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ABSTRACT 

This study presents a comprehensive investigation of methods and technologies for developing a 

computer vision-based framework for Structural Health Monitoring (SHM) and Structural 

Identification (St-Id) for civil infrastructure systems, with particular emphasis on various types of 

bridges. SHM is implemented on various structures over the last two decades, yet, there are some 

issues such as considerable cost, field implementation time and excessive labor needs for the 

instrumentation of sensors, cable wiring work and possible interruptions during implementation. 

These issues make it only viable when major investments for SHM are warranted for decision 

making. For other cases, there needs to be a practical and effective solution, which computer-

vision based framework can be a viable alternative. Computer vision based SHM has been 

explored over the last decade. Unlike most of the vision-based structural identification studies and 

practices, which focus either on structural input (vehicle location) estimation or on structural 

output (structural displacement and strain responses) estimation, the proposed framework 

combines the vision-based structural input and the structural output from non-contact sensors to 

overcome the limitations given above. First, this study develops a series of computer vision-based 

displacement measurement methods for structural response (structural output) monitoring which 

can be applied to different infrastructures such as grandstands, stadiums, towers, footbridges, 

small/medium span concrete bridges, railway bridges, and long span bridges, and under different 

loading cases such as human crowd, pedestrians, wind, vehicle, etc. Structural behavior, modal 

properties, load carrying capacities, structural serviceability and performance are investigated 

using vision-based methods and validated by comparing with conventional SHM approaches. In 

this study, some of the most famous landmark structures such as long span bridges are utilized as 

case studies. This study also investigated the serviceability status of structures by using computer 
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vision-based methods. Subsequently, issues and considerations for computer vision-based 

measurement in field application are discussed and recommendations are provided for better 

results. This study also proposes a robust vision-based method for displacement measurement 

using spatio-temporal context learning and Taylor approximation to overcome the difficulties of 

vision-based monitoring under adverse environmental factors such as fog and illumination change. 

In addition, it is shown that the external load distribution on structures (structural input) can be 

estimated by using visual tracking, and afterward load rating of a bridge can be determined by 

using the load distribution factors extracted from computer vision-based methods. By combining 

the structural input and output results, the unit influence line (UIL) of structures are extracted 

during daily traffic just using cameras from which the external loads can be estimated by using 

just cameras and extracted UIL. Finally, the condition assessment at global structural level can be 

achieved using the structural input and output, both obtained from computer vision approaches, 

would give a normalized response irrespective of the type and/or load configurations of the 

vehicles or human loads. 
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CHAPTER ONE: INTRODUCTION 

 

1.1 Background 
 

Structural health monitoring (SHM) has been researched and implemented in the field of civil 

engineering and is still receiving more attention from both researchers and engineers (Catbas and 

Aktan 2002; Gul and Catbas 2008, 2011a; b). Significant progress has been made in structural 

health monitoring and performance evaluation of structures as well as structural identification, 

damage detection, model updating, structural reliability, condition assessment, decision making, 

structure management and maintenance (Aktan et al. 2000; Ghosn et al. 2016; Gul et al. 2014; Gul 

and Catbas 2009), as a result of the advances in sensing technologies and data processing 

techniques. SHM is playing an essential role in the diagnosis and prognosis of performance and 

safety of civil infrastructures. However, certain challenges have been presented and discussed in 

the development of current SHM such as challenges in field-work for sensor instrumentation, cable 

wiring, data acquisition, power and transmission arrangement for wired and wireless sensing. 

These challenges can make certain SHM applications inconvenient, time consuming, and 

expensive. Additional considerations that need to be resolved are: 1) the inspection and monitoring 

of existing structures may experience service interruptions such as bridges may require traffic 

closure, 2) it may be difficult to obtain access for instrumentation work for some large or sensitive 

infrastructures, and 3) some structures may warrant just intermittent monitoring with portable 

systems instead of permanent and continuous monitoring systems. As a result, the development of 

effective, convenient and inexpensive monitoring tools for cases outlined above and also for large 

populations of civil infrastructure is becoming more important. 
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Recently, the combination of camera technology and computer vision algorithms has led to great 

advancements in the field of SHM (Catbas et al. 2012b; Ye et al. 2016a; Yeum and Dyke 2015; 

Zaurin et al. 2015; Zaurin and Catbas 2010a; b). Consequently, computer vision-based structural 

health monitoring and identification research and implementation are gaining increasing attention 

in the community of infrastructure/structural engineering. This dissertation conducts a detailed 

investigation of computer vision concepts and methods for SHM and structural identification.  

 

1.2 Organization of Thesis 

 

This chapter, Chapter 1, introduces the subject matters to be discussed and a description of the 

research approaches, methods, objectives and applications. Chapter 2 delves into literature to 

discuss the advances in computer vision based SHM at local and global level of structural 

evaluation. This chapter presents the challenges and concerns in current research and practices of 

computer vision-based application in civil infrastructures. Chapter 3 proposes a vision-based 

displacement measurement framework which combines optical flow and different types of feature 

points without using manual markers. The proposed framework is verified on a grandstand model 

in laboratory and a real-life stadium. In addition, structural dynamic properties are identified using 

the proposed framework during the verification, and validated in a comparative fashion with 

conventional sensors. Chapter 4 proposes a novel marker free displacement measurement method 

by using advanced feature matching strategy. A new feature descriptor is implemented to original 

feature detector. The improvement of the new method is verified by a series experiments on a two-

span bridge model in laboratory and a real-life railway bridge. Chapter 5 proposes a practical 

vision-based displacement measurement method by using a pretrained deep learning based optical 
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flow model. This method makes it much easier to use for the researchers or engineers in civil 

engineering who may not have enough knowledge or experiences of digital image processing or 

computer vision. The proposed method is verified by the experiments on a large-scale grandstand 

structure in laboratory and a real-life footbridge under human jumping loads. Considerations and 

recommendations are also discussed and provided in detail for accurate results. Chapter 6 proposes 

a robust vision-based displacement measurement method to overcome the difficulties and 

limitations for the traditional vision-based displacement measurement method in application cases 

under adverse environmental factors such as illumination change and fog. Chapter 7 presents the 

field applications of the vision-based displacement measurement methods on three large, landmark 

structures (three long span bridges in Turkey). The findings as well as the challenges and issues 

encountered during the field applications for such large structures are presented and discussed. 

Chapter 8 focuses on the application of the proposed vision-based vibration monitoring to 

determine vibration serviceability assessment of a footbridge. Chapter 9 proposes a practical 

approach for the estimation of bridge distribution factor and load rating factors by using computer 

vision-based methods. Chapter 10 presents a non-contact approach which can assess the load 

distribution on structures. By combining the structural input (load) and structural output (responses) 

obtained by cameras and computer vision, a conceptual index, unit influence line (UIL), is 

identified under daily traffic. In addition, the loads on the structures are estimated by using UIL. 

Finally, Chapter 11 presents a brief summary, conclusions and recommendations of this doctoral 

dissertation. 
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CHAPTER TWO: REVIEW OF COMPUTER VISION-BASED 

STRUCTURAL HEALTH MONITORING 

 

2.1 Introduction 

 

Structural health monitoring is the process of tracking the operational status, assessing the 

condition, and detecting the damage of various types of structures (Catbas et al. 2008a; Gul and 

Catbas 2009, 2011a). Material deterioration or structural change can induce the service 

interruption or can potentially pose safety risk for structures. Damage at the local level may be 

considered as the changes in the effective material properties and condition due to causes such as 

crack, spalling, corrosion, delamination and void. For example, qualified engineers and inspectors 

implement hammer sounding and/or chain drag, and visual inspection for concrete bridge deck 

evaluations, yet these methods require substantial field labor, experience, and operational 

interruptions. Based on visual inspections, National Bridge Inventory (NBI) defined the condition 

rating categories to evaluate three primary components of a bridge: deck, superstructure, and 

substructure (Item 58, 59, 60). The condition rating categories of NBI are divided into 10, from 0 

to 9, and inspectors rate the bridge condition subjectively based on their experiences in accordance 

with the descriptions provided by US Department of Transportation (USDOT) and Federal 

Highway Administration (FHWA) (USDOT and FHWA 2000). 

 

In the new manual for bridge element inspection released by American Association of State 

Highway and Transportation Officials (AASHTO 2015), the condition of each element is 

standardized by recording quantities of all defects detected from a field inspection. In the manual, 
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categorization of each element depending with the extent of defect type is defined. Seven types of 

defects are defined for prestressed concrete deck, such as delamination/spall/patched area, exposed 

rebar, exposed prestressing, cracking, efflorescence/rust staining, abrasion/wear, damage. Each 

defect is recorded with the size and volume, and rated condition state including “Good, Fair, Poor 

and Severe” separately based on the criteria provided by the manual. In addition, non-destructive 

evaluation (NDE) techniques such as impact echo, ultrasound electrical resistivity, thermography 

and ground-penetrating radar have been developed to inspect and monitor aging and deteriorating 

structures effectively in place of visual and sounding inspection methods. The NDE process is a 

localized condition evaluation and it can be described as structural health monitoring at local level 

(SHM-LL) if data are collected over time and condition is tracked. The critical deterioration 

mechanisms and severity levels need to be well-established before being monitored so that SHM-

LL can properly address the problems that have implications on local as well as global condition. 

Even though a complete local scan throughout a structure can be done for the purpose of effective 

structural maintenance and management, it is still necessary to understand how local damage or 

condition changes affect the performance of the whole structure (Catbas and Aktan 2002).  

 

The global damage can be described as structural behavior change that can distinctly influence the 

input-output (loads-responses) of the critical regions/elements of a structure. The process of 

addressing the global damage and condition assessment problems can be described as structural 

health monitoring at global level (SHM-GL). The relation between SHM-LL and SHM-GL is 

bidirectional: (a) the process of understanding the input-output structural behavior which is one of 

the tasks of SHM-GL can benefit from the condition assessment from SHM-LL. For example, load 

rating is a very important task of SHM-GL, while the condition factor in general load rating 
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equation is affected by the local condition rating (USDOT and FHWA 2000) according to the 

manual for bridge evaluation (AASHTO 2018). (b) the global condition evaluation and damage 

detection from SHM-GL can assist the SHM-LL to understand how localized condition and 

damage affect the complete system. 

 

SHM-LL and SHM-GL play significant roles in the assessment, management and maintenance of 

structures to assist the assets’ owners for decision making. According to the 2017 ASCE 

Infrastructure Report Card (ASCE 2017), the grade point average (GPA) of America’s civil 

infrastructures is D+ on an A through F grading scale and the cost for the improvement is around 

4.59 trillion USD. Consequently, it may become an overburden on the shoulders of the State 

Departments of Transportation (DOTs), which have already been stretched to limits in terms of 

budget and manpower in several states. At current stage, there are still a lot of limitations when 

implementing the conventional SHM-LL and SHM-GL approaches. The efficiency, cost, time, 

labor force are big issues for inspection and maintenance of the infrastructures. For SHM-LL, 

visual inspection is still the most preferred method by engineers to inspect structures. Although 

the nondestructive testing methods such as impact echo, ultrasound, electrical resistivity, and 

ground-penetrating radar make great progress in the effective inspection, the costs are too high to 

be promoted widely. For SHM-GL, sensors are always necessary to be installed on the critical 

regions of structures to acquire the external loads and structural responses. The challenges in 

fieldwork for sensor instrumentation, cable wiring, data acquisition, and power and transmission 

arrangement for wired and wireless sensing make certain SHM-GL applications inconvenient, 

time-consuming, and expensive. Traffic closure and access problem of sensor instrumentation on 

large scale structures are among other problems. In addition, some structures may warrant just 
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intermittent monitoring with portable systems instead of permanent and continuous monitoring 

systems. It is necessary to develop effective, convenient, and inexpensive SHM tools to better 

support the owner’s decision making for structural condition assessment at local and global level. 

 

In recent years, with the development of imaging devices having low cost and high quality, and 

with the remarkable progress of computer vision (CV) techniques, vision-based SHM has been 

gathering increasing attention in the SHM community. In addition, the corresponding techniques 

can be easily implemented into SHM to dig effective structural condition information and provide 

benefit to the conventional practice of SHM. The tasks of CV as image classification, detection, 

image segmentation, optical flow, and visual tracking are very similar in both SHM-LL and SHM-

GL. SHM-LL indices for local condition assessment such as crack, spalling, corrosion, 

delamination and void can be extracted from visual images of the structure’s surface and infrared 

images reflecting the inside of structural elements with computer techniques such as image 

classification, detection, image segmentation. SHM-GL indices for global condition assessment 

such as structural responses including displacement, vibration, modal parameters, cable force, 

curvature and profile can be obtained by optical flow and visual tracking, and the external loads 

including vehicle distribution on bridge structures and human occupancy in building structures can 

be obtained by objected detection. The advantages of CV-based structural health monitoring at 

local and global level (CV-SHM-LL and CV-SHM-GL) are these methods enable long distance, 

non-contact, low cost and automated inspection. CV-based approach can not only give detailed 

distribution map of damages/structural changes, but also quantify the extent of the structural 

conditions with detailed information. It is also compatible with the current AASHTO (American 

Association of State Highway and Transportation Officials) codes and NBI (National Bridge 
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Inventory) condition rating codes. In addition, CV-based approaches can supply denser spatial 

information compared with the conventional SHM which relies on installing sensors on discrete 

nodes of structures. Although it is not possible for CV-SHM to cover every aspect of the concerns 

of SHM, CV-SHM (LL and GL) provides a promising complementary of the current SHM practice 

to improve the present grade of the infrastructures all over the world.  

 

This chapter dedicates to make a comprehensive review of computer vision-based structural health 

monitoring at local and global level. The paper is structured as follows: Section 2.2 introduces the 

projective geometry implemented in CV-SHM; Section 2.3 introduces the methods, algorithms, 

and applications of CV-SHM at local level; Section 2.4 introduces those at global level; Section 

2.5 presents the challenges and concerns in real-life practices of CV-SHM; Section 2.6 concludes 

the literature review. 

 

2.2 Projective Geometry Applied in CV-SHM 

 

In both CV-SHM-LL and CV-SHM-GL, the object in real world is projected to an image via 

camera and lens. By analysing the changes in the images such as a motion or abnormal phenomena, 

those happen in the real world can be estimated. In AASHTO code, for structural element 

inspection, requirements such as the width/length of the crack and the size of the spalling area are 

necessary to assess the element condition. In CV-SHM-GL applications, requirements such as 

vibration and deflection are necessary to obtain the modal properties and load bearing capacities 

of bridges. While in the process of converting from images to the real world, it is necessary to 

figure out the relation between the camera and the real world: “what is the pose of the camera and 
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lens?” “how long does one pixel represent in the real world in each direction?”. To answer these 

questions, the projective geometry calculation needs to be implemented and camera calibration is 

essential to reverse the camera projection. Fig. 1 is a diagram of pinhole camera model which 

shows the projective transform from three-dimensional (3D) world to two-dimensional (2D) image. 

The extrinsic and intrinsic matrices need to be estimated during the camera calibration. 

 

 

Figure 1 The projection from real world object to image 

 

The projection transform from world coordinates to the image coordinates through camera 

coordinates can be expressed by the formula below: 

[ ]|s =x K R t X                                                        (1) 

and it can be expanded as  
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transformation from the 3D world to the 2D image plane. R and t are camera extrinsic parameters 

which represent the rigid rotation and translation from the 3D real world coordinates to the 3D 

camera coordinates. In the intrinsic matrix, fx and fy are the focal lengths of the lens in horizontal 

and vertical directions, cx and cy are offsets of the optical axis in horizontal and vertical directions, 

and γ is the skew factor of the lens. In the extrinsic matrix, rij (i, j = 1, 2, 3) and ti (i=1, 2, 3) are 

the elements of R and t, respectively. From Eqs. (1) and (2), it is indicated that the camera intrinsic 

parameters are relevant to the camera and lens, and the camera extrinsic parameters are relevant 

to the relative position between the camera-lens and real objects, i.e., camera pose. Once the 

camera is calibrated with a specific lens, as soon as the focal lens doesn’t change, the intrinsic 

parameters don’t change. However, the extrinsic parameters should be calibrated in different 

application scenarios since the pose changes. Zhang’s practical calibration approach (Zhang 2002) 

is commonly used, which utilizes images of a black and white chessboard taken in different camera 

pose. Commercial software such as MATLAB Vision Toolbox, NI Vision, Halcon and open source 

library such as OpenCV supply user friendly interface to implement camera calibration procedure.  

 

In the application of CV-SHM, no matter LL or GL, the implementation of projective transform 

for camera calibration is always necessary. For CV-SHM-LL application, (Karaaslan et al. 2019) 

implemented CV to estimate the camera pose of a headset and determine the length/width/area of 

detected cracks on structures. Then they assessed the structural condition as “Good, Fair, Poor or 

Severe” according to AASHTO codes. (Adhikari et al. 2014) implemented projective geometry to 

calculate the crack densities of concrete bridges. (Ellenberg et al. 2016) implemented it to rectify 

the cameras on an Unmanned Aerial Vehicle (UAV) to estimate the size of the delamination in a 

bridge deck. (Yang et al. 2015) implemented the projective transform to two cameras to detect the 
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crack distribution, calculate the crack width and monitor the propagation of cracks in a concrete 

pier. Also, in CV-SHM-GL applications, especially when there’s a need for 3D displacement 

monitoring, two cameras need to be implemented and the pose estimations of the two cameras 

have to be performed respectively in order to build the connection between two cameras. (Shan et 

al. 2018a; b, 2019) implemented the projective transform to calibrate two cameras and estimate 

the camera pose to monitor the 3D displacements of a three-story structure under seismic loading 

and a concrete beam in a destructive test. (Chang and Ji 2007) implemented projective geometry 

to monitor the 3D vibration of a bridge deck in wind tunnel test and a frame structure in a shaking 

table test. References (Kim et al. 2006; Lages Martins et al. 2015; Park et al. 2015b) also presented 

the similar implementations. When a wide-angle camera is used, the projective geometry can also 

rectify the image due to radial distortion. (Xu et al. 2018) employed a GoPro camera with wide 

angle to monitor the vibration of a cable-stayed bridge and applied the similar procedure presented 

above to rectify distorted images. (Dong et al. 2019a) implemented the projective transform to 

rectify distorted images and estimate the location of vehicles on the bridge deck.  

 

In practical CV-SHM applications, the projective transform is simplified by scale ratio or 

homography transform. The scale ratio, SR, can be expressed as: 

 

L D
SR

l f
= =                                                              (3) 

where L is the length of the object in real world, l is the length with the unit of pixel in image, D 

is the distance from the camera to the object, f is the focal length. Compared to the projective 

transformation in Eqs. (1) and (2), the scale ratio is much simpler and easier to calculate. In 

practical applications, the scale ratio is always an option. References (Jahanshahi and Masri 2012; 
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Li et al. 2014; Zhong et al. 2018c) employed the scale ratio for the crack width and length 

estimation. References (Celik et al. 2018a, 2019a; Dong et al. 2015; Feng and Feng 2017; Ye et al. 

2016f, 2013, 2015, 2016c, b, d; a) applied the scale ratio to calculate the displacement of monitored 

structures. When the axis of camera-lens is perpendicular to the measurement plane, the calculation 

of scale ratio can be obtained from Eq. (3). If the axis of camera-lens is not perpendicular to the 

measurement plane, Eq. (3) has to be modified. References (Dong et al. 2019b; Feng et al. 2015a) 

presented the detailed modifications. Another option is to use homography matrix if the 

motion/change of the structure is limited in one plane. The projection from the real world plane to 

the image plane is expressed by the homography transform: 

s=X Hx                                                                  (4) 

Eq. (4) is a degraded version of Eq. (1). Eq. (4) can be formed by  
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where X is degraded to (X, Y, 1)T. In this formulation, H is the 3×3 homography matrix and hi (i = 

1, 2, …, 9) is the element of H. The homography matrix H has 9 unknowns and only 8 of them are 

independent. Here, at least four point correspondences are needed to calculate H. The detailed 

parameter estimation procedure is presented in (Hartley and Zisserman 2003). References (Dong 

et al. 2019c; Wu et al. 2014; Xu et al. 2018) applied homography matrix method to measure the 

in-plane structural displacement. References (Dong et al. 2019a; Khuc and Catbas 2018; Zaurin 

and Catbas 2010a) applied homography matrix method to estimate the location of the vehicles on 

bridge deck.  
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2.3 Computer Vision-based Structural Health Monitoring at Local Level (CV-SHM-LL) 

 

According to AASHTO codes (AASHTO 2015), the structural condition is assessed with the 

inspection of items such as crack, spalling, delamination, corrosion, etc. Quantities are necessary 

to categorize the conditions. The conventional procedure done by inspectors is first to check the 

structures visually and then to manually mark the location on the drawings of structures (Adhikari 

et al. 2014). This procedure is time-consuming and need lots of labor forces. Photos or videos may 

just be regarded as references or back-up for documentary. In CV-SHM-LL, the images are the 

main materials for analysis and assessment, and the whole procedure is towards to be automated. 

The final assessment is performed according to the condition map extracted from images.  

 

This section reviews the applications of CV-SHM-LL in different structures types including crack, 

spalling, and delamination detection in concrete structures, crack and delamination detection in 

pavement structures, and crack detection, crack propagation monitoring, rust detection and bolt 

loose detection in steel structures. 

 

2.3.1 Crack Detection of Concrete Structures 

 

Generally, the crack detection methods can be classified into two categories (Zhu et al. 2011). The 

first category is the patch-based method. The basic procedure is to recognize whether cracks exist 

in a patch. The patch can be a sliding window crossing the whole images to do an exhaustive search 

with predefined stride or can be the subregion which is segmented from the original image. Within 

the patch, pattern recognition, template matching or classifier can be implemented to recognize 
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whether there are cracks. In this process, machine learning, deep learning or matching/recognition 

with manual features can be applied. The final crack distribution can be obtained by putting all the 

crack results with the patches together. The patch-based method may only produce the possible 

range of cracks depending on the size of the patch. The connectivity, detailed shape and angle 

cannot be obtained (Mei and Gül 2019). Further process such as local edge detection, 

morphological process or visual segmentation are necessary to refine and segment the cracks from 

background.  

 

The second category is the pixel-based method. The whole image is processed and cracks are 

segmented from the background. At the end, a detailed cracks shape and distribution map is 

obtained. Reference (Ni et al. 2019) introduced crack detection results by using different methods 

including: 1) GoogLeNet which is one of the patch based crack detection methods; 2) Crack 

Delineation Network (CDN) which is a convolutional neural network (CNN) based crack 

segmentation method (pixel based); 3) Otsu’s segment using threshold to binarize the image to get 

the morphology (pixel based); and 4) Canny edge detector using edge detection to get crack profile 

(pixel based). This section reviews the two categories of crack detection methods for concrete 

structures respectively. 

 

2.3.1.1 Patch-based Crack Detection of Concrete Structures 

 

(Liu et al. 2003) combined the image intensities, edges and Support Vector Machine (SVM) to 

train a crack classifier and then categorized small image patches into three classes, “crack, non-

crack and intermediate”. The classifier slides on the whole image to predict the possible crack 
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regions. (Abdel-Qader et al. 2006) introduced a PCA (Principal Component Analysis)-based crack 

cluster method for small image patches, and this method can achieve unsupervised bridge crack 

detection. (Li et al. 2017) extracted and segmented cracks from image patches by using edge 

detection and modified active contour and the crack width was also calculated. To eliminate the 

noises caused by inconsistent intensity and possible shadows, they applied SVM and greedy search 

strategy on the whole tested image. (Silva and Lucena 2018) retrained the VGG16 neural network 

and developed a crack classifier, however, this classifier can only determine whether there’re 

cracks in images or not. It cannot show the crack shape. (Cha et al. 2017a) trained CNN based 

crack classifier for small image patch (256×256 pixels) and slided the classifier on the tested 

images to predict whether there were cracks inside the overlapped patches. The final crack 

detection map was extracted by only keeping the patches with cracks. (Yokoyama and Matsumoto 

2017) did the similar work and found a phenomenon that when there is stain, the detection rate 

decreases. (Chen and Jahanshahi 2018) developed a CNN-based crack classifier and detected the 

possible crack area by sliding a small patch on images to classify cracks. They maintained the 

spatiotemporal coherence of cracks in videos using data fusion and decreased the false positive 

rate by using Naïve Bayes decision making. 

 

(Prasanna et al. 2016) utilized line segment detector, spatially tuned multi-feature and machine 

learning classifiers such as Random Forest, SVM and Adaboost to get the local crack map in image 

patches. Then by stitching all the patches together, they got the global crack map. (Jahanshahi and 

Masri 2012) built a crack classier by using the features extracted from 3D scene reconstructed 

segmentation map. The crack segmentation parameters could be automatically adjusted based on 

depth parameters obtained from multi-view geometry. This crack detection method also recognizes 
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cracks within small patches. (Karaaslan et al. 2019) retrained the VGG (a CNN framework 

developed by Visual Geometry Group in University of Oxford) weights in SSD architecture to 

recognize crack regions with a bounding box and used the SegNet model to segment the cracks 

inside the bounding box. (Kim and Cho 2018) trained a CNN-based crack classifier for small image 

patches and by sliding the crack classifier on images, they acquired the crack detection results and 

probability map. (Dorafshan et al. 2018) retrained the AlexNet and by transfer learning, they 

developed an CNN-based crack classifier. Then they divided an image into small patches and used 

the trained classifier to infer whether there were cracks inside the small patches. Also, by doing 

edge detection inside the patches, they obtained the crack shapes. (Jang et al. 2019) retrained the 

GooLeNet to a crack classifier for standard visual images to recognize the cracks in small patches 

and used another CNN to train the images from infrared thermal (IRT) cameras to minimize the 

false detection. 

 

2.3.1.2 Pixel-based Crack Detection of Concrete Structures 

 

Edge detection is a very popular technique for crack detection at pixel level and to the best of the 

authors’ knowledge, it might be the first technique to be implemented to perform crack detection. 

Edge detection is a manual processing method for crack detection. (Abdel-Qader et al. 2003) 

compared four different edge detection algorithms for crack detection including fast Haar 

transform (FHT), fast Fourier transform, Sobel, and Canny detector, and found that FHT gives 

more reliable results than the other three. (Yu et al. 2007) applied Sobel detector to segment cracks 

and used neighbor region linking method to determine real cracks from edges. (Li et al. 2013, 

2014) combined C-V model with the edge detection and filtering to segment the cracks and also 

to estimate the width of the cracks.  
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Besides edge detection, filtering, morphology, segmentation with threshold is also one of manually 

processing approaches. (Iyer and Sinha 2006) implemented mathematical morphology and 

curvature evaluation to detect the cracks in buried sewers. (Fujita and Hamamoto 2011) used 

median filter, image subtraction and multi-scale line filter to separate cracks from background and 

noises. Then they used probabilistic relaxation and a locally adaptive thresholding to detect cracks 

with coarse and fine steps. (Sinha and Fieguth 2006) proposed a crack detection approach using 

statistical filter and defined global cracks among filtered segments using cleaning and linking. 

(Yamaguchi and Hashimoto 2010) extracted cracks form large size concrete using percolation-

based methods and (Zhu et al. 2011) implemented the percolation-based methods to retrieve the 

crack properties such as width, length, and orientation. (Nayyeri et al. 2019) extracted cracks by 

fusing the local structure and global texture distributions. (Adhikari et al. 2014) segmented cracks 

using skeletonization and applied artificial neural network (ANN) based data fitting to get the 

crack depth and width. (Liu et al. 2016b) extracted the crack profile and calculated the crack width 

property by using 3D scene reconstruction. The approaches mentioned above for pixel-based crack 

detection rely on manual feature extraction and segmentation. The application scenario might limit 

the wide application of them.  

 

While with large data base for cracks, deep learning-based methods could be another good option 

for pixel level crack detection. References (Dung and Anh 2019; Ye et al. 2019) trained fully 

convolutional networks (FCN) for semantic segmentation to extract cracks from images and to 

give detailed crack map with shape and distribution. (Ni et al. 2019) combined the GoogLeNet for 

classification and Crack delineation network (CDN) to achieve the pixel level crack detection. The 

main advantage of deep learning-based crack detection at pixel level is that it provides an end-to-

end framework. The users just need to feed the images into the framework and then the crack map 

with detailed information will be produced. 
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2.3.2 Crack Detection of Concrete Structures 

 

The crack detection in pavement structures is similar to the concrete, which is also divided into 

patch-based and pixel-based, while the dataset and challenges may be different. Crack detection 

in pavement structures is introduced in this section. 

 

2.3.2.1 Patch-based Crack Detection of Pavement Structures 

 

(Gavilán et al. 2011) developed an SVM classifier for different road types and regarded the non-

crack features. The result image patches then were processed by a seed-based approach which 

combined with multiple directional non-minimum suppression with a symmetry check to extract 

cracks. (Huang and Xu 2006) divided pavement image into patch of 8×8 pixels and classified 

whether there were cracks inside using the information of border pixels. The crack shape inside 

the patch was formed by crack clustering. The total crack map of a pavement image was obtained 

by putting all the crack results of patches together. (Mathavan et al. 2015) developed a crack cluster 

for small image patches using an unsupervised learning technique called self-organizing map. (Hu 

et al. 2010) extracted texture features and shape descriptors from pavement surface and trained an 

SVM classifier to recognize cracks in small image patches of the original image. Inside the patch, 

segmentation, fake-crack eliminating, and crack-measuring were operated to extract the crack 

shape. By combining all the patches, they obtained the full crack map. (Shi et al. 2016) developed 

a crack classifier using random structure forest and SVM to recognize cracks in image patches. 

Then the final crack map was extracted after doing erosion and the dilation in each patch. (Zhang 
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et al. 2016b) trained a CNN-based classifier to recognize cracks in small patches. (Gopalakrishnan 

et al. 2017) retrained the VGG-16 network with the FHWA/LTPP database and developed a 

pavement crack classifier for patches. (Nhat-Duc et al. 2018) compared the CNN based pavement 

crack classification method in patches with the edge-based methods and found that CNN-based 

classifier performed better than edge-based methods for cracks. (Tong et al. 2018) designed two 

CNN-based crack patch classifiers, one is to recognize whether there’s crack inside a patch and 

the other one is to recognize the range of the crack length within 1 cm.  

 

2.3.2.2 Pixel-based Crack Detection of Pavement Structures 

 

(Cheng et al. 2003) determined the real time thresholding from image intensities by using sample 

space reduction and interpolation approach and extracted the cracks by using image thresholding-

based segmentation. (Zou et al. 2012) developed the CrackTree to perform crack detection in pixel 

level. The CrackTree is based on tensor voting for crack probability map and crack seed sampled 

from probability map is used to identify desirable cracks. (Chambon and Moliard 2011) developed 

a pixel-based crack detection approach by combining multi-scale extraction and a Markovian 

segmentation. (Amhaz et al. 2016) proposed a crack detection approach based on minimal path 

selection and with the skeleton refinement the artifacts could be eliminated. Also, after post 

processing, the width of cracks could be obtained. (Fei et al. 2019) developed a CNN-based pixel 

level crack detection approach for 3D asphalt pavement images. References (Sajedi and Liang 

2019; Yang et al. 2018a) trained the FCN using the semantic segmentation methods to extract crack 

map at pixel level. (Mei and Gül 2019) developed a conditional Wasserstein generative adversarial 

network to extract pavement cracks in pixel level. The images were taken from a GoPro camera 
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installed on a vehicle running with normal speed. (Yang et al. 2019) trained a feature pyramid and 

hierarchical boosting network (FPHBN) to detect cracks in pixel level. They found that FPHBN 

outperforms the sematic segmentation methods in five datasets. 

 

2.3.3 Spalling Detection of Concrete Structures 

 

Spalls are flakes of a material that are broken off of a large solid body or surface. In reinforced 

concrete (RC) structures, spalling is a severe problem which can let the steel bars lose the concrete 

cover; accordingly the steel bars may be easily corroded. In addition, spalling is regarded as an 

important indicator of significant damage to structural elements formed during an earthquake 

(German et al. 2012). Figure 2 shows some examples of spalling compared with cracks. It can be 

seen that spalling is larger than cracks generally. Mechanical spalling occurs at high stress contact 

areas. 

 

 

Figure 2 Examples of spalling and crack 

 

(Gao and Mosalam 2018) retrained the VGG net by using transfer learning to develop a spalling 

classifier to recognize spalling in concrete structures. (Dawood et al. 2017) developed a spalling 

Spalling

Crack
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detection approach by using hybrid algorithm including image smoothing, thresholding, histogram 

equalization, Gaussian blur, color transformer, smart filter, image scaling etc. Also, the most 

important point is that they proposed a method to predict the depth and severity of spalling using 

regression analysis. This makes their approach become a decision-making tool. (German et al. 

2012) proposed a spalling recognition approach using a local entropy-based thresholding algorithm 

and by combining a novel global adaptive thresholding algorithm with template matching and 

morphological operations, they could measure the depth and length of spalling in concrete columns. 

(Karaaslan et al. 2019) first retrained the SSD (Single Shot MultiBox Detector) to detect spalling 

in an image and then proposed an attention guided segmentation network to segment spalling from 

concrete columns and walls. The guided segmentation with human aided operation doesn’t need 

full image search and improve the accuracy.  

 

2.3.4 Delamination Detection 

 

Delamination is one of the subsurface deteriorations of concrete structures and it could further 

evolve to become cracks and spalling. This kind of structural damage eventually reduce the 

structural load carrying capacities. It is essential to detect the possible delamination areas and 

retrofit the structures. Current practice to detect delamination is generally using chain drag or 

hammer, however, this kind of approaches might may further damage to the structures during the 

inspection (Hiasa et al. 2016a). Ground-Penetrating Radar (GPR) technique is one of the Non-

Destructive Testing (NDT) methods to detect the delamination, however, the speed is slow. The 

Infrared Thermography (IRT) has been developed to detect existing subsurface deteriorations 

including delaminations and voids in concrete (Hiasa et al. 2016a). When there is delamination 

inside the concrete, the temperature is different with the sound area (Hiasa et al. 2017a). With this 

feature, by scanning the surface of the concrete, the delamination can be detected. The IRT camera 



 22 
 

can also be installed on a vehicle with a normal moving speed to achieve faster inspection speed 

compared to other NDT methods (Hiasa et al. 2016b, 2017d). (Hiasa et al. 2017d) gave an example 

of concrete scanning using vehicle carried IRT cameras. The detection performance relies on 

temperature gradients (Watase et al. 2015), which means it is quite important to select the scanning 

time range in a day (Hiasa et al. 2017d). (Matsumoto et al. 2013) presented the time zone when 

the inspection can be executed.  

 

(Watase et al. 2015) investigated the favourable time windows for IRT for concrete delamination 

evaluation by using plates with different thickness and delamination with different depth. The 

different thickness of plate and the depth of delamination could influence the time window. (Hiasa 

et al. 2018) explored the time window for good inspection of IRT by using experimental and 

numerical methods and found that optimal conditions for IRT implementation on concrete bridge 

decks was night time application under the clear sky condition. (Hiasa et al. 2017b) investigated 

the effect and correlation of delamination size and shape for using IRT through finite element 

modeling (FEM) and found that the delamination depth information could be estimated by 

incorporating IRT with FEM. To segment delamination from IRT images, a proper temperature 

threshold is necessary as IRT images can also be processed by using the similar techniques for 

visual images taken by standard cameras. (Hiasa et al. 2017c) investigated the temperature 

threshold using FEM and found that the temperature threshold of delaminated areas of concrete 

slab with the depths of 1.27 cm and 2.54 cm defined by FEM simulation could give better 

prediction performance than directly judging from IRT images with naked eye. (Omar et al. 2018) 

used k-means clustering to segment the mosaicked thermogram of entire bridge deck and identified 

the objective threshold separately. Based on the different thresholds, the detection of delamination 

performed at higher accuracy. (Hiasa et al. 2017d) discussed the considerations and issues in the 
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application of IRT for concrete scanning at normal driving speeds, such as thermal contrast, time 

window, camera specification, distance, and utilization speed and gave detailed recommendations. 

They also implemented a High Definition (HD) camera along with the IRT cameras to scan 

concrete to get visual images. The visual images from HD camera could assist IRT to discard false 

positive prediction of delamination. Instead of using a vehicle to do concrete scanning, References 

(Ellenberg et al. 2016; Omar and Nehdi 2017) installed the IRT cameras on unmanned aerial 

vehicle (UAV) to scan concrete bridges. This definitely makes the IRT-based delamination 

detection become more flexible. 

 

2.3.5 Crack Detection of Steel Structures 

 

The phenomena of cracks on a metallic surface, especially in steel structures are different from 

those in concrete or pavement structures. There are few studies about crack detection in steel 

structures. Current approaches used in crack detection are similar to those used in concrete crack 

detection. (Yeum and Dyke 2015) detected the bolts on the steel structures by training a classifier 

which combined histogram of gradient (HOG), Haar like feature window and boosting. Then they 

detected the cracks around the bolts by using edge-based methods. The approach they proposed 

can be categorized as a patch-based detection. (Chen et al. 2017) also proposed a patch-based 

approach to detect cracks on the metallic surface. They trained a classifier using local binary 

patterns and SVM. By sliding the classifier on the image, they extracted the possible crack regions. 
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2.3.6 Crack Propagation Monitoring 

 

When subjected to loading and a certain stress level is reached within a material, cracks form and 

propagate due to increase in load. It is essential to monitor the pattern of crack propagation and 

take actions to prevent further damage. Using computer vision to monitor the crack propagations 

is a very promising approach. (Bhattacharjee and Deb 2016) detected and classified the cracked 

zones by using the displacement field obtained from digital image correlation (DIC). During load 

test, the crack changes can also be monitored by using their approaches. (Yin et al. 2014) detected 

and monitored the crack propagation by using keypoint/feature-based tracking and they found that 

displacements at keypoint/feature points were well correlated with cracks appeared. (Yang et al. 

2015) investigated the thin crack propagation of an RC pier using the displacement changes at 

manual marked grid tracked from stereo cameras. (Yang et al. 2018c) monitored the crack 

generation, propagation, and distribution of an RC column during load test by estimating the full 

field surface displacement using optical flow. The proposed method is consistent with the results 

obtained from that manually marked on the concrete surface. (Lee et al. 2019) investigated the 

development of crack width of an RC specimen during tensile test by using cameras and manual 

marker to measure the displacement and strain change. (Kong and Li 2018a) monitored the crack 

propagation during a fatigue loading test by tracking the displacement of keypoint/features 

extracted around the crack opening. (Yu et al. 2019) monitored the crack propagation of wood 

structures by using DIC to measure the crack mouth opening displacements.  
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2.3.7 Rust Detection of Steel Structures 

 

For steel structures, one of the major expenses is the anti-corrosion maintenance tasks (Liao and 

Lee 2016). According to the instructions of AASHTO inspection manual (AASHTO 2015), the 

rust on the surface of structures’ coating reflect the extent of steel corrosion. (Shen et al. 2018) 

listed some examples of rust on the surfaces of steel structures.  

 

Computing the area percentage of rust is one of the conventional ways of assessing the coating 

quality of steel structures. American Society for Testing and Materials (ASTM) proposed a zero-

to-ten scale to rate the corrosion performance (Chen et al. 2012a) and gave suggestions to do 

maintenance. The rust percentage is a crucial indicator for the contractors or owners of structures 

to repair paintings, thus, it is quite important to develop accurate and reliable inspection 

approaches to support the owners’ decision making (Lee et al. 2005). Detecting and quantifying 

the rust is a promising approach and can provide faster and more reliable inspection results 

compared with the visual inspection (Lee 2005). One of the challenges of rust detection is non-

uniform illumination. Most of the studies focus on overcoming the problem. (Chen and Chang 

2002) proposed the neuro-fuzzy recognition approach for rust detection and solved the non-

uniform illumination problem. In this approach, the threshold value for image binarization and 

segmentation is generated from a pre-trained neural network. 

 

(Lee et al. 2005) compared four rust detection methods including Neuro-Fuzzy Recognition 

Approach, Illumination-Based Segmentation and K-Means Algorithm, K-Means Algorithm, 

Simplified K-Means Algorithm. They found that Simplified K-Means Algorithm had the best 

performance and took the shortest time to process an image. (Lee et al. 2006b) proposed a rust 
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detection approach using color information instead of grayscale image processing. They also used 

multivariate discriminant functions to build the statistical model to perform rust detection. (Chen 

et al. 2009) investigated 14 color spaces and found the best color configuration a⁎b⁎ (a⁎ is the 

color component of red minus green and b⁎ is that of green minus blue) has a moderate ability to 

filter light and eliminate non-uniform illumination problem. They proposed an adaptive ellipse 

approach with the identified color configuration to detect rust areas in images. (Chen et al. 2010) 

implemented the Bidimensional Empirical Mode Decomposition (BEMD) and morphology-based 

rust detection approach to eliminate the non-uniform illumination problem including shades and 

highlights. References (Chen et al. 2011; Shen et al. 2013) applied the Fourier transform to filter 

the images and detected the rust by using the color and texture information. This approach can be 

adopted to different background color and eliminate the non-uniform illumination in some extent. 

(Chen et al. 2012a) combined the Fourier transform with SVM to detect the rust area and the 

comparison with Simplified K-Means Algorithm showed better performance. (Kim et al. 2014) 

proposed a rust detection approach based on color space transformation and decision tree. Also 

they implemented this approach to a robotic system to achieve rapid and automated defect 

inspection. (Liao and Lee 2016) proposed three rust detection approaches: (a) cluster method with 

K-Means in hue component of HSI (Hue-Saturation-Intensity) images; (b) double-center double-

radius algorithm in RGB space; and (c) double-center double-radius algorithm in HSI space. They 

also implemented least-square SVM to achieve rust radius prediction. (Shen et al. 2018) proposed 

an ANN-based rust intensity recognition approach which extracts more clusters and can better 

reflect the rust intensity and severity.  
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2.3.8 Bolt Loose Detection of Steel Structures 

 

Bolt is a critical component in the joint connections of steel structures and bolt loose may cause 

repetitive loads and vibrations of the connection parts. It may weaken the structural integrity of 

the bolted steel joints (Kong and Li 2018b) and reduce the capacity of the whole structure. The 

AASHTO inspection manual (AASHTO 2015) considered bolt loose as one of the inspection 

requirements to do condition assessment. Current practice of bolt loose inspection mainly relies 

on human visual inspection. This section reviews the recent development in vision-based 

automated bolt loose detection. (Kong and Li 2018b) proposed a non-contact bolt loose detection 

method by tracking motion of the keypoints/feature points around the bolts. (Park et al. 2015a) 

monitored the bolt loose by tracking the bolt angle motion using Hough line alignment. Ramana 

et al. (Ramana et al. 2019) combined the Viola–Jones algorithm and SVM classifier to recognize 

bolt loose status. (Zhang et al. 2019b) retrained the Fast R-CNN object detector with bolt loose 

images to detect loose bolts in steel structures. (Wang et al. 2019) trained a CNN based classifier 

to recognize the bolt loose status and implemented Hough transform to estimate the rotation angle. 

(Sun et al. 2019) proposed a bolt loose detection approach using binocular vision which combines 

edge detection, segmentation, CNN prediction and 3D feature points matching. Their method can 

achieve bolt loose detection on a running train. 
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2.4 Computer Vision-based Structural Health Monitoring at Global Level (CV-SHM-GL) 

 

2.4.1 CV-based Structural Response (Output) Monitoring 

 

In this section, the CV-based structural response (output) monitoring refers to CV-based structural 

displacement measurement. By recording the structures under external loads with a still camera, 

the trajectories of selected regions can be obtained by tracking the motion of them. This is the 

basic idea of CV-based displacement measurement. This section reviews core techniques 

implemented in the CV-based displacement measurement and their applications in SHM. 

 

2.4.1.1 General Procedure of CV-based Displacement Measurement 

 

Figure 3 shows a general procedure of CV-based displacement measurement. Usually there are 

five steps to extract displacement information from digital image sequences or videos. At the very 

beginning, the projective geometry relation between the camera and real world has to be 

determined through camera calibration. This step is introduced and discussed in Section 2. In next 

step, the region of interest (ROI) is selected. ROI can be the manual markers or targets installed 

on the surface of structures or the parts of the structures with distinct surface features or textures. 

Then features are extracted from the selected ROIs for visual tracking. In the fourth step, visual 

tracking algorithm which is selected according to the measurement requirement and convenience 

is implemented to track the motion of the selection ROI. Finally, the displacement of the selected 

ROI can be calculated based on the visual tracking results and camera calibration information.  
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Figure 3 General procedure of CV-based displacement measurement 

 

2.4.1.2 Core step review: visual tracking 

 

In the general procedure of CV-based displacement measurement, the visual tracking is the most 

important step and the tracking performance directly affects the measurement accuracy. Selection 

of a visual tracking algorithm in the meantime also needs the suitable feature extraction. This 

section reviews the visual tracking algorithm along with the feature used during tracking. 

 

(1) Template matching. As shown in Figure 4, the basic idea of template matching is sliding the 

selected ROI as a template across another image to search the best matching by calculating the 

similarity between the template and overlapped region of the image during sliding. 

 

Figure 4 Sliding the template across another image to find the best match 
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Several ways to calculate similarities are listed with formulas as following (Bradski and Kaehler 

2008): 

 

a) Square difference matching method: 
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c) Cross correlation matching methods: 
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d) Normalized cross correlation matching methods: 
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e) Correlation coefficient matching methods 
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f) Normalized correlation coefficient matching methods 
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g) Zero mean normalized square difference matching methods 
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In above equations, T is the grayscale image intensity of template, I is the grayscale image intensity 

of the image searching region, (x, y), (x’, y’) and (x”, y”) represent the location coordinate in image 

searching regions and template. The perfect match will be small for the square difference matching 

methods and bad matches will be large. On the contrary, the perfect match will be large for the 

cross correlation method and bad matches will be small or 0. However, for the correlation 

coefficient methods, the perfect match will be 1 and a perfect mismatch will be –1, and a value of 

0 simply means that there is no correlation. The normalized methods can help reduce the effects 

of light/illumination change between the template and the image.  

 

In CV-based displacement measurement, the normalized correlation coefficient matching method 

is the most popular one and there are numerous applications of the method. (Ye et al. 2013, 2015, 

2016b; a) implemented the normalized correlation coefficient matching method to monitor the 

structural displacement of two long span bridges (Tsing Ma Bridge and Stonecutters Bridge), a 

steel arch bridge (Hangzhou Changyun Bridge) and several scaled bridges and structures in 

laboratory. (Brownjohn et al. 2017; Xu et al. 2016, 2018) implemented it to measure the 
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displacement of the Humber Bridge and a cable stayed foot bridge. (Busca et al. 2014) 

implemented it to measure the displacements of a railway bridge under train loads. (Pan et al. 2016; 

Tian and Pan 2016) implemented zero mean normalized method to measure the deflections of two 

railway bridges. References (Feng and Feng 2018; Xu and Brownjohn 2018; Ye et al. 2016c) 

reviewed the recent practical applications of CV-based displacement measurement using template 

matching.  

 

The correlation coefficient matching methods (or normalized) need huge computation expenses 

during the template matching since there are lots of correlation/convolution operations. According 

to convolution theorem, the correlation/convolution in spatial domain becomes multiplication 

operation frequency domain. It saves the computation time once the correlation methods are 

calculated in frequency domain. (Feng et al. 2015a) implemented cross correlation in frequency 

domain for template matching and measured the displacement of a railway bridge. Generally, the 

template matching can achieve displacement measurement in pixel level and if the requirement of 

the practical application need higher accuracy, optimized searching process are necessary to 

achieve subpixel level. (Feng et al. 2015a) developed an subpixel level template matching based 

on upsampled cross correlation method. (Zhang et al. 2016a) applied two subpixel processing 

techniques including the modified Taylor approximation refinement and subpixel localization 

refinement to after the normal template matching using cross correlation in frequency domain. 

References (Berenstein et al. 1987; Foroosh et al. 2002; Liang et al. 2015; Pan et al. 2006) 

introduced grayscale interpolation, correlation coefficient curve fitting, phase correlation 

interpolation, space gradient and finite element for subpixel processing techniques. In general, 

subpixel is an estimation and it is a good complementary of pixel level image registration or 
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displacement measurement. However, it cannot go beyond the physical mechanism of sensors of 

digital cameras: the integral pixel level is the more reliable fraction of the matching estimation. In 

practical application, due the system and environmental noises, the precision of subpixel level 

estimation might be reduced.  

 

Digital image correlation (DIC) also follows equations presented in this part and has become a 

well-established technique in experimental mechanics and material test area (Chen et al. 2018b; 

Schreier et al. 2009; Zhong et al. 2019a; b, 2017, 2018a; b, 2019c; Zhong and Quan 2017, 2018b). 

The difference between DIC and template matching is that DIC first divides the whole image into 

multiple sub regions with grids and uses template matching to calculate the displacement of the 

sub region. Then by using shape functions, the displacement in the whole image, in other word, 

full field displacement can be obtained. Full field strain estimation is also one of the tasks of DIC. 

(Pan et al. 2009) made a detailed survey of DIC and its application in displacement and strain 

application. (Spencer et al. 2019) reviewed the applications of DIC in static measurement.  

 

(2) Feature matching. Instead of using the ROI to represent the tracking target, feature points 

(also called keypoints) extracted from the ROI can also represent the tracking target. The feature 

points are generally not a point, but a small region, e.g. a subimage with 5×5 pixels or 7×7 pixels, 

which is a low sample of target with distinct features such as intensities, gradients in different 

directions, textures, etc. Feature matching-based image registration can achieve more accurate 

performance than template matching because general template matching is usually considered as 

rigid matching, i.e. matching scenarios are translation and rotation. In general, when talking about 

a type of feature point, it refers to the feature detector and feature descriptor. Feature detector is a 



 34 
 

subregion of an image selected by certain algorithms such as Scale Invariant Feature Transform 

(SIFT) (Lowe 2004), while feature descriptor is the matrix or a vector to descript the subregion. 

Figure 5 shows the SIFT detector and also visualizes the SIFT descriptors on the original image. 

 

 

Figure 5 Visualized SIFT descriptor: image processed with the codes released by (VLFeat 

2018) 

 

The feature matching process is also a visual tracking process. Figure 6 shows the procedure of 

feature matching. First, the feature points in two different images are extracted, then the similarity 

of descriptors of feature points in different images are calculated by Euclidean or Hamming 

distances and based on the extent of similarity, feature points are matched. The higher the 

similarity, the smaller the distance is. The matching process can be executed by Brute-Force 

matching which traverses all the feature points but takes a long time (OpenCV 2019a) or K-Nearest 

Neighbor method and threshold can be used to reduce the computation expenses (Lowe 2004). The 

selection of Euclidean or Hamming distance is based on the type of the descriptor vector. The SIFT 

and SURF (Speeded-Up Robust Features) (Bay et al. 2008) descriptors are float type and Euclidean 

distance is needed, while the AKAZE (Accelerated-KAZE), FREAK (Fast Retina Keypoint), 

BRISK (binary robust invariant scalable keypoints), BRIEF (Binary Robust Independent 
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Elementary Features), ORB (Oriented FAST and Rotated BRIEF) descriptors are binary and 

Hamming distance is needed (OpenCV 2019b). Finally, the wrong matches are removed in this 

step. In general, the homograpy transform based random sample consensus (RANSAC) or least 

median square (LMS) are used in outlier removal. 

 

 

Figure 6 Feature matching procedure 

 

The location change can be obtained from the average value of the change of each matched feature 

point or can be extracted from the estimated homography matrix. In this procedure, the matching 

achieves subpixel level. (Khuc and Catbas 2017) extracted Harris corner as feature point and by 

using FREAK as the descriptor to achieve subpixel level matching, they monitored the vibration 

of a stadium under human loads. (Khuc and Catbas 2016) also employed SIFT feature detector and 

descriptor to do feature matching and monitored the displacement of a pre-stressed transit 

guideway under train loads. Instead of using SIFT descriptors, (Dong and Catbas 2019) 

implemented the SIFT detector and VGG descriptor to do feature matching and this improved the 

measurement precision by about 24%. (Hu et al. 2017) implemented ORB detector and descriptor 
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feature matching to monitor the displacement of a viaduct.  

 

The application scenarios of feature matching-based tracking are usually the cases when there’re 

distinct textures on the surface of the structure and no manual marker is necessary. The advantages 

of feature points are scale and rotation invariants and stability under light change, while there is 

big uncertainty in feature extraction. Depending on the light condition, the threshold of feature 

extraction needs to be adjusted manually so that a certain number of feature points can be extracted. 

Up to now, there’re still few discussions about the number to use in feature matching-based 

displacement measurement. It is still an open problem to decide the number of feature points and 

how to adjust thresholds for feature extraction. In addition, currently the application of feature 

matching-based displacement measurement is still limited to close range monitoring. It is still a 

challenge to do long distance monitoring by using feature matching.  

 

(3) Full field dense optical flow. Optical flow is the velocity estimation of a video or an image 

sequence and it represents the motion between two images. In the mathematical language, it is a 

vector which points from the initial location to the end location of the motion. It could be caused 

by camera motion or the motion of the objects inside the field of view. To calculate the optical 

flow for two images, two basic assumptions are made (Szeliski 2011): (a) brightness constancy 

which means the pixel intensities of an object in an image do not change between consecutive 

frames; (b) temporal regularity which means the between-frame time is short enough to consider 

the motion change between images using differentials (used to derive the central equation below) 

and it assumes a small motion between two consecutive images (Dong et al. 2019b). With the first 

assumption the basic optical flow formula is  
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( ) ( ), , , ,I x y t I x dx y dy t dt= + + +                                      (17) 

where I is the image intensity, x and y are coordinates in the image and t is time. Expanding Eq. 

17 with Taylor's Formula, and discarding the high order items with the second assumption, Eq. 17 

can be expressed as: 

0x y tI u I v I+ + =                                                 (18) 

where Ix and Iy are image gradients and It is the gradient at time t, u and v are the elements of 

optical flow vector in x and y directions. There are two unknowns in one equation, thus Eq. 18 is 

underdetermined. More constraints are necessary to solve the equation. Based on different 

assumptions, classic optical flow algorithms such as Lucas-Kanade algorithm (Lucas and Kanade 

1981), Horn-Schunck algorithm (Lucas and Kanade 1981), Black and Anandan algorithm (Black 

and Anandan 1996), CLNL algorithm (Sun et al. 2014) and phased-based optical flow algorithm 

(Gautama and Van Hulle 2002) were proposed to estimate the optical flow at each pixel of the 

image, i.e., full field/dense optical flow. Due to the small motion assumption, the classic optical 

flow has a big advantage in small displacement estimation, while when estimating the optical flow 

with large displacement, pyramid architecture is implemented to reduce the estimation error 

(Bouguet 1999). (Khaloo and Lattanzi 2017) implemented four classical optical flow to monitor 

the displacement of a frame structure and compared their pros and cons. With the development of 

deep learning-based computer vision, optical flow estimation using deep learning has also made a 

great progress. References (Dosovitskiy et al. 2015; Ilg et al. 2017) proposed FlowNet and 

FlowNet2 which are CNN-based optical flow algorithm and they can estimate optical flow with 

large displacement. (Dong et al. 2019c) implemented FlowNet2 to monitor the displacement of a 

grandstand and a footbridge.  
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(4) Sparse optical flow at feature points. The full field dense optical flow methods calculate the 

flow vector at each pixel and need large computation expense, therefore it’s difficult to achieve 

real-time online monitoring. Also, the classic full field optical flow methods face the challenge of 

handling the estimation at boundaries. Instead of calculating the full field optical flow, (Shi and 

Tomasi 1994) proposed to extract the feature points from image first and then calculate the optical 

flow at the feature points by using Lucas-Kanade algorithm. They made an assumption that at the 

feature point with a neighborhood of several pixels it has the same motion. It makes the Eq. (18) 

become overdetermined and can be solved with the least square methods. This algorithm simplifies 

the procedure of calculation, reduces the computation expense and eliminate the poor estimation 

at boundaries for classical optical algorithms. By calculating the optical flow vectors at the feature 

points at two different images, it achieves feature point tracking and in other words, feature 

matching just like the effects presented in (2). This kind of optical flow calculation is also called 

sparse optical flow. (Dong et al. 2019b) conducted forward estimation and backward estimation to 

calculate the bidirectional error and by setting a threshold, they could remove the erroneous optical 

flow estimation. In practical applications, the homograpy transform-based RANSAC and LMS can 

also be implemented to remove the outliers. (Yoon et al. 2016) combined the Lucas-Kanade optical 

flow and Shi-Tomasi corner (Shi and Tomasi 1994) to track the motion of a slender steel frame, 

and they implemented RANSAC to remove the outliers. (Dong et al. 2019b) combined Lucas-

Kanade optical flow with SURF, SIFT and Shi-Tomasi corner separately to measure the 

displacement of a grandstand and a stadium under human loads. (Lydon et al. 2018, 2019) 

combined Lucas-Kanade optical flow with SURF and SIFT to measure the displacement of several 

bridges including a truss bridge, a prestressed concrete and a cable-stayed steel footbridge. 

(Hoskere et al. 2019) implemented Lucas-Kanade optical flow and Shi-Tomasi corner to process 



 39 
 

the video captured from a UAV and measured the displacement of fiducial markers installed on a 

suspension bridge. 

 

(5) Geometry matching. The geometry matching generally achieve target tracking by using the 

geometry features including edge, curve, square, circle or angle. Manual markers are necessary. 

The advantages of geometry matching are: (a) the scale change of tracking targets is easy to match; 

(b) the target can still be tracked even there’s partial occlusion; (c) geometry matching shows 

robust properties to non-uniform illumination and partial edge blur, (d) it shows low computational 

complexity, and this reduces the computation time. The basic idea of geometry matching is to 

determine the geometrical position of the selected targets by edge detection or Hough transform. 

By comparing the geometrical positions of targets in different images, the matching is achieved. 

References (Chen et al. 2015a; Ho et al. 2012; Lee et al. 2017, 2006a; Lu et al. 2017; Tian et al. 

2019) developed CV-based displacement measurement methods based on geometric matching. By 

tracking the scale change of a circle target, (Lu et al. 2017) estimated the structural displacement 

out of plane, while the limitation is that the axis of the camera and lens has to be perpendicular to 

the structural plane. (Xu and Brownjohn 2018) made a survey of targets with different geometric 

shapes and the corresponding processing approaches. 

 

(6) Color-based tracking. The color of the surface of the structural element or manual targets is 

another good feature to track. The general color-based tracking algorithms include color-based 

template matching (National Instruments 2016) and histogram based mean-shift tracking (Ye et al. 

2016a). The advantage of color-based tracking is that the target can be easily identified and tracked 

when the color of the target has a large difference with the background, still the performance of 
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color-based tracking is vulnerable to environmental light, image blur and noises. (Ye et al. 2016a) 

compared the performances of the color-based template matching with normalized correlation 

coefficient-based template matching in structural displacement measurement and observed that 

color-based template matching was not suitable for outdoor monitoring and long-distance 

monitoring.  

 

(7) Particle image velocimetry (PIV). The initial application PIV is for the velocity monitoring 

of fluid (Kitagawa et al. 2005). By setting particles in the fluid field and capture the image of the 

motion of particles, the full field fluid can be tracked (Grant 1997). One of the characteristics of 

PIV is that it is good at tracking large displacements. However, the application of PIV is very 

limited in structural displacement measurements. (Hosseini et al. 2014) monitored the full field 

displacement and strain of steel and RC beams using PIV in laboratory. (Tian et al. 2018) 

implemented PIV to monitor the displacement of the human jumping in vertical direction. 

Although they stated the selection of PIV was because PIV could achieve more accurate 

measurement than others, they didn’t provide any comparison analysis with the other methods or 

proof in that paper. To the best knowledge of the authors, there’re very few comparison analyses 

reported in existing publications.  

 

(8) Deep learning-based object tracking methods. With the wide application of deep learning in 

computer vision, object tracking has made great progress. The accuracy of deep learning-based 

object tracking has outperformed the traditional algorithms and seems to be going mainstream in 

object tracking area (Kristan et al. 2018). By building deep convolutional neural network and 

training the network with manually labeled dataset, the optimized neural network can achieve very 



 41 
 

good tracking performance even with the cases of scale change, illumination change, different 

view, occlusion and background clutter. Currently, examples of deep learning-based visual 

tracking algorithms are Siamese FC (Wang et al. 2018b), Siamese Mask (Wang et al. 2018a), 

Samese RPN++ (Li et al. 2018a), MFT (Bai et al. 2018), UPDT (Bhat et al. 2018). Although the 

deep learning-based object tracking algorithms have made great progress in accuracy and 

robustness, they require large volume of datasets and time to train their networks and the trained 

data also need to be labeled manually. In addition, even in the test stage, the processing still costs 

lots of time. Most of algorithms cannot supply real-time tracking. Also, the tracking algorithm 

predict the target location at pixel level, which makes the deep learning-based tracking algorithms 

not suitable for the structural displacement measurement with higher requirements, e.g., sub pixel 

level. In literature, the applications of deep learning-based structural displacement are very rare. 

Most of the applications still implement traditional tracking algorithms. Still, in the near future, 

with the development of fast graphic processing unit (GPU) processing speed and more efficient 

networks, the deep learning-based object tracking may make a big hit for the structural 

displacement measurement.  

 

There’re many visual tracking algorithms developed by the community of computer vision, even 

though not all of them are suitable for structural displacement measurement. The selection of visual 

tracking should consider the practical application scenarios, measurement accuracy and whether 

real time monitoring is required or not. 
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2.4.1.3 SHM Application: Using CV-based Displacement 

 

Displacement obtained from CV-based methods can be further processed to become critical 

indicators for structural performance evaluation and health condition assessment. This part covers 

most of the categories of applications of CV-based displacement measurement in SHM. The 

applications are reviewed as following: 

 

(1) Structural behavior analysis. (Ye et al. 2013) analyzed the range of vertical deflections of a 

long span suspension bridge under operational loads using the CV-based displacement 

measurement and also extracted the unit influence line of a cable stayed bridge by using CV-based 

displacement measurement during load test. (Tian and Pan 2016) measured the deflection profile 

of a multi-span railway bridge by using multi-point tracking during load test. (Guo and Zhu 2016) 

investigated the behavior of the sound barriers of a viaduct when a train was crossing by using the 

CV-based displacement measurement.  

 

(2) Load capacity analysis. The displacement measured during load test under designated loads 

reflects the structural load carrying capacity. Comparing the displacement obtained from CV-based 

methods with the designated displacement limit is a non-contact approach for structural load 

carrying capacity. With the measured displacement, the load imposed on the structure can also be 

derived. (Ojio et al. 2016) combined the CV-based displacement measurement with the vehicle 

axle location on the deck to estimate the axle weight. (Lee et al. 2006a) did bridge load carrying 

capacity evaluation by using dynamic displacement records obtained from CV-based methods. 
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(3) Dynamic analysis. Structural dynamic displacement time histories can be processed to analyze 

the structural dynamic properties. (Xu et al. 2018) monitored the dynamic displacements of a 

cable-stayed footbridge under human crowds using CV-based methods and analyzed the 

instantaneous frequency and amplitude change when a large human crowd crossed the bridge. 

(Celik et al. 2019a) conducted human comfort analysis of a stadium using CV-based displacement 

records. (Dong et al. 2019b) monitored the displacement of a stadium under human jumping loads 

during a football game and analyzed the relation between the structural responses and the song 

played when human crowds were jumping on the structure. 

 

(4) Modal identification. Multi-point displacement time histories can also be processed using 

operational modal analysis algorithms to extract structural modal parameters such as frequency, 

damping ratio and mode shape. References (Dong et al. 2018; Feng and Feng 2016, 2017; Yoon et 

al. 2016) monitored the displacements of multiple points on structures using one camera and 

extracted the modal parameters using the displacement histories. (Dong et al. 2019b) synchronized 

two cameras to measure multiple points of a grandstand and extracted the modal parameters from 

the displacement time histories. (Hoskere et al. 2019) roved a camera with a UAV to measure the 

displacements of multiple points in part of a whole bridge and after scanning all the bridge, they 

extracted the mode shapes of the whole bridge by connecting the mode shape from each bridge 

part. References (Bharadwaj et al. 2019; Poozesh et al. 2017; Srivastava and Baqersad 2019) 

applied 3D DIC and multiple cameras to monitor the full field displacement of wind turbine 

structures and extracted the operational deflection mode shapes. (Ji and Chang 2008a) estimated 

the mode shape of a stayed cable using stereo vision techniques. (Chen et al. 2015b, 2018a) 

implemented phase-based optical flow, Fourier transform and motion magnification to extract the 



 44 
 

instantaneous mode shape of a beam in lab and a truss bridge. (Yang et al. 2017a; b) applied blind 

source separation, phase based optical flow, motion magnification and edge detection to analyze 

the video of a small steel frame structure and extract the operational mode shape. (Fioriti et al. 

2018) extracted the mode shape of several ancient constructions by using motion magnification. 

(Tian et al. 2019) applied CV-based displacement measurement method to measure the 

displacement of a beam during impact test and extracted the structural frequencies, scaling factor 

and mode shape. 

 

(5) Modal updating. Finite element model (FEM) need to be updated with real monitoring data. 

Modal parameters can be used to update the FEM. (Feng and Feng 2016) first obtained the modal 

parameters from a CV-based measurement and then used these modal parameters to update the 

FEM.  

 

(6) Damage detection. The changes of global characteristics of structures such as boundary 

condition and stiffness can induce the change of structural modal parameters. With the modal 

information extracted from CV-based displacement records, damages at global level can be 

detected. (Felipe-Sesé and Díaz 2018) investigated the damage detection of a car bonnet using 3D 

DIC full field displacement measurement and modal analysis. (Feng and Feng 2017) monitored 

the displacement of multiple points on a small beam and extracted the mode shape change before 

and after the damage of the beam. By comparing the damage indicators calculated using mode 

shape elements, they detected the damage of the beam. (Cha et al. 2017b) filtered the displacement 

measurement obtained from phased-based optical flow of a structure and extracted the stiffness 

and damping coefficient values to detect damages on boundaries of cantilever beams in laboratory. 
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Currently most of studies using CV-based methods to do damage detection at global level are for 

small structures and limited in laboratory. 

 

(7) Cable force monitoring. The tension force in cable is related to its vibration frequencies and 

deformations. With CV-based displacement measurement, the vibration frequencies or cable 

deformation can be obtained. Then the cable force can be estimated. References (Feng et al. 2017; 

Kim et al. 2013; Zhao et al. 2017) estimated the cable force by using the vibration frequencies 

obtained from CV-based displacement records. (Ye et al. 2016b) measured the deformation of a 

cable segment and estimated the cable force by using the relation between force and material 

deformation. 

 

2.4.2 CV-based Load (Input) Estimation 

 

The CV-based techniques are not only used to monitor the structural responses (output), but also 

to monitor the external loads (input). This section reviews the CV-based human load and vehicle 

load estimation respectively. 

 

2.4.2.1 Human Load Estimation 

 

Human load is the main live load on structures such as stadia and footbridges, and the accurate 

human load estimation imposed on structures would be very helpful to investigate the human-

induced vibration problems such as vibration comfort, vibration serviceability, human-structure 

interaction, response spectra and structural design. By tracking the motion of human behavior such 
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as jumping and bobbing, the human loads imposed on structures might be estimated by using 

Newton’s second law. (Mazzoleni and Zappa 2012) implemented DIC to track the motion of a 

single person and a small group of people respectively to get the load time histories of human 

jumping and bobbing. (Zheng et al. 2016) trained a tracking-by-detection system to monitor the 

motion of a small group of people to estimate the human crowd loads. The very interesting part is 

that their tracking system can be updated with new detected subjects during the tracking process. 

This makes the load estimation more accurate. (Li et al. 2018b) estimated the dynamic load factors 

of human crowd jumping by using 3D motion tracking system to track the markers on human 

bodies. (Celik et al. 2018a) implemented dense optical flow to track the motion of a small group 

of people on the grandstand in laboratory and a large human crowd jumping during a football 

game. Comparison study with load cells, accelerometers and FEM showed promising performance 

of the proposed approach. (Tian et al. 2018) implemented PIV to track the human jumping and 

obtained the acceleration of human body. Utilizing the acceleration of human jumping as input and 

the acceleration of structures collected from accelerometers as output, they performed the impact 

test of a footbridge and extracted the frequency, modal scaling and mode shape. 

 

 

2.4.2.2 Vehicle load estimation 

 

Vehicle load is the most common external excitations to bridges and the estimation of vehicle load 

is significant to the bridge structural behavior analysis. By using only CV-based methods, it is hard 

to estimate the exact axle weights. Still, with the size of the detected vehicle, the approximate load 

range can be estimated. Sometimes, with the known vehicle weight, the vehicle distribution on 
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structures is essential to analyze structural behavior. (Catbas et al. 2012b; Zaurin et al. 2015; Zaurin 

and Catbas 2010b; a) implemented background subtraction to estimate the load distribution of a 

vehicle on the bridge deck and combining with the strain data from strain gauges and the known 

vehicle weight, the unit influence line (UIL) of bridges could be extracted. A UIL-based damage 

detection approach was proposed and verified in laboratory, and load rating based on UIL was 

validated in a real life bridge. (Khuc and Catbas 2018) implemented AdaBoost technique and 

Cascade classifier using histograms of oriented gradients features to train and detect vehicle types. 

With known vehicle weight, the unit influence surfaces (UIS) were extracted and a UIS-based 

damage detection approach was proposed and verified in laboratory. 

 

(Zhang et al. 2019a) retrained the Faster RCNN to detect and track the spatial information of 

vehicles on bridge deck, including vehicle location, axle and length. (Pan et al. 2018) trained a 

vehicle detector by using HOG feature and RF classifier to monitor the vehicle distribution and 

speed on a bridge with noise barrier. With the obtained vehicle information, they investigated the 

effect of vehicle-induced aerodynamic load to the noise barriers. (Dan et al. 2019) estimated the 

moving vehicle load on pavement by combining the weigh-in-motion (WIM) system and visual 

tracking. (Chen et al. 2016) combined the WIM system, multiple cameras and visual tracking to 

estimate the vehicle load distribution in long span bridges. (Daize et al. 2018) investigated the 

relation between the detected vehicle length and the weight from WIM data and proposed to predict 

vehicle load based on the vehicle length. (Chen et al. 2014a) estimated the traffic load spectra of a 

long span bridge by detecting vehicles from traffic videos. 
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2.4.3 SHM Using CV-based Input-Output Information 

 

As reviewed in 2.4.1 and 2.4.2, with CV-based methods both the structural input and output can 

be obtained. Still, the studies of SHM using CV-based input-output information are very limited. 

(Ojio et al. 2016) calibrated the relation between the size of a vehicle and the distance from the 

camera and used the size-distance relation to recognize the vehicle location in one lane. Based on 

the displacement of a girder measured by camera and the location information recognized by size-

distance relation, they extracted the UIL of a girder and created a contactless bridge WIM system 

with UIL. (Dong et al. 2019a) used one camera to extract the location of a moving vehicle on 

bridge deck by visual tracking and another camera to measure the bridge displacement using CV-

based methods. By synchronizing the input-output signal with audio-based pattern recognition, 

they extracted the UIL of a two-span bridge and the UIL of a footbridge. With the UIL, they 

predicted the human loads on the footbridge. Although there’re very few SHM applications on CV-

based input-output, it is still very promising to see more development in this area. 

 

2.5 Challenge and Concerns in Real-life Practices of CV-SHM 

 

With the benefit of computer vision techniques, numerous difficult problems faced in the past have 

been solved in the area of SHM at local and global level. While CV-based approaches cannot cover 

every respect of SHM tasks and within current research and application, there are still many 

challenges and concerns to better use CV-based approaches and make our infrastructures safe, 

reliable and resilient. 
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2.5.1 Challenges 

 

2.5.1.1 Influence Factors to Vision Systems 

 

When using CV-based techniques to solve problems in SHM, such as local damage detection and 

displacement measurement, influence factors such as hardware (electric noise, camera self-heating 

and lens distortion), environment (illumination change, partial occlusion, ground vibration, wind, 

rain, fog), limitations of computer vision algorithms may have adverse effect on the performance 

of the vision system. (Dong et al. 2019e) proposed a robust vision-based method for displacement 

measurement under adverse environmental factors such as illumination change and fog 

interference using spatio-temporal context learning and Taylor approximation. References (Feng 

and Feng 2018; Ye et al. 2016c) made detailed survey for the error source analysis of vision based 

systems. 

 

2.5.1.2 Long Term Monitoring 

 

At present, research and application of CV-based approaches focus on short-term inspection or 

monitoring. The stability and reliability of CV-SHM in long time span are still a big issue. 

Problems in long term monitoring such as management of big data, data interpretation, process of 

abnormal data, and the maintenance and calibration of CV-SHM systems are still challenges. 

 

2.5.1.3 Subtle and Fast Motion Detection from Images 

 

Structures such as short span concrete bridges and small or medium height buildings have large 

stiffness so the deformations of them are small and the vibration frequencies are very high. With 
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the limitations of imaging sensors in resolution and exposure time, the resolution and sampling 

rate of CV-based system cannot outperform the conventional sensors such as strain gauges, 

displacement transducers or accelerometers. Even with motion magnification, the subtle motion 

components in videos can be extracted, while the quantification of absolute deformation is still a 

problem. 

 

2.5.1.4 Quantification of Local Damage 

 

Although with the development of deep learning based local damage detection, the quantification 

of a certain local damage is still a challenge, such as the estimation of depth of crack/spalling. The 

researches of quantification of local damages in literature are very limited as reviewed in Section 

2.3.  

 

2.5.1.5 Simplification of Deep Learning for Local Damage/Change Detection 

 

At present, the research of using deep learning to do local damage detection requires large datasets 

to train neural networks. Even just for one type of local damage detection, e.g., crack, a certain 

dataset may need to be created separately. For different application scenarios, crack detection of 

different bridges, buildings or tunnels may need to retrain the networks. The procedure of deep 

learning-based local damage detection needs to be simplified. How to transfer the human 

experiences for local damage detection to neural networks is still a big challenge.  

 

2.5.1.6 Selection of Markers in CV-based Displacement Measurement 

 

In literatures, manual markers can indeed improve the measurement accuracy while it takes some 
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efforts to install manual markers on structures. In the cases when there’s no access to the structure 

to install manual markers, algorithms without using markers can achieve displacement 

measurement. The performance comparison between CV-based methods with and without manual 

markers for displacement measurement in literature didn’t make big difference when a marker was 

not necessary in some cases. The balance of trade-off between marker and no marker is still a 

problem in real-life practices for displacement measurement. 

 

2.5.2 Concerns 

 

2.5.2.1 Local and Global Condition Assessment Using CV-based Methods 

 

Up to now, local and global SHM using CV-based techniques achieve high accuracy in local 

damage detection or displacement measurement, while how to utilize the monitoring results to 

assess the structural condition according to current standards or codes is still a big concern. 

Whether or not CV-SHM can really assist the asset owners to do decision making and make better 

management and maintenance of structures might be one of the criteria for the success of CV-

SHM. 

 

 

2.5.2.2 Connection between Computer Vision-based SHM at Local and Global Level 

 

As mentioned in the Introduction part, understanding how local damage or condition changes 

affect the performance of the whole structure is very important. It raises the question of how to 

build the connection between computer vision-based SHM at local and global level. The 

bidirectional relation between CV-SHM-LL and CV-SHM-GL can benefit the fully condition 
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assessment and the study of the integrity of different elements of a structure. 

 

2.5.2.3 Industry Certificate, Standards and Codes for CV-SHM 

 

Although CV-SHM has made a great progress and gained increasing attention in the community 

of SHM and states departments of transportation or other funding agencies have supported the CV-

SHM projects every year, the industry certificates, standards and codes for CV-SHM are necessary. 

Still, up to now, relative standards or codes are very rare. 

 

2.6 Summary 

 

This chapter introduces the current state of art in research and state of practice for computer vison-

based structural health monitoring at local level (e.g. element, crack, delamination) and global 

level (e.g. structural deflection, vibration). Concepts, approaches and experiences of computer 

vision techniques used to solve SHM problems at local and global level in practice are presented 

along with representative studies. Computer vision-based approaches have the advantages such as 

non-contact measurements, data collection from a long distance, rapid and low cost application as 

well as reduced labor needs with minimum interference or intrusion to the daily operation of 

structures. CV-SHM can monitor numerous structural conditions and collect data towards damage 

indices or parameters such as crack, spalling, delamination, displacement, acceleration, modal 

parameters, load factors, while it cannot fulfill every aspect of SHM tasks. It should be indicated 

that there are a number of adverse influence factors can easily affect the accuracy of the computer 

vision applications if possible precautions are not taken during the image data collection and data 
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analysis. Such challenges and concerns do still exist and these must be taken into account in the 

future research and applications. CV-SHM is still very promising in fulfillment of the structural 

condition assessment and CV-SHM can be regarded as a good complement to conventional SHM. 

 

  



 54 
 

CHAPTER THREE: MARKER FREE MONITORING OF THE 

GRANDSTAND STRUCTURES AND MODAL IDENTIFICATION USING 

COMPUTER VISION METHODS 

 

Previously published as Dong, C. Z., Celik, O., and Catbas, F. N. (2019b). “Marker free monitoring 

of the grandstand structures and modal identification using computer vision methods.” Structural 

Health Monitoring, 18(5–6), 1491–1509. 

 

3.1 Introduction 

 

Recently, the combination of camera technology and computer vision algorithms has led to great 

advancements in the field of SHM (Catbas et al. 2012b; Yeum and Dyke 2015; Zaurin et al. 2015; 

Zaurin and Catbas 2010a; b). In past studies(Ye et al. 2016c), the use of computer vision to measure 

structural displacement was discussed extensively since displacement is a critical indicator of a 

structure’s performance. Current vision-based displacement measurement methods face many 

obstacles in field applications because they typically use manual markers, which must be attached 

to the surface of a selected structure(Feng et al. 2015a). Additionally, most researchers have used 

a digital image correlation (DIC) algorithm to do vision-based structural displacement 

measurement along with the manual markers (Henke et al. 2015; Jáuregui et al. 2003; Kohut et al. 

2013; Lee et al. 2006a; Lee and Shinozuka 2006; Olaszek 1999; Park et al. 2010; Ye et al. 2016f, 

b, a; c; Yoneyama and Kitagawa 2007). Digital image correlation has many disadvantages because 

it is easily affected by changes in illumination, slight occlusions, blurring due to motion, target 

shape deformation, scale change and rotation. These disadvantages are critical issues for field 
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applications and thus have limited the popularization of vision-based monitoring methods. Using 

manual markers is a way to improve the robustness of the digital image correlation methods but it 

does not solve the access requirement problem. Feng et al.(Feng et al. 2015b) introduced an 

orientation-code matching (OCM) based displacement measurement method and compared the 

performance of different target types including target panel (actually QR codes), feature, rivet and 

LED.  

 

Khuc and Catbas proposed a new vision-based displacement measurement method that did not 

require installation of manual markers and instead used robust features extracted from the image 

as virtual makers (Khuc and Catbas 2016, 2017). The displacement measurement was achieved 

using feature matching between the consecutive images. However, in their work, they were limited 

to a single point dynamic displacement measurement and did not focus on multi-point 

measurement. Other studies were able to achieve multi-point displacement monitoring but only 

through multiple manual markers(Fukuda et al. 2010; Ho et al. 2012; Ye et al. 2015).Yoon et 

al.(Yoon et al. 2016) introduced a target-free approach for vision-based structural system 

identification using Kanade–Lucas–Tomasi (KLT) tracking algorithm and Shi-Tomasi corners. 

This work could accommodate multi-point displacement measurement of a six-story building 

model in the laboratory, however, it did not provide verification with conventional displacement 

sensors. In addition, the vibration of the structure was taken perpendicular to the line of sight of 

the camera, which would be a limitation in field applications and for the measurement of several 

common structures, such as high-rise buildings, grandstands and bridges. Celik et al.(Celik et al. 

2018a) applied the sparse optical flow and dense optical flow algorithms to estimate the load time 

histories of lively individuals and crowds. Literature (Chen et al. 2015b; Yang et al. 2017a; b, 
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2018b) shows the full-field vibration mode identification approaches using phase-based video 

motion magnification and edge detection. The instantaneous mode shapes extracted from videos 

are vulnerable to the background clutter. Although displacement measurement results compared 

with laser vibrometer on a cantilever beam exist in the literature (Chen et al. 2015b) , such work 

mainly focus on the modal information and its application of structures in laboratory. 

Displacement measurement is still an important indicator especially for real-life applications. It is 

useful and important to obtain multi-point displacement records and analyze them for 

comprehensive assessment of structural performance. 

 

In this chapter, a general computer vision-based structural dynamic monitoring framework that 

utilizes marker-free techniques is proposed and demonstrated. Physical markers used for target 

localization are replaced with virtual markers (feature points) that are extracted from video frames 

by robust feature detection algorithms. These virtual markers represent textures or other unique 

surface characteristics of the structure. The virtual markers can be selected and plugged into the 

framework according to the best application for each scenario, which makes the whole framework 

more adaptive. The extracted virtual markers are combined with optical flow to achieve general 

dynamic displacement monitoring. In addition, the proposed method can synchronously monitor 

multi-point dynamic displacement responses in real time. In this framework, a mechanism for 

synchronization of multi-camera and conventional sensors is also designed. 

 

The proposed method is first verified on a grandstand in the laboratory by identifying modes of 

the structure through multi-point displacement records, and then comparing the vision-based 

results with traditional displacement sensors (i.e., potentiometer and accelerometers. Subsequently, 
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a second experiment is conducted in a football stadium during a game to validate the feasibility of 

field application and identification of operational modes under human crowd motion. It is shown 

that the computer vision-based method provides good results and it is also applicable for SHM. 

 

3.2 Methodology and System Development 

 

3.2.1 General Procedure for Vision-based Displacement Measurement System 

 

The flowchart of the proposed vision-based displacement measurement method is illustrated in 

Figure 3 and the general procedure is presented in Section 2.4.1.1. Here they are not repeated. 

Critical steps related to this chapter will be discussed in detail in the following. 

 

3.2.2 Camera Calibration 

 

In this chapter, the term “camera calibration” mainly refers to the scale ratio calculation. Before 

the scale ratio calculation, the camera should be setup to ensure that the captured image contains 

the necessary objects and has high quality resolution. The calculation of scale ratio follows Section 

2.2. 

 

3.2.3 Feature extraction 

 

Features are the unique characteristics of a structure used to distinguish measurement regions for 

visual tracking. Extracting features that are good and robust is the foundation of visual tracking 

and helps assure a high level of accuracy of the displacement measurement. As mentioned 
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previously, these features can be low-level features like image intensity, color, and geometrical 

shape. However, these features are easily occluded by adverse factors such as illumination change 

and partial occlusion, which are challenges for visual tracking. Generally, manual markers are 

employed to distinguish measurement points from their surroundings. However, manual markers 

introduce new problems because they require additional work and also require access to the 

structure being measured. In this situation, higher level features, such as corners and other feature 

points, are the better options because they are more distinct than edges. A main advantage of the 

feature points is that key points permit matching even in the presence of clutter (occlusion) and 

large scale and orientation changes (Szeliski 2011). Consequently, feature points are the preferred 

features in the proposed method. Feature points, also called key points, are obtained from gradient 

operations, moments, or other mathematical steps on image matrices. In the proposed method, the 

necessity for physical markers is eliminated by extracting useful and strong features within the 

scene. With contributions from the field of computer vision, there are many kinds of feature points 

that can be selected. A feature point should be selected based on the difficulty of the problem, 

application scenarios, requirements of on-line or off-line monitoring, and environmental factors. 

The most prevalent feature points are the Harris corner, Shi-Tomasi corner, SIFT, SURF, FAST, 

BRIEF and ORB. Brief characteristics of each feature are listed in Table 1 and further information 

can be found in reference (Alahi et al. 2012; Bay et al. 2008; Calonder et al. 2010; Harris and 

Stephens 1988; Lowe 2004; Rosten and Drummond 2006; Rublee and Bradski 2011; Shi and 

Tomasi 1994). Figure 7 displays two examples of feature points from the same image. Feature 

points remove the need for manual markers and can be regarded as virtual markers, which are 

distinct from the surroundings in the image and perform the functions that the manual markers did. 
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Feature extraction is a critical step for achieving successful marker-free vision-based displacement 

measurements. 

 

 

Figure 7 Examples of feature points: a) Shi-Tomasi corners; b) SURF 

 

Table 1 Summation of different feature points 

 

 

 

a) b)

No. Feature points Characteristics 

1 Harris Corner The most basic feature, not scale invariant 

2 Shi-Tomasi Corner Modified from Harris corner, better than Harris corner 

3 SIFT Scale-invariant features, insufficient speed 

4 SURF Faster version of SIFT 

5 FAST Faster than SURF and can be used in real-time 

6 BRIEF 
Less memory, faster matching, and higher recognition rate than 

SIFT 

7 ORB 
ORB is much faster than SURF and SIFT, and ORB descriptor 

works better than SURF 
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3.2.4 Visual tracking using optical flow 

 

Figure 8 shows the motion issues that can be developed in an image sequence (video), which is a 

function of both space (x, y) and time t. In this study, optical flow is used to solve the visual 

tracking task. Optical flow refers to the estimation of a vector field of local displacement for a 

sequence of images. It is the pattern of object motion between two consecutive frames in a 

sequence. This motion can be due to the movement of the objects or the camera. As illustrated in 

Figure 8b, in the (t-1)th frame of the sequence, the ball is at location A, and in the tth frame, the ball 

is at location B. The vector pointing from the initial location to the current location is the optical 

flow. If the ball’s location in tth frame back is put back into to the (t-1)th frame, location B’,then 

this optical flow vector can be represented by s. To calculate the optical flow for two images, two 

basic assumptions are needed: 

 

 

Figure 8 Motion in image sequence: a) temporal change; b) spatial change 

1) Brightness constancy: the pixel intensities of an object in an image do not change between 

consecutive frames;  

 

a) b)
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2) Temporal regularity: the between-frame time is short enough to consider the motion change 

between images using differentials (used to derive the central equation below), which assume a 

small motion between two consecutive images; 

 

In many cases, these assumptions may not hold, but for small motions and short time steps between 

images, it is a good model. Consider a pixel I(x, y, t) in the first frame. It moves by distance (dx, 

dy) in next frame taken after a period of time dt. Since the pixels are the same and their intensity 

does not change, the following equation can be applied: 

 

( ) ( )dttdyydxxItyxI +++= ,,,,                               (19) 

Then assuming I is a differentiable function, by expanding the first term using the Taylor series, 

removing higher order terms and dividing by dt, the following equation can be obtained: 
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Eq. 21 is called the Optical Flow equation. Ix and Iy are image gradients and It is the gradient at a 

time t. A unique solution cannot be obtained from this equation with two unknown variables, (u, 

v). It is known as the aperture problem (Szeliski 2011) and is shown in Figure 9. Aperture is a 
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patch which defines a region of view. Patches with gradients in at least two different orientations 

are easy to localize.  

 

Figure 9 Aperture problem 

 

As is outlined in Figure 9, the motion of Aperture 2 cannot be determined due to the inadequate 

amount of boundary condition. However, as in Aperture 1, by enforcing some spatial consistency, 

it is possible to obtain solutions. There are many methods to solve this problem, one of which was 

developed by (Lucas and Kanade 1981). This method operates under the assumption that 

neighboring pixels have similar motion. With this assumption, it is possible to stack many of these 

equations into one system, as in Eqs. 22, for a neighborhood of n pixels. 
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or in the format below: 
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Eqs. 23 are over-determined since they have more equations than unknowns; they can be solved 

using the least square methods: 

True motion

Aperture 1

Aperture 2
Undetermined 

motion
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From the equation above Eq. 12 is obtained: 
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Eqs. 26 to 28 are derived: 
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Eqs. 28 can be represented as a structural tensor representation as in Eq. 29: 
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When the matrix on the left, 
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When the matrix on the left of Eqs. 28 is compared with a feature point detector of the feature 

extraction in reference (Harris and Stephens 1988), it is seen that the matrix is invertible, and a 

feature point is also found at the same point. It means that at the feature points’ location, Eqs. 28 
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and Eqs. 29 can be solved, making feature points easy points to track. With feature points, the 

assumption made in Lucas-Kandade method is not a drawback but a good thing. 

 

Feature points are first extracted in the current frame and then the optical flow vectors are 

calculated to track the locations of the feature points in the next frame. For the optical flow vector 

(u, v), the new location of the feature point (x, y) in next frame is (x+u, y+v). Figure 10a shows the 

visual tracking results of feature points in two consecutive frames. To improve the accuracy of 

tracking and eliminate the outliers of tracked feature points in the next frame, bidirectional error 

detection is conducted, as shown in Figure 10b. When going forward, the optical flow vector is 

calculated from the (t-1)th frame to tth frame, and the new location of A in the (t-1)th frame is B in 

the tth frame. However, when going backward, the optical flow vector is calculated from the tth 

frame to the (t-1)th frame, and the location of B in the tth frame might not exactly be A but A’ in (t-

1)th frame. The difference between A and A’ is called the bidirectional error. A threshold is needed 

to eliminate the error in the tracking when the bidirectional error is too high.  

 

 

Figure 10 a) Visual tracking results; b) Illustration of bidirectional error 
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The optical flow calculation method used in this research, Lucas-Kanade method, is a sparse 

optical flow method that calculates the motion at the feature points. While Lucas-Kanade method 

can also be applied to calculate dense optical flow (calculating optical flow vector at each pixel) 

if the calculate window slides all over the image. There are other algorithms, such as Horn-

Schunck method (Horn and Schunck 1981), Farneback method (Farnebäck 2003), Block match 

method (Liu and Zaccarin 1993) and Phase based optical flow (Fleet and Jepson 1990). 

Comparisons of listed examples are listed in Table 2. 

 

Table 2 Optical flow methods 

 

Even though with the optical flow on every pixel, the displacement of selected regions can be 

obtained, the noise will be added into the final results due to unremarkable flow in these regions. 

In this study, the focus is on motion tracking of selected measurement regions – specifically robust 

feature points - not the whole image. Therefore, the Lucas-Kanade algorithm is more suitable for 

our tracking task than dense optical flow methods. To negate the drawbacks of the optical flow 

method due to the two basic assumptions stated above, the steps below need to be followed: 

No. Methods Characteristics 

1 Lucas-Kanade 
Sparse/dense flow, local smooth assumption, can use pyramid 

estimation for large motion estimation, fast and easy to implement 

2 Horn-Schunck 
Dense flow, global smooth assumption, cannot use pyramid 

estimation for large motion estimation, sensitive to noise, slow 

3 Farneback 
Dense flow, use polynomial expansion, consider local information, 

can use pyramid estimation for large motion estimation, slow 

4 Block match 
Dense flow, only integer displacements, only use local 

information, can use pyramid estimation for large motion 
estimation, two-frame time derivatives are inaccurate, slow 

5 
Phase based 
optical flow 

Dense flow, use phase information, more robust to smooth shading 
and lighting variations, unstable in the vicinity of phase 

singularities, slow 
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1) For the first assumption, select features that are resistant to illumination change, since 

during practical application of structural displacement measurement, changes in lighting can occur. 

2) For the second assumption, use Lukas-Kanade with Pyramid to solve problems due to large 

motion. 

 

3.2.5 Displacement calculation 

 

Since this study focuses on multi-point displacement measurement, each of the measurement 

points is represented by a region of interest (ROI), which is a subset selected from the whole image 

as mentioned above. In this part, the procedure to calculate the displacement of each ROI is 

introduced and take one ROI for example. With feature extraction and visual tracking, the 

displacement decrement for each feature point from the selected ROI in the (t-1)th frame to the one 

in tth frame is obtained, ( , ), where i is the number of feature points. Then the 

displacement decrement of each selected measurement point from the (t-1)th frame to tth frame is 

calculated by averaging the decrements for each feature point: 
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where nt is the total number of the tracked feature points. Then the displacement in pixel 

coordinates in the tth frame from the initial frame is: 

i

ttu →−1
i

ttv →−1
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Here t is equal or greater than 2. When t is equal to 1, u1 is defined as 0 since displacement at the 

first frame is regarded as 0. 

 

Using the scale ratio, SR, calculated in the section of camera calibration, the actual displacements 

of the selected measurement point at the tth frame are 

t t

t t

X u
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Y v
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                                                     (34) 

where Xt and Yt are the horizontal and vertical displacements, respectively. With Eq. (34), the 

horizontal and vertical displacements of one ROI at time t, i.e. one measure point, is obtained.  For 

multi-point displacement measurement, the same procedure will be executed on all of the selected 

ROIs, which represent all the measurement points to get the displacements of all the measurement 

points. 

 

3.3 Laboratory verification 

 

3.3.1 Experimental Setup 

 

This section focuses on verifying the feasibility and performance of the proposed displacement 

measurement method. The first experiment used for verification is a grandstand, depicted in Figure 

11. The structure is modeled after those found in a football stadium. Throughout a football game, 
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spectators will stand up, jump, and dance, producing lots of vibration. These same scenarios are 

simulated on the grandstand scale model by having people jump on the grandstand. In this study, 

only the displacement of the front beam is measured. Figure 12 shows the experimental setup. 

Here five ROIs are selected as the measure point for the proposed method, i.e. P1-5. At each 

measure point a conventional displacement sensor (i.e., potentiometer) and an accelerometer are 

installed. The cameras here are MindVision- MV-GE131gc-t with a maximum frame rate of 60 

Hz, a resolution of 1280 pixel × 960 pixel and the zoom lens has a focal length of 5~100 mm. The 

cameras are connected to the same data acquisition system as the potentiometer. The sampling rate 

for potentiometer is 100 Hz and it is down-sampled to be comparable to the camera. The laboratory 

verification is divided into three experiments, which are introduced in detail below. 

 

 

Figure 11 Grandstands in laboratory and stadium 
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Figure 12 Experimental setup 

 

3.3.2 Comparative Study of Displacement Measurement Using Different Features 

 

In the first experiment, P2 on the front beam of the grandstand was selected as the displacement 

measurement point, as illustrated in Figure 12. During the experiment, one person stood on the 

grandstand and jumped, as one camera recorded the motion of P2 with 30 frames per second and 

a potentiometer measured the displacement of P2 at a sample rate of 30Hz simultaneously. Shi-

Tomasi corners and SURF features were chosen as the virtual markers respectively. The 

displacement is obtained using the proposed, aforementioned procedure for vision-based 

displacement measurement system. Figure 13 reveals that the displacement records from the vision 

method match those from the potentiometer well and that they accurately depict the movements of 

the test structure: first, the person came onto the grandstand, causing an increase in displacement 

(0s~5s), then walked to P2, producing fluctuations in the displacement (5s~7s), stood for two 

seconds (7s~9s), and then began to jump (9s~17s), which produced a continuous up and down 

pattern. The person then stopped, resumed jumping for two seconds (17s~19s); then finally got 

down from the grandstand, returning the displacement to zero. From this experiment, it can be 
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seen that in this lab case, both Shi-Tomasi corners and SURF features give the same measurement 

results compared with the conventional displacement sensor (potentiometer). 

 

 

Figure 13 Comparison of displacement data from vision using different features and 

potentiometer at P2 

 

Although both the proposed method and Khuc and Catbas’s previous methods (Khuc and Catbas 

2016, 2017) include feature extraction, the way how these features are used to obtain the 

displacement is different in this proposed work. In Khuc and Catbas’ work (Khuc and Catbas 2016, 

2017), after feature extraction of both of the two consecutive images, feature matching are 

performed between these two images using the minimum Euclidean distance (for SIFT) or shortest 

Hamming distance (for FREAK) of the feature points’ descriptor vectors. Feature matching is a 

critical step to determine the location changing of the selected regions in the two consecutive 

images for displacement measurement. While in the proposed method, after feature extraction, the 

optical flow vectors at the locations of feature points are obtained with bidirectional calculation 

(forward and backward). Although both approaches can finish the tracking task and build feature 

matches in two consecutive images, and both need to extract feature points from two consecutive 

images, the bidirectional calculation of optical flow is a bidirectional prediction and check, which 

can discard bad feature matches. Khuc and Catbas’ methods employed trimmed mean algorithm 

(for SIFT) and planar geometric transformation (for FREAK) respectively to discard bad feature 
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matches. As is stated in literature (Khuc and Catbas 2016) since the percentage in the trimmed 

mean algorithm is a parameter, it must be adjusted corresponding to a particular monitoring 

condition. Instead of using a different distance to carry out feature matching and different 

operations to discard bad matches, the proposed method gives a general and convenient framework, 

which just needs to plug in different feature points into bidirectional optical flow calculation to 

give good feature matches. Planar geometric transformation can be regarded as an additional step 

in the proposed method to further discard bad matches and improve the final results. (Yoon et al. 

2016) used the MLESAC modeling fitting method to remove the displacements that are not 

consistent with the dominant geometric transformation between two consecutive frames, but did 

not use bidirectional optical flow calculation. Up to now, there is no research study on how much 

the planar geometric transformation can improve the performance in discarding bad matches after 

bidirectional optical flow calculation.  

 

In this experiment, Shi-Tomasi corner and SIFT are employed respectively to be combined with 

bidirectional optical flow calculation to obtain displacement records. No additional steps are taken 

to further discard bad matches. The feasibility of the proposed framework is validated by 

comparing the results from two approaches and the actual displacement measurements using 

potentiometer. In future studies, the comparative evaluation of different feature points will be 

performed to further investigate their superiority and inferiority. 

 

3.3.3 Multi-point Displacement Measurement Using Multi-camera 

 

In order to carry out structural identification using computer vision, multiple cameras are needed 

to measure all the required responses since one camera cannot measure multiple points due to the 
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distance limitation in the laboratory and the limitation of the camera lens. In the second experiment, 

the feasibility of using multi-camera to measure displacement synchronously was demonstrated 

and verified. Two cameras and one potentiometer were used to measure the same point (P3) at the 

same time. Since each camera can include multiple measurement points with different depth of 

field, the scale ratio of the ROI at the measurement point was calculated separately. Both of the 

camera axes were perpendicular to the motion plane of the measure points so that the scale ratios 

were calculated. Figure 14 shows that the displacement records from both cameras matched well 

with those from the potentiometer measurements. Both of the displacement records basically gave 

the same structural response for the following loading procedure: first, the grandstand was still 

(0s-4s), then the person came onto the grandstand, causing an increase in displacement (4s~6s), 

then walked to P2, producing fluctuations in the displacement (6s~8s), stood for two seconds 

(8s~10s), and then began to jump (10s~16s), which produced a continuous up and down pattern. 

The person then stopped, resumed jumping for a second (16s~17s); then finally got down from the 

grandstand, the grandstand displacement came back to zero. These results from these two cameras 

indicate that the proposed multi-camera displacement measurement method can work 

synchronously and accurately. The correlation coefficient between the displacement time histories 

from Camera1 and potentiometer is 98.76%, while the correlation coefficient between the 

displacement time histories from Camera 2 and potentiometer is 97.93%. Since no person occupied 

the grandstand within the first four seconds, it can be assumed that the grandstand was stationary 

during that time. The displacement time histories in the first four seconds from both cameras are 

selected for statistical analysis. The standard deviation is chosen to represent the minimum small 

change of the proposed method (Khuc and Catbas 2017; Xu et al. 2018). The minimum small 

change of displacement using the proposed method and the cameras is 0.0154 mm. Although it is 
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not better than that of potentiometer, which is 0.0064 mm, using the proposed method and both 

cameras is still quite good. Comparing this value to the maximum displacement range (around 

18mm), the accuracy is roughly 0.0154/18=0.0856%. 

 

 

Figure 14 Comparison of displacement data from vision using different cameras and 

potentiometer at P3 

 

During the experiments, all the cameras and the potentiometers were synchronized using a NI 

Multifunction I/O Device with the model number of USB-6343. The USB-6343 offers analog I/O, 

digital I/O, and four 32‑bit counters/timers for PWM, encoder, frequency, event counting, and 

more. Onboard NI‑STC3 timing and synchronization technology delivers advanced timing 

functionality, including independent analog and digital timing engines and retriggerable 

measurement tasks (National Instruments 2017). The cameras used here have the external trigger 

function. The cameras were triggered to capture images by the edge-triggered generated by the 

digital I/O of USB-6343, meanwhile responses of the conventional sensors including 

potentiometer and accelerometers were acquired by analog I/O of USB-6343. These tasks were 

synchronized with one internal timer of USB-6343 to make sure multiple cameras and sensors 

work synchronously. 
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3.3.4 Structural Identification 

 

In this section, the displacement time histories obtained from the proposed method are used for 

structural identification. As shown in Figure 12, two cameras were employed to measure the 

displacement of the front beam of the grandstand. P1~P3 were measured by Camera 1, and P4 and 

P5 were measured by Camera 2. At the same locations (P1~P5), five accelerometers were installed 

to measure the accelerations from the structural vibrations. The experiment was performed under 

impact excitation. Both cameras and accelerometers recorded the free vibration attenuation process 

of the grandstand synchronously after the impact pulse. The frame rate of the cameras was 60 

frames per second and the sample rate of the data acquisition system attached to the accelerometers 

was 100 Hz. 

 

Figure 15 and Figure 16 illustrate the displacements from the proposed method and the 

accelerations from the accelerometers, respectively. The Complex Mode Indicator Functions 

(CMIF) (Catbas et al. 2004; Wang et al. 2016b; a) were calculated from the time histories from 

the vision method and accelerometers as shown in Figure 17 and Figure 18. In these two figures, 

the first (blue line) and second (red line) singular value curves of CIMFs are shown. In this 

experiment, the first singular value curve (blue line) is much clearer and is used to pick the peaks 

of the modes. Three different modes were successfully identified with pick-peak method from the 

CMIF plots.  
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Figure 15 Displacement time histories from computer vision 

 

 

 

Figure 16 Acceleration time histories from accelerometers 

 

 

 

Figure 17 CMIF calculated by displacement time histories from vision method 
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Figure 18 CMIF calculated by acceleration time histories from accelerometers 

 

Table 3 shows the comparison of modal parameters obtained from vision and accelerations. The 

first three frequencies obtained from the vision method are 5.74 Hz, 7.78 Hz and 8.79 Hz, and 

those obtained from accelerations are 5.76 Hz, 7.71 Hz and 9.74 Hz. From the comparisons one 

can see that the differences between the modal frequencies are small (the first and second are less 

than 1% and the third is less than 10%). The difference between the damping ratios of the first 

order are also small, just 2.9%, but the differences between the second (264.9%) and third are 

larger (19.62%). The first three damping ratios obtained from the vision method are 1.36%, 2.08%, 

and 1.68%, and those obtained from the acceleration data are 1.40%, 0.57% and 2.09%. Both 

percent error of damping ratios and also difference of damping rations are given in percentages to 

provide a more complete perspective of the differences. The large differences of damping ratio 

might come from the different type of data since one is displacement and another is acceleration. 

Usually in vibration displacement signal is relatively weaker than acceleration data and easy to be 

5.76
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contaminated by noise. That might be a reason to explain the large difference between the damping 

ratio obtained from the vision data and acceleration. However, it should be noted that damping is 

one of the most challenging modal parameters, and further studies need to be conducted especially 

when computer vision data are utilized. 

Table 3 Comparative study of modal parameters 

 

 

Figure 19 The first three modal shapes of the front beam from vision method 

 

f = 5.74 Hz, damping ratio = 1.36%

f = 7.78 Hz, damping ratio = 2.08%

f = 8.79 Hz, damping ratio = 1.68%

Mode 
f (Hz) 
Vision 

f (Hz) 
Acc 

Diff. 
(%) 

Damp ratio (%) 
Vision 

Damp ratio (%) 
 Acc. 

Error % and 
Difference (%) 

1 5.74 5.76 0.35 1.36 1.40 2.9, (0.04) 

2 7.78 7.71 0.91 2.08 0.57 264.9, (1.51) 

3 8.79 9.74 9.75 1.68 2.09 19.62, (0.41) 
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Figure 20 The first three modal shapes of the front beam from accelerometers 

 

 

Figure 21 The first three modal shapes of the full structure from accelerometers 

f = 5.76 Hz, damping ratio = 1.40%

f = 7.71 Hz, damping ratio = 0.57%

f = 9.74 Hz, damping ratio = 2.09%

f = 5.76 Hz, damping ratio = 1.40%

f = 7.71 Hz, damping ratio = 0.57%

f = 9.74 Hz, damping ratio = 2.09%
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Figure 19 and Figure 20 show the first three modal shapes obtained from the vision data and 

acceleration data, respectively. Here the modal shapes are operating deflection shapes (ODS). The 

first three modal shapes look similar as bending modes of the front beam, which is because the 

modes are extracted only using the information of the front beam of the grandstand. Without the 

data from the back beam, the deflections of the back beam are set as zero. When using additional 

measurements, DOFs (Degrees of freedom) are added from the back beam, the validity of the 

identified modal vectors can be better observed visually. As shown in Figure 21, the first mode 

shape indicates a bending mode and the second and third mode shapes indicate two different 

torsion modes. But these mode shapes are consistent with those shown in Figure 19 and Figure 20, 

which are a subset with reduced DOFs. The experimental results indicate that it is feasible to use 

the proposed vision-based method for modal identification for extracting the natural frequency and 

modal shape. More studies are to be conducted to explore the accuracy of damping ratios using 

computer vision methods. 

 

3.4 Field Application 

 

3.4.1 Experimental Setup 

 

In this section, a field application that was performed in a football stadium (as shown in Figure 11) 

is discussed and used to verify the feasibility of the proposed displacement measurement method 

and structural identification. As shown in Figure 22, a beam under the grandstand was selected for 

monitoring. At a predetermined measurement point, a potentiometer and an accelerometer were 
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installed, and a camera was positioned 10.21 meters away (33.5 ft) from the structure with an 

upward angle of 13°. 

 

Figure 22 Grandstand from a real structure 

The sensors and camera recorded the structural vibrations synchronously during periods of intense 

crowd motion throughout the football game, such as during a kick-off or touchdown. The sample 

rate of the potentiometer and the accelerometers was 60 Hz and the frame rate of the camera was 

30 Hz. In this experiment, structural vibrations, which were produced by crowd jumping during a 

touchdown scored by a football team, were recorded. The song that the crowd jumping 

synchronized was the chorus of the “Zombie Nation” song. The time history of the chorus is 

illustrated in Figure 23. 

 

Figure 23 Time history of the chorus part of “Zombie Nation” song 
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3.4.2 Analysis and Results 

 

Figure 24 illustrates the displacement time histories obtained from the proposed vision method and 

the potentiometer and Figure 25 illustrates the acceleration records obtained from the 

accelerometers. The results from computer vision method are consistent with those from the 

potentiometer measurements, which indicates that the proposed method is feasible for 

displacement measurement in field applications. The comparison of operational modal 

identification between vision and accelerometer-based data also gives satisfactory results as shown 

in Figure 26 and Table 4. It can be seen from this data that the computer vision and accelerometer 

results for the first three operational modal frequencies under a human jumping load are almost 

the same. Figure 27 illustrates the periodogram power spectral density estimate of the time history 

for the chorus part of the “Zombie Nation” song. Figure 26, Figure 27 and Table 4 indicate that 

the operational modal frequency results are closely spaced with the modal frequencies extracted 

from the chorus part of the “Zombie Nation” song. Even though there is a slight difference between 

the results from Figure 26 and Figure 27, it can still be concluded that both results obtained from 

the vision-based method and from accelerometers provide reliable operational modal frequencies. 

 

 

Figure 24 Comparison of displacement data from vision and potentiometer 
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Figure 25 Acceleration time histories from the accelerometer 

 

Figure 26 Comparison of operational frequencies under human jumping: a) vision; b) 

accelerometer 

 

 

Figure 27 Periodogram power spectral density estimate of time history of the chorus part 

of Zombie Nation 
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Table 4 Comparative study of operational modal frequencies from vision and accelerometers 

 

 

3.5 Summary 

 

In this chapter, a computer vision based structural dynamic monitoring method using marker-free 

and multi-camera synchronization techniques is proposed. An adaptive framework for the 

proposed method is introduced in detail, including camera calibration, feature extraction, visual 

tracking and displacement calculation. Instead of manual markers, this study extracts various kinds 

of feature points as virtual makers and combines them with optical flow based tracking algorithms 

that can be utilized for different application scenarios. The performance and accuracy of the 

proposed method are validated by comparing the displacement results with those obtained from a 

potentiometer sensor on a large grandstand structure in the laboratory. A modal identification for 

the structure is conducted using multi-point displacement records obtained from the proposed 

method, a multi-camera setup, impact testing, and the CMIF method. The computer vision-based 

results are checked by comparing them with the results from the conventional accelerometers. The 

proposed method is also validated by comparing with conventional displacement and acceleration 

sensors from an experiment in a stadium. The comparative operational modal analysis of the real 

Mode 
f (Hz) 
Vision 

f (Hz) 
Acc 

Difference between  
Vision and Acc. (%) 

f: corresponding range 
in Zombie Nation 

1 2.344 2.344 0 2.328 

2 4.746 4.746 0 4.656 

3 6.563 6.563 0 6.430, 6.577, 6.984 
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stadium structure using conventional sensors and cameras provided accurate results under human-

induced loading during football games. It is feasible to use the proposed method for structural 

health monitoring and modal identification particularly for natural frequencies and mode shapes. 

 

The proposed method and application to civil structures especially to bridges have major positive 

impacts for structural safety and assessment. There are sensor based structural health monitoring 

(SHM) technologies that are available yet permanent and continuous SHM may be economically 

feasible for the major (e.g. landmark) or structurally critical structures. In the meantime, a large 

population of routine structures (such as highway bridges) will still rely on visual inspection by 

the inspectors/engineers. Cost-effective and easy to use camera based technologies can support 

field inspections of such structures while also eliminating time-taking field installation of sensors. 

Besides the data obtained using the proposed framework can be further processed to conduct 

structural damage detection, model updating, condition assessment, etc., which are also currently 

carried out using conventional sensors. As a result, cost and time could be saved for the SHM of 

ordinary bridges. It is anticipated that such SHM would support decision-making and planning for 

structure management and maintenance. Future work will focus on widening the field of 

application to not only grandstand structures, but possibly to bridges, buildings, tunnels, dams and 

power transmission towers, as well as focusing on developing more robust algorithms for scenarios 

with harsh environmental conditions. Although it is very promising to use the vision based method 

as stated above, there are still some limitations, such as the errors induced by the camera shaking, 

illumination change, image processing time and other adverse environmental factors. Also, from 

a practical point of view, putting a camera underneath a grandstand and going through a 

sophisticated algorithm to reveal displacement might be cumbersome than attaching 
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accelerometers. This can be resolved by putting all the processing procedures in a package and 

just give the displacement at the end. Future work will focus on how to eliminate errors caused by 

the adverse environmental factors and make it more convenient to use. 
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CHAPTER FOUR: A NON-TARGET STRUCTURAL DISPLACEMENT 

MEASUREMENT METHOD USING ADVANCED FEATURE MATCHING 

STRATEGY 

 

Previously published as Dong, C. Z., and Catbas, F. N. (2019). “A non-target structural 

displacement measurement method using advanced feature matching strategy.” Advances in 

Structural Engineering, 22(16), 3461–3472. 

 

 

4.1 Introduction 

 

Structural Health Monitoring (SHM) has been widely explored and implemented by the 

community of structural engineering for the last twenty years (Catbas et al. 2008b; Ni et al. 2011, 

2010). There are a number of centers of excellence or research groups around the world that have 

contributed to the development and implementation of the SHM methods, technologies and 

implementations. Research group led by Prof. Ko at Hong Kong Polytechnic was one of the 

leading groups with particular real life contributions such as long span bridges and tall buildings 

(Ko et al. 2002; Ko and Ni 2005; Ni et al. 2003, 2008, 2009; Xu et al. 1997). SHM focuses on the 

condition assessment of different type of structures for better decision making (Gul and Catbas 

2011b). To achieve this goal, various advanced sensing technologies are employed with 

interdisciplinary knowledge to support SHM with convenient monitoring ways and reliable data 

acquisition. Interdisciplinary research is needed for the development of sensing techniques for 

various types of measurements (Duan et al. 2016; Ye et al. 2017). Displacement is one of the most 
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commonly used indicators for structural assessment (Chen et al. 2014b, 2015c, 2019); and various 

displacement measurement methods using different technologies have been proposed and 

implemented. Some examples are the dial gauges, which use basic mechanical principles, linear 

variable differential transformer (LVDT), magnetostrictive displacement sensor (MDS), which 

utilize the electromagnetic properties, the liquid-level meter using liquid pressure principle, and 

the potentiometer using the change of electric resistor. Such displacement measurement 

technologies require some type of contact at the measurement location. These sensors are preferred 

and used, also to be compared with new methods and technologies. However, the contact type 

displacement methods need static reference to fix the measurement base and this makes it very 

challenging if impossible for large structures such as high-rise buildings and large bridges. Laser 

Doppler Vibrometer (LDV) (Chen et al. 2018b) as a noncontact type method is very expensive 

and not suitable for multi-point measurement of large structures. Global Position System (GPS) 

utilizes remote sensing and modern communication techniques to achieve displacement 

measurement, but its accuracy can easily be affected by electromagnetic interference (Ye et al. 

2015). The measurement resolution is in centimeter level and currently it is suitable for the flexible 

structures like long span bridges (Ye et al. 2013) and towers (Ni et al. 2009; Xia et al. 2014; Yi et 

al. 2013). While there are other studies which converts accelerometer and strain gauge data to the 

displacement by leveraging mechanical relationships between them(Ye et al. 2015). This can 

achieve indirect displacement measurement but the error accumulated during the mathematical 

operations and approximations become significant. In addition, these methods may need special 

attachment and operational requirements such as traffic closure if used in bridge structures (Ye et 

al. 2015). Those limit the practical applications.  
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In recent years, with the development of computer vision and the progress of image data 

acquisition devices, vision-based methods are gathering increasing attention in the field of SHM 

(Catbas et al. 2017, 2012b; Celik et al. 2018a; Ye et al. 2016c; Zaurin et al. 2015; Zaurin and 

Catbas 2010a; b). Vision-based displacement measurement methods become viable alternatives 

for the current practice of structural displacement measurement in SHM(Feng and Feng 2016, 

2017, 2018). Various tracking algorithms are applied to extract displacement from videos and 

unmanned aerial vehicles (UAVs) are also employed in field a field application (Yoon et al. 2017, 

2018). There are limitations also for current practice of vision-based displacement measurement. 

Digital image correlation (DIC) and DIC-based template matching are the most popular methods 

(Zhong et al. 2017, 2018b; Zhong and Quan 2017, 2018a), while it has to create manual speckles 

on the surface of measurement structures to achieve good accuracy of DIC (Ye et al. 2016a). 

Manual targets are necessary to improve the performance of DIC based template matching 

(Brownjohn et al. 2017). Also, DIC and DIC-based template matching are easily affected by the 

viewpoint and illumination change (Ye et al. 2016f) which means that appropriate camera 

alignment and light sources are crucial. Feature points are extracted from images and keep 

invariant properties in different situations, which can be regarded as virtual markers to achieve 

non-target measurement (Khuc and Catbas 2017). In general, there are two different approaches 

to utilize the feature points to do displacement measurement: 1) combining the sparse optical flow 

with feature points (Dong et al. 2019b; Yoon et al. 2016); and 2) doing feature matching with the 

similarity calculations of feature points in different images (Khuc and Catbas 2017). Although 

both of the two different approaches can utilize the non-target properties of feature points, 

combining optical flow and feature points only employs the feature points without an important 

component: feature descriptor. In general, when talking about a type of feature point, it refers to 
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the feature detector and feature descriptor. Feature detector is a sub region of an image selected by 

certain algorithms such as SIFT (Scale Invariant Feature Transform) detector (Lowe 2004). 

Feature detector is also called feature point or keypoint, which provides visual information of 

image characteristics. Feature descriptor is generally represented by a vector and used to depict 

the feature point mathematically. Just using optical flow with feature points does not take full 

advantage of the feature point and the advantage of its descriptors. And also, the optical flow-

based method can be easily affected by illumination change since the first assumption in optical 

flow calculation is that illuminations in consecutive frames are constant. Some advantages such as 

illumination invariant properties of the feature points cannot be reflected when combining with 

optical flow. While using feature matching-based methods, the appropriate properties of the 

feature points can be better utilized. The matching procedure is first calculating the distance 

between the descriptors’ vector and giving matching candidate. Then outlier removing methods 

are employed to get rid of the wrong matches. During this procedure, all of the four components 

including the feature point, its descriptor, matching calculation and outlier removal play important 

roles.  

 

In this chapter, descriptor is given more attention and explored to improve the displacement 

measurement accuracy with comparisons to the existing feature matching based methods (Khuc 

and Catbas 2016, 2017). Instead of using the hand-crafted feature descriptor such as SIFT 

descriptor and SURF (Speeded-Up Robust Features) descriptor (Bay et al. 2008), a descriptor 

generated by a learning processing is implemented and combined with SIFT feature point to do 

feature matching. The proposed feature matching strategy is put into a general procedure for 
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vision-based displacement measurement. The feasibility, accuracy and performance are verified 

through a comparative study with a laboratory experiment and then a field application. 

 

4.2 Methodology 

 

4.2.1 General Procedure for Vision-based Displacement Measurement Method Using Feature 

Matching 

 

Figure 28 illustrates the flowchart for proposed vision-based displacement measurement method 

using feature matching. In the first step, the camera is calibrated to obtain the relationship between 

the image coordinates and the real-world coordinates. In other words, it should be figured out how 

many physical units (e.g., millimeter) in the real world represent one pixel in the image plane. In 

the second step, image data either color or grayscale image sequence is acquired with an 

appropriate device. In the third step, image feature points, also called keypoints or corners which 

are salient parts of the images are extracted and determined by descriptors. In the fourth step, the 

feature points in the current image and the initial image are matched with certain similarity criteria 

and suppression algorithms are employed to remove the outliers (i.e., wrong matches). In the last 

step, the displacements at feature points are obtained by converting the displacement in pixels to 

the displacement in physical units. By taking the average of the displacements at the feature points 

in the region of interest (ROI), the structural displacements expected to measure are obtained. In 

this chapter, for the convenience of the application, scale factor method is employed. Some critical 

issues which can affect the measurement accuracy are introduced in detail below. 
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Figure 28 Flowchart for proposed vision-based displacement measurement method using 

feature matching 

 

4.2.2 Image Data Acquisition 

 

Image data acquisition means to take the image sequence of the measurement region with 

appropriate device which usually includes cameras, lenses and computers. Depending on the 

application scenarios, one camera or multiple cameras can be used to measure the displacement of 

single point or multiple points. It should be noted that if only one camera is used for multi-point 

displacement measurement, the accuracy is reduced because of the resolution reduction of each 

measurement region. Also, there is the trade-off between the image sampling rate and image 

resolution due to the limitations of the data transmission and storage. Depending on the monitored 

structures, the image sampling rate and resolution have to be selected properly. In practical 

applications, the camera may be affected by the ground motion or wind loads. To eliminate the 

camera motion effects, one of the solutions is to subtract motion of the stationary part in the image. 

This is also necessary to be considered in image data acquisition. More details and image data 

acquisition strategies are presented in the authors’ previous work (Dong et al. 2019c).  

 

4.2.3 Feature Detection and Description 

 

Image features represent the characteristics of the image, which make it be distinguished from the 

surroundings. Features can be the grayscale intensity, color, geometrical shape and edges. 

Camera 
calibration

Feature detection 
and description

Feature matching 
and outlier removal 

Structural displacement 
calculation 

Image data 
acquisition



 92 
 

However, these features can be affected by illumination, scale, partial occlusion and viewpoint, 

etc. Feature points, also called feature detectors, are the sub regions of the image which show 

robust properties with influencing factors and keep invariant. The most popular feature points 

include Harris corner (Harris and Stephens 1988), Shi-Tomasi corner (Shi and Tomasi 1994), SIFT 

(Scale Invariant Feature Transform) (Lowe 2004), SURF (Speeded-Up Robust Features) (Bay et 

al. 2008) and ORB (Oriented FAST and rotated BRIEF) (Rublee and Bradski 2011), etc. In order 

to use these features to do feature matching in different images with mathematical tools, e.g., 

distance, the feature points need mathematical representation, not just the visual region of the 

images. In general, descriptors are applied to represent the feature points. Feature descriptor 

combines the location, intensity, gradient and orientation etc. of the region where the feature point 

stands, and it is usually denoted by a vector. SIFT, SURF, ORB, FREAK (Fast Retina Keypoint) 

(Alahi et al. 2012) and BRISK (Binary Robust Invariant Scalable Keypoints) (Leutenegger et al. 

2011) are common feature descriptors used in computer vision.  

 

Figure 29 gives an example of SIFT feature points and descriptors. Here the SIFT descriptors are 

visualized on the image to give a picture with the uniqueness of different feature points using 

VLFeat packages (VLFeat 2018). Currently the features mentioned above are implemented for 

vision-based displacement measurement and give good results (Catbas et al. 2018; Dong et al. 

2019b; d; Khuc and Catbas 2016, 2017). The feature descriptors are hand-crafted and without 

learning process. In this study, a learning local feature descriptor, also called VGG feature 

descriptor, which is proposed by Visual Geometry Group (VGG) of University of Oxford using 

convex optimization (Simonyan et al. 2014), is employed. As presented by (Simonyan et al. 2014), 

VGG feature descriptor shows better performance for the general benchmarks. In this study, the 
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SIFT feature point and VGG descriptor (SIFT-VGG) are combined together as a strategy for 

vision-based displacement measurement. The results from SIFT-VGG are compared with SIFT, 

SURF and the combination of SURF feature point and VGG descriptor (SURF-VGG). 

 

 

Figure 29 An example of SIFT feature points (a) and descriptors (b) 

 

4.2.4 Feature Matching and Outlier Removal 

 

To match the feature points in different images, the similarities between different feature points 

are measured. In general, to measure the similarities, the distance between the feature descriptors 

are calculated. By default, Euclidean distance is employed, while the feature descriptor is a binary 

vector, then Hamming distance is selected. For example, ORB is a binary descriptor. To complete 

the feature matching, there are two approaches: 1) Brute-Force matcher and 2) k nearest neighbors 

(KNN) matcher. Here k is a constant and always selected as 2, which is also utilized as FLANN 

(Fast Library for Approximate Nearest Neighbors). Brute-Force matcher calculates all the distance 

and just picks the closest one and does the matching. While FLANN matcher holds two closest 
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distances and in the next step just keeps the one that satisfies the condition that one of the distance 

is smaller than a threshold times the other. In Lowe’s paper (Lowe 2004), this threshold is 0.65. 

There are still wrong matches (outliers) using just distance and to obtain better feature matching 

results, RANSAC (RANdom SAmple Consensus) method or LME (Least Median Estimation) 

method is applied. RANSAC can handle practically any ratio of outliers but need a threshold to 

distinguish inliers from outliers, while LME does not need any threshold but it works correctly 

only when there are more than 50% of inliers (Simonyan et al. 2014). Khuc and Catbas 

implemented RANSAC method to remove the outliers and shows good structural displacement 

measurement results (Khuc and Catbas 2017). In this study, FLANN and RANSAC are 

implemented for feature matching and outlier removal. Figure 30 gives an example of feature 

matching using SIFT and SIFT-VGG and outlier removal using RANSAC method. The wrong 

matches in Figure 30a are successfully removed in Figure 30b for the original SIFT. The same also 

shows in Figure 30c and Figure 30d for SIFT-VGG. The difference is that when using SIFT and 

RANSAC, the right matches in Figure 30a are also removed in Figure 30b. While they are kept 

when using SIFT-VGG. In this view, it can be seen that SIFT-VGG shows better performance than 

the original SIFT. The blue bounding boxes in Figure 30b and Figure 30d are generated when 

applying perspective transformation with RANSAC (OpenCV 2019c). 
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Figure 30 An example of feature matching and outlier removal: (a) SIFT feature matching; 

(b) SIFT outlier removal; (c) SIFT-VGG feature matching; (d) SIFT-VGG outlier removal. 

 

4.2.5 Structural Displacement Calculation 

 

Based on the feature matching results, the motion of the feature points can be calculated by the 

location change of the feature points in image coordinates. By taking the average of the 

displacements of all the feature points that matched, the displacement of the measurement region 

in image coordinate is obtained. Then with the camera calibration results obtained in the first step, 

the displacement in real world with physical unit is eventually estimated. Since this approach takes 

the average value to calculate the displacement, the feature points which have no motion might be 

included and finally make the displacement smaller than the real value. For example, the feature 

point, A, in Fig. 2a, is part of the background and supposed to be stationary. If this feature point is 

included in the measurement region, then it will affect the measuement result when taking the 

average value. For making more accurate measurements, the measuement region should only 

include the motion part as possible when using feature matching-based methods. 
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4.3 Laboratory Verification 

 

4.3.1 Experimental Setup 

 

As shown in Figure 31, a two-span bridge model is selected to be the experimental object, which 

is constructed in the in the UCF Civil Infrastructure Technologies for Resilience and Safety 

(CITRS) Experimental Design and Monitoring (EDM) laboratory. The bridge is a scaled down 

model of a mid-size real-life structure in terms of structural responses and toy trucks with variable 

weights are used to model moving loads (Dong et al. 2019d). The two-span bridge is modified 

from the original UCF four-span bridge which was introduced in literature (Khuc and Catbas 2018). 

It consists of two 300 cm main continuous spans with a 3.18 mm steel sheet at 120 cm wide, which 

makes the deck 600 cm long by 120 cm wide. In order to verify the feasibility and performance of 

the proposed method, an experiment was conducted on this bridge. An industrial camera 

(MindVision- MV-GE131gc-t) with a zoom lens (focal length: 5~100 mm) is set up in front of the 

bridge to record images at a measuring point (P1) during the moving truck load trials. The camera 

has a maximum frame rate of 60 Hz, a resolution of 1280 pixel × 960 pixel. In addition, a 

conventional displacement sensor, potentiometer, is mounted under the deck to measure the 

displacement of P1 and is assumed as the ground truth. The model of the potentiometer is BEI 

9615 with an active electrical travel distance of 35.6 mm and linearity over active electrical travel 

of ±2%. More detail specifications can be found from reference (BEI 2019). Both of the camera 

and potentiometer are synchronized by using a NI Multifunction I/O Device with the model 

number of USB-6343. Detailed specifications and implementations can be found in 
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reference(Dong et al. 2019b). During the experiments, the truck moves from one side of the bridge 

to the other while the potentiometer and the camera record the motion of P1 (midspan of the left 

span) synchronously. The sampling rate for potentiometer is 100 Hz and it is down-sampled to be 

comparable to the camera. The acquired image sequence is analyzed using the proposed methods. 

The displacement obtained from image sequences is compared with that of the displacement sensor. 

 

 

Figure 31 Experimental setup 

 

4.3.2 Comparative Study of Displacement Measurement Using Different Methods 

 

In this experiment, four vision-based displacement measurement methods using feature matching 

methods including SIFT, SURF, SIFT-VGG and SURF-VGG and one conventional displacement 

sensor, i.e., potentiometer (PM) are used to obtain the displacement time histories of P1, when the 
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toy truck passes over the bridge model. Figure 32 shows the displacement measurement results 

using different methods. Figure 32 depicts the whole loading process and displacement responses 

at the measurement point P1. In the beginning, the truck stays at the left end of the first span, then 

it moves to the right and approaches P1. In the meantime, the displacement of P1 (the downward 

direction is positive) gradually increases to a maximum when the truck is passing at P1. Then the 

truck begins to move away from P1 and keep heading to the right, while the displacement of P1 

gradually decreases. When the truck moves to the right span, the displacement begins to be 

negative (i.e., upward displacement) due to loading on the other span of the two-span bridge. As 

it approaches the right end of the right span, the absolute value of the displacement at P1 first 

increases and achieves a maximum and then decreases. When the toy truck arrives at the right end 

of the bridge, the displacement of P1 becomes stable but does not go back to zero. This is because 

the rear axle is still left on the bridge. 

 

Figure 32 Comparison of displacement time histories from displacement sensor and vision-

based methods 
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By comparing the displacement time histories, it is easy to see that the result obtained from the 

proposed method (i.e., SIFT-VGG) is quite consistent with those obtained from the potentiometer 

(PM, regarded ground truth) and other three vision-based methods (SIFT, SURF and SURF-VGG). 

Figure 33 illustrates the correlation matrix of these time displacement histories. The figures on the 

diagonal of the correlation matrix are the histograms of the displacement time histories whereas 

the others are data plots and linear fits between the displacement time histories from the two 

methods. The correlation matrix is symmetric, and the last row and the last column give the 

correlation coefficients between the displacement data obtained from the vision-based methods 

and the potentiometer. The correlation coefficients of SIFT, SURF, SIFT-VGG and SURF-VGG 

with ground truth, i.e., potentiometer are all 0.99. From the correlation matrix, it can be seen that 

the correlation effect between the results from all vision-based methods (SIFT, SIFT-VGG, SURF, 

SURF-VGG) and potentiometer data are worse when the excitation amplitudes are higher. 

 

 

Figure 33 Correlation matrix of time displacement histories 
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The displacement time histories when no loads are present on the structure are extracted as the 

measurement error distribution and are used to estimate the measurement accuracy. Here “no loads” 

means there’s no vehicle passing through on the bridge and the bridge specimen is subjected to 

minor vibration sources in the laboratory environment. Here the bridge specimen is assumed static 

even with this minor vibration sources. accuracy evaluation method is carried out by exploring the 

statistical characteristics of the measurement of the assumed static status. The measurement 

obtained in this status are considered as noise level. The index of the measurement accuracy is 

defined by ±2 standard deviations (Khuc and Catbas 2017), which corresponds to a level of 

confidence of 95%. The smaller the value of 2σ, the smaller the error and the better the 

measurement accuracy. Figure 34 shows the distributions of measurement error from different 

methods. Table 1 gives the measurement resolution (±2σ) analysis. From Figure 34 and Table 5, 

it is seen that the accuracy of the proposed methods using SIFT-VGG is ±0.0087 mm which is the 

smallest one among the four vision-based methods, and closest one to the ground truth 

(displacement sensor) which is ±0.0026 mm. As can be seen, there is still a difference between 

SIFT-VGG and potentiometer which is a contact measurement method. The measurement 

accuracy of SIFT-VGG can be considered acceptable as it improved the original SIFT method 

about 24%. For the SURF feature, it doesn’t give better performance than the SIFT feature. Even 

replacing the descriptor with VGG, it doesn’t improve the measurement accuracy. Further, from 

Figure 34, it can be seen that the proposed methods using SIFT-VGG give much better stability in 

displacement measurement. 
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Figure 34 Distributions of measurement error for different methods Experimental setup 

for a railway bridge 

 

Table 5 Measurement accuracy and resolution (±2σ) analysis: unit (mm) 

 

Table 6 gives the comparison of computation times of an image pair matching by using different 

feature matching methods. From this table, it is indicated that SIFT is much slower than SURF 

which is already known from the literature (Bay et al. 2008) and it takes even more computation 

time to replace the SIFT descriptor with VGG descriptor for SIFT feature matching: 77% more 

computation time. Considering that it improves accuracy by 24%, the 77% more computation time 

may be acceptable for post processing. Table 6 also presents the processing speed in frame per 
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VGG) is 16.83 FPS, it may be viable choice for post processing when there is no requirement for 

real-time monitoring. 

 

Table 6 Comparison of computation times of vision-based methods using different feature 

matching methods 

 

 

4.4 Field Application 

 

4.4.1 Experimental Setup 

 

In this section, a field application performed on a railway bridge (Reverend Kenneth C. Crossman 

Bridge) in Orlando is presented to verify the feasibility of the proposed displacement measurement 

method. The railway bridge is located at 1792 Orlando Ave, Maitland, Florida, named by Reverend 

Kenneth C. Crossman who became knowns as the “Bridge Builder”. The structure (Figure 35) is 

a two-span steel bridge and the displacement measurement location is the two thirds of the first 

span. The measurement region is manually selected and denoted as P1. A stationary region, P0 in 

the background was manually selected as the static reference and used to eliminate the camera 

motion caused by ground vibration and wind effects. The distance from the camera location to the 

measurement region is around 33 meters. A portable camera (Z Camera E1) with a resolution of 

4K (3840 × 2160 pixels) and a frame rate of 30 FPS and an Olympus zoom lens with a focal length 

Method SIFT SURF SIFT-SURF SURF-VGG 

Matching time of an image pair 
(second) 

0.0335 0.0242 0.0594 0.0491 

Frame per second (FPS) 29.83 41.37 16.83 20.39 
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of 75-300mm was used to collect images. During the experiment, the camera captured the bridge 

response when a train crossed the bridge. 

 

 

Figure 35 Experimental setup for a railway bridge 

 

4.4.2 Analysis and Results 

 

Figure 36 illustrates the displacement time history of P1 obtained from the proposed method (using 

SIFT-VGG feature matching) when a train was crossing the railway bridge. From Figure 36, it can 

be seen that the original displacement result is heavily affected by the camera motion. The 

displacement of the stationary region, P0, is regarded as the camera motion, and after the camera 

motion subtraction from the original displacement, the revised response of the bridge gives the 

more reasonable displacement results. The maximum deflection of the bridge is around 11 mm. 

Such displacement monitoring can be carried out intermittently to track changes in structural 

behavior. In addition, displacement under heavy and long freight trains can be carried out very 



 104 
 

efficiently without any interruption to train operations and also without any access needs for 

improved safety. In this experiment, a stationary region is selected to eliminate the camera motion 

effect, while in other field applications it might not be able to find a stationary region. Possible 

solutions are: 1) the stationary object can be included by enlarging the field of view of camera, but 

it would decrease the resolution of the measurement target with a fixed camera sensor; 2) the 

components of camera motion  can be filtered out by adding accelerometers on the camera; but 

this also induce another problem that is when the frequency of camera motion is close to the 

structural motion, it doesn’t work. Up to now, it is still an open question to eliminate the camera 

motion effectively. 

 

 

Figure 36 Displacement time history obtained from the proposed method 
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4.5 Summary 

 

To achieve non-target displacement monitoring for civil structures without manual targets and to 

overcome the limitations of common vision-based methods as well as to improve the performance 

and accuracy of current vision-based methods using feature matching, a novel method using 

advanced feature matching combining SIFT feature points and VGG descriptors is proposed. The 

feasibility of the proposed method is verified through a comparative study with a laboratory 

experiment on a two-span bridge model and a field application on a railway bridge. The main 

findings and conclusions are as follows: 

 

(1) A general procedure for vision-based displacement measurement using feature matching is 

presented and this approach provides a standard reference for future users.  

 

(2) An advanced feature matching strategy by combining SIFT feature points and VGG descriptors 

are proposed and this integrated strategy improves the measurement accuracy of the original SIFT 

method by 24%.  

 

(3) Critical issues in vision-based methods using feature matching are discussed and 

recommendations such as camera calibration, image data acquisition and ROI selection for 

reducing measurement errors are provided. 

 

(4) The camera motion issue is discussed in the context of field application. Camera motion 

subtraction is proposed to address the errors induced by camera motion. 



 106 
 

 

Although the proposed method (SIFT-VGG) requires more computation time and may not be able 

to handle the real-time displacement monitoring task, considering the practical engineering 

measurement experience, it may be a viable option for post processing for non-target structural 

displacement measurement especially if real-time monitoring is not a requirement. In the future, 

the authors will focus on improving the processing speed, and will investigate the effectiveness of 

long-distance monitoring and the robustness of method when there is illumination change, as well 

as explore solutions for removing camera motion when there is no stationary reference in the 

background. 
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CHAPTER FIVE: STRUCTURAL DISPLACEMENT MONITORING 

USING DEEP LEARNING-BASED FULL FIELD OPTICAL FLOW 

METHODS 

 

Previously published as Dong, C. Z., Celik, O., Catbas, F. N., O’Brien, E. J., and Taylor, S. (2019c). 

“Structural displacement monitoring using deep learning-based full field optical flow methods.” 

Structure and Infrastructure Engineering, 16(1), 51–71. 

 

5.1 Introduction 

 

Displacement is a critical indicator for structural performance evaluation and health condition 

assessment of infrastructure. Static and dynamic characteristics of structures such as bridge load 

capacity (Lee et al. 2006a; Ojio et al. 2016), bridge deflections (Moreu et al. 2016) and deformation 

profiles (Xu et al. 2018), load distribution (Fuchs et al. 2004), load input information , unit 

influence line (UIL) and unit influence surface (UIS) (Khuc and Catbas 2018), modal frequency 

and shape (Chen et al. 2014b, 2015c, 2019; Dong et al. 2018, 2019b; Yang et al. 2017b; Yoon et 

al. 2016) can be extracted from displacement data. Currently, displacement measurement is still a 

difficult task in conventional structural health monitoring (SHM) (Catbas et al. 2018).  

 

Ye et al. (Ye et al. 2015) summarized the current displacement measurement methods in the field 

of SHM, including 1) contact type: linear variable differential transformers (LVDT), double 

integration of recorded acceleration data, displacement derivation from the strain-deflection 
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relationship; and 2) non-contact type: global positioning systems (GPS) and integration of data 

from Laser Doppler Vibrometers (LDV). Non-contact type displacement methods do not need a 

reference level, and do not need the access to the measured structures and can save on road closures, 

which are key advantages of this approach. Ye et al also indicated the limitation of conventional 

non-contact type methods: 1) GPS has low accuracy and sampling rate; and 2) LDV has high cost. 

A total station is also a non-contact displacement measurement tool. However, the use of total 

station is unsuitable for bridge monitoring (da Silva et al. 2018) due to difficulties of the 

installations of control points and continuous automatic monitoring at high frequency. In order to 

achieve desired continuous measurement, additional equipment has to be added to the original total 

station (Ehrhart and Lienhart 2016; Omidalizarandi et al. 2018). Extracting displacement 

measurements from image sequences has become a popular research topic in various applications 

of civil engineering (Feng and Feng 2015, 2016; Feng et al. 2015b; Pan et al. 2009) since the 

manufacture of advanced cameras improved and computer vision techniques progressed. The 

advantages of non-contact, long-distance, high precision, low cost and less time-consuming 

measurement capabilities has caused vision-based displacement methods to get increasing 

attention from the community of structural health monitoring with the potential of becoming an 

alternative to the conventional displacement measurement methods in SHM as well as to 

infrastructure inspections (Chen et al. 2018a; Khuc and Catbas 2017; Luo and Feng 2018; O’Byrne 

et al. 2015; Wu et al. 2014; Xu and Brownjohn 2018; Ye et al. 2016c).  

 

In general, current vision-based displacement measurement methods are divided into five 

categories: 1) image correlation based template matching (Feng and Feng 2016; Lava et al. 2009; 

Pan et al. 2016; Sutton et al. 2008; Ye et al. 2016b), 2) color based template matching (Ye et al. 
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2016a), 3) key point matching (Khuc and Catbas 2016, 2017; Lydon et al. 2019), 4) Lucas-Kanade 

optical flow estimation at key points (Celik et al. 2018a; Dong et al. 2019b; Lydon et al. 2018; 

Yoon et al. 2016, 2018), and 5) full field optical flow estimation (Celik et al. 2018a; Chen et al. 

2015b; Khaloo and Lattanzi 2017).  

 

Image correlation-based template matching is the most popular (Chen et al. 2018b; Zhong et al. 

2017, 2018b; Zhong and Quan 2017, 2018a). However, it is sensitive to changes in shading, 

illumination and background condition, especially when used in field applications (Xu and 

Brownjohn 2018). To improve the measurement performance, manual light sources or targets are 

designed to be fixed on the structures and then tracked. Ye and Dong (Dong et al. 2015, 2018; Ye 

et al. 2016a; b; f) installed light emitting diode (LED) and QR (quick response) codes on structures 

to improve the texture contrast of the visual tracking area and tried to eliminate the influence of 

illumination changes. (Tian and Pan 2016) combined the use of LED targets and a coupled 

bandpass optical filter to mitigate the ambient light interference. Color based template matching is 

not robust to color change and the application is limited to the close-range displacement 

measurements. For long distances, the color condition of the measurement area could easily be 

affected by the light and shading, which makes it hard to get the right measurement results. To 

improve the measurement performance, artificial targets with specific colors could be utilized. Key 

point matching is a non-target method which calculates the displacement by averaging location 

change of the robust key points extracted from images. The method relies on calculating the 

similarities of the descriptors of key points in consecutive images based on statistical distance. 

Once similar key point pairs are recognized, the locations are confirmed to be the continuation of 

the former motion. Generally, the key points may have robust properties such as being invariant 
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to shading, illumination change, and scale. The most popular key points are Harris corner (Harris 

and Stephens 1988), Shi-Tamasi corner (Shi and Tomasi 1994), Scale-Invariant Feature Transform 

(Lowe 2004) (SIFT) feature points and Speeded-Up Robust Features (SURF) (Bay et al. 2008). 

The performance of key point matching methods is highly dependent on the saliency of the texture 

of the measurement surface. The number of key point extractions from a measurement area of an 

image is not easy to decide and it has been an open question as to how many key points should be 

extracted for displacement measurement to achieve the best performance. Lucas-Kanade optical 

flow is a sparse flow calculation algorithm and is usually combined with key points to do visual 

tracking. This displacement measurement methodology involves similar limitations as the key 

point matching does. Besides, the “small motion” assumption of optical flow restricts its 

application for large structural deflections (Dong et al. 2019b) although a pyramid method is used 

to refine the displacement evaluation in large displacement cases. 

 

Full field optical flow can calculate the displacement vector of each pixel of images and give the 

displacement information of the entire structure. Classical full field optical flow estimation 

algorithms (Sun et al. 2010) originated from the core work of Horn and Schunck (Horn and 

Schunck 1981). These algorithms are derived from variational methods which are based on the 

gradient change in images and need filters to smooth the motion in images. They are adversely 

affected by illumination change and give inaccurate flow estimation at the motion boundaries. A 

phase-based optical flow algorithm is another method implemented into some structural 

displacement measurement problems (Chen et al. 2015b; Yang et al. 2017a, 2018b), but the 

applications are limited to those cases without background clutter. Parameters in these algorithms 

have to be adjusted to accommodate the differences in applications and it is too complicated for 
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practical use. Also, full field optical flow calculation is a heavy task that needs longer computation 

time, which makes it unsuitable for continuous structural displacement measurement, especially 

for real time monitoring. Detailed comparisons can be found in (Dong et al. 2019b). 

 

In this study, a novel structural displacement measurement method using deep learning based full 

field optical flow is proposed. A general procedure for vision-based displacement system is 

presented and the planar homography matrix is applied for camera calibration. By implementing 

a pre-trained deep neural network for optical flow calculation, i.e., FlowNet2, the full field optical 

flow is obtained, and the displacement of the measurement region is calculated by using a mean 

kernel or Gaussian kernel. The proposed method does not need manual target and can be operated 

with less human participation than the key point matching, Lucas-Kanade optical flow with key 

points and classical full field optical methods. Image collection strategies, tracking strategies in 

image sequences, non-uniform image sampling and camera motion problems are also discussed in 

this paper. Useful strategies are identified to address the problems that could occur in practical 

application. Laboratory experiments on a grandstand structure and field experiments on a 

footbridge are conducted to verify the feasibility of the proposed method. 

 

5.2 Methodology and System Development 

 

5.2.1 General Procedure for Vision-Based Displacement Measurement System 

 

Figure 37 illustrates the flowchart for the proposed full field structural displacement measurement 

method. In the first step, the camera is calibrated to obtain the relationship between the image 
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coordinates and the real-world coordinates, i.e., to find how many physical units (e.g., millimetres) 

in the real world represent one pixel in the image. In the second step, image data from the structure 

in question are collected and are transferred to the next step for real time or post processing. In the 

third step, optical flow algorithms are implemented to do visual tracking and calculate the full field 

structural motion, thereby obtaining the motion vector at each pixel of the image. In the fourth 

step, the false structural motion induced by the camera vibration is mitigated by subtracting the 

motion of the static parts in the image. In the last step, the full field structural displacement is 

obtained by converting the displacement in pixels to the displacement in physical units. In the 

flowchart in Figure 37, the three steps: camera calibration, full field optical flow estimation and 

mitigation of camera vibration are crucial as they directly affect the measurement accuracy. In this 

chapter, the planar homography matrix method presented in Section 2.2 is implemented for camera 

calibration. The four point correspondences (a-A, b-B, c-C and d-D) marked in Figure 38 are used 

to show the projection from real world plane to image plane. The other steps will be introduced in 

detail below.  

 

 

Figure 37 Flowchart for proposed full field structural displacement measurement method 
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Figure 38 Image projection using the planar homography matrix and four point 

correspondences 

 

5.2.2 Image Data Acquisition and Considerations 

 

Unlike data from conventional sensors such as displacement sensors, accelerometers, strain gauges 

or tiltmeters, which provide one dimensional data (i.e., temporal data), image data is two 

dimensional and contains temporal and spatial information. This increases the demand to sample 

larger amounts of data and results in a reduction in the sampling rate of image data acquisition 

systems (i.e., cameras and image grabbers) compared to the conventional sensors. For image data 

acquisition systems, the sampling rate is referred to as frame rate, expressed in frames per second 

(FPS). When used within the context of single point or full field displacement time history from a 

vision-based system, the sampling rate is different from its frame rate. The frame rate is related to 

the camera exposure time, time trigger, etc. Usually frame rate is a critical factor to be considered 

when doing image data acquisition in vision-based displacement measurement and it always 

influences the selection of image acquisition methods and devices. Depending on the monitoring 

or measurement requirements (whether real time monitoring or not), generally there are two ways 
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to do image data acquisition as shown in Figure 39. 

 

(1) If there is no requirement to carry out real time displacement monitoring, the image data 

acquisition systems grab images continuously (also called video recording) and then processes the 

image data afterwards (post processing). The image data acquisition system can be a portable 

camera, or a digital camera which can be connected to a computer through different types of 

interface such as GigE, USB2/3, Camera Link, FireWire (IEEE 1394/IIDC DCAM Standard), or 

an analog camera which needs an image grabber card to be connected with a computer, or even a 

smart phone. The normal portable cameras and smart phones usually have internal clock and the 

frame rate can be set as a fixed number such as 30 FPS, 60 FPS or 120 FPS. The images or videos 

are stored in the on-board storage card. In practical applications, the frame rate is not always fixed. 

For example, when the frame rate is set to 60 FPS, practically it might be less than that. For 

instance, within the scope of this study, a Canon portable camera was tested, capturing video at a 

frame rate of 60 FPS at a resolution of 1920×1080 pixels. However, analysis showed that the real 

frame rate was 59.94 FPS on average. The frame rate reduction might be associated with some 

frames being delayed or dropped as a result of longer exposure time or unsuccessful triggering. As 

for the off-the-shelf portable cameras, the real and the pre-set frame rates are not distinctly different 

than each other. This feature makes them a convenient option for the monitoring of structures with 

low frequency dynamic characteristics. However, it is hard to find information on image 

timestamps and dropped images. On the other hand, computer controlled analogue or digital 

cameras can deliver this information accurately during the exposure, since the image data 

acquisition procedure is programmed into a software package. When using these kinds of cameras, 

the exposure time can be auto-adjusted to acquire images with good quality. Nevertheless, image 
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data acquisition is still a non-uniform sampling process. In general, the frame rate is calculated as 

1/Δt, where Δt is ideally the time interval for uniform sampling. In reality, the time interval 

between consecutive images varies every time, as Δti (i = 1, 2, …, k) and the average frame rate is 

calculated as the ratio of the total number of frames and the total acquisition time. To partially 

remedy this problem, a triggering function (i.e., an edge signal) that controls the exposure can be 

sent to the Input/Output (I/O) interface of the camera satisfying the nominal uniform sampling 

(Dong et al. 2019b). It should be noted that the trigger frequency has to be less than the camera’s 

maximum frame rate and a high trigger frequency may lead to an increased probability of frame 

drop.  

 

(2) If there is a requirement to do real time displacement monitoring, then the selection has to be 

among computer-controlled cameras. The data sampling process is divided into three steps: a) 

image grabbing; b) image transmission to the computer; c) image processing. The computation 

time spent in each step (Δtig, Δtit, Δtip,) may also vary to produce different numbers of samples 

because the exposure time, transmission time, and motion tracking time interval (during image 

processing) at each step may differ. For instance, as described earlier, a triggering function is 

applied to make the image grabbing time intervals, Δtig, equal and uniform, while the transmission 

time, Δtit, and image processing time, Δtip, may vary. For these reasons, the data sampling rate is 

decreased and becomes less than that of (1). Also, it is a non-uniform sampling process. To make 

this data sampling process uniform, a waiting time, Δtipw, can be added into the image processing 

time. This waiting time forces the total sampling time to be fixed and, as a result, the real sampling 

rate is decreased.  
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Figure 39 Image data acquisition and processing 

 

It is essential to know whether or not the application will require real time monitoring as it impacts 

the selection of motion tracking algorithms. In this study, full field displacement is estimated by 

computationally demanding optical flow algorithms which means that some of them cannot afford 

real time monitoring. That is why the selection of the optimal optical flow algorithm is a crucial 

step. Besides, in the cases when multiple cameras are needed, an array of cameras with time 

synchronization can be designated to satisfy the measurement requirement (Wilburn et al. 2005). 
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5.2.3 Full Field Optical Flow Estimation Using Deep Learning Methods 

 

Optical flow is the distribution of motion velocity vectors in image data. The motion can be an 

image sequence captured by a single camera or two images captured by two different cameras. 

The optical flow is usually represented by a 2D vector, i.e., the horizontal and vertical components, 

along with the two different directions. To estimate the full field structural displacement, optical 

flow estimation of the image sequences containing the motion of structures, is a good option. In 

general, there are two different optical flow estimation subsets: 1) local optical flow estimation 

methods, which calculate the flow vector on the selected pixels, blobs, or key points (e.g., Lucas-

Kanade algorithm (Lucas and Kanade 1981)); and 2) global optical flow estimation methods, 

which calculate the flow vector at each pixel of the image (e.g., Horn–Schunck algorithm (Horn 

and Schunck 1981)). Global optical flow estimation methods are ideal choices for full field 

structural displacement measurement, while utilizing pyramid, window and smoothing techniques. 

The local optical flow estimation methods can also be used to estimate the flow vector at each 

pixel. (Bouguet 1999) improved the original Lucas-Kanade method by implementing pyramid, 

feature tracker and interpolation to get the optical flow at each pixel. (Sun et al. 2014) analyzed 

the current practices in optical flow estimation quantitatively and most of the optical flow methods 

were developed using the formulation structured by Horn-Schunck. These methods are called 

classical methods. Based on the classical optical flow methods, Sun et al. implemented non-local 

smoothing techniques to develop a new method named Classic+NL (Classic with non-local). The 

performance of Classic+NL was validated by comparing with the classical optical flow methods 

on the popular optical flow datasets and showed better estimation results. (Khaloo and Lattanzi 
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2017) implemented the Lucas-Kanade (LK) method, Horn-Schunk (HS) method, Black and 

Anandan (BA) method, and Classic+non local smoothing (Classic+NL) methods, which are 

investigated in Sun’s work (Sun et al. 2014), and developed pixel-wise structural motion tracking 

methods and verified them on two shaking table tests.  

 

Even though these classical optical flow methods are programmed as built-in functions into current 

computer vision libraries such as MATLAB or OpenCV and successfully implemented for 

structural displacement monitoring, there are lots of parameters in the functions that need to be 

adjusted based on experience. Limitations of classical optical flow methods such as the small 

displacement assumption, brightness consistency, motion boundary problems are still the main 

sources of errors. For structural engineers without enough experience in the computer vision field, 

it is difficult to use such methods. Further, some of the classical methods are too slow to satisfy 

the requirement of real time monitoring.  

 

Instead of the aforementioned classical methods in computer vision, deep learning has been a very 

popular tool to help address the challenges in the field of computer vision in recent years 

(Goodfellow et al. 2017; Lecun et al. 2015). With pre-trained deep neural networks, the optical 

flow can be easily estimated (Dosovitskiy et al. 2015; Ilg et al. 2017) by processing the image 

sequences through the pipeline of the forward propagation of the networks, without adjusting too 

many parameters as in classical optical flow methods. Since the dataset can be augmented by 

adding artifact noise, illumination change and other interference factors, the deep learning-based 

optical flow methods can perform better than the classical methods (Ilg et al. 2017). With GPU 

acceleration, the deep learning-based optical flow method can do real-time monitoring. Also, deep 
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learning based methods such as FlowNet (Dosovitskiy et al. 2015) and FlowNet2 (Ilg et al. 2017) 

are good at large displacement estimation, which is one of the drawbacks of the classical methods. 

In this study, a deep learning-based optical flow method, i.e., FlowNet2, is implemented to achieve 

full field structural displacement monitoring.  

 

FlowNet2 is based on the work of FlowNet that was firstly proposed by Dosovitskiy et al. 

(Dosovitskiy et al. 2015). The study represented a paradigm shift in optical flow estimation by 

allowing the use of a simple Convolutional Neural Network (CNN) architecture to directly learn 

the concept of optical flow from the dataset. In FlowNet, Dosovitskiy et al proposed two CNN 

architectures: FlowNet-S and FlowNet-C. In FlowNet-S, Dosovitskiy et al first stacked two input 

images together and fed them through a generic network with 9 convolutional layers, allowing the 

network to decide itself how to process the image pair to extract the motion information. The first 

layer has a CNN kernel size of 7 × 7, the second and third layers have kernel sizes of 5 × 5, and 

the fourth to ninth have kernel sizes of 3 × 3. The dimensions of each layer are conv1 (354 × 512 

× 6), conv2 (192 × 256 × 64), conv3 (96 × 128 × 128), conv3_1 (48 × 64 × 256), conv4 (24 × 32 

× 512), conv4_1 (24 × 32 × 512), conv5 (12 × 16 × 512), conv5_1 (12 × 16 × 512) and conv6 (6 

× 8 × 1024). Finally, they added a refinement operation of the coarse feature maps to the high-

resolution prediction and then provided the optical flow prediction. The detailed CNN architecture 

can be found in (Dosovitskiy et al. 2015). In FlowNet-C, instead of directly stacking two images, 

they first fed the two images to three convolutional layers separately and then combined them 

together with an explicit correlation layer. After another 6 convolutional layers, a refinement 

operation was added and then the optical flow prediction output. The training dataset FlowNet 

used is their homemade FlyingChair dataset, which simulates the motions and illumination change. 
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The pre-trained FlowNet performs well on the current optical flow dataset, especially for the case 

of large displacement. However, FlowNet still cannot compete with variational methods in small 

displacement and real-world data. (Ilg et al. 2017) proposed FlowNet2 based on FlowNet, where 

multiple FlowNet-S and FlowNet-C networks were stacked and a sub-network specializing in 

small motions to improve the accuracy and the speed of the original FlowNet was integrated. They 

trained the new CNN architecture on the FlyingChair and FlyingThings3D datasets. Illumination 

change, background clutter and other noises were added to the training data set as data 

augmentation to simulate real scenarios. Combining different training dataset and orders, 

FlowNet2 finally gave nine different CNN architectures for optical flow prediction. These CNN 

architectures are suitable for various application requirements such as small displacement, large 

displacement, good accuracy and fast speed as well as being capable of dealing with illumination 

change and background clutter. FlowNet2 performs well on small displacement and real-world 

data and is fast enough for real-time motion estimation. It should be noted that FlowNet2 will not 

always be the strong choice for full field optical flow estimation, and with the development of the 

computer vision techniques, more advanced optical flow algorithms will come out and be the 

alternatives for the purpose given in this study. 

 

Figure 40 shows the optical flow estimations of a beam motion in two images using six different 

methods, namely, Horn-Schunk (HS), Lucas-Kanade with pyramid and sparse to dense 

interpolation (LKPyrSD), Farneback, BA, Classic+NL and FlowNet2. The reason the specific 

methods are chosen for comparison is that they are implemented and validated for structural 

displacement measurement in literature aforementioned. The beam has a downward deflection 

from Frame 1 to Frame 2 and since there are sensors installed on it, the motion in the images are 
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not just those of the beam but also those of the cables hanging from the sensors. In the flow field 

color coding, the color indicates the motion direction and the distance away from the center 

indicates the motion amplitude. In this case, the beam moves down from Frame 1 to Frame 2 so it 

should be colored yellow in the full field optical flow map according to the flow field color coding. 

In the optical flow estimation results, HS provides the worst estimate and is not robust in the 

presence of image noise. The beam motion is interfered with motions in other directions and the 

background causes an excessive amount of incorrect motion estimation. LKPyrSD gives poor 

results for motion boundaries and the motions on boundaries are blurred. The Farneback method 

cannot give accurate results for the whole beam but only those parts with salient textures. BA and 

Classic-NL perform better than these three but still give unsatisfactory results on boundaries. 

FlowNet2 gives the best results for beam motion, especially at boundaries. It even gives more 

detail about the motion of the cable. On this basis, the authors have selected FlowNet2 for full 

field optical flow estimation. The results using HS, LKPyrSD, BA and Classic-NL are similar to 

those by (Khaloo and Lattanzi 2017) and Classic-NL gives the best prediction among these four 

classical optical flow methods.  

 

In the comparative studies of the experimental verification section, the authors will compare the 

results from FlowNet2 with Classic-NL for structural displacement monitoring. Instead of 

performing image re-projection using the planar homography matrix to mitigate the distortion 

caused by projection first and then estimating optical flow just as (Khaloo and Lattanzi 2017) did 

in their work, in this study the authors directly estimate the optical flow and shift the original points 

to the new location. Then the authors implement the planar homography matrix to project the 

location in the image to the real world. The consideration is that if the planar homography matrix 
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is applied to the image first, the re-projection might break the pixel structures and this makes 

optical flow estimation inaccurate. 

 

 

Figure 40 Optical flow estimations using different methods 

 

5.2.4 Camera Motion Subtraction 

 

When using vision-based methods to estimate structural displacement, especially in field 

application, camera motion is always a big issue which can induce displacement measurement 

errors. Camera motion may be caused by the ground vibration or wind. It will be mixed into the 

structural motion and has to be removed to rectify displacement measurement. There are two main 
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approaches to mitigate the camera motion: 1) filtering out the displacement components related to 

the frequencies of the camera motion; 2) directly subtracting the motion of a static object/scene in 

the video from the total motion. The first approach is suitable for the case when the frequency of 

the camera motion is not close to the structural motion with a trade-off that accelerometers are 

necessary to be installed on the camera to identify the frequencies of camera motion. The second 

approach is suitable for the case when there are static areas (objects assumed to be static) in the 

field of view of the camera (Feng and Feng 2017). In this study, the second approach is 

implemented to eliminate the displacement errors induced by the camera motion. As shown in 

Figure 41, the areas A, B, C and D can be assumed to be static. When a camera affected by ambient 

motion is utilized to measure the structural displacement of the footbridge, i.e., the displacement 

of M, the rectified displacement is M subtracted by the average displacement of A, B, C and D. 

 

 

Figure 41 Structural displacement rectification using camera motion subtraction 
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5.2.5 Structural Displacement Calculation 

 

Once the rectified optical flow is obtained, the planar homography matrix is applied to convert the 

displacement in pixels to their actual physical counterparts. By using full field optical flow and the 

planar homography matrix, the full field structural displacement is obtained. Theoretically, the 

displacement of any point of the structure can be acquired by taking the value of the full field 

structural displacement map. Conversely, in conventional SHM, displacement sensors are installed 

to measure the structural displacements at discrete points. As shown in Figure 42, a displacement 

sensor is installed to measure the structural displacement of the beam, and the result obtained here 

is the displacement at a discrete point. The experimental setup and loading condition are outlined 

in Section 5.3 and Figure 45. 

 

 

Figure 42 Structural displacement at a discrete point using kernels 
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The structural displacement at a discrete point can be obtained by using the displacement in the 

area close to the single measurement point. For example, the area marked by the red box in the 

two frames of Figure 42 is used to estimate the structural displacement of the discrete point that 

the installed diplacement sensor measures. Two methods can be applied to estimate the structural 

displacement: 1) displacement calculation with Gaussian kernel; and 2) displacement calculation 

with mean kernel. The Gaussian kernel applied in this study is represented by G, described in Eq. 

35: 

                                    (35) 

                                                        (36) 

                                                         (37) 

                                                        (38) 

where, m and n are the row column number of the Gaussian kernel, respectively, and h and w are 

its height and width. The symbol,  indicates the floor function that takes as input a real number, 

x, and gives as output the greatest integer less than or equal to x.  

The mean kernel is represented by M, given in Eq. (39): 

                                                    (39) 

( )

2 2

2

2 2

2

2 2

2
2

2 2

2
2

1 1

1

2,

1

2

c c

c c

h w
m n

h w
m n

h w

m n

e

m n

e

σ

σ

πσ

πσ

   − + −   
   −

   − + −   
   −

= =

=

∑∑

G

1

2
c

h
h

+ =   

1

2
c

w
w

+ =   

2

h wσ +
=

  

( ) 1
,m n

hw
=M



 126 
 

The Gaussian kernel used in this study actually models the focus of attention that is motivated by 

the biological visual system which concentrates on certain image regions requiring detailed 

analysis (Zhang et al. 2013). The closer to the focus center, the greater the weight is set. This 

Gaussian kernel implements the concept of attention guide tracking. Also, since most of the 

classical optical flow methods do not perform well on the motion boundaries, the Gaussian kernel 

can decrease the weight when calculating the weighted average displacement. When applying 

camera motion subtraction, if the displacement of the assumed static areas on the background are 

also calculated using a Gaussian kernel, the error then can be reduced by giving lesser weight to 

the parts away from the focus center of the static areas. This is an indirect way of suppressing the 

outliers, especially those close to the motion boundaries but far away from the focus center. When 

manually selecting the assumed static area, the assumption is more accurate as the kernel is placed 

closer to the center. In addition, the mean kernel is a well-known strategy which is applied in key 

points-based tracking using Lucas-Kanade optical flow (Dong et al. 2019b), key point matching 

using Fast Library for Approximate Nearest Neighbors (FLANN) and Kanade-Lucas-Tomasi 

based template matching (Yoon et al. 2016). Correlation based template matching also uses the 

mean kernel method to find the best location (Dong et al. 2018). 

  

The displacement of a discrete point is estimated by combining the full field displacement of the 

selected region with either Gaussian kernel, G, or mean kernel, M: 

                                                     (40) 

or 
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where  is the element-wise product operator, dGi and dMi are the displacements estimated using 

Gaussian kernel and mean kernel, X0 is the original coordinate of the pixel-wise location in the 

real world, Xi is the current (the ith frame) coordinate of the pixel-wise location in the real world 

and Xi-X0 is the displacement vector. 

 

The displacement time history is obtained by calculating the optical flow between the current 

image (frame k as shown in Figure 43) and the original image (frame 1 in Figure 43, top row). In 

this strategy, there is neither frame nor tracking location update and the displacement at every 

single time point is independent of the others. Another strategy which is indicated in the bottom 

row of Figure 43 calculates the optical flow between two consecutive frames with updating the 

frame each time. In the displacement time history, the displacement at every single time point is 

dependent on its previous neighbors. The final displacement time history is the cumulative 

operation of the incrementals obtained by calculating the diplacement of two consecutive frames. 

 


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Figure 43 Two different strategies to process image sequences and get displacement time 

histories 

 

With practical experiences and observations of conducting vision-based displacement 

measurement, general suggestions are summarized as the pros and cons of the two different 

strategies, which are listed in Table 7. The main reason that the first strategy is recommended is 

that when the second strategy (with frame update) is applied, errors tend to accumulate. (Stiros 

2008) analyzed the accumulated errors in velocities and displacement deduced from 

accelerographs using numeric integration, which provided a possible way to eliminate the errors 

in the second strategy. Stiros indicated that the errors depend on the characteristic errors of 

accelerometers such as the sensitivity/accuracy of the measurements described by standard 

deviation, duration of the record and instabilities in the sampling rate. Also, the peaks in the 

accelerograms contribute to the errors during numeric integration. In this study, when using the 

second strategy, the process of calculating displacements from consecutive frames is very similar 
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to the process of calculating velocity from accelerations using numeric integration. It may be 

beneficial for the elimination of errors in the second strategy from the theorical analysis of Stiros’ 

work. While the formulas summarized by Stiros are limited to the analysis of linear movements 

and rotations are ignored; at the end, Stiros stated that if baseline corrections are taken into 

consideration for the formulas of errors, the numeric integration errors may be reduced. In the 

study, the first strategy to take the first frame as the baseline actually applies the way of baseline 

correction to some degree and it is more practical than using numerical integration with Stiros’ 

theoretical analysis.  

 

Figure 44 shows the displacement results obtained from the two different image sequence 

processing strategies and the ground truth (displacement sensor) from the same experiment 

introduced in Section 5.3. Due to the accumulation of errors, the displacement result obtained 

using this strategy with frame update deviates from the ground truth, while the result obtained 

using the strategy without frame update is consistent with it. While not updating brings 

inconvenience and possible errors to structural displacement measurement, these can be overcome 

by controlling the image quality and using pyramid methods for optical flow estimation or visual 

tracking. In the practice of conventional object tracking task, the second strategy (with frame 

update) is more popular and practical when processing the tracking problems with scale/view 

changes and illumination changes (OpenCV 2019d; Zhang et al. 2013). However, in vision-based 

displacement measurement, the first strategy (without frame update) is preferred, regardless of 

approach: digital image correlation based template matching, feature point matching, or optical 

flow (Dong et al. 2019b). 
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Table 7 Pros and cons of the two different strategies to process image sequence 

 

 

Figure 44 Displacement results obtained from the two different image sequence processing 

strategies and the displacement sensor 

 

Strategie

s 

Without frame update: Optical flow 

calculation between the current image 

and the original image 

With frame update: Optical flow 

calculation between two consecutive 

frames 

1 

The displacement at every instant in the 
time history depends on the tracking 
between the current image and the 
original image and is independent of the 
others. The error in current time instant 
will not be accumulated. 

Target scale changes, deformation, 
illumination changes and other changes 
of image quality can be updated in 
current tracking task and adjusted 
tracking scenarios give high chances of 
accurate tracking. 

5 

Without updating the frames, the target 
scale changes, deformation, illumination 
changes may affect tracking 
performance. Classical optical flow may 
fail to estimate large displacements in 
non-consecutive frames since there is a 
small motion assumption in classical 
optical flow methods. The measurement 
target may be out of view in the original 
frame. 

The displacement at every instant in the 
time history is dependent on its previous 
neighbour. When calculating 
displacement time history, error in the 
current instant will be accumulated 
afterwards. This cumulative effect may 
cause a drift through the time history and 
a gradual loss of accuracy. 
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5.3 Laboratory Verification 

 

5.3.1 Experimental Setup 

 

In this section, an experiment on a model grandstand in the Structures Laboratory of the University 

of Central Florida is designated to verify the feasibility and performance of the proposed 

displacement methods. The grandstand, shown in Figure 45, is a scaled model of part of a real 

American football stadium. Detailed information can be found in previous papers (Celik et al. 

2018a; Dong et al. 2019b). One region of interest (ROI), P1, is selected as the measurement point 

for the proposed method. At this point, a conventional displacement sensor (potentiometer) is 

installed to measure the displacement for comparison and is used as the ground truth. The cameras 

are MindVision-MV-GE131gc-t with a maximum frame rate of 60 Hz, a resolution of 1280 × 960 

pixel and a zoom lens with a focal length of 5~100 mm. The cameras are connected to the same 

acquisition system as the displacement sensor. Unlike previous work(Dong et al. 2019b), in this 

study no trigger module is applied to enforce uniform sampling in the image data acquisition. The 

average frame rate of the camera is around 29 FPS (frame per second). The sampling rate for the 

displacement sensor is 100 Hz and it is down-sampled for comparison with the camera data. During 

the experiment, one person stands on the grandstand and jumps as the camera and potentiometer 

record the structural motion at P1. The acquired image sequence is analysed using the proposed 

methods. The displacement obtained from image sequences is compared with that of the 

displacement sensor. 
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Figure 45 Experimental setup of the grandstand monitoring 

 

5.3.2 Comparative Study of Displacement Measurement Using Different Methods 

 

In this chapter, FlowNet2 is implemented and is verified through comparison with Classic+NL 

and the displacement sensor. Here, to obtain the displacement, both mean kernel and Gaussian 

kernel are applied to the full field optical flow results estimated by Classic+NL and FlowNet2. 

Figure 46 illustrates the comparison of displacement time histories of P1 using displacement sensor 

(Disp. Sensor) and vision-based methods, i.e., Classic+NL full field optical flow with Mean kernel 

(C+NL+M), Classic+NL full field optical flow with Gaussian kernel (C+NL+G), FlowNet2 full 

field optical flow with Mean kernel (FlowNet2+M), and FlowNet2 full field optical flow with 

Gaussian kernel (FlowNet2+G). The synchronization of different data sources is done manually. 

Different segments of the time history plot correspond to different events happening on the 

grandstand under human load. Firstly, the subject climbs up the grandstand causing an increase in 

displacement (0s~5s); then walks to P1 causing fluctuations and an increase in the displacement 

(5s~9s); then begins to jump (9s~19s), which produces a continuous up-and-down pattern; then 
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briefly stops; resumes jumping for two more seconds (19s~21s) and finally climbs down from the 

grandstand, allowing the displacement to return to zero. The figure indicates that the results 

obtained from all the vision-based methods are consistent with the benchmark.  

 

 

Figure 46 Comparison of displacement time histories from displacement sensor and vision-

based methods 

 

Before comparing the vision-based methods and displacement sensor quantitatively, the 

displacement time histories from the vision-based methods have to be pre-processed. As 

mentioned, the image sampling is non-uniform in this experiment. Figure 47a shows the time spent 

on the image collection for each frame, Δt and Figure 11b gives the histogram and normal 

distribution fit for the same variable. The mean time interval for a frame is μ = 0.0337 s which 

gives an average camera frame rate of 29.7 FPS. This frame rate cannot be directly approximated 

to 30 FPS, because the standard deviation of the time interval, σ is 0.012 s, which is significant. 

To use the mean frame rate would cause misalignment problems for displacement time histories. 

The interval of mean ±2 standard deviations, [μ - 2σ, μ + 2σ], is, [0.010s, 0.057s] at a level of 

confidence of 95%. It should be noted that the uncertainties of image process measurement are the 
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selection of visual tracking algorithms/optical flow algorithms, region of interest and average 

methods (mean kernel or weighted kernels) etc. These are also the sources of the uncertainties. 

 

Figure 47 Statistical analysis of time spent on image collection for each frame 

 

The non-uniformly sampled displacement time histories obtained from the vision-based methods 

are first resampled at 25 Hz using a cubic spline interpolation, while the uniformly sampled 

displacement time history obtained from the displacement sensor is directly down-sampled to 25 

Hz. Cross correlation (Oppenheim et al. 1996) is applied to synchronize the resampled 

displacement time histories obtained from the vision based methods and the displacement sensor. 

Figure 48 shows the resampled displacement time histories of P1 using all methods. After 

resampling, the consistency between the displacement time histories obtained from vision-based 

methods and displacement sensor are still very good and do not change, compared to Figure 46. 

Normalized root mean square error (NRMSE) is applied to evaluate the goodness of fit between 

the signals, and normalized cross-correlation (NCC) is calculated to evaluate the similarities 

between them: 
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                                                    (42) 

                                     (43) 

where dv(i) and ds(i) are the displacements from the vision-based methods and displacement sensor, 

respectively, and  and  are their mean values. The greater the values of FITNRMSE and NCC, 

the better the fit. It can be seen in Table 8 that the proposed methods, FlowNet2+M and 

FlowNet2+G, perform a little bit better than the alternatives, C+NL+M implemented in literature 

(Khaloo and Lattanzi 2017). For example, the normalized mean square error for the former two is 

0.8758 which is slightly better than that of the latter (0.8727). Similarly, the NCC of the former at 

0.9923 is slightly better than that of the latter at 0.9921. 

 

 

Figure 48 Resampled displacement time histories using displacement sensor and vision-

based methods 
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Table 8 Normalized root mean square error (NRMSE) and normalized cross-correlation 

(NCC) of the fit between the vision-based displacements and the benchmark 

 

The displacement time histories when no loads are present on the structure are extracted as the 

measurement error distribution and are used to estimate the measurement accuracy and resolution. 

The index of the measurement accuracy and resolution is defined by ±2 standard deviations, which 

corresponds to a level of confidence of 95% (Khuc and Catbas 2017; Xu et al. 2018). The smaller 

the standard deviation, the smaller the error and the better the measurement accuracy and 

resolution. Figure 49 shows the distributions of measurement error from different methods. Table 

9 gives the measurement resolution (±2σ) analysis. From Figure 49 and Table 9, it is indicated that 

the accuracy and resolution of the proposed methods using FlowNet2 is ±0.0029 mm which is very 

close to the ground truth (displacement sensor) which is ±0.0021 mm. The vision-based method 

using Classic+NL, has a resolution of around 0.0240 mm, which is almost 10 times that of the 

proposed methods. Further, from Figure 49, it can be seen that the proposed methods using 

FlowNet2 give much better stability than Classic+NL in displacement measurement, especially 

from the sixth subplot “Distribution comparison”. 

Method FITNRMSE NCC 

C+NL+M 0.8727 0.9921 

C+NL+G 0.8726 0.9921 

FlowNet2+M 0.8758 0.9923 

FlowNet2+G 0.8758 0.9923 
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Figure 49 Distributions of measurement error for different methods 

 

Table 9 Measurement accuracy and resolution (±2σ) analysis 

 

Since the displacements obtained from the vision-based methods are non-uniformly sampled, they 

cannot be directly processed by general Fast Fourier Transform (FFT) or Power Spectral Density 

(PSD). Therefore, in this study, two ways are applied to extract the frequency information from 

the non-uniformly sampled displacement data: 1) Lomb-Scargle Periodogram for the non-uniform 

sampled data (Lomb 1976); and 2) Power Spectral Density Using FFT for uniformly sampled data 

from cubic spline data interpolation. Figure 50 shows the comparison of displacement data in the 

Method Disp. sensor C+N+M C+N+G FlowNet2+M FlowNet2+G 

±2σ ±0.0021 ±0.0240 ±0.0248 ±0.0029 ±0.0029 
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frequency domain. The modal testing of the same structure was conducted in previous work and 

the first natural frequency is 5.74 Hz (Celik et al. 2018a; b; Dong et al. 2017, 2019b). From this 

Figure 50, it is suggested that all the methods give the operational modes for human jumping 

(frequency around 2.86 Hz). However, Lomb-Scargle method does not give unique peaks (peak at 

2.825 Hz and peak at 2.881 Hz) and the peaks have a clear shift from those obtained from the 

displacement sensor which is regarded as ground truth. This is a distortion in dynamics which may 

be induced by non-uniform sampling. The peaks obtained from the cubic spline data interpolation 

of the original non-uniform data is very close to the ground truth. By picking the peak of the PSD 

curve, the frequencies of human jumping load are extracted as shown in Table 10. From this table, 

it is indicated that using cubic spline data interpolation seems better than directly using the Lomb-

Scargle method. Using cubic spline interpolation data gives the exact human jumping mode 

frequency as the displacement sensor. In this view, using cubic spline interpolation may correct 

the distortion that may be induced by non-uniform sampling. It might be because the sampling rate 

is low and, in this case, cubic spline interpolation works. 

 

Besides, in Figure 50 there is a discrepancy between spline and displacement sensor results at 

higher frequencies, which is expected due to the resampling step. This observation reflects the 

limitation of the vision-based methods: inherently vision-based methods give a lower frequency 

range than conventional displacement measurement for hardware and software processing reasons, 

so that over the entire range, especially the high frequency range, vision-based methods are not as 

sensitive as their conventional counterparts. 
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Figure 50 Comparison of displacement data in the frequency domain 

 

Table 10 Frequencies of human jumping load extracted from displacement data: unit (Hz) 

 

From the accuracy and resolution analyses, as shown in Table 8 and Table 9, using mean kernel 

seems to be a little better than the Gaussian kernel, which was not expected from the very 

beginning. The authors believe this to be because the region using the kernel did not contain too 

many motion boundaries and the advantage of Gaussian kernel was not manifest. As a result, at 

this time, it remains an open question whether it is better to use mean kernel or Gaussian kernel. 

Method Disp. sensor C+N+M C+N+G FlowNet2+M FlowNet2+G 

Direct PSD 2.867 -- -- -- -- 

Spline+PSD -- 2.867 2.867 2.867 2.867 

Lomb-Scargle -- 2.881 2.881 2.881 2.881 
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5.3.3 Comparison of Computation Times of Vision-Based Methods Using Different Full Field 

Optical Flow Algorithms 

 

When comparing the image processing time, it takes 1.7 seconds to calculate the full field optical 

flow of two images with a resolution of 1280 × 960 pixel using FlowNet2. The computation time 

is accelerated by a Graphics Processing Unit (GPU) on a Linux system (Ubuntu 18.04) with the 

AMD Ryzen 5 2600X CPU, 16Gb RAM, and the NVIDIA GeForce GTX 1080 Graphics Card. It 

takes about 1600 seconds for the same operation on the same system using Classic+NL. The 

Classic+NL used in this study is the same as that of Khaloo and Lattanzi and does not implement 

GPU acceleration. During this experiment, 1159 images were collected, and it took about 32.8 

minutes using FlowNet2 to calculate the full field optical flow of the image sequence whereas it 

took about 21.5 days for Classic+NL. The processing tests were conducted on the same computer 

and computation times were directly extracted from the internal clock when running optical flow 

codes. This is a limited test, but it is a practical and simpler way to compare the speeds of different 

algorithms. To date, it is unknown whether Classic+NL can use GPU acceleration. Perhaps in the 

future, the current Classic+NL can be extended to a GPU version and the processing speed 

accelerated. At this time, the proposed method of implementing FlowNet2 gives a much higher 

processing speed and at the same time, provides better accuracy. As a deep learning-based optical 

flow estimation algorithm, FlowNet2 can take advantage of GPU acceleration technology, which 

makes the highly time-consuming optical flow estimation task much faster. As stated in the 

literature (Ilg et al. 2017), FlowNet2 and its sub-networks can achieve 8 to 140 FPS real time 

optical flow estimation on the Middlebury data set with an NVIDIA GeForce GTX 1080 Graphics 
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Card. This means that FlowNet2 and its sub-networks can be easily implemented to do real time 

full field displacement measurement. From this experiment, it can be clearly seen that the vision-

based method using Classic+NL algorithm is much slower than using FlowNet2.  

 

5.4 Field Application 

 

5.4.1 Experimental Setup 

 

In this section, a field application is presented that was performed on a footbridge on campus to 

verify the feasibility of the proposed displacement measurement methods. The structure (Figure 

51) is a three-span (7.31m + 39.01m + 7.3m) truss bridge with a width of 3.65m. A portable camera 

(Z Camera E1) with a resolution of 1980 × 1080 pixels, a frame rate of 60 FPS and an Olympus 

zoom lens with a focal length of 75-300mm was used to collect images during the experiment. The 

measurement location is at midspan and T1 (see figure) was selected as the region for the vision-

based measurement. The distance from the camera to the measurement region was about 52 meters. 

An accelerometer was installed at midspan to measure the vibration. The sampling rate of the 

accelerometer was 200 Hz. Point T0 in the background was selected as the static reference and 

used to eliminate the camera motion caused by ground vibration and wind effects. During the 

experiment, two persons jumped at the bridge midspan and both the camera and the accelerometer 

recorded the vibration of the bridge. 
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Figure 51 Experimental setup for a footbridge 

 

5.4.2 Analysis and results 

 

Figure 52 illustrates the displacement time histories obtained from the proposed methods. Here 

both Mean kernel and Gaussian kernel are used to calculate the displacement at midspan. In this 

experiment, using Mean kernel and Gaussian kernel give almost identical displacement results. 

The red curve (-) and the cyan dashed curve with circle (-o-) show the original displacement at T1 

without doing camera motion subtraction, while the blue curve (-) and the magenta dashed curve 

with asterisks (-*-) show the displacement at T1 with camera motion subtraction. Further, the black 

dashed curve is added to show the zero line. In this figure FlowNet2+G org and FlowNet2+M org 

represent the original displacement data obtained using FlowNet2 with Gaussian Kernel and mean 

kernel, respectively. While FlowNet2+G w/ cam. mot. subtr and FlowNet2+M w/ cam. mot. subtr 
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represent the ones with camera motion subtraction. Please note that FlowNet2+G org and 

FlowNet2+M org as well as FlowNet2+G org and FlowNet2+M org are almost identical in Figure 

16. After camera motion subtraction, the structural vibration varies up and down by around ±2 mm. 

The camera motion subtraction shifts the displacement downwards by about 1.5 mm, especially in 

the first 32 seconds, and the range is reduced by about 38%. Clearly the camera motions caused 

by ground vibration and wind have a substantial influence on the displacement measurement and 

it is necessary to correct for the camera motions. Technological advances in cameras might provide 

vibration reduction features, which can also be considered for camera shake correction in the future. 

 

 

Figure 52 Displacement time histories obtained from the proposed methods. FlowNet2+G 

org and FlowNet2+M org represent the original displacement data obtained using 

FlowNet2 with Gaussian kernel and Mean kernel, respectively. While FlowNet2+G w/ cam. 

mot. subtr and FlowNet2+M w/ cam. mot. subtr represent those with camera motion 

subtraction 

Figure 53 shows the acceleration time history obtained from the accelerometer installed at T1. A 

comparison was conducted between the displacement from the proposed methods and the 
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measured acceleration in the frequency domain. The portable camera used in this experiment 

provides a uniform sampling rate so that there is no need to process the displacement data using 

non-uniform frequency analysis methods. By directly applying an FFT to the displacement and 

acceleration data, the frequency spectra are obtained and are shown in Figure 54. By using a peak-

picking method, the operational modal frequencies of the footbridge under human loads are 

extracted and summarized in Table 11.  

 

Figure 53 Acceleration time history obtained from accelerometer 

 

Figure 54 Operational frequencies of bridge under human jumping excitation: (a) vision-

based system; (b) accelerometer signal 
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Table 11 Comparative study of operational modal frequencies from vision and 

accelerometer signals 

 

In this study, the peak frequencies are simply those observed from displacement and acceleration 

data. There was no investigation to determine whether they are caused by human jumping or are 

natural modal frequencies. The first three operational modes are listed and for the modes extracted 

from the proposed methods, they are very close to those from the accelerometer. However, around 

the third mode (i.e., 11.53 Hz), there are two more pseudo-modes (10.87 Hz and 12.29 Hz) which 

make it hard to pick the right operational mode. Compared with the third natural frequency 

measured by the accelerometer (i.e., 11.56 Hz), it is assumed that 11.53 Hz in the vision-based 

signal, is most likely to be the third operational mode. The pseudo-modes may come from the 

camera motion caused by wind or ground motion. Even through camera motion subtraction is 

applied in this case, there may still be vibration which cannot be removed completely. From Table 

11, it can be seen that the difference between the modal frequencies obtained from the proposed 

methods and the accelerometer are all less than 0.5%. This gives a lot of confidence that the 

proposed method is accurate and capable of use in field application. 

 

It should be noted that the camera motion effects are not completely eliminated as shown in Figure 

53 and Figure 54, even camera motion subtraction is applied. Camera motion subtraction is 

partially efficient in getting rid of the tripod/camera vibration effects. The pseudo modes can be 

Operational 

Mode 
f(Hz): Vision f(Hz): Acc. Difference between Vision and Acc 

1 2.467 2.467 0.00% 

2 4.778 4.756 0.46% 

3 10.87, 11.53, 12.29 11.56 5.97%, 0.26%, 6.31% 
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removed by filtering out the vibration frequencies of the tripod/camera set-up. While they are not 

measured in this study and it is one of the limitations. 

 

5.4.3 Recommendations for Practice in Field Application 

 

In field application, the measurement environment is different to that in a laboratory, and the 

following is recommended: 

 

(1) Camera motion: The influence of camera motion needs to be minimized. The effect of wind 

and ground vibration should be reduced by careful selection of the camera location. It is useful to 

include a stationary object in the field of view to facilitate camera motion subtraction. Putting a 

triaxial accelerometer on the camera and filtering out the camera motion effects are not 

inconvenient in field application. 

 

(2) Background clutter: Background clutter (e.g. due to leaves moving in the wind) should be 

avoided because, when calculating full field optical flow, the motions in the background may cause 

difficulties. It tends to reduce the accuracy of the flow prediction of the measurement. 

 

(3) Region selection of target: The target in the image should be sufficiently large and it should be 

ensured that no other moving object is inside the region that is not part of the target. 

 

(3) Kernel selection: For simplicity and convenience, the mean kernel can be selected since there 

is very little difference in the use of mean kernel and Gaussian kernel in this experiment. 
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(4) Camera calibration: Drawings of the structure should be used, or dimensions measured to 

facilitate image calibration. 

 

5.5 Summary 

 

To achieve non-contact displacement monitoring for civil structures with less user involvement 

and to overcome the limitations of common vision-based methods, a novel full field structural 

displacement measurement method using deep learning-based optical flow, is proposed. The 

feasibility of the proposed method is verified through a comparative study of a series of laboratory 

experiments and a field application. The main conclusions are as follows: 

 

(1) A procedure for vision-based displacement measurement is presented and provides a standard 

reference for future users.  

 

(2) A deep learning-based full field optical flow algorithm, FlowNet2, is implemented in the 

proposed approach. It decreases the requirement for human involvement in the operation and gives 

more accurate measurement results with less computation time.  

 

(3) Issues in vision-based methods for real-time monitoring and post processing are explored and 

strategies for the use of portable cameras, industrial cameras, triggers and time control are 

presented. The non-uniform sampling problems are discussed, and camera trigger, spline 

interpolation, Lomb-Scargle method are recommended to solve the problems. 
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(4) Strategies for displacement calculation in common vision-based methods are discussed, 

specifically the issue of whether to calculate the motion between consecutive images or between 

the current image and the initial one. To reduce drift caused by an accumulation of errors in 

calculating the differences between consecutive images, the authors recommend the latter 

approach. 

(5) The camera motion issue is discussed in the context of field application. Camera motion 

subtraction is proposed to address the errors induced by camera motion. 

 

In the future, more work will be done to process the non-uniform sampled image data and explore 

the application of kernels in calculating displacements at discrete structural points. Additional 

study will be focused on the investigation of bridge deflection profile, full field structural modal 

analysis and distribution factor calculation using the proposed method. Also, how shading and 

illumination affect the proposed method will be evaluated. 
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CHAPTER SIX: A ROBUST VISION-BASED METHOD FOR 

DISPLACEMENT MEASUREMENT UNDER ADVERSE 

ENVIRONMENTAL FACTORS USING SPATIO-TEMPORAL CONTEXT 

LEARNING AND TAYLOR APPROXIMATION 

 

Previously published as Dong, C. Z., Celik, O., Catbas, F. N., OBrien, E., and Taylor, S. (2019e). 

“A Robust Vision-Based Method for Displacement Measurement under Adverse Environmental 

Factors Using Spatio-Temporal Context Learning and Taylor Approximation.” Sensors, 19(14), 

3197. 

 

6.1 Introduction 

 

Computer vision-based displacement measurement using cameras has attracted increasing 

attention in the community of structural health monitoring (SHM) because of its characteristics as 

a non-contact, long-distance, multi-point, high-precision, time-saving, and cost-effective sensing 

technique (Brownjohn et al. 2017; Celik et al. 2018a; Chen et al. 2018b; Dong et al. 2019b; Feng 

et al. 2015a; b; Feng and Feng 2016, 2017, 2018; Fukuda et al. 2013, 2010; Khuc and Catbas 2016, 

2017; Lydon et al. 2016; Schumacher and Shariati 2013; Xu and Brownjohn 2018; Yoon et al. 

2016). Structural displacement is a critical indicator for evaluating performance and identifying 

and determining the effects of damage/change under external loads (Dong et al. 2019c; Dong and 

Catbas 2019). For instance, during the regular operation of a structure, displacement can be 

monitored to ensure that it stays within a specified tolerance and safety range (Ye et al. 2015). 

Once the displacement time histories from the monitored structures are extracted using vision-
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based methods, traditional structural health monitoring and behavior analysis can easily be 

conducted (Chen et al. 2015b, 2019). Vision-based displacement measurement methods are also 

applied for bridge load testing to evaluate the bridge load carrying capacity (Lee et al. 2006a) and 

have even been used for contactless bridge weigh-in-motion (Ojio et al. 2016). Combining the 

multi-point displacement response with structural input data extracted from vehicle tracking, 

structural identification can be carried out using traditional structural indicators such as the unit 

influence line (UIL) and unit influence surface (UIS) (Catbas et al. 2018; Dong et al. 2019a; Khuc 

and Catbas 2018). Without the need for the deployment of conventional sensor networks, 

operational modal analysis can be performed using vision-based displacement measurement 

methods, which may provide multi-point synchronization and, therefore, a much denser spatial 

resolution than is practical with conventional sensors (Chen et al. 2015a; Dong et al. 2018; Feng 

and Feng 2016; Fioriti et al. 2018; Ji and Chang 2008b; a; Poozesh et al. 2017). Full field motion 

estimation and instantaneous mode shapes can even be obtained with high spatial and temporal 

resolution (Chen et al. 2015b; Yang et al. 2017b; a, 2018b). Reference (Fioriti et al. 2018) 

introduced an application based on motion magnification for modal identification of an on-the-

field, full-scale, large historic masonry bridge by using videos taken from a common smartphone 

device. Modal properties and other indices derived from vision-based displacement time histories 

can be turned into sensitive indicators for structural damage detection and model updating (Cha et 

al. 2017b; Feng and Feng 2015; Yang and Nagarajaiah 2015). There are also numerous studies 

related to the estimation of stay cable forces that use vision-based displacement measurement 

(Feng et al. 2017; Ye et al. 2016b). In addition to structural response monitoring, the external 

loading information can be predicted. (Celik et al. 2018a) estimated the load time histories of 

individuals and crowds with the displacement time histories obtained using computer vision-based 
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measurements. These successful research applications make computer vision-based displacement 

methods a very promising complementary tool to conventional structural health monitoring 

practices, particularly for bridges. 

 

The majority of applications and experiments in the literature are conducted in an ideal 

measurement environment so that an adequate measurement performance and accuracy is ensured. 

In addition, when these experiments are performed for the purposes of new method verification or 

comparison, the measurement time span is generally short and the adverse factors which can 

influence the measurement accuracy and stability are mostly avoided. For a general proof of 

concept, it makes sense to conduct such studies. However, when vision-based systems are intended 

for long-term deployment, either as a standalone or to complement a conventional SHM system, 

some unfavorable contingencies may affect the measurement quality. Even in the short term, the 

accuracy and stability of a vision-based system can be affected adversely. In a review of the current 

literature, (Feng and Feng 2018) summarized the possible measurement error sources in vision-

based methods, including: (1) camera motion; (2) coordinate conversion; (3) hardware limitations; 

and (4) environmental sources. (Brownjohn et al. 2017) investigated the challenges in field 

application of a commercial vision-based system resulting from camera instability, the nature of 

the target (artificial or structural feature), and illumination. (Ye et al. 2016c) reviewed the state-

of-the-art systematic errors, assessment, and reduction, including: (1) target size and texture; (2) 

camera alignment; (3) motion blur; and (4) the ratio between target size and full view. (Xu and 

Brownjohn 2018) reviewed subpixel techniques used in vision-based displacement measurement 

methods. (Ma et al. 2012) studied the measurement error in the digital image correlation method 

caused by the self-heating of digital cameras. (Ye et al. 2016f) conducted a series of shaking table 
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experiments in the laboratory to examine the influence of environmental factors which affect the 

accuracy and stability of vision-based systems. The targets used in the experiments were QR (quick 

response) codes and the textures of the QR codes showed rich sparkle patterns. It is suggested that 

measurement results are adversely affected by illumination and vapor. Subsequently, (Dong et al. 

2015; Ye et al. 2016d) investigated the possibility of improving the accuracy and the stability of 

vision-based systems by mitigating the adverse effects of vapor. They used light emitting diodes 

(LEDs) and infrared emitting diodes as the measurement target and the experimental results 

showed that these emitting diodes can mitigate the adverse effects of vapor. However, installing 

these kinds of targets on the structure can be difficult, perhaps requiring wiring and a main power 

supply, which may not be feasible for a bridge. 

 

These problems may decrease the accuracy of the measurement results and affect the evaluation 

of structural performance and health conditions when using vision-based monitoring systems over 

long-term time spans. In the literature, there are lots of studies on the analysis of sources of error, 

but only a few (Ye et al. 2016c; f) seek to improve system performance under adverse influencing 

factors. Therefore, it is essential to develop a robust vision-based displacement measurement 

method for long-term structural monitoring, which can handle some of these adverse factors. 

 

While one study cannot address all issues related to computer vision-based monitoring, this paper 

focused on the mitigation of environmental factors such as illumination change and fog 

interference, and improvement of the measurement sensitivity at the subpixel level. A robust 

vision-based displacement measurement method was developed, leveraging the advantages of 

high-resolution imaging and computer-vision techniques to mitigate the interferences induced by 
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illumination change and fog, and was adapted for long-term bridge monitoring. The proposed 

method utilizes the spatio-temporal context (STC) learning algorithm to track measurement objects 

in image sequences and obtain the locations. The STC algorithm (Zhang et al. 2013) builds the 

spatio-temporal relationships between the measurement target and its local context based on a 

Bayesian framework, which models the statistical correlation between the low-level features (i.e., 

image intensity and position) from the measurement target and its surrounding regions. The 

tracking problem is solved by computing a confidence map and obtaining the best target location 

by maximizing an object location likelihood function. Combining this with the Taylor 

approximation (Chan et al. 2010), the accuracy of the proposed method achieves a subpixel level 

without sacrificing processing speed. The objectives of this study were: (1) developing a new 

vision-based displacement method using spatio-temporal context learning; (2) achieving a 

subpixel level estimation based on a Taylor approximation for the new vision-based method; and 

(3) verifying the feasibility, stability, and robustness of the proposed method via comparison with 

the current vision-based methods and conventional displacement sensor (Linear Potentiometer, 

LP) by conducting a series of experiments under two adverse environmental factors (illumination 

change and fog) on a two-span three-lane model bridge in the laboratory. 

 

6.2 Methodology 

 

6.2.1 General Procedure for The Proposed Displacement Measurement System 

 

The general procedure of the proposed method in this chapter is the same with the one presented 

in Section 2.4.1.1. And the scale ratio is selected as camera calibration approach. In this chapter, 



 154 
 

the authors implemented the spatio-temporal context (STC) learning method to conduct the visual 

tracking. The horizontal and vertical displacements in pixels—xt − x0 and yt − y0, respectively—

are found by subtracting the coordinates of the initial target position (x0, y0) from the current target 

position (xt, yt). When pattern matching methods such as DIC are used in this step, the 

displacements in pixels are integer values. And with STC, it also turns out integer value pixel 

results. One way to increase the sensitivity and to improve the measurement accuracy is by 

applying subpixel techniques. For instance, Feng et al. (Feng et al. 2015a) implement upsampled 

cross correlation in the local region to obtain the displacement at the subpixel level. In this chapter, 

the authors utilized the Taylor approximation method to achieve the subpixel level without 

upsampling the images and without sacrificing the image processing speed. Finally, with the scale 

ratio,SR, and the displacement in pixels, the actual displacement at time t of the physical unit is 

obtained: (xt − x0)*SR, horizontally, and (yt − y0) )*SR, vertically. The visual tracking method and 

subpixel estimation used in this paper are introduced in detail in the next sections. 

 

6.2.2 Visual Tracking Using Spatio-Temporal Context (STC) Learning 

 

The spatio-temporal relationship among the local scenes containing the target in consecutive 

frames can be used to model the statistical correlation between the low-level features, such as 

image intensity and position, extracted from the target and its local context (Zhang et al. 2013). As 

illustrated in the footbridge example of Figure 55, the yellow (smaller) box is the target to be 

tracked and the red (larger) box is the local context. 
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Figure 55 Graphical model of spatial relationship between the target and its surrounding 

context 

 

The visual tracking task can be obtained by maximizing an object location likelihood function c(x) 

as (Zhang et al. 2013): 
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where x is the target location which can be represented with the coordinates defined above, (x, y) 

and o denotes the target present in the scene. The context feature set, Xc, is defined as: 

( ) ( )( ) ( ){ }, |c

cX I= = ∈Ω *c z z z z x                                      (45) 

where I(z) denotes the image intensity at location z and Ωc(x*) is the neighborhood of location x*. 

The conditional probability P(x|c(z), o) in Eq. 44 models the spatial relationship between the object 

location and its context information. It can help to resolve ambiguities when the image 
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measurements allow different interpretations, which are introduced in the following parts. 

P(c(z)|o) is a context prior probability which models the appearance in the local context. The 

conditional probability P(x|c(z), o) in Eq. 44 is defined as: 

( )( ) ( )| , sc
P o h= −x c z x z                                        (46) 

where hsc(x − z) is the spatial context model function, which is only of the direction and the relative 

distance between the target location x and its local context location z, which means this function 

contains the spatial relationship between the target and its spatial context. Eq. 46 defines the spatial 

context model. It is worth noting that Eq. 46 is not a radially symmetric function which means that 

hsc(x − z) is not equal to hsc(|x − z|). It considers different spatial relationships between the target 

and its local context, which facilitates the solving of the ambiguities when similar objects appear 

in close proximity. As shown in Figure 55, when a visual tracking method tries to track a bolt 

based only on the appearance denoted by zl, it might be distracted to the right one denoted by zr, 

because both bolts and the local surroundings have a similar appearance. This would cause 

ambiguities and consequently decrease the tracking accuracy, especially when the target moves 

fast, and the search region is not small. With the non-radially symmetric characteristics of hsc(x − 

z), the ambiguities can be resolved. 

 

In Eq. 44, P(c(z)|o) can be calculated according to the target location that has been initialized 

manually in the first frame. It is modeled by: 

( )( ) ( ) ( )|P o I wσ= − *c z z z x                                        (47) 

where wσ(·) is a weighted function defined by: 
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In Eq. 48, a is the normalization constant which restricts P(c(z)|o) to be in the range from 0 to 1 

and σ is a scale parameter. Eq. 47 ensures that, the closer the context location z is to the current 

tracking target location x*, the more important it is to predict the location and a greater weight is 

set. The confidence map of an object location is modeled as: 

( ) ( )|c P o be

β

α

∗−
−

= =
x x

x x                                                 (49) 

where b is a normalization constant, α is a scale parameter, and β is a shape parameter. According 

to the literature (Zhang et al. 2013), robust results can be obtained when β = 1. Based on the context 

prior model in Eq. 47 and the confidence map function in Eq. 49, the objective is to learn the 

spatial context model, i.e., Eq. 44. Combining Eqs, 44, 46, 47 and 49, gives: 
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where ⊗ denotes the convolution operator. The fast Fourier transform (FFT), Equation (9) 

transforms the function to the frequency domain: 
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where  denotes the FFT function and ⊙ is the element-wise product. Then, the spatial context 

model is: 
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where −1
 denotes the inverse FFT function. Then in the whole image sequence, the spatio-

temporal context model of the (t + 1)th frame, 1
stc

tH + , can be updated using the spatio-temporal 

context model, stc

tH , and the spatial context model, sc

th , of the tth frame. It is formulated as: 

( )1 1stc stc sc

t t tH H hρ ρ+ = − +                                                (53) 

where ρ is a learning parameter and t denotes the tth frame. It should be noted that in the first 

frame, i.e., when t is equal to 1, the spatio-temporal context model stc

tH  is equal to the spatial 

context model, sc

th . 

Finally, the target location *
1t+x  in the (t + 1)th frame is determined by maximizing the new 

confidence map: 
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Deduced from Eq. 51, the new confidence map ct+1(x) is represented as: 
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As the scale of the target may tend to change over time, the scale parameter σ in the weight function 

wσ in Eq. 48 is updated by: 
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where ts′  is the estimated scale among two consecutive frames. The estimated target scale st+1 is 

obtained through filtering, in which 
ts  is the average of the estimated scale from n consecutive 

frames to avoid oversensitive adaptation and to reduce noise, and λ > 0 is a fixed parameter. More 

details about the derivation can be found in the literature (Zhang et al. 2013). In general, the scale 

updating should be considered, but in this study, only in-plane motion is considered for two-

dimensional displacement measurement, so that scale updating is neglected. If this method is used 

to do three-dimensional displacement measurement, which means there is out-plane motion, scale 

updating has to be considered. 

To obtain robust tracking results, the reference gives rules of thumb regarding the selection of the 

parameters used in STC tracking: α = 2.25, β = 1, ρ = 0.075, s1 = 1, λ = 0.25, and n = 5. Additionally, 

for Equation (12), with the deductions, 
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a temporal filtering procedure can be easily obtained in the frequency domain, which is: 
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where: 
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is the temporal Fourier transform of stc

tH  and similar to sc

wh . The temporal filter can be represented 

by: 

( )j 1
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− −

                                                   (59) 

which is a low-pass filter (Oppenheim et al. 1996). With this low-pass filter, the spatio-temporal 

context model is able to filter out image noise caused by appearance variations and this leads to 

more stable measurement results. The properties of the spatio-temporal model contribute to the 

resolution of the adverse effects induced by environmental factors such as illumination change and 

fog. 

 

6.2.3 Subpixel Level Estimation Using Taylor Approximation 

 

With Eq. 54, the targets can easily be tracked in the image sequence, but the change of locations 

can only be obtained with integer pixel values. To achieve subpixel level motion, the Taylor 

approximation method is applied to solve the optical flow estimation. Assuming there are two 

consecutive images, f(x, y) and g(x, y), with a shift (Δx, Δy), the following estimation applies: 
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which is the first order Taylor series approximation. The shift in the image can be calculated by 

minimizing the sum of squared errors (SSEs): 

( )arg min ,x yΦ ∆ ∆                                                 (61) 

where: 
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Using the ordinary least squares (OLS) method to solve Eq. 61, the optimal Δx and Δy can be 

determined by setting the partial derivatives of Eq. 62 to zero, i.e., 
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Combining Eqs. 62 and 63 gives the system of linear equations: 
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The optimal shift, (Δx, Δy), is obtained by solving Equation (23). It should be noted that to make 

the Taylor approximation valid, the assumptions |Δx| << 1 and |Δy| << 1 have to be satisfied. When 

small motion is estimated, i.e., motion less than one pixel, the assumption holds. The procedure 

simplified from optical flow estimation is called Taylor approximation here and it will be utilized 

to solve the subpixel level motion estimation (Chan et al. 2010). 
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Figure 56 and Figure 57 illustrate the proposed motion estimation at the subpixel level. At first, 

the spatio-temporal context (STC) tracking method is employed to determine the integer pixel 

displacements, ( x∆ , y∆ ). 

 

Figure 56 Sketches of motion estimation using STC tracking and Taylor approximation 

 

Figure 57 Flowchart of STC-based subpixel tracking using Taylor approximation 

 

In Figure 56, the yellow, solid line box represents the original target location in the initial frame 

and the red, dashed line box represents the target recognized in the current frame using STC 

tracking, which has an accuracy at the subpixel level. Here the centers of the targets are used to 

represent their locations, i.e., T0 and T’. Assuming the real target in the current frame is the red, 

solid line box at location T, the true displacements are (Δx, Δy). Then, the displacements ( x∆ , y∆

) are the integer estimations of the true displacements, (Δx, Δy). The differences between ( x∆ , 

y∆ ) and (Δx, Δy) are (δx, δy), from T’ to T, where |δx| < 1 and |δy| < 1, and the assumption of 
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using the Taylor approximation is satisfied with the conditions of |δx| < 1 and |δy| < 1. Secondly, 

the Taylor approximation is employed to estimate the displacement between the target tracked by 

STC (red, dashed line box) and the real target (in red, solid line box), i.e., (δx, δy). Finally, the total 

displacements are: 

x x x

y y y

δ

δ

∆ = ∆ +

∆ = ∆ +

                                                     (65) 

 

According to the literature (Chan et al. 2010), the Taylor approximation gives an error bound of 

less than 0.0125 pixels, without any image upsampling and the error is much smaller than that of 

the normal template matching methods using image upsampling. The feasibility and performance 

of the proposed method for structural displacement will be verified through laboratory experiments 

in the next sections. 

 

6.3 Laboratory Verification 

 

6.3.1 Experimental Setup 

 

Figure 58 shows the two-span bridge model constructed at the University of Central Florida’s 

(UCF) Civil Infrastructure Technologies for Resilience and Safety (CITRS) Experimental Design 

and Monitoring (EDM) laboratory. The bridge was a scaled down model of a mid-sized real-life 

structure and a toy truck with variable weights was used to model moving loads. The bridge 

consisted of two 300 cm main continuous spans, which were rebuilt from UCF’s original four-

span bridge (Khuc and Catbas 2016). The bridge deck, which included a 3.18 mm steel sheet, was 
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120 cm wide and 600 cm long. The steel deck was supported by two 25 mm × 25 mm × 3.2 mm 

steel girders separated 0.61 m from each other. To provide a connection between girders and the 

deck, a set of four M6 bolts and 3.18 mm thick plates were utilized. The total length of the toy 

truck was 68.6 cm and the distance among the two axles was 45.72 cm. The width and the height 

of the toy truck were 35.6 cm and 33.1 cm, respectively. The total weight of the truck was 13.48 

kg with a front axle weight of 1.9 kg and a rear axle weight of 11.58 kg. The average moving speed 

of the toy truck was manually controlled to achieve 0.4 m/s, while the actual speed in the 

experiment for three cases were 0.36 m/s, 0.38 m/s, and 0.33 m/s, respectively. 

 

Figure 58 Experimental setup 

An industrial camera was set-up in front of the bridge to record images at a measuring point (P1) 

during the moving load trials. A linear potentiometer (LP) was mounted under the deck to measure 

the displacement of the P1 and was assumed as the ground truth. The model number was BEI 

Duncan 9615. Detailed information about the sensor can be found in Reference (BEI 2019). During 

the experiments, the truck moved from one side of the bridge to the other while the LP and the 

camera recorded the motion of the P1 (midspan of the left span) synchronously. The resolution of 

the camera was 1280 × 960, with a maximum frame rate of 60 FPS (frames per second). Here, the 

frame rate was set to 30 FPS. The focal length of the lens was within a zoom range of 6~60 mm. 
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The sampling rate of the data acquisition system for the LP was 300 Hz, which was then 

downsampled to 30 Hz during post processing. Three experimental cases were specified to achieve 

the objectives of this chapter: 

 

An industrial camera was set-up in front of the bridge to record images at a measuring point (P1) 

during the moving load trials. A linear potentiometer (LP) was mounted under the deck to measure 

the displacement of the P1 and was assumed as the ground truth. The model number was BEI 

Duncan 9615. Detailed information about the sensor can be found in Reference (BEI 2019). During 

the experiments, the truck moved from one side of the bridge to the other while the LP and the 

camera recorded the motion of the P1 (midspan of the left span) synchronously. The resolution of 

the camera was 1280 × 960, with a maximum frame rate of 60 FPS (frames per second). Here, the 

frame rate was set to 30 FPS. The focal length of the lens was within a zoom range of 6~60 mm. 

The sampling rate of the data acquisition system for the LP was 300 Hz, which was then 

downsampled to 30 Hz during post processing. Three experimental cases were specified to achieve 

the objectives of this paper: 

 

Case 1: The truck moves on the bridge in ideal conditions and no adverse factors are imposed in 

the measuring environment. A light meter (Dr. Meter LX1010B Digital Illuminance, London, 

England) is used to measure the illumination change. The illumination is 34 lux and the relative 

humidity is 49% at the displacement measurement location under the ideal conditions; 

 

Case 2: The truck moves on the bridge while the illumination of the laboratory is changed several 

times by switching a manual controller. Normally, 9 light panels in the lab are on and the 
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illumination at the measurement location is 34 lux. By turning off the 3 light panels, which are 

close to the measurement target, the illumination drops to 18 lux. As shown in Figure 59, the left 

image is lighter, which was taken when the illumination was 34 lux, while the right image is darker 

which was taken when the illumination was 18 lux; 

 

Case 3: A humidifier (Honeywell HUL520B Mistmate Cool Mist Humidifier, Seattle, 

Washington) is placed between the camera and measuring targets (Figure 60). The humidifier 

produces a mist at the maximum status to simulate natural fog which decreases the visibility in the 

camera’s field of view. Normally, the temperature is 24 °C and the relative humidity is 49%. While 

in the center of the mist, the temperature is 20.3 °C and the relative humidity is 95%. 

 

Figure 59 Illumination change. (a) 34 lux, (b) 18 lux 

 

 

Figure 60 Fog simulation 

 

(a) (b)
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6.3.2 Results Analysis and Comparative Study of Case 1 (Ideal Case) 

 

The objectives for Case 1 were: to evaluate the performance of the subpixel estimation method 

presented in this paper and verify the feasibility and performance of the proposed method (i.e., 

STC tracking plus Taylor approximation, STC-Taylor App) by comparing the conventional LP data 

with the current vision-based displacement methods, e.g., Lucas–Kanade optical flow with SURF 

features (LK-SURF), key point matching with Fast Library for Approximate Nearest Neighbors 

and SURF features (FLANN-SURF), and digital image correlation (DIC). Figure 61 illustrates the 

vertical displacement time histories of P1 in pixel units induced by the vehicle loading when the 

toy truck traveled along the two-span bridge. 

 

 

Figure 61 Vertical displacement time histories of P1 in pixel units using non-subpixel, 

image upsampling, and Taylor approximation techniques 

 

The vision-based methods used here included STC tracking with non-subpixel (STC-integer), STC 

tracking with image upsampling (STC-upsample8), and STC tracking with Taylor approximation 

(STC-Taylor App). In Figure 61, by zooming in on the green, dashed line box area of the 

displacement time histories, it is clear that the results of the STC-integer approach were rounded 
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to integer values, i.e., (4, 3, 3, 3, 2, 1, 1, 1, 1, 1, 1, 0, 0, (−1), (−1) pixels, …). The image upsampling 

technique means that each image recorded during the experiment was upsampled 8 times in the 

horizontal and vertical directions using bicubic interpolation. Then, the minimum resolution was 

1/8 = 0.125 pixel. The result of using image upsampling was a much smoother curve and more 

subpixel-level displacement records. However, it still cannot provide more details about small 

motions (Dong et al. 2019b), especially at the very beginning and at the end. When there are no 

apparent loads on the structure, there is still very small structural motion induced by random 

environmental loads, such as wind, nearby machine operations, ambient ground vibration, etc.  

As illustrated in Figure 62, during the first several seconds before the toy truck moves, the 

displacements measured by both STC-integer and STC-upsample8 were exactly zero, which might 

not be true. Even though the structure was not loaded, it can still vibrate under random 

environmental loading. The STC-Taylor App indicated the small motions of the structure caused 

by random environmental loadings. This indicates that the proposed method which combines STC 

tracking and Taylor approximation has a higher sensitivity, resolution, and accuracy. 

 

 

Figure 62 A zoomed in section at the beginning of the vertical displacement time histories 

of P1 
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Figure 63 verifies the previous findings. In this figure, the horizontal time displacement histories 

showed the bridge motion in the longitudinal direction induced by the moving truck impact. The 

motion was very small, around 1 pixel. The result from the proposed method (STC-Taylor App) 

provided very detailed information about the vehicle impact, while the results of the STC-integer 

and STC-upsample8 were almost zero except for one or two points, which means the bridge was 

stationary in the longitudinal direction. Figure 64 depicts a zoomed in area of the green, dashed 

line box in Figure 63. 

 

 

Figure 63 Horizontal displacement time histories of P1 in pixel units using non-subpixel, 

image upsampling, and Taylor approximation techniques 

 

Figure 64 A zoomed in section of the horizontal displacement time histories of P1 in pixel 

units 

 

In the zoomed in Figure 64, the displacements of the non-zero points measured by STC-integer, 

STC-upsample8, and STC-Taylor App were 1, 0.125, and 1.281 pixels. For STC-integer and STC-
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upsample8, 1 and 0.125 were their minimum measurement resolutions, and statistically, these 

points were outliers which should be removed from the displacement time histories. In addition, 

the image processing speed of the proposed method was much faster than using image upsampling. 

Table 12 shows the elapsed processing time of one image using three different STC-based 

methods. The program environment was MATLAB running on a computer with the CPU of i7, 8 

processors, and 16 Gb RAM. The original image had a resolution of 1280 × 960. It took 0.0481 s 

to process one image to obtain the displacement at the integer pixel level (STC-integer). However, 

when conducting subpixel level estimation using image upsampling, it took 2.4895 s, which was 

about (2.4895 − 0.0481)/0.0481 = 50.76 times that of the STC-integer. It took only 0.0495 s to 

conduct this and provided even better subpixel results when using STC-Taylor App. The proposed 

method was about 50 times faster than using image upsampling techniques. 

 

Table 12 Time consumption of processing one image using different STC-based methods 

 

Overall, it is suggested that the proposed method using STC tracking and Taylor approximation 

can provide displacement measurements at the subpixel level with high sensitivity, resolution, 

accuracy, and faster speed. 

 

The next step is to convert the displacement in pixel units to physical units (e.g., millimeter) and 

verify the feasibility and performance of the displacement measurement by comparing the vision-

based methods with the conventional displacement sensor. As illustrated in Figure 65, four vision-

Methods STC-Integer STC-Upsample8 STC-Taylor App 

Time (s) 0.0481 2.4895 0.0495 
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based displacement measurement methods (i.e., LK-SURF, FLANN-SURF, DIC, and STC-Taylor 

App) and one conventional displacement sensor (i.e., LP) were used to obtain the displacement 

time histories of P1 when the toy truck passed over the bridge. At the very beginning, the toy truck 

stood at the left end of the first span, then moved to the right and approached the measurement 

point P1. In the meantime, the displacement of P1 (the downward direction was positive) gradually 

increased to a maximum when the truck was located at P1. Then the toy truck began to drive off 

P1 and kept heading to the right, while the displacement of P1 gradually decreased. When the toy 

truck moved to the right span, the displacement began to be negative (i.e., upward displacement) 

due to the loading on the other span of the two-span bridge. As it approached the right end of the 

right span, the absolute value of the displacement at P1 first increased and achieved a maximum 

and then decreased. When the toy truck arrived at the right end of the bridge, the displacement of 

P1 became stable but did not go back to zero. This was because the rear axle still rested on the 

bridge. 

 

Figure 65 Case 1 (ideal condition): displacement time histories of P1 obtained from 

different methods 

By comparing the displacement time histories, it is easy to see that the result obtained from the 

proposed method (i.e., STC-Taylor App) was quite consistent with those obtained from the LP and 

other three vision-based methods. 
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Figure 66 illustrates the correlation matrix of these time displacement histories for Case 1. The 

figures on the diagonal of the correlation matrix are the histograms of the displacement time 

histories, whereas the others are data plots and linear fits among the displacement time histories 

from the two methods. The correlation matrix is symmetric, and the last row and the last column 

give the correlation coefficients between the displacement data obtained from the vision-based 

methods and the conventional displacement sensor, i.e., LP. The correlation coefficients of the 

LK-SURF, FLANN-SURF, and DIC with the ground truth (i.e., LP) were all 0.99, while the 

correlation coefficient between the proposed method (i.e., STC-Taylor App) and LP was 0.98, 

which is also quite good. The performance of the vision-based displacement measurement methods 

can also be obtained from the similarity of the histograms of each method comparing with the one 

of LP. Here, from the diagonal element of the correlation matrix, it is indicated that the histograms 

of these time displacement histories were highly consistent with each other. 

 

 

Figure 66 Correlation matrix of time displacement histories of Case 1 (ideal condition) 
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Figure 67 shows the displacement comparison in the frequency domain of Case 1. The first set of 

peaks from the different methods which gave a frequency value of 0.083 Hz was not the structural 

mode. The frequency was related to the vehicle loading procedure on the two-span bridge, which 

produced a sinusoidal shape displacement time history. It seems to be a response cycle and causes 

the pseudo vibration mode. The frequency value here was related to the speed of the loading. Since 

the speed of the truck was manually controlled and in each case the speed was different, the 

frequencies of the first set of peaks were different. This can be observed from Figure 70 and Figure 

75 in the following sections. The second set of peaks around 5 Hz (actually 4.87 Hz) was the 

structural operational vibration frequency corresponding to the higher modes in the displacement 

time histories in Figure 66. This operational frequency was related to the roughness of the deck 

and speed of the loading truck. From this figure it can be seen that the structural operational 

vibration frequencies obtained from different methods were quite consistent. 

 

In this case, under ideal experimental conditions and no adverse factors added to the experiment, 

the robustness and advantages of the proposed method (STC-Taylor App) did not reveal itself. In 

the next two cases, the robustness and advantages of the proposed method will be verified. 

 

 

Figure 67 Displacement comparison in the frequency domain of Case 1 
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6.3.3 Results Analysis and Comparative Study of Case 2 (Illumination Change) 

 

This case was designated to verify the robustness of the proposed vision-based displacement 

method under the adverse environmental condition: Illumination change. For vision-based 

methods, illumination is a serious problem when conducting field applications since the image 

quality is easily affected by illumination change. Consequently, the visual tracking performance 

and the displacement measurement accuracy are affected by the poor quality in the formation of 

images. In this experiment, the environmental illumination was determined by the fluorescent light 

in the lab. By turning the light switches in the laboratory on and off, the image quality changed, as 

shown in Figure 59. The time histories of P1 obtained from different vision-based methods and LP 

under environmental illumination change are illustrated in Figure 68a. 

 

 

Figure 68 Case 2 (illumination change): (a) displacement time histories of P1 obtained from 

different methods and (b) average image intensity time history 
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The spikes in Figure 68a show that the vision-based method FLANN-SURF was apparently 

influenced by the illumination change, which means FLANN-SURF cannot handle this kind of 

situation compared to other vision-based methods. Figure 68b shows the average image light 

intensity time history and it is easy to see the illumination change (36 lux to 18 lux) from the tooth-

shaped signal. The green, dashed boxes A, B, C, and D indicate the corresponding illumination 

changes when FLANN-SURF gives spikes in its displacement measurement result. It is suspected 

that for the illumination changes as shown in boxes E and F, FLANN-SURF shows good 

consistency with other displacement measurement methods, while the possible reasons are 

unknown.  

 

As shown in Figure 69, the correlation coefficient of the time histories between that obtained from 

FLANN-SURF and the ground truth, LP, dropped to 0.84, while LK-SURF’s and DIC’s dropped 

from 0.99 to 0.98 and from 0.99 to 0.97 when compared with the correlation matrix obtained in 

Case 1, shown in Figure 66. However, the correlation coefficient of the time histories between that 

obtained from the proposed method, STC-Taylor App, and the ground truth, LP, was still 0.98 

compared to that of Case 1. 
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Figure 69 Correlation matrix of time displacement histories of Case 2 (illumination change) 

 

From Figure 68 and Figure 69, it is indicated that the illumination change did have a significant 

negative effect on FLANN-SURF and might also influence LK-SURF and DIC slightly. On the 

other hand, the proposed method, STC-Taylor App, showed great robustness and was almost not 

influenced by the illumination change. This observation can also be found from the frequency 

domain, as shown in Figure 70. The method FLANN-SURF showed lots of pseudo vibration 

frequencies which were apparently not the structural vibration modes. The first frequency, 0.033 

Hz, indicated the loading cycle, which was similar to Case 1. The structural vibration mode around 

5 Hz can barely be seen here, which may be caused by the lower truck speed compared to Case 1. 

The FLANN-SURF method showed several big pseudo peaks around 5 Hz, while the other vision-

based methods kept consistent with LP. The STC-Taylor App could be a good option for long-

term vision-based displacement measurement since illumination change is a common problem in 

field applications. 
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Figure 70 Displacement comparison in the frequency domain of Case 2 (illumination 

change) 

 

6.3.4 Results Analysis and Comparative Study of Case 3 (Fog Interference) 

 

This case was designated to verify the robustness of the proposed vision-based displacement 

method under the adverse environmental condition: fog. In this experiment, the fog was simulated 

by the mist produced by the humidifier, as shown in Figure 60. The fog not only affected the image 

quality but also contaminated the image features, which are the basic foundation of target 

recognition for visual tracking. In addition, the fog was not still but had a random motion. The 

DIC method may have performed undesirably because it highly relied on the image intensity to 

conduct pattern matching and the intensity would always change under this situation. Due to the 

random motion of the fog, a false optical flow would be added to the real target motion which 

causes the optical flow method (e.g., LK method) to fail. Even though feature points, e.g., Shi-

Tomasi corners, SURF, SIFT, FREAK, etc., are very robust and distinctive, their use with feature-

based methods (e.g., LK-SURF and FLANN-SURF) still can result in a bad performance due to 

the presence of bad matches. The mist could block features and induce more bad matches as shown 

in Figure 71. It causes displacement measurement to have errors, especially when there are not 

enough feature points to describe the tracking targets. 
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Figure 71 Poor matches when using feature-based methods (fog interference) 

 

Figure 72 illustrates the time histories of P1 obtained from different vision-based methods and LP 

under fog interference. When the fog was imposed to the measurement environment, the 

displacement results obtained from LK-SURF and DIC provided very poor performance resulting 

in many spikes appearing in the displacement time histories. Only the results from the proposed 

method (STC-Taylor App) and FLANN-SURF showed satisfactory performance. Figure 73 zooms 

in on the purple, dashed line box area of Figure 72 and provides more details. In this figure, except 

the spikes, some data were also lost from the displacement time history, because the visual tracker 

based on LK-SURF lost the targets due to the fog interference. In general view, even though 

FLANN-SURF gives a good result, it still has outliers. Figure 73 shows an example of an outlier 

when using FLANN-SURF. The outlier caused more than a one-millimeter error compared with 

the ground truth and the result from STC-Taylor App. Statistically, it can be removed. 
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Figure 72 Case 3 (fog interference): displacement time histories of P1 from different 

methods 

 

Figure 73 Zoomed in section of the horizontal displacement time histories of P1 

 

Figure 74 shows the correlation matrix between the vision-based methods and the conventional 

displacement method, i.e., LP. The correlation coefficient between LK-SURF and LP dropped 

from 0.99 (in Case 1) to 0.84, which means the measurement error of LK-SURF increased. It was 

even worse for DIC, for which the correlation coefficient dropped from 0.99 (in Case 1) to 0.78. 

The linear fit plots between LK-SURF and LP and that between DIC and LP are hard to be 

interpreted as correlation. The correlation coefficient between the proposed method, STC-Taylor 

App, and LP also dropped from 0.98 (in Case 1) to 0.92. Considering the initial status, it is a little 

bit better than that of FLANN-SURF, since the correlation coefficient between the proposed 

method, STC-Taylor App, and LP also dropped from 0.99 (in Case 1) to 0.92. The outlier in the 

displacement time history obtained using FLANN-SURF also showed correlation in matrix plot. 

The fog indeed had undesirable effects on all of these vision-based methods at different levels. 
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These bad effects might not be easy to find or be quantified in the time histories, but they 

apparently reveal themselves in correlation matrix. 

 

 

Figure 74 Correlation matrix of time displacement histories of Case 3 (fog interference) 

 

Figure 75 gives the comparison in the frequency domain of Case 3. The poor performance of LK-

SURF and DIC caused by fog can also easily be seen from the pseudo peaks (purple and green 

curves) in the frequency domain. Similar to Case 1 and Case 2, the first set of peaks indicate the 

loading procedure and that there should be a structural vibration mode frequency peak around 5 

Hz; however, it can barely be seen. Except for LK-SURF and DIC, the proposed method (STC-

Taylor APP) and FLANN-SURF seemed to match very well with LP, which is consistent with the 

observations from Figure 72 and Figure 74. 
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Figure 75 Displacement comparison in frequency domain of Case 3 (fog interference) 

 

Compared to the other three vision-based methods, the proposed method provided the best 

performance. The proposed vision-based displacement measurement method, i.e., STC-Taylor 

App, showed great robustness under fog interference. The STC-Taylor App could be a good option 

for long-term vision-based bridge displacement measurement since fog is a common weather 

problem in field application, especially when the bridge crosses a river and during foggy seasons. 

Considering the results analysis of Case 2 and Case 3, the proposed method shows the best 

performance under the two adverse environmental factors. 

 

6.4 Summary 

 

In this study, a robust non-contact displacement measurement method using spatio-temporal 

context learning and Taylor approximation was proposed. This study aimed to resolve the adverse 

effects induced by te environmental factors such as illumination change and fog interference when 

using vision-based methods to conduct displacement measurements without adding manual 

markers or artificial light source for long-term bridge monitoring. The first method that was 

proposed, namely, spatio-temporal context learning, leveraged the advantage of images with high-
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resolution spatial and temporal aspects, which can be used for long-term bridge monitoring. Then, 

as an extension, the Taylor approximation technique was implemented into the proposed method 

to improve the accuracy of the displacement at the subpixel level without sacrificing the processing 

speed. The performance of the proposed subpixel estimation method was compared with general 

image upsampling techniques and the results showed that the proposed subpixel estimation method 

was faster than the general image upsampling techniques by about 50 times. Also, the precision of 

the proposed method was much better than the general image upsampling technique. To validate 

the feasibility, stability, and robustness of the proposed method, a series of experiments on a two-

span three-lane bridge in laboratory under the adverse environmental factors such as illumination 

change and fog interference were conducted. The illumination change was achieved by turning on 

and off the light switches in the room and the fog interference was simulated with a humidifier 

which could produce mist. The results from the proposed method showed that: 

 

(1) In Case 1, there were no adverse environmental factors and the measurement condition was 

desirable for vision-based systems. The correlation coefficients of the LK-SURF, FLANN-SURF, 

and DIC with the ground truth, i.e., LP, were all 0.99, while the correlation coefficient between 

the proposed method, STC-Taylor App, and LP was 0.98, which was also quite good. It indicated 

that that at least in a desirable measurement environment, the proposed method is a strong 

competitor of the current methods. 

 

(2) In Case 2, with the illumination change, the correlation coefficient of the time histories between 

that obtained from FLANN-SURF and the ground truth, LP, dropped to 0.84, while LK-SURF’s 

and DIC’s only dropped from 0.99 to 0.98 and from 0.99 to 0.97, respectively, compared with the 
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correlation matrix obtained from Case 1. However, the correlation coefficient of the time histories 

between that obtained from the proposed method, STC-Taylor App, and the ground truth, LP, was 

still 0.98 comparing to that of Case 1. 

 

(3) In Case 3, with the fog interference, the correlation coefficient between LK-SURF and LP 

dropped from 0.99 to 0.84, while DIC’s drops from 0.99 to 0.78, which was the worst performance. 

The FLANN-SURF’s dropped from 0.99 to 0.92 and the proposed method, STC-Taylor App, 

dropped from 0.98 to 0.92. 

 

Combining the results analysis of the experiments, the proposed method showed the best 

performance under the two adverse environmental factors, and it provided an accuracy at the 

subpixel level without sacrificing the processing speed. By considering the spatial and temporal 

context learning processes, the proposed method in this paper successfully mitigated the effects 

induced by illumination change and fog interference. The poor performances of FLANN-SURF in 

Case 2 and of LK-SURF and DIC in case 3 resulted in spikes in the displacement measurements, 

which can be removed by using low-pass filtering. However, this would limit the usability of these 

methods at higher frequencies. The proposed method seems to provide accurate displacements 

without the need of filtering the results. 

 

Although, the benefits of the proposed method to address other real-world challenges is not 

explored in this paper, the proposed method may be applied to solve other adverse influencing 

factors, such as motion blur, rain, object occlusion, out of plane movement, orientation of the 

camera relative to the bridge and camera motion, etc., by taking advantage of the high spatio-
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temporal resolution. The computer vision-based approach along with the proposed method can be 

a good alternative and a complementary approach to conventional structural health monitoring 

practices. In the future, more studies will be carried out on real bridges to validate the feasibility 

of the proposed method and also to investigate other relevant challenges for long-term bridge 

monitoring using computer vision. Besides, in this study, only one camera was used, and the 

proposed method was verified by tracking the motion of the bridge deck on a two-dimensional 

(2D) plane, which is a limitation. In future studies, the feasibility of 3D motion tracking using the 

proposed method will be investigated and will be tested on other applications such as long span 

bridge monitoring and cable vibration monitoring. Also, the effects of illumination inhomogeneity 

and non-linear illumination changes to the measurement performance of different vision-based 

methods will be explored. 
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CHAPTER SEVEN: DISPLACEMENT MONITORING OF LONG SPAN 

BRIDGES USING VISION-BASED METHODS 

 

7.1 Introduction 

 

In the previous chapters, different vison-based structural response methods with various types of 

algorithms are introduced and verified on different applications such as grandstand, stadium, small 

bridge model, railway bridge, footbridge. The application scenarios are in close range distance. 

When the vision-based approaches are applied to large structures and within long distances 

measurement, more problems such as image quality, blur, haze, heatwave etc. occur and would 

affect the structural measurement. In this chapter, applications of large structures (Three long span 

suspension bridges in Turkey, First Bosphorus Bridge, Second Bosphorus Bridge and Osman Gazi 

Bridge) in long distance are introduced and problems and issues are discussed.  

 

7.2 Methodology 

 

In long distance monitoring, feature points are not easy to extract so that optical flow using feature 

points and feature matching are not suitable for this case. Full field optical flow using deep learning 

and tracking using spatio-temporal learning are also difficult to achieve good performance. In 

chapter, the normalized correlation coefficient based template matching is implemented to track 

structural motions. The basics of normalized correlation coefficient based template matching is 

reviewed in Section 2.4.1.2., and they are not repeated here.  
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7.3 Experiment on the First Bosphorus Bridge 

 

The First Bosphorus Bridge is the first bridge that was built in Istanbul to cross the Bosphorus 

Strait and connect the two continents: Europe and Asia. The bridge has the main span length of 

1074 m and two approach-spans with the length of 231 m at the European side and 255 m at the 

Asian side, respectively (Bas et al. 2018). The main span is suspended by main cable and vertical 

hangers, wheras the side spans are supported at the base.  

 

The experiment setup is shown in Figure 76. A camera with the resolution of 4K, speed of 30 FPS 

and a 75-300 mm zoom lens was setup on the European side, north of the bridge. The distance 

from the camera to the midspan of the bridge is around 755 m.  

 

 

Figure 76 Experimental setup of the First Bosphorus Bridge 
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Figure 77 Measurement point and static point 

 

 

Figure 78 Displacement results of the mid-span of the First Bosphorus Bridge 

 

The guardrail and edge of the deck on midspan of the northern side of the bridge was selected as 

the tracking target as shown in Figure 77. During the experiment, the wind is a big problem and it 

kept the camera shaking all the time, so that a building on the background was regarded as static 
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point and selected to mitigate the camera motion problem by using background subtraction. The 

experiment was conducted on a Saturday afternoon and at that time (around 5pm to 6pm), the 

traffic was becoming very busy and the light was getting dark. Tracking the rails in a long distance 

is very difficult. As shown in Figure 78, in first 180 seconds of the displacement time history, the 

maximum displacement is around 100 mm while from the 200 s, traffic jam occurred, and vehicles 

began to accumulate and stop on the bridge. In this traffic jam (marked as A) induced a large 

deflection which is around 428 mm while this deflection is within the limit defined by L/800. L is 

the length of the span. From the 260 s, the traffic flow was getting better and the deflection started 

to decrease to the normal level. Around the 450 s (marked B), there were two big buses at the 

midspan which also induced a large deflection (108 mm). After converting to frequency domain, 

a peak in the frequency spectrum is found and it is 0.147 Hz. Since the measurement point is at 

the midspan and this is the only peak, it might be the first bending mode. In addition, the frequency 

0.14 Hz is very close to the first symmetric bending mode reported by (Soyoz et al. 2017).  

 

7.4 Experiment on the Second Bosphorus Bridge 

 

The Second Bosphorus Bridge is the second bridge in Istanbul, which was built to cross the 

Bosphorus Strait. The bridge is located on the north side of the First Bosphorus Bridge. The bridge 

has the main span with the length of 1090 m and two side spans with the length of 210 m. The 

main span is also supported by main cable and vertical hangers.  

 

In this experiment, the same camera and lens were used to monitor the displacement of the midspan. 

As shown in Figure 79, the camera was setup on the European side and northern side of the bridge. 
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The distance from the midspan to the camera is around 600 m. The experiment was conducted on 

a Saturday afternoon around 2pm. Guardrails and edge of the midspan were selected as tracking 

target and a building on the background was selected as the static point to illuminate the camera 

motion.  

 

 

Figure 79 Experimental setup of the Second Bosphorus Bridge 

 

Figure 80 shows the displacement results of the mid-span of the Second Bosphorus Bridge. The 

largest displacement in the time history is 88 mm. There was no traffic jam during this monitoring. 

At the time points marked as A, B and C, there were large bus, trucks and other vehicles crossing 

the midspan respectively. Comparing the deflections with the First Bosphorus Bridge, it was much 

smaller. In the frequency domain analysis, two frequencies, 0.156 Hz and 0.286 Hz are identified 

as operational modes.  
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Figure 80 Displacement results of the mid-span of the Second Bosphorus Bridge 

 

7.5 Experiments on the Osman Gazi Bridge 

 

The Osman Gazi bridge is located in Izmit Bay and crosses the Marmara Sea. The bridge has three 

spans which are 566 m (approach span) + 1550 m (main span) + 566 m (approach span). In addition, 

a transition span with the length of 120 m is connected with each approach span. The Osman Gazi 

Bridge is the fourth longest bridge in the world. The approach spans and main span are supported 

by main cable and vertical hangers. Two experiments were conducted on the Osman Gazi Bridge. 

 

7.5.1 The First Experiment 

 

As shown in Figure 81, in the first experiment, the camera was located on the bank close the 

northern end of the bridge. The distance from the camera to the midspan is around 1.35 km, which 
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is the longest measurement distance by using cameras in literature. A 4K camera with a Navitar 

24X zoom extender lens was employed to measure the displacement of the midspan. Because it 

was too far from the camera to the midspan of the bridge, it is very difficult to find the target on 

the bridge to track. A wood chessboard (967 mm × 676 mm) was installed on the midspan to be 

the tracking target. Two accelerometers were installed on the midspan to measure the vertical and 

horizontal (transverse) vibrations. Figure 81(a) shows the images captured by the 4K camera. The 

image is not clear and the boundary is blur. From the video it can also been that the camera was 

shaking a lot during the experiment. Here the left red box in Figure 81(a) is to select the part of 

the tower as the static point to illuminate the camera motion problems. The right red box is the 

installed wood chessboard.  

 

 

Figure 81 Experimental setup of the first experiment of the Osman Gazi Bridge: (a) image 

from camera, (b) camera location in map; (c) wood chessboard, (d) accelerometers in 

vertical and horizontal direction, (e) computer for data acquisition, (f) camera setup 
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Figure 82 Results of the first experiment on the Osman Gazi Bridge in time domain: (a) 

horizontal displacement from vision-based method, (b) vertical displacement from vision-

based method, (c) horizontal acceleration from accelerometer, (d) vertical acceleration 

from accelerometer 

 

 

 

Figure 83 Results of the first experiment on the Osman Gazi Bridge in frequency domain: 

(a) FFT of horizontal displacement from vision-based method, (b) FFT of vertical 

displacement from vision-based method, (c) FFT of horizontal acceleration from 

accelerometer, (d) FFT of vertical acceleration from accelerometer 
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Figure 82 shows the displacement and acceleration results obtained from camera and 

accelerometers. From Figure 82(a) it can be seen that the maximum displacement in horizontal 

direction was 400 mm and in vertical direction was 200 mm. In Figure 83, the frequency domain 

data is shown. From Figure 83(a) and (c), it can be seen that the first vibration mode frequency in 

horizontal direction extracted from camera data is 0.114 Hz which is very close the value obtained 

from accelerometer, 0.0993 Hz. From Figure 83(b) and (d), the first two vibration mode 

frequencies (0.091 Hz and 0.262 Hz) in vertical direction obtained from camera data are very close 

to the one obtained from the accelerometers (0.103 Hz and 0.266 Hz).  

 

7.5.2 The Second Experiment 

 

Figure 84 shows the experimental setup of the second experiment. The camera was located on the 

tower close to Izmit side. A 4K camera with a zoom lens (75-300 mm) was employed to record the 

video of the motion of the wood chessboard installed at the midspan. During the experiment, the 

camera was vibrated by the wind load. The buildings in the background marked by the blue box 

was selected as the static point to illuminate the camera motion. The distance from the camera to 

the midspan is 750 m.  

 

Figure 85 shows the results of the second experiment on the Osman Gazi Bridge in time domain. 

It can be seen that the average range of the horizontal displacement is 36 mm from Figure 85(a). 

In Figure 85(b), at the time points marked as A and B, the displacements are 247 mm and 410 mm 

respectively. The large displacement can be verified from the video frames as shown in Figure 86. 

In Figure 86(a), there was a truck crossing the midspan and it induced the displacement of 247 mm 
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and in Figure 86(b), there were two trucks crossing the midspan and it induced the displacement 

of 410 mm. 

 

 

Figure 84 Experimental setup of the second experiment of the Osman Gazi Bridge 

 

 



 195 
 

 

Figure 85 Results of the second experiment on the Osman Gazi Bridge in time domain: (a) 

horizontal displacement from vision-based method, (b) vertical displacement from vision-

based method, (c) horizontal acceleration from accelerometer, (d) vertical acceleration 

from accelerometer 

 

 

 

Figure 86 Vehicles on the bridge at time A and B 
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Figure 87 Results of the first experiment on the Osman Gazi Bridge in frequency domain: 

(a) FFT of horizontal displacement from vision-based method, (b) FFT of vertical 

displacement from vision-based method, (c) FFT of horizontal acceleration from 

accelerometer, (d) FFT of vertical acceleration from accelerometer 

 

From Figure 87(a) and (c), peaks can be identified from the spectra of the data from camera and 

accelerometer. The first vibration mode frequency in horizontal direction obtained from the camera 

data is 0.12 Hz which is close the one from accelerometer (0.1015 Hz) and also close to the values 

obtained in the first experiment (0.114 Hz-camera and 0.0993 Hz-accelerometer). From Figure 

87(b) and (d), the first vibration mode frequency in vertical direction obtained from the camera 

data is 0.091 Hz which is close the one from accelerometer (0.102 Hz) and also close to the values 

obtained in the first experiment (0.091 Hz-camera and 0.103 Hz-accelerometer). While from 

Figure 87(b), the second mode frequency in vertical direction is not identified by the data from 

camera. It is identified from the acceleration data and consistent with the results from the first 

experiment.  
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7.6 Summary 

 

In this chapter, field applications on large structures (three long span bridges in Turkey) using 

vision-based methods with long measurement distance are presented. Problems such as low image 

quality, haze problem, camera motion and blur etc. are encountered during the experiments. In this 

long-distance measurement, a manual target is necessary to improve the accuracy. To illuminate 

the camera motion problem, a static point on the background is required. While it is difficult to 

find a static point on the background in some cases, especially for these long distance measurement 

and large structures. 
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CHAPTER EIGHT: INVESTIGATION OF VIBRATION 

SERVICEABILITY OF A FOOTBRIDGE USING COMPUTER VISION-

BASED METHODS 

 

8.1 Introduction 

 

With the development of high performance structural materials and aesthetic requirements for 

structures, longer and slender footbridges have attracted great public attention and a large amount 

of modern footbridges with lightweight and lively structures have been constructed in the last 

several decades (Živanović et al. 2005). This trend makes a large achievement of infrastructures 

in the progress of smart cities. However, it also causes critical issue: excessive vibrations of slender 

footbridges caused by pedestrian live load. These excessive vibrations may cause another problem, 

i.e., human comfort, since the main function of footbridges are to convey pedestrians. In this 

respect, it means that the estimated dynamic response of the footbridges has to be evaluated against 

human comfort level (Živanović and Pavia 2009). In general vibration produced by human-

induced loads is a structural vibration serviceability problem rather than a structural safety 

(structural damage) problem. A famous example related to vibration serviceability problems of the 

footbridges is the Millennium Bridge over Thames River in England. In 2000, at the opening of 

the newly built footbridge, excessive vibrations which were descripted as “swaying violently” was 

reported when a group of pedestrians crossed the footbridge (BBC 2000). It took £5 million and 

about eight months to solve the problem, while the original cost of the “Wobbly” bridge was £18.2 

million (BBC 2002). Examples about footbridge collapse incidents due to soldiers marching 
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movement in unison over the bridge such as Broughton Footbridge in England and Angers Bridge 

in France can date back to nineteenth century (Setareh 2016). 

 

The vibration serviceability has become a hot topic of research and practice in the community of 

structural engineering and large amount of work has been done to assess the footbridge vibration 

level and to mitigate the excessive levels of vibrations in slender footbridges. Živanović et al. 

(2005) summarized the main research focus of footbridge vibration serviceability which generally 

includes: (1) vibration source related work such as human force estimation and modelling, (2) 

vibration path related work such as stiffness, mass and damping, (3) human perception related 

work such as estimation of human comfort level, (4) human-structure interaction, (5) design 

guidelines and (6) vibration reduction measures. Among these topics, estimation of human comfort 

level is one of the most direct and intuitive way to assess the vibration serviceability considering 

that the main function of footbridge is to convey pedestrian. Organizations and agencies 

established standards and codes such as ISO 10137 by International Organization for 

Standardization (ISO 2007), Euro code 5 by European Committee for Standardization (ECS) 

(1997), BS 5400 by British Standards Institution (BSI 1978) and Setra code by French Technical 

Department for Transport, Roads And Bridges Engineering and Road Safety (Setra 2006). In most 

of the standards and codes, the acceleration related indices combined with vibration frequencies 

are used to define the serviceability limit. For example, ISO 10137 uses the maximum 1-second 

running RMS value of the frequency-weighted acceleration time histories. Euro code 5, BS5400 

and Setra selected the peak value of acceleration at the fundamental frequencies of structures. In 

addition to the standards and codes established by the organizations and agencies above, 

researchers also proposed different serviceability assessment criteria. Mackenzie et al. (2005) 
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proposed the serviceability assessment by defining the acceleration limits as a function of 

footbridge height, parapet height and route redundancy etc. Kasperski (2006) conducted a series 

of experiments on a footbridge, and based on the ratio of pedestrians alarmed by vibration, he 

presented that the RMS limit recommended by ISO 10137 is excessive and should be reduced to 

60% for footbridge serviceability. Barker (2007) recommended using the root-mean-quad (RMQ) 

of acceleration to assess the vibration serviceability instead. Živanović and Pavia (2009) proposed 

a probabilistic approach for the assessment of vibration serviceability based on the acceleration 

measurements. Setareh (2016) investigated the relationships between various evaluation 

parameters such peak value of acceleration, peak value of weighted acceleration, RMS and 

vibration dose value (VDV) and found that based on the relationships, VDV can also be a good 

index for the definition of serviceability limit. Dey et al. (2017, 2018) conducted a series of 

experiment on a large scale aluminum pedestrian bridge in laboratory and evaluated and calibrated 

various guidelines for the serviceability based on the experimental data. Feng et al. (2019) analyzed 

the correlation between the peak acceleration of footbridge vibration and the pedestrian comfort 

level collected by doing pedestrian questionnaire and based on the correlation they proposed a 

procedure of using acceleration data to assess footbridge vibration serviceability.  

 

The current research and practice for vibration serviceability is based on the estimation of vibration 

level collected from conventional sensors such as an accelerometer. The drawbacks of using 

conventional sensors are traffic closure, setup time, cost and labor force to deal with the cable 

wiring work. It is not convenient to conduct such experiments, especially for field application. 

With the development of imaging devices and computer vision technology, vision-based 

approaches for vibration monitoring is gathering increasing attention in the field of structural 
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monitoring due to the advantages such as non-contact, long distance, low cost, time saving, and 

ease of use (Dong et al. 2018, 2019a; b, e; c; Dong and Catbas 2019; Feng et al. 2015a; Xu et al. 

2018). By using cameras to record the structures and tracking the motion of targets on them, the 

displacement of structures can be easily obtained. To fit the standards and codes of vibration 

serviceability assessment, acceleration data can be calculated from displacement data with 

numerical differentiation.  

 

This study proposes a non-contact approach for footbridge serviceability assessment by using 

computer vision-based methods and combining with current standards and codes. With a non-

contact, cost-effective and time-saving way, the vision-based approach can overcome the 

drawbacks of using conventional sensors for the experimental assessment of vibration 

serviceability of footbridges. Živanović et al. (2005) in their review paper summarized that in the 

early stage of research work on vibration serviceability, using displacement and velocity to assess 

human perception is a more direct and intuitive way and was recommended by lots of researchers. 

By using vision-based methods, the displacement and velocity are easier to obtain compared with 

conventional displacement sensor and velocimeter. With the displacement data from vision-based 

methods, it may supply a possible alternative to define the vibration serviceability criteria based 

on displacement and velocity. 

 

8.2 Vibration Limit for Serviceability Assessment in Current Standards and Codes 

 

In this section, the current standards and codes employed by different countries and areas for 

vibration serviceability assessment of footbridges are discussed. Figure 88 illustrates the 
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acceleration limits for footbridge vibration serviceability in different standards and codes. The 

footbridge vibration serviceability assessment is based on the human comfort level of structures. 

Except for ISO 10137, the others employed the peak value of accelerations as the limits for 

serviceability. ISO 10137 use RMS value of the frequency weighted accelerations. It provides a 

base curve using RMS value for serviceability limit and recommends that for footbridges the 

serviceability limit is calculated by multiplying the base curve with the factor 60 for active 

pedestrians. To give a comparative view with other standards and codes, in this study the RMS 

value provided by ISO 10137 is converted to the equivalent acceleration peak value by multiplying 

by the factor √2 . The peak acceleration limit of the standards and codes mentioned above are 

shown in Figure 88. Detailed formulas to determine the curves in Figure 88 are listed in Table 13. 

For ISO 10137, BS 5400 and Euro code 5, a unique curve of serviceability limit of peak 

acceleration against fundamental frequencies of the structures is provided. The region under the 

curve is acceptable for serviceability level and the region above the curve is unacceptable. For 

Setra standard as shown in  Figure 88, it gives three curves to indicate the vibration serviceability 

level such as min comfort level, mid (medium) comfort level and max (extreme) comfort level.  
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Figure 88 Acceleration limits for footbridge vibration serviceability in different standards 

and codes 

 

Table 13 Detailed acceleration limits for footbridge vibration serviceability in different 

standards and codes 

 

 

1 2 3 4 5 10

Frequency (Hz)

0.2

0.3

0.5

1

2

2.5

P
ea

k
 a

cc
el

er
at

io
n
 (

m
/s

2
)

Setra (2006) min comfort

Setra (2006) mid comfort

Setra (2006) max comfort

BS 5400 (1978)

Euro code 5 (1997)

ISO 10137 (2006)

Code Vertical peak acceleration (m/s) 

ISO 10137 (2007) 

limit

limit

limit

0.1414 0.9899,1 4

0.4243,4 8

0.053 ,8 80

a f f

a f

a f f

= − + < ≤
 = < ≤
 = < ≤  

Euro code 5 (European committee 
for Standardization, 1997) 

limit 0.7a =  

BS5400 (British Standards 
Institution, 1978) 

0.5
limit 0.5a f=

 

BS5400 (British Standards 
Institution, 1978) 

limit

limit

limit

0.5,Extreme

0.5 1.0, Medium

1.0 2.5, Low

a

a

a

<
 < <
 < <  



 204 
 

 

8.3 Vision-based Displacement/Velocity Measurement Using Feature Matching 

 

In general, there are four steps to extract structural displacement/velocity from video or image 

sequence. In this study, a vision-based displacement/velocity measurement method using feature 

matching is employed. Figure 89 shows the procedure of the proposed method.  

 

 

Figure 89 Procedure for proposed vision-based displacement/velocity measurement method 

using feature matching 

 

Firstly, the camera is calibrated to estimate the relationship between the image coordinates and the 

real-world coordinates. Here the scale ratio is used which calculate the ratio between the actual 

dimension in physical unit (e.g. millimetre) and the image dimension in pixel (Dong et al. 2019b). 

For example, if the actual height of an object in real world is D mm, and the height of the object 

in image is d pixel, the scale ratio, SR, will be  

D
SR

d
=                                                            (66) 

 

The scale ratio expressed in Eq. 66 is only suitable for the case when the axis of the camera and 

lens is perpendicular to the motion plane of the measurement target. For the cases that there is an 

inclination between them, (Dong et al. 2019b) gives a detailed discussion. Here it is not repeated.  

 

Camera 
calibration

Feature 
extraction

Feature matching 
and outlier removal 

Displacement/velocity 
calculation 



 205 
 

Secondly, the camera records the video or image sequence of the structural motion. Feature points 

(also called key points, or kps) are extracted from the region of interest (ROI) of each image. A 

ROI is generally a sub region of an image that represent the measurement target of a structure. As 

shown in Figure 90, ROI 1 and ROI 2 are parts of a beam of a bridge. The feature point means a 

small image patch of the ROI with distinction such as corner, texture and gradient. On the right-

top of Figure 90, extracted feature points are marked with circles in different color. In general, two 

components are required to define a feature point: feature detector and descriptor. Detector is to 

locate the region of the feature in an image and descriptor is a vector to descript the feature in 

mathematical language. In this study, SIFT (Scale-invariant feature transform) detector is applied 

to locate the feature point and VGG (Visual Geometry Group) descriptor is employed to descript 

the SIFT feature (Dong and Catbas 2019). It is noted in (Dong and Catbas 2019), that using SIFT 

detector and VGG descriptor performs better than using the original SIFT feature method (SIFT 

detector and SIFT descriptor). The ROI selected in Figure 90 is with the size of 209×210 pixels 

and 120 feature points (kps) are extracted. 

 

Thirdly, the feature points extracted in two images are matched based on the similarity of the 

feature points. The similarity of two feature points can be calculated by the distance of the 

descriptors of them. The feature match pairs are selected by the one with the best similarity, i.e., 

with smallest distance. After the initial feature matching, there might be some wrong matches as 

shown in Figure 90. The RANSAC (RANdom SAmple Consensus) method is implemented to 

remove the outliers (Dong and Catbas 2019). On the right-bottom of Figure 90, it shows that three 

wrong matches are removed from the initial match. Depending on whether displacement or 

velocity is required in the end, the feature matching is performed between different image pairs. 
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Figure 91 shows two different feature matching strategies. The top of the Figure 91 illustrates the 

feature matching between the ROI of the first frame in the image sequence and the ROI of Frame 

i (i = 2, 3, 4, …). In other words, the first frame is not updated during the feature matching. The 

location change between the two ROIs is the relative displacement at the time of Frame i to the 

initial frame (Frame 1) and this is exactly the concept of displacement. While on the bottom of 

Figure 91, the feature matching is performed between the consecutive frames such as Frame 1 and 

Frame 2, Frame 2 and Frame 3, and Frame i-1 and Frame i, etc. The frame is always updated 

during the feature matching. The location change between the two ROIs of consecutive frames is 

the incremental of the displacement at the time of the Frame i-1 to Frame i and this refers to the 

concept of velocity. Using update frame strategy might be better to get more good matches when 

the structure moves over time and the light condition or surface feature changes along with the 

motion. The number of matched feature pairs shows the performance of the strategy. A higher 

number means the high matching quality. Figure 92 gives an example to show the comparison of 

the performance of the feature matching using two different strategies. In this case, 120 feature 

points are extracted in the ROI of each image, and the number of matched pairs using frame update 

strategy within an image sequence is more than the one without using frame update. It means that 

feature matching using frame update give better performance. (Dong et al. 2019c) summarized the 

pros and cons of using the two different strategies. In this study, whether the former or the latter is 

used depends on the requirement of whether displacement or velocity is necessary. In the 

experimental section, more details will be discussed according to the results. 
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Figure 90 Feature extraction and outlier removal 

 

 

Figure 91 Feature matching for displacement and velocity 
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Figure 92 Matched pairs of an image sequences using different feature matching strategy 

 

 

At last, the displacement/velocity can be calculated by taking the average of the location change 

of the matched feature points in two images. The displacements in x and y direction, X and Y, in 

physical unit can be calculated by 
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where ( ),j j
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x y  are the image coordinates of the jth matched feature point of 

between the ROIs of Frame i and Frame 1, n is the total number of the matched feature point 

between the ROIs of Frame i and Frame 1, and SRx and SRy are the scale ratio in x and y direction. 

The velocity in x and y direction, VX and VY, in physical unit can be calculated by 
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where ( ),j j

i ix y   and ( )1 1,j j

i i
x y− −   are the image coordinates of the jth matched feature point of 

between the ROIs of Frame i and Frame i-1, and Δt is time interval of the image sampling which 

is the reciprocal of the sampling rate. 

 

8.4 Experimental Verification and Field Application 

 

8.4.1 Experimental setup 

 

A series of experiments were conducted on a footbridge on a campus in the southeast of the United 

States. As shown in Figure 93, the footbridge comprises of 19.5m long vertical truss frames which 

are connected via splice connection in the middle and spans an entire length of 39m over a pond. 

The width of the bridge is 4.17 m. The vertical truss members on the left and the right side have 

HSS 10×10×3/8 top and bottom chords and are stabilized with HSS 6×4×3/8 type vertical and HSS 

4×4×1/4 type diagonal steel members. The lateral stability is provided by another truss frame that 

is 3.65m wide which is constructed with HSS 3×3×1/4 type diagonal cross braces, W12×22 type 

lateral members. Two separate spans are spliced in the middle and the entire frame holds a thin 

layered aluminum-concrete composite deck (Dong et al. 2019a). In general, the bridge is under 

light pedestrian traffic loads and small vehicles such as golf carts. The fundamental frequency of 

the footbridge is 2.54 Hz as presented in the authors previous publication (Celik et al. 2019b). In 
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this experiment, a camera with the resolution of 1920×1080 pixels and the speed of 60 frame per 

second was employed to monitor the vibration of the mids-pan, marked as P1. An accelerometer 

was also installed at the mid-span to record the vibration of the footbridge. The sampling rate of 

the accelerometer was 200 Hz.  

 

 

Figure 93 Experimental setup 
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Table 14 Experimental cases 

 

Eight people were employed to conduct this experiment. One person stood on the mid span as the 

passive subject (footbridge bystander) and the other seven people moved as active subjects 

(pedestrians) by walking, running and jumping in different cases respectively. The reason why 

eight people was employed is that ISO 10137 states that a group size of 8 to 15 people are the 

average pedestrian flow based on the daily occurrence rate. For this footbridge, the daily 

occurrence rate as observed is smaller than the range stated in ISO 10137. While here the low 

bound of 8 to 15 was selected. Table 14 lists the experimental cases conducted in this experiment. 

In Case 1 to 3, the seven people walked on the footbridge in a group by following the beats played 

by a metronome. The speeds are 101, 120 and 201 beats per minute (bps), respectively which are 

equivalent to 1.68, 2.0 and 3.35 Hz. 1.68 Hz and 3.35 Hz are close to the value calculated by 

subtracting and adding the fundamental frequency of the footbridge with one third of it. In 

Case Loading form Speed (bpm, beat per minute) Frequency (Hz) 

1 
Seven people, walking with a 

metronome 
101 1.68 

2 
Seven people, walking with a 

metronome 
120 2.0 

3 
Seven people, walking with a 

metronome 
201 3.35 

4 Seven people, random walking Random speed and beat -- 

5 
Seven people, running with a 

metronome 
180 3.0 

6 Seven people, random running Random speed and beat -- 

7 Seven people, random jumping 150 2.5 

8 Seven people, random jumping Random speed and beat -- 
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references (Matsumoto et al. 1978; Živanović et al. 2005), it is presented that the frequency people 

walking on footbridges follows a normal distribution with a mean pacing rate of 2.0 Hz and 

standard deviation of 0.173 Hz. That is the reason that 2.0 Hz was chosen in this experiment. In 

Case 4, the seven people randomly walked on the footbridge with their normal speeds. In Case 5, 

the seven people ran with the speed of 180 bpm (3 Hz) and the frequency 3 Hz for running is in 

the range 2.0-3.5 Hz defined by (Bachmann et al. 1995). In Case 6, the seven people randomly ran 

on the footbridge. In Case 7, the seven people jumped on the footbridge following the speed of 

150 bpm (2.5 Hz) which is close to the fundamental frequency of the structure (2.54 Hz). In Case 

8, the seven people jumped on the footbridge randomly. During the experiment, the camera and 

accelerometer both recorded the vibrations of all cases. 

 

8.4.2 Result analysis 

 

8.4.2.1 Comparison of Displacement Results from Two Different Feature Matching Strategies 

 

In this section the results from Case 5 is selected to compare the performance of displacement 

measurement using the vision-based methods with frame update and no frame update strategies. 

With no frame update, the displacement can be calculated directly from Eq. 67. With frame update, 

the displacement is calculated by accumulating the displacement change between the two 

consecutive images since the location change in two consecutive images actually is the incremental 

value of displacement at the time of current frame.  
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Figure 94 shows the displacements from two different matching strategies. The correlation 

coefficient between the two time histories is 91.68%. As stated in (Dong et al. 2019c), the 

displacement by using the strategy of frame update has the accumulating errors when converting 

the velocity/acceleration to displacement and this phenomena also occurs in Figure 94a. While in 

frequency domain, both of them give the consistent frequencies: (1) 2.534 Hz (close to 

fundamental frequency, 2.54 Hz) and (2) 3.001 Hz (frequency of people running beat, 3.0 Hz). 

From this comparison, it is recommended that if displacement is required for serviceability 

assessment, the vision-based method with no frame update should be used. 

 

 

Figure 94 Comparison of displacement results from two different feature matching 

strategies of Case 5: (a) comparison in time domain, and (b) comparison in frequency 

domain 
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8.4.2.2 Comparison of Velocity Results from Two Different Feature Matching Strategies 

 

Here Case 5 is also selected to do the comparison: to compare the performance of velocity 

measurement using the vision-based methods with frame update and no frame update strategies. 

With frame update, the displacement can be calculated directly from Eq. (3). With frame update, 

the displacement is obtained by calculating the numerical differentiation of the displacement which 

is calculated by Eq. 67. Figure 95 shows the velocities from two different matching strategies. The 

correlation coefficient between the two time histories is 97.03%. Comparing to the results of 

displacement (correlation coefficient is 91.68%), the velocity results show higher consistency, 

which means calculating velocity from displacement using numerical differentiation gives more 

reliable results. In frequency domain, the two frequencies are also 2.534 Hz and 3.001 Hz which 

are consistent with those in Section 8.4.2.1. From this comparison, it is suggested that if velocity 

is required for serviceability assessment, the vision-based method with either frame update or no 

frame update is good. 
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Figure 95 Comparison of velocity results from two different feature matching strategies of 

Case 5: (a) comparison in time domain, and (b) comparison in frequency domain 

 

8.4.2.3 Comparison of Acceleration Results from Two Different Feature Matching Strategies and 

Accelerometer 

 

To get the acceleration from displacement/velocity data, numerical differentiation operations are 

necessary. The acceleration can be calculated by taking the second derivative of the displacement 

using numerical methods and can also be calculated by taking the first derivative of the velocity 

using numerical methods. Figure 96 and Figure 97 shows the acceleration data (raw data, without 

filtering) directly calculated from displacement (no frame update) and velocity (frame update). 

Figure 98 shows the acceleration data collected by accelerometer. Comparing with Figure 96a, 
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Figure 97a and Figure 98a, it can be seen that the ranges of the raw acceleration data obtained from 

vision-based methods are both from -2 m/s2 to 2 m/s2, while the range of the acceleration collected 

by accelerometer is from -0.5 m/s2 to 0.5m/s2. Comparing Figure 94b, Figure 95b, Figure 96b, 

Figure 97b, and Figure 98b, it is indicated that high order modes are mixed into the acceleration 

time histories when converting displacement to acceleration and velocity to acceleration. The 

reason is thought due to the numerical differentiation. It might also induce the large spikes in 

acceleration data and a large range, e.g. from -2 m/s2 to 2 m/s2. 

 

 

Figure 96 Acceleration (raw data) directly calculated from the displacement data by using 

vision-based method with no frame update of Case 5: (a) in time domain, and (b) in 

frequency domain 
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Figure 97 Acceleration (raw data) directly calculated from the velocity data by using 

vision-based method with frame update of Case 5: (a) in time domain, and (b) in frequency 

domain 
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Figure 98 Acceleration data collected by accelerometer of Case 5: (a) in time domain, and 

(b) in frequency domain 

 

To eliminate the high order modes mixed in the acceleration data obtained from vision-based 

methods in Figure 96 and Figure 97, a low-pass filtering is required. Figure 99 shows the 

comparison of filtered acceleration obtained from vision-based methods with the data from 

accelerometer. From Figure 99a, it is suggested that the three acceleration time histories are 

consistent with each other very well. Figure 99b shows the zoomed window of Figure 99a within 

the range of 18s to 22s. Large spikes in the raw acceleration data obtained from vision-based 

methods shown in Figure 96a and Figure 97a are removed and the amplitude range is within -0.5 

m/s2 to 0.5m/s2.The high order modes in Figure 96b and Figure 97b are eliminated as shown in 
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Figure 99c. This is important because in current standards and codes for vibration serviceability 

assessment, the peak acceleration value or RMS is used to define the serviceability limits. Spikes 

in the raw acceleration time histories due to the numerical differentiation would cause higher peak 

value and RMS, which result in underestimated serviceability assessment results. Table 15 lists 

the correlation matrix of time acceleration histories obtained from vision-based methods (camera) 

with low-pass filtering and accelerometer. It can be seen that the correlation coefficients between 

the data extracted from camera and accelerometer are 96.07% (frame update) and 95.72% (no 

frame update), which gives a quite consistent verification. Also, the correlation coefficient between 

the data obtained from two feature matching strategies is very high, 99.38%. If the acceleration 

collected by the conventional sensor, i.e., accelerometer is regarded as the ground truth, 

considering the high consistencies between the three acceleration time histories, the acceleration 

obtained from both the two feature matching strategies are suitable for serviceability assessment.  
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Figure 99 Comparison of filtered acceleration obtained from vision-based methods with the 

data from accelerometer of Case 5: (a) in time domain, and (b) in frequency domain 
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Table 15 Correlation matrix of time acceleration histories 

 

 

8.4.2.4 Vibration Serviceability Assessment Based on Human Comfort Level 

 

In this study, considering the comparisons of displacement, velocity and acceleration of using two 

different feature matching strategies, using no frame update to obtain displacement data and then 

convert to velocity and acceleration would is applied to assess the vibration serviceability. Table 4 

listed the RMS and peak value of the acceleration data (apeak). Here to the RMS is also converted 

to the equivalent peak acceleration value (apeak-RMS) as indicated in Figure 88. apeak-RMS and apeak 

are applied to assess the vibration serviceability comparing with the serviceability limits based on 

human comfort shown in Figure 88. In Table 16, the column titled by “Cam” is the value calculated 

by the displacement data obtained from the vision-based method with no frame update and the 

column titled by “Accl” is the value calculated by the acceleration obtained from accelerometer.  

 

 

 

 Accelerometer Camera-frame update 
Camera-no 

frame update 

Accelerometer 1 96.07% 95.72% 

Camera-frame update 96.07% 1 99.38% 

Camera-no frame 
update 

95.72% 99.38% 1 
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Table 16 RMS and peak value of the acceleration data 

 

 

Table 17 listed the results of the vibration serviceability assessment of different cases using vision-

based methods and accelerometer. The results of two different approaches are very consistent. It 

can be seen that the level of vibration serviceability of Cases 1 to 4 is within the limits of ISO 

10137, Euro code 5 and BS 5400. For the Setra code, it is within the maximum comfort level. 

Cases 1 to 4 are the cases of human walking with different paces (1.68 Hz, 2.0 Hz, 3.35Hz and 

random beat). Amang the four cases, walking with the frequency of 3.35 Hz (Case 4) causes the 

largest RMS and apeak.  

 

 

 

Case 
RMS (m/s2) apeak-RMS (m/s2) apeak (m/s2) 

Cam Accl Cam Accl Cam Accl 

1 0.0324 0.0341 0.0458 0.0482 0.099 0.124 

2 0.0564 0.0389 0.0798 0.055 0.176 0.118 

3 0.147 0.110 0.207 0.156 0.341 0.467 

4 0.0373 0.0351 0.0527 0.0497 0.0857 0.109 

5 0.369 0.330 0.522 0.468 0.659 0.650 

6 0.474 0.495 0.671 0.701 1.051 1.178 

7 0.904 0.892 1.279 1.262 1.919 1.836 

8 0.6151 0.584 0.870 0.826 1.500 1.426 
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Table 17 Serviceability assessment of different cases 

 

In Case 5, seven people running with the frequency of 3 Hz caused larger RMS and apeak than 

walking cases, but the vibration serviceability level is still within the limits of ISO 10137, Euro 

code 5 and BS 5400. For the Setra code, it is in the range between mid and maximum comfort 

level. However, when the seven people ran with random paces (Case 6), the vibration serviceability 

level exceeds the limits defined by ISO 10137, Euro code 5 and BS 5400. Also, for Setra code, it 

moves to the level between minimum and mid comfort level. The reason for the increase of RMS 

and apeak might be that during the random running, as shown in Figure 100f the seven people’s 

random running induced a dominant frequency, 2.548 Hz which is the resonant frequency of the 

Case 

Serviceability Assessment 

ISO 10137 Euro code 5 BS5400 SETRA 

Cam Accl Cam Accl Cam Accl Cam Accl 

1 
Under 
limit 

Under 
limit 

Under 
limit 

Under 
limit 

Under 
limit 

Under 
limit 

Max 
comfort 

Max 
comfort 

2 
Under 
limit 

Under 
limit 

Under 
limit 

Under 
limit 

Under 
limit 

Under 
limit 

Max 
comfort 

Max 
comfort 

3 
Under 
limit 

Under 
limit 

Under 
limit 

Under 
limit 

Under 
limit 

Under 
limit 

Max 
comfort 

Max 
comfort 

4 
Under 
limit 

Under 
limit 

Under 
limit 

Under 
limit 

Under 
limit 

Under 
limit 

Max 
comfort 

Max 
comfort 

5 
Under 
limit 

Under 
limit 

Under 
limit 

Under 
limit 

Under 
limit 

Under 
limit 

Mid-
Max 

comfort 

Mid-
Max 

comfort 

6 
Exceed 

limit 
Exceed 

limit 
Exceed 

limit 
Exceed 

limit 
Exceed 

limit 
Exceed 

limit 

Min-
Mid 

comfort 

Min-
Mid 

comfort 

7 
Exceed 

limit 
Exceed 

limit 
Exceed 

limit 
Exceed 

limit 
Exceed 

limit 
Exceed 

limit 
Min-
Mid 

comfort 

Min-
Mid 

comfort 

8 
Exceed 

limit 
Exceed 

limit 
Exceed 

limit 
Exceed 

limit 
Exceed 

limit 
Exceed 

limit 
Min-
Mid 

comfort 

Min-
Mid 

comfort 
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footbridge and the component takes a large part in the time history. The resonant effect induced 

larger amplitude of acceleration responses and larger RMS and apeak. While in Case 5 shown in 

Figure 100e, the dominant frequency of running with the frequency of 3.0 Hz is 3.001 Hz which 

is not the resonant frequency.  

 

Similar to Case 6, the vibration serviceability levels of Case 7 and Case 8 also exceed the limit 

defined by ISO 10137, Euro code 5 and BS 5400. For Setra code, it also moves to the level between 

minimum and mid comfort level. The loading of Case 7 and Case 8 are jumping. 

 

In Case 7, the seven people jumped with the 2.5 Hz which is close to the fundamental (resonant) 

frequency of the footbridge and it induced the largest amplitudes of the acceleration responses. In 

Case 8, the seven people jumped with random beat but still it induced a frequency of 2.52 Hz 

which is close to the fundamental (resonant) frequency of the footbridge, which is very similar to 

Case 6: random running. Also, the similar phenomena occur in Case 4: random walking. It is 

indicated that when people move (walk, run and jump) with random beat on the footbridge, it has 

high chances to excite the fundamental frequency. While it is also observed from Figure 100 that 

the fundamental frequency of the footbridge changes slightly over the types of people’s motion 

(walking, running and jumping) and the beat speed. The range is within 0.1 Hz. The slight change 

might affect the serviceability level since the serviceability limit defined in standards and codes is 

related the fundamental frequency. 
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Figure 100 Frequency spectra of the acceleration time histories obtained from vision-based 

method and accelerometer of all cases 

 

8.5 Summary 

 

In this study, the vibration serviceability assessment based on human comfort of a footbridge using 

computer vision techniques is investigated. A series of experiments of footbridge under different 

types of human loading including walking, running and jumping with different speeds (beats and 

frequencies) are conducted to verify the proposed approach. The main approaches, findings, and 

conclusions are as follows: 
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 (1) The vibration serviceability assessment criteria in current standards and codes are discussed 

and ISO 10137, Euro code 5, BS 5400 and Setra are taken as the reference for serviceability 

assessment; 

 

(2) A vision-based displacement/velocity monitoring approach is proposed by using feature 

matching. Two different feature matching strategies such as matching between first frame and 

current frame (no frame update) and matching between consecutive frames (frame update) are 

compared and it is suggested that the way of feature matching with no frame update give good 

displacement, velocity and acceleration, while the way with no frame update perform not good in 

terms of displacement measurement.  

 

(3) The feature matching with no frame update is applied to estimate the displacement from image 

sequence and the displacement is first converted to acceleration and then indicators such RMS and 

apeak are calculated for the serviceability assessment compared with the conventional accelerometer. 

 

(4) The random running, random jumping and jumping with the frequency that is close to the 

fundamental frequency of the footbridge can induce the serviceability level to exceed the limit 

defined by the current standards and codes. 

 

(5) The human loads of different types and speeds can induce a slight change (within 0.1 Hz in 

this experiment) of the fundamental frequencies of the footbridge and this would affect the 

serviceability assessment since the serviceability limit defined in standards and codes is related the 

fundamental frequency. 
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Although in current standards and codes, acceleration is still the most common data type for 

serviceability assessment, displacement and velocity can also be other alternatives. The 

serviceability assessment in current standards and codes is based on the human comfort and human 

comfort is a concept of perception. It is stated in literature that both the displacement and velocity 

can trigger the perception of human (Živanović et al. 2005). For example, the minimum 

displacement that human can percept is 0.001mm (Pretlove and Rainer 1995). Reference (Smith 

1969) applied displacement as the indicator for human comfort and serviceability. It is also noted 

that in Japan, velocity is used as the index to assess footbridge serviceability (Yoneda 2002). In 

reference (Živanović et al. 2005), it was stated that “Usually, acceleration response was measured 

because it was established as the best parameter for describing people’s reaction to vibrations 

and, also, it was easy to measure it using widely available accelerometers.” This might be the 

reason why acceleration is used in most of the standards and codes for serviceability assessment. 

Considering the advantages of vision-based methods such as non-contact, long distance, low cost, 

time saving, and ease of use compared to conventional accelerometers, using vision-based methods 

to collect displacement, velocity and acceleration would be a better choice for vibration 

serviceability assessment and it gives high possibilities for the serviceability assessment using 

different data types.  
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CHAPTER NINE: A PRACTICAL APPROACH FOR THE ESTIMATION 

OF BRIDGE DISTRIBUTION FACTOR AND LOAD RATING FACTOR  

 

9.1 Introduction 

 

Bridge load rating is one of the main tools for the condition assessment. Resulting in load rating 

factor (RF), load-testing aims at determining operational and extreme traffic load bearing 

capacity/level of bridges. During load rating, the estimation of the distribution of live loads on 

bridges is a critical step. (AASHTO 2014) provides a standard procedure to calculate the 

distribution factor (DF) and the rating factor. By conducting rapid experimental test on a reinforced 

concrete bridge population, (Catbas et al. 2012a) proposed a method to determine the moment DFs 

for single-span-T-beam bridges. They depicted that the new approach relatively predicted live load 

increases when compared to standard girder analysis given in the (AASHTO 2014) code. Based 

on the load and resistant factor rating (LRFR) approach, load rating factors according to three 

methods (standard, experimental strain data and FEM) were obtained for a fully instrumented 

bridge. Standard approach was resulted to approximate lower rating factor than the other ones 

(Sanayei et al. 2016). The standard approach for load rating gives conservative results. Conducting 

experiment for load rating test costs large amount of time and labor force. FEM based methods 

need experimental data to update the modal. 

 

In this study, a practical approach for the estimation of bridge live load distribution factor and load 

rating is proposed. The DF is calculated with the experimental bridge deflection results by using 

computer vision approach during load testing or normal traffic and then the RF is calculated with 
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the obtained DF and AASHTO codes. The proposed approach is verified with a case study of a 

prestressed concrete highway bridge. 

 

9.2 Methodology 

 

Figure 101 shows the schematic diagram of the proposed method for distribution factor estimation. 

In this example, a prestressed concrete highway bridges with five I shape girders are considered. 

The bridge has two lanes. Here, a camera (Camera 1) is employed to record the traffic flow of the 

bridge and the other cameras (Camera 2, Camera 3, Camera 4, …) are employed to monitor the 

response of the girders in the same cross section. Depending whether a truck (T1) is crossing the 

bridge on Lane 1 (L1) or Lane 2 (L2) or two trucks on the two lanes at same time with same 

location, Figure 101b, c or d is selected to calculate the distribution factor (DF) as: 

1

i
i n

j

j

d
DF

d
=

=

∑
                                                        (69) 

where DFi is the distribution factor of the ith girder, n is the total number of bridge girders and di 

is the displacement of the ith girder. Here, the displacement of each girder is obtained from cameras. 

In Figure 101d, it is very rare that two exact same truck are on the same cross section at the same 

time so that to calculate the distribution factor considering the cases of two trucks presence, linear 

superposition of the two cases shown in Figure 101b and Figure 101c is used.  

 

After the calculation of the distribution factor, the load rating factor is calculated by using the 

equation below: 
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Where φ  is the load and resistance factor design (LRFD) resistant factor, 
sφ is the system factor 

for redundancy, R is the structure resistance, DC is the dead load, DW is the wearing surface load, 

P is the prestress load, LL is the live load, IM is the impact effect, and 
DC

γ , 
DW

γ , pγ , and 
L

γ  are 

the factors for different loads. Detailed explanation can be found in (AASHTO 2014).  

 

 

Figure 101 Schematic diagram of the proposed method for distribution factor estimation 
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9.3 Application on a Real Bridge 

 

9.3.1 General Features of the Bridge 

 

As shown in Figure 102, the bridge in the study is a multi-span prestressed concrete bridge. The 

bridge was constructed in 1964 and has a total length of 2993 ft (912 m). Each span consists of 

five pre-stressed I-beam (AASHTO Type II girders). The total length of each span is 52 ft (15.85 

m) and the width is 33.08 ft (10.08 m). The girders are spaced at 6.5 ft (1.98 m). The thickness of 

the slab is 7 inches (17.8 cm). In this experiment, only the first span is considered, and all the 

experiments were conducted for the first span.  

 

 

Figure 102 The prestressed concrete highway bridge in this study 
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9.3.2 Experimental Setup 

 

As shown in Figure 103, two types of sensors were installed on the bridge. Five displacement 

sensors (i.e., potentiometers) were installed at the mid span of each girder to measure the 

displacement. Three cameras (Z CAM E1, 4K, 30 FPS, 75-300 mm zoom lens) were employed to 

measure the displacements at the same location. The first camera recorded the motion of Girder 1 

(G1) and Girder 2 (G2), the second camera recorded the motion of Girder 3 (G3) and Girder 4 

(G4), and the third camera recorded the motion of Girder 5 (G5). Five strain gauges were installed 

at the 1/4 span of each girder. One camera (Canon VIXIA HF R42) was employed to record the 

traffic footage. The sensors and cameras are shown in Figure 104, and all the sensors were installed 

at the bottom of the girders as shown in Figure 105. Manual markers were attached on the side 

surface of the girder, and they were regarded as targets for visual tracking when using vision-based 

displacement measurement methods. Figure 106 shows the overview of the instrumentation. 

 

 

Figure 103 Sensor instrumentation plan 
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Figure 104 Sensors and cameras used in the test: (a) displacement sensor, (b) strain gauge, 

(c) camera for traffic monitoring, and (d) camera for displacement measurement 

 

 

Figure 105 Sensors installed on the bridge 
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Figure 106 Overview of the instrumentation 

 

Table 18 Experimental cases 

 

 

Case Case Name Lane Loading Type 

1 T1L1 Lane 1 (L1) Static, four-step 

2 T1L2 Lane 2 (L2) Static, four-step 

3 T1L1-35 Lane 1 (L1) Dynamic, 35 mph 

4 T1L2-35 Lane 2 (L2) Dynamic, 35 mph 
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Figure 107 Truck loading on the bridge 

 

 

Figure 108 Loading plan of the static test 

 

The experiment consisted of a series of static loading and a series of dynamic loading. The truck 

employed in this experiment is shown in Figure 107. Table 18 listed the experimental cases. The 

first two cases are static loading cases and the truck (T1) was loaded at four different locations on 
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the first span of the bridge with four steps as shown in Figure 108. In each step, the truck stopped 

for certain time and then slowly moved to the next location. In Case 1 (T1L1) the truck was loaded 

on Lane 1 (L1) and in Case 2 (T1L2) the truck was loaded on Lane 2. Case 3 and Case 4 are 

dynamic test. The truck crossed the first span of the bridge with a speed of 35 miles per hour (mph) 

on Lane 1 and Lane 2, respectively. In the dynamic test, the truck moving load is regarded as the 

normal traffic load. During the experiment, the sensors and cameras recorded the responses of the 

first span of the bridge, and the videos from Canon camera were regarded as reference to check 

the truck loading. 

 

9.3.3 Result analysis 

 

Figure 109 and Figure 110 show the displacement results of the mid-span of Case 1 (T1L1, static) 

and the strain results of the 1/4 span of Case 1 (T1L1, static), respectively. The displacement data 

is obtained from camera and displacement sensor (potentiometer). The procedure of vision-based 

displacement measurement the same with the one presented in Section 2.4.1.1 and the tracking 

algorithm is normalized correlation coefficient-based template matching (NCCTM). During the 

experiment, the potentiometers installed at Girder 1 and Girder 5 didn’t work. The comparison 

between the displacement data from cameras and potentiometer are only within Girder 2, Girder 3 

and Girder 4. From Figure 109, it can be seen that the differences between cameras and 

potentiometer are very small. In this study, the distribution factor calculation by displacement 

method is conducted by using the displacement data from cameras. Since this is a four-step static 

loading test, the deflections at each step can be extracted to calculate the distribution factor. In this 

study, the deflections at the second step (marked as green bounding box in Figure 109 and Figure 
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110) are choose to calculate the distribution factor. The distribution factor using displacement data 

is calculated by Eq. 69. The distribution factor using displacement data is expressed as 

 

1
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ε
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=

=

∑
                                                        (71) 

where εi is the strain of the ith girder. The other parameters are the same with those in Eq. 69. To 

compare with the standard distribution factor, the equations from AASHTO codes are also used, 

as listed in Table 19.  

 

 

 

Figure 109 Displacement results of the midspan of Case 1 (T1L1, static): (a) Girder 1, (b) 

Girder 2, (c) Girder 3, (d) Girder 4 and (e) Girder 5 
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Table 19 Distribution factor calculation in AASHTO 

 

 

Figure 110 Strain results of the 1/4 span of Case 1 (T1L1, static): (a) Girder 1, (b) Girder 2, 

(c) Girder 3, (d) Girder 4 and (e) Girder 5 

DF for moment, interior girder DF for moment, exterior girder 

One design lane loaded: 

mg
moment
SI =0.06+ � S

14
�0.4 �S

L
�0.3 � Kg

12Lts
3�0.1

 

Two or more (multiple) design lanes 
loaded: 

mg
moment
MI =0.075+ � S

9.5
�0.6 �S

L
�0.2 � Kg

12Lts
3�0.1

 

AASHTO 4.6.2.2.2b-1 

One design lane loaded: 

mgmoment
SE =

5.5

S
 

Two or more (multiple) design lanes loaded: 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑀𝑀𝑀𝑀 = 𝑒𝑒(𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑀𝑀𝑀𝑀 ) 

e=0.77+
de

9.1
≥1.0 

de is positive if girder is inside of barrier, 
otherwise negative 

AASHTO 4.6.2.2.2.1d-1 

S = girder spacing (ft); L = span length (ft); ts = slab thickness (in.); Kg=n�Ig+eg
2A�; n = modular 

ratio of girder and deck; Ig = moment of inertia of girder (in.4), eg = girder eccentricity which is 
the distance from girder centroid to middle centroid of slab, (in.); A = girder area (in.2) 
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Figure 111 and Figure 112 show the displacement results of the mid-span of Case 2 (T1L2, static) 

and the strain results of the 1/4 span of Case 2 (T1L2, static). The procedure of distribution factor 

calculation is the same with Case 1.  

 

 

Figure 111 Displacement results of the midspan of Case 2 (T1L2, static): (a) Girder 1, (b) 

Girder 2, (c) Girder 3, (d) Girder 4 and (e) Girder 5 

 

 

Figure 112 Strain results of the 1/4 span of Case 2 (T1L2, static): (a) Girder 1, (b) Girder 2, 

(c) Girder 3, (d) Girder 4 and (e) Girder 5 
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Figure 113 shows the distribution factors calculated from the static load cases. Figure 113a and b 

are calculated from the cases when only one lane is loaded by a truck. By using superposition 

method, the distribution factors when two trucks are loaded on two lanes in the same cross section 

at the same time are obtained, as shown in Figure 113c. Figure 113c also refers to the case in 

AASHTO code “Two or more (multiple) design lanes” which is mentioned in Table 19. Table 20 

lists the distribution factors of the static cases. Here “disp” represents the value calculated by 

displacement data, “str” represents the value calculated by strain data, and the “m” in the item 

“DF-disp-m” means “Two or more (multiple) design lanes”. From Figure 113 and Table 19 it can 

be seen that when using the AASHTO codes to calculate the distribution factor, it gives more 

conservative results and distributed more live load on each girder, especially the girders away from 

the girder in the center line (Girder 3). The distribution factor calculated from strain data and 

displacement data (camera) shows very consistent trend and gives close results.  

 

With the extracted distribution factor in Figure 113 and Table 19, the bridge load rating factors 

can be calculated by following the AASHTO standard (Eq. 70). In the calculation of rating factor, 

the truck is HL93. Figure 114 and Table 21 shows the load rating factors extracted from the static 

load cases. The rating factors using the distribution factors calculated from AASHTO codes 

underestimate the structural load carrying capacity compared to those using strain data and 

displacement data (camera). And the differences between the results from strain gauges and 

cameras are very small. It proves that it is feasible to use cameras and vision-based displacement 

measurement method to estimate the distribution factors and perform load rating.  
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Figure 113 Distribution factor calculated from the static test cases: (a) truck in Lane 2, (b) 

truck in Lane 1, and (e) two same trucks in both lanes 

 

Table 20 Distribution factor calculated from the static test cases 

 

 

Girder 
DF-disp-

T1L1 

DF-disp-

T1L2 

DF-str-

T1L1 

DF-str-

T1L2 

DF-disp-

m 

DF-str-

m 

DF-

AASHTO 

1 0.051 0.253 0.014 0.274 0.304 0.288 0.530 

2 0.174 0.302 0.104 0.396 0.476 0.500 0.620 

3 0.282 0.293 0.297 0.236 0.575 0.532 0.620 

4 0.301 0.134 0.382 0.078 0.435 0.460 0.620 

5 0.192 0.018 0.204 0.016 0.210 0.220 0.530 
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Figure 114 Load rating factor calculated from the static test cases: (a) truck in Lane 2, (b) 

truck in Lane 1, and (e) two same trucks in both lanes 

 

Table 21 Load rating factor calculated from the static test cases 

 

 

Girder 
RF-disp-

T1L1 

RF-disp-

T1L2 

RF-str-

T1L1 

RF-str-

T1L2 

RF-disp-

m 

RF-str-

m 

RF-

AASHTO 

1 13.16 2.67 48.74 2.46 2.22 2.35 1.27 

2 3.87 2.23 6.46 1.70 1.41 1.35 1.08 

3 2.38 2.29 2.27 2.85 1.17 1.26 1.08 

4 2.24 5.00 1.76 8.58 1.55 1.46 1.08 

5 3.52 38.58 3.31 42.26 3.22 3.07 1.27 
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Figure 115 Displacement results of the midspan of Case 3 (T1L1-35, dynamic): (a) Girder 

1, (b) Girder 2, (c) Girder 3, (d) Girder 4 and (e) Girder 5 

 

 

Figure 116 Displacement results of the midspan of Case 4 (T1L2-35, dynamic): (a) Girder 

1, (b) Girder 2, (c) Girder 3, (d) Girder 4 and (e) Girder 5 
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Figure 117 Distribution factor calculated from the dynamic test cases: (a) truck in Lane 2, 

(b) truck in Lane 1, and (e) two same trucks in both lanes 

 

Table 22 Distribution factor calculated from the dynamic test cases 
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(b)
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Girder DF-disp-T1L1 DF-disp-T1L2 DF-disp-m DF-AASHTO 

1 0.062 0.279 0.341 0.530 

2 0.183 0.300 0.483 0.620 

3 0.313 0.243 0.557 0.620 

4 0.302 0.136 0.438 0.620 

5 0.139 0.041 0.180 0.530 
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Figure 118 Load rating factor calculated from the dynamic test cases: (a) truck in Lane 2, 

(b) truck in Lane 1, and (e) two same trucks in both lanes 

 

Table 23 Load rating factor calculated from the dynamic test cases 

 

Figure 115 and Figure 116 shows the displacement data of the midspan of the dynamic cases. By 

picking the maximum values of the displacement time histories, the distribution factors can also 

Girder RF-disp-T1L1 RF-disp-T1L2 RF-disp-m RF-AASHTO 

1 10.94 2.42 1.98 1.27 

2 3.66 2.24 1.39 1.08 

3 2.15 2.76 1.21 1.08 

4 2.22 4.94 1.53 1.08 

5 4.85 16.39 3.74 1.27 
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be calculated as shown in Figure 117 and Table 22. The distribution factors obtained from the 

dynamic test are very similar to the static test. And the distribution factors calculated from 

AASHTO codes are more conservative in comparison with the one calculated from the 

displacement data obtained by cameras. In the dynamic test, the strain gauges were not used. Figure 

118 and Table 23 show the load rating factors calculated with the extracted distribution factors. It 

is indicated that the load rating factor calculated by using the distribution factors from AASHTO 

codes underestimates the bridge carrying capacity.  

 

9.4 Summary 

 

In this chapter, a practical approach for the estimation of the bridge distribution factor and load 

rating factor is proposed. The distribution factor is calculated by using the displacement data 

extracted from cameras, and it is very consistent with the value calculated from the conventional 

sensors such as strain gauges in the static and dynamic tests on a prestressed concrete bridge. The 

results of the static and dynamic tests also show that the distribution factors calculated from 

AASHTO codes are more conservative than that calculated by experimental data (displacement 

data from cameras and strain data from strain gauges). The load rating factors are calculated by 

following the AASHTO codes and using the distribution factors from experimental data and 

AASHTO codes. The load rating results by using the proposed method and strain data are very 

consistent and the load rating factors calculated by using AASHTO codes underestimate the bridge 

load carrying capacity. Comparing to the conventional testing method using strain gauges, the 

proposed approach using cameras and computer vision to estimate distribution factor and load 

rating factor is more convenient and does not need too much cost, time and labor force to do sensor 
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instrumentation and cable wiring work. It is very promising in the future to apply the proposed 

approach for bridge load rating. 
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CHAPTER TEN: A COMPLETELY NON-CONTACT RECOGNITION 

SYSTEM FOR BRIDGE UNIT INFLUENCE LINE USING PORTABLE 

CAMERAS AND COMPUTER VISION 

 

Previously published as Dong, C. Z., Bas, S., and Catbas, F. N. (2019a). “A completely non-contact 

recognition system for bridge unit influence line using portable cameras and computer vision.” 

Smart Structures and Systems, 24(5), 617-630. 

 

10.1 Introduction 

 

Bridge structures are important components of the transportation systems, and it is important to 

keep them in safe working condition to ensure the normal operation of the transportation network. 

With daily traffic and other external effects, bridges are undergoing with structural changes, 

deterioration and damages over time. Currently, human visual inspection is still a common 

approach to detect defects and most of the decisions are made by inspectors’ experiences (Catbas 

et al. 2017). For safe operation, timely maintenance and convenient management in aspect of 

structural problems, effective sensing technologies and analytical approaches are necessary to 

detect the structural changes and damages and give reliable condition assessment and performance 

evaluation timely and sufficiently (Zaurin et al. 2015). To achieve this goal, in last two decades 

structural health monitoring (SHM) has been widely explored and implemented on bridges all over 

the world. SHM systems can collect massive valuable information including structural input (loads 

and other external effects) and structural output (responses such as displacement, strain and 

acceleration) and make diagnosis and prognosis to support the structural safety and decision 
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making.  

 

With the benefits of interdisciplinary integrations, various advanced sensing technologies such as 

elasto-magneto-electric (EME) sensor for in-service steel cable forces measurement (Duan et al. 

2016), wireless sensors for dynamic monitoring (Celik et al. 2018c), fiber Bragg grating (FBG) 

sensor for strain monitoring (Ye et al. 2016e), LiDAR scanning for structural condition assessment 

(Chen et al. 2012b), skin-type sensor for strain measurement (Kong et al. 2018), infrared 

thermography for automated concrete deck inspection (Catbas et al. 2017) and vision-based bridge 

monitoring at global level (Catbas et al. 2018), etc. have been employed in current research and 

practice. Among these technologies, vision-based approaches are gathering increasing attention in 

the field of SHM (Dong and Catbas 2019; Ye et al. 2016c) due to the advantages such as non-

contact, long distance, low cost, time saving and ease of use. Generally, the studies and practices 

of vision-based monitoring are divided into two aspects: 1) inspection and condition assessment 

at local level such as crack, spalling (Karaaslan et al. 2018) and delamination detection (Hiasa et 

al. 2017d) and 2) structural monitoring at global level such as vibration and deflection monitoring 

(Dong et al. 2015, 2018, 2019d; Xu and Brownjohn 2018; Ye et al. 2015, 2016a; f), cable force 

monitoring (Feng et al. 2017; Ye et al. 2016b), modal analysis (Chen et al. 2018a; Hoskere et al. 

2019; Yang et al. 2017b), load estimation (Celik et al. 2018a), load rating (Catbas et al. 2012b) and 

load capacity estimation (Lee et al. 2006a) etc. With vision-based inspection at local level, the 

condition assessment is carried out when damages already appear and are visible and large enough. 

It is very hard to estimate the tiny deteriorations of structures and give further prediction. Vision-

based monitoring at global level mostly collects the structural responses and make evaluation of 

structural performance and safety based on the time histories such as displacement, acceleration 
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and strain. However, the research about the identification of operating traffic loads as structural 

input doesn’t receive sufficient attention. Even though weigh-in-motion (WIM) systems are 

installed as parts of the SHM system on bridges, only the weight of vehicles can be estimated and 

the position information is hard to obtain. Both vehicle loads and position information on the 

bridge are quite important to structural identification at global level. If only response data are used 

for structural identification without knowing input force, the structural change and damage has to 

be large enough to induce significant change to the output responses. Feature extraction from 

output responses for damage detection is very difficult. 

 

To comprehensively and sufficiently evaluate the structural performance, assess the condition, 

predict safety and remaining life, the monitoring of structural input and output are necessary. 

(Zaurin and Catbas 2010a; b) combined cameras and conventional sensors such as strain gages to 

extract the strain unit influence line (UIL) and recognized damages using statistical outlier 

detection from UIL vector sets and also conduct load rating (Catbas et al. 2012b). Their work was 

validated with laboratory experiments on large-scale bridge model and field application on real 

life bridges. (Khuc and Catbas 2018) integrated camera and displacement sensors to obtain 

displacement unit influence surface and proposed a statistical approach to detect bridge damages. 

Damage cases were simulated by changing the boundary condition and connection of bridge 

components of a bridge model in laboratory. Both the two examples extracted the static structural 

properties as damage features and used cameras for input monitoring and conventional sensors for 

output. There are other studies focusing on input-output data and evaluating structural dynamic 

properties. (Tian et al. 2018) conducted impact test on a small-scale beam in laboratory using 

camera to capture the human input and accelerometers to collect the output responses. The impact 
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test was also validated on a footbridge and modal parameters such as frequency, mode shape and 

scaling factor were extracted. In another research, (Tian et al. 2019) conducted impact test on a 

small scale beam with moveable camera to collect the beam outputs and impact hammer to give 

excitation and record the inputs. The major difference between two studies done by Tian et al. is 

just to switch the data collection approaches for input-output data sources. The studies above 

including static and dynamic structural properties estimation were carried out by combining 

cameras and conventional sensors. The drawbacks of using conventional sensors are traffic 

closure, setup time and labor force to deal with the cable wiring work. It is not convenient to 

conduct such experiments, especially for field application. The synchronization between cameras 

and sensors are also a big challenge.  

 

In this chapter, the study of structural identification using input-output data will further advanced 

from combining cameras and conventional sensors to a completely non-contact recognition system 

just using cameras. The input and output data are both obtained from portable cameras and 

computer vision techniques are employed to process the images and track the structural behaviors. 

UIL is an effective and sensitive index for monitoring bridge behavior under identified loading 

conditions and explicit structural feature for efficient structural evaluation and assessment. It is 

also very intuitive for engineers. The proposed recognition system will take UIL as the target 

parameter for structural identification and the proposed UIL extraction method can be extended to 

a fully non-contact damage detection approach. 
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10.2 Methodology 

 

10.2.1 UIL 

 

UIL as shown in Figure 119 indicates the variation of a response such as moment, force, 

displacement, strain and acceleration at a given position on a structure due to the imposition of a 

unit load at any point on the structure (Zaurin and Catbas 2010a). To generate a UIL, a unit load is 

imposed on the structure and moved on it. The response induced by the load at the selected position 

on the structure is calculated by structural analysis methods or measured by experimental 

approaches. The response values are then plotted against with the position of load on the structure 

to generate the UIL. Mathematically UIL of a selected position is the function of the position of 

the moving unit load on the structure. The detailed concept and calculations of UIL are discussed 

in elementary structural analysis courses as basics and here only the procedure of UIL extraction 

using experimental data is introduced.  
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Figure 119 UIL decomposition 

 

When UIL is extracted from experimental data by processing an inverse problem, UIL provides a 

signature with a normalized structural response for the selected critical locations instrumented by 

any type of sensors (selected positions in Figure 119). To extract UIL with experimental 

approaches, the weight and location of each axle of a vehicle crossing the bridge has to be known 

in advance and responses of the selected position are also measured with sensors. Then the UIL of 

the structure can be extracted using the following equation (Zaurin and Catbas 2010a): 

{ } [ ]{ }r w u=                                                             (72) 

where{r} is the vector containing the responses of the selected position induced by the moving 

load, [w] is the matrix containing the axle weights with respect to the corresponding distances, and 

{u} is the UIL vector. Figure 119 gives an example of the extraction of moment UIL. In this 
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example, a specific position determined by L1 and L2 is selected and a moving vehicle is imposed 

on the bridge. The axle weights of the vehicle are w1, w2 and w3. The distance between axles are 

d12 and d23. In this case, one element of Eq. 72 can be expressed as 

1 2 3r aw bw cw= + +                                                       (73) 

When knowing any location of the vehicle on the bridge, Eq. (72) can be written as 

1

2 1

1

1

2

3 2 1 2

3 2 1 1

1

3

0 0 0 0 0 0 0 0 .

. . . . . . . . . .

0 0 0 0 0 0 0 .

. . . . . . . . . .

0 0 0 0 0 0 .
.

. . . . . . . . . . .
.

0 0 0 0 0 0 .

. . . . . . . . . .

. . . . . . . . . .

. 0 0 0 0 0 0 0 0

n n
m m

m n

w

w w
r

u
r

w w w u

w w w u
r

w

×
×

×

 
 
 
 

   
    
       = ×    

    
          
 
 
  

                 (74) 

where n is the moving steps of the vehicle and also the number of discretized coefficients for unit 

influence along the actual length of the bridge, and m is the number of the samples of the measured 

responses. The UIL is calculated as an inverse problem using the equation below: 

{ } [ ] { }1
u w r

−=                                                       (75) 

 

In the study, displacement UIL is targeted and the displacement is regarded as the response that 

can be measured by vision-based methods. The weight and distance between axles are 

predesignated and the location of the vehicle is estimated by vehicle tracking from images. In the 

followings, the vision-based structural input estimation (vehicle location) and vision-based 

structural output estimation method (displacement responses) are introduced respectively.  
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10.2.2 Vision-based Structural Input Estimation: Vehicle Location 

 

10.2.2.1 General Procedure of Vehicle Tracking 

 

To identify the vehicle location on bridge surface, in general there are four steps as shown in Figure 

120. At first, the camera is calibrated to rectify the distortions such as projective distortion caused 

by camera pose and radial distortion caused by lenses. Then the object detection algorithms are 

implemented to detect the category of the vehicles and give the initial bounding boxes of detected 

vehicles and they will be regarded as the tracking targets. The tracking targets can also be selected 

manually. In the third step, the visual tracking algorithms are implemented to tracking the detected 

or selected vehicles and the vehicle location in each frame of the image sequence or video can be 

estimated. At last, the vehicle location in the image coordinates is transformed to the real-world 

coordinates to estimate the vehicle location on bridges. The planar homagraphy matrix method is 

applied for the camera calibration which is introduced in Section 2.2. The other three steps are 

presented as following. 

 

Figure 120 General procedure of vehicle tracking 
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10.2.2.2 Vehicle Detection/Selection 

 

There are various algorithms for automated vehicle detection. (Zaurin and Catbas 2010a) applied 

background subtraction to detect the vehicles and made classifications. (Khuc and Catbas 2018) 

implemented AdaBoost technique and Cascade classifier using histograms of oriented gradients 

(HOG) features to train and detect vehicle types. With the application of deep learning in computer 

vision, deep learning-based visual tracking has made great progress. The classical studies in this 

area are R-CNN (Regions with Convolutional Neural Networks) (Girshick et al. 2012) and its 

successors such as Fast R-CNN (Girshick 2015), Faster R-CNN (Ren et al. 2017), Mask R-CNN 

(He et al. 2017), YOLO (You only look once) (Redmon et al. 2015) and SSD (Single shot multibox 

detector) (Liu et al. 2016a). As stated in Section 10.2.2.1, the vehicle targets can also be selected 

manually. It all depends on the experimental requirement and application scenarios. If during the 

time of the experiment there is only one vehicle crossing the bridge, manual selection is good 

enough to deal with this work. While, if multiple vehicles crossing, pretraining and using deep 

learning-based vehicle detection algorithms are the more convenient options. In this study, the 

demonstration is designated for the experiments of UIL extraction and predefined vehicles are 

selected for the experiments, so that the tracking targets are manually selected from images. Also, 

using one vehicle to extract UIL faces fewer influencing problems that would happen in multiple 

vehicle cases. In the real bridge application, automated vehicle detection should be applied to adopt 

the cases of multiple vehicle crossing bridges. 
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10.2.2.3 Visual Tracking 

 

Once the vehicle is detected or selected in the first frame of the video or image sequence, visual 

tracking is necessary to track the location of the vehicle in the successive images. Up to now in 

the field of computer vision, there are many algorithms for visual tracking and more studies are 

developed every year (Kristan et al. 2018). However not all the algorithms are suitable for the 

vehicle localization on bridge for load distribution information extraction. As illustrated in Figure 

121a and b, due to the camera angle and view depth, the scale of the vehicle and the view changes 

from the beginning to the end even the camera is stationary. In addition, since this is a truss bridge, 

the vehicle is occluded during crossing the bridge. The visual tracking algorithm has to satisfy the 

requirements of scale invariant and view robustness and can predict target location when occlusion 

happens. 

 

Figure 121 Vehicle tracking example: (a) Status of vehicle at the beginning of a truss 

bridge; (b) Status of vehicle at the end of a truss bridge 
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In this research, the Discriminative Correlation Filter tracker with Channel and Spatial Reliability 

(CSR-DCF, also called CSRT tracker) (Lukezic et al. 2017) is employed to do vehicle visual 

tracking. CSRT is one of the algorithms using discriminative correlation filter (DCF) which shows 

great performance. In CSRT, channel and spatial reliability maps are implemented, and a learning 

progress is applied to update the filter during tracking. This enlarges the search region and 

improves tracking accuracy of non-rectangular objects. The channel reliability map considers 

multiple features such as Histogram of Oriented Gradient (HOG), color names and grayscale 

template to learn and update better filter and spatial reliability map reflect weighting effects in 

target localization. With the integration of channel and spatial reliability, CSRT achieves state-of-

art performance in various popular datasets for visual tracking (Lukezic et al. 2017). CSRT satisfies 

the requirements aforementioned and it is implemented for vehicle tracking in this study. 

 

10.2.2.4 Coordinate Transformation 

 

After the vehicle location (coordinates) in the image is estimated, it needs to be transformed to the 

real-world coordinates. In this study, the bridge deck is assumed as a plane so that the question is 

to transform the vehicle from image plane to the deck plane. As shown in Figure 122, the real-

world objects (the bridge and the vehicle) are projected to the image plane. As a result, the shape 

that is determined by the four points (A, B, C, D) on the real-world plane is distorted due to the 

projection. The transformation is completed by the planar homography matrix method introduced 

in Section 2.2. 
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Figure 122 In-plane transformation using Homography matrix 

 

10.2.3 Vision-based Structural Output Estimation: Displacement Responses 

 

The structural output estimation carried out in this study is vision-based displacement 

measurement. The procedure for the vision-based displacement is similar to that presented in 

Section 2.4.1.1. While the difference is that here normalized cross-correlation coefficient using 

edge map (NCCEM) for template matching is implemented.  

 

Unlike vehicle tracking, the monitoring target of vision-based displacement measurement is 

simpler and limited in a specific region. The view and scale do not change too much. Although the 

tracking for displacement measurement is much easier than that cases in vehicle tracking, it needs 

much higher accuracy. In general, tracking result should be in sub-pixel level. In previous studies, 
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the authors proposed keypoint matching-based methods (Khuc and Catbas 2016, 2017) and optical 

flow with keypoints methods (Dong et al. 2019b) to achieve the subpixel level results. All of them 

showed good measurement results comparing with the conventional displacement sensor. While 

the processing speed is too slow when using keypoint-based methods. NCCEM is an improved 

version of digital image correlation (DIC) based template matching methods. The most popular 

DIC based template method is the normalized cross-correlation coefficient (NCC) method (Chen 

et al. 2018b; Zhong et al. 2019b, 2018a, 2019c; Zhong and Quan 2018b). The NCC coefficient is 

expressed as: 
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In these formulas above, T is the grayscale image intensity of selected template, I is the grayscale 

image intensity of the image searching region, (x, y), (x’, y’) and (x”, y”) represent the location 

coordinates in image searching regions and template. The NCC coefficient is normalized with 

image mean value and standard deviation so that it assures the matching result is not affected by 

the light changing.  
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As shown in Figure 123a, when the NCC coefficient achieves the maximum, the matching target 

is located, i.e., at the peak of the map of NCC coefficient. However, the regular NCC coefficient 

method is not accurate sometimes. For example, in Figure 123a, there are some pseudo peaks in 

the map of NCC coefficient, which make distractions of accurate matching. In this chapter, the 

grayscale image is replaced with edge map before template matching using NCC coefficient.  

 

Figure 123 Digital correlation-based template matching: (a) Normalized cross-correlation 

coefficient of grayscale image; Normalized cross-correlation coefficient of Canny edge map 

(a)

(b)
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The edge map is extracted from grayscale image using Canny operator (Canny 1986). Figure 123b 

shows the NCC coefficient of Canny edge map, which can be seen that the peak in it is very clear 

and there is no pseudo peak. With the peak in NCC map of Canny edge map, the matching target 

is first located in the Canny edge map of the image searching region. Then it is updated in the 

image searching region. The comparison of NCC maps in Figure 123a and Figure 123b indicates 

that using edge map gives more accurate, reliable and robust results. The NCC methods including 

regular one and the one using edge map, only give measurement results in pixel level. To achieve 

the sub-pixel level, a refined searching progress is necessary. In this study, the local pixel 

upsampling and interpolation operations are applied to do searching refinement. Depends on the 

required accuracy, a specific iteration number needs to be preset. 

 

After getting the matching of the target template in consecutive images within sub pixel level, the 

centre of the template is regarded as the tracking location, (x, y). Assuming the initial location is 

(x0, y0) and with the scale ratio, SR, the displacement of the selected target is SR×(x - x0) in 

horizontal direction and SR×(y - y0) in vertical direction. 

 

10.3 System Configuration 

 

The proposed system consists of a set of portable cameras, synchronization modules, a computer 

and a suite of processing software. Figure 124 shows the system configuration. The portable 

cameras are divided into two groups, one is for bridge displacement measurement, and the other 

is for the vehicle tracking. The synchronization modules are applied to synchronize the image 
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sequences captured from different cameras. All the image sequences are transferred to the 

computer and processed by the predesignated software. At the end, the UIL is obtained as output. 

 

 

Figure 124 System configuration 

 

10.4 Laboratory Demonstration 

 

10.4.1 Experimental Setup 

 

The proposed system is verified on the two-span bridge model (UCF two-span bridge) constructed 

in the University of Central Florida’s Civil Infrastructure Technologies for Resilience and Safety 

(CITRS) Experimental Design and Monitoring (EDM) laboratory. As shown in Figure 125, The 

bridge is a scaled down model of a mid-sized real-life structure and toy trucks with variable 

weights are used to model moving loads. The bridge consists of two 300-cm main continuous 

spans. The bridge deck includes a 3.18-mm steel sheet at 120 cm wide, which makes the deck 600 
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cm long by 120 cm wide.  

 

To view the whole bridge deck and track the vehicle during the whole loading process, a fisheye 

camera is mounted on the tripod which is 2 m the middle of the bridge. The fisheye camera used 

here is a Raynic 4K Sports Action Camera with 170-degree wide angle lens. The camera can be 

connected with a smart phone through the Ez iCam App for remote controlling. This fisheye 

camera can capture full 1080p (1920 × 1080 pixels) high-density (HD) video clips at a speed of 

30 frames per second (30 FPS). The reason why the fisheye camera is used is that fisheye camera 

provides a wide angle and can broaden the field of view to assure whole bridge is in the image.  

 

 

Figure 125 Experimental setup in laboratory 

 

Another portable camera is mounted on the tripod which is close to the midspan of the left span of 

the bridge to measure the bridge displacement. The distance from the camera to the measurement 

region, P1, is around 0.8 m. The camera used here is a Z-CAM E1 action camera with a 75-300 
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mm zoom lens. The camera can also be connected with a smart phone through the Z-CAM official 

application. The video format set here is 4K (3840 × 2160 pixels) resolution at a speed of 30 FPS. 

A potentiometer is mounted under the deck to measure the displacement of P1 and is assumed as 

the ground truth. The model No. of the potentiometer is BEI Duncan 9615. The sampling rate of 

the data acquisition system for the potentiometer is 200 Hz, which is then downsampled to 30 Hz 

during post processing. During the experiments, the toy truck moves from one side of the bridge 

to the other while the potentiometer and the camera record the motion of P1 (midspan of the left 

span) synchronously.  

 

As shown in Figure 126, since images captured by the fisheye camera have a severe radical 

distortion and the straight bridge in the image becomes a curved bridge.  

 

 

Figure 126 Image from fisheye camera 

 

The fisheye camera has to be calibrated. The calibration procedure follows the steps presented in 

Section 2.2 and a white black chess board as shown in Figure 127 is employed to complete the 

calibration. The intrinsic parameters of the fisheye camera are (1) mapping coefficients are [1.03 
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× 103, -2.49×10-4, -4.89 × 10-7, 3.55 × 10-10]; (2) distortion center is [951.95, 577.98]; and (3) 

stretch matrix is [1, 0; 0, 1]. The extrinsic parameters, i.e., H is [-0.100, -1.982, 1107.9; 0.0136, -

1.240, 684.14; 1.86×10-5, -0.002, 1]. Figure 128 shows the rectified image after camera calibration.  

 

 

Figure 127 Camera calibration using a black white chessboard 

 

 

Figure 128 Rectified image after camera calibration 

 

In this experiment, the video recorded by the two different portable cameras are synchronized by 

using cross-correlation based pattern matching of audio signals. During the video recording, the 
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portable cameras also record the audio signals and within the same camera, the images and audio 

signals are synchronized by the internal clock. As shown in Figure 129, the audio signals of the 

two cameras start at different time as the two cameras started recording with different smart 

phones. During the recording, a voice, “Start”, is called at the beginning of the experiment and a 

voice, “Stop”, is called at the end of the experiment. The two audio signals are first realigned and 

synchronized with one dimensional normalized cross-correlation based pattern matching. The 

pattern is the signal “Start”. Then the signal synchronization is validated by another signal pattern 

“Stop”. Finally, the two videos are synchronized with the synchronized audio signals. 

 

 

Figure 129 Video time synchronization using normalized cross-correlation based pattern 

matching of audio signals 

 

10.4.2 Result Analysis 

 

Figure 130 shows the tracking results of the toy truck in the rectified images obtained from the 

fisheye camera after calibration. During the loading process, although the view and scale of the 
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truck changes, the CSRT tracker can still successfully estimate the location of the toy truck in each 

image. And eventually the locations in the rectified images are converted to the location on the 

bridge deck using homography matrix.  

 

 

Figure 130 Vehicle tracking in the rectified images from fish camera 

 

Figure 131 shows the displacement comparison between the proposed vision-based method and 

the potentiometer. The calibration method for the camera used for displacement measurement is 

scale ratio and in this experiment, it is 0.0316 mm/pixel. From Figure 88, it is easy to see that the 

result obtained from the proposed method is quite consistent with those obtained from the 

potentiometer. The normalized cross-correlation (NCC) (Dong et al. 2019c) is calculated to 

evaluate the similarities between them. The NCC between the two methods is 99.91%, which 

shows a very high fit of goodness between the test method (the proposed vision-based method) 

and the ground truth (potentiometer). 
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Combining the displacement obtained from the vision-based method and the vehicle location 

information estimated using vehicle tracking, the UIL is built. In Figure 132, the blue curve (UIL-

raw) is the extracted UIL without any post-processing and filtering. As this bridge displacement is 

the response under the moving load, it also includes the high vibration modes in the response signal. 

By applying the Fourier filter, the high vibration modes are removed and the final UIL is shown 

the red curve (UIL-Fourier). The maximum value of the UIL is 0.16 mm/kg and minimum value 

is -0.047 mm/kg. Here the downward direction of deck motion is the positive direction and it 

means the displacement has a positive sign. The negative portion of UIL is obtained when the truck 

is located on the other span next to the one has the measurement point. 

 

 

Figure 131 Displacement comparison between the proposed vision-based method and the 

potentiometer 
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Figure 132 Extracted UIL using the proposed system 

 

10.5 Field Application 

 

10.5.1 Experimental Setup 

 

A field application is demonstrated on a footbridge under small scale vehicle (golf cart) load as 

shown in Figure 133. The bridge comprises of 19.5m long vertical truss frames that are connected 

via splice connection in the middle and spans an entire length of 39m over a pond. The width of 

the bridge is 4.17 m. The vertical truss members on the left and the right side have HSS 10×10×3/8 

top and bottom chords and are stabilized with HSS 6×4×3/8 type vertical and HSS 4×4×1/4 type 

diagonal steel members. The lateral stability is provided by another truss frame that is 3.65m wide 

which is constructed with HSS 3×3×1/4 type diagonal cross braces, W12×22 type lateral members. 

Two separate spans are spliced in the middle and the entire frame holds a thin layered aluminum-

concrete composite deck. The bridge is located at a university campus and is generally under a 

light human traffic and small-scale vehicles.  
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The experimental setup is shown in Figure 133. To track the vehicle during the whole loading 

process in this experiment, the iPhone XS MAX is employed. The homography transform matrix 

of the iPhone camera, H, is [3.27, 0.15, 289.09; 0.59, 1.23, -398.85; 5.94 × 10-4, 4.75 × 10-5, 1]. 

The camera used for displacement measurement of the midspan is also Z-CAM E1 camera with a 

75-300 mm lens, the same with the one in the laboratory experiment. The scale ratio of this camera 

is 0.302 mm/pixel. The video formats of both cameras are 4K resolution at a speed of 30 FPS. The 

videos from the two different cameras are also synchronized with the normalized cross-correlation 

based pattern matching of audio signals introduced in Figure 86. 

 

 

Figure 133 Experimental setup of a footbridge 

 

A golf cart with three people including the driver drove through the bridge back and forth from 

one end to the other. The weight of the golf cart is 496.69kg and the weights of the three people 

are 94.34 kg, 78.47 kg, 75 kg respectively. Before starting the golf cart, there was a group of people 

coming and crossing the bridge. The cameras also recorded this event.  
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10.5.2 Result Analysis 

 

Figure 134 shows the tracking results of the golf cart in the rectified images obtained from the 

iPhone camera after planar transformation. The original images captured by the iPhone camera are 

shown in Figure 121. The scale and view angle of the golf cart changes during the loading process 

because the iPhone camera is not perpendicular to the longitudinal direction of the footbridge. The 

images in Figure 121 are first transformed to the fashion in Figure 134 using homography matrix. 

Then the vehicle tracking is performed in the transformed images. During the loading process, 

even though the view and scale of the truck changes and the truss part of the footbridge occludes 

the golf cart, the CSRT tracker can still successfully estimate the location of the golf cart in each 

image. 

 

 

Figure 134 Vehicle tracking in the planar transformed images: (top) tracking when the 

vehicle starts from the left end of the footbridge; (middle) tracking when the vehicle is at 

the midspan; (bottom) tracking when the vehicle arrives the right end 
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The displacement of the midspan during loading process is shown in Figure 135. The propose 

vision-based method successfully recognized the pedestrian loads when a group of people crossed 

the bridge before the starting of the golf cart. The maximum static displacement response 

(removing the high vibration modes) of the midspan under the pedestrian load is about 0.6 mm. 

From the displacement time histories, it also shows the displacement responses when the golf cart 

crossed the bridge back and forth and both of them are very similar with almost the same maximum 

static response (removing the high vibration modes), around 1.35 mm. It is reasonable because the 

weight of the golf cart is constant during the experiment and enough time is spent to let the 

vibration of the bridge attenuate after the golf cart drove from one end to the other. 

 

 

Figure 135 Displacement of the midspan under different loads 
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In this experiment, the video clips when the golf cart from left end to the right are used to extract 

the UIL. As shown in Figure 136, the original UIL is represented with the blue curve and removing 

the high vibration modes with Fourier filter, the UIL is obtained as represented as the red curve. 

The maximum value of the UIL is 1.70 mm/ton. With the UIL and the maximum static 

displacement of the bridge under pedestrian loads, the maximum static pedestrian loading is 

calculated, and it is 353 kg. Recalling the pedestrian loading event from the iPhone video, there 

are six middle-aged female people crossing the bridge. With the predicted total load, 353 kg, the 

average weight of each pedestrian is around 58.8 kg (129.6 lbs), which is acceptable.  

 

 

Figure 136 Extracted UIL of the midspan of the footbridge using the proposed system 

 

10.6 Summary 

 

To overcome the inconveniences and disadvantages of the conventional structural health 

monitoring practices such as high cost, excessive setup time, labor forces with cable wiring work, 

it would be important and useful to build a structural identification framework with a normalized 
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structural response indicator irrespective of the type and/or the loads for better decision making 

with a completely non-contact recognition system. In this study, bridge unit influence line (UIL) 

using only portable cameras and computer vision is proposed. The feasibility of the proposed 

method is verified through a comparative study of a series of laboratory experiments and a field 

application. The main approaches, findings, and conclusions are as follows: 

 

(1) A five-step general procedure for vision-based structural input (vehicle location) recognition is 

presented. CSRT tracker is implemented to track the vehicle successfully even the scale and view 

changes and occlusion happens during the visual tracking process. 

 

(2) To broaden the field of view of camera and to track the vehicle during the whole process, a 

fisheye camera with wide angle is employed and the full camera calibration is carried out to rectify 

the radial distortion for accurate vehicle localization. 

 

(3) A normalized cross-correlation coefficient using edge map (Canny) for template matching is 

proposed to achieve reliable displacement measurement. The proposed method avoids the pseudo 

peaks in NCC map when doing template matching using the traditional NCC based template 

matching using grayscale images. The displacement results obtained from the proposed method 

have high consistency with that obtained from conventional displacement sensor with an NCC 

coefficient of 99.91%. 

 

(4) The two video recordings from two different portable cameras are successfully synchronized 

by using the normalized cross-correlation based pattern matching of audio signals.  
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(5) The displacement UIL is successfully identified by combining the vehicle location estimated 

using visual tracking and homography transformation and the displacement record obtained with 

vision-based method. It makes the whole identification process in a completely non-contact 

fashion and UIL is extracted in daily traffic flow. 

 

(6) The extracted displacement UIL is employed for pedestrian load estimation and the predicted 

weights of pedestrians are observed to be in acceptable ranges. It makes the proposed system work 

as non-contact weigh-in-motion (WIM) system as presented in this example. 

 

The proposed UIL recognition system also shows great probability to detect damage by using 

statistical analysis of UILs, bridge load capacity evaluation by regarding UIL as a normalized 

structural performance indicator and load rating by extracting UILs with the daily traffic flow. The 

future work will focus on the investigation of them and extend to more possible aspects of 

structural condition assessment at global level. 
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CHAPTER ELEVEN: SUMMARY AND CONCLUSIONS 

 

The main objective of this dissertation is to investigate computer vision concepts and methods for 

structural health monitoring and structural identification research and applications on civil 

infrastructure systems. The findings of this dissertation can be summarized as discussed in the 

following:  

 

(1) Current state of art in research and engineering practice of image/computer vision-based 

methods, approaches and procedures for local and global structural health monitoring and 

identification for different kind of infrastructures are reviewed in detail;  

 

(2) Structure-oriented (i.e. structure-specific) computer vision-based response monitoring 

frameworks with different algorithms are developed and demonstrated on different structures in 

laboratory and with real-life field structures. The detailed summaries including different scenarios 

for different structure types along with different computer vision-based output-only dynamic 

monitoring methods are presented in Table 24 and Table 25. 

 

(3) A user-friendly implementation for engineering practice by using a deep learning-based full 

field optical flow method, i.e., FlowNet2 is demonstrated. This implementation is a viable solution 

for the civil engineers and researchers who would like to implement yet lack knowledge and 

experience in computer vision and image processing. Such an approach will leverage the 

convenience of vision-based monitoring for a broader impact for civil infrastructure community.  
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(4) The performances of computer vision-based methods such as Lucas-Kanade feature point 

tracking, feature matching, DIC-based template matching and systems under adverse 

environmental factors such as illumination change and fog interference are analyzed in a 

comparative fashion. A robust system by using Spatio-Temporal Context (STC) learning and 

Taylor approximation is developed to mitigate the adverse environmental factors abovementioned 

when computer-vision data are to be utilized. The proposed STC-Taylor App method performs 

better than the current vision-based methods under illumination change and fog interference. 

 

(5) A computer vision-based output-only structural identification for decision making are 

demonstrated with special emphasis on bridges. In this approach, the conventional output-only 

structural identification tasks and practical engineering information such as structural response 

monitoring and deflection limit check, load distribution evaluation, load rating, structural carrying 

capacity assessment, modal identification and vibration serviceability can be extracted by using 

the proposed computer vision-based approaches. 

 

(6) A computer vision-based structural identification framework by using input-output both from 

image data is developed and this framework can successfully extract a conceptual index, the unit 

influence lines of structures. In addition, the external loads imposed on the structures can also be 

evaluated with this framework. Based on this approach, the proposed computer vision-based input-

output framework can be regarded as a non-contact type of Weigh-in-Motion system. 
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(7) Recommendations and considerations for field applications on different real-life structures are 

provided and summarized. The research and engineering community utilizing computer vision-

based structural health monitoring and identification are expected to benefit from such the research 

study presented in this dissertation. 

 

Although computer vision-based structural health monitoring and structural identification present 

a promising prospect, there are still a few challenges and issues that need further research such as 

the influences of other types of adverse factors (rain, haze, image blur), long term monitoring, 

subtle and fast detection from images, selection of markers, connections between structural health 

monitoring and identification at global and local levels, developments of industry certificate, 

specifications standards and codes for computer vision-based applications. These challenges and 

issues are to be considered in future research and engineering studies  

 

 

  



 280 
 

 

Table 24 Applicable scenarios and restraints for the proposed computer vision-based 

structural output-only monitoring methods 

 

 

Table 25 Recommendations for different structure types and different computer vision-

based structural output-only monitoring methods 

 

  

Methods Applicable Scenarios and Restraints 

L-K feature tracking 
Close range monitoring/measurement, distinct features on surface, no big lightness 
change, small motion. Realtime monitoring and post processing.  

Feature matching Close range monitoring/measurement, distinct features on surface 

Full field optical flow 
Close range monitoring/measurement, distinct features on surface, with the need of 
full field measurement, difficult to achieve real time monitoring and make decision 
instantly 

STC+Taylor App 
tracking 

Close range monitoring, spatial and temporal context in image sequences are 
necessary, real time monitoring/post processing 

Template matching Long distance and close-range monitoring 

Structures 

Type 

L-K feature 

tracking 

Feature 

matching 

Full field 

optical flow 

STC 

tracking 

Template 

matching 

Lab 
structure 

√ √ 
√ 
Full field 
boundary 

Light change 
Fog occurs 

√ 
Need target 

Footbridge √ √ 
√ 
Full field 
boundary 

Light change 
Fog occurs 

√ 
Need target 

Highway 
bridge 

√ 
Need target 

√ 
Need target 

√ 
Full field 
boundary 

Light change 
Fog occurs 

√ 
Need target 

Long-span 
bridge 

× × × 
Light change 
Fog occurs 

√ 
Need target 

Tower × × × 
Light change 
Fog occurs 

√ 
Need target 

Stadium √ √ 
√ 
Full field 
boundary 

Light change 
Fog occurs 

√ 
Need target 
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