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ABSTRACT OF DISSERTATION 

 

 

ELUCIDATING THE MECHANISM OF LIPL: A NON-HEME FE(II), α -KETOGLUTARATE: URIDINE-
5’-MONOPHOSPHATE DIOXYGENASE 

 

Several nucleoside natural product antibiotics from Streptomyces sp. and actinomycetes 

have recently been shown to target bacterial peptidoglycan cell wall biosynthesis by 

inhibiting the bacterial translocase I (MraY). The biosynthetic gene clusters for A-90289, 

liposidomycins and caprazamycins revealed a protein with sequence similarity to proteins 

annotated as α-KG:taurine dioxygenases (TauD). This enzyme (LipL) is a mononuclear, 

non-heme, Fe(II) dependent α-keto glutarate (α-KG) :uridine monophosphate (UMP) 

dioxygenase responsible for the net dephosphorylation and two electron oxidation of 

UMP to uridine-5’-aldehyde. The postulated reaction coordinates involving the activation 

of the C-5’ center in UMP and the corresponding formation of uridine-5’-aldehyde are 

modeled on extensive spectroscopic and structural characterizations of TauD. In this 

dissertation, the postulated radical mechanism for LipL involving the formation of an 

unstable hydroxylated intermediate is investigated via the characterization of a key 

product obtained from the reaction of LipL (and its homolog Cpr19) with a synthetically 

modified surrogate substrate where the bridging phosphoester oxygen in UMP is replaced 

with a 5’ C-P bond. We further validate our hypothesis by analyzing the reactions of both 

LipL and Cpr19 with specifically 2H1 – labeled UMP substrate and confirming the expected 

products via mass spectrometry. In addition, we explore substrate promiscuity of the 

enzymes and utilize a set of site specific mutants of Cpr19 as means of gaining better 

insight into the active site residues. Predictive models for Cpr19 and LipL structures are 

developed by the combination of experimental results and chemical logic. 

 

KEYWORDS: nucleoside antibiotics, peptidoglycan cell wall, dioxygenases, iron-

dependent enzymes 
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Chapter one: Introduction and Background 

1.1. Natural Products – Significance 

Natural products and their derivatives have historically been an invaluable source for the 

discovery of novel therapeutics[1]. When applied to drug discovery prior to the advent of 

high-throughput screening and the post-genomic era, more than 80% of drugs were 

either natural product derived or their semisynthetic versions [2]. In the last ~30 years, 

amongst all clinically approved drugs, almost half of the small-molecule new chemical 

entities introduced were either natural products, semi-synthetic natural product 

analogues or synthetic compounds based on natural products [1]. Even in the context of 

current therapeutics, the primary reasons why natural products continue to be important 

sources are: a) most of the currently available classes of drugs either contain natural 

products or have these as original leads, i.e. there are no known synthetic substitutes for 

these complex molecules [3] b) they continue to inspire synthetic, semisynthetic, and 

chemo-enzymatic efforts to replicate and diversify complex functional scaffolds [4],  c) 

they are invaluable tools for deciphering complex metabolic pathways and the associated 

unique chemical machineries [5], and  d) there is still immense potential for the discovery 

of novel therapeutics from unexplored sources [6, 7]. The use of natural products as 

sources of therapeutics have conferred unparalleled benefits to mankind, by significantly 

increasing the average lifespan of the population, nearly eliminating some infectious 

diseases and by exerting control over several neoplastic and viral diseases [8]. As such, 

natural products also continue to represent a significant share of the current drug market 

[9].  
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Despite their historical importance, natural product discovery has been subjected to a 

slow decline over the last two decades prompted by a number of scientific and economic 

challenges [8] calling into question why natural products still matter in the 

pharmaceutical landscape. The increasing resistance to antibiotics, coupled with 

decreased efficiency in research, failure in the productivity of classical screening methods, 

and decreasing profits to pharmaceutical companies due to regulatory obstacles and 

increasing research expenses, have cumulatively contributed to a shift in the research 

paradigm [10, 11]. Whilst most large pharma have shifted their research efforts from 

natural products discovery to the more profitable drug candidates meant to treat chronic 

diseases, research efforts in this field have greatly increased in academia and specialized 

pharmaceutical/biotechnological companies with renewed approaches to improved 

screening and greater emphasis on developing them to front-line drug candidates [12, 

13]. As a result, emerging trends in addition to unrealized expectations from current 

research and development strategies are prompting a renewed interest in natural 

products as a source of biochemical diversity and lead generation.  

 

1.2. Need for new antibiotics 

Every antibiotic that is introduced for clinical use has a limited shelf life, due to innate or 

acquired mechanisms of resistance present in all bacteria. Consequently, the need for 

new antibacterial drugs for clinical use is a constant one [14]. Resistance has developed 

to all main classes of antibiotics, both natural and synthetic, varying in timeline between 
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different classes of drugs after their first clinical use, and many infectious diseases have 

emerged and reemerged worldwide with changes in environmental parameters as well 

as with migration in populations [15]. Overuse is a primary driver of antibiotic resistance, 

but it is not just in humans – “nontherapeutic” treatment of farm animals and livestock 

with low doses of these drugs to promote growth and prevent diseases has also been 

criticized as a controversial practice that can potentially introduce antibiotic-resistant 

bacteria into the human food supply [16].  

 

Pathogens that are resistant to multiple drugs continue to emerge around the globe, 

leading to the ongoing, cyclical need for innovation to combat infectious diseases caused 

by multiple drug resistant (MDR) pathogens [17]. According to the Centers for Disease 

Control and Prevention’s 2013 Threat Report [18] approximately 23,000 people are killed 

each year by infectious diseases in the United States alone. Many more die from 

complications from other conditions (patients undergoing chemotherapy, dialysis for 

renal failure, surgery, organ transplantation, etc.) exacerbated by infections from 

resistant pathogens. The CDC Report estimates an annual expenditure of more than $20 

billion arising from these maladies. Of these, almost 11,000 deaths were from methicillin-

resistant Staphylococcus aureus (MRSA) infections in the United States, while other 

diseases like multidrug-resistant and extensively drug-resistant tuberculosis (MDR and 

XDR TB) are an increasing threat outside of the United States. In 2012, there were 8.6 

million new TB cases globally with a reported 1.3 million deaths, and of them, an 

estimated 450,000 people were reported to have acquired MDR-TB [19].  
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These statistics are grim, and they are made even more so by the fact that in the last 45 

years only five new classes of FDA-approved antibiotics have been introduced to the 

market [12, 17, 20]. The dramatic decreases in FDA-approved systemic antibiotics, caused 

in part to due to bacterial resistance, regulatory disincentives, and a big innovation gap 

has led us to an age where no new molecular entities are currently in phase III [20]. To 

revitalize the discovery of new antibiotics is imperative, and the issues associated with 

drug resistances and the current drug pipeline means that new compounds with novel 

modes of action and/or new targets are of great importance in the continued fight against 

infectious diseases.  

 

While traditional antibiotic discovery has been based on cell-growth inhibition assays 

followed by identification of the targets, contemporary drug discovery is based in large 

part on the screening of small molecules for their ability to bind or otherwise inhibit 

specific macromolecular targets [1]. Historically, targets for antibiotic action have been 

classified into four major groups: bacterial cell wall biosynthesis, protein biosynthesis 

(translation), DNA replication and storage, and folate coenzyme biosynthesis [15]. 

Research in our lab has been focused on the discovery and identification of potential 

inhibitors to a target enzyme via activity-based high throughput enzyme assays, more 

specifically, inhibitors to the enzyme bacterial translocase I, a key enzyme that 

participates in the biosynthesis of the peptidoglycan cell wall biosynthesis in bacteria. The 
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overarching goal of our research is to investigate the biosynthetic pathway of these new 

classes of inhibitors/antibiotics focusing on the combined chemical logic and enzymatic 

machineries involved. 

 

1.3.  Biosynthesis of the peptidoglycan cell wall 

Peptidoglycan is the primary polymeric constituent of bacterial cell walls and is essential 

for the survival of all bacteria [21]. The backbone of peptidoglycan consists of an 

alternating β-1,4-linked glycan composed of N-acetylglucosamine (GlcNAc) and N-

acetylmuramic acid (MurNAc) (Figure 1.3.1). A short polypeptide of five amino acids is 

attached to the 3-position of the MurNAc sugar, which allows the cross linking between 

the 3-amino acid (lysine or D-aminopimelate) and the 4/5 peptide bond of another 

polymeric unit. These crosslinks provide the structural integrity that allows the cell wall 

to withstand the osmotic pressure of the cytoplasm. The assembly of the cell wall and 

peptidoglycan biosynthesis is a complex process that begins at the cytoplasmic side of the 

cell membrane. The entire assembly can be broken down into three distinct stages: 1) 

polymerization of the disaccharides and attachment with the polypeptide chains, 2) 

initiation of the lipid linked cycle wherein the sugar activated hydrophilic precursor is 

attached to a lipid carrier and consequently flipped outwards of the membrane, and 3) 

the cross-linking of the polymeric backbone to establish the final structure of the cell 

membrane. 
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Figure 1.3.1. Structure of peptidoglycan. The backbone of peptidoglycan constructed by 
alternating β-1,4-linked glycan composed of N-acetylglucosamine (GlcNAc) and N-
acetylmuramic acid (MurNAc), which in turn are cross-linked via their polypeptide chains. 

 

The biosynthesis is carried out by 12 ubiquitous enzymes found in both Gram-positive as 

well as Gram-negative bacteria, some of which still remain to be characterized in detail 

[22] (Figure 1.3.2). In the initial cytosolic stage, the uridine-5’-phosphate (UDP)-sugars are 

the biosynthetic starter molecules for all cell wall components and the process begins 

with the transformation of the activated UDP-GlcNAc to UDP- MurNAc (catalyzed by 

MurA and MurB), followed by attachment of a series of amino acids leading to the 

polypeptide chain (L-Ala-γ-D-Glu-X-D-Ala-D-Ala where X is either L-Lys or D-

aminopimelate). The addition of the polypeptide chain is cumulatively carried out by a set 

of ATP-dependent ligases Mur C-F. The resultant UDP-MurNAc-pentapeptide is then used 
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to provide phospho-MurNAc-pentapeptide that is transferred to a membrane bound 

undecaprenyl phosphate by the enzyme translocase I (phosphor-MurNAc-pentapeptide 

translocase) or MraY. Addition of another GlcNAc sugar onto the 4’-OH of MurNAc 

(catalyzed by the glycosyltransferase MurG) creates lipid intermediate II, which in turn, is 

flipped outwards from the cytosolic side of the cell membrane presumably by a ‘flippase’ 

protein [23]. In some Gram-positive bacteria, additional amino acids are latched onto lipid 

intermediate II from amino-acyl-tRNA donors (for examples, five Gly residues are added 

on by FemABX in Staphylococcus aureus (26)). On the cell surface, lipid intermediate II is 

polymerized via transglycosylation to afford a glycan polysaccharide which is then cross-

linked via transpeptidation by the penicillin binding proteins (PBPs) [24]. 

Transglycosylation relieves undecaprenyl pyrophosphate which can then be recycled via 

enzymatic dephosphorylation [23]. 
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Figure 1.3.2. Peptidoglycan assembly. The reactions catalyzed by each enzyme is shown 
in blue, and the natural products inhibiting specific steps in the pathway are highlighted 
in red. Ramplanin can also bind to the product of MurG (Lipid II), while Vancomycin 
inhibits the activity of transglycosylases by binding to the substrate.  

 

Since most of the enzymes that partake in the biosynthesis of peptidoglycan lack 

mammalian homologs, targeting cell wall biosynthesis has been proven successful as 

traditional means for inhibiting bacterial survival and growth. Of the cytosolic stages, only 

two of the enzymes are targeted by natural products fosfomycin and D-cycloserine [21], 

whereas MurG is inhibited by cyclic peptides ramoplanin and enduracin [25]. Some 

antibiotics like bacitracin target the lipid carrier itself, by binding irreversible to 

undecaprenyl phyrophosphate [26]. The vancomycin group of glycopeptide antibiotics 

inhibit the transglycosylation of lipid intermediate II, by binding to the substrate itself 
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thereby preventing its interaction with the transglycosylase [27], and the β-lactams 

irreversibly inhibit the final transpeptidation steps [24]. Natural product inhibitors have 

been found for six of the biosynthetic steps, of which five have been tested clinically. 

Although several have been successful as antibacterial antibiotics, many of them are 

plagued with issues of resistance within years of clinical introduction. The inhibition of 

the enzyme translocase I as a means of antibiotic activity, however, has not been fully 

realized for clinical purposes yet, and therefore represents a unique frontier for discovery 

of novel antibiotics. 

 

1.4. MraY – Structure and Function  

MraY (phosphor-MurNAc-pentapeptide translocase) is an integral membrane enzyme 

responsible for the second stage of peptidoglycan biosynthesis, in that, it catalyzes the 

transfer of phosphor-MurNAc- pentapeptide from UDP-MurNAc-pentapeptide to the lipid 

carrier undecaprenyl-pyrophosphate, generating undecaprenyl-pyrophosphoryl-

MurNAc-pentapeptide or Lipid intermediate I [28] (Figure 1.4.1). This catalytic step is 

Mg2+-dependent and essential for all bacterial viability, and therefore a promising 

pharmacological platform for the development of new classes of antibiotics [29]. The 

transferase activity of MraY was first discovered in 1965 by Neuhaus and coworkers [30], 

although the gene for MraY remained unidentified until 1991 [29] when it was 

overexpressed in E. coli and implicated for its putative transferase activity.  
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Figure 1.4.1. Reaction catalyzed by MraY. MraY is a transmembrane protein responsible 
for initiating the lipid-linked cycle of peptidoglycan biosynthesis. 

 

MraY belongs to a subfamily of the polyprenyl-phosphate N-acetyl hexosamine 1-

phosphate transferase (PNPT) superfamily of enzymes, that also includes enzymes 

responsible for the synthesis of cell envelope polymers like the O-antigen and teichoic 

acid in bacteria, and the GPT (UDP-GlcNAc:dolichol-P GlcNAc-1-P transferase) enzyme 

family responsible for N-linked glycosylation in eukaryotes [31]. E. coli MraY has been 

overexpressed, extracted into detergent micelles, and characterized kinetically using a 

continuous fluorescence assay, but could not be purified to homogeneity (35). B. subtilis 

MraY has also been purified in small quantities, although the specific activity is reduced 

substantially upon purification (36). Earlier studies conducted with MraY  isolated from 

M. luteus [30] and S. aureus [32] in conjunction with the MraY from E. coli helped establish 

it as a transmembrane protein indispensable for cell survival [33]. Studies conducted in E. 
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coli involving mutational inactivation of the mraY gene led to growth inhibition and lethal 

phenotype, typically observed from similar inactivation of genes involved in 

peptidoglycan biosynthesis [34]. In addition to gram-negative E. coli, the mraY gene has 

also been shown to be essential for survival in gram-positive bacteria Streptococcus 

pneumonia, and bioinformatics studies have been conducted to suggest that only a single 

copy of the essential mraY gene is encoded per genome based on all currently available 

sequenced microbial genome [23]. Isotope enrichment experiments conducted with S. 

aureus translocase I suggest a two-step reaction involving a proposed SN
2 type 

nucleophilic substitution mechanism via the formation of an intermediate [30]. The 

structural basis of enzyme function was elusive for a long time in the absence of structural 

information, until recently Lee and coworkers published the crystal structure of MraY 

from Aquifex aeolicus at 3.3 Å resolution [35] (Figure 1.4.2). 
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Figure 1.4.2. X-ray crystal structure of MraY. The recently resolved structure of MraY 
shows that it exists as a dimer with ten transmembrane helices with a visible tunnel at 
the center of the dimer. Schematic for lateral view (bottom) 
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MraY from Aquifex aeolicus (MraYAA) has been shown to crystallize as a dimer, generating 

an oval-shaped tunnel at the center of the dimer [35]. The tunnel is predominantly 

surrounded by hydrophobic amino acid residues and is large enough to presumably 

accommodate lipids. Each subunit is comprised of 10 transmembrane helices, an 

interfacial helix, a periplasmic β hairpin, a periplasmic helix and five cytoplasmic loops. 

Mapping of conserved sequences onto the crystal structure revealed the highest 

conservation localization around a cleft formed by the cytosolic and inner-leaflet 

membrane regions of four of the transmembrane helices. Recent mutational studies 

conducted in B. subtilis MraY established 14 invariant charged amino acid residues, 

essential for enzyme activity [36] and most of these residues can be found in this ‘cleft’ 

region suggesting that this region serves as the active site. Three aspartate residues 

(Asp117, Asp118 and Asp265) each found on a cytoplasmic loop, are strictly conserved 

throughout the entire PNPT family and two invariant histidine residues (His324 and His325) 

in the MraY family have been shown to be catalytically important by mutational 

inactivation, wherein, mutation of any of the three aspartate residues and one of the 

histidine residues (His324) resulted in complete loss of activity. Based on these results, it 

is proposed that Asp117 and Asp118 in MraYAA may be involved in Mg2+ coordination, and 

Asp265 may be a possible active site nucleophile used in the formation of a covalent 

enzyme-phospho-MurNAc-pentapeptide intermediate (Figure 1.4.3).  
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Figure 1.4.3. Proposed catalytic site of MraY: Asp 116 (red), Asp 117 (blue) and Asp 265 
(pink) are shown here along with bound Mg2+ ion (orange). 

 

1.5. Inhibitors of MraY 

MraY has long been known as a promising target for the development of new antibiotics 

because it is the target of several different classes of natural product inhibitors with 

antibacterial activity as well as bacteriolytic lysis protein E from bacteriophage φX174 [36, 

37].  Protein E (a 91-amino acid polypeptide) is another integral membrane protein 

encoded by DNA phage φ-174 that leads to bacteriolysis via an unclear mechanism. 

Mutational inactivation of Phe288, found near the extracellular face of the membrane was 

shown to abolish protein activity [36]. An 18-residue polypeptide with the wild-type 

sequences from Protein E was shown to possess the minimal requisites for lysis of host 
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cells [38], whereas in another study, a 37-amino acid polypeptide containing the 

transmembrane domain of protein E was shown to specifically bind and inhibit MraY [39]. 

Another category of MraY inhibitors is the lipopeptides amphomycin, friulimcin and 

glycinocins [29]. These cyclic molecules are known to complex with undecaprenyl 

phosphates in the presence of Ca2+, in a mechanism reminiscent of the glycopeptides like 

vancomycin. Amphomycin is, therefore, a very potent inhibitor of Gram-positive bacteria 

like streptococci and enterococci [40]. 

 

Figure 1.5.1. Types of MraY Inhibitors.  

To date, the largest reported group of MraY inhibitors is the nucleoside antibiotics, and 

their activities are typically associated with the presence of key nucleoside components 

in these molecules (Figure 1.5.1). They can be classified into four structural groups: 1) the 

peptidyl nucleosides represented by pacidamycin from Streptomyces coeruleorubidus 

[41] and mureidomycin from Streptomyces flavidovirens [42], 2) the lipodisaccharyl 

nucleosides represented by tunicamycins from Streptomyces lysosuperificus [43], 3) the 
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lipopeptidyl nucleosides represented by A-90289 from Streptomyces sp. SANK 60405 [44] 

and caprazamycin from Streptomyces sp. MK730 -62F2 [45] and 4) the glycosyl-peptidyl 

nucleosides represented by the capuramycins A-500359s from Streptomyces griseus 

SANK 60196 [46], A-503083s from Streptomyces sp. SANK 62799 [47] and A-102395 from 

Amycolatopsis sp. SANK 60206 [48]. Despite several notable structural variations between 

the four groups, all of them share a key feature shown to be critical for their biological 

activities: the presence of a nucleoside component that consists of high-carbon 

furanoside, wherein the typical ribosyl component is replaced by a hexofuranoside( C6), 

a heptafuranoside (C7), or in the case of tunicamycins, an undecafuranoside (C11) (Figure 

1.5.2) [49].  
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Figure 1.5.2. Representative nucleoside antibiotics. The key structural features are 
highlighted in these compounds. The uracil component found in all of them is highlighted 
in blue, and has been shown to be critical for activity in all of these inhibitors. 

 

The variations in the structural components of each of these groups are presumably 

responsible for the slight differences in their specific mechanism of inhibitions. The 

peptidyl nucleosides share a typical 3’-deoxyuridine nucleoside attached via a 4’,5’-

enamide linkage to an N-methyl 2,3-diaminobutyric acid (DABA) residue,  to which are 

attached the amino acid residues typically found in this group. Mureidomycin, a 

representative of this nucleoside type has been shown to be a competitive inhibitor 

against UDP-MurNAc-pentapeptide [42, 50]. The tunicamycins contain an additional 

GlcNAc moiety, a unique 11-carbon aminodialdose sugar or tunicamine [51] and an 

amide-linked fatty acid attached to the tunicamine sugar. As such, they can act as 

structural mimics of the diphospho-residue of UDP-MurNAc-pentapeptide leading to 
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competitive inhibition of MraY. Tunicamycins are additionally known for inhibiting the 

GPT (UDP-GlcNAc:dolichol-P GlcNAc-1-P transferase) enzyme family responsible for N-

linked glycosylation in eukaryotes, and are therefore poor pharmacological candidates 

due to toxicity [52, 53]. On the other hand, the nucleoside inhibitors A-90289s, 

caprazamycins, and the muraminomicins, muraymycincs all contain uridine, aminoribose, 

diazepanone and fatty acyl moieties, with the major structural differences in the presence 

or absence of their sugar appendages (Figure 1.5.3). Structure-activity relationship 

studies using simplified synthetic analogues of these compounds have shown the uridyl 

and aminoribosyl moieties as critical for optimal antibiotic activity [54, 55]. The 

capuramycins A-500359s, A-500358s and A-102395 however lack the aminoribose, and 

instead contains an unique caprolactam moiety which has been shown to be critical to its 

activity [46, 56]. Despite these structural differences, all of these nucleoside antibiotics 

have been shown to selectively inhibit MraY-catalyzed transferase activity. The 

overarching aim in our lab has been the identification and characterization of the core 

structural components responsible for inhibitory activity. 
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Figure 1.5.3. Structurally related nucleoside antibiotics.  Structural variations within the 
liposidomycins are manifested by components in their side chains, while the core uracil 
and aminoribose components are present in all of them. 

 

1.6. Current understanding of the biosynthetic pathways  

As touched upon in the earlier sections, most of the nucleoside antibiotics contain highly 

modified sugar nucleosides which are usually modified at the C-5’ of the parent ribose to 

generate furanosides containing 6-11 carbons. Initial isotopic enrichment studies using 

different high-carbon sugar nucleosides as models led to the realization that the glycosidic 

bond with the nucleoside base is established prior to C-5’ modification, i.e. the nucleoside 

is the starting precursor for direct C-C bond formation with other precursors (discussed 

in the following section) as the other carbon source(s) [57-60]. The biosynthetic gene 
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clusters for several of these compounds, including the capuramycin-type antibiotics A-

500359s [61], A-503083s [62], liposidomycins [63], A-90289s [44], caprazamycins [64], 

muraymycins [65], muraminomicins [66] and tunicamycins [67, 68] have been cloned and 

sequenced. With the sole exception of tunicamycin, all the aforementioned gene clusters 

have been shown to contain a shared orf that encodes a protein with sequence similarity 

to proteins annotated as α-ketoglutarate: taurine dioxygenases (TauD) [69], which 

catalyzes the conversion of taurine to aminoacetaldehyde and sulfite in E. coli, as means 

of sulfite scavenging. Our current understanding of a proposed divergent pathway 

beginning with a common precursor uridine-5’-monophosphate is illustrated in Figure 

1.6.1 [70, 71].  

 

Figure 1.6.1. Biosynthetic pathway towards nucleoside antibiotics. Functional 
assignment of enzymes shown: (i) LipL: Fe(II): α-KG dioxygenase, (ii) LipK: L-threonine: 
uridine-5’-aldehyde transaldolase, (iii) LipO: L-methionine: uridine-5’-aldehyde 
aminotransferase, (iv) LipP: 5’-amino-5’-deoxyuridine phosphorylase, (v) LipM: UTP: 5-
amino-5-deoxy-α-D-ribose-1-phosphate uridyltransferase, (vi) LipN: 5-amino-5-
deoxyribosyltransferase. 
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Cumulative characterization and functional assignment of the genes from A-90289 led to 

the delineation of its biosynthetic pathway and elucidation of possible shared 

intermediates leading to the capuramycins, caprazamycins and all other related 

molecules. Following the generation of uridine-5’-aldehyde by LipL, the pathway 

bifurcates – in one route, enzyme LipK (a L-threonine: uridine-5’-aldehyde transaldolase) 

installs a 5’-C-glycyluridine unit via a pyridoxal-5’-phosphate (PLP) dependent reaction. 

The resultant intermediate can serve as a template for further modifications (involving a 

proposed decarboxylation event) leading to the capuramycin type antibiotics. The second 

route involves a cascade of reactions resulting in the generation of the functionally crucial 

aminoribose, which is then condensed with the intermediate produced by LipK by the 

enzyme LipN, a 5-amino-5-deoxyribosyltransferase. Kaysser et al. [64] conducted a series 

of gene deletion experiments resulting in the functional assignment of the enzyme Cpz21 

as an acyltransferase responsible for installing the 3-methylglutaryl moiety in 

caprazamycins (Figure 1.6.2) 

 

 

 

 



 

22 
 

 

  

Figure 1.6.2. Side chain modifications in the caprazamycin pathway. The transfer of 3-
methylglutaryl-CoA is catalyzed by Cpz21 in caprazamycin biosynthesis. 

 

Clues towards amide bond formation in the capuramycin pathway can be gleaned from 

the enzyme CapW, identified as a putative Class C β-lactamase encoded within the 

biosynthetic gene cluster for the capuramycins. CapW was found to catalyze a 

transacylation resulting in the addition of an L-aminocaprolactam at the expense of the 

methyl ester (Figure 1.6.3) [62]. The methyl ester was shown to be produced by CapS, an 

S-adenosyl-L-methionine-dependent carboxylmethyltransferase that activates the 

carboxylic acid component of the capuramycin precursor to the methyl ester, thereby 

providing a kinetically competent substrate for the transacylase. The putative active site 

Ser of CapW was mutated to Ala resulting in loss of enzyme activity, lending support to 

the hypothesis that the reaction proceeds by a serine-dependent acylation/deacylation 

mechanism typical of Class C β-lactamases. 
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Figure 1.6.3. Amide-bond catalysis in capuramycin. Installation of the unique 
caprolactam in capuramycins is achieved by concerted CapS and CapW reactions and 
involved activation of the substrate by a methyl ester, followed by amide bond formation. 

 

Another key observation is the predictive self-resistance mechanism in these antibiotics. 

A gene encoding a putative aminoglycoside 3-phosphotransferase (referred to as ORF21) 

within the gene cluster for the A-500359s was demonstrated to be highly expressed 

during the production of the A-500359s, and was implicated in conferring self-resistance 

when expressed in heterologous hosts E. coli and Streptomyces albus [61]. A similar gene 

(capP) from the A-503083 gene cluster was shown to encode the enzyme CapP, an ATP-

dependent capuramycin phosphotransferase that regiospecifically transfers the γ-

phosphate to the 3”-hydroxyl of the hexuronic acid moiety of A-503083 [72]. Kinetic 

characterization of CapP with three major A-503083 congeners established that CapP 

preferentially phosphorylates A-503083s containing an aminocaprolactam moiety 

attached to the hexuronic acid. Consistent with these observations, the product obtained 

from the CapP reaction lost its antibiotic activity against Mycobacterium smegmatis, and 

this loss in bioactivity is primarily due to a 272-fold increase in the IC50 in the bacterial 

translocase I-catalyzed reaction.  Recent work in our group (Wenlong Cai) has established 

an identical mechanism for resistance to A-102395. 
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1.7. Functional assignment of LipL 

The orf from A-90289 was shown to encode the protein LipL which was functionally 

assigned by our lab as a non-heme, Fe(II)-dependent α-ketoglutarate (α-KG): uridine-5’-

monophosphate (UMP) dioxygenase catalyzing the conversion of UMP to uridine-5’-

aldehyde during A-90289 biosynthesis [70]. The LipL reaction was modeled on the enzyme 

TauD, the best studied member of a large and diverse superfamily of mononuclear, non-

heme Fe(II)-dependent enzymes that are generally agreed to follow similar reaction 

coordinates involving oxidative decarboxylation of α-ketoglutarate (hereby abbreviated 

as α-KG) to presumably generate an enzyme-bound Fe(IV)-oxo intermediate during the 

reaction. This strong oxidizing agent subsequently abstracts a hydrogen atom on the so-

called prime substrate (UMP for LipL) to generate a carbon centered radical that leads to 

an unstable hydroxylated intermediate [73, 74] (Figure 1.7.1).  
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Figure 1.7.1. The reaction catalyzed by LipL. LipL catalyzes the first reaction in A-90289 
biosynthetic pathway, and has been successfully characterized and modeled on the 
reaction catalyzed by E. coli TauD (below). 

 

The Fe(II)/ α-KG dependent enzymes are a mechanistically and functionally diverse 

superfamily of enzymes responsible for a variety of reactions involved in protein side-

chain modifications, repair of alkylated DNA/RNA, biosynthesis of antibiotics, lipid 

metabolism and biodegradation of a number of compounds [75]. The conserved 

structural element is a β-strand “jellyroll” fold typically containing three metal-binding 

ligands found in a His1-X-Asp/Glu-Xn-His2 motif [76, 77]. The only exception can be found 

in halogenases in this group, where the carboxylate ligand is absent [78] (Figure 1.7.2).  

The co-substrate α-KG, chelated with the Fe(II) center via its C-2 keto group and C-1 

carboxylate, is oxidatively decarboxylated to succinate, leading to the formation of the 

Fe(IV)-oxo center responsible for hydroxylation of the prime substrate via a putative 

“oxygen rebound” mechanism (or in other instances results in desaturation, cyclization, 

ring closure/expansion etc.) [73, 74, 79, 80].  A few members show resemblances to this 
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group in terms of protein structures or chemical mechanisms but somewhat unexpectedly 

do not require α-ketoglutarate as a co-substrate [81].  

 

Figure 1.7.2. ‘β- barrel jellyroll fold’ in DAOCS (Deacetoxycephalosporin C-synthase). The 
eight parallel β-strands (indicated as β1-8) are conserved in all members of the enzyme 
superfamily, despite the broad spectrum of substrates recognized by the enzymes of this 
superfamily. 

 

The putative reaction coordinates for representative enzymes from this group are 

elaborated in the following chapters, with special emphasis on those closest in analogy to 

the reactions catalyzed by LipL and Cpr19, the latter being the functional homolog Cpr19 

from the A-102395 biosynthetic pathway. The ability to delve into intricate details of this 
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intriguing toolbox of enzymatic machinery represents a fantastic platform to gain 

improved understanding of their mode of action, to engineer these biocatalysts towards 

generating novel scaffolds and facilitating future redesign. The focus of this thesis is an 

in-depth characterization of LipL and its functional homolog Cpr19, with the major goal 

to identify the putative reaction intermediates involved in its unique chemical 

coordinates, along with additional efforts to elucidate the structural basis for the 

reactivity by studying site-specific mutant variants of Cpr19.   
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Chapter two: Elucidating the mechanism of LipL and Cpr19 

2.1. Background: Fe(II)/ α-ketoglutarate-dependent enzymes 

We briefly review the amazing diversity of reactions catalyzed by members of this enzyme 

superfamily and use specific examples to illustrate the same. Most representatives couple 

the oxidative decomposition of α-KG to succinate and CO2 to the activation of their prime 

substrates via the generation of a reactive oxygen species at the non-heme iron center. 

The reactive oxygen species can then display alternative reactivity in related enzymes that 

may result in hydroxylations, stereoinversions, desaturations, ring closure or ring 

expansions (Figure 2.1.1).  

 

Figure 2.1.1. Variable outcomes of reactions catalyzed by Fe(II): α-KG dependent 
enzymes. Divergence of the proposed pathway resulting in (a) radical-group transfer, (b) 
stereoinversion, or (c) desaturation outcomes 

 

The first identified hydroxylase from this group was the enzyme prolyl-4-hydroxylase [82] 

shown to be involved in the generation of trans-4-hydroxyprolyl products. In mammals, 

this reaction is essential for the formation of collagens, elastins and several other proteins 
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[83]. Several other enzymes from this group have since been shown to be required for 

protein side chain modifications including lysyl hydroxylase [84], prolyl-3-hydroxylase, 

aspartyl β-hydroxylase [85], etc (Figure 2.1.2).  

 

 

Figure 2.1.2. Representative hydroxylation reactions. Reactions catalyzed by Prolyl-4-
hydroxylase (top) versus Prolyl-3-hydroxylases. 

 

Some of these enzymes have been implicated in the repair of DNA/RNA – for example, E. 

coli possesses the enzyme alkB that has been implicated in the direct repair of methylated 

DNA and RNA lesions [86]. Expression of E. coli alkB in human cells was shown to confer 

resistance to high concentrations of SN2 alkylating agents and in 2002, Trewick et al 

demonstrated the direct repair of methylated DNA by AlkB in an Fe(II)-dependent process 

that consumes oxygen plus α-KG and produces succinate and formaldehyde [87]. The 

single isozyme of clavaminate synthase (CAS) exemplifies the versatility of Fe(II)/α-KG 

dioxygenases by catalyzing three separate oxidative steps in the synthesis of clavulanic 

acid. First identified in 1999 by Lloyd et al [88], the enzyme has been shown to hydroxylate 
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the β-lactam precursor in the first step, followed by sequential cyclization and 

desaturation in three different steps to yield the precursor for the final product (Figure 

2.1.3). 

 

 

 

Figure 2.1.3. Role of CAS. CAS is responsible for carrying out three distinct oxidative 
reactions in this pathway. Abbreviations: CEAS: carboxyethylarginine synthase, BLS: β-
lactam-synthetase, PAH: proclaviminic acid aminidino synthase, CAS: Clavaminate 
synthase, CAD: Clavaldehyde dehydrogenase 

 

Another interesting member of this family is the enzyme CarC (carbapenem synthase) 

involved in a desaturation reaction similar to CAS, but also exhibiting an additional 

epimerization at the tertiary carbon atom that joins the two rings in the bicyclic product. 

A recent article published in Science in 2014 [89] illustrates the unique mechanism of CarC 

by which it carries out C5 stereoinversion in the biosynthesis of carbapenem antibiotics. 

Following the attachment of a carboxymethylene unit to the C5 of L-proline of the 2-

pyrrolidine precursor unit, the Fe(IV)-oxo intermediate abstracts a hydrogen atom from 
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C5, and the key residue tyrosine165 in CarC then proceeds to donate the hydrogen atom 

to the opposite face of the resultant radical, an event that is sufficient to direct the 

nonredox stereoinversion outcome that distinguishes CarC from other Fe(II)/α-KG 

dioxygenases that typically proceed through a putative “oxygen-rebound” mechanism 

(Figure 2.1.4).  

 

 

 

Figure 2.1.4. Mechanism of CarC. CarC catalyzes both epimerization and desaturation 
reactions in generating the (5R)-carbapenam scaffold. We elaborate more on this 
mechanism in chapter three, alluding to its recently resolved crystal structure. 

 

Few members of this group are additionally involved in the biosynthesis of plant products. 

For example, the enzyme flavanone 3β-hydroxylase catalyzes a key step in flavonoid 

biosynthesis [90] in which flavanones (for example naringenin illustrated in Figure 2.1.5) 

are converted to the corresponding trans-dihydroflavonols. We have additionally 

illustrated the reaction catalyzed by flavone synthase I in the same figure, since it also 

utilizes flavones as substrates, but carries out a desaturation reaction resulting in the 

introduction of a double bond in the final product [91]. Fe(II)/α-KG hydroxylases also 

participate in lipid metabolism – two of the enzymes taking part in carnitine synthesis 

have been characterized from humans [92] and phytanoyl-CoA hydroxylase is required 
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for degrading the plant lipid phytanic acid [93].  The enzyme TauD from E. coli is involved 

in the decomposition of alkyl sulfonates [73] along with the enzyme AtsK, from 

Pseudomonas sp. that catalyzes the decomposition of alkyl sulfates, as opposed to 

sulfonates, in a reaction mechanism identical to TauD [94]. A related biotransformation 

has been observed for phosphorus scavenging in Pseudomonas stutzeri WM88, in which, 

the genes htxA encodes the Fe(II)/α-KG hydroxylase HtxA capable of hydroxylating 

reduced forms of phosphorus including hypophosphite (H3PO2) and phosphite (H3PO3) 

[95].  

 

 

Figure 2.1.5. Enzymes involved in Flavonoid biosynthesis. Flavone synthase I (red) 
catalyzes desaturation of the substrate to introduce a double bond (top), while the 
enzyme flavonone 3β-hydroxylase exhibits tandem hydroxylation/oxidation with the 
same substrate. 

 

Though the reactive Fe(IV)-oxo intermediate displays slight variations of the primary 

activity in catalyzing desaturations, ring expansions, ring closures or other oxidative 
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biotransformations within this group, all the enzymes described herein are agreed to 

follow a more or less conserved mechanism which was formulated more than 20 years 

ago by Hanauske-Abel and Günzler (solely on the basis of theoretical considerations) [96]. 

As more enzymes are added to this intriguing group and the spectrum of its functionalities 

expand, we continue to broaden our understanding of the exact chemical coordinates 

central to all of these reaction mechanisms.  

 

2.2. Reaction mechanism of Fe(II)/α-KG – dependent dioxygenases 

Dioxygenases are vital enzymes with key functional roles in nature, utilizing molecular 

oxygen and transferring both oxygen atoms to activated substrates [79, 97]. 

Monooxygenases, on the other hand, transfer a singular oxygen atom from molecular 

oxygen while the other oxygen atom leaves in the form of water. The most well-known 

monooxygenases, the P450s are some of the most versatile enzymes in the body involved 

in such diverse functions such as detoxification of organic substrates in the liver to the 

biosynthesis of hormones [98]. P450s are also a group of enzymes that utilize an oxo-iron 

species for abstracting a hydrogen atom from their substrates, albeit with a heme iron 

center involving a catalytic cycle that proceeds via two reduction and two protonation 

steps. Although elusive, the oxo-iron species has been implicated by indirect evidence 

from product distributions and kinetic isotope effects, and in case of peroxidases has been 

fully characterized by crystallography, EPR and vibrational spectroscopy [98, 99]. A similar 

oxo-iron species is central to the non-heme, Fe(II)/α-KG-dependent group of enzymes, 
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however it remains elusive in terms of in-depth characterization [100]. So the interesting 

question is, why are there two different classes of enzymes developed by nature for 

essentially similar tasks: the hydroxylation of substrates via the activation of unreactive 

carbon centers? This question can perhaps be addressed by the differences in the heme 

and non-heme iron centers in these two groups, and the absence of a required cofactor 

in case of the dioxygenases, which creates significant differences in the putative reaction 

coordinates for the Fe(II)/α-KG-dependent enzymes (Figure 2.2.1). 

 

 

 

Figure 2.2.1. Role of TauD in the body. The metabolism of cysteine in the body involves 
both TauD and cysteine dioxygenase (CDO) 

 

The most extensively studied member of non-heme Fe(II) dioxygenases is E. coli TauD, 

implicated in the transfer of one of the oxygen atoms from molecular oxygen to α-KG, 

and utilization of the second oxygen atom for putative hydroxylation of its prime 

substrate taurine. Figure 2.2.2 shows the catalytic cycle of TauD based on cumulative 

theoretical and experimental observations [101]. The cycle starts from resting state (A) 

where the non-heme iron center is coordinated by two histidine (His99, His205) residues, a 

carboxylic acid group from Asp101 and three water molecules [73]. The first step is binding 
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of α-KG generating a bidentate ligand (B) by the displacement of two of the coordinating 

water molecules in the structure [102]. This intermediate complex has been isolated and 

characterized as a Fe(II)/α-KG chromophore with absorption at 530 nm [103]. This step is 

followed by sequential binding of the prime substrate taurine, which does not bind 

directly to the center but displaces the remaining water molecule (which leads to the 

complex C with absorption at 520 nm) allowing molecular oxygen to bind (D), initiating 

the radical mediated sequential steps and simultaneously limiting the scope for 

identification of the exact intermediates. It is however postulated that the dioxygen can 

attack the α-KG leading to the formation of a five-membered ring structure (E), followed 

by spontaneous decarboxylation of α-KG to succinate yielding the oxo-iron species in 

complex F [104]. The reactive oxo-iron species can putatively abstract a hydrogen from 

the prime substrate to afford a carbon centered radical on taurine (G), and rebound of 

the hydroxyl group (“oxygen rebound”) to the reactive center forms the product complex 

H. Release of products (succinate and hydroxylated taurine) and rebinding of water can 

restore the catalytic center to its resting state (A) and initiate another catalytic cycle. This 

mechanism has been corroborated with stopped-flow experiments which provided 

evidence for at least two stable intermediates [102]: the first identified intermediate is 

the oxo-iron complex that absorbs at 318 nm and develops after 20 – 25 ms, but decays 

after 600 ms. Evidence for this intermediate can also be gleaned from oxygen isotope 

studies using 16O/18O labeled substrates [105], and from observations with 

hydrogen/deuterium kinetic isotope effects using taurine and taurine-d2 which proved 

that this complex is responsible for hydrogen abstraction [106]. The second identified 
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intermediate corresponds to the complex H, formed after the oxo-iron species. Further 

evidence from isotope labeled studies indicate the retention of each atom of oxygen, one 

in succinate and the other in acetaldehyde [105]. However, this has never been detected 

in the latter due to rapid solvent exchange. 

 

Figure 2.2.2. Putative intermediates in the catalytic cycle of TauD. Intermediates A-H 
have been identified by a combination of isotopic enrichment studies, stopped flow 
experiments, spectroscopic and computational analyses. The only intermediates directly 
identified are F and H. 

 

For LipL and Cpr19, we begin by charting out a putative catalytic cycle modeled on TauD 

(Figure 2.2.3), wherein the prime substrate UMP (1) can be putatively hydroxylated at C-

5 and thereafter dephosphorylated spontaneously to the final product uridine-5’-
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aldehyde (2) and inorganic phosphate. The pathway is proposed to proceed via 

intermediates a-h, starting with the ‘resting state’ where the Fe(II) center is coordinated 

via the facial triad in the catalytic center, and three water molecules (a). Ordered 

sequential binding of α-KG and UMP is proposed to cause conformational changes that 

allow for binding of molecular oxygen to the catalytic center to form a Fe(III)-superoxo 

species (d). The reaction can then proceed with attack of the distal oxygen on the α-keto 

group of the bidentate coordinated α-KG, which in turn can lead to decarboxylation and 

O-O bond cleavage to generate byproducts succinate, CO2 and and the high-spin Fe(IV)-

oxo intermediate (f). This intermediate is proposed to abstract the C-5’ hydrogen from 

UMP, leading to the trigonal pyramidal complex ‘g’, as well as a carbon-centered radical 

on UMP C-5’. ‘Oxygen rebound’ can lead to the hydroxylation at this position generating 

the understandably short-lived 5’-OH-5’-phosphouridine, which can spontaneously 

dephophorylate to the uridine-5’-aldehyde product following the TauD mechanism.   

Though the catalytic cycle (described above) for TauD is widely accepted as a consensus 

for this group of enzymes, in the context of the great spectrum of functional variability of 

this group, another rational alternative can be envisioned for some of the later steps in 

the catalytic cycle for LipL: a plausible alternative, in line with mechanisms demonstrated 

for CarC and ANS [89], is a desaturation/enol-tautomerization mechanism, or a non-redox 

conversion (CarC) that can take place following the first hydrogen abstraction step. An 

alternative route for LipL via desaturase/enol tautomerization towards the final uridine-

5’-aldehyde product is additionally conceptualized and discussed in details in the 
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following section. We explore a number of strategies to provide a definitive distinction 

between the two mechanisms and gain insights into the structural basis for the same. 

 

 

 

Figure 2.2.3. Putative reaction coordinates for LipL (modeled on TauD and CarC); (A) 
Proposed ‘hydroxylation’ mechanism proceeds through intermediates a-h, and cycles 
back to a; (B) Alternative proposal for ‘desaturase’ mechanism bifurcates from 
intermediate g, and proceeds through intermediates g-k, eventually cycling back to 
resting state a; U:Uracil. 

 

2.3. Strategy for elucidating ‘Desaturase’ versus ‘Hydroxlation’ Hypothesis 

 

For the desaturation hypothesis for LipL, in line with mechanisms demonstrated for CarC, 

ANS, favone synthase etc., starting from proposed intermediate g, the reaction can be 
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thought to proceed via sequential abstraction of both C-5’ and C-4’ hydrogens from UMP 

followed by phosphate hydrolysis and enol tautomerization to yield the final aldehyde 

product (uridine-5’-aldehyde). To be able to provide a clear distinction between the 

hydroxylation and desaturation hypotheses for LipL, therefore, the key is to track the fate 

of the C-4’ and C-5’ hydrogens. To monitor the fate of the C-4’ and C-5’ hydrogens, we 

strategized the utilization of a selectively deuterated UMP as the prime substrate that 

could be analyzed directly by mass spectrometric methods. As can be deduced from 

Figure 2.2.3 (B), logic dictates that the retention of the deuterium label at the C-4’ 

position would negate the possibility of a second hydrogen abstraction event from UMP 

in the original reaction, and thereby provide convincing evidence to eliminate a 

desaturation mechanism. In line with this argument, we formulated the synthesis of a 

selectively deuterated UMP analog ([2,3,4,5,5’-2H1]-uridine-5’-monophosphate) as the 

primary substrate to be tested in reaction with LipL (and its homolog Cpr19 from the 

strain A102395) and set out to track the fate of the C-4’-2H1 isotope label in the final 

aldehyde product (Figure 2.3.1). 

  

 

Figure 2.3.1. Strategy with deuterated UMP substrate (3). If the reaction were to follow 
sequential abstraction from both C-4’ and C-5’ positions of 3, then the final aldehyde 
product (4) would lose both 2H1 labels and have predicted MW 244.2. 
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For the hydroxylation hypothesis following the TauD model, we theorized that a direct 

evidence of hydroxylation can be observed from tracking the critical bridging 

phosphoester oxygen in UMP (1). Since the phosphate group in UMP is a good leaving 

group Figure 2.2.3 (A) it is difficult to establish the existence of the putative 5’-hydroxy-

5’-phosphouridine (C-5’-OH-UMP) intermediate due to its innate instability.  

 

 

 

Figure 2.3.2. Strategy for utilization a modified substrate analog (11). We would attempt 
entrapment of the elusive intermediate hydroxylated at the functionalized C-5’ position 
(5) 

 

To circumvent this challenge, we strategized the synthesis of a structural analog of UMP 

(Figure 2.3.2) wherein the phosphoester oxygen bond O-P could be replaced by a C-P 

bond to make the phosphonate derivative, effectively transforming the phosphate to a 

poor leaving group. By doing so, and potentially entrapping the -OH at C-5’ position from 

the reaction of LipL with the substrate analog (and preventing the intermediate from 

converting back to the uridine-5’-aldehyde product by spontaneous dephosphorylation) 

we could use it to mirror a similar hydroxylation step in the original reaction. To achieve 
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this, we have adopted a synthetic strategy following on the method described by Xu et al. 

[107] for the synthesis of phosphonates (Scheme 2.3.3). 

 

 

 

Scheme 2.3.3. Synthesis of key substrate analog (11). Synthesis is planned via 
retrosynthetic wittig condensation of protected uridine-5’-aldehyde (6a) and 
corresponding ylide (4a). 

 

2.4. Materials and methods 

2.4.1.   Chemicals and Reagents 

UMP, (1,2,3,4,5,6,6-2H1)glucose, 2- ketoglutaric acid (α-KG), β-nicotinamide adenine 

dinucleotide 2’-phosphate reduced tetrasodium salt (β–NADPH), adenosine 5’-

triphosphate disodium salt (ATP), phosphor (enol) pyruvate trisodium salt (PEP), uracil, 

uridine-5’monophosphate, and ascorbic acid were purchased from Sigma-Aldrich (St. 

Louis, MO) or Promega (Madison, WI). Buffers, salts, organic solvents and media 
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components were purchased from Sigma-Aldrich (St. Louis, MO) and Fisher Scientific 

(Pittsburgh, PA). Synthetic oligonucleotides were purchased from Integrated DNA 

Technologies 21 (Coralville, IA). Wizard® Plus SV Minipreps DNA Purification Systems, 

Wizard® SV Gel and PCR Clean-Up System were purchased from Promega (Madison, WI, 

USA). pET-30 Xa/LIC Vector Kit was purchased from Calbiochem (San Diego. CA, USA). 

InstaGene Matrix was purchased from Bio-Rad (Hercules, CA). Ni-NTA agarose was 

purchased from Qiagen (Valencia, CA). Amicon Ultra 10000 MWCO centrifugal filter was 

purchased from Millipore (Billerica, MA). PD-10 desalting column was purchased from GE 

Healthcare (Pittsburgh, PA). DNA sequencing was performed using the 

BigDye™Terminator version 3.1 Cycle Sequencing kit from Applied Biosystems, Inc. 

(Foster City, CA) and analyzed at the University of Kentucky Advanced Genetic 

Technologies Center. 

 

2.4.2.  Instrumentation 

UV/Vis spectroscopy was performed with a Bio-Tek μQuant microplate reader using 

Microtest™ 96-well plates (BD Biosciences) or a Shimadzu UV/Vis-1800 

Spectrophotometer. HPLC was performed with a Waters Alliance 2695 separation module 

(Milford, MA) equipped with a Waters 2998 diode array detector and an analytical Apollo 

C-18 column (250 mm x 4.6 mm, 5 μm) or a semi-preparative Apollo C-18 column (250 

mm x 10 mm, 5 μm) purchased from Grace (Deerfield, IL). Electrospray ionization-MS was 

performed using an Agilent 6120 Quadrupole MSD mass spectrometer (Agilent 

Technologies, Santa Clara, CA) equipped with an Agilent 1200 Series Quaternary LC 
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system and an Eclipse XDB-C18 column (150mm x 4.6 mm, 5 μm, 80Å). High-resolution 

MS was obtained from either University of Kentucky Mass Spectrometry Core Facility, or 

from University of Minnesota, Department of Chemistry Mass Spectrometry Facility. NMR 

data were collected using a Varian Unity Inova 400 or 500 MHz Spectrometer (Varian, Inc., 

Palo Alto, CA) at the University of Kentucky, and a Bruker Avance III 700 MHz 

spectrometer equipped with a 5 mm QCI probe at the University of Wisconsin, Madison. 

Malachite green binding assay was performed with a colorimetric-based Sensolyte MG 

Phosphatase Assay Kit from AnaSpec, Inc. (Fremont, CA). 

 

2.4.3.  Bacterial strains and Enzymes 

NovaBlue GigaSingles™ Competent Cells was purchased from Calbiochem (San Diego. CA, 

USA). One Shot® BL21 (DE3) Chemically Competent E. coli was purchased from Invitrogen 

(Camarillo, CA). TaKaRa LA Taq® DNA polymerase with GC Buffer was purchased from 

Takara Bio Inc (Otsu, Shiga, Japan), T4 DNA ligase, NdeI, and Hind III were purchased from 

New England Biolabs (Ipswich, MA). Expand long template PCR system was purchased 

from Roche Applied Science (Indianapolis, IN). Commercial varieties of hexokinase, 

pyruvate kinase, glucose-6-phosphate dehydrogenase, glutamate dehydrogenase, 

phosphogluconate dehydrogenase, myokinase and inorganic pyrophosphatase were 

purchased from Sigma-Aldrich (St. Louis, MO). 
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2.4.4. Synthesis of 1-[5,6-Dideoxy-6-(dihydroxyphosphinyl)-β-D-ribohexofuranosyl] 

uracil (11) 

The synthetic strategy following on the method described by Xu et al. (122) for the 

synthesis of phosphonates (Scheme 2.3.3) is used to generate the final substrate analog 

(11). Table 1 summarizes the spectral characterization of compound 11, at the end of this 

section.  

 

(Diethoxyphosphinyl)methyl Triflate (2a): Trifluoromethanesulfonic  anhydride (35.5 

mmol) was added dropwise to a stirred solution of commercially available diethyl 

(hydroxymethyl)phosphonate (30.6 mmol) and 2,6-lutidine (37.6 mmol) in anhydrous 

dicholoromethane (50 ml) at -50°C under N2 atmosphere.  The reaction mixture was then 

allowed to warm to 0°C over a period of 1.5- 2 hrs, and diluted thereupon by with ether 

(300 ml). A precipitate formed upon addition of the diethyl ether, which was removed by 

filtration and the filtrate was successively washed with water, 1 N HCl, and brine and then 

dried over Mg2SO4.  A yellowish oil was obtained upon concentration of the dried solution, 

and this was used for the next step without further purification.1H NMR (500MHz, CDCl3) 

δ 1.37 (t, 6 H), 4.21-4.23 (m, 4 H), 4.61 (d, 2 H).  
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[(Diethoxyphosphinyl)methyl] triphenylphosphonium Triflate (3a): 30 mmols of 

[(diethoxyphosphinyl)methyl] triphenylphosphonium triflate (2) was added dropwise to 

a stirred solution of triphenylphosphine (34.4 mmol) in anhydrous CH2Cl2 (50 ml) at 0 oC 

under N2. The solution was left to reach room temperature and then stirred at this 

temperature overnight. The CH2Cl2 was then evaporated under reduced pressure to about 

one third of the volume, and the resultant oil was triturated with ether (200 ml). This led 

to the formation of a white solid which was then collected by filtration. The final triflate 

(2) was obtained after being washed with ether twice (50 ml x 2) as a white solid. Owing 

to its relative instability, it was used directly in the next step. Analytical sample was 
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prepared by rescrystallization from ethyl acetate/hexane. 1H NMR (500MHz, CDCl3) δ 1.16 

(t, 6h), 4.0-4. 06 (m, 4H), 4.20 (dd, 2H), 7.66-7.86 (m, 15H) 

 

 

 

[(Diethoxyphosphinyl)methylidene] triphenylphosphorane (4a): The 

triphenylphosphonium triflate salt (3) (in anhydrous THF) was used directly for reaction 

with a stirred suspension of NaH (1.25 mmol) in anhydrous THF (2 ml) at 0  oC under N2 

and the reaction was allowed to proceed for about 0.5 h. The solvent was then removed 

under reduced pressure and the resultant residue was extracted using CH2Cl2. The 

colorless oil obtained from concentration of the extracts was triturated with hexane to 

yield another white solid. This solid too was unstable, and as such used directly for the 
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next step.  1H NMR (500MHz, CDCl3) δ 1.08 (t, 6H), 1.28 (d, 1H), 3.88 (apparent quintet, 

4H), 7.49-7.74 (m, 15H) 

 

 

 

2’,3’-O-isopropylidene-uridine (6a): 2,2-dimethoxypropane (270.68 mmol) was added to 

a mixture of uridine (5) (20.48 mmol) and p-toluenesulfonic acid (1.75 mmol) in dry 

acetone (166.5 mL, 0.123 M) and stirred at room temperature for 4 hrs. The color of the 

solution turned yellow, and after removal of the solvent under reduced pressure the color 

changed to deep purple. TLC analysis indicated completion of the reaction, and the dried 

residue was used directly for purification via silica gel chromatography and eluted with 

5% ethyl acetate in hexane. The final product was a white powder. 1H NMR (500MHz, 
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CDCl3) δ 1.36 (s, 3H), 1.58 (s, 3H), 3.82 – 3.92 (m, 2H), 4.29 (m, 1H), 4.97 – 5.04 (m, 2H), 

5.56 (d, 1H), 5.73 (m, 1H), 7.37 (d, 1H) 

 

 

 

2’,3’-O-isopropylidene-uridine-5’-aldehyde (7a): 2.476 mmols of IBX was added to a 

solution of compound 6 (1.478 mmol) in dry acetonitrile(2.956ml, 0.5M) and stirred under 

reflux conditions at 80°C for 2 hrs. Following completion of the reaction, the IBX was 

removed by filtration through Celite followed by removal of the solvent under reduced 

pressure. The resultant white solid was used for analysis. 1H NMR (500MHz, CDCl3) δ 1.36 

(s, 3H), 1.52 (s, 3H), 4.53 (m, 1H), 5.12 – 5.17 (m, 2H), 5.62 (d, 1H), 5.78 (d, 1H), 7.45 (d, 

1H), 9.4 (s, 1H), 10.25 (d, 1H) 
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1-[5,6-Dideoxy-6-(diethoxyphosphinyl)-2,3-O-isopropylidene-D-ribo-hex-5-enofuranosyl] 

uracil (8a): The triphenylphosphorane (4)(1.63 mmol) obtained earlier was added to a 

stirred solution of 2’,3’-O-isopropylideneuridine (1.63 mmol) in anhydrous DMSO (200 ml) 

at room temperature under N2. The reaction was allowed to proceed overnight, and TLC 

analysis indicated completion of the reaction. The final ylide was extracted from the 

DMSO medium using CH2Cl2 and purified via silica gel chromatography and elution with 

5% methanol in CH2Cl2. 1H NMR (500MHz,CDCl3) δ  1.22 (t, 6H), 1.33 (s, 3H), 1.58 (s, 3H), 

4.02 – 4.08 (m, 5H), 4.64 (dd, 1H), 4.93 (dd, 1H), 5.16 (ddd, 2H), 5.87 (d, 1H), 5.97 – 6.01 

(dt, 1H), 6.77-6.82 (ddd, 1H), 7.72 (d, 1H), 11.43 (s, 1H) 
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1-[5,6-Dideoxy-6-(diethoxyphosphinyl)-2,3-O-isopropylidene-β-D-ribo-hexofuranosyl] 

uracil (9a): 10% Pd/C (2 mg) was added to a solution of compound 8 (1 mmol) in methanol 

(10 ml) and the reaction was allowed to proceed under H2 atmosphere overnight. The 

mixture was then filtered through Celite for removal of the catalyst and was shown by 

TLC to have been completely converted to the product. A yellowish oil was obtained upon 

concentration of the solution, and this was used for the next step without further 

purification. 1H NMR (500MHz, CDCl3) δ 1.25 (m, 9H), 1.47 (s, 3H), 1.72 – 1.95 (m, 4H), 

3.94 (d, 1H), 4.03 (m, 4H), 4.56 (dd, 1H), 4.90 (dd, 1H), 5.56 (d, 1H), 5.66 (dd, 1H), 7.2 (d, 

1H), 10.31 (s, 1H) 

020712_ethoxywittig

11 10 9 8 7 6 5 4 3 2 1

Chemical Shift (ppm)

0

0.005

0.010

0.015

0.020

0.025

N
o
rm

a
li
z
e
d
 I
n
te

n
s
it
y

5.502.573.003.224.480.860.940.850.970.830.740.830.74

M07(m) M05(m)M06(m) M02(s)

M04(m)

M03(m)

M01(m)

1
1
.4

3

7
.7

4
7
.7

2

6
.8

2 6
.8

1
6
.7

7 6
.0

1
5
.9

8
5
.9

7
5
.8

8
5
.8

7
5
.6

6
5
.6

5
5
.6

3
5
.4

6
5
.1

8
5
.1

7
5
.1

6
4
.9

4
4
.9

3
4
.6

4
4
.0

8
4
.0

7
4
.0

7
4
.0

5
4
.0

4
4
.0

2

3
.4

0
3
.2

9
3
.2

8

2
.7

6
2
.6

2
2
.4

8

1
.5

8
1
.3

7
1
.3

3
1
.3

2



 

51 
 

 

 

 

 

1-[5,6-Dideoxy-6-(dihydroxyphosphinyl)-β-D-ribohexofuranosyl] uracil (11): In the final 

step, TMSBr (1.626 mmol) was utilized for global deprotection of compound 9 (0.16 

mmol) in CH2Cl2 (2 ml). After overnight stirring, the solvents were removed under reduced 

pressure and the residue was dissolved in water and lyophilized to give pure compound 

11. 1H NMR (500MHz, D2O) δ 1.82 – 1.94 (m, 4H), 3.95 – 3.98 (m, 2H), 4.27 (app t, 1H), 

5.73 (d, 1H), 5.79 (d, 1H), 7.55 (d, 1H); 13C NMR (500MHz, D2O) δ 21.8, 22.88, 72.3, 73.15, 

82.92, 89.6, 102.08, 141.65, 151.08, 165.70. HRMS (ESI+) calcd. for C10H15N2O8P [M + H]+ 

323.2098; found 323.0646. 
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Figure 2.4.4.1. Spectroscopic characterization of S11. 1H, 13C, 2D 1H – 13C gHSQC 

(500MHz, D2O) and HRMS for substrate analog 11. 

 

Table 1. Assignment of each peak of the final substrate analog S11 to the corresponding 
1H and 13C peaks obtained from the cumulative spectral data: 

 

Position δC, mult. δH 

1 21.73, CH2 1.89, m 

2 22.82, CH 1.96, m 

3 82.86, CH 3.94 

4 72.24, CH 3.98, m 

5 89.54, CH 4.28, app t 

6 73.09, CH 5.79, d 

7 141.5, CH 7.55, d 

8 102.2, CH 5.74, d 

9 165.7, C  

10 151.03, C  
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2.4.5. Cloning of genes for heterologous expression 

The genes were amplified by PCR using the Expand Long Template PCR system from Roche 

with supplied buffer 2, 200mM dNTPs, 5% dimethyl sulfoxide, 10ng of DNA template, 5 

units of DNA polymerase, and a 10mM concentration of each of the following primers 

(Table 2). DNA templates for PCR cloning were either E. coli DH5α genomic DNA (EcRipA, 

EcUpp), cosmid pN1 (lipL gene), pNCap02 (prepared using the genomic DNA 

of Amycolatopsis sp. SANK 60206) (cpr19 gene) and Salmonella typhimirium plasmid 

pBRS11R (from Dr. Vern L. Schramm, Albert Einstein University, New York) 

(StPRPPsynthase). The thermocycler program included an initial hold at 94°C for 10s, 56°C 

for 15s, and 68°C for 50s. The DNA fragment of the expected sizes were purified by 1% 

agarose gel and the purified PCR products were inserted into pET-30 Xa/LIC using ligation-

independent cloning following the provided protocol to yield pET30- Ecprpp, pET30-

EcRipA, pET30-EcUpp, pET30-StPRPPsynthase, pET30-lipL and pET30-cpr19.  PCR-

amplified DNA was then sequenced to confirm its identity. 

Table 2. List of primers used 

Primers Oligonucleotide sequence 

StPRPPsynthase_for 5’-GGTATTGAGGGTCGC ATGCCTGATATCAAGCTTTTTGCTGG-3’ 
StPRPPsynthase 
_rev 

5’-AGAGGAGAGTTAGAGCCTCAATGCTCGAACATGGCGGAAATC-
3’ 

EcRpiA_for 5’-GGTATTGAGGGTCGCATGACGCAGGATGAATTGAAAAAAG-3’ 
EcRpiAi_rev 5’-AGAGGAGAGTTAGAGCCTCATTTCACAATGGTTTTGACACC-3’ 

EcUpp_for 5’-GGTATTGAGGGTCGCATGAAGATCGTGGAAGTCAAAC-3’ 
EcUpp_rev 5’-AGAGGAGAGTTAGAGCCTTATTTCGTACCAAAGATTTTGTC-3’ 
lipL_for 5’- GTGATTGAGGGTCGCATGTCCGTGCTGGGGCGG - 3’ 
lipL_rev 5’- AGAGGAGAGTTAGAGCCTCATGAGGGCTTCTTGGTG – 3’  
cpr19_for 5’ - GGTATTGAGGGTCGCATGCAGCAGCTGCAAGCCG - 3’ 

cpr19_rev 5’- AGAGGAGAGTTAGAGCCTCAATTGGAGGCGCGGGG - 3’ 
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The plasmids were introduced into E. coli BL21 (DE3) cells by transformation and the 

recombinant strains were grown in LB medium supplemented with 30 μg/ml kanamycin. 

Recombinant culture were then grown at 18°C with 250 rpm, following inoculation with 

500 ml of LB with 30 μg/ml kanamycin in a 2.5 L Erlenmeyer flask, until the cell density 

reached an OD600 = 0.5. Expression was induced with 0.1 mM isopropyl 1-thio-β-D-

galactopyranoside (IPTG) and after overnight incubation at 18°C, cells were harvested and 

lysed using a French press with one pass at 15,000 psi and immediately centrifuged at 

18,000 rpm. The obtained supernatant was utilized for purification of the desired proteins 

using affinity chromatography with a nickel- nitriloacetic acid-agarose from followed by 

desalting of the recombinant proteins into 50mM Tris-HCl (pH 8), 100mM NaCl, and 5% 

glycerol using a PD-10 desalting column. The purified proteins were reconcentrated with 

an Amicon Ultra 10000 MWCO centrifugal filter prior to addition of glycerol (final 40%) 

for storage at -20°C. Protein solubility and purity were assessed by 12% acrylamide SDS-

PAGE; His6-tagged proteins were utilized without further modifications.  

Table 3. List of plasmids used  

Strain/Plasmid Characteristics and Relevance References 

E. coli Nova-blue Host for routine cloning Novagen 
E. coli BL21 (DE3) Host for protein expression Novagen 

pET30 Expression vector Novagen 

pET30- StPRPPsynthase StPRPPsynthase gene cloned to pET30 This study 

pET30- EcRpiA EcRpiA gene cloned to pET30 This study 
pET30- EcUpp EcUpp gene cloned to pET30 This study 
pET30- lipL lipL gene cloned to pET30 This study 

pET30- cpr19 cpr19 gene cloned to pET30 This study 
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2.4.6.   Enzymatic synthesis of 2’,3’,4’,5’,5’’-2H1-uridine-5’-monophosphate(3) 

Single reaction mixture (1 ml) consisted of 50mM Tris-HCl (pH 7.5), 10mM MgCl2, 5mM 

uracil, 20 mM PEP, 1mM NADP+, 1mM ATP, 2.5 mM α-KG, 1mM NH4Cl, 1mM 

(1,2,3,4,5,6,6’-2H1)glucose, 80 U of hexokinase, 160 U of pyruvate kinase, 100 U of 

glucose-6-phosphate dehydrogenase, 160 U of glutamate dehydrogenase, 8 U of 6-

phosphogluconate dehydrogenase, 25 μg of phosphoriboisomerase (EcRpiA), 100 μg of 5-

phosphoribosyl-1-pyrophosphate synthetase (StPRPPsynthase), 25 μg of uracil 

phosphopribosyl transferase (EcUpp), 80 U of myokinase and 5 U of inorganic 

pyrophosphatase. The reaction was carried out at 30°C overnight and terminated by 

ultracentrifugation using a Microcon YM-3. Following removal of protein by 

centrifugation, the reactions were analyzed by HPLC using a C-18 reverse-phased column 

under ion-pairing conditions (monitored at 254 nm). A linear gradient of from 40 mM 

acetic acetic acid-triethylamine pH 6.5 (A) to 20% methanol (B) (0-4 min, 0% B; 4-24 min, 

50% B; 24-26 min 100% B; 26-32 min, 100% B; 32-35 min, 0% B) with flow rate of 1 ml/min 

was used to analyze the reactions and elution was monitored at 260 nm. LC-MS was 

performed using a linear gradient from 0.1% formic acid in water to 0.1% formic acid in 

acetonitrile over 20 min. The flow rate was kept constant at 0.4 mL/min, and elution was 

monitored at 254 nm (Figure 2.4.6.1). Isolation of the deuterium labeled UMP product (3) 

starting from universally deuterated glucose was carried out with HPLC using a C-18 

reverse-phase column using the aforementioned ion-pairing conditions. The peak 

corresponding to the product was collected and freeze-dried prior to mass-spectroscopic 

analysis (discussed in section 2.5.2).  
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Figure 2.4.6.1. Schematic for the synthesis of deuterated UMP analog (3). The pathway 
is derived from an amalgamation of enzymatic steps from the glycolytic (red) and pentose 
phosphate pathways (blue), as well as from nucleotide metabolism (green). Three of the 
enzymes (His6-phosphoriboisomerase (His6-EcRpiA), His6-uracil phosphopribosyl 
transferase (His6-EcUpp), and His6-5-phosphoribosyl-1-pyrophosphate synthetase (His6- 
StPRPPsynthase) were synthesized in our lab; rest of the enzymes were available 
commercially. 

 

2.4.7. In-vitro reactions with LipL and Cpr19: 

Reactions with LipL typically consisted of 50mM Tris-HCl (pH 7.5), 1mM UMP (or 

2’,3’,4’,5’,5’’-2H1-UMP), 1.25 mM α-KG, 200 μM ascorbate, 100 μM FeCl2, and 100 nM LipL 
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at 30°C. And reactions with Cpr19 typically consisted of 50mM Tris-HCl (pH 7.5), 1mM 

UMP, 1.25 mM α-KG, 1 mM ascorbate, 500 μM FeCl2, and 100 nM Cpr19 at 30°C. Reactions 

were terminated by ultracentrifugation using a Microcon YM-3. Following removal of 

protein by centrifugation, the reactions were analyzed by HPLC using a C-18 reverse-

phased column under ion-pairing conditions (monitored at 254 nm). A linear gradient of 

from 40 mM acetic acetic acid-triethylamine pH 6.5 (A) to 20% methanol (B) (0-4 min, 0% 

B; 4-24 min, 50% B; 24-26 min 100% B; 26-32 min, 100% B; 32-35 min, 0% B) with flow 

rate of 1 ml/min was used to analyze the reactions and elution was monitored at 260 nm. 

LC-MS was performed using a linear gradient from 0.1% formic acid in water to 0.1% 

formic acid in acetonitrile over 20 min. The flow rate was kept constant at 0.4 mL/min, 

and elution was monitored at 254 nm. 

 

2.4.8.   Kinetic characterization of LipL and Cpr19: 

The activities of LipL and Cpr19 were detected by monitoring the formation of inorganic 

phosphate with the malachite green binding assay [108]. Detection of phosphate released 

as an enzyme product is a well-established technique for assaying phosphatase activity. 

For standardizing and quantifying the phosphate detected, the general procedure 

involves removal of 60µL of the reaction mixture and adding 20 µL of the MG reagent 

which is previously dispensed into individual wells in a 96-well format. The two were 

mixed well and left to incubate at room temperature for 5 min. We used 20mM (20 µL) 

EDTA (Ethylenediaminetetraacetic acid chelates Fe(II) from the enzyme) to terminate the 

reactions with LipL and Cpr19. Absorbance was measured at 620 nm using a microplate 
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reader. A standard curve was developed using phosphate standards of 0.8, 1.6, 3.2, 6.7, 

12.5, 25, and 50 µM (provided in the kit). For single-substrate kinetic analyses involving 

LipL and Cpr19, reactions consisted of 50mM Tris-HCl (pH 7.5), 1 mM ascorbate, 500 μM 

FeCl2,  100 nM LipL, near saturating α-KG (1mM) and variable UMP (50 μM– 1 mM). The 

reactions were initiated at 30°C by adding LipL (100 nM) or Cpr19 (100 nM) using the 

pipettor for mixing. Reactions were terminated after 3 min (<10% product formation) by 

addition of EDTA, using a sample without enzyme as a blank/control. Each data point 

represents triplicate end point assays. Kinetic constants were obtained by nonlinear 

regression analysis using GraphPad Prism. 

 

For kinetic analysis of inhibition of LipL activity by synthesized substrate analog 11, 

inhibition parameters were obtained by addition of variable  concentrations of 11 (5 μM– 

1 mM) to assays consisting of 50mM Tris-HCl (pH 7.5), 1 mM ascorbate, 500 μM FeCl2, 

100 nM LipL, near saturating α-KG (1mM) and variable UMP (100 μM– 10 mM). For each 

individual inhibition curve, we conducted the reactions by varying the concentration of 

11 with a constant UMP concentration, and then repeating each study with a different 

concentration of UMP. The reactions were performed at 30°C for 3 min and analyzed 

under initial velocity conditions. Each data point represents a minimum of three replicate 

end point assays. For analyzing the inhibition constants, we generated cumulative data 

points from a total of five inhibition curves. We plotted a Lineweaver-Burke plot from the 

cumulative data using GraphPad Prism to arrive at the inhibition constants. 
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2.4.9.   NMR and mass spectrometric characterization of synthetic standards 

We received two synthetic standards from our collaborator Dr. Suzanne Peyrottes 

(University Montpellier, France) [109] that were used to test the identity of product 

obtained from the reaction of Cpr19 with synthetic phosphonate substrate analog 11. 

Compound UA1768 was received as a 91:9 mixture of the sodium salts of 1-[6’-Deoxy-6’-

phosphono-β-D-ribo-(5’S)-hexofuranosyl]uracil and 1-[6’-Deoxy-6’-phosphono-β-D-ribo-

(5’R)-hexofuranosyl]uracil. In compound UA1923, the ratio was reversed. HPLC analysis 

(under ion pairing conditions) of the two reflect the elution profile and relative ratio of 

the standards (Figure 2.4.9.1).  

 

1-[6’-Deoxy-6’-phosphono-β-D-ribo-(5’S)-hexofuranosyl]uracil (Disodium salt) (UA1768): 

Obtained as synthetic standard. 1H NMR (300MHz, D2O) δ 1.7 – 1.95 (m, 2H), 4.03 (t, 1H), 

4.10 (m, 1H), 4.2 – 4.3 (m, 2H), 5.83 (d, 1H), 5.87 (d, 1H), 7.83 (d, 1H); 13C NMR (300MHz, 

D2O) δ 31.6, 67.2, 68.7, 73.5, 87.5, 87.9, 102.6, 141.9, 151.9, 166.1. HRMS (ESI+) calcd. for 

C10H16N2O9P [M – Na + 2H]+ 339.0593; found 339.0592. 

 

1-[6’-Deoxy-6’-phosphono-β-D-ribo-(5’R)-hexofuranosyl]uracil (Disodium salt) (UA1923): 

Obtained as synthetic standard. 1H NMR (300MHz, D2O) δ 1.70 – 1.90 (m, 2H), 4.01 (dd, 

1H), 4.02 – 4.18 (m, 1H), 4.21 (dd, 1H), 4.3 (dd, 1H), 5.84 (d, 1H), 5.89 (d, 1H), 7.95 (d, 1H); 

13C NMR (300MHz, D2O) δ 32.0, 67.3, 70.3, 73.7, 87.0, 88.6, 102.4, 142.0, 151.8, 166.2. 

HRMS (ESI+) calcd. for C10H16N2O9P [M – Na + 2H]+ 339.0593; found 339.0592. 
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Figure 2.4.9.1. Synthetic standards. UA1768 consists of the major peak corresponding to 
the S-hydroxy-phosphonate, and UA1923 contains R-hydroxy-phosphonate as the major 
peak. 
 

 

2.5. Results 

2.5.1. In vitro characterization of LipL and Cpr19: 

In previous studies, the orf from A-90289 was shown to encode the protein LipL which 

was functionally assigned by our lab as a non-heme, Fe(II)-dependent α-ketoglutarate (α-

KG): uridine-5’-monophosphate (UMP) dioxygenase catalyzing the conversion of UMP to 

uridine-5’-aldehyde during A-90289 biosynthesis [70]. Cpr19 is a homolog of LipL from the 

0 1 0 2 0 3 0

0

1 0 0

2 0 0

3 0 0

T im e  ( m in )

A
2

6
0

U A  1 7 6 8

U A  1 9 2 3



 

63 
 

strain A-102395 [110], and has been characterized similarly to carry out a net two-

electron oxidation of UMP to the final aldehyde product (Figure 2.5.1.1).  

 

 

 
Figure 2.5.1.1. Reaction mechanism of LipL and Cpr19. Net two-electron oxidation of 
UMP (1) to uridine-5’-aldehyde (2) catalyzed by homologs LipL (A-90289) and Cpr19 (A-
102395). 
 
 
The lipL and cpr19 genes were cloned and expressed in E. coli to yield soluble protein with 

the expected sizes (Figure 2.5.1.2). HPLC analysis of both reactions catalyzed by LipL and 

Cpr19 revealed a peak corresponding to the product uridine-5’-aldehyde (2) and the tris-

adducts of the aldehyde eluting later (red and blue spectra) (Figure 2.5.1.3). Negative 

control consists of the reaction mixture sans the enzymes, wherein substrate UMP (1) 

elutes at t =12 min (black trace). LC-MS analyses of both reactions revealed (M-H)- ions at 

m/z = 240.8, that confirms the identity of the aldehyde product from the reaction of both 

enzymes (Figure 2.5.1.4). 
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Figure 2.5.1.2. SDS-PAGE analysis of purified proteins (A) His6-LipL (expected 38.2 kD) 
and (B) His6-Cpr19 (expected 31.7 kD) 
 
 

 

 
 

 

 

 

 

 

 

 

 

 
Figure 2.5.1.3. HPLC analyses of in-vitro reactions catalyzed by LipL and Cpr19. HPLC 
trace for negative control (in the absence of enzymes) is depicted in black, and for the 
reactions catalyzed by Cpr19 (red) and LipL (blue) complete conversion of the UMP (1) 
peak (eluting at t =12 min) leads to the uridine-5’-aldehyde product (2) eluting at t = 5 min 
(along with its corresponding mono- and bi- tris-adducts, as labeled). A260: absorbance at 
260 nm.  
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Figure 2.5.1.4. LC-MS analysis of the dioxygenase reactions. (A) Mass spectrum for the 
ion peak eluting at t =3.9 min for the reaction catalyzed by LipL, (B) Mass spectrum for 
the same peak, obtained from Cpr19 reaction. 
 
 
 
2.5.2. In-vitro synthesis of 2’,3’,4’,5’,5’’-2H1-uridine-5’-monophosphate(3) 

The genes for phosphoriboisomerase (EcRpiA), uracil phosphopribosyl transferase 

(EcUpp) and 5-phosphoribosyl-1-pyrophosphate synthetase (StPRPPsynthase) were 

cloned and expressed in E. coli to yield soluble protein with the expected sizes (Figure 

2.5.1.1). HPLC analysis of the one-pot synthesis revealed a peak with retention time t = 

12 min, as is expected for UMP (Figure 2.5.2.1). The peak was collected (as described in 

section 2.4.6) and LC-MS was utilized for confirming the identity of the product, and to 

establish the retention of four deuterium labels (Figure 2.5.2.3).  

 

m/z

R
e
la

ti
v
e
 a

b
u

n
d

a
n

c
e
 (

%
)

240 245 250
0

20

40

60

80

100

240.8

A

m/z

R
e
la

ti
v
e
 a

b
u

n
d

a
n

c
e
 (

%
)

235 240 245 250
0

20

40

60

240.8

B



 

66 
 

 

 

 

 

 

 

 

 

 

Figure 2.5.2.1. SDS-PAGE analysis of purified proteins (i) His6- phosphoriboisomerase or 
His6-EcRpiA (expected 22.8 kD), (ii) His6-Cpr19 (expected 31.7 kD), (iii) His6-uracil 
phosphoporibosyl transferase or His6-EcUpp (expected 22.5 kD) and (iv) His6-5-
phosphoribosyl-1-pyrophosphate synthetase or His6- StPRPPsynthase (expected 34 kD). 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.5.2.2. HPLC trace for the one-pot reaction. The pawthay is engineered from a 
combination of reactions adopted from the glycolytic and pentose phosphate pathways, 
and from nucleotide metabolism. The observed peak at t = 12 min corresponds to the 
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desired deuterium labeled UMP product (3) from this reaction. A260: absorbance at 260 
nm.  

 

Figure 2.5.2.3. LC-MS analysis of the peak collected from the one-pot reaction. (A) Mass 
spectrum for the ion peak eluting at t = 4.08 min, corresponding to 2’,3’,4’,5’,5’’-2H1-UMP 
(3) (calculated 329.3) (B) Mass spectrum for the peak eluting at t = 4.09 min, obtained 
from injecting standard UMP (calculated 324.7). Comparison of the two LC-MS results 
help in establishing the retention of five 2H1 labels in the synthesized product. 

 

2.5.3. In-vitro utilization of 2’,3’,4’,5’,5’’-2H1-uridine-5’-monophosphate(3) by LipL and 

Cpr19 

The synthesized 2’,3’,4’,5’,5’’-2H1-uridine-5’-monophosphate(3) was tested in reaction in 

vitro with both LipL and Cpr19. Initial activity tests with HPLC revealed that UMP (1) is 

converted to uridine-5’-aldehyde (2), in line with previous observed spectra (Figure 

2.5.1.2). Keeping with our earlier experiences with the inherent instability associated with 

the aldehyde product, we did not try to collect the product peak from HPLC. Instead, we 

directly injected the reaction mixture into the LC-MS and observed a peak with (M-H)- ion 

at m/z=244.8 corresponding to 2’,3’,4’,5’,-2H1-uridine-5’-aldehyde (calculated 246.8). As 
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negative control, we injected a reaction mixture obtained from the reaction of LipL 

(and/or Cpr19) with standard UMP (1). This reaction mixture revealed a peak with (M-H)- 

ion at m/z=322.7, corresponding to unlabeled uridine-5’-aldehyde (2) (Figure 2.5.3.1). 

This result led to the conclusion that four 2H1 labels from (3) are retained in the 

corresponding aldehyde product.  

 

 

Figure 2.5.3.1. LC-MS analysis of the peak collected from the reactions of LipL (A) and 
Cpr19 (B) with 3. Mass spectrum for the ion peaks eluting at t = 4.08 min, corresponding 
to 2’,3’,4’,5’,-2H1-uridine-5’-aldehyde (m/z=246.8)  (C) Mass spectrum for the peak eluting 
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at t = 4.09 min, obtained from injecting reaction mixture consisting of standard UMP with 
LipL and (D) with Cpr19. The (M-H)- ion at m/z=240.8 corresponds to unlabeled uridine-
5’-aldehyde. These results confirm the retention of 2H1 labels at the C-4’ and C-5’ positions 
in UMP. 

 

 

2.5.4. In-vitro utilization of synthetic phosphonate substrate analog (11) by LipL and 

Cpr19 

Initial activity tests using HPLC revealed that LipL did not recognize synthesized analog 11 

as a substrate. Variation of both substrate concentration and enzyme concentrations 

proved futile (Figure 2.5.4.1). However, HPLC tests with Cpr19 and 11 were more 

productive, with the observation of an (albeit small) product peak eluting directly ahead 

of the substrate 11 peak (Figure 2.5.4.2).  

 

 

 

 

 

 

 



 

70 
 

 

 

 

 

 

 

 

 

 

 

Figure 2.5.4.1. Reaction of LipL with S11. Comparative HPCL analyses of reactions carried 
out with phosphonate substrate analog 11 with LipL, under variable concentrations of 11. 
The observed peak corresponds to unutilized 11 in reaction. None of these studies yielded 
a product peak.  Inset: Absorbance maxima at 260 nm. 

 

 

 

 

 

 

 

 

Figure 2.5.4.2. Reaction of Cpr19 with S11. Comparative HPLC analyses of the reaction of 

11 conducted with Cpr19. The major peak is 11, and the small peak at t =7 min is residual 

uracil (decomposition product from reactions). (A) Negative control, which consists of the 

reaction mixture without Cpr19. (B) Addition of Cpr19 to the reaction mixture yields a 

product peak with absorbance at 260 nm (inset).  
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2.5.5. Spectroscopic characterization of Cpr19 product 

We used the synthetic standards received from our collaborators as a means for 

confirming the identity of the product observed in the reaction of Cpr19 with substrate 

analog 11. Comparative HPLC analyses of the negative control (reaction mixture in the 

absence of Cpr19), synthetic standards, reaction mixture with Cpr19, and reaction 

mixture co-eluting with synthetic standard UA1768 confirmed the identity of the 

observed product peak as 1-[6’-Deoxy-6’-phosphono-β-D-ribo-(5’S)-hexofuranosyl]uracil 

(5) (Figure 2.5.5.1).  

 

Figure 2.5.5.1. Comparative HPLC traces for confirming the identity of the Cpr19 
product. (A) UA1768 synthetic standard, (B) Negative control consisting of 11 in reaction 
mixture, in the absence of enzyme, (C) Formation of product peak from 11, catalyzed by 
Cpr19, (D) Co-elution of reaction mixture with UA1768 indicates enrichment of the peak. 
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2.5.6. Production of the Cpr19 product for NMR and mass spectroscopic analyses: 

Large scale isolation of the Cpr19 product starting from synthesized UMP analog (11) was 

carried out with HPLC using a C-18 reverse-phase semipreparative column using 

previously described iron-pairing conditions. The peak corresponding to the product 1-

[6’-Deoxy-6’-phosphono-β-D-ribo-(5’S)-hexofuranosyl]uracil (5) was collected and freeze-

dried prior to HRMS, 1D and 2D NMR spectroscopic analysis (Table 4, Figures 2.5.6.1-

2.5.6.5 ). 1H NMR (600MHz, D2O) δ 1.89 (m, 2H), 4.09 (app t,1H), 4.14 (m,1H), 4.29 – 4.30 

(m, 2H), 5.86 (d, 1H), 5.93 (d, 1H), 7.90 (d, 1H); 13C NMR (600MHz, D2O) δ 27.5, 67.5, 68.7, 

73.5, 87.5, 102.2, 141.5, 151.9, 165.7. HRMS (ESI+) calcd. for C10H15N2O9P [M-H]- 

:337.0463; found 337.04652. 

 

Table 4. Assignment of each peak of the Cpr19 product (5) to the corresponding 1H and 
13C peaks obtained from the cumulative spectral data: 
 
 

Position δC, mult. δH (J in Hz) COSY HMBC 

1 27.5, CH2 1.89, m 2  

2 67.5, CH 4.14, m 1  

3 87.5, CH 4.09, app t 4  

4 68.7, CH 4.30, m 3  

5 73.5, CH 4.29, m 6  

6 87.5, CH 5.93, d (5.7) 5  

7 141.5, CH 7.90, d (8.1) 8 9, 10 

8 102.2, CH 5.86, d (8.1) 7  

9 165.7, C    

10 151.9, C    
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Figure 2.5.6.1. HRMS of the collected Cpr19 product peak with S11. Expected [M-H]- 
:337.0463; found 337.04652. 
 

 

 

Figure 2.5.6.2. 1H NMR (600MHz, D2O) for Cpr19 product peak (5). 
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Figure 2.5.6.3.  2D 1H - 1H  gCOSY (600MHz, D2O) for Cpr19 product peak (5). 
 
 

 

Figure 2.5.6.4.  2D 1H – 13C gHSQC (600MHz, D2O) for Cpr19 product peak (5). 
 



 

75 
 

 

 
Figure 2.5.6.5.  2D 1H – 13C gHMBC (600MHz, D2O) for Cpr19 product peak (5). 

 
 

2.5.7. Kinetic characterization of LipL and Cpr19, with respect to substrate UMP 

For single-substrate kinetic analyses involving LipL and Cpr19, reactions were conducted 

at 30°C at pH=7.5. Reactions were terminated after 3 min (<10% product formation) by 

addition of EDTA, using a sample without enzyme as a blank/control. Each data point 

represents triplicate end point assays. Kinetic constants were obtained by nonlinear 

regression analysis using GraphPad Prism (Figure 2.5.7.1). The extracted kinetic constants 

are listed in Table 5. 
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Figure 2.5.7.1. Kinetic analyses of LipL and Cpr19. Single-substrate kinetic analysis with 
variable UMP (1) at pH=7.5 for LipL and Cpr19 obtained from malachite-green assay. 
 

For kinetic analysis of inhibition of LipL activity by synthesized substrate analog 11, 

inhibition parameters were obtained by addition of variable concentrations of 11 (5 μM, 

10 μM , 50 μM , 500 μM  and 1 mM) to assays consisting of 50mM Tris-HCl (pH 7.5), 1 mM 

ascorbate, 500 μM FeCl2, 100 nM LipL, near saturating α-KG (1mM) and variable UMP 

(100 μM– 10 mM). For each individual inhibition curve, we conducted the reactions by 

varying the concentration of 11 with a constant UMP concentration, and then repeating 

each study with a different concentration of UMP. The reactions were performed at 30°C 

for 3 min and analyzed under initial velocity conditions. Each data point represents a 

minimum of three replicate end point assays. For analyzing the inhibition constants, we 

generated cumulative data points from a total of five inhibition curves. We plotted a 

Lineweaver-Burke plot (Figure 2.5.7.2) from the cumulative data using Graphpad Prism 

to arrive at the inhibition constants. 
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Figure 2.5.7.2. Lineweaver-Burke plot for competitive inhibition of LipL by synthesized 
substrate analog 11. The plot is obtained by plotting inverse substrate (UMP) 

concentration (1/S) (in μM
-1

) on the X-axis versus the inverse of velocity (1/V) (in μM
-1

min) 
on the Y-axis, and then calculating Ki from the intercept on the Y-axis. The extracted 
inhibition constant is Ki= 800 nM. Legend on the top represents the different 
concentrations of 11 (in μM) used to generate each reciprocal graph.  
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Table 5. Kinetic constants for LipL and Cpr19 

Enzyme Substrate Km 

(μM) 
kcat (min-

1) 
kcat / Km (μM-

1min-1) 
Ki 

(nM) 

LipL UMP 24 ± 10 
 

72 ± 20 
 

3 -- 

LipL UMP + (11) 
(competitive 

inhibitor) 

-- -- -- 800 

Cpr19 UMP 42 ± 14 74 ± 10 1.76 -- 
 

2.6. Conclusion 

In summary, we have established that the dixoygenases LipL (from A-90289 pathway) and 

Cpr19 (A-102395) proceed via a ‘hydroxylation’ mechanism to generate an unstable 

hydroxylated intermediate by functionalizing prime substrate UMP (1) at C-5’. We can 

rationally predict that this intermediate can spontaneously dephosphorylate to yield free 

phosphate and the uridine-5’-aldehye (2) product that is utilized variously further down 

the biosynthetic pathways for nucleoside antibiotics (Figure 1.6.1). Mass spectrometric 

characterization of the product obtained from the utilization of selectively deuterated 

UMP (3) by both LipL and Cpr19 in reaction provides indubitable evidence for rejecting 

the ‘desaturase’ hypothesis, as was predicted earlier as an alternative pathway. The 

surrogate hydroxylated intermediate (5) characterized as the Cpr19 product by employing 

synthesized surrogate substrate (11) in reaction  mirrors a hydroxylated UMP 

intermediate in the original reaction. The end result is a pathway highlighted in Figure 

2.6.1. Our observations from this pathway can be rationally extended to the reaction 
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catalyzed by TauD in predicting the existence of the hydroxylated taurine intermediate, 

which has remained elusive to date (67). 

 

  

 

Figure 2.6.1. Revised biosynthetic pathway for dioxygenases LipL and Cpr19 via a 
‘hydroxylation’ mechanism. (A) Employment of deuterated substrate UMP (3) resulting 
in deuterated aldehyde product, (B) Utilization of synthetic substrate analog (11) to ‘trap’ 
hydroxylated intermediate (5). 

 

2.7. Discussion 

Enzymes from the Fe(II): α-KG-dependent superfamily catalyze a diverse array of 

biotransformations ranging from hydroxylations, stereoinversions, desaturations to ring 

closure and ring expansions [75]. Bioinformatic analyses of several recently discovered 

gene clusters for minimally two related families of nucleoside antibiotics revealed a 

shared open reading frame encoding a protein with sequence similarity to TauD, the best 

characterized member of this superfamily. We have characterized representative 
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enzymes from the A-90289 and A-503083 gene clusters to reveal yet another diverse 

biotransformation catalyzed by members of this superfamily. With this, we have thus 

established uridine-5’-aldehyde as the starting intermediate for the biosynthesis of both 

C7 high carbon nucleosides, as well as for the C6 high carbon nucleosides (Figure 1.6.1). 

It is also reasonable to predict that other high carbon nucleoside antibiotics such as the 

uracil-containing tunicamycin [68] and A-9464 [111], the adenine containing griseolic acid 

[112], and cytosine-containing ezomycin A1 [113] may employ a similar enzymatic 

strategy to initiate the organization of their respective high carbon sugar moieties (Figure 

2.7.1). We can therefore use the information from our gene clusters as a platform to 

rationally predict starting metabolites and similar biosynthetic assembly in related high 

carbon sugar nucleosides. Interestingly, phosphate release by LipL has been 

prognosticated as a potential additional function for this dioxygenase family, analogous 

to sulfate and sulfite scavenging by TauD and AtsK [74], and we have demonstrated that 

this is indeed plausible by providing the enzyme precedence for this chemistry. 
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Figure 2.7.1. Platform for pathway prediction. High carbon sugar nucleosides with 
predicted biosynthetic pathways that may include an activity similar to LipL and Cpr19. 

 

Most of the biochemical characteristics for LipL and Cpr19 have been reported for other 

enzymes of this family of enzymes. For example, activity for both enzymes is stimulated 

by ascorbate, certain divalent metals inhibit activity, oxidative decarboxylation of α-KG 

can still occur in the absence of prime substrate UMP [70]. For LipL, activity was shown to 

be absolutely dependent upon the presence of α-KG and molecular O2, and isotope 

enrichment studies conducted with 18O2 and H2O18 established the incorporation of one 

of the oxygen atoms into the byproduct succinate. Unfortunately, the rapid and reversible 

formation of a germinal diol in water did not allow the analysis of putative oxygen 

incorporation into uridine-5’-aldehyde. While LipL is specific for both prime substrate and 

α-KG and does not recognize substrate analog S11, Cpr19 recognizes both the substrate 

analog as well as some other α-keto acids as cosubstrate (Wenlong Cai, unpublished 

data). Keeping with our observations, we characterized S11 as a competitive inhibitor 
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based on a lineweaver burke plot derived for its inhibitory effect on LipL activity (Ki=800 

nM).  

Clearly, the unique feature of LipL and Cpr19 is the specific utilization of UMP and the 

mechanism by which net dephosphorylation and oxidative decarboxylation of α-KG takes 

place. In our studies, we have provided convincing proof that, instead of tandem 

phosphatase and oxidoreductase mechanisms as was postulated in earlier studies, the 

reaction occurs via the generation of a cryptic hydroxyl germinal to a good leaving group 

(phosphate) reminiscent of TauD and AtsK. A clear distinction between the hydroxylation 

versus desaturation mechanisms can be gleaned by tracking the fate of labeled 2H1 atoms 

from utilization of deuterated UMP substrate, as well from the key bridging C-6’ in the 

synthesized phosphonate analog (S11). To the best of our knowledge, this is the first 

direct identification of the hydroxylated intermediate (5) as the transient state in this type 

of reaction, while also demonstrating the specific abstraction of the pro-S hydrogen atom 

from C-5’ of UMP. The total enzymatic synthesis of deuterated UMP (3) via a combinatory 

route derived from glycolytic, pentose phosphate and nucleotide metabolic pathways is 

another distinctive platform that we developed as a substitute to chemical synthesis of a 

deuterated analog. The most obvious advantage of this methodology is the convenience 

of a one-pot setup and the stereospecific utilization of substrates eliminating the need 

for stepwise purification, while the yield of the final product was a clear disadvantage. 

The retention of five of the six deuterium labels starting from the universally deuterated 

glucose substrate is possibly a result of recycled cofactors from within the one-pot 

reaction.  
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Chapter three: Exploring the structural basis of Cpr19 mechanism 

3.1.  Background: Structural basis for mechanism of Fe(II)/α-KG dependent enzymes 

The stereoselective oxidation of an unactivated alkyl C-H bond is possibly one of the most 

difficult common functional group transformations in chemistry. Nature has tuned metal-

dependent oxygenases or oxidases to carry out such reactions. The most well 

characterized enzymes that do so are the cytochrome P450 monooxygenases, and they 

have been studied in explicit details both mechanistically and structurally [98, 99]. Non-

heme oxidizing enzymes that require an α-keto acid as a cosubstrate constitute the 

largest and most diverse family of mononuclear enzymes catalyzing many pivotal 

metabolic transformations, some of which were highlighted in previous chapters. Despite 

the vast array of distinct transformations these enzymes carry out, crystal structures of a 

number of different members from this group show the double-stranded β-helix (or 

jellyroll) as a common architecture for this superfamily [76, 77] (Figure 3.1.1) suggesting 

a close evolutionary relationship between the three branches of the family identified by 

sequence comparisons (diiron-using enzymes like methane monooxygenases, and 

monoiron-using enzymes also including Fe(III) dependent enzymes like lipooxygenases) 

[114, 115].  
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Figure 3.1.1. ‘Jelly-roll’ fold in Clavaminic Acid Synthase (CAS). Crystal structure of CAS 
complexed with mononuclear Fe(II) center (shown here in orange), complexed with 
substrate PCV (5-amino-3-hydroxy-2-(2-oxo-azetidin-1-yl)-pentanoic acid) (shown in red) 
and cosubstrate α-KG (in rainbow colors).  

 

The highly conserved His1-X-Asp/Glu-Xn-His2 motif (facial triad) constitutes the facial 

metal-binding ligands that binds the high-spin Fe(II) center. One of the oxygen atoms from 

the dioxygen molecule has been shown to be incorporated into succinate, generated by 

oxidative decarboxylation of α-KG [105]. Sequence analyses of members in this group 

reveals little overall similarity, leading to the proposal that convergent evolution to a 

common mechanism and active site chemistry occurred within the wider family of Fe(II)/ 

α-KG dependent and related oxygenases. The presence of such a metal binding motif is 

not limited to iron-dependent enzymes – it is also known to occur in Mn(II)-dependent 
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extradiol oxygenases and Zn (II)-dependent hydrolase enzymes like thermolysin [116]. In 

Zn(II)-binding groups, the presence of an HEXXH…E motif provides the metal binding 

glutamate and histidine ligands, very similar to the Fe(II)/ α-KG facial triad. The enzyme 

peptide formylase from E. coli, originally characterized as a Zn(II)-dependent hydroxylase 

has in fact been shown to utilize Fe(II) coordinated by two histidines and a cysteine 

residue [117]. Cysteine residues are uncommon as ligands in the active site, predictably 

since it would lead to reaction with molecular oxygen generating reactive oxidizing 

species. However, the oxidation of an iron-linked thiol is elegantly exploited in the enzyme 

isopenicillin N synthase (IPNS) [79].  

 

Several enzymes in this class have substrates with a built-in α-keto acid function and 

therefore do not require α-KG as a cosubstrate. Naturally, these enzymes appear to have 

slightly dissimilar topologies from enzymes utilizing α-KG. Examples include HPP 

dioxygenases, 4-hydromandelate synthase, 1-amino-1-cyclopropanecarboxylic acid 

synthase (ACCO), isopenicillin N synthase (IPNS), etc. [79]. IPNS catalyzes the four-

electron oxidation of the tripeptide δ- (L-α-aminoadipoyl)- L- cysteinyl-D-valine (ACV) to 

produce the penicillin nucleus and two water molecules [118]. The structure of IPNS was 

the first reported structure for a member of this group [119] and provided an impressive 

picture for the mechanism of this enzyme (Figure 3.1.2). 
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Figure 3.1.2.   Reaction mechanism of IPNS. IPNS catalysis involves forging a unique thiol 
bond between the tripeptide substrate and the Fe(II) center of the enzyme. Dioxygen 
binding in intermediate 3 leads to the abstraction of a hydrogen bond from the cysteinyl 
residue, which paves the way to sequential deprotonation and β-lactam formation (6) by 
IPNS.  

 

The crystal structure of IPNS complexed with ferrous iron at resting state revealed a metal 

ion octahedrally coordinated by His 214, Asp 216, His 270, Gln 330 and two water 

molecules. Addition of the tripeptide ACV did not distort the ‘jelly-roll’ core, however the 

side chain of Gln 330 which is coordinated to Fe(II) in the resting state is replaced by the 

ACV thiolate. Additionally, one of the water molecules ligating the metal ion is displaced, 

changing the metal coordination geometry from octahedral to square pyramidal (2 in 

Figure 3.1.2). The valine isopropyl group of ACV is held in van der Waals contact with the 
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iron by interactions with Leu231, Val 272, Pro 283 and Leu 223. Interestingly, the valine 

βC-H bond, which is cleaved during the formation of the thiazolidine ring, is directed away 

from the iron center in the initial substrate complex, implying that rotation of the valine 

Cα-Cβ bond must occur during catalysis. The carboxylate of the valine residue of ACV is 

prevented from coordinating directly to the Fe(II) center via a hydrogen-bonding network 

in the resting enzyme complex. The aminoadipoyl residue of ACV was shown to be in an 

extended conformation with its carboxylate group participating in forming a salt bridge 

with Arg 87. Binding of substrate to enzyme complex initiates the reaction cycle and 

allows for the coordination of molecular oxygen to the Fe(II) center leading to 

intermediate 3, which presumably leads to the abstraction of the pro-3-S hydrogen of the 

ACV cysteinyl residue. Subsequent deprotonation of the amide N-H by the hydroxo-

superoxide species presumably allows for simultaneous β-lactam ring closure with 

concomitant generation of the elusive Fe(IV)=O intermediate (5). It is reasonable to 

assume that the isopropyl group must undergo a rotation parallel to β-lactam formation 

to relive its steric interactions with the sulfur ligand, which also facilitates the interaction 

of the valine β-hydrogen with the ferryl iron center (Figure 3.1.3).  
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Figure 3.1.3. Crystal structure of IPNS depicting the ‘jelly roll’ topology. The Fe(II) center 
(shown here in orange) is facially coordinated by His 214 (red), Asp 216 (yellow) and His 
270 (blue). The residue shown in pink is Gln 330 which forms the initial coordination bond 
with the ferrous iron center in the absence of ACV. 

 

Since the reaction mechanism of both LipL and Cpr19 were shown to be similar to the 

reaction catalyzed by TauD, the X-ray crystal structure of TauD complexed to Fe(II) and 

both substrates (taurine and α-KG) provides a convincing model to predict the amino acid 

residues responsible for the hydroxylation mechanism catalyzed by the enzymes under 

investigation [120] (Figure 3.1.3). In fact, resolution of the TauD crystal structure led to a 

predictive model of the enzyme TfdA, responsible for the first step of biodegradation of 
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the herbicide 2,4-dichlorophenoxyacetate (2,4-D) [120] which in turn helped in 

identification of the predicted residues in TauD and TfdA that undergo a self-

hydroxylation mechanism observed in these enzymes, in the absence of prime substrate.  

 

 

Figure 3.1.3. Crystal structure of a monomer of E. coli TauD. The Fe(II) center (shown 
here in orange) is facially coordinated by His 99 (pink), Asp 101 (green) and His 255 (blue). 
Primary substrate taurine (yellow) and cosubstrate α-KG (red) are shown bound to Fe(II) 
center as well. 

 

In TauD, the pentacoordinate Fe(II) is bound to the enzyme via the conserved facial triad, 

composed of His 99, Asp 101 and His 255. Cosubstrate α-KG is bound via its C-1 

carboxylate and C-2 keto group to the non-heme Fe(II) center, and via its C-5 carboxylate 

which forms a salt bridge with Arg 266 and a hydrogen-bond with Thr 126. The amine end 

of taurine can be stabilized by three hydrogen bonds with the phenolic side chain of Tyr 
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73, the hydroxyl of Ser 158 and the amide oxygen of Asn 95. The taurine sulfonate is 

similarly involved in hydrogen bond formation with Arg 270, His 70 and the backbone N-

H of Val102. His 70 is responsible for interacting with taurine, as well as form a hydrogen 

bond with the backbone N-H of Val72. This lead to the realization that His 70 is possibly 

uncharged and is most likely to form a hydrogen bond with the sulfonate group of taurine 

(Figure 3.1.4).  

 

Figure 3.1.4. Catalytic pocket of TauD. Stereodiagram of TauD showing the protein 
ligands around the Fe(II) center. Shown here are the residues that form the facial triad 
(His 99, Asp 101, His 255) (red), alongside the other amino acid residues (Thr 126, Arg 266 
in blue) involved in stabilizing α-KG (depicted in dots). The residues interacting with the 
amine end of primary substrate taurine are Tyr 73, Asn 95 and Ser 158 (green) while those 
involved in interacting with the sulfonate moiety are Arg 270, His 70 and the N-H 
backbone of Val 102 (orange).  

 



 

91 
 

It is interesting to note that while Arg270 is relatively conserved for several members of 

this enzyme family, the other two hydrogen bonds forged with Val72 and His70 help to 

select for a tetrahedral sulfate anion. This leads to a key observation that His 70 is 

conserved for the dioxygenases which specifically utilize sulfate or sulfonate substrates 

(like AtsK) but is absent in other enzymes from this superfamily that bind substrates 

containing a carboxylate moiety (like CarC, TfdA or CAS), and is therefore responsible for 

imparting substrate selectivity to TauD.  

 

Parallel to ongoing efforts to crystallize both LipL and Cpr19 in our lab, in this chapter we 

explore some site specific mutants of Cpr19 developed either based on TauD as a model 

or to provide mechanistic details. We explore the effects of these mutants on the activity 

of Cpr19 to gain insights on the putative active site residues. Along the same lines, we 

investigate substrate promiscuity of Cpr19 (as well as LipL) to investigate flexibility of 

substrate recognition by testing its activity with four substrate analogs (xanthosine-5’-

monophosphate, S2, S3 and S4) that retain the ribose-5’-monophosphate moiety but 

differ structurally from the ‘base’ component of the UMP nucleotide (Figure 3.1.5). 

Bioinformatic analyses of homologous dixoygenases, as well as the development of in 

silico models with docked substrates helps in providing a predictive model for these 

enzymes, assimilating the information obtained from site specific mutants.  
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Figure 3.1.4. Structural substrate analogs of UMP. These analogs were generated by 
enzymatic synthesis for testing substrate promiscuity of Cpr19 and LipL with alternative 
substrates. They were generated previously in our lab from uptake of xanthine and uric 
acid in reaction, and were characterized preliminarily as isomeric pairs differing in their 
connections by mass spectrometric data.  

 

3.2.  Materials and Methods 

3.2.1.  Chemicals and Instrumentation 

Uridine-5’-monophosphate (UMP), 2- ketoglutaric acid (α-KG), xanthine, uric acid, PRPP, 

Nucleoside bases, nucleosides, and nucleotides were purchased from Sigma or Promega. 

Buffers, salts, and media components were purchased from Fisher Scientific. Synthetic 

oligonucleotides were purchased from Integrated DNA Technologies. DNA sequencing 

was performed using the BigDye™Terminator version 3.1 Cycle Sequencing kit from 

Applied Biosystems, Inc. and analyzed at the University of Kentucky Advanced Genetic 
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Technologies Center. UV/Vis spectroscopy was performed with a Bio-Tek μQuant 

microplate reader using Microtest™ 96-well plates or a Shimadzu UV/Vis-1800 

Spectrophotometer. HPLC was performed with a Waters Alliance 2695 separation module 

(Milford, MA) equipped with a Waters 2998 diode array detector and an analytical Apollo 

C-18 column (250 mm x 4.6 mm, 5 μm) or a semi-preparative Apollo C-18 column (250 

mm x 10 mm, 5 μm) purchased from Grace. Electrospray ionization-MS was performed 

using an Agilent 6120 Quadrupole MSD mass spectrometer equipped with an Agilent 

1200 Series Quaternary LC system and an Eclipse XDB-C18 column (150mm x 4.6 mm, 5 

μm, 80Å). NMR data were collected using a Varian Unity Inova 500 MHz Spectrometer. 

High Resolution Mass Spectrometric data were obtained from University of Kentucky 

Mass Spectrometry Core Facility.  

 

3.2.2.  Site directed mutagenesis 

Point mutations of Cpr19 were generated by PCR amplification using pET30-cpr19 as a 

template and the Expand Long Template PCR system (Roche Applied Science 

(Indianapolis, IN)). Reactions were conducted as described in the provided protocol with 

supplied buffer 2, 5% dimethyl sulfoxide, each of the following primers (Table 6) and the 

reverse compliment (the engineered Ala component is underlined below for the mutant 

variants). The thermocycler program included an initial hold at 94°C for 10s, 56°C for 15s, 

and 68°C for 50s. The template DNA was digested with DpnI for 1h at 68°C and 

transformed into E. coli DH5α competent cells. Introduction of the desired point 

mutations and the sequence of the entire gene including 200bp upstream and 
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downstream were confirmed by DNA sequencing to yield the desired set of Cpr19 

mutants as listed in the table below (Table 7). The nikR gene was amplified by PCR cloning 

from genomic DNA isolated from Streptomyces tendae, following the protocol described 

in Section 2.4.5. 

Table 6. List of primers used for site-directed mutagenesis 

Primers Oligonucleotide Sequence 

cpr19(S79A)_for 5’ – CGGAGAGACCAAGGACTACGCCGCGCCCTACAGCGAC – 3’ 

cpr19(T119A)_for 5’ – CATCGGCGAAATCAAGACCGCGATCCTGTACTGCGTCCG – 3’ 

cpr19(W104A)_for 5’ – CACGACGGCCGGTCAGATTGCGCACGTGGACGGTCTCCT – 3’ 

cpr19(H105A)_for 5’ – GACGGCCGGTCAGATTTGGGCCGTGGACGGTCTCCTCGATG -3’ 

cpr19(D107A)_for 5’ – GGTCAGATTTGGCACGTGGCCGGTCTCCTCGATGACATCG – 3’ 

cpr19(C123A)_for 5’ – CAAGACCACGATCCTGTACGCCGTCCGGGCCGCTCACC – 3’ 

cpr19(C198A)_for 5’ – ACACCGACAACGAGACGGCCACGTGGGACTACTCGGCCGAT– 3’ 

cpr19(R260A)_for 5’ – CAAGCCGGACGCCCGCGCCCACCTGGTCAGGGCGCTC – 3’ 

nikR_for 5’- AGAGGAGAGTTAGAGCCTCAGTCGTCCGTGCCGAAG - 3’ 

nikR_rev 5’- GGTATTGAGGGTCGCATGACGCAGGATGAATTGAAAAAAG – 3’ 

 

 

3.2.3.  Cloning and heterologous expression of genes 

Plasmids were introduced into E. coli BL21 (DE3) cells by transformation and the 

recombinant strains were grown in LB medium supplemented with 30 μg/ml kanamycin. 
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Recombinant culture were then grown at 18°C with 250 rpm, following inoculation with 

500 ml of LB with 30 μg/ml kanamycin in a 2.5 L Erlenmeyer flask, until the cell density 

reached an OD600 = 0.5. Expression was induced with 0.1 mM isopropyl 1-thio-β-D-

galactopyranoside (IPTG) and after overnight incubation at 18°C, cells were harvested and 

lysed using a French press with one pass at 15,000 psi and immediately centrifuged at 

18,000 rpm. Obtained supernatant was utilized for purification of the desired proteins 

using affinity chromatography with a nickel- nitriloacetic acid-agarose from followed by 

desalting of the recombinant proteins into 50mM Tris-HCl (pH 8), 100mM NaCl, and 5% 

glycerol using a PD-10 desalting column. Purified proteins were concentrated with an 

Amicon Ultra 10000 MWCO centrifugal filter prior to addition of glycerol (final 40%) for 

storage at -200°C. Protein solubility and purity were assessed by 12% acrylamide SDS-

PAGE; His6-tagged proteins were utilized without further modifications.  

Table 7. List of plasmids used for site-directed mutagenesis 

Strain/Plasmid Characteristics and Relevance References 

E. coli Nova-blue Host for routine cloning Novagen 

E. coli BL21 (DE3) Host for protein expression Novagen 

pET30 Expression vector Novagen 
pET30- cpr19(S79A) cpr19(S79A) gene cloned to pET30 This study 

pET30- cpr19(T119A) cpr19(T119A) gene cloned to pET30 This study 
pET30- cpr19(W104A) cpr19(W104A) gene cloned to pET30 This study 
pET30- cpr19(H105A) cpr19(H105A) gene cloned to pET30 This study 

pET30- cpr19(D107A) cpr19(D107A) gene cloned to pET30 This study 

pET30- cpr19(C123A) cpr19(C123A) gene cloned to pET30 This study 
pET30- cpr19(C198A) cpr19(C198A) gene cloned to pET30 This study 
pET30- cpr19(R260A) cpr19(R260A) gene cloned to pET30 This study 
pET30- nikR nikR gene cloned to pET30 This study 
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3.2.4.  In-vitro characterization of Cpr19 mutant variants 

Reactions with each Cpr19 mutant typically consisted of 50mM Tris-HCl (pH 7.5), 1mM 

UMP (or substrate analog S11), 1.25 mM α-KG, 1 mM ascorbate, 500 μM FeCl2, and 100 

nM enzyme at 30°C. Reactions were terminated by ultracentrifugation using a Microcon 

YM-3. Following removal of protein by centrifugation, the reactions were analyzed by 

HPLC using a C-18 reverse-phased column under ion-pairing conditions (monitored at 254 

nm). A linear gradient of from 40 mM acetic acetic acid-triethylamine pH 6.5 (A) to 20% 

methanol (B) (0-4 min, 0% B; 4-24 min, 50% B; 24-26 min 100% B; 26-32 min, 100% B; 32-

35 min, 0% B) with flow rate of 1 ml/min was used to analyze the reactions and elution 

was monitored at 260 nm.  

 

3.2.5.  Kinetic characterization of Cpr19 mutants 

The activities of the generated Cpr19 mutants were detected by monitoring the formation 

of inorganic phosphate with the malachite green binding assay as described in the 

previous protocol [108]. As before, we used 20mM (20 µL) EDTA to terminate the 

reactions of the Cpr19 mutants with substrate UMP. Absorbance was measured at 620 

nm using a microplate reader. A standard curve was developed using phosphate 

standards of 0.8, 1.6, 3.2, 6.7, 12.5, 25, and 50 µM (provided in the kit). For single-

substrate kinetic analyses involving Cpr19 mutants, reactions consisted of 50mM Tris-HCl 

(pH 7.5), 1 mM ascorbate, 500 μM FeCl2,  100 nM enzyme, near saturating α-KG (1mM) 

and variable UMP (50 μM– 1 mM). The reactions were initiated at 30°C by adding each 
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Cpr19 mutant (100 nM) using the pipettor for mixing. Reactions were terminated after 3 

min (<10% product formation) by addition of EDTA, using a sample without enzyme as a 

blank/control. Each data point represents triplicate end point assays. Kinetic constants 

were obtained by nonlinear regression analysis using GraphPad Prism. 

 

3.2.6.  Enzymatic synthesis of structural substrate analogues of UMP 

Reactions with NikR and EcUpp typically consisted of 50mM HEPES buffer (pH 7.5), 2mM 

xanthine (or uric acid), 2.5mM PRPP, 20mM MgCl2 and NikR/EcUpp (100 nM) at 30°C. 

Following removal of protein by centrifugation, the reactions were analyzed by HPLC 

using a C-18 reverse-phased column (monitored at 254 nm). A series of linear gradients 

was developed from 0.1 % TFA in 5 % acetonitrile (A) to 0.1 % TFA in 90% acetonitrile (B) 

in the following manner (beginning time and ending time with linear increase to % B): 0-

4 min, 100% B; 4-24 min, 50% B; 24-26 min, 100% B; 26-32 min, 100% B; and 32-35 min, 

0% B. LC-MS was performed using a linear gradient from 0.1% formic acid in water to 0.1% 

formic acid in acetonitrile over 20 min. The flow rate was kept constant at 0.4 mL/min, 

and elution was monitored at 254 nm. 

 

3.2.7.  In vitro utilization of substrate analogs by LipL and Cpr19 

Reactions typically consisted of 50mM HEPES buffer (pH 7.5), 1mM each of the substrate 

analogs (xanthosine 5’-monophosphate (XMP), S2, S3 or S4), 1.25 mM α-KG, 200 μM 

ascorbate, 100 μM FeCl2, and 100 nM LipL or Cpr19 at 30°C. Reactions were terminated 
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by ultracentrifugation using a Microcon YM-3. Following removal of protein by 

centrifugation, the reactions were analyzed by HPLC using a C-18 reverse-phased column 

under ion-pairing conditions (monitored at 254 nm). A linear gradient of from 40 mM 

acetic acetic acid-triethylamine pH 6.5 (A) to 20% methanol (B) (0-4 min, 0% B; 4-24 min, 

50% B; 24-26 min 100% B; 26-32 min, 100% B; 32-35 min, 0% B) with flow rate of 1 ml/min 

was used to analyze the reactions and elution was monitored at 260 nm. Large scale 

isolation of the respective reaction products starting from one of four substrate analogs 

(XMP, S2, S3 or S4) were carried out with HPLC using a C-18 reverse-phase 

semipreparative column. The linear gradient utilized was exactly identical to the gradient 

used for analytical characterizations. However, the flow rate was kept constant at 3.5 

mL/min, and elution was monitored at 254 nm. LC-MS was performed using a linear 

gradient from 0.1% formic acid in water to 0.1% formic acid in acetonitrile over 20 min. 

The flow rate was kept constant at 0.4 mL/min, and elution was monitored at 254 nm. 

 

3.2.8.  Development of in-silico models for Cpr19 and LipL structures 

Cpr19 model: The SWISS-MODEL [121] predicted Cpr19 structure elements were aligned 

with the crystallographically determined structure of E. coli TauD (PDB ID: 1GQW) 

template. The Cpr19 sequence was modeled onto the TauD chain A ignoring Fe(II), α-KG 

and primary substrates using PyMOL [122]. Cpr19 residues for which there were no 

equivalent residue in TauD were masked. From the initial model, we encountered a gap 

in the TauD structure (between residues Tyr162 and His171) and as a result the predicted  
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 structure for Cpr19 did not align well with this region. The predicted model suggested an 

additional α-helix in Cpr19 for this region, and in the absence of a convincingly superior 

model we decided to omit residues 160-182 from the template to gain a better model. 

Fe(II) and α-KG were inserted into the Cpr19 model based on the alignment of its 2 His – 

1 carboxylate facial triad with that of TauD, with direct substitution of the α-KG and Fe(II) 

positions. The residues interacting with the carboxylate of α-KG (Thr 133 and Arg 260) 

were in perfect alignment with the equivalent residues in TauD. Primary substrate UMP 

(1) was manually positioned onto the modeled Cpr19 active site using AutoDock Vina 

[123]. As an initial constraint, we rationalized that the phosphate moiety of UMP must 

align with the analogous sulfate moiety of taurine in TauD, and superimposed UMP 

accordingly. Since we showed in the preceding chapter that Cpr19 selectively oxidizes the 

pro-S hydrogen of UMP, this hydrogen was positioned to face the active site Fe(II). We 

proceeded to model the other four substrate analogs (XMP, S2, S3, S4) in the active site, 

following the same protocol.  

LipL model: For this model, the previously predicted Cpr19 homology model was used as 

a template to generate the structural elements for LipL via SWISS MODEL, as before. The 

LipL sequence was modeled onto the Cpr19 model with Fe(II) and co-substrate α-KG using 

PyMOL, resulting in nearly perfect alignment of the active site residues as expected. 

AutoDock Vina was used to manually dock UMP into the active site following on the same 

rationale that was used for the Cpr19 model. 
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3.3.  Results 

3.3.1.  Bioinformatic analyses of LipL and Cpr19 with homologous dioxygenases 

Since iron binding by the mononuclear non-heme, α-KG binding dioxygenases from this 

superfamily of enzymes is mediated by the facial binding triad, the conserved essential 

motif is HX1D/EXnH, wherein Xn can vary between 40 to 153 amino acids. For aligning the 

sequences of LipL and Cpr19 with the sequence of TauD we used the ClustalW Omega 

online program. An example of a sequence alignment of TauD (accession number 

AAB18091.1) with LipL (accession number BAJ05888) and Cpr19 is shown in Figure 

3.3.1.1. We confirm the presence of the Fe(II) binding motif essential for enzyme catalysis 

(shown in the black rectangular boxes, with the three residues highlighted in pink). 

Residues that are similar are highlighted in grey, and the conserved residues are 

highlighted in light blue. As is evident from this alignment, LipL and Cpr19 share very little 

sequence identity with TauD (less than 20%) which is expected since most other members 

from this superfamily usually have very little sequence similarities given the great 

diversity in their substrates [120].  
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Figure 3.3.1.1. Sequence analyses of TauD (blue), LipL (orange) and Cpr19 (red) using 
ClustalW. Conserved regions are boxed and contain the residues critical for binding the 
non-heme Fe(II) center. While TauD has 153 residues between the 2nd and 3rd ligands, LipL 
and Cpr19 both have 140 residues between those two.    

 

The enzyme alkylsulfutase AtsK from Pseudomonas putida [124] is a close homolog of 

TauD that catalyzes the hydroxylation of an alkyl sulfate ester which similarly decomposes 

to sulfate and an aliphatic aldehyde. We used this as a second template (accession 

number YP_008111264) to conduct sequence analyses of LipL and Cpr19 using the 

ClustalW program. We observed a similar set of aligned residues (highlighted as before) 
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with the Fe(II)- binding motif shown in the conserved boxed regions, confirming that the 

sulfate releasing enzymes share very low sequence identity with LipL and Cpr19 (Figure 

3.3.1.2).  

 

 

Figure 3.3.1.2. Sequence analyses of AtsK (blue), LipL (orange) and Cpr19 (red) using 

ClustalW. As before, the conserved regions are boxed and represent the residues critical 

for binding Fe(II). AtsK has a 155 residue spacer between the 2nd and 3rd ligands.  
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3.3.2. In vitro characterization of Cpr19 mutant variants: 

The genes for the set of Cpr19 mutants (Table 7) were cloned and expressed in E. coli to 

yield soluble proteins. HPLC analysis of the reactions catalyzed by each of the mutant 

variants revealed either a peak consistent with the product uridine-5’-aldehyde (2) (and 

the tris-adducts of the aldehyde eluting later) if the site-specific mutant did not exhibit 

altered activity, or a peak corresponding to unutilized UMP (1) if the corresponding point 

mutation was responsible for abolishing activity in the mutant (Figure 3.3.2.1). The subset 

of mutants that exhibited abolished or partial activity are depicted separately in Figure 

3.3.2.2.  
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Figure 3.3.2.1. Color coded HPLC traces for reactions catalyzed by generated set of 

Cpr19 site specific mutants. Observed peaks for uridine-5’-aldehyde (2) and related tris-

adducts indicate retention of activity for mutants S79A, W104A, T119A, C123A, C198A 

and partial conversion for H105A. Abolishment of activity in D107A and R260A mutants 

are inferred from the unutilized substrate UMP (1) peak eluting at t = 12 min. A260: 

absorbance at 260 nm. 
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Figure 3.3.2.2. Subset of mutant enzymes that exhibited altered activity. H105A was 

shown to partially convert UMP (1) to uridine-5’-aldehyde (2), while the activities for both 

D107A and R260A were completely abolished. A260: absorbance at 260 nm. 

 

 

3.3.3. In vitro utilization of substrate analog S11 by Cpr19 mutant variants 

As an additional characterization of the Cpr19 mutants, we wanted to test if the mutants 

could recognize synthesized analog S11 as a substrate (with regards to substrate analog 

recognition in wild-type Cpr19). HPLC analysis of the reactions catalyzed by each of the 

mutant variants revealed a either a peak identical to the product 1-[6’-Deoxy-6’-

phosphono-β-D-ribo-(5’S)-hexofuranosyl]uracil (5) as was previously observed for wild-

type Cpr19, or a peak consistent with unutilized S11 if the corresponding point mutation 

was responsible for abolishing substrate utilization in the mutant (Figure 3.3.3.1). These 
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results were in agreement with the results with primary substrate UMP, with the 

exception of C123A which recognized UMP as substrate but failed to do so with S11.  
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Figure 3.3.3.1. Color coded HPLC traces for reactions catalyzed by Cpr19 mutants when 

tested in reaction with substrate analog S11. Peaks corresponding to product 1-[6’-

Deoxy-6’-phosphono-β-D-ribo-(5’S)-hexofuranosyl]uracil (5) indicate recognition of S11 

as a substrate by mutants S79A, W104A, H105A, T119A and C198A. Mutants C123A, 

D107A and R260A, however, did not utilize S11 as a substrate. A260: absorbance at 260 

nm. 

 

3.3.4. Kinetic characterization of Cpr19 mutants with respect to substrate UMP 

For single-substrate kinetic analyses involving the generated set of Cpr19 mutants, we 

conducted reactions at 30°C at pH=7.5. Reactions were terminated after 3 min (<10% 

product formation) by addition of EDTA, using a sample without enzyme as a 

blank/control. Each data point represents triplicate end point assays. Kinetic constants 
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were obtained by nonlinear regression analysis using GraphPad Prism (Figure 3.3.4.1). 

The extracted kinetic constants are listed in Table 8. 

 

 

 

 
Figure 3.3.4.1. Single-substrate kinetic analysis of Cpr19 mutants with variable UMP at 
pH=7.5: (a) W104A, (b) H105A, (c) C123A, (d) C198A. 
 

Table 8. Kinetic constants for Cpr19 mutants 

Enzyme Substrate Km (μM) kcat (min-1) kcat / Km (μM-1min-1) 

W104A UMP  51 ± 14 119 ± 18 2.33 

H105A UMP 100 ± 25 2 ± 0.1 0.02 
C123A UMP 19.87 ± 5 35 ± 1.38 1.76 
C198A UMP 16.96 ± 6 65.35 ± 3.4 3.85 
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3.3.5. Enzymatic synthesis and spectroscopic characterization of structural substrate 

analogues of UMP 

 

The genes for nikR and uracil phosphopribosyl transferase (EcUpp) were cloned and 

expressed in E. coli to yield soluble proteins with the expected sizes (Figure 3.3.5.1). 

Previous HPLC analysis of the reactions catalyzed by both these enzymes when tested in 

reaction with substrates xanthine and uric acid led to the identification of four different 

products in our lab (unpublished data). HPLC analyses revealed the uptake of xanthine 

and uric acid by both nikR and EcUpp, wherein it led to the observation of two distinct 

product peaks in each reaction leading to predicted isomeric product pairs. A 

representative HPLC trace is shown below (Figure 3.3.5.2 and unpublished data provided 

by Dr. Van Lanen). Each of the peaks were collected from a semi-preparative C-18 HPLC 

column and LC-MS was utilized for preliminary confirmation the identity of the products 

(data not shown). In the present study, we provide NMR spectroscopic analyses of the 

products further to discern the ‘connections’ in obtained products that were all 

substrates analogs of UMP (differing in the ‘base’ component of the 5’-monophosphate) 

(Figures 3.3.5.3- 6). Peaks are assigned to each product in the following tables (Tables 9-

12). 
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Figure 3.3.5.1. SDS-PAGE analysis of purified proteins (1) His6-NikR (expected 24.99 kD) 
and (2) SDS-PAGE analysis of purified His6-EcUPP (expected 22.5 kD) 
 

 

Figure 3.3.5.2. HPLC traces for the reaction catalyzed by NikR. 
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Figure 3.3.5.3. 1H and 13C (500MHz, D2O) for xanthosine 5’-monophosphate (XMP). 
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Table 9. Peak assignment for xanthosine 5’-monophosphate (XMP) 

Position δC, mult. δH (J in Hz) 

1 5.76 (d, 1H) 86.73 

2 4.54 (m, 1H) 74.20 

3 4.36 (m, 1H) 70.30 

4 4.21 (m, 1H) 83.79 

5 3.96-3.94 (m, 2H) 63.88 

6 -- 160.24 

7 -- 157.47 

8 -- 149.86 

9 -- 114.66 

10 7.93 (s, 1H) 136.06 
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Figure 3.3.5.4. 1H, 13C, 2D 1H – 13C gHSQC (500MHz, D2O) for substrate analog S2. 
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Table 10. Peak assignment for substrate analog S2 

Position δC, mult. δH (J in Hz) 

1 6.05 (d, 1H) 89.99 

2 4.39 (m, 1H) 75.02 

3 4.24 (m, 1H) 68.94 

4 4.16 (m, 1H) 83.11 

5 4.04-3.94 (m, 2H) 63.59 

6 -- 158.61 

7 -- 152.62 

8 -- 149.53 

9 -- 106.77 

10 8.19 (s, 1H) 141.33 
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Figure 3.3.5.5. 1H, 13C, 2D 1H – 13C gHSQC (500MHz, D2O) for substrate analog S3. 

 

Table 11. Peak assignment for substrate analog S3 

Position δC, mult. δH (J in Hz) 

1 5.73 (d, 1H) 85.66 

2 4.89 (m, 1H) 70.95 

3 4.35 (app t, 1H) 70.66 

4 4.13 (m, 1H) 85.32 

5 3.81-3.69 (m, 2H) 61.74 

6 -- 154.97 

7 -- 148.86 

8 -- 97.61  

9 -- 152.78 

10 -- 158.19 
 

 

 

 

PROTON_01

9 8 7 6 5 4 3 2 1 0

Chemical Shift (ppm)

0

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

0.0040

N
o
rm

a
li
z
e
d
 I
n
te

n
s
it
y

M02(m) M01(m)

Water

6
.0

5
6
.0

3

4
.6

8

4
.4

3

4
.2

0
4
.1

1

3
.3

1

3
.2

9
3
.2

8 3
.2

0
3
.1

8
3
.1

6
3
.1

5

3
.0

5
3
.0

3

1
.8

9

1
.6

6

1
.2

7
1
.2

5
1
.2

3
0
.9

4
0
.9

0



 

116 
 

CARBON_01

180 160 140 120 100 80 60 40 20 0

Chemical Shift (ppm)

0

0.05

0.10

0.15

0.20

0.25

N
o
rm

a
li
z
e
d
 I
n
te

n
s
it
y

M01(s)

M02(s)

M03(s)

M06(s)

M07(s)

M10(s)

M11(s)

M04(s)

M05(s)

M08(s)

M09(s)

1
7
2
.4

4

1
6
3
.2

4

1
5
0
.2

7

1
2
7
.5

9

1
0
9
.9

5

8
9
.2

4
8
9
.1

1
8
3
.3

1

7
1
.4

5
6
9
.5

7

6
4
.3

8

5
8
.8

2

4
6
.5

8

4
2
.1

6

1
0
.4

2

8
.1

3
7
.3

3
0
.3

6

 

 

 

Figure 3.3.5.6. 1H, 13C, 2D 1H – 13C gHSQC (500MHz, D2O) for substrate analog S4. 



 

117 
 

Table 12. Peak assignment for substrate analog S4 

 

Position δC, mult. δH (J in Hz) 

1 6.04 (d, 1H) 89.11 

2 4.67 (m, 1H) 71.45 

3 4.42 (app t, 1H) 69.57 

4 4.2 (m, 1H) 83.31 

5 4.10 (m, 2H) 64.38 

6 -- 163.24 

7 -- 127.59 

8 -- 109.95 

9 -- 150.27 

10 -- 172.44 

 

 

3.3.6. In- vitro utilization of substrate analogs (XMP, S2, S3, S4) by LipL and Cpr19: 

The previously synthesized substrate analogs (XMP, S2, S3 and S4) were tested in reaction 

in vitro with both LipL and Cpr19, with the initial aim of probing substrate promiscuity for 

both enzymes. HPLC traces obtained from these studies revealed product peaks 

generated from all four substrate analogs by both LipL and Cpr19 (Figure 3.3.6.1).  It is 

important to note here that we conducted these reaction in HEPES buffer (as opposed to 

Tris-HCl) since we did not want the predicted aldehyde products to be converted to their 

corresponding tris-adducts. The generated product peaks were collected for subsequent 

chromatographic analyses.  
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Figure 3.3.6.1. HPLC analyses of reactions catalyzed by Cpr19 and LipL when tested with 

substrate analogs XMP (A), S2 (B), S3 (C) and S4 (D). In all four chromatograms negative 

controls are shown in black, while reactions catalyzed by LipL and Cpr19 are indicated in 

green and blue respectively. In all four sets of reactions, the major peaks represent the 

respective substrate peaks as labeled, and the product peaks (indicated in orange in each 

set of reactions) were collected for further identification.   
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3.3.7. Scale-up of product for NMR and mass spectroscopic analyses 

Large scale isolation of the predicted aldehyde products starting from substrate analogs 

(XMP, S2, S3 and S4) was carried out with HPLC using a C-18 reverse-phase semi-

preparative column using previously described iron-pairing conditions (flowrate of 3.5 

mL/min). We selected the reaction with the highest yield of a product peak (starting from 

S3) specifically to generate enough of the product to be able to gain both high resolution 

mass spectrometric as well as 1H and 2D 1H-13C gHSQC NMR analyses (Figure 3.3.7.1, 

Figure 3.3.7.2(c), Figure 3.3.7.3) . The innate instability of the aldehyde product limited 

the scalability to obtain enough of the compound for assigning 13C spectra to the peaks. 

Identity of the other three products were confirmed by high resolution mass 

spectrometric analyses, since a low yield of product combined with the inherent 

instability of aldehydes when subjected to column purification conditions made it difficult 

to generate enough of the product for NMR analyses.  

 

Figure 3.3.7.1. Projected net two-electron oxidation of substrate analog S3 to 
corresponding 5’-aldehyde catalyzed by both LipL and Cpr19. This conversion would 
imply flexibility of substrate recognition for both enzymes with respect to the ‘base’ 
component of its nucleotide substrate. 
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Figure 3.3.7.2. HRMS analyses for product peaks collected from reactions starting from 
XMP (A), S2 (B), S3 (C) and S4 (D). (A) HRMS (ESI+) calcd. for C10H10N4O6 [M + H]+ 
283.0634; found 283.0650; (B) HRMS (ESI+) calcd. for C10H10N4O6 [M + H]+ 283.0634; 
found 283.0884; (C) HRMS (ESI+) calcd. for C10H10N4O7 [M + H]+ 298.0549; found 
298.2392; (D) HRMS (ESI+) calcd. for C10H10N4O7 [M + H]+ 298.0549; found 298.0750. 
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Figure 3.3.7.3. 1H, 2D 1H – 13C gHSQC (500MHz, D2O) for the predicted aldehyde product 

from substrate analog S3. 

S3-PRDUCT-H1.esp

10 9 8 7 6 5 4 3 2 1 0

Chemical Shift (ppm)

0

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

N
o
rm

a
li
z
e
d
 I
n
te

n
s
it
y

M03(m)

M02(m)

M01(m)M04(m)

M05(m)

M06(m)

7
.6

0
7
.5

9
7
.5

9
7
.5

8
7
.5

7
7
.5

7

5
.6

9

5
.6

8
5
.6

8
5
.6

7
5
.6

7

5
.6

1

5
.6

0

4
.9

6

4
.9

1
4
.9

0

4
.8

1
4
.8

0

4
.8

0
4
.6

5
4
.6

5
4
.6

5
4
.6

4
4
.6

4
4
.6

3
4
.6

3

4
.5

6
4
.5

5
4
.5

5
4
.5

4
4
.5

2
4
.4

9
4
.2

0
4
.0

1
4
.0

1
4
.0

0
3
.9

6
3
.6

8
3
.6

6
3
.5

3
3
.5

3
3
.4

3
3
.2

0
3
.1

8
3
.1

6

3
.1

5
3
.1

5
3
.1

5
3
.0

1
2
.9

9
2
.9

9
2
.8

8
2
.8

7
2
.8

6
2
.8

6

2
.8

5
2
.7

8
2
.7

8
2
.7

7
2
.7

6
2
.0

4
2
.0

3

2
.0

3
2
.0

2

1
.8

6
1
.7

4
1
.7

4
1
.7

3

1
.7

2
1
.4

7 1
.3

8
1
.1

2
1
.1

1
1
.1

0

1
.0

9
1
.0

9
1
.0

8
1
.0

8
1
.0

8
1
.0

7
1
.0

6

1
.0

5
1
.0

5
1
.0

4
1
.0

4
0
.7

8
0
.7

8
0
.7

8
0
.7

7 0
.7

6

0
.7

6
0
.7

6
0
.7

5

0
.7

2
0
.7

2



 

124 
 

Table 13. Peak assignment for proposed aldehyde product from S3 

 

Position δC, mult. δH (J in Hz) 

1 5.72 (d, 1H) 85.99 

2 4.77 (m, 1H) 64.13 

3 4.27 (app t, 1H) 63.55 

4 4.08 (m, 1H) 78.12 

5 7.67 (s, 1H) 135.84 

6 -- Could not be assigned 

7 -- Could not be assigned 

8 -- Could not be assigned 

9 -- Could not be assigned 

10 -- Could not be assigned 

 

 

3.3.8. Homology Modeling of Cpr19 and LipL structures 

The predicted overall fold of Cpr19 is significantly similar to that of TauD, with ~25% 

sequence identity. Interactions with Fe(II) in the catalytic center are proposed to involve 

the residues His 105, Asp 107 and His 247 which form the facial triad, consistent with our 

mutational studies. The predicted residues involved in stabilizing α-KG in the active site 

are Thr 133 and Arg 260, based on alignment with TauD residues as well as our 

observation of abolished enzyme activity with the Cpr19 R260A mutant (Figure 3.3.8.1-

2).  



 

125 
 

 

Figure 3.3.8.1: Comparison of the structures of TauD (on the left) and the predicted 
structure for Cpr19 (on the right). The beta-strands of the conserved jellyroll motif are 
colored in separately in red. Similarity of the core structures are visible, while the main 
differences involve the extended loops over the active sites and helix in TauD (residues 
160-182) that could not be modeled onto our structure. Substrates of each enzymes are 
shown as sticks (α -KG, taurine and UMP) or the Fe(II) center is depicted as a sphere. 
 

 

Figure 3.3.8.2. The predicted structure of Cpr19 (in blue) superimposed on the TauD 
crystallographic structure (in green) indicates the regions that align smoothly, barring the 
region extending from residues 160-182 in TauD. 
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Primary substrate UMP (1) was docked onto the active site manually (Figure 3.3.8.3). As 

an initial constraint, we superimposed the phosphate moiety of UMP with the analogous 

sulfate moiety of taurine in TauD to position UMP in the active site. Since we showed in 

the preceding chapter that Cpr19 selectively oxidizes the pro-S hydrogen of UMP, we 

docked the substrate in a position so that this hydrogen would face the active site Fe(II) 

center (Figure 3.3.8.4). In TauD, the amine of taurine is hydrogen bonded to Tyr 73, Asn 

95 and Ser 158, whereas the sulfonate interacts with Arg 270, His 70 and the backbone 

N-H of Val 102. While we could not implicate the residues that could be involved in 

binding the uracil component of UMP, we could implicate Arg 264 (as the putative 

equivalent of Arg 270 in TauD) for stabilizing the phosphate moiety of the substrate.  

 
 

 
 

 

 

 

 

 

 

Figure 3.3.8.3. Overlay of the binding pocket of TauD (green) and Cpr19 (light blue). The 

active site amino acids that are conserved between the two enzymes are shown in green 

(TauD) and blue (Cpr19) (left). Docked UMP resides close to taurine in the TauD active 

site, and its phosphate moeity has a conformation similar to the sulfate group in taurine. 

Background ribbon shows surrounding protein structure (right). 
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Figure 3.3.8.4. Docked UMP in the predicted active site of Cpr19. UMP was positioned 

such that the pro-S hydrogen at C-5’ is directed towards the Fe(II) center (shown in 

orange). Amino acid residues in the facial triad and co-substrate α-KG is additionally 

depicted (Top). A 180o rotation of the same is viewed in the bottom panel. 
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It is interesting to note here, in TauD the residues binding the amine part are less 

conserved than the residues that bind the sulfonate component of substrate taurine. 

Additionally, the amine component is relatively solvent exposed with a sizeable cavity 

adjacent to its position which confers relative substrate flexibility to TauD wherein it has 

been shown to accommodate alternative larger sulfonate substrates such as 3-(N-

morpholino)propanesulfonic acid (MOPS) [69], which can be understood in relation to the 

available substrate-binding cavity and presumably the higher importance of the 

sulfonate-binding ligands over those binding the amine group of taurine. In our predicted 

Cpr19 model, we observe a similar cavity where the uracil component of UMP was 

docked. We borrow on this logic to dock the alternative substrates that were shown to 

be recognized as substrates (as well as being converted to their corresponding 5’-

aldehydes), by both Cpr19 and LipL in the preceding sections. We aligned the 

monophosphate moieties of each of these substrates with the taurine sulfonate group to 

arrive at predictive active site positions for each of these substrates as shown in Figures 

3.3.8.5-6.  
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Figure 3.3.8.5. Docked XMP in the predicted active site. XMP (in red) overlaps primary 

substrate UMP (shown in pink), which in turn resides close to taurine (in rainbow colors) 

in the active site. Amino acid residues involved in the facial triad are depicted as sticks 

that interact with the Fe(II) center in the background. 

 

 

 

Figure 3.3.8.6. Docking all four substrate analogs into Cpr19 model. All four substrate 

analogs (XMP, S2, S3 and S4) are docked to overlap primary substrate UMP (shown in 

pink), docked onto the active site. The predicted Cpr19 model can accommodate these 

relatively larger substrate analogs in a proposed cavity adjacent to the position of the 

taurine amine in TauD.  
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Analyses of the other mutated residues that did not abolish the activity of Cpr19 in the 

predicted structure established that they are not directly involved in the active site 

binding pocket or in stabilizing the substrates. One of the cysteine residues (Cys 198) 

resides on a loop (Figure 3.3.8.7) and could by hypothesized to be involved in dimer 

formation. A native PAGE of Cpr19 (data not shown) adds weight to this hypothesis 

wherein we observed protein bands additional to the monomer band, which could 

theoretically correspond to a functional dimer or other polymeric chains of Cpr19. Both 

C198A and W104A mutants had higher activities than the wild type Cpr19 (Table 8), which 

could be indicative of indirect of indirect influences of both these residues on substrate 

access to the active site of the enzyme. Especially with reference to the Trp 104 residue, 

this could be a plausible explanation since it is located adjacent to His 105 and Asp 107, 

which are involved in forming the facial catalytic triad that coordinate the Fe(II) in the 

catalytic center.  
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Figure 3.3.8.7. Mutated residues in Cpr19 model. Mutated residue Cys 198 is located on 

a loop and could be theorized to take part in disulfide formation in chain polymerization. 

Residue Thr 199 is located on one of the β-strands that constitute the jellyroll fold of 

Cpr19.  

 

For developing the LipL model, the previously predicted Cpr19 homology model was used 

as a template given the high degree of homology between LipL and Cpr19. We then 

inserted Fe(II) and co-substrate α-KG using PyMOL onto the predicted LipL active site, 

resulting in nearly perfect alignment of the active site residues as expected (Figures 

3.3.8.8-9).  

Cys 198 

Thr 119 
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Figure 3.3.8.8. The predicted homology model of LipL. Predicted LipL structure (in blue) 
superimposed on the Cpr19 model (in red) indicates the regions that align smoothly, with 
minor differences in the extended regions with loops. Cosubstrate α-KG and Fe(II) are 
modeled onto the predicted active site. 
 

 
 
 
Figure 3.3.8.9. Overlay of the binding pocket of Cpr19 and LipL. Cpr19 residues (green) 
and LipL residues (light blue) are aligned to show conserved regions. 
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3.4. Conclusion 

In summary, we have identified the amino acid residues His 104, Asp 107 and His 247 as 

the key residues involved in forming the 2His-1 carboxylate facial triad in Cpr19 via a 

combination of bioinformatics analyses, mutational and computational studies. By using 

TauD as a template, we first identified residues that were conserved with Cpr19 and LipL. 

This afforded us the platform to target certain residues in Cpr19 that could potentially be 

implicated in playing vital roles in enzyme catalysis. Initial hypothesis for a tandem 

phosphatase/oxidoreductase mechanism for Cpr19 (and LipL) led to the identification of 

the cysteine residues (Cys 123 and Cys 198) as plausible sites for a phosphatase type 

mechanism. However, characterization of the enzymes as dioxygenases, accompanied by 

the results from mutating these residues effectively negated the phosphatase hypothesis. 

Abolishment of activity in the Cpr19 R260A mutant as well as its alignment with the 

equivalent Arg 266 in TauD helped to establish its role in stabilizing co-substrate α-KG in 

the active site. Prediction and alignment of the Cpr19 model utilizing TauD 

crystallographic structure as a template furnished two more conserved residues: Thr 133, 

which is proposed to interact with α-KG, and Arg 264 which could be involved in stabilizing 

the phosphate moiety of UMP. Prime substrate UMP, as well as substrate analogs XMP, 

S2, S3 and S4 were docked into the predicted active site drawing on combinatory chemical 

logic and alignment with taurine sulfate moiety. A predictive model for LipL was also 

generated by using the predicted Cpr19 as a template. 
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3.5. Discussion 

Enzymes belonging to the Fe(II): α-KG dependent superfamily are some of the most 

versatile enzymes that can stereoselectively activate alkyl C-H bonds in a variety of 

substrates resulting in many pivotal metabolic transformations. Despite the broad 

spectrum of distinct transformations catalyzed by these enzymes, crystal structures of a 

number of different members from this group show a conserved double-stranded β-helix 

(or jellyroll) as a common architecture for this superfamily . The highly conserved His1-X-

Asp/Glu-Xn-His2 motif (facial triad) constitutes the facial metal-binding ligands that binds 

the high-spin Fe(II) center. Sequence analyses of members in this group reveals little 

overall similarity, leading to the proposal that convergent evolution to a common 

mechanism and active site chemistry occurred within the wider family of Fe(II)/ α-KG 

dependent and related oxygenases.  

 

While a significant number of enzymes from this superfamily have been crystallized, the 

enzyme TauD has proven to be the most suitable model for the dioxygenases LipL and 

Cpr19 characterized in our lab, given the high degree of structural similarities between 

primary substrates taurine and UMP. In the absence of crystallographic structures of 

these enzymes, we have designed mutational variants of Cpr19 aimed at identifying key 

amino acid residues that impact enzyme activity. Either retention or abolishment of 

enzyme activity in individual mutants helped in establishing proposed roles for some of 

these residues in influencing catalysis. An in-silico model of Cpr19 was generated as an 
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attempt to locate these residues in the predicted enzyme structure. We assimilated the 

information gathered from the mutational studies with the obtained model to assign 

theoretical roles to a few more residues based on the model. Additionally, we docked the 

primary substrate UMP based on its alignment with taurine in the TauD active site, 

incorporating our observation from the preceding sections that the pro-S hydrogen at C-

5’ of UMP is preferentially abstracted. While these studies are purely theoretical, we 

believe we have obtained a suitable model for Cpr19 and LipL to further build upon, while 

parallel efforts to crystallize the enzymes are ongoing in our lab. We have had limited 

success with LipL, wherein 5Å resolution crystals were obtained from a high throughput 

screening (Figure 3.5.1). However, this resolution is too high to be able to visualize its 

tertiary structure accurately.  

 

Figure 3.5.1. Crystals of LipL obtained from high throughput screens 
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Chapter four: Summary 

MraY (translocase I) is one of the twelve ubiquitous enzymes involved in peptidoglycan 

biosynthesis, and viable target for targeting and antibiotic development. Of the several 

classes of nucleoside inhibitors, we emphasize on the pathways leading to the 

liposidomycins and capuramycins, and more specifically on the enzymes responsible for 

initiating these pathways. The dioxygenases LipL and Cpr19 were both characterized as 

members of an intriguing and diverse superfamily of Fe(II)/α-KG dependent enzymes and 

shown to possess the capability to utilize UMP as the starting precursor for high-carbon 

nucleoside biosynthesis. In this thesis, we delve into the mechanistic details of these 

enzyme machineries, highlighting the unique reaction coordinates of both these enzymes 

by overcoming the limitations of its proposed radical-mediated kinetics. By engineering 

substrate analogs for specific purposes (deuterium labeled UMP and chemically 

synthesized phosphonate analog) we provide distinctive methodologies to be able to 

differentiate between a ‘hydroxylation’ versus ‘desaturation’ hypothesis, establishing 

that the enzyme in fact hydroxylates UMP at C-5’ and it does so by first preferentially 

abstracting the pro-S hydrogen from this position. This key observation was used down 

the line to obtain an in-silico model for Cpr19 with UMP docked onto its catalytic pocket. 

We additionally explored, and unexpectedly discovered substrate promiscuity of both 

enzymes resulting in novel products, which in theory can be further utilized to generate 

novel scaffolds from these (and related) pathways. Ongoing efforts to crystallize both 

enzymes would hopefully lend weight to our hypothesized models, and once completed 
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would afford the opportunity to engineer related enzymes from other strains as well to 

generate analogs by combinatorial biosynthesis. 
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