing 1% FBS. Drug treatment persisted for 72 hours. After 

72 hours, resazurin was added (100 µM final concentration) to each well, the plates were 

gently rocked for 1 minute and then incubated for 3 hours prior to reading. Each plate was 

read for fluorescence at excitation, 560 nm, and emission, 590 nm, wavelengths using a 

Spectramax M5 and corresponding Spectramax X5 software (Spectramax). Response to 

each treatment is normalized to untreated cells from each corresponding treatment and 

normalized to empty wells on each plate containing only media and resazurin. Three 

biological replicates were performed and were assessed for outliers using a Dixon’s Q-

test. Data were analyzed using Prism Version 7.00 (GraphPad).  

 

Availability of Data 

 

All code for network generation and enrichment analysis and Supplemental files are 

available for download from figshare at: https://figshare.com/s/7e50e9ab2a66b5041451.  

 

 

C. RESULTS 

 

https://figshare.com/s/7e50e9ab2a66b5041451
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CK2 Connects the miRNA and mRNA Signatures of EGFRI Sensitivity  

 

We hypothesized that mRNA and microRNA gene expression data from NSCLC 

cell lines could be used to identify novel targets for therapy in lung cancer patients resistant 

to EGFRI. The Black laboratory previously identified two independent gene expression 

signatures of response to EGFRI using a panel of NSCLC cell lines demonstrating 

differential response to EGFR inhibition as measured by a cell death assay (327). The 

signatures were culled from a larger set of differentially-expressed mRNA and miRNA. 

Using the larger lists of genes (1495 mRNA and 23 miRNA), we sought to identify new 

protein targets for therapy using statistically significant interacting pairs of mRNA and 

miRNA discovered by the feasible solutions algorithm (FS) (Supplementary Table II-1, 

Appendix II). FS modeling first evaluates expression levels of a random combination of 

mRNA and miRNA pairs then considers swap-pairings of other miRNA to improve model 

fit and arrive at significant pairings. Each pairing then becomes a feasible solution. In this 

case, the model sought mRNA-miRNA pairs that have the property of high mRNA 

expression in the erlotinib-resistant cell lines (~800 probe IDs) in order to find targets that 

may have therapeutic value in erlotinib-resistant tumors. Given this outcome, we 

hypothesized that identifying new druggable targets for erlotinib-resistant NSCLC may 

depend on interactions with the EGFR signaling network. To investigate this hypothesis, 

we chose to use our FS gene list to find other proteins that physically interact with the 

candidate(s) and EGFR.  

 

 The 100 probes with the lowest probability (low Prob>F, Supplementary Table II-

1, Appendix II) were identified by FS. These 100 probes translated into 85 Ensembl IDs 

that had matches in the STRING v10 network (387). We also included EGFR as a node 

to triangulate the network specifically around EGFRI resistance. We carried out the 

network expansion analysis considering the scenario G1-X-G2 wherein G1 and G2 were 

proteins from the original list of 85 Ensembl IDs while X could be anything. Only 81 of the 

85 proteins remained in this “induced network” (Supplementary Table II-3, Appendix II). 

However, another 304 nodes were found (for a total of 385 proteins in the network) that fit 

in the G1-X-G2 network (Supplementary Table II-3, Appendix II).  
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From these induced nodes, CK2 was chosen for further study for three reasons: 

1) It has been shown to regulate many of the signaling pathways represented in the 

network, 2) it has been shown to be within 2 edges of 366 out of 385 of the identified nodes 

in the network (Supplementary Table II-5, Appendix II), and 3) it has enzymatic activity 

with an available pharmacological inhibitor (Table 4.1). The aim of this study was to 

understand whether CK2 inhibition reduced cell viability in EGFRI resistant NSCLC cells. 

We chose to examine the impact of CK2 inhibition on EGFRI resistant NSCLC cells with 

a variety of driver mutations (Figure 4.2B). 

 

 

CK2 Inhibition Induces Greatest Cell Death in KRAS Active NSCLC  

 

To determine if CK2 activity is a novel target in EGFRI-resistant NSCLC with 

KRAS-activation mutations, we performed a viability assay to determine whether 

treatment with the CK2 small molecule inhibitor, CX-4945, decreased viability of KRAS-

active NSCLC cells. In A549 and H460 cells, we observed a ~50% decrease in cell viability 

in CX-4945 treated cells compared to untreated cells (Figure 4.2). Considering CK2 

inhibition alone was not sufficient to decrease cell viability completely, we next aimed to 

identify and test a secondary target within or related to the expanded network.   

 

 

CK2 and the Members of the EGFR-MAPK-ERK Signaling Cascade Appear to 

Function Exclusively of one Another 

 

 Of the 366 members of the induced network shown to be within two edges of CK2α 

and CK2α‘ (CSNK2A1/CSNK2A2), we isolated the network members that are within one 

edge of CK2α/CK2α’ (Supplementary Table II-4, Appendix II). Unexpectedly, 

Supplementary Table II-4 (Appendix II) specifically demonstrates that CK2α and CK2α’ do 

not directly interact with any of the members of the EGFR-RAS-RAF-MEK-ERK signaling 

cascade. All of the members of that signaling cascade identified by FS (HRAS, KRAS, 

NRAS, MAPK1, RAF1) were found to be at least two edges away from CK2α/CK2α’ 

(Supplementary Table II-5, Appendix II). Because CK2 inhibition alone did not reduce cell 

viability completely in any cell line, we next explored whether downstream members of the 
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MAPK-ERK pathway could be logically co-targeted with CK2 in EGFRI resistant NSCLC 

cells. 

 

 

Combinatorial Targeting of CK2 and MEK Induces Apoptosis in KRAS Active 

NSCLC Cells  

 

We focused our selection of a secondary target on the goal of inhibiting the EGFR-

MAPK-ERK pathway without targeting the EGFR receptor. CX-4945 resistance has been 

demonstrated in head and neck cancers and was shown to be overcome by MEK inhibition 

(388). Importantly, MEK was not a member of the induced network and none of the other 

EGFR-MAPK-ERK pathway members identified exist within one edge of CK2α/CK2α’ 

(Supplementary Tables II-3 and II-4, Appendix II). Moreover, CK2α/CK2α’ were 

determined to be members of community #19 whereas EGFR was identified in community 

#4 and other ERBB receptor family members and KRAS were identified in community #2 

(Supplementary Table II-7, Appendix II). This suggests that while connected in the overall 

network, the MAPK-ERK cascade and CK2 likely function independently of one another.  

 

 To examine the impact of CK2 inhibition (CX-4945) in combination with MEK 

inhibition (AZD6244), we observed the induction of apoptosis in NSCLC cells by western 

blot (Figure 4.3). Both of the KRAS active cell lines examined demonstrated elevated 

levels of cleaved PARP at the higher concentrations of CX-4945. Levels of cleaved PARP 

also appear to increase between the 24- and 48-hour time points in both cell lines. 

 

 We screened A549 and H460 cells to determine if the responses to the 

combination of CX-4945 and AZD6244 represented a synergistic, additive, or antagonistic 

using a resazurin-based viability assay as was used for the single agent CX-4945 viability 

assays (Figure 4.4). The strongest synergism between the CX-4945 inhibitor and the 

AZD6244 inhibitor occurred when AZD6244 was present at 10μM and 3μM and 

concentrations of CX-4945 were between 0.1-30μM in both KRAS active cell lines (Figure 

4.4).     
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D. DISCUSSION 

 

There is an urgent need to develop strategies for treating lung tumors harboring 

KRAS activation or other EGFRI-resistance mutations. Not only are inherent EGFRI-

resistance mutations common, but secondary mutations that cause EGFRI-resistance to 

develop are also prevalent and novel drug targets and treatment strategies are paramount 

for all lung cancer patients. Our goal was to use a combination of statistical and 

computational methods that integrated existing gene expression signatures linked by 

disease and drug response phenotypes. From this, we aimed to use interacting pairs of 

mRNA:miRNA to identify a network of relevant protein-protein interactions (389). In 

collaboration with Dr. Flight and the Stromberg group, we used the FS algorithm to identify 

interacting pairs of mRNA and miRNA because of prior work that indicated that pairing 

these RNA species may lead to an improved understanding of the disease (390). To return 

pharmacologically actionable targets, we focused on evaluating the protein-coding genes 

as drug targets, rather than the microRNA partner of the pair. The FS data was empirically 

reduced to the top 100 statistically-significant pairs of which the mRNA partner had highest 

expression in erlotinib-resistant cell lines (Supplementary Table II-1, Appendix II). Using 

KEGG GENES and Gene Ontology databases, each mRNA gene was paired with a 

molecular function, and STRING was utilized to determine protein-protein interactions 

(PPI). Each of these filters was intended to be an in silico screen to identify candidate 

protein-coding genes that are involved in or linked to EGFR signaling in EGFRI-resistant 

NSCLC. Because of our efforts to focus the network identification around EGFR and 

EGFRI resistance, the nodes identified thereby represent putative drug targets for the 

treatment of EGFRI-resistant NSCLC. 

 

The limitation of our initial method of identifying alternative drug targets is that not 

all pharmacologically actionable proteins influencing EGFRI resistance are captured when 

considering only those deregulated genes directly connected to EGFR. For this reason, 

we chose to expand the network of deregulation in search of plausible nodes controlling 

EGFRI resistance. We specifically chose to look for a node linking at least two oncogenic 

signaling pathways (391).  

 

To identify actionable nodes linking the members of our list of significantly 

deregulated proteins, we chose to expand our network by only identifying and adding 
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proteins known to link two members of the original list. We did this by identifying proteins 

that met the criteria: G1-X-G2, where G1 and G2 are members of the original list of 

deregulated genes including EGFR while X is any protein linking the two. What we 

determined is that by adding this additional level of selection, we identified nearly every 

EGFRI resistance mechanism described in NSCLC thus far (Communities #2 and #4, 

Supplementary Table II-7, Appendix II) among a number of novel putative targets 

(Supplementary Table II-7, Appendix II). Of the expanded network, we selected CSNK2A1 

and CSNK2A2, which encode the kinase subunits of CK2. We determined that they are 

within two edges of 366 out of 385 members of the expanded network indicating their 

value as a well-connected target (Supplementary Table II-3, Appendix II). Not only was 

CK2 predicted by our in silico model to interact with many sources of EGFRI resistance, 

but it has been also described as influencing many other members of the network of 

deregulated genes between EGFRI resistant and sensitive NSCLC, notably including NFκ-

β and PI3K/AKT (392). The network specifically includes nearly every source of inherent 

or acquired EGFRI resistance described to date (19, 145) and they were largely contained 

to two communities of common action, neither of which included CK2 (Supplementary 

Table II-7). Considering the global potential influence of CK2 in the network of 

dysregulation of EGFRI resistance, and that a kinase inhibitor of CK2 has been tested in 

Phase II trials (323), we next aimed to determine if CK2 inhibition was impactful against 

NSCLC cells that are resistant to EGFRI. 

 

EGFRI-resistant, KRAS active NSCLC cells were found to be sensitive to CK2 

inhibition, but the maximal response observed was only around 50% cell viability 

compared to untreated cells (Figure 4.2A). We compared the effect of CX-4945 in KRAS 

active NSCLC to other cell lines harboring EGFR mutations. We found that PC9 cells, that 

harbor only an EGFR exon 19 deletion mutation, were resistant to CX-4945. However, 

H1650 cells that harbor both an exon 19 deletion as well as a PTEN null mutation 

demonstrated a response curve similar to KRAS active A549 and H460 (Figure 4.2A). 

Specifically, H1650 cells only have intermediate sensitivity to EGFRI despite the EGFR 

activation mutation because loss of the PTEN tumor suppressor allowing these cells to 

compensate for EGFRI action through deregulated PI3K/AKT signaling. Importantly, CK2 

was identified as a possible target for overcoming PTEN null mutations via a 

chemogenomic study in 2015 (393). It is also interesting to note that both PC9 and H1650 

harbor a p53 mutation, and from these data, it would appear that mutant p53 likely does 
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not influence CX-4945 efficacy. Interestingly, H460 cells have a PIK3CA E545K mutation 

resulting in less efficient activation of the p110α isoform of the PI3K catalytic domain but 

were still sensitive to upstream CK2 inhibition. We have previously demonstrated that 

PI3K p110 isoforms are capable of compensation. H460 express high levels of the p110β 

isoform as well as high levels of PTEN protein expression suggesting that the regulation 

of this pathway by CK2 is still possible despite the PIK3CA mutation (331). To examine 

whether these observations were related to expression of CK2 subunits, we profiled each 

of the NSCLC cell lines tested above for CSNK2A1, CSNK2A2 and CSNK2B mRNA 

expression (Supplementary Figure II-1, Appendix II). Of the NSCLC cell lines we profiled, 

KRAS active cells demonstrated the lowest expression of CSNK2B compared to normal 

cells. This suggests that constitutively active KRAS signaling may play a role in repressing 

CK2β expression.  

 

We next aimed to identify a second expanded network member or member of a 

network pathway as a plausible secondary target to be paired with CK2 inhibition because 

none of the cell lines tested were exquisitely sensitive to CK2 inhibition. Importantly, the 

KRAS active NSCLC tested were the most sensitive to CK2 inhibition. The KRAS 

activation mutation drives MAPK-ERK signaling regardless of EGFR activation or 

inhibition, and we observed in the expanded network that not all of the MAPK-ERK 

signaling cascade were represented and none were directly connected to CK2. For this 

reason, we hypothesized that CK2 and MEK inhibition would be sufficient to overcome 

compensatory signaling by the induced network identified in KRAS active NSCLC. This 

hypothesis was also founded with the knowledge that MEK inhibition has been used to 

overcome CX-4945 resistance in head and neck cancers (388). Our lab and others have 

similarly demonstrated that inhibition of MEK concurrently with EGFRI sensitizes NSCLC 

with EGFR T790M mutations to treatment (329, 394). Initial exploration of AZD6244 and 

CX-4945 co-treatment on NSCLC cells revealed that the apoptotic marker, cleaved PARP, 

was expressed in KRAS active NSCLC cells. Moreover, increased cleaved PARP relative 

to α-tubulin were observed at 48 hours when compared with 24 hours. We screened KRAS 

active A549 and H460 for synergistic drug interactions between CX-4945 and AZD6244 

and found that the strongest synergism between the two drugs occurred when AZD6244 

was present at 10μM and 3μM and concentrations of CX-4945 were between 0.1-30μM in 

both KRAS active cell lines (Figure 4.4). These data demonstrate that this combination of 

CK2 and MEK inhibition may represent a novel approach for the treatment of EGFRI-
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resistant, KRAS-active NSCLC. We plan to expand on this observation by performing a 

battery of viability assays against a range of NSCLC cells to determine if these 

observations reign true for other cell lines with varying responses to EGFRI therapies.  

 

A combination of MEK and CK2 inhibition encompasses many of the signaling 

pathways by which non-EGFR-receptor EGFRI resistance develops and should continue 

to be explored as an avenue for the treatment of inherently resistant NSCLC (e.g., KRAS). 

It should also be explored as an avenue for overcoming acquired EGFRI-resistance (e.g., 

EGFR T790M) as well. This strategy of bypassing EGFR and KRAS as therapeutic targets 

may represent a novel therapeutic approach for treating a variety of NSCLC tumors. 

 

 

E. CONCLUSIONS 

 

Many cancers are quickly becoming chronic diseases and will require new therapies 

for patient care and management of emerging resistant diseases. We have demonstrated 

that gene expression signatures descriptive of a specific tumor phenotype can be used to 

identify potential targets for new therapeutics or co-therapeutic methodologies. Using the 

FS algorithm and STRING, we unveiled a network of proteins found to be deregulated 

between EGFRI resistant and sensitive NSCLC. From this network, we identified and 

tested CK2α/CK2α’ as a therapeutic target for the treatment of EGFRI resistant NSCLC, 

but CK2 inhibition alone did not substantially decrease cell viability. The expanded network 

suggests that EGFR-MAPK-ERK signaling and CK2 activity exist somewhat exclusively 

which prompted us to examine the impact of combinatorial CK2 and MEK inhibition. Initial 

CK2+MEK inhibition experiments revealed that the combination of the two drugs is lethal 

in KRAS active NSCLC cells and was synergistic when AZD6244 was present at 10μM 

and 3μM with all concentrations of CX-4945 in both KRAS active cell lines. We believe 

that the combination of MEK and CK2 inhibition has important implications for the 

treatment of KRAS active NSCLC and has potential as an alternative to those who acquire 

EGFRI-resistance during treatment. We also seek to improve this novel pipeline for drug 

discovery by automating a process that utilizes gene expression signature as inputs and 

objectively leverages bioinformatics filtering of prospective targets to minimize wet lab 

validation. We must also consider multiple computational and statistical methods to 
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identify gene-gene interactions and associated validation schemes that appropriately 

manage high-density data from comparatively few biological observations. 
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Figure 4.1: The G1-X-G2 expanded network links nearly every EGFRI resistance 

described to date. The network of protein protein interactions was simplified to a 

collection of “communities” with collective activities using the cluster_walktrap function in 

igraph. Putative community activities were determined by manual data mining and 

literature search. (A) Complete network of communities. (B) Magnification of central 

communities with putative actions and known EGFRI resistance mechanisms highlighted. 
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Figure 4.1 (continued): The G1-X-G2 expanded network links nearly every EGFRI 

resistance described to date. The network of protein protein interactions was simplified 

to a collection of “communities” with collective activities using the cluster_walktrap function 

in igraph. Putative community activities were determined by manual data mining and 

literature search. (A) Complete network of communities. (B) Magnification of central 

communities with putative actions and known EGFRI resistance mechanisms highlighted. 

 

B 
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Table 4.1: G1-X-G2 Analysis-Induced EGFRI Resistance Network Members that 

interact with CK2α or CK2α’ within one edge and are pharmacologically actionable. 

Table members are from the complete network of 385 proteins that interact with CK2α or 

CK2α’ within one edge (Supplementary Table II-4, Appendix II). Abridged table members 

below represent those for which both pharmacological inhibitors exist and have at least 

entered Phase I clinical trials. 

 

SYMBOL GENE NAME TYPE 

AKT1 v-akt murine thymoma viral oncogene homolog 1 Induced 

CDK1 cyclin-dependent kinase 1 Induced 

CSNK2A1 casein kinase 2, alpha 1 polypeptide Induced 

CSNK2A2 casein kinase 2, alpha prime polypeptide Induced 

CTNNB1 catenin (cadherin-associated protein), beta 1, 88kDa Induced 

HDAC1 histone deacetylase 1 Induced 

HSP90AA1 heat shock protein 90kDa alpha (cytosolic), class A 
member 1 Induced 

HSP90AB1 heat shock protein 90kDa alpha (cytosolic), class B 
member 1 Induced 

HSP90B1 heat shock protein 90kDa beta (Grp94), member 1 Induced 

PSMA3 proteasome subunit alpha 3 Induced 

PSMA4 proteasome subunit alpha 4 Induced 

PTEN phosphatase and tensin homolog Input 

SIRT1 sirtuin 1 Induced 

SRC SRC proto-oncogene, non-receptor tyrosine kinase Induced 
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Figure 4.2: NSCLC cells resistant to EGFRI are most sensitive to CK2 inhibition. (A) 

Viability assays were performed on KRAS active, EGFRI resistant NSCLC (A549 and 

H460 cells) treated with CX-4945. Shown in comparison with intermediate-EGFRI 

sensitivity, H1650 cells (EGFR exon 19 deletion and PTEN null), and EGFRI-sensitive, 

PC9 cells (EGFR exon 19 deletion). Values are log-transformed. (n=3) (B) A table 

demonstrating the EGFRI resistance, mutational statuses, and response to 10μM CX-

4945 for each of the NSCLC analyzed.  
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Figure 4.2 (continued): NSCLC cells resistant to EGFRI are most sensitive to CK2 

inhibition. (A) Viability assays were performed on KRAS active, EGFRI resistant NSCLC 

(A549 and H460 cells) treated with CX-4945. Shown in comparison with intermediate-

EGFRI sensitivity, H1650 cells (EGFR exon 19 deletion and PTEN null), and EGFRI-

sensitive, PC9 cells (EGFR exon 19 deletion). Values are log-transformed. (n=3) (B) A 

table demonstrating the EGFRI resistance, mutational statuses, and response to 10μM 

CX-4945 for each of the NSCLC analyzed. 

 

 

B 

 

 

CELL 

LINE 

EGFRI 

Resistance 

Status 

EGFR 

Mutation 

Status 

KRAS 

Mutation 

Status 

PI3K/AKT 

Mutations 

Status 

Percent 

Viability at 

10μM CX-

4945 

A549 Resistant WT 
G12S 

(Active) 
WT 53.2405 

H460 Resistant WT 
Q61H 

(Active) 

PIK3CA 

E545K (Null) 
57.2708 

H1650 Intermediate 

Exon 19 

Deletion 

(Activating) 

WT 
PTEN Null 

(Activating) 
53.4981 

PC9 Sensitive 

Exon 19 

Deletion 

(Activating) 

WT WT 74.7392 
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Figure 4.3: Co-treatment with CX-4945 and MEK inhibitor, AZD6244, induces cell 

death in KRAS active NSCLC. Cells handled and treated as described in the methods. 

Both adherent and non-adherent components of each well were harvested for total protein. 

Each well represents 1/3 of the total volume of protein harvested from each sample 

assessed for cleaved PARP and α-tubulin. Response to drug combinations were observed 

by western blot using the apoptotic marker, cleaved PARP at 24 and 48 hours. (A) A549 

cells (B) H460 cells. 
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Figure 4.4: Screening for synergistic interactions between the CK2 inhibitor, CX-

4945, and the MEK inhibitor, AZD6244. Cells were assessed by resazurin viability assay 

to identify possible synergistic, additive or antagonistic responses of CX-4945 in 

combination with AZD6244 using combination index (CI) values. CI values were then used 

to generate the heat map for each cell line. (A) A549 cells (B) H460 cells. 

 

CI Values 
≤0.5  Synergism 

0.51-0.99  Slight Synergism 
1-1.49  Additive 

1.5-1.99  Slight Antagonism 
≥2.0  Antagonism 

 

A 

 

 
AZD6244 (μM) 

30 10 3 1 0.3 0.1 

C
X

-4
9
4
5

 (
μ

M
) 

30 1.02049 0.71992 0.59235 0.55049 0.61981 0.73616 
10 0.95206 0.55608 0.5078 0.98279 0.98735 0.73973 

3 0.79595 0.42711 0.72412 1.63317 6.43996 3.39567 
1 1.14371 0.67159 0.89036 2.10645 15.3454 1.78956 

0.3 1.258 0.71075 0.65023 1.00434 12.1634 0.36242 
0.1 1.51505 0.85743 0.72815 0.59457 115.893 0.29457 

 

B 

 AZD6244 (μM) 
30 10 3 1 0.3 0.1 

C
X

-4
9
4
5
 (

μ
M

) 30 0.23853 0.15484 0.24985 0.35815 0.1522 0.23068 
10 0.6804 0.78631 0.59991 2.73233 0.7952 0.74581 
3 1.79495 0.59703 0.41602 1.09675 4.1732 0.44567 
1 5.32872 0.68241 0.52064 1.04351 0.78227 0.97133 

0.3 10.7842 0.57414 0.45335 10.8271 7.33228 0.40307 
0.1 0.67055 0.56424 0.26205 25.8473 37.7681 0.13553 
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CHAPTER 5 

 

A. OVERVIEW 

 

EGFR is not the only driver mutations found in NSCLC which is why not all tumors 

are responsive to EGFRI treatments (19).  Moreover, many patients that receive EGFRI 

therapies eventually develop resistance which underscores the need for alternative 

therapeutic options to overcome these limitations of EGFRI. Our 13-gene miRNA 

signature of EGFRI response initially indicated that the TGFβ signaling cascade may be 

a putative secondary target for the treatment of drug-resistant NSCLC (327). In Chapter 

3, we demonstrated that TGFβ inhibitors had value in impeding cell mobility as well as 

increased erlotinib resistance in A549 cells. However, we also determined that the 

inhibition of TGFβ induced a significant increase in erlotinib resistance in PC9 cells that 

are otherwise exquisitely sensitive to erlotinib treatment. Our work examining the value of 

TGFβ as a target confirmed observations that targeting TGFβ may be detrimental in 

unselected tumor populations (Chapter 3) (179, 213). 

 

Further analysis of our gene expression data using Feasible Solutions 

mathematical model to find putative mRNA-miRNA gene interactions (Chapter 4) identified 

CK2 as an alternative target for the treatment of EGFRI-resistant NSCLC. Initial 

examination of CK2 as a therapeutic target demonstrated that it may have value as a 

treatment option for NSCLC harboring KRAS activation mutations or PTEN null mutations 

(Chapter 4). Maximal cell viability decreases  were only observed at approximately 50% 

cell viability suggesting that CK2 inhibition would likely be most successful as part of a 

combination therapy. Interestingly, the inhibition of CK2 has been shown to impede the 

induction of EMT by TGFβ (239). CK2 inhibition showed promise in treating A549 cells, 

but had no effect in PC9 cells (Chapter 4). Given these results combined with the observed 

relationship between the induction of EMT by TGFβ and CK2, we hypothesize that 

inhibition of CK2 can block TGFβ-induction of EMT and reduce erlotinib resistance in A549 

cells. In this context, CK2 inhibition could augment EGFRI by blocking the induction of 

EMT and EGFRI-resistance thereby eliminating the need for TGFβ inhibition all together. 
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B. METHODS 

 

Cell Culture 

 

The NSCLC cell lines used were A549, purchased from ATCC, and PC9, gifted 

from the Haura lab (Moffitt Cancer Center, FL). All cells were cultured in RPMI 1640 (Life 

Technologies) supplemented with 10% FBS (USA Scientific), HEPES, glucose and 

pyruvate and maintained in a humidified incubator at 37 °C at 5% CO2 unless otherwise 

specified. Cells were seeded in 6-well plates and were allowed to grow under RPMI 1640 

containing 10% serum media conditions for 48 hours prior to treatments. Cells were plated 

at 1 x 104 cells and were treated with SB-431542 (3 µM) (Selleck Chem), LY-2109761 (3 

µM) (Cayman Chem), CX-4945 (1 µM) (Apex Bio) and/or TGFβ (5 ng/ml) (Cell Signalling) 

under minimal serum (1%) conditions for time frames specified. Treatment media was 

replenished at the 72-hour time point in 168-hour culture experiments.  

 

Cell Viability Assay 

 

Cells underwent pretreatment in 1% serum-containing RPMI 1640 with drug and/or 

cytokine for 7 days following the plating and treatment conditions described above. After 

treatment, cells were trypsinized, counted, and plated at 3x103 cells/well in a 96-well plate 

in fresh treatments matching those from the 7-day period. After 36 hours adherence time, 

erlotinib was added in indicated concentrations. Drug treatment persisted for 72 hours. 

After 72 hours, resazurin was added (100 µM final concentration) to each well, the plates 

were gently rocked for 1 minute and then incubated for 3 hours prior to reading. The plate 

was read for fluorescence at excitation, 560 nm, and emission, 590 nm, wavelengths using 

a Spectramax M5 and corresponding Spectramax X5 software (Spectramax).  

Data Processing and Statistics 

 

Values measured between biological replicates from all viability assays and wound 

healing assays were subjected to a Dixon’s Q test to eliminate outlier values. For viability 

assays, response to each treatment is normalized to cells from each corresponding 
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treatment that were not subjected to erlotinib. Readings were also normalized to empty 

wells on each plate containing only media and resazurin. Individual experiments were 

done in triplicate and were assessed for outliers using a Dixon’s Q-test (n=4). All graphical 

representations of data were made and analyzed using Prism Version 7.00 (GraphPad). 

Significance points in viability assay data compare the points specified in each figure 

legend and in the results section. Significance was determined using unpaired t-tests.  

 

 

 

C. RESULTS 

 

CX-4945 increases erlotinib-sensitivity in PC9 but not in A549 cells  

 

In Chapter 3, we demonstrated that while TGFβ ligand treatment increases 

erlotinib sensitivity in PC9 cells, it significantly decreased A549 erlotinib-sensitivity in a 

dose-dependent manner (Figure 3.3). Also, TGFβ receptor inhibition (with SB-431542 or 

LY-2109761) reversed the erlotinib phenotype in TGFβ ligand-treated A549 cells, and the 

presence of either TGFβ receptor inhibitor significantly decreased erlotinib sensitivity in 

PC9 cells (Figure 3.3). For this reason, we endeavored to determine whether co-inhibition 

of another linked target, CK2, could sensitize erlotinib-resistant A549 cells to treatment. 

CK2 and TGFβ activate common growth, proliferation and survival pathways. For these 

reasons, we sought to elucidate whether CK2 inhibition could prevent the changes on 

erlotinib-sensitivity in A549 and PC9 cells induced by TGFβ ligand or TGFβ inhibitors 

respectively.   

 

 Pre-treatment of A549 cells with a combination of CX-4945 and TGFβ ligand 

(Figure 5.1A) prevented the increased erlotinib-resistance phenotype observed in A549 

cells that had been pre-treated with TGFβ ligand  alone (Chapter 3, Figure 3.3A). 

Conversely, SB-431542 pre-treatment in combination with CX-4945 decreased erlotinib-

resistance in A549 cells at lower erlotinib concentrations (0.1-3 µM) compared with cells 

pre-treated with CX-4945 alone (Figure 5.1A).  
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 In PC9 cells, pre-treatment with CX-4945 alone and in combination with TGFβ 

ligand increased erlotinib sensitivity when compared to the matched CX-4945 naïve cells 

in Chapter 3, Figure 3.3B (Figure 5.1B). Importantly, this experiment showed that the pre-

treatment of PC9 cells with CX-4945 did not eliminate the decrease in erlotinib-sensitivity 

resulting from exposure to either of the TGFβ inhibitors (SB-431542 or LY-2109761) with 

or without TGFβ ligand (Figure 5.1B). 

 

 

D. DISCUSSION 

 

In Chapter 3, we showed that TGFβ ligand can contribute to erlotinib resistance in 

A549 cells because TGFβ inhibitors reversed this phenotype. Conversely, TGFβ-inhibition 

significantly reduced erlotinib sensitivity in PC9 cells, whereas TGFβ ligand induced more 

cell death in conjunction with erlotinib than erlotinib did alone (Figure 3.3B, Chapter 3). 

Identifying which arm of the TGFβ paradox signaling is active remains elusive, but CK2 

inhibition has been shown to reverse TGFβ-driven EMT offering a possible alternative 

(239). For this reason, we endeavored to determine if CK2 inhibition using CX-4945 

(Silmitasertib) could similarly prevent the increase in erlotinib resistance.  

 

We found that CX-4945 impedes the increase in erlotinib resistance induced by 

TGFβ ligand in A549 cells (Figure 3.3A), but it does not sensitize A549 cells to erlotinib. 

This suggests that the combination of EGFRI and CK2 inhibition is not a sufficient 

treatment option for KRAS active NSCLC like A549. Importantly, the significant decrease 

in erlotinib-sensitivity induced by TGFβ-inhibition in PC9 cells was not blocked by co-

inhibition with CX-4945. CX-4945 treatment did increase erlotinib sensitivity significantly 

in PC9 cells both treated and untreated with TGFβ ligand when compared to matched PC9 

(Supplemental Figure III-1, Appendix III).  

 

 

E. CONCLUSIONS 

 

EGFRI and CX-4945 efficacy appear to be linked by a co-dependent relationship 

between PI3K/AKT and MAPK-ERK signaling (238, 395, 396). The decrease in erlotinib 
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sensitivity in PC9 cells induced by TGFβ inhibitors was not prevented by co-incubation 

with the CK2 inhibitor, CX-4945. This reinforces that TGFβ-inhibitors continue to have 

limited to no value in this context since the off-target effects of TGFβ-inhibition are still 

evident in PC9 cells. While the interactions among signaling networks certainly impacts 

the influence of TGFβ on EGFRI resistance, the limitation of targeting TGFβ in unselected 

tumor populations is not mitigated by the inclusion of CK2 inhibitors.  

 

 

 

 

Copyright © Madeline Krentz Gober, 2017 
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Figure 5.1: TGFβ treatment in combination with CX-4945 alters erlotinib response 

in A549 and PC9 cells. (A) A549 and (B) PC9 cells. Cells were treated with TGFβ in 

combination with CX-4945 with or without SB-431542 or LY-2109761 at the same time as 

the samples used in figure 3.3. Values are normalized to corresponding cells untreated by 

erlotinib. * indicates p-value is 0.05 ≥ p > 0.0001, ǂ indicates that p-value is ≤ 0.0001. (n 

= 3) 

 

 

 

A 
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Figure 5.1 (Continued): TGFβ treatment in combination with CX-4945 alters erlotinib 

response in A549 and PC9 cells. (A) A549 and (B) PC9 cells. Cells were treated with 

TGFβ in combination with CX-4945 with or without SB-431542 or LY-2109761 at the same 

time as the samples used in figure 3.3. Values are normalized to corresponding cells 

untreated by erlotinib. * indicates p-value is 0.05 ≥ p > 0.0001, ǂ indicates that p-value is 

≤ 0.0001. (n = 3) 

 

 

B 
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CHAPTER 6 

 

A. SUMMARY OF RESULTS 

 

My goal for this body of work was to utilize genomic data to identify and test 

putative targets for the treatment of drug-resistant lung cancers. Using the previous data 

generated by the lab to produce two gene signatures of EGFRI response, I hypothesized 

that: 

 

1) The 13 miRNA genes comprising the second expression signature of response 

to EGFRI are transcriptionally regulated by TGFβ signaling. 

2) TGFβ drives EMT and enforces EGFRI resistance in EGFRI-resistant NSCLC. 

3) The cell line RNA expression data used to generate the miRNA and mRNA 

signatures can be analyzed using novel mathematical and computational 

models to uncover interactions among these RNA. These nodes of cellular 

regulation, captured by utilizing both lists of deregulated genes, may identify 

novel targets to combat EGFRI-resistance in NSCLC.  

 

In Chapter 2, I explored my first hypothesis that the miRNA comprising the 

signature of response were being transcriptionally regulated by canonical TGFβ 

signaling via the Smads. It has been demonstrated that TGFβ has the ability to promote 

or repress the expression of genes in a contextually-specific manner (351, 352). More 

importantly, twelve out of the thirteen miRNA genes contained putative Smad binding 

elements (SBEs) in their promoter regions (Figure 2.7) (347, 348). Considering that 

miRNA frequently act upon the pathways that regulate their expression, I aimed to 

determine if the differences in signature miRNA expression between EGFRI-resistant and 

EGFRI-sensitive NSCLC cells were regulated by TGFβ (327, 397). I demonstrated that 

over a 7-day course of TGFβ treatment, activation of the canonical TGFβ signaling 

pathway via the R-smads, Smad 2, Smad 3 and Smad 4, occurs differently between the 

model EGFRI-resistant and EGFRI-sensitive cell lines. Moreover, extended TGFβ 

treatment induced downregulation of total Smad 2, Smad 3, and Smad 4 by long-term 

TGFβ treatment in the EGFRI-sensitive cell line. TGFβ induced morphological and protein 
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expression changes in the EGFRI-resistance model consistent with EMT, but this effect 

was not observed in the EGFRI-sensitive model. In the EGFRI-sensitivity model, the 

inhibition of TGFβ induced a morphology consistent with an EMT intermediate phenotype 

known as metastable (353). These data confirm that TGFβ possesses differential activity 

that may be responsible for the expression of the miRNA differentiating EGFRI-resistant 

from EGFRI-sensitive cells. Because of this, I next explored the direct contribution of TGFβ 

on the expression of three candidate miRNA from opposing sides of the response 

signature, miR-140, miR-141, and miR-200c. 

 

Using chromatin immunoprecipitation, I determined that Smad 4 bound to the 

shared promoter of miR-141 and miR-200c in EGFRI-sensitive cell lines in response to 

TGFβ stimulation. Because there was no binding to the promoter of miR-140, I suspected 

that differential regulation was occurring in line with the initial hypothesis. Because of this, 

I next aimed to observe if TGFβ induced differential endogenous expression changes of 

the three candidate miRNA. Using a 5-way ANOVA and two models of EGFRI-resistant 

cells and two EGFRI-sensitive cell lines, I aimed to elucidate the source of the endogenous 

expression changes considering five factors: 1) miRNA expression, 2) time of treatment, 

3) TGFβ treatment, 4) SB-431542 treatment, 5) cell line. I considered the additional H460 

and H1650 cell lines as a metric of determining if the changes observed correlated with 

EGFRI-sensitivity status of cells or if miRNA expression changes were a cell line specific 

phenomena. I determined that the most impactful variable governing the expression of the 

signature miRNA levels was the time of treatment. I interpreted this to be a response to 

the loss of cell cycle progression and aimed to elucidate whether the percentage of cells 

in the G0G1 phase of the cell cycle correlated with the changes in miRNA endogenous 

expression levels. I determined that regardless of treatment conditions, all cell lines 

accumulated in the G0G1 phase of the cell cycle as a function of time in culture.  

 

Analysis of the qRT-PCR data and the cell cycle experiment led us to explore 

whether the signature miRNA promoters contained putative cell-cycle responsive 

elements. I determined that twelve of thirteen signature miRNA contained promoter 

elements that may be cell-cycle responsive (Supplementary Figure I-9, Appendix I). I then 

asked whether TGFβ stimulation activated growth and proliferation pathways, MAPK-ERK 

and PI3K/AKT, and correlated with endogenous miRNA expression level changes. I 

determined that TGFβ activation of these pathways was different between the cell models 
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but did not correlate with the endogenous miRNA expression changes observed. I 

concluded that the signature miRNA are likely responsive to elements associated with cell 

cycle progression. I also concluded that while the activity of TGFβ in the EGFRI-resistance 

model is consistent with the ability of TGFβ to drive EMT, an opposing phenotype was 

found in the EGFRI-sensitive cell line.  

 

Future directions of this work will explore the influence of the cell cycle on the 

expression of the signature miRNA. To start, we will use the ChIP method for determining 

transcription factor association with a promoter to determine if ELK1 is bound to the sites 

in each of the promoters. We will triangulate this back to the changes in miRNA expression 

at each time point as well as the percentage of cells exiting the cell cycle at this time point. 

If ELK1 is not found to be bound to the promoters of the signature miRNA, other cell cycle 

responsive transcription factors will also be examined by western blot at each time point 

in order to isolate another cell cycle responsive candidate to interrogate. 

 

In Chapter 3, I tested my second hypothesis that TGFβ signaling enforces 

EGFRI-resistance correlating with its ability to activate EMT. I explored the 

contribution of the differential TGFβ activity observed to cellular migration, wound healing 

and response to a candidate EGFRI, erlotinib. I determined that TGFβ induced migration 

in the EGFRI-resistance model and the phenotype was reversed with the TGFβ inhibitor. 

I also determined by wound healing assay that TGFβ inhibition prevented wound healing 

in both the EGFRI-resistance and EGFRI-sensitive models. This demonstrated that the 

TGFβ-induced, EMT phenotype in the EGFRI-resistant cells was prevented by TGFβ-

inhibition. It also demonstrated that the EMT-like intermediate observed in the EGFRI-

sensitive model did not correlate with the induction of other EMT-characteristics such as 

migratory ability. Finally, to determine if TGFβ represented a clinically-relevant secondary 

target in relation to resistance to EGFRI, I determined whether extended TGFβ treatments 

altered sensitivity to EGFRI. In the EGFRI-resistance cell model, I determined that long-

term TGFβ treatment significantly increased cell viability in response to erlotinib. This 

increase in erlotinib resistance by TGFβ in EGFRI-resistant cells was not observed in cells 

co-treated with a TGFβ inhibitor. This suggests that while TGFβ inhibitors may reduce 

TGFβ-driven EMT events and erlotinib resistance, it is not a secondary target that will 

sensitize EGFRI-resistant cells to EGFRI treatment. 
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I also examined the role of TGFβ signaling on EGFRI-sensitivity in known EGFRI-

sensitive cell line model. Interestingly, extended TGFβ pre-treatment in the EGFRI-

sensitive model cell significantly decreased erlotinib sensitivity in these cells. This effect 

may be due to the ability of TGFβ to impair cell proliferation in this cell line model (179, 

371). Because these were cells treated with TGFβ in minimal serum (1% FBS) media 

conditions, the reduced proliferation may be due to a cross talk between TGFβ and EGFR 

signaling in response to nutrient availability. These observations are consistent with the 

anti-tumorigenic-arm of the “TGFβ paradox” theory (371). Most importantly, all instances 

of TGFβ-inhibition in the EGFRI-sensitive cell model resulted in a significant increase in 

erlotinib resistance. However, I confirmed by measuring the migration and wound healing 

capabilities indicative of EMT induction that TGFβ-inhibition was not inducing EMT in the 

EGFRI-sensitive cell line. Remarkably, the change in erlotinib-sensitivity aligns with the 

observations from Figure 2.6 where TGFβ inhibition resulted in a reduction of pERK1/2 

and pAKT signaling in these cells. I did not examine whether the phenotype was related 

to an increase in internalization and ubiquitination of active EGFR or the result of 

downstream signal ablation (e.g., RAS downregulation). From the data herein, I cannot 

confirm a mechanism for how TGFβ inhibition reduces erlotinib sensitivity in cells that are 

otherwise exquisitely sensitive to EGFRI treatment. To determine a mechanism, I would 

propose measuring the impact of TGFβ modulation on the expression of EGFR mRNA 

and protein levels. A study on the internalization and degradation rates of EGFR would 

also be informative in determining the source of the decreasing pERK1/2 and pAKT levels 

in response to TGFβ inhibition. Nevertheless, this observation reinforces that anti-TGFβ 

therapies will likely continue to be unsuccessful clinically in unselected patient populations, 

as has been observed (179, 219).   

 

Future directions of this work will be to identify alternative targets besides TGFβ 

for the treatment of drug-resistant NSCLC. To identify targets for the treatment of drug-

resistant NSCLC, I employed mathematical and protein-protein interaction modeling 

algorithms. This effort to identify alternative targets for EGFRI-resistant NSCLC is 

described in Chapter 4.  

 

In Chapter 4, I tested my hypothesis that combining the mRNA and miRNA 

data would identify nodes of cellular deregulation captured by both lists of 

deregulated genes. This may identify alternative targets for combatting EGFRI 
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resistance in NSCLC. I sought to identify other, pharmacologically actionable signaling 

nodes that may be targeted to overcome EGFRI resistance in NSCLC. We used the 

Feasible Solutions (FS) algorithm to systematically test for possible direct interactions 

between the 1495 mRNA and 23 miRNA found to be deregulated in EGFRI resistant 

NSCLC cells. We took the mRNA member of each of the 100 most statistically-significant 

interacting mRNA:miRNA pairs as determined by FS and annotated them to 85 separate 

Ensembl IDs that had protein matches in STRING v10 (387). The 85 proteins were 

inducted in the STRING network to search for interactions with EGFR. We found that 81 

proteins were within two edges of EGFR in the initial STRING network. Of the 81 proteins, 

many have been studied and/or implicated in EGFRI resistance. We chose to expand the 

network of genes considering the scenario “G1-X-G2” where G1 and G2 are any member 

of the original 85 Ensembl IDs imported into STRING and X is any induced node that 

connects them. From this, the network grew to 304 induced nodes, for a total of 385 nodes 

in the expanded deregulated network.  

 

The resulting network identified nearly every EGFRI resistance or compensatory 

signaling mechanism currently known, including: AKT/PI3K/mTOR (398), ataxia 

telangiectasia mutated (ATM) kinase (399), Aurora kinase (400), other ErbB family 

receptors (Her2, ErbB3 and ErbB4)(401), all three RAS isoforms (HRAS, KRAS and 

NRAS) (402), insulin-like growth factor receptor (IGFR) (403), MET receptor tyrosine 

kinase (39), and members of NFκβ, Notch, and TNFα signaling (109, 404, 405). The list 

also includes a number of cellular functions related to EGFR signaling regulation 

mechanisms including internalization (e.g., calmodulin1/2), ubiquitination (e.g., E3 protein 

ligases), and proteosomal degradation (e.g., proteasome subunits). Moreover, when 

divided into “communities” of node cellular functionality (Supplementary Table II-5, 

Appendix II), nearly every of the hallmarks of cancer were represented in the deregulated 

network suggesting that this network encompasses many of the mechanisms employed 

by EGFRI resistant NSCLC cells to maintain proliferation. 

  

 Of the list of proteins comprising the network of deregulation we, I selected 

CK2α/CK2α’ (the catalytic subunits of CK2 encoded by genes CSNK2A1 and CSNK2A2) 

to further pursue for three reasons: 1) the complete holoenzyme has been shown to 

interact with/regulate many of the members and pathways represented in the network, 2) 
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it was shown to be within two edges of most of the induced nodes in the network, and 3) 

it possesses enzymatic activity that can be inhibited by a pharmacological agent.  

 

I assessed pharmacological inhibition of CK2 using the CK2 inhibitor, CX-4945, on 

NSCLC cells that are resistant to EGFRI. I determined that NSCLC harboring KRAS 

activation and PTEN null mutations, both inherently resistant to EGFRI, were most 

sensitive to CK2 inhibition. However, the maximal response observed in these cells was 

approximately 50% cell viability, suggesting that CX-4945 may be most successful as a 

combination therapy. Further, cells harboring EGFR activation mutations were resistant to 

CX-4945 treatment suggesting that a coupling of EGFRI and CX-4945 would likely have 

no added therapeutic value.  

 

My goal was to identify an alternate target or a combination of targets to overcome 

EGFRI resistance in NSCLC. Considering that the majority of EGFRI resistance occurs as 

either mutations to EGFR (e.g., EGFR T790M) or downstream (e.g., KRAS), I aimed to 

identify a secondary drug target downstream of these resistance mechanisms. When we 

reduced the network to include only proteins within one edge of CK2α/CK2α’, no member 

of the EGFR-RAS-RAF-MEK-ERK signaling cascade was represented. This suggests that 

while EGFR-MAPK-ERK and CK2 signaling may interact, they do not do so directly (Table 

4.2). Because of this, I chose to evaluate the value of coupling CK2 and MEK inhibition. 

Initial experiments examining the impact of co-treatment of CX-4945 and the MEK 

inhibitor, AZD6244, revealed that the drug combination resulted in increasing levels of the 

apoptotic marker, cleaved PARP, across increasing drug concentrations and across time 

points (Figure 4.3). Future experiments will determine if this effect is also observed in cell 

viability assays, and if so, whether the effect is additive or synergistic. 

 

Finally, I explored whether CK2 inhibition could act as a surrogate for inhibition of 

TGFβ in KRAS active NSCLC. I previously demonstrated that TGFβ inhibition prevented 

increased EGFRI resistance in A549 cells and TGFβ inhibition induced EGFRI resistance 

in PC9 cells. This illustrates that in unselected populations, TGFβ inhibition is not clinically 

meaningful. I found that the combination of treatments did not increase cell death overall 

in A549 cells. I observed that CK2 inhibition can act as a surrogate for TGFβ inhibition 

blocking the increased erlotinib resistance brought on by TGFβ. Unfortunately, CK2 

inhibition did not prevent the induction of EGFRI resistance by TGFβ inhibitors in PC9. 
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These results suggest that TGFβ inhibition will still be a clinically-irrelevant treatment 

option until we have a methodology for selecting patients considering the status of TGFβ 

with regards to the “TGFβ paradox”.  

 

Intriguingly, I observed that the combination of CX-4945 and EGFRI decreased 

cell viability in PC9 cells at low doses of EGFRI although this effect was not found to be 

significant. These data suggest that the combination of therapies may be ideal in EGFRI-

sensitive tumors to prevent acquired mutations. CX-4945 treatment has already been 

shown specifically to prevent the development of EGFR T790M acquired-EGFRI-

resistance mutations in PC9 (238).  

 

 

B. EXPERIMENTAL LIMITATIONS 

 

The work described herein is the result of a combination of pharmacogenomic, 

systems biology, and pharmacologic methods to identify treatment alternatives for drug-

resistant NSCLC using gene expression data. This combinatorial analysis allows us to test 

broad inferences about the biology that underpins the phenotype of EGFRI resistance in 

NSCLC. From the data analyzed, I formed hypotheses regarding the role of the 

deregulated proteins identified in EGFRI sensitivity and/or resistance. Finally, I tested my 

hypotheses using cell line models of NSCLC with pharmacological agents that interrupt 

the pathways of interest. While this method allows us to gain a valuable understanding of 

the biology of EGFRI resistance and streamline the putative target discovery pipeline, it 

does have a number of limitations.  

 

Genomic Modeling of the Deregulation of EGFRI-Resistant NSCLC 

 

The strength in this methodology is that the in silico models can identify large 

networks of deregulated genes and proteins. Bioinformatic tools can also identify the 

nodes that connect them. The difficulty in developing and employing these methodologies 

is that many data points are generated and must be annotated in order to find meaningful 

putative targets. In revisiting Supplementary Table II-2 (Appendix II), one will find that 

there are many known oncogenic kinases and deregulated signaling pathways known to 
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drive tumorigenesis. There are also many network members that are less characterized 

that must be sorted through. The expanded network of 385 proteins also includes 

members known to be pharmacologically non-targetable to date (e.g., KRAS).  

 

Another limitation to the specific genomic analyses that we performed is that we 

specifically used expression data derived from NSCLC cells with known EGFRI sensitivity 

and known mutational statuses influencing EGFRI sensitivity in each of the lines. For the 

first of these profiling endeavors (the deregulated mRNA), the favorable alternative would 

have been to use human tumors with known EGFRI clinical outcomes. Unfortunately, 

samples with known EGFRI outcomes were not available at the time of the mRNA 

signature development (328). By the time we profiled the miRNA genes in the same cells, 

clinical samples were growing increasingly available. However, the ideal choice was to 

profile for miRNA expression in the same cell lines profiled for mRNA deregulation so the 

data sets could be compared. Specifically, this also allowed us to revisit the miRNA data 

and mRNA together with the goal of identifying nodes of deregulation shared between the 

two probesets as we’ve done here. This allowed us to identify a network of putative drug 

targets with more evidence than the original two analyses because it encompasses two 

“omic” levels of deregulation between EGFRI-resistant and –sensitive NSCLC.   

 

Biological and Pharmacological Testing of the Hypotheses Identified in silico 

 

 A prominent limitation of the work herein is the use of only cell line models for 

examining in silico generated hypotheses for the sake of determining novel avenues for 

the clinical treatment of lung tumors. The value of cell culture models lies in their ability to 

be a method for testing hypotheses in a well-controlled environment, but this is also the 

downside of the model. Cell line testing is an important stage in the development of an in 

silico hypothesis to a clinical treatment model because it allows us to rapidly test the value 

of novel targets both alone and in combinatorial analyses in a model that is significantly 

less expensive than in vivo models. 

  

 

C. CONTRIBUTION TO THE FIELD 
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Bioinformatic analysis of the 13-miRNA gene signature that predicts erlotinib 

sensitivity in NSCLC cells and tumor samples identified TGFβ signaling as a pathway of 

convergence of the miRNA genes. For this reason, I asked whether TGFβ played a role 

in the expression regulation of three of the candidate miRNA. We determined that TGFβ 

did not directly impact the expression of the miRNA, but cell cycle position may be 

important. Further study to characterize the remaining miRNA and to directly test the 

promoter elements for the transcriptional regulation of the signature miRNA is necessary 

to validate this hypothesis. However, a deeper understanding of if and how the cell cycle 

contributes to the expression of the signature miRNA could be useful for retraining the 13-

miRNA gene signature to not only indicate putative erlotinib response, but to indicate 

reliance on rapid cell cycle passage for viability. This additional piece of information could 

have value in determining which tumors are likely to respond to cell cycle targeting agents.  

 

This study was the first to characterize that TGFβ inhibition in PC9 cells leads to a 

significant loss of erlotinib sensitivity. TGFβ also decreased proliferation in these cells in 

low serum conditions indicating that it may play a role in attenuating mutant EGFR 

signaling. TGFβ inhibitors have entered clinical trials numerous times and are chronically 

unsuccessful due to side effects on TGFβ signaling in normal cells (179, 219).  

 

This is a combinatorial analysis of two “omic”-level studies of deregulated mRNA 

and miRNA species adds value to the targets identified as they are represented in both 

the mRNA and miRNA transcriptomes. This methodology for identifying networks of 

deregulation between phenotypes is valuable for dissecting the differences between many 

cellular phenotypes. We believe this paired analysis of functionally-related “omic”-level 

data (such as miRNA that act on mRNA) is ideal for identifying the network of genes most 

pertinent to a chosed phenotype (e.g., EGFRI-resistance). This study is also proof-of-

concept that mining existing gene expression data has merit for identifying and addressing 

new hypotheses surrounding specific phenotypes (e.g., EGFRI-resistance versus -

sensitivity). 

 

This study is the first to specifically identify the network of deregulated signaling 

surrounding CK2 as it relates to EGFRI-resistance. CK2 is both a member of this network 

and is connected to most of its members. A relationship between EGFR and CK2 signaling 

activity has been described in the sense of co-targetability and common influence.  
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Figure 6.1: The Impact of Co-Targeting MEK and CK2 on Cancer Signaling 

Pathways.  
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However, our analysis is the first to model that they likely act independently of one another 

with common downstream signaling nodes in pathways other than MAPK-ERK. I showed 

that EGFRI resistant cells harboring a KRAS activation mutation were most sensitive to 

CK2 inhibition suggesting that it could be a viable option for KRAS active lung tumors that 

comprise approximately 20% of the lung cancer population (168). I demonstrated that CK2 

inhibition in conjunction with EGFRI was not sufficient to sensitize KRAS active cells to 

EGFRI. This indicates that inhibition downstream of active KRAS is likely necessary to 

attenuate signaling. My initial examination of the CK2 and MEK co-inhibition is the first 

study to demonstrate that this combination likely has value in treating EGFRI resistant 

NSCLC harboring a KRAS activation mutation.  

 

 

D. CONCLUSIONS 

 

I conclude that an analysis considering multiple gene expression species that 

physically interact and regulate one another (e.g., mRNA and miRNA) are ideal for 

identifying a concise network of proteins that define a phenotype of choice. The network 

identified using this methodology performed best for us using the G1-X-G2 scheme to 

capture other the contributing members of a network. This novel approach for identifying 

possible therapeutic targets requires further validation in cell culture as well as in another 

data set to determine the sensitivity and specificity of the approach. I identified CK2 as a 

putative target due to its expansive relationships with the other network members, 

specifically those known to contribute mechanistically to the generation of EGFRI-

resistance. Examination of its activity suggests that CK2 inhibition shows promise for 

treating EGFRI-resistant NSCLC, specifically those harboring KRAS active mutations. We 

also conclude that inhibition of CK2 concurrently with MEK inhibition has the potential to 

maximize targeted therapy benefit for the treatment of KRAS active, EGFRI-resistant 

NSCLC tumors. 

 

 

 

 

Copyright © Madeline Krentz Gober, 2017
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APPENDIX I: SUPPLEMENTARY FIGURES FOR CHAPTER 2 

 

Supplementary Table I-1: Output of 5-way ANOVA analysis. (Data pairs with 

Supplementary figures I-4 and I-5) (A) Variable names used in analysis. (B)  Five-way 

ANOVA Overall F-test of the endogenous miRNA data. (C) Tests of the effects within the 

five-way ANOVA.  

 

A 

 Class Level Information 

Class Levels Values 

Time 3 168 Hour 24 Hour 72 

Hour 

Expr 3 miR-140 miR-141 miR200 

status 4 A549 H1650 H460 PC9 

TGF 2 N Y 

SB 2 N Y 

 

B 

Source DF 

Sum of 

Squares Mean Square F Value Pr > F 

Model 143 8088.984432 56.566325 57.40 <.0001 

Error 288 283.797472 0.985408   

Corrected Total 431 8372.781904    
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Supplementary Table I-1 (Continued): Output of 5-way ANOVA analysis. (Data pairs 

with Supplementary figures I-4 and I-5) 

 

C 

 

Source DF Type III SS Mean Square F Value Pr > F 

Time 2 79.952136 39.976068 40.57 <.0001 

Expr 2 1885.221769 942.610885 956.57 <.0001 

Time*expr 4 54.519027 13.629757 13.83 <.0001 

TGF 1 10.424204 10.424204 10.58 0.0013 

Time*TGF 2 1.076126 0.538063 0.55 0.5798 

expr*TGF 2 1.079149 0.539574 0.55 0.5790 

Time*expr*TGF 4 0.646410 0.161602 0.16 0.9565 

SB 1 1.546384 1.546384 1.57 0.2113 

Time*SB 2 0.471393 0.235697 0.24 0.7874 

expr*SB 2 1.520563 0.760281 0.77 0.4633 

Time*expr*SB 4 0.324106 0.081027 0.08 0.9878 

TGF*SB 1 0.134397 0.134397 0.14 0.7122 

Time*TGF*SB 2 0.541967 0.270983 0.27 0.7598 

expr*TGF*SB 2 1.295853 0.647926 0.66 0.5189 

Time*expr*TGF*SB 4 0.965323 0.241331 0.24 0.9126 

Status 3 3240.479541 1080.159847 1096.16 <.0001 

Time*status 6 364.036762 60.672794 61.57 <.0001 

expr*status 6 2266.034942 377.672490 383.27 <.0001 

Time*expr*status 12 127.856402 10.654700 10.81 <.0001 
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Supplementary Table I-1 (Continued): Output of 5-way ANOVA analysis. (Data pairs 

with Supplementary figures I-4 and I-5) 

 

Source DF Type III SS Mean Square F Value Pr > F 

status*TGF 3 2.810260 0.936753 0.95 0.4165 

Time*status*TGF 6 4.252351 0.708725 0.72 0.6344 

expr*status*TGF 6 2.875868 0.479311 0.49 0.8183 

Time*expr*status*TGF 12 2.785062 0.232089 0.24 0.9964 

status*SB 3 12.852156 4.284052 4.35 0.0051 

Time*status*SB 6 0.954675 0.159113 0.16 0.9866 

expr*status*SB 6 6.327867 1.054644 1.07 0.3804 

Time*expr*status*SB 12 3.120940 0.260078 0.26 0.9939 

status*TGF*SB 3 6.390615 2.130205 2.16 0.0927 

Time*status*TGF*SB 6 2.107473 0.351246 0.36 0.9058 

expr*status*TGF*SB 6 4.105405 0.684234 0.69 0.6544 

Tim*expr*stat*TGF*SB 12 2.275306 0.189609 0.19 0.9987 
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Supplementary File I-1: Experimental Ct Averages. (A)A549, (B) H460, (C) H1650, 

(D) PC9. 

(A) A549 
 

 Untreated +TGFβ 

m
iR

-1
4
0
 

24 
Hour 12.33757 11.43739 11.60239 12.39578 12.97549 12.15190 

72 
Hour 9.787602 10.08148 10.61999 9.900755 10.42333 11.50879 
168 

Hour 9.758026 10.54176 11.49169 10.53289 11.00631 11.92199 

m
iR

-1
4
1
 

24 
Hour 17.06016 15.32151 19.90596 17.07662 17.98000 20.07600 

72 
Hour 15.54128 13.97606 14.51325 15.44358 15.80907 16.95060 
168 

Hour 14.27188 12.21063 11.12456 15.88630 13.84227 15.35418 

m
iR

-2
0
0

c
 24 

Hour 14.10283 14.30923 14.84075 14.54479 14.74094 15.67361 
72 

Hour 13.32989 12.92316 14.99424 13.60149 13.89697 15.47936 
168 

Hour 12.67405 13.07983 14.84481 13.63927 14.52270 16.56609 

 

 +SB-431542 +TGFβ + SB-431542 

m
iR

-1
4
0
 

24 
Hour 11.89172 12.01508 11.48558 12.45281 11.61382 12.25275 

72 
Hour 9.535458 10.08252 10.83031 9.738522 10.67040 11.51334 
168 

Hour 8.811357 9.751716 10.45633 10.03573 10.56819 11.34701 

m
iR

-1
4
1
 

24 
Hour 12.00429 16.11283 19.87011 14.06351 15.08848 19.66269 

72 
Hour 14.33568 16.13022 13.74338 14.67358 11.94453 12.31492 
168 

Hour 13.87545 11.08248 12.75059 14.71158 10.58473 13.92210 

m
iR

-2
0
0

c
 24 

Hour 14.04283 14.31766 14.49006 14.54913 14.46255 15.62704 
72 

Hour 13.09006 12.68363 15.03674 12.67218 12.74576 15.55015 
168 

Hour 12.99181 13.09153 14.56104 12.99181 12.78577 15.02792 
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Supplementary File I-1 (Continued): Experimental Ct Averages. (A)A549, (B) H460, 

(C) H1650, (D) PC9. 

(B) H460 
 

 Untreated +TGFβ 

m
iR

-1
4
0
 

24 
Hour 

17.14272 17.91426 18.13599 17.05264 17.90481 17.99017 

72 
Hour 

17.21708 17.84024 17.46496 17.12854 16.66626 18.02826 

168 
Hour 

16.66319 17.54043 16.98263 16.64818 17.56977 17.08109 

m
iR

-1
4
1
 

24 
Hour 

17.08539 17.28380 17.33617 17.18618 17.62590 17.00420 

72 
Hour 

16.61845 17.04087 15.97914 17.28608 16.24639 16.81126 

168 
Hour 

16.26302 16.34669 15.99137 16.66824 17.00029 16.70879 

m
iR

-2
0
0

c
 24 

Hour 
10.67178 11.04102 11.36006 10.62387 11.23187 11.26765 

72 
Hour 

10.96402 11.11371 10.36812 11.05747 10.45827 11.33282 

168 
Hour 

10.77904 13.99327 10.41068 11.04071 11.77847 11.16143 

 

 +SB-431542 +TGFβ + SB-431542 

m
iR

-1
4
0
 

24 
Hour 

17.39966 18.23286 18.15083 17.61480 18.01347 18.38200 

72 
Hour 

16.91612 18.07499 17.15804 17.68611 18.51481 18.12220 

168 
Hour 

16.93595 17.08220 16.81208 16.85756 17.29420 17.47745 

m
iR

-1
4
1
 

24 
Hour 

17.10256 17.40165 17.29394 17.65773 17.38723 16.82007 

72 
Hour 

16.67177 17.03223 16.15025 17.48135 17.73611 16.58182 

168 
Hour 

16.83432 16.60688 16.06160 16.52186 16.67512 16.34198 

m
iR

-2
0
0

c
 24 

Hour 
10.75649 11.10807 11.17131 10.87258 11.09417 11.12668 

72 
Hour 

10.32638 11.28246 10.31851 11.51607 12.77857 11.01471 

168 
Hour 

13.58082 10.98377 10.31083 11.05021 11.20028 13.88309 
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Supplementary File I-1 (Continued): Experimental Ct Averages. (A)A549, (B) H460, 

(C) H1650, (D) PC9. 

(C) H1650 
 

 Untreated +TGFβ 

m
iR

-1
4
0
 

24 
Hour 

12.24568 12.01147 12.93231 12.28511 12.96206 12.49449 

72 
Hour 

12.17126 12.94157 12.64218 12.49287 13.47596 13.12842 

168 
Hour 

17.22546 17.23288 17.92211 17.46275 17.47145 17.98014 

m
iR

-1
4
1
 

24 
Hour 

7.839454 7.535492 7.558471 8.04034 7.626134 6.945391 

72 
Hour 

7.115704 6.608805 7.225541 7.719368 7.437265 7.523124 

168 
Hour 

11.69064 11.75101 11.83241 11.88982 11.90958 11.97695 

m
iR

-2
0
0

c
 24 

Hour 
4.654358 4.169437 5.087824 4.834063 5.230578 4.853105 

72 
Hour 

4.231399 4.793982 4.516056 4.626641 5.374649 5.112733 

168 
Hour 

5.979657 6.024038 6.170614 5.993081 6.253736 6.156914 

 

 +SB-431542 +TGFβ + SB-431542 

m
iR

-1
4
0
 

24 
Hour 

12.02541 13.26263 12.93686 12.56955 13.30433 12.94468 

72 
Hour 

12.13073 13.18402 12.97675 12.74410 13.90631 11.57144 

168 
Hour 

17.24517 17.57818 17.67087 17.44893 17.80485 17.78832 

m
iR

-1
4
1
 

24 
Hour 

7.658577 8.035284 7.288847 7.757186 8.216744 6.859854 

72 
Hour 

7.295649 7.448415 7.114004 7.415254 8.310852 6.352814 

168 
Hour 

11.48486 11.61927 11.82947 11.41379 11.91031 11.76493 

m
iR

-2
0
0

c
 24 

Hour 
4.553339 5.694854 5.120974 5.110865 5.906208 4.517555 

72 
Hour 

4.311621 4.661685 4.998656 4.919242 7.163925 3.526715 

168 
Hour 

5.897517 6.226531 6.095646 6.014628 6.505982 6.126934 
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Supplementary File I-1 (Continued): Experimental Ct Averages. (A)A549, (B) H460, 

(C) H1650, (D) PC9. 

(D) PC9 
 

 Untreated +TGFβ 

m
iR

-1
4
0
 

24 
Hour 

14.94061 13.26866 14.54584 14.57736 11.73476 13.76189 

72 
Hour 

12.83986 13.43117 13.88492 12.71534 13.55068 14.44901 

168 
Hour 

13.50625 13.77642 14.75037 13.84855 14.09694 14.88830 

m
iR

-1
4
1
 

24 
Hour 

7.121312 10.00169 9.931498 7.876611 8.188897 10.06823 

72 
Hour 

6.306454 3.402984 3.121106 6.319069 4.80151 5.335824 

168 
Hour 

5.817623 3.519702 5.124096 5.819985 4.690588 5.166902 

m
iR

-2
0
0

c
 24 

Hour 
5.756327 6.305108 6.344949 5.612942 5.945666 6.384396 

72 
Hour 

4.948423 4.166431 6.540284 4.255959 3.853093 7.538871 

168 
Hour 

4.483598 4.663599 6.590467 4.483084 4.430461 6.680311 

 

 +SB-431542 +TGFβ + SB-431542 

m
iR

-1
4
0
 

24 
Hour 

14.78079 13.46474 13.18096 14.64627 13.47323 13.75304 

72 
Hour 

12.70899 13.05903 13.79732 12.37238 13.11935 13.77495 

168 
Hour 

13.05962 14.00124 14.74730 13.65988 13.76325 14.75263 

m
iR

-1
4
1
 

24 
Hour 

8.433583 10.00693 8.825805 8.76599 10.44693 10.97337 

72 
Hour 

6.583571 3.124386 2.23386 6.249595 4.266571 6.207948 

168 
Hour 

6.500151 1.581450 5.662973 6.34292 3.582123 6.186862 

m
iR

-2
0
0

c
 24 

Hour 
6.06497 5.257848 5.868316 5.77605 6.038063 5.926589 

72 
Hour 

4.760397 3.741873 6.390911 4.907626 4.191823 6.659156 

168 
Hour 

4.517351 4.478639 6.310415 4.340795 4.377823 6.354835 

 

 

 

 

Copyright © Madeline Krentz Gober, 2017
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APPENDIX II: SUPPLEMENTARY FIGURES FOR CHAPTER 4 

 

Supplementary Table II-1: Interacting mRNA:miRNA genes (100) from the Feasible 

Solutions (FS) analysis. The 100 probe IDs with the lowest probability (low Prob>F) as 

determined by the FS analysis. To identify targets that may have value in EGFRI resistant 

tumors, the model sought mRNA with high expression in EGFRI-resistant NSCLC cells.   

Probe ID 
Interacting 

miRNA  Prob > F 
213302_at hsa.miR.135b hsa.miR.616.4395525 2.14712E-05 
204497_at hsa.miR.210 hsa.miR.616.4395525 2.49071E-05 
201002_s_at hsa.miR.135b hsa.miR.616.4395525 3.56988E-05 
210139_s_at hsa.miR.197. hsa.miR.616.4395525 5.82491E-05 
214830_at hsa.miR.410 hsa.miR.616.4395525 8.11249E-05 
208241_at hsa.miR.135b hsa.miR.616.4395525 8.31544E-05 
218467_at hsa.miR.200b hsa.miR.628.5p.4395544 0.000132681 
218970_s_at hsa.miR.200b hsa.miR.616.4395525 0.000168687 
211505_s_at hsa.miR.200b hsa.miR.628.5p.4395544 0.000169371 
203482_at hsa.miR.200b hsa.miR.616.4395525 0.000169684 
212764_at hsa.miR.518b hsa.miR.125a.3p.4395310 0.000211397 
58780_s_at hsa.miR.873 hsa.miR.628.5p.4395544 0.000233999 
208919_s_at hsa.miR.30c hsa.miR.616.4395525 0.000251931 
201379_s_at hsa.miR.141 hsa.miR.616.4395525 0.000320846 
213262_at hsa.miR.873 hsa.miR.636.4395199 0.000364971 
210910_s_at hsa.miR.205 hsa.miR.873.4395467 0.000398141 
201778_s_at hsa.miR.873 hsa.miR.616.4395525 0.000410072 
37117_at hsa.miR.197 hsa.miR.518f.4395499 0.000434778 

219002_at 
hsa.miR.873.43
95467 hsa.miR.636.4395199 0.000449861 

219020_at 
hsa.miR.758.43
95180 hsa.miR.616.4395525 0.000511882 

204115_at 
hsa.miR.873.43
95467 hsa.miR.636.4395199 0.000574862 

213058_at 
hsa.miR.873.43
95467 hsa.miR.30c.4373060 0.000638761 

219395_at 
hsa.miR.125a.5
p.4395309 hsa.miR.616.4395525 0.000662677 

213798_s_at 
hsa.miR.636.43
95199 hsa.miR.628.5p.4395544 0.000670364 
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Supplementary Table II-1 (continued): Interacting mRNA:miRNA genes (100) from 

the Feasible Solutions (FS) analysis.  

 

Probe ID 
Interacting 

miRNA  Prob > F 

219388_at 
hsa.miR.200c.4
395411 hsa.miR.363.4378090 0.000675789 

201565_s_at 
hsa.miR.200c.4
395411 hsa.miR.363.4378090 0.000684861 

209222_s_at 
hsa.miR.200c.4
395411 hsa.miR.363.4378090 0.000752997 

204243_at 
hsa.miR.200b.4
395362 hsa.miR.410.4378093 0.000754944 

219785_s_at 
hsa.miR.135b.4
395372 hsa.miR.616.4395525 0.000762204 

217744_s_at 
hsa.miR.125a.5
p.4395309 hsa.miR.616.4395525 0.000856678 

209225_x_at 
hsa.miR.363.43
78090 hsa.miR.628.5p.4395544 0.000926545 

219547_at 
hsa.miR.200b.4
395362 hsa.miR.224.4395210 0.000932786 

221704_s_at 
hsa.miR.135b.4
395372 hsa.miR.873.4395467 0.001141837 

205807_s_at 
hsa.miR.224.43
95210 hsa.miR.628.5p.4395544 0.001186811 

203551_s_at 
hsa.miR.135b.4
395372 hsa.miR.616.4395525 0.001191469 

201380_at 
hsa.miR.873.43
95467 hsa.miR.616.4395525 0.001287701 

218264_at 
hsa.miR.628.5p
.4395544 hsa.miR.616.4395525 0.001328277 

207320_x_at 
hsa.miR.410.43
78093 hsa.miR.628.5p.4395544 0.001400914 

218720_x_at 
hsa.miR.200b.4
395362 hsa.miR.197.4373102 0.001477025 

207000_s_at 
hsa.miR.200b.4
395362 hsa.miR.616.4395525 0.001484342 

201608_s_at 
hsa.miR.873.43
95467 hsa.miR.628.5p.4395544 0.001502097 

201566_x_at 
hsa.miR.200b.4
395362 hsa.miR.616.4395525 0.001534329 

201589_at 
hsa.miR.125a.5
p.4395309 hsa.miR.363.4378090 0.001595775 
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Supplementary Table II-1 (continued): Interacting mRNA:miRNA genes (100) from 

the Feasible Solutions (FS) analysis.  

 

Probe ID 
Interacting 

miRNA  Prob > F 

55065_at 
hsa.miR.518f.4
395499 hsa.miR.616.4395525 0.001647671 

200929_at 
hsa.miR.636.43
95199 hsa.miR.628.5p.4395544 0.001668389 

218365_s_at 
hsa.miR.197.43
73102 hsa.miR.518b.4373246 0.001691602 

213434_at 
hsa.miR.628.5p
.4395544 hsa.miR.758.4395180 0.001763671 

210662_at 
hsa.miR.873.43
95467 hsa.miR.616.4395525 0.001784274 

201594_s_at 
hsa.miR.205.43
73093 hsa.miR.363.4378090 0.001825064 

208747_s_at 
hsa.miR.210.43
73089 hsa.miR.363.4378090 0.001914552 

211240_x_at 
hsa.miR.363.43
78090 hsa.miR.616.4395525 0.002018453 

203650_at 
hsa.miR.873.43
95467 hsa.miR.636.4395199 0.002040117 

210114_at 
hsa.miR.873.43
95467 hsa.miR.616.4395525 0.0020832 

205847_at 
hsa.miR.125a.5
p.4395309 hsa.miR.616.4395525 0.002085028 

215146_s_at 
hsa.miR.873.43
95467 hsa.miR.636.4395199 0.002090153 

219121_s_at 
hsa.miR.363.43
78090 hsa.miR.616.4395525 0.002093259 

216095_x_at 
hsa.miR.30c.43
73060 hsa.miR.628.5p.4395544 0.002122563 

219733_s_at 
hsa.miR.221.43
73077 hsa.miR.616.4395525 0.002188182 

200640_at 
hsa.miR.205.43
73093 hsa.miR.628.5p.4395544 0.002204398 

203884_s_at 
hsa.miR.200b.4
395362 hsa.miR.636.4395199 0.002214892 

201426_s_at 
hsa.miR.125a.5
p.4395309 hsa.miR.616.4395525 0.00231613 

218451_at 
hsa.miR.141.43
73137 hsa.miR.139.5p.4395400 0.00236974 
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Supplementary Table II-1 (continued): Interacting mRNA:miRNA genes (100) from 

the Feasible Solutions (FS) analysis.  

 

Probe ID 
Interacting 

miRNA  Prob > F 

205980_s_at 
hsa.miR.197.43
73102 hsa.miR.410.4378093 0.002425474 

201839_s_at 
hsa.miR.200b.4
395362 hsa.miR.628.5p.4395544 0.002481076 

203287_at 
hsa.miR.205.43
73093 hsa.miR.758.4395180 0.002584299 

216641_s_at 
hsa.miR.200c.4
395411 hsa.miR.363.4378090 0.002615599 

213220_at 
hsa.miR.200c.4
395411 hsa.miR.200b.4395362 0.002645648 

217388_s_at 
hsa.miR.200c.4
395411 hsa.miR.628.5p.4395544 0.002692429 

208862_s_at 
hsa.miR.873.43
95467 hsa.miR.616.4395525 0.002761436 

208634_s_at 
hsa.miR.200c.4
395411 hsa.miR.363.4378090 0.002775792 

221646_s_at 
hsa.miR.197.43
73102 hsa.miR.616.4395525 0.002913831 

218526_s_at 
hsa.miR.224.43
95210 hsa.miR.616.4395525 0.0029388 

214136_at 
hsa.miR.873.43
95467 hsa.miR.636.4395199 0.002991045 

206343_s_at 
hsa.miR.200b.4
395362 hsa.miR.197.4373102 0.002996291 

202286_s_at 
hsa.miR.224.43
95210 hsa.miR.628.5p.4395544 0.003004819 

208319_s_at 
hsa.miR.873.43
95467 hsa.miR.636.4395199 0.003172694 

205667_at 
hsa.miR.873.43
95467 hsa.miR.616.4395525 0.003211669 

203883_s_at 
hsa.miR.200b.4
395362 hsa.miR.30c.4373060 0.003239375 

206907_at 
hsa.miR.200c.4
395411 hsa.miR.616.4395525 0.003303832 

207011_s_at 
hsa.miR.200b.4
395362 hsa.miR.628.5p.4395544 0.003310737 

214876_s_at 
hsa.miR.200c.4
395411 hsa.miR.616.4395525 0.003649619 
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Supplementary Table II-1 (continued): Interacting mRNA:miRNA genes (100) from 

the Feasible Solutions (FS) analysis.  

Probe ID 
Interacting 

miRNA  Prob > F 

209110_s_at 
hsa.miR.873.43
95467 hsa.miR.616.4395525 0.003676755 

208009_s_at 
hsa.miR.139.5p
.4395400 hsa.miR.758.4395180 0.003697195 

200982_s_at 
hsa.miR.873.43
95467 hsa.miR.636.4395199 0.003710188 

202087_s_at 
hsa.miR.200b.4
395362 hsa.miR.758.4395180 0.003774459 

204416_x_at 
hsa.miR.410.43
78093 hsa.miR.628.5p.4395544 0.003811245 

221825_at 
hsa.miR.135b.4
395372 hsa.miR.139.5p.4395400 0.003949163 

206015_s_at 
hsa.miR.200c.4
395411 hsa.miR.363.4378090 0.00401435 

209666_s_at 
hsa.miR.197.43
73102 hsa.miR.518b.4373246 0.004126397 

55872_at 
hsa.miR.135b.4
395372 hsa.miR.628.5p.4395544 0.004136091 

217717_s_at 
hsa.miR.205.43
73093 hsa.miR.224.4395210 0.004187272 

219157_at 
hsa.miR.363.43
78090 hsa.miR.616.4395525 0.004209738 

218823_s_at 
hsa.miR.200b.4
395362 hsa.miR.410.4378093 0.004274431 

205263_at 
hsa.miR.200b.4
395362 hsa.miR.335.4373045 0.004329786 

209188_x_at 
hsa.miR.210.43
73089 hsa.miR.363.4378090 0.004396567 

219338_s_at 
hsa.miR.141.43
73137 hsa.miR.224.4395210 0.004645033 

201131_s_at 
hsa.miR.221.43
73077 hsa.miR.616.4395525 0.004743977 

214724_at 
hsa.miR.125a.3
p.4395310 hsa.miR.518f.4395499 0.004792734 

203011_at 
hsa.miR.125a.3
p.4395310 hsa.miR.518f.4395499 0.004849912 

204148_s_at 
hsa.miR.197.43
73102 hsa.miR.616.4395525 0.004863654 
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Supplementary Table II-2: Initial FS candidates that interact with EGFR. Table 

members represent the 85 independent Ensembl IDs identified by the FS analysis.  

 

SOURCE GENE NAME 

ARHGEF9 Cdc42 guanine nucleotide exchange factor (406) 9 
DHRS4:DH
RS4L2:DHR

S4L1 

dehydrogenase/reductase (SDR family) member 4, 
dehydrogenase/reductase (SDR family) member 4 like 2, 
dehydrogenase/reductase (SDR family) member 4 like 1 

FANCF Fanconi anemia, complementation group F 

FBXO31 F-box protein 31 

GNG11 guanine nucleotide binding protein (G protein), gamma 11 

NRG1 neuregulin 1 

NUBP2 nucleotide binding protein 2 

PMP22 peripheral myelin protein 22 

RAB11FIP2 RAB11 family interacting protein 2 (class I) 

RNMTL1 RNA methyltransferase like 1 

S100A3 S100 calcium binding protein A3 

TFE3 transcription factor binding to IGHM enhancer 3 

TNFSF9 tumor necrosis factor (ligand) superfamily, member 9 

ACTA2 actin, alpha 2, smooth muscle, aorta 

ADCY9 adenylate cyclase 9 

ALDH1B1 aldehyde dehydrogenase 1 family, member B1 

ANGEL2 angel homolog 2 (Drosophila) 

ANXA6 annexin A6 

ARHGEF40 Rho guanine nucleotide exchange factor (406) 40 

ATP5G1 ATP synthase, H+ transporting, mitochondrial Fo complex, subunit C1 
(subunit 9) 

BCCIP BRCA2 and CDKN1A interacting protein 

BRCC3 BRCA1/BRCA2-containing complex, subunit 3 

C1QBP complement component 1, q subcomponent binding protein 

CAMK1 calcium/calmodulin-dependent protein kinase I 
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Supplementary Table II-2 (continued): Initial FS candidates that interact with EGFR. 

Table members represent the 85 independent Ensembl IDs identified by the FS analysis.  

 

SOURCE GENE NAME 

COX15 cytochrome c oxidase assembly homolog 15 (yeast) 

CRTAP cartilage associated protein 

CTSL cathepsin L 

CUTC cutC copper transporter 

DARS2 aspartyl-tRNA synthetase 2, mitochondrial 

DIP2C disco-interacting protein 2 homolog C 

DIXDC1 DIX domain containing 1 

DOCK10 dedicator of cytokinesis 10 

DPYSL3 dihydropyrimidinase-like 3 

EGFR epidermal growth factor receptor 

EIF3A eukaryotic translation initiation factor 3, subunit A 

FASTKD1 FAST kinase domains 1 

FBXL15 F-box and leucine-rich repeat protein 15 

GLRX glutaredoxin (thioltransferase) 

HS1BP3 HCLS1 binding protein 3 

HSPA12A heat shock 70kDa protein 12A 

ID2 inhibitor of DNA binding 2, dominant negative helix-loop-helix 
protein 

IMPA1 inositol(myo)-1(or 4)-monophosphatase 1 

INVS Inversin 

KCTD9 potassium channel tetramerization domain containing 9 

KYNU Kynureninase 

LIG3 ligase III, DNA, ATP-dependent 

MID1IP1 MID1 interacting protein 1 

MTMR9 myotubularin related protein 9 
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Supplementary Table II-2 (continued): Initial FS candidates that interact with EGFR. 

Table members represent the 85 independent Ensembl IDs identified by the FS analysis.  

 

SOURCE GENE NAME 

PFAS phosphoribosylformylglycinamidine synthase 

POMZP3 POM121 and ZP3 fusion 

PPP3CC protein phosphatase 3, catalytic subunit, gamma isozyme 

PROCR protein C receptor, endothelial 

PWP1 PWP1 homolog, endonuclein 

RANGRF RAN guanine nucleotide release factor 

RBM3 RNA binding motif (RNP1, RRM) protein 3 

SACS sacsin molecular chaperone 

SMC1A structural maintenance of chromosomes 1A 

STX2 syntaxin 2 

TNPO1 transportin 1 

TTC28 tetratricopeptide repeat domain 28 

TUBGCP2 tubulin, gamma complex associated protein 2 

UIMC1 ubiquitin interaction motif containing 1 

USP9X ubiquitin specific peptidase 9, X-linked 

VIM Vimentin 

VPS33B vacuolar protein sorting 33 homolog B (yeast) 

WRN Werner syndrome, RecQ helicase-like 

ZC3H14 zinc finger CCCH-type containing 14 

ZEB1 zinc finger E-box binding homeobox 1 

CHUK conserved helix-loop-helix ubiquitous kinase 

PBK PDZ binding kinase 

PTEN phosphatase and tensin homolog 
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Supplementary Table II-3: G1-X-G2 Analysis-Induced EGFRI Resistance Network 

Members. Table members were generated using the 85 independent Ensembl IDs 

identified by the FS analysis. Table members generated by the STRING analysis 

considering the scenario G1-X-G2 where G1 and G2 are from the original list of 85 

Ensembl IDs of mRNA found to be upregulated in EGFRI resistant NSCLC cells and X is 

any other node that connects them.   

 

SYMBOL GENE NAME TYPE 

ACACB acetyl-CoA carboxylase beta Induced 

ACTA1 actin, alpha 1, skeletal muscle Induced 

ACTA2 actin, alpha 2, smooth muscle, aorta Input 

ADCY9 adenylate cyclase 9 Input 

ADSS adenylosuccinate synthase Induced 

AKT1 v-akt murine thymoma viral oncogene homolog 1 Induced 

AKT2 v-akt murine thymoma viral oncogene homolog 2 Induced 

ALDH1B1 aldehyde dehydrogenase 1 family, member B1 Input 

ANGEL2 angel homolog 2 (Drosophila) Input 

ANXA6 annexin A6 Input 

AP2A1 adaptor-related protein complex 2, alpha 1 subunit Induced 

APC adenomatous polyposis coli Induced 

AR androgen receptor Induced 
ARHGEF

40 Rho guanine nucleotide exchange factor (406) 40 Input 

ARHGEF
9 Cdc42 guanine nucleotide exchange factor (406) 9 Input 

ARRB2 arrestin, beta 2 Induced 

ATM ATM serine/threonine kinase Induced 

ATP5C1 ATP synthase, H+ transporting, mitochondrial F1 
complex, gamma polypeptide 1 Induced 

ATP5G1 ATP synthase, H+ transporting, mitochondrial Fo 
complex, subunit C1 (subunit 9) Input 

AURKA aurora kinase A Induced 

BABAM1 BRISC and BRCA1 A complex member 1 Induced 
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Supplementary Table II-3 (continued): G1-X-G2 Analysis-Induced EGFRI Resistance 

Network Members.  

 

SYMBOL GENE NAME TYPE 

BARD1 BRCA1 associated RING domain 1 Induced 

BCCIP BRCA2 and CDKN1A interacting protein Input 

BCL2 B-cell CLL/lymphoma 2 Induced 

BIRC2 baculoviral IAP repeat containing 2 Induced 

BIRC3 baculoviral IAP repeat containing 3 Induced 

BLM Bloom syndrome, RecQ helicase-like Induced 

BRCA1 breast cancer 1, early onset Induced 

BRCC3 BRCA1/BRCA2-containing complex, subunit 3 Input 

BRE brain and reproductive organ-expressed (TNFRSF1A 
modulator) Induced 

BTRC beta-transducin repeat containing E3 ubiquitin protein 
ligase Induced 

C1QBP complement component 1, q subcomponent binding 
protein Input 

CAD carbamoyl-phosphate synthetase 2, aspartate 
transcarbamylase, and dihydroorotase Induced 

CALM1 
CALM2 

calmodulin 1 (phosphorylase kinase, delta), calmodulin 2 
(phosphorylase kinase, delta) Induced 

CALM2 calmodulin 2 (phosphorylase kinase, delta) Induced 

CAMK1 calcium/calmodulin-dependent protein kinase I Input 

CAPZA1 capping protein (actin filament) muscle Z-line, alpha 1 Induced 

CAPZB capping protein (actin filament) muscle Z-line, beta Induced 

CASP8 caspase 8, apoptosis-related cysteine peptidase Induced 

CAV1 caveolin 1, caveolae protein, 22kDa Induced 

CBL Cbl proto-oncogene, E3 ubiquitin protein ligase Induced 

CCND1 cyclin D1 Induced 

CCT4 chaperonin containing TCP1, subunit 4 (delta) Induced 

CD2AP CD2-associated protein Induced 
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Supplementary Table II-3 (continued): G1-X-G2 Analysis-Induced EGFRI Resistance 

Network Members.  

 

SYMBOL GENE NAME TYPE 

CDC37 cell division cycle 37 Induced 

CDH1 cadherin 1, type 1 Induced 

CDK1 cyclin-dependent kinase 1 Induced 

CDK2 cyclin-dependent kinase 2 Induced 

CDKN1A cyclin-dependent kinase inhibitor 1A (p21, Cip1) Induced 

CDKN1B cyclin-dependent kinase inhibitor 1B (p27, Kip1) Induced 

CFL1 cofilin 1 (non-muscle) Induced 

CHAF1A chromatin assembly factor 1, subunit A (p150) Induced 
CHORDC

1 
cysteine and histidine-rich domain (CHORD) 
containing 1 Induced 

CHUK conserved helix-loop-helix ubiquitous kinase Input 

CKAP5 cytoskeleton associated protein 5 Induced 

CNOT4 CCR4-NOT transcription complex, subunit 4 Induced 

COPS5 COP9 signalosome subunit 5 Induced 

COX15 cytochrome c oxidase assembly homolog 15 (yeast) Input 

CREBBP CREB binding protein Induced 

CRTAP cartilage associated protein Input 

CSE1L CSE1 chromosome segregation 1-like (yeast) Induced 

CSNK2A1 casein kinase 2, alpha 1 polypeptide Induced 

CSNK2A2 casein kinase 2, alpha prime polypeptide Induced 

CTNNB1 catenin (cadherin-associated protein), beta 1, 88kDa Induced 

CTSL cathepsin L Input 

CUL1 cullin 1 Induced 
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Supplementary Table II-3 (continued): G1-X-G2 Analysis-Induced EGFRI Resistance 

Network Members.  

 

SYMBOL GENE NAME TYPE 

CUTC cutC copper transporter Input 

DARS2 aspartyl-tRNA synthetase 2, mitochondrial Input 

DAZAP1 DAZ associated protein 1 Induced 

DCP2 decapping mRNA 2 Induced 

DHRS4 
DHRS4L2 
DHRS4L1 

dehydrogenase/reductase (SDR family) member 4, 
dehydrogenase/reductase (SDR family) member 4 like 
2, dehydrogenase/reductase (SDR family) member 4 
like 1 

Input 

DIP2C disco-interacting protein 2 homolog C Input 

DIXDC1 DIX domain containing 1 Input 

DKC1 dyskeratosis congenita 1, dyskerin Induced 

DLG1 discs, large homolog 1 (Drosophila) Induced 

DOCK10 dedicator of cytokinesis 10 Input 

DPYSL3 dihydropyrimidinase-like 3 Input 

DVL2 dishevelled segment polarity protein 2 Induced 

EEF1A1 eukaryotic translation elongation factor 1 alpha 1 Induced 

EGF epidermal growth factor Induced 

EGFR epidermal growth factor receptor Input 

EIF2AK2 eukaryotic translation initiation factor 2-alpha kinase 2 Induced 

EIF3A eukaryotic translation initiation factor 3, subunit A Input 

EIF4A3 eukaryotic translation initiation factor 4A3 Induced 

ELAVL1 ELAV like RNA binding protein 1 Induced 

EP300 E1A binding protein p300 Induced 

EPN1 epsin 1 Induced 

EPS15 epidermal growth factor receptor pathway substrate 15 Induced 
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Supplementary Table II-3 (continued): G1-X-G2 Analysis-Induced EGFRI Resistance 

Network Members.  

 

SYMBOL GENE NAME TYPE 

ERBB2 erb-b2 receptor tyrosine kinase 2 Induced 

ERBB3 erb-b2 receptor tyrosine kinase 3 Induced 

ERBB4 erb-b2 receptor tyrosine kinase 4 Induced 

ERP44 endoplasmic reticulum protein 44 Induced 

ESR1 estrogen receptor 1 Induced 

EXOSC10 exosome component 10 Induced 

FAM175A family with sequence similarity 175, member A Induced 

FAM175B family with sequence similarity 175, member B Induced 

FANCA Fanconi anemia, complementation group A Induced 

FANCF Fanconi anemia, complementation group F Input 

FANCG Fanconi anemia, complementation group G Induced 

FANCM Fanconi anemia, complementation group M Induced 

FASTKD1 FAST kinase domains 1 Input 

FBXL15 F-box and leucine-rich repeat protein 15 Input 

FBXO31 F-box protein 31 Input 

FBXW7 F-box and WD repeat domain containing 7, E3 
ubiquitin protein ligase Induced 

GAB1 GRB2-associated binding protein 1 Induced 

GAPDH glyceraldehyde-3-phosphate dehydrogenase Induced 

GDA guanine deaminase Induced 

GLRX glutaredoxin (thioltransferase) Input 

GNG11 guanine nucleotide binding protein (G protein), gamma 
11 Input 

GNS glucosamine (N-acetyl)-6-sulfatase Induced 
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Supplementary Table II-3 (continued): G1-X-G2 Analysis-Induced EGFRI Resistance 

Network Members.   

 

SYMBOL GENE NAME TYPE 

GPHN Gephyrin Induced 

GRSF1 G-rich RNA sequence binding factor 1 Induced 

H2AFV H2A histone family, member V Induced 

H2AFX H2A histone family, member X Induced 

HDAC1 histone deacetylase 1 Induced 

HECW2 HECT, C2 and WW domain containing E3 ubiquitin 
protein ligase 2 Induced 

HES1 hes family bHLH transcription factor 1 Induced 

HGS hepatocyte growth factor-regulated tyrosine kinase 
substrate Induced 

HIST3H3 histone cluster 3, H3 Induced 
HNRNPA

1 heterogeneous nuclear ribonucleoprotein A1 Induced 

HNRNPF heterogeneous nuclear ribonucleoprotein F Induced 

HRAS Harvey rat sarcoma viral oncogene homolog Induced 

HS1BP3 HCLS1 binding protein 3 Input 
HSP90A

A1 
heat shock protein 90kDa alpha (cytosolic), class A 
member 1 Induced 

HSP90A
B1 

heat shock protein 90kDa alpha (cytosolic), class B 
member 1 Induced 

HSP90B
1 heat shock protein 90kDa beta (Grp94), member 1 Induced 

HSPA12
A heat shock 70kDa protein 12A Input 

HSPA4 heat shock 70kDa protein 4 Induced 

HSPA5 heat shock 70kDa protein 5 (glucose-regulated protein, 
78kDa) Induced 

HSPA9 heat shock 70kDa protein 9 (mortalin) Induced 

HSPB1 heat shock 27kDa protein 1 Induced 

HTT Huntingtin Induced 
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Supplementary Table II-3 (continued): G1-X-G2 Analysis-Induced EGFRI Resistance 

Network Members.  

 

SYMBOL GENE NAME TYPE 

HUWE1 HECT, UBA and WWE domain containing 1, E3 
ubiquitin protein ligase Induced 

ID2 inhibitor of DNA binding 2, dominant negative helix-
loop-helix protein Input 

IGBP1 immunoglobulin (CD79A) binding protein 1 Induced 

IGF1R insulin-like growth factor 1 receptor Induced 

IGFBP3 insulin-like growth factor binding protein 3 Induced 

IKBKAP inhibitor of kappa light polypeptide gene enhancer in B-
cells, kinase complex-associated protein Induced 

IMPA1 inositol(myo)-1(or 4)-monophosphatase 1 Input 

INVS Inversin Input 

IQGAP1 IQ motif containing GTPase activating protein 1 Induced 

IRS1 insulin receptor substrate 1 Induced 

IRS2 insulin receptor substrate 2 Induced 

IRS4 insulin receptor substrate 4 Induced 

ITCH itchy E3 ubiquitin protein ligase Induced 

KCTD9 potassium channel tetramerization domain containing 9 Input 

KEAP1 kelch-like ECH-associated protein 1 Induced 

KNG1 kininogen 1 Induced 

KRAS Kirsten rat sarcoma viral oncogene homolog Induced 

KYNU Kynureninase Input 
LAMTOR

3 
late endosomal/lysosomal adaptor, MAPK and MTOR 
activator 3 Induced 

LDHA lactate dehydrogenase A Induced 
LDHAL6

B lactate dehydrogenase A-like 6B Induced 

LIG3 ligase III, DNA, ATP-dependent Input 
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Supplementary Table II-3 (continued): G1-X-G2 Analysis-Induced EGFRI Resistance 

Network Members.  

 

SYMBOL GENE NAME TYPE 

LIN7C lin-7 homolog C (C. elegans) Induced 

LRRK2 leucine-rich repeat kinase 2 Induced 

MAD2L1 MAD2 mitotic arrest deficient-like 1 (yeast) Induced 

MAGOH mago homolog, exon junction complex core 
component Induced 

MAP1LC3
A microtubule-associated protein 1 light chain 3 alpha Induced 

MAP3K1 mitogen-activated protein kinase kinase kinase 1, E3 
ubiquitin protein ligase Induced 

MAP3K3 mitogen-activated protein kinase kinase kinase 3 Induced 

MAP3K5 mitogen-activated protein kinase kinase kinase 5 Induced 

MAP4K4 mitogen-activated protein kinase kinase kinase kinase 
4 

Induced 

MAPK1 mitogen-activated protein kinase 1 Induced 

MAPT microtubule-associated protein tau Induced 

MARK2 MAP/microtubule affinity-regulating kinase 2 Induced 

MAVS mitochondrial antiviral signaling protein Induced 

MDC1 mediator of DNA-damage checkpoint 1 Induced 

MET MET proto-oncogene, receptor tyrosine kinase Induced 

MID1IP1 MID1 interacting protein 1 Input 

MINOS1 mitochondrial inner membrane organizing system 1 Induced 

MLH3 mutL homolog 3 Induced 

MRPS7 mitochondrial ribosomal protein S7 Induced 

MSH2 mutS homolog 2 Induced 

MSI1 musashi RNA-binding protein 1 Induced 

MSI2 musashi RNA-binding protein 2 Induced 
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Supplementary Table II-3 (continued): G1-X-G2 Analysis-Induced EGFRI Resistance 

Network Members.  

 

SYMBOL GENE NAME TYPE 

MTMR9 myotubularin related protein 9 Input 

MTOR mechanistic target of rapamycin (serine/threonine 
kinase) Induced 

MVP major vault protein Induced 

MYH11 myosin, heavy chain 11, smooth muscle Induced 

MYH9 myosin, heavy chain 9, non-muscle Induced 

NAGK N-acetylglucosamine kinase Induced 

NCOA3 nuclear receptor coactivator 3 Induced 

NDFIP1 Nedd4 family interacting protein 1 Induced 

NDFIP2 Nedd4 family interacting protein 2 Induced 

NEDD4 neural precursor cell expressed, developmentally down-
regulated 4, E3 ubiquitin protein ligase Induced 

NEDD8 neural precursor cell expressed, developmentally down-
regulated 8 Induced 

NMI N-myc (and STAT) interactor Induced 

NOTCH1 notch 1 Induced 

NOTCH2 notch 2 Induced 

NOTCH3 notch 3 Induced 

NR3C1 nuclear receptor subfamily 3, group C, member 1 
(glucocorticoid receptor) Induced 

NRAS neuroblastoma RAS viral (v-ras) oncogene homolog Induced 

NRG1 neuregulin 1 Input 

NSF N-ethylmaleimide-sensitive factor Induced 

NSMCE2 NSE2/MMS21 homolog, SMC5-SMC6 complex SUMO 
ligase Induced 

NUBP2 nucleotide binding protein 2 Input 

NUDT21 nudix (nucleoside diphosphate linked moiety X)-type 
motif 21 Induced 
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Supplementary Table II-3 (continued): G1-X-G2 Analysis-Induced EGFRI Resistance 

Network Members.   

 

SYMBOL GENE NAME TYPE 

NUP153 nucleoporin 153kDa Induced 

NXF1 nuclear RNA export factor 1 Induced 

OAS3 2'-5'-oligoadenylate synthetase 3, 100kDa Induced 

PABPC4 poly(A) binding protein, cytoplasmic 4 (inducible form) Induced 

PARP1 poly (ADP-ribose) polymerase 1 Induced 

PBK PDZ binding kinase Input 

PCNA proliferating cell nuclear antigen Induced 

PDGFRB platelet-derived growth factor receptor, beta polypeptide Induced 

PEX19 peroxisomal biogenesis factor 19 Induced 

PEX5 peroxisomal biogenesis factor 5 Induced 

PFAS phosphoribosylformylglycinamidine synthase Input 

PIK3C2A phosphatidylinositol-4-phosphate 3-kinase, catalytic 
subunit type 2 alpha Induced 

PIP5K1A phosphatidylinositol-4-phosphate 5-kinase, type I, alpha Induced 

PLK1 polo-like kinase 1 Induced 

PLK2 polo-like kinase 2 Induced 

PLK3 polo-like kinase 3 Induced 

PLK4 polo-like kinase 4 Induced 

PLK5 polo-like kinase 5 Induced 

PML promyelocytic leukemia Induced 

PMP22 peripheral myelin protein 22 Input 

POLB polymerase (DNA directed), beta Induced 

POLR1C polymerase (RNA) I polypeptide C, 30kDa Induced 
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Supplementary Table II-3 (continued): G1-X-G2 Analysis-Induced EGFRI Resistance 

Network Members.   

 

SYMBOL GENE NAME TYPE 

POMZP3 POM121 and ZP3 fusion Input 

PPP2CA protein phosphatase 2, catalytic subunit, alpha 
isozyme Induced 

PPP3CA protein phosphatase 3, catalytic subunit, alpha 
isozyme Induced 

PPP3CC protein phosphatase 3, catalytic subunit, gamma 
isozyme Input 

PRDX1 peroxiredoxin 1 Induced 

PRKACA protein kinase, cAMP-dependent, catalytic, alpha Induced 

PRKCA protein kinase C, alpha Induced 

PRKCB protein kinase C, beta Induced 

PRKCD protein kinase C, delta Induced 

PRKCZ protein kinase C, zeta Induced 

PRKD1 protein kinase D1 Induced 

PRKDC protein kinase, DNA-activated, catalytic polypeptide Induced 

PROCR protein C receptor, endothelial Input 

PSMA2 proteasome subunit alpha 2 Induced 

PSMA3 proteasome subunit alpha 3 Induced 

PSMA4 proteasome subunit alpha 4 Induced 

PSMA7 proteasome subunit alpha 7 Induced 

PSMA8 proteasome subunit alpha 8 Induced 

PSMB1 proteasome subunit beta 1 Induced 

PSMB2 proteasome subunit beta 2 Induced 

PSMB4 proteasome subunit beta 4 Induced 

PSMD4 proteasome 26S subunit, non-ATPase 4 Induced 
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Supplementary Table II-3 (continued): G1-X-G2 Analysis-Induced EGFRI Resistance 

Network Members.  

 

SYMBOL GENE NAME TYPE 

PSMD6 proteasome 26S subunit, non-ATPase 6 Induced 

PTEN phosphatase and tensin homolog Input 

PTK2 protein tyrosine kinase 2 Induced 

PTMA prothymosin, alpha, prothymosin alpha-like Induced 

PTPN1 protein tyrosine phosphatase, non-receptor type 1 Induced 

PTPN11 protein tyrosine phosphatase, non-receptor type 11 Induced 

PWP1 PWP1 homolog, endonuclein Input 

RAB11A RAB11A, member RAS oncogene family Induced 

RAB11B RAB11B, member RAS oncogene family Induced 
RAB11FI

P2 RAB11 family interacting protein 2 (class I) Input 

RAB7A RAB7A, member RAS oncogene family Induced 

RAC3 ras-related C3 botulinum toxin substrate 3 (rho family, 
small GTP binding protein Rac3) Induced 

RAD23B RAD23 homolog B, nucleotide excision repair protein Induced 

RAD51 RAD51 recombinase Induced 

RAF1 Raf-1 proto-oncogene, serine/threonine kinase Induced 

RAN RAN, member RAS oncogene family Induced 

RANGRF RAN guanine nucleotide release factor Input 

RASA1 RAS p21 protein activator (GTPase activating protein) 1 Induced 

RBM3 RNA binding motif (RNP1, RRM) protein 3 Input 

RBX1 ring-box 1, E3 ubiquitin protein ligase Induced 

RIPK1 receptor (TNFRSF)-interacting serine-threonine kinase 
1 Induced 

RNMTL1 RNA methyltransferase like 1 Input 
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Supplementary Table II-3 (continued): G1-X-G2 Analysis-Induced EGFRI Resistance 

Network Members.  

 

SYMBOL GENE NAME TYPE 

RPL17 ribosomal protein L17 Induced 

RPL5 ribosomal protein L5 Induced 

RPS20 ribosomal protein S20 Induced 

RPS23 ribosomal protein S23 Induced 

RPS27A ribosomal protein S27a Induced 

RPS7 ribosomal protein S7 Induced 

RPTOR regulatory associated protein of MTOR, complex 1 Induced 

RQCD1 RCD1 required for cell differentiation1 homolog (S. 
pombe) Induced 

RUVBL1 RuvB-like AAA ATPase 1 Induced 

S100A1 S100 calcium binding protein A1 Induced 

S100A3 S100 calcium binding protein A3 Input 

S100B S100 calcium binding protein B Induced 

SACS sacsin molecular chaperone Input 

SEC23A Sec23 homolog A, COPII coat complex component Induced 

SGTA small glutamine-rich tetratricopeptide repeat (407)-
containing, alpha Induced 

SHARPI
N SHANK-associated RH domain interactor Induced 

SIN3A SIN3 transcription regulator family member A Induced 

SIRT1 sirtuin 1 Induced 

SKP1 S-phase kinase-associated protein 1 Induced 

SLC25A3 solute carrier family 25 (mitochondrial carrier; 
phosphate carrier), member 3 Induced 

SLC9A3
R1 

solute carrier family 9, subfamily A (NHE3, cation 
proton antiporter 3), member 3 regulator 1 Induced 

SMAD1 SMAD family member 1 Induced 
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Supplementary Table II-3 (continued): G1-X-G2 Analysis-Induced EGFRI Resistance 

Network Members.  

 

SYMBOL GENE NAME TYPE 

SMAD 2 SMAD family member 2 Induced 

SMAD 3 SMAD family member 3 Induced 

SMAD 4 SMAD family member 4 Induced 

SMC1A structural maintenance of chromosomes 1A Input 

SMS spermine synthase Induced 

SMURF1 SMAD specific E3 ubiquitin protein ligase 1 Induced 

SNCA synuclein, alpha (non A4 component of amyloid 
precursor) Induced 

SNRPA small nuclear ribonucleoprotein polypeptide A Induced 

SPTAN1 spectrin, alpha, non-erythrocytic 1 Induced 

SRC SRC proto-oncogene, non-receptor tyrosine kinase Induced 

SSU72 SSU72 homolog, RNA polymerase II CTD 
phosphatase Induced 

STAT5A signal transducer and activator of transcription 5A Induced 

STUB1 STIP1 homology and U-box containing protein 1, E3 
ubiquitin protein ligase Induced 

STX2 syntaxin 2 Input 

SUMO1 small ubiquitin-like modifier 1 Induced 

SUMO2 small ubiquitin-like modifier 2 Induced 

SUMO3 small ubiquitin-like modifier 3 Induced 

TCP1 t-complex 1 Induced 

TERT telomerase reverse transcriptase Induced 

TFE3 transcription factor binding to IGHM enhancer 3 Input 

TJP1 tight junction protein 1 Induced 

TLR4 toll-like receptor 4 Induced 
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Supplementary Table II-3 (continued): G1-X-G2 Analysis-Induced EGFRI Resistance 

Network Members.  

 

SYMBOL GENE NAME TYPE 

TNFRSF1A tumor necrosis factor receptor superfamily, member 
1A Induced 

TNFSF9 tumor necrosis factor (ligand) superfamily, member 9 Input 

TNPO1 transportin 1 Input 

TOM1L1 target of myb1 like 1 membrane trafficking protein Induced 

TOMM40 translocase of outer mitochondrial membrane 40 
homolog (yeast) Induced 

TOP2A topoisomerase (DNA) II alpha Induced 

TOP2B topoisomerase (DNA) II beta Induced 

TOP3B topoisomerase (DNA) III beta Induced 

TP53 tumor protein p53 Induced 

TP53BP1 tumor protein p53 binding protein 1 Induced 

TPR translocated promoter region, nuclear basket protein Induced 

TRAF1 TNF receptor-associated factor 1 Induced 

TRAF2 TNF receptor-associated factor 2 Induced 

TTC28 tetratricopeptide repeat domain 28 Input 

TUBA1A tubulin, alpha 1a Induced 

TUBA4A tubulin, alpha 4a Induced 

TUBGCP2 tubulin, gamma complex associated protein 2 Input 

TUBGCP4 tubulin, gamma complex associated protein 4 Induced 

TXN Thioredoxin Induced 

UBA52 ubiquitin A-52 residue ribosomal protein fusion 
product 1 Induced 

UBB ubiquitin B Induced 

UBC ubiquitin C Induced 
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Supplementary Table II-3 (continued): G1-X-G2 Analysis-Induced EGFRI Resistance 

Network Members.  

 

SYMBOL GENE NAME TYPE 

UBE2D1 ubiquitin-conjugating enzyme E2D 1 Induced 

UBE2D2 ubiquitin-conjugating enzyme E2D 2 Induced 

UBE2I ubiquitin-conjugating enzyme E2I Induced 

UBE2L3 ubiquitin-conjugating enzyme E2L 3 Induced 

UBE2N ubiquitin-conjugating enzyme E2N Induced 

UBE2V2 ubiquitin-conjugating enzyme E2 variant 2 Induced 

UBL4A ubiquitin-like 4A Induced 

UBQLN1 ubiquilin 1 Induced 

UBQLN2 ubiquilin 2 Induced 

UBQLN4 ubiquilin 4 Induced 

UBQLNL ubiquilin-like Induced 

UBR4 ubiquitin protein ligase E3 component n-recognin 4 Induced 

UBR7 ubiquitin protein ligase E3 component n-recognin 7 
(putative) Induced 

UBXN7 UBX domain protein 7 Induced 

UCHL3 ubiquitin carboxyl-terminal esterase L3 (ubiquitin 
thiolesterase) Induced 

UIMC1 ubiquitin interaction motif containing 1 Input 

USP10 ubiquitin specific peptidase 10 Induced 

USP14 ubiquitin specific peptidase 14 (tRNA-guanine 
transglycosylase) Induced 

USP34 ubiquitin specific peptidase 34 Induced 

USP39 ubiquitin specific peptidase 39 Induced 

USP7 ubiquitin specific peptidase 7 (herpes virus-associated) Induced 

USP8 ubiquitin specific peptidase 8 Induced 
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Supplementary Table II-3 (continued): G1-X-G2 Analysis-Induced EGFRI Resistance 

Network Members.  

 

SYMBOL GENE NAME TYPE 

USP9X ubiquitin specific peptidase 9, X-linked Input 

UVRAG UV radiation resistance associated Induced 

VIM Vimentin Input 

VPS16 vacuolar protein sorting 16 homolog (S. cerevisiae) Induced 

VPS33B vacuolar protein sorting 33 homolog B (yeast) Input 

WASL Wiskott-Aldrich syndrome-like Induced 

WDHD1 WD repeat and HMG-box DNA binding protein 1 Induced 

WDR48 WD repeat domain 48 Induced 

WRN Werner syndrome, RecQ helicase-like Input 

WWP1 WW domain containing E3 ubiquitin protein ligase 1 Induced 

WWP2 WW domain containing E3 ubiquitin protein ligase 2 Induced 

XIAP X-linked inhibitor of apoptosis, E3 ubiquitin protein 
ligase Induced 

XRCC5 X-ray repair complementing defective repair in Chinese 
hamster cells 5 (double-strand-break rejoining) Induced 

XRCC6 X-ray repair complementing defective repair in Chinese 
hamster cells 6 Induced 

YAP1 Yes-associated protein 1 Induced 

YBX1 Y box binding protein 1 Induced 

YEATS4 YEATS domain containing 4 Induced 

YKT6 YKT6 v-SNARE homolog (S. cerevisiae) Induced 

YWHAB tyrosine 3-monooxygenase/tryptophan 5-
monooxygenase activation protein, beta Induced 

YWHAE tyrosine 3-monooxygenase/tryptophan 5-
monooxygenase activation protein, epsilon Induced 

YWHAH tyrosine 3-monooxygenase/tryptophan 5-
monooxygenase activation protein, eta Induced 

 

  



APPENDIX II 

179 
 

Supplementary Table II-3 (continued): G1-X-G2 Analysis-Induced EGFRI Resistance 

Network Members.  

 

SYMBOL GENE NAME TYPE 

YWHAZ tyrosine 3-monooxygenase/tryptophan 5-
monooxygenase activation protein, zeta Induced 

ZC3H14 zinc finger CCCH-type containing 14 Input 

ZEB1 zinc finger E-box binding homeobox 1 Input 

ZYX Zyxin Induced 
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Supplementary Table II-4: G1-X-G2 Analysis-Induced EGFRI Resistance Network 

Members that interact with CK2α or CK2α’ within one edge. Table members were 

generated using the 85 independent Ensembl IDs identified by the FS analysis. Table 

members generated by the STRING analysis considering the scenario G1-X-G2 where 

G1 and G2 are from the original list of 85 Ensembl IDs of mRNA found to be upregulated 

in EGFRI resistant NSCLC cells and X is any other node that connects them. Table 

members are from the complete network of 385 proteins that interact with CK2α or CK2α’ 

within one edge. 

 

SYMBOL GENE NAME TYPE 

AKT1 v-akt murine thymoma viral oncogene homolog 1 Induced 

APC adenomatous polyposis coli Induced 

ARRB2 arrestin, beta 2 Induced 

BRCA1 breast cancer 1, early onset Induced 

CALM1:CALM2 calmodulin 1 (phosphorylase kinase, delta), 
calmodulin 2 (phosphorylase kinase, delta) Induced 

CAV1 caveolin 1, caveolae protein, 22kDa Induced 

CDC37 cell division cycle 37 Induced 

CDH1 cadherin 1, type 1 Induced 

CDK1 cyclin-dependent kinase 1 Induced 

CDKN1A cyclin-dependent kinase inhibitor 1A (p21, Cip1) Induced 

CHUK conserved helix-loop-helix ubiquitous kinase Input 

CREBBP CREB binding protein Induced 

CSNK2A1 casein kinase 2, alpha 1 polypeptide Induced 

CSNK2A2 casein kinase 2, alpha prime polypeptide Induced 

CTNNB1 catenin (cadherin-associated protein), beta 1, 
88kDa Induced 

DVL2 dishevelled segment polarity protein 2 Induced 

H2AFX H2A histone family, member X Induced 

HDAC1 histone deacetylase 1 Induced 

HSP90AA1 heat shock protein 90kDa alpha (cytosolic), class 
A member 1 Induced 
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Supplementary Table II-4 (continued): G1-X-G2 Analysis-Induced EGFRI Resistance 

Network Members that interact with CK2α or CK2α’ within one edge. Table members 

were generated using the 85 independent Ensembl IDs identified by the FS analysis. 

Table members generated by the STRING analysis considering the scenario G1-X-G2 

where G1 and G2 are from the original list of 85 Ensembl IDs of mRNA found to be 

upregulated in EGFRI resistant NSCLC cells and X is any other node that connects them. 

Table members are from the complete network of 385 proteins that interact with CK2α or 

CK2α’ within one edge. 

 

SYMBOL GENE NAME TYPE 

HSP90AB1 
heat shock protein 90kDa alpha (cytosolic), class B 
member 1 

Induced 

HSP90B1 heat shock protein 90kDa beta (Grp94), member 1 Induced 

HSPA4 heat shock 70kDa protein 4 Induced 

IGFBP3 insulin-like growth factor binding protein 3 Induced 

IRS1 insulin receptor substrate 1 Induced 

ITCH itchy E3 ubiquitin protein ligase Induced 

MAP1LC3A microtubule-associated protein 1 light chain 3 alpha Induced 

MAPT microtubule-associated protein tau Induced 

MYH9 myosin, heavy chain 9, non-muscle Induced 

PBK PDZ binding kinase Input 

PML promyelocytic leukemia Induced 

PRKDC protein kinase, DNA-activated, catalytic polypeptide Induced 

PSMA3 proteasome subunit alpha 3 Induced 

PSMA4 proteasome subunit alpha 4 Induced 

PTEN phosphatase and tensin homolog Input 

PTPN1 protein tyrosine phosphatase, non-receptor type 1 Induced 

RPL5 ribosomal protein L5 Induced 

SIN3A SIN3 transcription regulator family member A Induced 

SIRT1 sirtuin 1 Induced 

SNCA synuclein, alpha (non A4 component of amyloid 
precursor) Induced 
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Supplementary Table II-4 (continued): G1-X-G2 Analysis-Induced EGFRI Resistance 

Network Members that interact with CK2α or CK2α’ within one edge. Table members 

were generated using the 85 independent Ensembl IDs identified by the FS analysis. 

Table members generated by the STRING analysis considering the scenario G1-X-G2 

where G1 and G2 are from the original list of 85 Ensembl IDs of mRNA found to be 

upregulated in EGFRI resistant NSCLC cells and X is any other node that connects them. 

Table members are from the complete network of 385 proteins that interact with CK2α or 

CK2α’ within one edge. 

 

SYMBOL GENE NAME TYPE 

SRC SRC proto-oncogene, non-receptor tyrosine kinase Induced 

TOP2A topoisomerase (DNA) II alpha Induced 

TOP2B topoisomerase (DNA) II beta Induced 

TP53 tumor protein p53 Induced 

UBC ubiquitin C Induced 

WDR48 WD repeat domain 48 Induced 

XRCC5 
X-ray repair complementing defective repair in 
Chinese hamster cells 5 (double-strand-break 
rejoining) 

Induced 

XRCC6 X-ray repair complementing defective repair in 
Chinese hamster cells 6 Induced 
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Supplementary Table II-5: G1-X-G2 Analysis-Induced EGFRI Resistance Network 

Members that interact with CK2α or CK2α’ within one or two edges. Table members 

were generated using the 85 independent Ensembl IDs identified by the FS analysis. 

Table members generated by the STRING analysis considering the scenario G1-X-G2 

where G1 and G2 are from the original list of 85 Ensembl IDs of mRNA found to be 

upregulated in EGFRI resistant NSCLC cells and X is any other node that connects them. 

Table members are from the complete network of 385 proteins that interact with CK2α or 

CK2α’ within one or two edges. 

 

SYMBOL GENE NAME TYPE 

ACACB acetyl-CoA carboxylase beta Induced 

ACTA1 actin, alpha 1, skeletal muscle Induced 

ACTA2 actin, alpha 2, smooth muscle, aorta Input 

ADCY9 adenylate cyclase 9 Input 

ADSS adenylosuccinate synthase Induced 

AKT1 v-akt murine thymoma viral oncogene homolog 1 Induced 

AKT2 v-akt murine thymoma viral oncogene homolog 2 Induced 

ALDH1B1 aldehyde dehydrogenase 1 family, member B1 Input 

ANGEL2 angel homolog 2 (Drosophila) Input 

ANXA6 annexin A6 Input 

AP2A1 adaptor-related protein complex 2, alpha 1 subunit Induced 

APC adenomatous polyposis coli Induced 

AR androgen receptor Induced 

ARHGEF40 Rho guanine nucleotide exchange factor (406) 40 Input 

ARRB2 arrestin, beta 2 Induced 

ATM ATM serine/threonine kinase Induced 

ATP5C1 ATP synthase, H+ transporting, mitochondrial F1 
complex, gamma polypeptide 1 Induced 

ATP5G1 ATP synthase, H+ transporting, mitochondrial Fo 
complex, subunit C1 (subunit 9) Input 

AURKA aurora kinase A Induced 

BABAM1 BRISC and BRCA1 A complex member 1 Induced 



APPENDIX II 

184 
 

Supplementary Table II-5 (continued): G1-X-G2 Analysis-Induced EGFRI Resistance 

Network Members that interact with CK2α or CK2α’ within one or two edges.  

 

SYMBOL GENE NAME TYPE 

BARD1 BRCA1 associated RING domain 1 Induced 

BCCIP BRCA2 and CDKN1A interacting protein Input 

BCL2 B-cell CLL/lymphoma 2 Induced 

BIRC2 baculoviral IAP repeat containing 2 Induced 

BIRC3 baculoviral IAP repeat containing 3 Induced 

BLM Bloom syndrome, RecQ helicase-like Induced 

BRCA1 breast cancer 1, early onset Induced 

BRCC3 BRCA1/BRCA2-containing complex, subunit 3 Input 

BRE brain and reproductive organ-expressed (TNFRSF1A 
modulator) Induced 

BTRC beta-transducin repeat containing E3 ubiquitin protein 
ligase Induced 

C1QBP complement component 1, q subcomponent binding 
protein Input 

CAD carbamoyl-phosphate synthetase 2, aspartate 
transcarbamylase, and dihydroorotase Induced 

CALM1:C
ALM2 

calmodulin 1 (phosphorylase kinase, delta), calmodulin 
2 (phosphorylase kinase, delta) Induced 

CALM2 calmodulin 2 (phosphorylase kinase, delta) Induced 

CAMK1 calcium/calmodulin-dependent protein kinase I Input 

CAPZA1 capping protein (actin filament) muscle Z-line, alpha 1 Induced 

CAPZB capping protein (actin filament) muscle Z-line, beta Induced 

CASP8 caspase 8, apoptosis-related cysteine peptidase Induced 

CAV1 caveolin 1, caveolae protein, 22kDa Induced 

CBL Cbl proto-oncogene, E3 ubiquitin protein ligase Induced 

CCND1 cyclin D1 Induced 
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Supplementary Table II-5 (continued): G1-X-G2 Analysis-Induced EGFRI Resistance 

Network Members that interact with CK2α or CK2α’ within one or two edges.  

 

SYMBOL GENE NAME TYPE 

CCT4 chaperonin containing TCP1, subunit 4 (delta) Induced 

CD2AP CD2-associated protein Induced 

CDC37 cell division cycle 37 Induced 

CDH1 cadherin 1, type 1 Induced 

CDK1 cyclin-dependent kinase 1 Induced 

CDK2 cyclin-dependent kinase 2 Induced 

CDKN1A cyclin-dependent kinase inhibitor 1A (p21, Cip1) Induced 

CDKN1B cyclin-dependent kinase inhibitor 1B (p27, Kip1) Induced 

CFL1 cofilin 1 (non-muscle) Induced 

CHAF1A chromatin assembly factor 1, subunit A (p150) Induced 
CHORDC

1 
cysteine and histidine-rich domain (CHORD) 
containing 1 Induced 

CHUK conserved helix-loop-helix ubiquitous kinase Input 

CKAP5 cytoskeleton associated protein 5 Induced 

CNOT4 CCR4-NOT transcription complex, subunit 4 Induced 

COPS5 COP9 signalosome subunit 5 Induced 

COX15 cytochrome c oxidase assembly homolog 15 (yeast) Input 

CREBBP CREB binding protein Induced 

CRTAP cartilage associated protein Input 

CSE1L CSE1 chromosome segregation 1-like (yeast) Induced 

CSNK2A1 casein kinase 2, alpha 1 polypeptide Induced 

CSNK2A2 casein kinase 2, alpha prime polypeptide Induced 
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Supplementary Table II-5 (continued): G1-X-G2 Analysis-Induced EGFRI Resistance 

Network Members that interact with CK2α or CK2α’ within one or two edges.  

 

SYMBOL GENE NAME TYPE 

CTNNB1 catenin (cadherin-associated protein), beta 1, 88kDa Induced 

CTSL cathepsin L Input 

CUL1 cullin 1 Induced 

CUTC cutC copper transporter Input 

DARS2 aspartyl-tRNA synthetase 2, mitochondrial Input 

DAZAP1 DAZ associated protein 1 Induced 

DCP2 decapping mRNA 2 Induced 

DIP2C disco-interacting protein 2 homolog C Input 

DIXDC1 DIX domain containing 1 Input 

DKC1 dyskeratosis congenita 1, dyskerin Induced 

DLG1 discs, large homolog 1 (Drosophila) Induced 

DOCK10 dedicator of cytokinesis 10 Input 

DPYSL3 dihydropyrimidinase-like 3 Input 

DVL2 dishevelled segment polarity protein 2 Induced 

EEF1A1 eukaryotic translation elongation factor 1 alpha 1 Induced 

EGFR epidermal growth factor receptor Input 

EIF2AK2 eukaryotic translation initiation factor 2-alpha kinase 2 Induced 

EIF3A eukaryotic translation initiation factor 3, subunit A Input 

EIF4A3 eukaryotic translation initiation factor 4A3 Induced 

ELAVL1 ELAV like RNA binding protein 1 Induced 

EP300 E1A binding protein p300 Induced 
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Supplementary Table II-5 (continued): G1-X-G2 Analysis-Induced EGFRI Resistance 

Network Members that interact with CK2α or CK2α’ within one or two edges.  

 

SYMBOL GENE NAME TYPE 

EPN1 epsin 1 Induced 

EPS15 epidermal growth factor receptor pathway substrate 15 Induced 

ERBB2 erb-b2 receptor tyrosine kinase 2 Induced 

ERBB3 erb-b2 receptor tyrosine kinase 3 Induced 

ERBB4 erb-b2 receptor tyrosine kinase 4 Induced 

ERP44 endoplasmic reticulum protein 44 Induced 

ESR1 estrogen receptor 1 Induced 
EXOSC1

0 exosome component 10 Induced 

FAM175
A family with sequence similarity 175, member A Induced 

FAM175
B family with sequence similarity 175, member B Induced 

FANCA Fanconi anemia, complementation group A Induced 

FANCG Fanconi anemia, complementation group G Induced 

FANCM Fanconi anemia, complementation group M Induced 
FASTKD

1 FAST kinase domains 1 Input 

FBXL15 F-box and leucine-rich repeat protein 15 Input 

FBXW7 F-box and WD repeat domain containing 7, E3 ubiquitin 
protein ligase Induced 

GAPDH glyceraldehyde-3-phosphate dehydrogenase Induced 

GDA guanine deaminase Induced 

GLRX glutaredoxin (thioltransferase) Input 

GNS glucosamine (N-acetyl)-6-sulfatase Induced 

GPHN Gephyrin Induced 
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Supplementary Table II-5 (continued): G1-X-G2 Analysis-Induced EGFRI Resistance 

Network Members that interact with CK2α or CK2α’ within one or two edges.  

 

SYMBOL GENE NAME TYPE 

GRSF1 G-rich RNA sequence binding factor 1 Induced 

H2AFV H2A histone family, member V Induced 

H2AFX H2A histone family, member X Induced 

HDAC1 histone deacetylase 1 Induced 

HECW2 HECT, C2 and WW domain containing E3 ubiquitin 
protein ligase 2 Induced 

HES1 hes family bHLH transcription factor 1 Induced 

HGS hepatocyte growth factor-regulated tyrosine kinase 
substrate Induced 

HIST3H3 histone cluster 3, H3 Induced 
HNRNPA

1 heterogeneous nuclear ribonucleoprotein A1 Induced 

HNRNPF heterogeneous nuclear ribonucleoprotein F Induced 

HRAS Harvey rat sarcoma viral oncogene homolog Induced 

HS1BP3 HCLS1 binding protein 3 Input 
HSP90A

A1 
heat shock protein 90kDa alpha (cytosolic), class A 
member 1 Induced 

HSP90A
B1 

heat shock protein 90kDa alpha (cytosolic), class B 
member 1 Induced 

HSP90B
1 heat shock protein 90kDa beta (Grp94), member 1 Induced 

HSPA12
A heat shock 70kDa protein 12A Input 

HSPA4 heat shock 70kDa protein 4 Induced 

HSPA5 heat shock 70kDa protein 5 (glucose-regulated protein, 
78kDa) Induced 

HSPA9 heat shock 70kDa protein 9 (mortalin) Induced 

HSPB1 heat shock 27kDa protein 1 Induced 
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Supplementary Table II-5 (continued): G1-X-G2 Analysis-Induced EGFRI Resistance 

Network Members that interact with CK2α or CK2α’ within one or two edges.  

 

SYMBOL GENE NAME TYPE 

HTT Huntingtin Induced 

HUWE1 HECT, UBA and WWE domain containing 1, E3 
ubiquitin protein ligase Induced 

ID2 inhibitor of DNA binding 2, dominant negative helix-
loop-helix protein Input 

IGBP1 immunoglobulin (CD79A) binding protein 1 Induced 

IGF1R insulin-like growth factor 1 receptor Induced 

IGFBP3 insulin-like growth factor binding protein 3 Induced 

IKBKAP inhibitor of kappa light polypeptide gene enhancer in B-
cells, kinase complex-associated protein Induced 

IMPA1 inositol(myo)-1(or 4)-monophosphatase 1 Input 

INVS Inversin Input 

IQGAP1 IQ motif containing GTPase activating protein 1 Induced 

IRS1 insulin receptor substrate 1 Induced 

IRS2 insulin receptor substrate 2 Induced 

IRS4 insulin receptor substrate 4 Induced 

ITCH itchy E3 ubiquitin protein ligase Induced 

KCTD9 potassium channel tetramerization domain containing 9 Input 

KEAP1 kelch-like ECH-associated protein 1 Induced 

KRAS Kirsten rat sarcoma viral oncogene homolog Induced 

KYNU Kynureninase Input 
LAMTOR

3 
late endosomal/lysosomal adaptor, MAPK and MTOR 
activator 3 Induced 

LDHA lactate dehydrogenase A Induced 

LIG3 ligase III, DNA, ATP-dependent Input 

LIN7C lin-7 homolog C (C. elegans) Induced 

LRRK2 leucine-rich repeat kinase 2 Induced 
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Supplementary Table II-5 (continued): G1-X-G2 Analysis-Induced EGFRI Resistance 

Network Members that interact with CK2α or CK2α’ within one or two edges.  

 

SYMBOL GENE NAME TYPE 

MAD2L1 MAD2 mitotic arrest deficient-like 1 (yeast) Induced 

MAGOH mago homolog, exon junction complex core 
component Induced 

MAP1LC3A microtubule-associated protein 1 light chain 3 alpha Induced 

MAP3K1 mitogen-activated protein kinase kinase kinase 1, E3 
ubiquitin protein ligase Induced 

MAP3K3 mitogen-activated protein kinase kinase kinase 3 Induced 

MAP3K5 mitogen-activated protein kinase kinase kinase 5 Induced 

MAP4K4 mitogen-activated protein kinase kinase kinase 
kinase 4 Induced 

MAPK1 mitogen-activated protein kinase 1 Induced 

MAPT microtubule-associated protein tau Induced 

MARK2 MAP/microtubule affinity-regulating kinase 2 Induced 

MAVS mitochondrial antiviral signaling protein Induced 

MDC1 mediator of DNA-damage checkpoint 1 Induced 

MET MET proto-oncogene, receptor tyrosine kinase Induced 

MID1IP1 MID1 interacting protein 1 Input 

MLH3 mutL homolog 3 Induced 

MRPS7 mitochondrial ribosomal protein S7 Induced 

MSH2 mutS homolog 2 Induced 

MSI1 musashi RNA-binding protein 1 Induced 

MSI2 musashi RNA-binding protein 2 Induced 

MTMR9 myotubularin related protein 9 Input 

MTOR mechanistic target of rapamycin (serine/threonine 
kinase) Induced 

MVP major vault protein Induced 

MYH11 myosin, heavy chain 11, smooth muscle Induced 
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Supplementary Table II-5 (continued): G1-X-G2 Analysis-Induced EGFRI Resistance 

Network Members that interact with CK2α or CK2α’ within one or two edges.  

 

SYMBOL GENE NAME TYPE 

MYH9 myosin, heavy chain 9, non-muscle Induced 

NAGK N-acetylglucosamine kinase Induced 

NCOA3 nuclear receptor coactivator 3 Induced 

NDFIP1 Nedd4 family interacting protein 1 Induced 

NDFIP2 Nedd4 family interacting protein 2 Induced 

NEDD4 neural precursor cell expressed, developmentally down-
regulated 4, E3 ubiquitin protein ligase Induced 

NEDD8 neural precursor cell expressed, developmentally down-
regulated 8 Induced 

NMI N-myc (and STAT) interactor Induced 

NOTCH1 notch 1 Induced 

NOTCH2 notch 2 Induced 

NOTCH3 notch 3 Induced 

NR3C1 nuclear receptor subfamily 3, group C, member 1 
(glucocorticoid receptor) Induced 

NRAS neuroblastoma RAS viral (v-ras) oncogene homolog Induced 

NSF N-ethylmaleimide-sensitive factor Induced 

NSMCE2 NSE2/MMS21 homolog, SMC5-SMC6 complex SUMO 
ligase Induced 

NUDT21 nudix (nucleoside diphosphate linked moiety X)-type 
motif 21 Induced 

NUP153 nucleoporin 153kDa Induced 

NXF1 nuclear RNA export factor 1 Induced 

OAS3 2'-5'-oligoadenylate synthetase 3, 100kDa Induced 

PABPC4 poly(A) binding protein, cytoplasmic 4 (inducible form) Induced 

PARP1 poly (ADP-ribose) polymerase 1 Induced 

PBK PDZ binding kinase Input 

PCNA proliferating cell nuclear antigen Induced 
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Supplementary Table II-5 (continued): G1-X-G2 Analysis-Induced EGFRI Resistance 

Network Members that interact with CK2α or CK2α’ within one or two edges.  

 

 
SYMBOL 

GENE NAME TYPE 

PDGFRB platelet-derived growth factor receptor, beta polypeptide Induced 

PEX19 peroxisomal biogenesis factor 19 Induced 

PEX5 peroxisomal biogenesis factor 5 Induced 

PFAS phosphoribosylformylglycinamidine synthase Input 

PIK3C2A phosphatidylinositol-4-phosphate 3-kinase, catalytic 
subunit type 2 alpha Induced 

PIP5K1A phosphatidylinositol-4-phosphate 5-kinase, type I, alpha Induced 

PLK1 polo-like kinase 1 Induced 

PLK2 polo-like kinase 2 Induced 

PLK3 polo-like kinase 3 Induced 

PLK4 polo-like kinase 4 Induced 

PML promyelocytic leukemia Induced 

POLB polymerase (DNA directed), beta Induced 

POLR1C polymerase (RNA) I polypeptide C, 30kDa Induced 

POMZP3 POM121 and ZP3 fusion Input 

PPP2CA protein phosphatase 2, catalytic subunit, alpha isozyme Induced 

PPP3CA protein phosphatase 3, catalytic subunit, alpha isozyme Induced 

PPP3CC protein phosphatase 3, catalytic subunit, gamma 
isozyme Input 

PRDX1 peroxiredoxin 1 Induced 

PRKACA protein kinase, cAMP-dependent, catalytic, alpha Induced 

PRKCA protein kinase C, alpha Induced 

PRKCB protein kinase C, beta Induced 

PRKCD protein kinase C, delta Induced 

PRKCZ protein kinase C, zeta Induced 

PRKD1 protein kinase D1 Induced 
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Supplementary Table II-5 (continued): G1-X-G2 Analysis-Induced EGFRI Resistance 

Network Members that interact with CK2α or CK2α’ within one or two edges.  

 

SYMBOL GENE NAME TYPE 

PRKDC protein kinase, DNA-activated, catalytic polypeptide Induced 

PROCR protein C receptor, endothelial Input 

PSMA2 proteasome subunit alpha 2 Induced 

PSMA3 proteasome subunit alpha 3 Induced 

PSMA4 proteasome subunit alpha 4 Induced 

PSMA7 proteasome subunit alpha 7 Induced 

PSMA8 proteasome subunit alpha 8 Induced 

PSMB1 proteasome subunit beta 1 Induced 

PSMB2 proteasome subunit beta 2 Induced 

PSMB4 proteasome subunit beta 4 Induced 

PSMD4 proteasome 26S subunit, non-ATPase 4 Induced 

PSMD6 proteasome 26S subunit, non-ATPase 6 Induced 

PTEN phosphatase and tensin homolog Input 

PTK2 protein tyrosine kinase 2 Induced 

PTMA prothymosin, alpha, prothymosin alpha-like Induced 

PTPN1 protein tyrosine phosphatase, non-receptor type 1 Induced 

PTPN11 protein tyrosine phosphatase, non-receptor type 11 Induced 

PWP1 PWP1 homolog, endonuclein Input 

RAB11A RAB11A, member RAS oncogene family Induced 

RAB11B RAB11B, member RAS oncogene family Induced 

RAB7A RAB7A, member RAS oncogene family Induced 

RAC3 ras-related C3 botulinum toxin substrate 3 (rho family, 
small GTP binding protein Rac3) Induced 

RAD23B RAD23 homolog B, nucleotide excision repair protein Induced 

RAD51 RAD51 recombinase Induced 
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Supplementary Table II-5 (continued): G1-X-G2 Analysis-Induced EGFRI Resistance 

Network Members that interact with CK2α or CK2α’ within one or two edges.  

 

SYMBOL GENE NAME TYPE 

RAF1 Raf-1 proto-oncogene, serine/threonine kinase Induced 

RAN RAN, member RAS oncogene family Induced 

RANGRF RAN guanine nucleotide release factor Input 

RASA1 RAS p21 protein activator (GTPase activating protein) 1 Induced 

RBM3 RNA binding motif (RNP1, RRM) protein 3 Input 

RBX1 ring-box 1, E3 ubiquitin protein ligase Induced 

RIPK1 receptor (TNFRSF)-interacting serine-threonine kinase 
1 Induced 

RPL17 ribosomal protein L17 Induced 

RPL5 ribosomal protein L5 Induced 

RPS20 ribosomal protein S20 Induced 

RPS23 ribosomal protein S23 Induced 

RPS27A ribosomal protein S27a Induced 

RPS7 ribosomal protein S7 Induced 

RPTOR regulatory associated protein of MTOR, complex 1 Induced 

RQCD1 RCD1 required for cell differentiation1 homolog (S. 
pombe) Induced 

RUVBL1 RuvB-like AAA ATPase 1 Induced 

S100A1 S100 calcium binding protein A1 Induced 

S100B S100 calcium binding protein B Induced 

SACS sacsin molecular chaperone Input 

SEC23A Sec23 homolog A, COPII coat complex component Induced 

SGTA small glutamine-rich tetratricopeptide repeat (407)-
containing, alpha Induced 

SHARPI
N SHANK-associated RH domain interactor Induced 

SIN3A SIN3 transcription regulator family member A Induced 

SIRT1 sirtuin 1 Induced 
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Supplementary Table II-5 (continued): G1-X-G2 Analysis-Induced EGFRI Resistance 

Network Members that interact with CK2α or CK2α’ within one or two edges.  

 

SYMBOL GENE NAME TYPE 

SKP1 S-phase kinase-associated protein 1 Induced 

SLC25A3 solute carrier family 25 (mitochondrial carrier; 
phosphate carrier), member 3 Induced 

SLC9A3R
1 

solute carrier family 9, subfamily A (NHE3, cation 
proton antiporter 3), member 3 regulator 1 Induced 

SMAD1 SMAD family member 1 Induced 

SMAD 2 SMAD family member 2 Induced 

SMAD 3 SMAD family member 3 Induced 

SMAD 4 SMAD family member 4 Induced 

SMC1A structural maintenance of chromosomes 1A Input 

SMS spermine synthase Induced 

SMURF1 SMAD specific E3 ubiquitin protein ligase 1 Induced 

SNCA synuclein, alpha (non A4 component of amyloid 
precursor) Induced 

SNRPA small nuclear ribonucleoprotein polypeptide A Induced 

SPTAN1 spectrin, alpha, non-erythrocytic 1 Induced 

SRC SRC proto-oncogene, non-receptor tyrosine kinase Induced 

SSU72 SSU72 homolog, RNA polymerase II CTD 
phosphatase Induced 

STAT5A signal transducer and activator of transcription 5A Induced 

STUB1 STIP1 homology and U-box containing protein 1, E3 
ubiquitin protein ligase Induced 

STX2 syntaxin 2 Input 

SUMO1 small ubiquitin-like modifier 1 Induced 

SUMO2 small ubiquitin-like modifier 2 Induced 

SUMO3 small ubiquitin-like modifier 3 Induced 

TCP1 t-complex 1 Induced 

TERT telomerase reverse transcriptase Induced 
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Supplementary Table II-5 (continued): G1-X-G2 Analysis-Induced EGFRI Resistance 

Network Members that interact with CK2α or CK2α’ within one or two edges.  

 

SYMBOL GENE NAME TYPE 

TJP1 tight junction protein 1 Induced 

TLR4 toll-like receptor 4 Induced 
TNFRSF1

A 
tumor necrosis factor receptor superfamily, member 
1A Induced 

TNPO1 transportin 1 Input 

TOM1L1 target of myb1 like 1 membrane trafficking protein Induced 

TOMM40 translocase of outer mitochondrial membrane 40 
homolog (yeast) Induced 

TOP2A topoisomerase (DNA) II alpha Induced 

TOP2B topoisomerase (DNA) II beta Induced 

TOP3B topoisomerase (DNA) III beta Induced 

TP53 tumor protein p53 Induced 

TP53BP1 tumor protein p53 binding protein 1 Induced 

TPR translocated promoter region, nuclear basket protein Induced 

TRAF1 TNF receptor-associated factor 1 Induced 

TRAF2 TNF receptor-associated factor 2 Induced 

TTC28 tetratricopeptide repeat domain 28 Input 

TUBA1A tubulin, alpha 1a Induced 

TUBA4A tubulin, alpha 4a Induced 
TUBGCP

2 tubulin, gamma complex associated protein 2 Input 

TUBGCP
4 tubulin, gamma complex associated protein 4 Induced 

TXN Thioredoxin Induced 

UBA52 ubiquitin A-52 residue ribosomal protein fusion product 
1 Induced 

UBB ubiquitin B Induced 

UBC ubiquitin C Induced 
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Supplementary Table II-5 (continued): G1-X-G2 Analysis-Induced EGFRI Resistance 

Network Members that interact with CK2α or CK2α’ within one or two edges.  

 

SYMBOL GENE NAME TYPE 

UBE2D1 ubiquitin-conjugating enzyme E2D 1 Induced 

UBE2D2 ubiquitin-conjugating enzyme E2D 2 Induced 

UBE2I ubiquitin-conjugating enzyme E2I Induced 

UBE2L3 ubiquitin-conjugating enzyme E2L 3 Induced 

UBE2N ubiquitin-conjugating enzyme E2N Induced 

UBE2V2 ubiquitin-conjugating enzyme E2 variant 2 Induced 

UBL4A ubiquitin-like 4A Induced 

UBQLN1 ubiquilin 1 Induced 

UBQLN2 ubiquilin 2 Induced 

UBQLN4 ubiquilin 4 Induced 

UBQLNL ubiquilin-like Induced 

UBR4 ubiquitin protein ligase E3 component n-recognin 4 Induced 

UBR7 ubiquitin protein ligase E3 component n-recognin 7 
(putative) Induced 

UBXN7 UBX domain protein 7 Induced 

UCHL3 ubiquitin carboxyl-terminal esterase L3 (ubiquitin 
thiolesterase) Induced 

UIMC1 ubiquitin interaction motif containing 1 Input 

USP10 ubiquitin specific peptidase 10 Induced 

USP14 ubiquitin specific peptidase 14 (tRNA-guanine 
transglycosylase) Induced 

USP34 ubiquitin specific peptidase 34 Induced 

USP39 ubiquitin specific peptidase 39 Induced 

USP7 ubiquitin specific peptidase 7 (herpes virus-
associated) Induced 

USP8 ubiquitin specific peptidase 8 Induced 

USP9X ubiquitin specific peptidase 9, X-linked Input 

UVRAG UV radiation resistance associated Induced 
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Supplementary Table II-5 (continued): G1-X-G2 Analysis-Induced EGFRI Resistance 

Network Members that interact with CK2α or CK2α’ within one or two edges.  

 

SYMBOL GENE NAME TYPE 

VIM Vimentin Input 

VPS16 vacuolar protein sorting 16 homolog (S. cerevisiae) Induced 

VPS33B vacuolar protein sorting 33 homolog B (yeast) Input 

WASL Wiskott-Aldrich syndrome-like Induced 

WDHD1 WD repeat and HMG-box DNA binding protein 1 Induced 

WDR48 WD repeat domain 48 Induced 

WRN Werner syndrome, RecQ helicase-like Input 

WWP1 WW domain containing E3 ubiquitin protein ligase 1 Induced 

WWP2 WW domain containing E3 ubiquitin protein ligase 2 Induced 

XIAP X-linked inhibitor of apoptosis, E3 ubiquitin protein 
ligase Induced 

XRCC5 X-ray repair complementing defective repair in Chinese 
hamster cells 5 (double-strand-break rejoining) Induced 

XRCC6 X-ray repair complementing defective repair in Chinese 
hamster cells 6 Induced 

YAP1 Yes-associated protein 1 Induced 

YBX1 Y box binding protein 1 Induced 

YEATS4 YEATS domain containing 4 Induced 

YKT6 YKT6 v-SNARE homolog (S. cerevisiae) Induced 

YWHAB tyrosine 3-monooxygenase/tryptophan 5-
monooxygenase activation protein, beta Induced 

YWHAE tyrosine 3-monooxygenase/tryptophan 5-
monooxygenase activation protein, epsilon Induced 

YWHAH tyrosine 3-monooxygenase/tryptophan 5-
monooxygenase activation protein, eta Induced 

YWHAZ tyrosine 3-monooxygenase/tryptophan 5-
monooxygenase activation protein, zeta Induced 

ZC3H14 zinc finger CCCH-type containing 14 Input 

ZEB1 zinc finger E-box binding homeobox 1 Input 

ZYX Zyxin Induced 
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Supplementary Table II-6: G1-X-G2 Analysis-Induced EGFRI Resistance Network 

Members that do not interact with CK2α or CK2α’. Table members were generated 

using the 85 independent Ensembl IDs identified by the FS analysis. Table members 

generated by the STRING analysis considering the scenario G1-X-G2 where G1 and G2 

are from the original list of 85 Ensembl IDs of mRNA found to be upregulated in EGFRI 

resistant NSCLC cells and X is any other node that connects them. Table members are 

from the complete network of 385 proteins that do not interact with CK2α or CK2α’ within 

one or two edges. 

 

SYMBOL GENE NAME TYPE 

ARHGEF9 Cdc42 guanine nucleotide exchange factor 9 Input 

DHRS4 
DHRS4L2 
DHRS4L1 

dehydrogenase/reductase (SDR family) member 4, 
dehydrogenase/reductase (SDR family) member 4 
like 2, dehydrogenase/reductase (SDR family) 
member 4 like 1 

Input 

EGF epidermal growth factor Induced 

FANCF Fanconi anemia, complementation group F Input 

FBXO31 F-box protein 31 Input 

GAB1 GRB2-associated binding protein 1 Induced 

GNG11 guanine nucleotide binding protein (G protein), 
gamma 11 Input 

KNG1 kininogen 1 Induced 

LDHAL6B lactate dehydrogenase A-like 6B Induced 

MINOS1 mitochondrial inner membrane organizing system 1 Induced 

NRG1 neuregulin 1 Input 

NUBP2 nucleotide binding protein 2 Input 

PLK5 polo-like kinase 5 Induced 

PMP22 peripheral myelin protein 22 Input 

RAB11FIP2 RAB11 family interacting protein 2 (class I) Input 

RNMTL1 RNA methyltransferase like 1 Input 

S100A3 S100 calcium binding protein A3 Input 

TFE3 transcription factor binding to IGHM enhancer 3 Input 

TNFSF9 tumor necrosis factor (ligand) superfamily, member 9 Input 
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Supplementary Table II-7: Induced network members sorted by putative collective 

activity of community members. Communities of genes were determined from the 

induced network using the cluster_walktrap function in igraph v1.0.1 (Described in 

Appendix IV) (385, 386).   

 

Supplementary Table II-7, Community #1: (Putative hallmark/functions: genomic 

instability, replicative immortality) 

 

SYMBOL GENE NAME TYPE 

ATM ATM serine/threonine kinase Induced 

BARD1 BRCA1 associated RING domain 1 Induced 

BLM Bloom syndrome, RecQ helicase-like Induced 

BRE brain and reproductive organ-expressed (TNFRSF1A 
modulator) Induced 

CHAF1A chromatin assembly factor 1, subunit A (p150) Induced 

DKC1 dyskeratosis congenita 1, dyskerin Induced 

FAM175A family with sequence similarity 175, member A Induced 

FANCA Fanconi anemia, complementation group A Induced 

FANCF Fanconi anemia, complementation group F Input 

FANCG Fanconi anemia, complementation group G Induced 

FANCM Fanconi anemia, complementation group M Induced 

H2AFX H2A histone family, member X Induced 

HES1 hes family bHLH transcription factor 1 Induced 

LIG3 ligase III, DNA, ATP-dependent Input 

MDC1 mediator of DNA-damage checkpoint 1 Induced 

MLH3 mutL homolog 3 Induced 

MSH2 mutS homolog 2 Induced 

NSMCE2 NSE2/MMS21 homolog, SMC5-SMC6 SUMO ligase Induced 

PARP1 poly (ADP-ribose) polymerase 1 Induced 

PCNA proliferating cell nuclear antigen Induced 

POLB polymerase (DNA directed), beta Induced 
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Supplementary Table II-7, Community #1 (continued): (Putative hallmark/functions: 

genomic instability, replicative immortality) 

 

SYMBOL GENE NAME TYPE 

POLR1C polymerase (RNA) I polypeptide C, 30kDa Induced 

PWP1 PWP1 homolog, endonuclein Input 

RAD51 RAD51 recombinase Induced 

SMC1A structural maintenance of chromosomes 1A Input 

SUMO2 small ubiquitin-like modifier 2 Induced 

SUMO3 small ubiquitin-like modifier 3 Induced 

TOP2A topoisomerase (DNA) II alpha Induced 

TOP2B topoisomerase (DNA) II beta Induced 

TOP3B topoisomerase (DNA) III beta Induced 

TP53BP1 tumor protein p53 binding protein 1 Induced 

UIMC1 ubiquitin interaction motif containing 1 Input 

WDHD1 WD repeat and HMG-box DNA binding protein 1 Induced 

WRN Werner syndrome, RecQ helicase-like Input 

XRCC5 X-ray repair complementing defective repair in Chinese 
hamster cells 5 (double-strand-break rejoining) Induced 

XRCC6 X-ray repair complementing defective repair in Chinese 
hamster cells 6 Induced 
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Supplementary Table II-7, Community #2: (Putative hallmark/functions: growth 

signal autonomy, invasion and metastasis, proteomic instability, EGFRI 

RESISTANCE MECHANISMS) 

 

SYMBOL GENE NAME TYPE 

DVL2 dishevelled segment polarity protein 2 Induced 

EGF epidermal growth factor Induced 

ERBB2 erb-b2 receptor tyrosine kinase 2 Induced 

ERBB3 erb-b2 receptor tyrosine kinase 3 Induced 

ERBB4 erb-b2 receptor tyrosine kinase 4 Induced 

FBXL15 F-box and leucine-rich repeat protein 15 Input 

ID2 inhibitor of DNA binding 2, dominant negative helix-loop-helix 
protein Input 

ITCH itchy E3 ubiquitin protein ligase Induced 

KRAS Kirsten rat sarcoma viral oncogene homolog Induced 

LIN7C lin-7 homolog C (C. elegans) Induced 

NDFIP1 Nedd4 family interacting protein 1 Induced 

NDFIP2 Nedd4 family interacting protein 2 Induced 

NEDD4 neural precursor cell expressed, developmentally down-
regulated 4, E3 ubiquitin protein ligase Induced 

NOTCH1 notch 1 Induced 

NOTCH2 notch 2 Induced 

NOTCH3 notch 3 Induced 

NRAS neuroblastoma RAS viral (v-ras) oncogene homolog Induced 

NRG1 neuregulin 1 Input 

RASA1 RAS p21 protein activator (GTPase activating protein) 1 Induced 

SMURF1 SMAD specific E3 ubiquitin protein ligase 1 Induced 

WWP1 WW domain containing E3 ubiquitin protein ligase 1 Induced 

WWP2 WW domain containing E3 ubiquitin protein ligase 2 Induced 
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Supplementary Table II-7, Community #3: (Putative hallmark/functions: genomic 

instability, deregulating cellular energetics) 

 

SYMBOL GENE NAME TYPE 

GRSF1 G-rich RNA sequence binding factor 1 Induced 

MRPS7 mitochondrial ribosomal protein S7 Induced 

RNMTL1 RNA methyltransferase like 1 Input 

USP39 ubiquitin specific peptidase 39 Induced 
 

 

Supplementary Table II-7, Community #4: (Putative hallmark/functions: growth 

signal autonomy, proteomic instability, EGFRI RESISTANCE MECHANISMS) 

 

SYMBOL GENE NAME TYPE 

AKT1 v-akt murine thymoma viral oncogene homolog 1 Induced 

AKT2 v-akt murine thymoma viral oncogene homolog 2 Induced 

AP2A1 adaptor-related protein complex 2, alpha 1 subunit Induced 

APC adenomatous polyposis coli Induced 

ARHGEF40 Rho guanine nucleotide exchange factor (406) 40 Input 

ARRB2 arrestin, beta 2 Induced 

BCL2 B-cell CLL/lymphoma 2 Induced 

CAV1 caveolin 1, caveolae protein, 22kDa Induced 

CBL Cbl proto-oncogene, E3 ubiquitin protein ligase Induced 

CDC37 cell division cycle 37 Induced 

EGFR epidermal growth factor receptor Input 

EIF2AK2 eukaryotic translation initiation factor 2-alpha kinase 2 Induced 

EPN1 epsin 1 Induced 

EPS15 epidermal growth factor receptor pathway substrate 15 Induced 

GAB1 GRB2-associated binding protein 1 Induced 



APPENDIX II 

204 
 

Supplementary Table II-7, Community #4 (continued): (Putative hallmark/functions: 

growth signal autonomy, proteomic instability, EGFRI RESISTANCE MECHANISMS) 

 

SYMBOL GENE NAME TYPE 

GAPDH glyceraldehyde-3-phosphate dehydrogenase Induced 

GLRX glutaredoxin (thioltransferase) Input 

HGS hepatocyte growth factor-regulated tyrosine kinase 
substrate Induced 

HRAS Harvey rat sarcoma viral oncogene homolog Induced 

HSP90AA1 heat shock protein 90kDa alpha (cytosolic), class A 
member 1 Induced 

HSP90AB1 heat shock protein 90kDa alpha (cytosolic), class B 
member 1 Induced 

HSP90B1 heat shock protein 90kDa beta (Grp94), member 1 Induced 

HSPA12A heat shock 70kDa protein 12A Input 

HSPA4 heat shock 70kDa protein 4 Induced 

HSPA5 heat shock 70kDa protein 5 (glucose-regulated 
protein, 78kDa) Induced 

HSPB1 heat shock 27kDa protein 1 Induced 

HTT Huntingtin Induced 

IGF1R insulin-like growth factor 1 receptor Induced 

IRS1 insulin receptor substrate 1 Induced 

IRS2 insulin receptor substrate 2 Induced 

IRS4 insulin receptor substrate 4 Induced 

KCTD9 potassium channel tetramerization domain 
containing 9 Input 

LRRK2 leucine-rich repeat kinase 2 Induced 

MAP1LC3A microtubule-associated protein 1 light chain 3 alpha Induced 

MAP3K3 mitogen-activated protein kinase kinase kinase 3 Induced 

MAP3K5 mitogen-activated protein kinase kinase kinase 5 Induced 

MAPK1 mitogen-activated protein kinase 1 Induced 

MAPT microtubule-associated protein tau Induced 

MARK2 MAP/microtubule affinity-regulating kinase 2 Induced 
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Supplementary Table II-7, Community #4 (continued): (Putative hallmark/functions: 

growth signal autonomy, proteomic instability, EGFRI RESISTANCE MECHANISMS) 

 

SYMBOL GENE NAME TYPE 

MET MET proto-oncogene, receptor tyrosine kinase Induced 

MTOR 
mechanistic target of rapamycin (serine/threonine 
kinase) Induced 

MVP major vault protein Induced 

PDGFRB platelet-derived growth factor receptor, beta polypeptide Induced 

PRKACA protein kinase, cAMP-dependent, catalytic, alpha Induced 

PRKCA protein kinase C, alpha Induced 

PRKCB protein kinase C, beta Induced 

PRKCD protein kinase C, delta Induced 

PRKCZ protein kinase C, zeta Induced 

PRKD1 protein kinase D1 Induced 

PTK2 protein tyrosine kinase 2 Induced 

PTPN1 protein tyrosine phosphatase, non-receptor type 1 Induced 

PTPN11 protein tyrosine phosphatase, non-receptor type 11 Induced 

RAF1 Raf-1 proto-oncogene, serine/threonine kinase Induced 

RPTOR regulatory associated protein of MTOR, complex 1 Induced 

SNCA synuclein, α (non A4 component of amyloid precursor) Induced 

SRC SRC proto-oncogene, non-receptor tyrosine kinase Induced 

STAT5A signal transducer and activator of transcription 5A Induced 

STUB1 STIP1 homology and U-box containing protein 1, E3 
ubiquitin ligase Induced 

TTC28 tetratricopeptide repeat domain 28 Input 

TUBA1A tubulin, alpha 1a Induced 

TUBA4A tubulin, alpha 4a Induced 

USP8 ubiquitin specific peptidase 8 Induced 

YAP1 Yes-associated protein 1 Induced 

YWHAB tyrosine 3-monooxygenase/tryptophan 5-
monooxygenase activation protein, beta Induced 
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Supplementary Table II-7, Community #4 (continued): (Putative hallmark/functions: 

growth signal autonomy, proteomic instability, EGFRI RESISTANCE MECHANISMS) 

 

YWHAE tyrosine 3-monooxygenase/tryptophan 5-
monooxygenase activation protein, epsilon Induced 

YWHAH tyrosine 3-monooxygenase/tryptophan 5-
monooxygenase activation protein, eta Induced 

YWHAZ tyrosine 3-monooxygenase/tryptophan 5-
monooxygenase activation protein, zeta Induced 

 

 

Supplementary Table II-7, Community #5: (Putative hallmark/functions: invasion 

and metastasis, proteomic instability, replicative immortality) 

 

SYMBOL GENE NAME TYPE 

ACTA1 actin, alpha 1, skeletal muscle Induced 

ACTA2 actin, alpha 2, smooth muscle, aorta Input 

ADSS adenylosuccinate synthase Induced 
CALM1 
CALM2 

calmodulin 1 (phosphorylase kinase, delta), 
calmodulin 2 (phosphorylase kinase, delta) Induced 

CALM2 calmodulin 2 (phosphorylase kinase, delta) Induced 

CAMK1 calcium/calmodulin-dependent protein kinase I Input 

CAPZA1 capping protein (actin filament) muscle Z-line, alpha 1 Induced 

CAPZB capping protein (actin filament) muscle Z-line, beta Induced 

CD2AP CD2-associated protein Induced 

CFL1 cofilin 1 (non-muscle) Induced 

DLG1 discs, large homolog 1 (Drosophila) Induced 

EEF1A1 eukaryotic translation elongation factor 1 alpha 1 Induced 

EIF3A eukaryotic translation initiation factor 3, subunit A Input 

ELAVL1 ELAV like RNA binding protein 1 Induced 

H2AFV H2A histone family, member V Induced 

HECW2 HECT, C2 and WW domain containing E3 ubiquitin 
protein ligase 2 Induced 

 



APPENDIX II 

207 
 

Supplementary Table II-7, Community #5 (continued): (Putative hallmark/functions: 

invasion and metastasis, proteomic instability, replicative immortality) 

 

SYMBOL GENE NAME TYPE 

HNRNPA1 heterogeneous nuclear ribonucleoprotein A1 Induced 

HNRNPF heterogeneous nuclear ribonucleoprotein F Induced 

HSPA9 heat shock 70kDa protein 9 (mortalin) Induced 

IQGAP1 IQ motif containing GTPase activating protein 1 Induced 

MYH11 myosin, heavy chain 11, smooth muscle Induced 

MYH9 myosin, heavy chain 9, non-muscle Induced 

NUDT21 
nudix (nucleoside diphosphate linked moiety X)-type 
motif 21 

Induced 

PIK3C2A 
phosphatidylinositol-4-phosphate 3-kinase, catalytic 
subunit type 2 alpha 

Induced 

PRDX1 peroxiredoxin 1 Induced 

SGTA small glutamine-rich tetratricopeptide repeat-
containing, alpha Induced 

SLC25A3 solute carrier family 25 (mitochondrial carrier; 
phosphate carrier), member 3 Induced 

SPTAN1 spectrin, alpha, non-erythrocytic 1 Induced 

SSU72 SSU72 homolog, RNA polymerase II CTD 
phosphatase Induced 

TJP1 tight junction protein 1 Induced 

TXN Thioredoxin Induced 

UBC ubiquitin C Induced 

VIM Vimentin Input 

WASL Wiskott-Aldrich syndrome-like Induced 

WDR48 WD repeat domain 48 Induced 

YBX1 Y box binding protein 1 Induced 

YEATS4 YEATS domain containing 4 Induced 
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Supplementary Table II-7, Community #6: (Putative hallmark/functions: invasion 

and metastasis, growth and proliferation, cytoskeletal requirements) 

 

SYMBOL GENE NAME TYPE 

C1QBP complement component 1, q subcomponent binding 
protein Input 

CKAP5 cytoskeleton associated protein 5 Induced 

MAD2L1 MAD2 mitotic arrest deficient-like 1 (yeast) Induced 

MINOS1 mitochondrial inner membrane organizing system 1 Induced 

PLK2 polo-like kinase 2 Induced 

PLK3 polo-like kinase 3 Induced 

PLK4 polo-like kinase 4 Induced 

PLK5 polo-like kinase 5 Induced 

TOMM40 translocase of outer mitochondrial membrane 40 
homolog (yeast) Induced 

TUBGCP2 tubulin, gamma complex associated protein 2 Input 

TUBGCP4 tubulin, gamma complex associated protein 4 Induced 
 

 

Supplementary Table II-7, Community #7: (Putative hallmark/functions: evasion of 

growth suppressors, proteomic instability, evasion of apoptosis) 

 

SYMBOL GENE NAME TYPE 

ACACB acetyl-CoA carboxylase beta Induced 

BABAM1 BRISC and BRCA1 A complex member 1 Induced 

BRCC3 BRCA1/BRCA2-containing complex, subunit 3 Input 

CAD carbamoyl-phosphate synthetase 2, aspartate 
transcarbamylase, and dihydroorotase Induced 

CCT4 chaperonin containing TCP1, subunit 4 (delta) Induced 

COPS5 COP9 signalosome subunit 5 Induced 

CUL1 cullin 1 Induced 

DPYSL3 dihydropyrimidinase-like 3 Input 
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Supplementary Table II-7, Community #7 (continued): (Putative hallmark/functions: 

evasion of growth suppressors, proteomic instability, evasion of apoptosis) 

 

SYMBOL GENE NAME TYPE 

ERP44 endoplasmic reticulum protein 44 Induced 

FAM175B family with sequence similarity 175, member B Induced 

HUWE1 HECT, UBA and WWE domain containing 1, E3 
ubiquitin protein ligase Induced 

IGBP1 immunoglobulin (CD79A) binding protein 1 Induced 

IKBKAP inhibitor of kappa light polypeptide gene enhancer in 
B-cells, kinase complex-associated protein Induced 

NEDD8 neural precursor cell expressed, developmentally 
down-regulated 8 Induced 

NUBP2 nucleotide binding protein 2 Input 

OAS3 2'-5'-oligoadenylate synthetase 3, 100kDa Induced 

PABPC4 poly(A) binding protein, cytoplasmic 4 (inducible form) Induced 

PFAS phosphoribosylformylglycinamidine synthase Input 

PLK1 polo-like kinase 1 Induced 

PPP2CA protein phosphatase 2, catalytic subunit, alpha 
isozyme Induced 

PSMD4 proteasome 26S subunit, non-ATPase 4 Induced 

RAD23B RAD23 homolog B, nucleotide excision repair protein Induced 

RPL17 ribosomal protein L17 Induced 

RPL5 ribosomal protein L5 Induced 

RPS20 ribosomal protein S20 Induced 

RPS23 ribosomal protein S23 Induced 

RPS27A ribosomal protein S27a Induced 

RPS7 ribosomal protein S7 Induced 

SEC23A Sec23 homolog A, COPII coat complex component Induced 

SIN3A SIN3 transcription regulator family member A Induced 

TCP1 t-complex 1 Induced 

UBA52 ubiquitin A-52 residue ribosomal protein fusion product 
1 Induced 
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Supplementary Table II-7, Community #7 (continued): (Putative hallmark/functions: 

evasion of growth suppressors, proteomic instability, evasion of apoptosis) 

 

SYMBOL GENE NAME TYPE 

UBB ubiquitin B Induced 

UBE2D1 ubiquitin-conjugating enzyme E2D 1 Induced 

UBE2D2 ubiquitin-conjugating enzyme E2D 2 Induced 

UBE2L3 ubiquitin-conjugating enzyme E2L 3 Induced 

UBE2V2 ubiquitin-conjugating enzyme E2 variant 2 Induced 

UBL4A ubiquitin-like 4A Induced 

UBQLN1 ubiquilin 1 Induced 

UBQLN2 ubiquilin 2 Induced 

UBQLN4 ubiquilin 4 Induced 

UBQLNL ubiquilin-like Induced 

UBR4 ubiquitin protein ligase E3 component n-recognin 4 Induced 

UBXN7 UBX domain protein 7 Induced 

UCHL3 ubiquitin carboxyl-terminal esterase L3 (ubiquitin 
thiolesterase) Induced 

USP10 ubiquitin specific peptidase 10 Induced 

USP14 ubiquitin specific peptidase 14 (tRNA-guanine 
transglycosylase) Induced 

USP34 ubiquitin specific peptidase 34 Induced 

USP7 ubiquitin specific peptidase 7 (herpes virus-associated) Induced 

USP9X ubiquitin specific peptidase 9, X-linked Input 

ZYX Zyxin Induced 
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Supplementary Table II-7, Community #8: (Putative hallmark/functions: tumor 

promoting inflammation, evasion of apoptosis) 

 

SYMBOL GENE NAME TYPE 

BIRC2 baculoviral IAP repeat containing 2 Induced 

BIRC3 baculoviral IAP repeat containing 3 Induced 

CASP8 caspase 8, apoptosis-related cysteine peptidase Induced 

MAP3K1 mitogen-activated protein kinase kinase kinase 1, E3 
ubiquitin protein ligase Induced 

MAP4K4 mitogen-activated protein kinase kinase kinase 
kinase 4 Induced 

MAVS mitochondrial antiviral signaling protein Induced 

RIPK1 receptor (TNFRSF)-interacting serine-threonine 
kinase 1 Induced 

SHARPIN SHANK-associated RH domain interactor Induced 

TLR4 toll-like receptor 4 Induced 

TNFRSF1A tumor necrosis factor receptor superfamily, member 
1A Induced 

TNFSF9 tumor necrosis factor (ligand) superfamily, member 9 Input 

TRAF1 TNF receptor-associated factor 1 Induced 

TRAF2 TNF receptor-associated factor 2 Induced 

UBE2N ubiquitin-conjugating enzyme E2N Induced 

XIAP X-linked inhibitor of apoptosis, E3 ubiquitin protein 
ligase Induced 
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Supplementary Table II-7, Community #9: (Putative hallmark/functions: proteomic 

instability, evasion of apoptosis) 

 

SYMBOL GENE NAME TYPE 

CNOT4 CCR4-NOT transcription complex, subunit 4 Induced 

NSF N-ethylmaleimide-sensitive factor Induced 

PSMA2 proteasome subunit alpha 2 Induced 

PSMA3 proteasome subunit alpha 3 Induced 

PSMA4 proteasome subunit alpha 4 Induced 

PSMA7 proteasome subunit alpha 7 Induced 

PSMA8 proteasome subunit alpha 8 Induced 

PSMB1 proteasome subunit beta 1 Induced 

PSMB2 proteasome subunit beta 2 Induced 

PSMB4 proteasome subunit beta 4 Induced 

PSMD6 proteasome 26S subunit, non-ATPase 6 Induced 

RQCD1 RCD1 required for cell differentiation1 homolog (S. 
pombe) Induced 

SACS sacsin molecular chaperone Input 
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Supplementary Table II-7, Community #10: (Putative hallmark/functions: genomic 

instability) 

 

SYMBOL GENE NAME TYPE 

EIF4A3 eukaryotic translation initiation factor 4A3 Induced 

EXOSC10 exosome component 10 Induced 

MAGOH mago homolog, exon junction complex core component Induced 

NUP153 nucleoporin 153kDa Induced 

NXF1 nuclear RNA export factor 1 Induced 

RAN RAN, member RAS oncogene family Induced 

RANGRF RAN guanine nucleotide release factor Input 

RBM3 RNA binding motif (RNP1, RRM) protein 3 Input 

SNRPA small nuclear ribonucleoprotein polypeptide A Induced 

TNPO1 transportin 1 Input 

TPR translocated promoter region, nuclear basket protein Induced 
 

 

 

Supplementary Table II-7, Community #11: (Putative hallmark/functions: evasion of 

growth suppressors, evasion of apoptosis) 

 

SYMBOL GENE NAME TYPE 

ANXA6 annexin A6 Input 

IMPA1 inositol(myo)-1(or 4)-monophosphatase 1 Input 

S100B S100 calcium binding protein B Induced 
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Supplementary Table II-7, Community #12: (Putative hallmark/functions: growth 

signal autonomy, evasion of growth suppressors) 

 

SYMBOL GENE NAME TYPE 

PIP5K1A phosphatidylinositol-4-phosphate 5-kinase, type I, 
alpha Induced 

PPP3CA protein phosphatase 3, catalytic subunit, alpha 
isozyme Induced 

PPP3CC protein phosphatase 3, catalytic subunit, gamma 
isozyme Input 

RAB11A RAB11A, member RAS oncogene family Induced 

RAB11B RAB11B, member RAS oncogene family Induced 

RAB11FIP2 RAB11 family interacting protein 2 (class I) Input 
 

 

 

Supplementary Table II-7, Community #13: (Putative hallmark/functions: 

deregulating cellular energetics) 

 

SYMBOL GENE NAME TYPE 

ATP5C1 ATP synthase, H+ transporting, mitochondrial F1 
complex, gamma polypeptide 1 Induced 

ATP5G1 ATP synthase, H+ transporting, mitochondrial Fo 
complex, subunit C1 (subunit 9) Input 

 

 

 

Supplementary Table II-7, Community #14: (Putative hallmark/functions: 

deregulating cellular energetics) 

 

SYMBOL GENE NAME TYPE 

COX15 cytochrome c oxidase assembly homolog 15 (yeast) Input 

LAMTOR3 late endosomal/lysosomal adaptor, MAPK and MTOR 
activator 3 Induced 

  



APPENDIX II 

215 
 

Supplementary Table II-7, Community #15: (Putative hallmark/functions: tumor 

promoting inflammation) 

 

SYMBOL GENE NAME TYPE 

MTMR9 myotubularin related protein 9 Input 

NMI N-myc (and STAT) interactor Induced 

POMZP3 POM121 and ZP3 fusion Input 
 

 

 

Supplementary Table II-7, Community #16: (Putative hallmark/functions: tumor 

promoting inflammation, angiogenesis, tumor microenvironment influence) 

 

SYMBOL GENE NAME TYPE 

CTSL cathepsin L Input 

KNG1 kininogen 1 Induced 
 

 

 

Supplementary Table II-7, Community #17: (Putative hallmark/functions: 

deregulating cellular energetics) 

 

SYMBOL GENE NAME TYPE 

BCCIP BRCA2 and CDKN1A interacting protein Input 

CHORDC1 cysteine and histidine-rich domain (CHORD) containing 1 Induced 

GDA guanine deaminase Induced 

KYNU Kynureninase Input 

LDHA lactate dehydrogenase A Induced 

SMS spermine synthase Induced 
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Supplementary Table II-7, Community #18: (Putative hallmark/functions: 

deregulating cellular energetics) 

 

SYMBOL GENE NAME TYPE 

DARS2 aspartyl-tRNA synthetase 2, mitochondrial Input 

DCP2 decapping mRNA 2 Induced 
 

 

Supplementary Table II-7, Community #19: (Putative hallmark/functions: growth 

signal autonomy, invasion and metastasis, genomic instability) 

 

SYMBOL GENE NAME TYPE 

AR androgen receptor Induced 

AURKA aurora kinase A Induced 

BRCA1 breast cancer 1, early onset Induced 

BTRC beta-transducin repeat containing E3 ubiquitin protein 
ligase Induced 

CCND1 cyclin D1 Induced 

CDH1 cadherin 1, type 1 Induced 

CDK1 cyclin-dependent kinase 1 Induced 

CDK2 cyclin-dependent kinase 2 Induced 

CDKN1A cyclin-dependent kinase inhibitor 1A (p21, Cip1) Induced 

CDKN1B cyclin-dependent kinase inhibitor 1B (p27, Kip1) Induced 

CHUK conserved helix-loop-helix ubiquitous kinase Input 

CREBBP CREB binding protein Induced 

CSNK2A1 casein kinase 2, alpha 1 polypeptide Induced 

CSNK2A2 casein kinase 2, alpha prime polypeptide Induced 

CTNNB1 catenin (cadherin-associated protein), beta 1, 88kDa Induced 

EP300 E1A binding protein p300 Induced 

ESR1 estrogen receptor 1 Induced 
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Supplementary Table II-7, Community #19 (continued): (Putative 

hallmark/functions: growth signal autonomy, invasion and metastasis, genomic 

instability) 

 

SYMBOL GENE NAME TYPE 

FBXO31 F-box protein 31 Input 

FBXW7 
F-box and WD repeat domain containing 7, E3 ubiquitin 
protein ligase 

Induced 

HDAC1 histone deacetylase 1 Induced 

HIST3H3 histone cluster 3, H3 Induced 

KEAP1 kelch-like ECH-associated protein 1 Induced 

NCOA3 nuclear receptor coactivator 3 Induced 

NR3C1 nuclear receptor subfamily 3, group C, member 1 
(glucocorticoid receptor) Induced 

PBK PDZ binding kinase Input 

PML promyelocytic leukemia Induced 

PRKDC protein kinase, DNA-activated, catalytic polypeptide Induced 

PTEN phosphatase and tensin homolog Input 

PTMA prothymosin, alpha, prothymosin alpha-like Induced 

RAC3 ras-related C3 botulinum toxin substrate 3 (rho family, 
small GTP binding protein Rac3) Induced 

RBX1 ring-box 1, E3 ubiquitin protein ligase Induced 

RUVBL1 RuvB-like AAA ATPase 1 Induced 

SIRT1 sirtuin 1 Induced 

SKP1 S-phase kinase-associated protein 1 Induced 

SMAD1 SMAD family member 1 Induced 

SMAD 2 SMAD family member 2 Induced 

SMAD 3 SMAD family member 3 Induced 

SMAD 4 SMAD family member 4 Induced 

SUMO1 small ubiquitin-like modifier 1 Induced 

TERT telomerase reverse transcriptase Induced 

TP53 tumor protein p53 Induced 
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Supplementary Table II-7, Community #19 (continued): (Putative 

hallmark/functions: growth signal autonomy, invasion and metastasis, genomic 

instability) 

 

UBE2I ubiquitin-conjugating enzyme E2I Induced 

ZEB1 zinc finger E-box binding homeobox 1 Input 
 

 

 

Supplementary Table II-7, Community #20: (Putative hallmark/functions: genomic 

instability, proteomic instability) 

 

SYMBOL GENE NAME TYPE 

RAB7A RAB7A, member RAS oncogene family Induced 

UVRAG UV radiation resistance associated Induced 

VPS16 vacuolar protein sorting 16 homolog (S. cerevisiae) Induced 

VPS33B vacuolar protein sorting 33 homolog B (yeast) Input 
 

 

 

Supplementary Table II-7, Community #21: (Putative hallmark/functions: growth 

signal autonomy, deregulating cellular energetics, Endo/Exocytosis) 

 

SYMBOL GENE NAME TYPE 

STX2 syntaxin 2 Input 

YKT6 YKT6 v-SNARE homolog (S. cerevisiae) Induced 
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Supplementary Table II-7, Community #22: (Putative hallmark/functions: growth 

signal autonomy, proteomic instability) 

 

SYMBOL GENE NAME TYPE 

CRTAP cartilage associated protein Input 

TOM1L1 target of myb1 like 1 membrane trafficking protein Induced 
 

 

 

Supplementary Table II-7, Community #23: (Putative hallmark/functions: post-

translational gene regulation, proteomic instability) 

 

SYMBOL GENE NAME TYPE 

DAZAP1 DAZ associated protein 1 Induced 

MSI1 musashi RNA-binding protein 1 Induced 

MSI2 musashi RNA-binding protein 2 Induced 

ZC3H14 zinc finger CCCH-type containing 14 Input 
 

 

 

Supplementary Table II-7, Community #24: (Putative hallmark/functions: genomic 

instability) 

 

SYMBOL GENE NAME TYPE 

CSE1L CSE1 chromosome segregation 1-like (yeast) Induced 

SLC9A3R1 solute carrier family 9, subfamily A (NHE3, cation proton 
antiporter 3), member 3 regulator 1 Induced 
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Supplementary Table II-7, Community #25: (Putative hallmark/functions: 

deregulating cellular energetics, proteomic instability) 

 

SYMBOL GENE NAME TYPE 

ALDH1B1 aldehyde dehydrogenase 1 family, member B1 Input 

UBR7 ubiquitin protein ligase E3 component n-recognin 7 
(putative) Induced 

 

 

 

Supplementary Table II-7, Community #26: (Putative hallmark/functions: 

deregulating cellular energetics) 

 

SYMBOL GENE NAME TYPE 

GNS glucosamine (N-acetyl)-6-sulfatase Induced 

LDHAL6B lactate dehydrogenase A-like 6B Induced 

NAGK N-acetylglucosamine kinase Induced 
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Supplementary Table II-7, Proteins with no community affiliation: 

 

SYMBOL GENE NAME TYPE 

PROCR protein C receptor, endothelial Input 

GNG11 guanine nucleotide binding protein (G protein), gamma 
11 Input 

ARHGEF9 Cdc42 guanine nucleotide exchange factor (406) 9 Input 

DOCK10 dedicator of cytokinesis 10 Input 

INVS Inversin Input 

DIP2C disco-interacting protein 2 homolog C Input 

S100A1 S100 calcium binding protein A1 Induced 

ADCY9 adenylate cyclase 9 Input 

HS1BP3 HCLS1 binding protein 3 Input 

PMP22 peripheral myelin protein 22 Input 

TFE3 transcription factor binding to IGHM enhancer 3 Input 

DHRS4:D
HRS4L2:
DHRS4L1 

dehydrogenase/reductase (SDR family) member 4, 
dehydrogenase/reductase (SDR family) member 4 like 
2, dehydrogenase/reductase (SDR family) member 4 
like 1 

Input 

MID1IP1 MID1 interacting protein 1 Input 

ANGEL2 angel homolog 2 (Drosophila) Input 

PEX19 peroxisomal biogenesis factor 19 Induced 

S100A3 S100 calcium binding protein A3 Input 

CUTC cutC copper transporter Input 

IGFBP3 insulin-like growth factor binding protein 3 Induced 

DIXDC1 DIX domain containing 1 Input 

FASTKD1 FAST kinase domains 1 Input 

PEX5 peroxisomal biogenesis factor 5 Induced 

GPHN Gephyrin Induced 
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Supplementary Figure II-1: NSCLC cells most sensitive to CX-4945 have decreased 

CSNK2B expression. U133A Affymetrix signal intensity values for (A) CSNK2A1 

(Averaged of three probesets: 212072_s_at, 206075_s_at, and 212075_s_at), (B) 

CSNK2A2 (203575_at), and (C) CSNK2B (201390_s_at) probesets were generated from 

untreated NSCLC cell lines (n=3) with using Affymetrix MAS v5.0 software [Balko, 2006 

#238]. Values for each gene set were normalized to corresponding expression in Small 

Airway Epithelial Cells (SAEC) and is shown as percent change. 

 

 

A       
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Supplementary Figure II-1 (continued): NSCLC cells most sensitive to CX-4945 have 

decreased CSNK2B expression. U133A Affymetrix signal intensity values for (A) 

CSNK2A1 (Averaged of three probesets: 212072_s_at, 206075_s_at, and 212075_s_at), 

(B) CSNK2A2 (203575_at), and (C) CSNK2B (201390_s_at) probesets were generated 

from untreated NSCLC cell lines (n=3) with using Affymetrix MAS v5.0 software [Balko, 

2006 #238]. Values for each gene set were normalized to corresponding expression in 

Small Airway Epithelial Cells (SAEC) and is shown as percent change. 

 

B 
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Supplementary Figure II-1 (continued): NSCLC cells most sensitive to CX-4945 have 

decreased CSNK2B expression. U133A Affymetrix signal intensity values for (A) 

CSNK2A1 (Averaged of three probesets: 212072_s_at, 206075_s_at, and 212075_s_at), 

(B) CSNK2A2 (203575_at), and (C) CSNK2B (201390_s_at) probesets were generated 

from untreated NSCLC cell lines (n=3) with using Affymetrix MAS v5.0 software [Balko, 

2006 #238]. Values for each gene set were normalized to corresponding expression in 

Small Airway Epithelial Cells (SAEC) and is shown as percent change. 

 

C 
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APPENDIX III: SUPPLEMENTARY FIGURES FOR CHAPTER 5 

 

Supplementary Figure III-1: Comparison of CX-4945 treatment on erlotinib 

response. A549 and PC9 samples treated only with ± 1µM CX-4945 from Figures 3 and 

5 to determine the impact of 7-day incubation of CX-4945 on erlotinib sensitivity in cells 

not modulated with TGFβ, LY-2109761, or SB-431542. Unpaired t-test comparing 

untreated and CX-4945 treated curves indicates that the differences between the curves 

are not significant. 
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