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ABSTRACT OF DISSERTATION 
 
 
 

BIOSYNTHETIC PATHWAY OF THE AMINORIBOSYL COMPONENT OF 
LIPOPEPTIDYL NUCLEOSIDE ANTIBIOTICS 

 
 
Several lipopeptidyl nucleoside antibiotics that inhibit bacterial translocase I (MraY) 
involved in peptidoglycan cell wall biosynthesis contain an aminoribosyl moiety, an 
unusual sugar appendage in natural products. A-90289 and muraminomicin are the 
two representative antibiotics that belong to this family. Bioinformatic analysis of the 
biosynthetic A-90289 gene clusters revealed that five enzymes are likely involved in 
the assembly and attachment of the aminoribosyl unit. These enzymes of A-90289 
are functionally assigned by in vitro characterization. The results reveal a unique 
ribosylation pathway that highlighted by uridine-5′-monophosphate as the source of 
the sugar, a phosphorylase strategy to generate a sugar-1-phosphate, and a primary 
amine-requiring nucleotidylyltransferase that generates the NDP-sugar donor. 
Muraminomicin, which has a structure similar to A-90289, holds the distinction in that 
both ribose units are 2-deoxy sugars. The biosynthetic gene cluster of 
muraminomicin has been identified, cloned and sequenced, and bioinformatic 
analysis revealed a minimum of 24 open reading frames putatively involved in the 
biosynthesis, resistance, and regulation of muraminomicin. Similar to the A-90289 
pathway, fives enzymes are still likely involved in the assembly of the 
2,5-dideoxy-5-aminoribose saccharide unit, and two are now functionally assigned 
and characterized: Mra20, a 5′-amino-2′,5′-dideoxyuridine phosphorylase and Mra23, 
a UTP:5-amino-2,5-dideoxy-α-D-ribose-1-phosphate uridylyltransferase. The 
cumulative results are consistent with the incorporation of the ribosyl appendage of 
muraminomicin via the archetypical sugar biosynthetic pathway that parallels 
A-90289 biosynthesis. 
 
KEYWORDS: Aminoribosyl unit, lipopeptidyl nucleoside antibiotics, peptidoglycan cell 
wall, biosynthetic gene cluster, ORF enzymes 
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Chapter one: Introduction 

 

1.1. Significance of natural products 

 

The use of natural products has been the single most successful strategy in the 

discovery of novel medicines [1,2]. Not only have numerous medical breakthroughs 

been achieved based on compounds of natural origin, natural product compounds 

also represent a large share of the market [3]. The primary reasons why natural 

products have been always important for the pharmaceutical industry is: the ability to 

continue to inspire synthetic and analytical chemists [4,5]; remaining a major source 

of human medicines [6]; leading to important biological insights [7,8] and potentiality 

of many more natural products to discover [9,10,11]. Although the discovery of new 

natural products has been in decline over the past two decades, natural products still 

play an highly predominant role as sources of new drugs from 1981 to 2010 [12].  

 

In general, among all drugs, almost half of new molecular entities in last 30 years 

were inspired from natural products, including the natural product itself, 

semi-synthetic modifications and pharmacophore-based synthesis [12]. Meanwhile, 

the other half of new molecular entities were from synthetic origin. As for the drugs to 

kill different kinds of bacteria, over 75% of antibacterial compounds were derived from 

natural products [12]. Therefore, based on the overview of the reported data hitherto, 

it turns out natural products play an even more crucial role to fight against infectious 

diseases.  

 

1.2. Discovery of new antibiotics 

 

Although antibiotics have revolutionized medicine, new antibiotics have been in 

constant need over the past 70 years [13]. Many infectious and parasitic diseases 

have emerged and re-emerged with the worldwide environmental change and 

1 



 

migration. Therefore, a rapidly increasing death rate has been realized due to 

infectious bacterial diseases, which has also been correlated with the occurrence of 

multiple drug resistant (MDR) pathogens. MDR pathogens have become a critical 

public health problem in both hospital and community settings [14]. Almost 2 million 

Americans per year develop hospital-acquired Methicillin-resistant Staphylococcus 

aureus (MRSA) infections in the United States, resulting in ~16,000 annually. In total, 

nearly 100,000 deaths per year are due to infections disease, the majority of which 

are due to MDR pathogens [15]. As for community acquired MRSA, there has been an 

increase of 40% of new cases of resistance from 1999 to 2009 [16]. Similar problems 

are surfacing throughout the world. For example, tuberculosis (TB), a disease 

primarily caused by Mycobacterium tuberculosis, has been reported to be the cause 

of 1.7 million deaths and 9.4 million new TB cases in 2009 alone, with the occurrence 

of drug resistance steadily increasing [17].  

 

At the same time, new antibiotic development has slowed dramatically and even 

stopped due to market withdrawal and regulatory disincentives. Over the past 30 

years there has been a dramatic decrease in FDA-approved systemic antibiotics and 

right now no new molecular entities (NME)are in phase III [13,18,19]. There is 

therefore, a seriously need to find new antibiotics with new structures and/or new 

targets to fight infectious disease. 

 

Historically, antibiotics have been discovered based on whole-cell experiments 

examining cell growth inhibition, and the specific targets then identified. As a results, 

targets for antibiotic action have been classified into four major classes: bacterial cell 

wall biosynthesis; bacterial protein biosynthesis; DNA replication; and folate 

coenzyme biosynthesis [13][20]. Our lab focused on the activity-based approach 

which includes a high throughput enzyme assays with a target enzyme for the 

discovery of potential inhibitors. The main enzyme that we have focused on is 

bacteria translocase I, one of the key enzymes involved in peptidoglycan cell wall 

biosynthesis.  
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1.3. Biosynthesis of peptidoglycan cell wall 

 

An essential process for bacterial cell survival and a well known targets for the design 

of antibiotics is the peptidoglycan biosynthetic pathway [21,22][23]. Bacterial 

peptidoglycan and its precursors were first identified and characterized in the 1940s 

[24]. This pathway results in the production of the cell wall peptidoglycan layer, which 

contains polymerized glycan chains with cross-linked peptides. The peptidoglycan 

layer is comprised of alternating N-acetylglucosamine (GlcNAc) and N-acetylmuramic 

acid (MurNAc) glycan moities connected through β-1,4-linked polysaccharide peptidyl 

bonds. The general structure of pentapeptide attached to side chain of MurNAc is 

L-Ala-γ-D-Glu-X-D-Ala-D-Ala where X is either L-Lys or meso-diaminopimelic acid 

(DAP). L-Lys is usually found in most Gram-positive bacteria, whereas DAP is often 

found in most Gram-negative bacteria. A 3-amino group of the Lys/DAP residue at 

position 3 and the D-Ala residue at position 4 of a second strand form the peptide 

linkage resulting in cross-links peptidoglycan of cell wall (Fig 1.1) [25,26]. The 

assembly of the cell wall occurs in three stages - 1) polymerization of the disaccharide 

and peptide side-chain within the cytosol, 2) the lipid cycle wherein the precursor is 

linked to a lipid carrier prior to leaving flipped to the outside, and 3) the cross-linking 

stage outside the cell leading to the rigid and essential cell wall structure [27]. 

 

 
Figure 1.1. Structure of peptidoglycan.[26] 

In the cytosolic stage, Uridine-5′-diphosphate (UDP)-sugars are the biosynthetic 

precursors for the biosynthesis of all cell wall components. The activated 
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monosaccharide uridine-5-diphospho-N-acetylglucosamine (UDP-GlcNAc) and 

UDP-N-acetylmuramic acid (UDP-MurNAc) are the starter of the building blocks for 

the polysaccharide backbone of peptidoglycan. UDP-MurNAc originates from 

UDP-GlcNAc by adding PEP catalyzed by MurA and MurB. A line of ATP-dependent 

ligases MurC–F catalyze the addition of L-Ala, D-Glu, L-Lys or m-DAP and 

D-Ala-D-Ala sequentially to UDP-MurNAc to generate UDP-MurNAc-pentapeptide, 

the final cytoplasmic precursor [21,22,25][28] (Fig 1.2). MraY 

(phospho-MurNAc-pentapeptide translocase), also known as translocase I, transfers 

the sugar-pentapeptide unit onto undecaprenyl phosphate (a lipid carrier) to generate 

lipid intermediate I [29]. Subsequently, lipid intermediate II is formed by adding 

GlcNAc sugar onto the 4′-hydroxyl of MurNAc, catalyzed by glycosyltransferase MurG. 

The precursor is then flipped from inside to outside of the cytoplasmic membrane by 

a ″flippase′′ protein [29]. Lipid II further undergoes transglycosylation to generate a 

glycan polysaccharide by transpeptidation, catalyzed by penicillin binding proteins 

(PBPs) [30]. Undecaprenyl pyrophosphate is released from transglycosylation and 

recycled by dephosphorylation [29]. 

 

Figure1.2. Biosynthesis of bacterial peptidoglycan cell wall mediated by twelve 
conserved enzymes. The reaction catalyzed by each enzyme is highlighted in blue, 
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and natural products that inhibit the specified enzyme are highlighted in red. a. 
Diaminopimelic acid or L-α-Lys is found at this position. b. Ramoplanin also binds the 
product of MurG (Lipid II) and inhibits transglycosylases. c. Glycine ligases can 
precede translocase activity to yield branched peptidoglycan cell walls. d. 
Vancomycin inhibits the activity of transglycosylases by binding to the substrate, Lipid 
II. 
 

Peptidoglycan cell walls are essential for the survival of all bacteria [29]. Twelve 

enzyme reactions are required for the biosynthesis of peptidoglycan cell wall, 

mechanisms of which haven′t been completely characterized yet (Fig. 1.2). Most of 

these enzymes lack mammalian homologs, thus making cell wall biosynthesis an 

intriguing target for the discovery of new antibiotics. To date, natural enzyme inhibitors 

have been found for six of the biosynthetic steps. Two of the best examples 

vancomycin, that inhibit transglycosylation of lipid intermediate II outside the 

cytoplasmic membrane [31], and β-lactam antibiotics that inhibit the final 

transpeptidation step of cell wall biosynthesis [30] (Fig. 1.2). Among these six families 

of inhibitors, five of them have been clinically proven. Only the natural products, 

inhibiting bacterial translocase I, haven′t been used in clinic yet, making it a unique 

target for new antibiotic discovery. 

 

1.4. MraY - Translocase I 
 

MraY, which is also called translocase I, represents a novel target compared to 

currently marketed antibiotics. The catalytic reaction of MraY is transfer of 

MurNAc-pentapeptide from UDP-MurNAc-pentapeptide to undecaprenyl phosphate, 

releasing UMP to give undecaprenyl-disphospho-N-acetylmuramic acid-pentapeptide 

(also known as Lipid I) (Fig 1.3) [32,33]. Blast analysis of MraY shows that it has 

some sequence similarity with UDP-sugars transferase enzymes from prokaryotic and 

eukaryotic cell surface biosynthesis [34,35]. A mechanism of an active site 

nucleophile involved in either one-step or two-step reaction has been proposed. 

Isotope exchange experiments with S. aureus translocase I by Neuhausand 

co-workers confirmed that the MraY-catalysed reaction is a two-step reaction, wherein 
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a nucleophile forms a covalent intermediate within the reaction[36]. This reaction 

starts the lipid cycle of cell wall biosynthesis and precedes translocation of the 

peptidoglycan cell wall component across the lipid membrane.  

 
Figure 1.3.Reaction catalyzed by MraY.MraY, a transmembrane protein, catalyzes the 
formation of undecaprenyl-disphospho-N-acetylmuramic acid-pentapeptide as the 
first step in the lipid cycle of peptidoglycan cell wall biosynthesis. a: L-α-Lys or 
diaminopimelic acid. 
 

The transferase activity catalyzed by MraY was first discovered in 1965 [37]. However, 

the gene for MraY was not identified until 1991 when over-expression of the E. coli 

gene resulted in increased transferase activity relative to the wild-type strain [33]. 

Subsequent insertional inactivation of the mraY gene in E. coli resulted in a lethal 

phenotype with early growth characteristics very similar to that of other mutant E. coli 

strains containing inactivated genes involved in peptidoglycan biosynthesis [38]. In 

addition to the gram-negative bacteria E. coli, the mraY gene was shown to be 

essential for the viability of the gram-positive bacteria Streptococcus pneumonia [39]. 

Based on bioinformatics analysis of the currently available 879 sequenced microbial 

genomes, a single copy of the essential mraY gene is readily identifiable by sequence 

similarity, and there are no reports of genetic redundancy of translocase activity [29].  

 

It has been predicted that MraY is a trans-membrane protein with ten α-helical 

regions, five cytoplasmic segments and six periplasmic segments. Ten α-helices are 
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likely to form the hydrophobic tunnel that would correspond to the binding domain of 

undecaprenol phosphate. Five cytoplasmic segments are arranged like finger ends, 

bearing key amino acids required for both nucleotide substrate recognition and 

reaction catalysis (Fig 1.4a)[26]. Bouhss and co-workers identified MraY structure 

taking advantage of a β-lactamase fusion system with both enzymes purified from E. 

coli and S. aureus [40]. Due to the problems associated both with the preparation of 

substrates and the enzyme, biochemical characterization of MraY has been limited. 

However, preliminary biochemical characteristics from crude preparations of MraY 

from soluble membrane fractions have showed that Mg2+ is one of the crucial 

requirements for MraY activity [25]. Recently, recombinant E. coli MraY has been 

partially purified by using an engineered C-terminus His6-tag, but the activity was 

significantly reduced compared to crude preparations [41]. Furthermore, Bacillus 

subtilis MraY enzyme has been isolated to apparent homogeneity and shown to be 

active, however, similar to E. coli MraY, the specific activity and kinetic constants 

were inferior compared to crude preparations [42]. In spite of this reduced activity, 

site-directed mutagenesis was used to identify three Asp residues important for 

activity, Asp-115, Asp-116 and Asp-267. These three aspartic acid residues were 

very strictly conserved and might function as an active site nucleophile: Asp-115 and 

Asp-116 may form a binding site for Mg2+and Asp-267regarded as the active site 

residue used in the formation of a covalent 

enzyme-phospho-N-acetylmuramyl-pentapeptide intermediate (Fig 1.4b) [26,41]. 

Enzyme activity can be lost by replacing of each of three Asp residues by Asn 

[41,43]. These results were consistent with the earlier kinetic analysis with S. aureus, 

which suggested a double displacement mechanism [44]. 
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Figure 1.4. MraY structure and active site model.(a) Predicted catalytic aspartate 
residues are shown in yellow circles; amino acid mutations at specific sites in green 
circles are shown to have resistant activity to protein E.[45] (b) Model for active site 
and first chemical reaction of MraY.[26] 

 

In addition, the two-dimensional membrane topology has been analysed by 

cross-linking to confirm bioinformatics prediction of membrane spanning regions 

shown in Fig 1.4a. This data is consistent with the conserved critical Asp loops within 

the active site of MraY being found on the cytoplasmic side of the lipid bilayer. 

However, the tertiary structure of MraY is still not known. 

(a) 

(b) 
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1.5. MraY – Translocase I Inhibitors 

 

Since the identity of MraY was discovered, great efforts have been made to identify 

effective MraY inhibitors during the past two decades. This has led to the discovery of 

three different kinds of structural compounds that have the ability to inhibit MraY 

activity. They are: protein E, a helical protein composed of 93 amino acids; the 

lipopeptides amphomycin, fruilimicin & glycinocins; and nucleoside antibiotics (Fig 1.5) 

[25,32].  

 

The first category of inhibitor is Protein E, an integral membrane protein encoded by 

DNA phage ΦX-174 and leads to host cell lysis using an unclear mechanism [46,47]. 

Recently, Tanaka showed that the minimum requirements for lysis of host cells are a 

18-residue peptides with the wild-type sequences of protein E. Also, the specific 

amino acids within and at the boundaries of this 18-membered helix were shown to be 

important for activity [45].The second category of inhibitor is amphomycin, fruilimicin 

and glycinocins. They are cyclic lipopeptide compounds that inhibit MraY activity by 

formation of undecaprenyl phosphate complexes in the presence of Ca2+, a 

mechanism analogous to the mode of action of vancomycin and teichoplanin [48,49]. 

The structures of friulimycins and glycinocins have been identified similar to 

amphomycin except minor modified residues [50,51]. Amphomycin is very active 

against Gram-positive bacteria streptococci and enterococci [52,53]. 

 

The last category of inhibitor, nucleoside antibiotics, is comprised of a large group of 

compounds that are categorized based on signature variations of the structure. More 

specifically, nucleoside antibiotics is classified into four families, including 

lipodisaccharyl nucleosides, lipopeptidyl nucleosides, peptidyl nucleosides, and 

glycosyl-peptidyl nucleosides (Fig 1.5). A uridine (or dihydrouridine) component can 

be found in all these classes of compounds. The variable structural components of 

each group of nucleoside antibiotics lead to slight variations in the specific mechanism 

of inhibitor. For example, the tunicamine residue of tunicamycin, one of members of 
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lipodisaccharyl nucleosides, is a structural mimic of disphospho-residue of 

UDP-MurNAc pentapeptide and it is a competitive inhibitor of MraY [21,34]. 

Mureidomycin, a lipopeptidyl nucleoside, have been shown to be competitive 

inhibitors against UDP-N-MurNAcpentapeptide [54,55]. On the other hand, the 

glycosyl-peptidyl-nucleoside antibiotic A-500359A has been shown to be a 

noncompetitive inhibitor against UDP-MurNAc pentapeptide residue [42]. Even 

though it is possible that the variations in mechanism of inhibition may be due to 

variability associated with the preparation and assay of MraY, it is certain that the 

nucleoside antibiotics described herein selectively inhibit the MraY- catalyzed reaction 

[25,32]. 

 

 
 

Figure 1.5. Inhibitors of MraY. 

 

We have been studying the biosynthesis of several families of nucleoside antibiotics 

that inhibit the enzyme MraY involved in peptidoglycan cell wall biosynthesis [26], 

and all of these antibiotics contain unusual sugar appendages. The lipopeptidyl 

nucleoside family of MraY inhibitors, which includes A-90289s from Streptomyces sp. 
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SANK 60405 [56], caprazamycins from Streptomyces sp. MK739-62F [57], 

FR-900493 from Bacillus cereus No. 2045 [58][59], and muraymycins from 

Streptomyces sp. NRRL 30471 [60], contain an aminoribosyl moiety—a 

5-amino-5-deoxyribose—attached via an O-glycosidic bond to a heptofuranose 

nucleoside component, 5′-C-glycyluridine (Fig1.6). We will focus on A-90289 and 

muraminomicin from Streptosporangium sp. lipopeptidyl nucleoside antibiotics 

biosynthesis in this thesis (Fig 1.5). Structure-activity relationship studies using 

simplified synthetic analogues of these compounds have revealed the aminoribosyl 

moiety [61], and specifically the primary amine functionality [62], is critical for optimal 

antibiotic activity. 

 

 

 

Figure 1.6. Structure of representative lipopeptidyl nucleoside antibiotics containing 
an aminoribosyl moiety. 
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1.6. Glycosidic residues play a critical role in biological function of antibiotics 

 

Glycosylation is a common modification found in several microbial natural products of 

therapeutic value, and the sugar appendage typically has a profound effect on the 

biological activity [63,64]. The critical role of sugar residues in their activity opens up a 

large field for developing new glycosidic antibiotics, and vancomycin and bleomycin 

are two of the most illustrative examples (Fig 1.7)[65,66].  

 

Vancomycin, the structure of which shown in Fig 1.7, is one of the glycopeptide 

antibiotics of last resort in the treatment of gram-positive bacterial infections. It 

consists of a core heptapeptide with attached saccharide moieties, one of which is the 

deoxyaminosugar vancosamine [67]. Sugar residues help to confer water solubility for 

the compounds with aromatic residues and the disaccharides are important in 

mediating back-to-back dimerization of glycopeptides [68][69]. With a disaccharide in 

the structure, the activity of vancomycin is increased by 50-100 times. Nevertheless, if 

an additional amino-sugar is added to vancomycin to generate a derivative, the 

activity will be promoted by 1000 times [70,71]. Bleomycin, used as an antitumor drug 

in the clinic, also exhibits antimicrobial activity against infections by both 

Gram-positive and Gram-negative bacteria [65,66]. It has been demonstrated that 

bleomycin works by cleavage of DNA and RNA strandunder the effect of Fe2+ and 

oxygen regents [72][73,74]. As for the disaccharide moieties in the structure of 

bleomycin, previous research revealed that they play an important role in activating 

belomycin by binding of oxygen and the activation and protection (as a metal ligand) 

of the reactive iron-oxo or perferryl intermediate [75]. Furthermore, Natrajan proposed 

that the carbohydrate moiety is involved in cell surface recognition by bleomycin [76].  
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Figure 1.7. Structure of vancomycin and bleomycin. Glycosidic residues of both 
compounds are marked by blue and red circle respectively. 

 

These unusual sugar appendages are crucial for the bioactivities of many bacterial 

natural products and they are typically modified resulting in many different kinds of 

formats inside the compounds, such as deoxysugars, aminosugars, etc [77]. As a 

result, alteration of sugar structures of these glycol conjugates via biosynthetic 

engineering approaches offers a platform for making and discovering novel natural 

product analogues [64]. In order to do so, it is absolutely necessary to find out how 

these sugar units are modified and assembled into compounds. 

 

1.7. Traditional strategy for ribose and glucose incorporation into compounds 
 

The modus operandi by which sugars are generally incorporated into molecular 

scaffolds such as natural products is (i) formation of a sugar-1-phosphate derived 

from a glycolytic intermediate or galactose, a catalytic process that requires either a 

phosphosugar mutase or an anomeric sugar kinase; (ii) conversion of the 

sugar-1-phosphate to usually an NDP-sugar (also called an activated sugar), a 

reaction catalyzed by a sugar-1-phosphate nucleotidylyltransferase; and (iii) transfer 

of the sugar to an acceptor substrate by a glycosyltransferase to typically generate a 

new O-, N-, or aryl-C-glycosidic bond (Fig 1.8). A remarkable feature of glycosylated, 

13 



 

bacterial natural products is the high degree of variability and functionality that can be 

incorporated into the sugar moiety by reductases, epimerases, methyltransferases, 

and aminotransferases, among others—enzymatic modifications that generally occur 

at the level of the activated sugar prior to the glycosyltransferase-catalyzed reaction 

[63,64]. 

 

 

 

Figure 1.8. Traditional strategies for glucose incorporation into a compound. 

 

The traditional strategy for ribose (five-membered ring sugar) is quite different from 

that of other hexoses and pentoses. It starts with ribose-5-phosphate, which is 

converted to 5-phospho-α-D-ribose-1-diphosphate (PRPP) by PRPP synthetase. 

This activated sugar is then used as a ribose-5-phosphate donor that is transferred 

to an acceptor by a phosphoribosyl transferasae. Finally, the remaining phosphate 

group is hydrolyzed by phosphatase to generate a ribosylated compound (Fig 1.9). 

This strategy has recently been revealed for generating glycosidic bonds with ribose 

units in natural product biosynthesis. The ribosyl moiety of the aminoglycoside 

antibiotic butirosin was shown to be derived from PRPP [78], from which BtrL 

14 



 

transfers ribose-5-phosphate to the acceptor disaccharide neamine to generate an 

O-glycosidic bond and a second enzyme BtrP catalyses dephosphorylation to form 

the final trisaccharide scaffold (Fig 1.10). This tandem, enzyme-catalyzed process is 

also utilized during O-ribosylation of decaprenyl-phosphate to initiate the 

biosynthesis of mycobacterial arabinogalactan [79]. Along with the wealth of N- and 

C-ribosides that originate via phosphoribosyltransfer from 

5-phospho-α-D-ribose-1-diphosphate (Fig 1.10) [26][80], it would appear that 

ribosylation is an exception to the typical glycosylation paradigm. 

 

 

Figure 1.9. Traditional strategies for ribose incorporation into a compound. 

 

 

Figure 1.10. Examples of incorporation of pentose units into acceptor molecules 
using 5-phospho-α-D-ribose-1-diphosphate (PRPP). 
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Based on the two typical strategies for sugar units incorporation into a natural product 

discussed above, we aimed to determinated how the glycosidic residues in 

lipopeptidyl nucleoside antibiotics are assembled. Like the clinically-used antibiotics, 

lipopeptidyl nucleoside antibiotics (A-90289 and muraminomicin) are structurally 

complex compounds that are normally difficult to be synthesized economically, and 

enzymatic biosynthesis offers a relatively efficient strategy to both produce and 

modify the scaffolds for preliminary testing as new drug candidates. It is envisioned 

that the information provided from or inspired from the sugar residue biosynthetic 

studies will have crucial importance to new antibiotics discovery and ultimate lead to 

therapeutic value clinically. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Copyright © Xiuling Chi 2013 

16 



 

Chapter two: Biosynthetic pathway of aminoribosyl moiety of A-90289 

 

2.1. Background 

 

Liposidomycins, the structure of which were first reported in 1988 [81], and 

caprazamycins isolated from Streptomyces sp. MK730-62F2 are prominent 

members of the peptidyl nucleoside antibiotics [57]. A-90289s, which is also belong 

to the liposidomycin family of peptidyl nucleoside antibiotics, were initially identified 

and reported in 2010 [56]. A-90289, isolated from Streptomyces sp. SANK 60405, 

have a structure of which is very similar to caprazamycins (Fig2.1). They both share 

six core moieties in the structure: a 5′-glycyluridine, an aminoribose, a diazepanone, 

a 3-methyl-glutaric acid, a 6-deoxyglucose and a fatty acid. A-90289 is same as 

caprazamycins except that A-90289 containing sulfate group on the 2′ position 

hydroxy group of 5′-glycyluridine moiety [56]. 

 

Recent studies have revealed that caprazamycin is very active against Gram-positive 

bacteria, in particular against the genus Mycobacterium including Mycobacterium 

tuberculosis, Mycobacterium intracellulare and Mycobacterium avium [82,83]. As for 

A-90289, it was reported that the inhibitory activity of A-90289 on bacterial translocase 

I was 36.5ng/ml (IC50). A-90289 is also very active against Gram-positive bacteria with 

a minimum inhibitory concentration (MIC) against S. Aureus ATCC 6538P, 

Streptococcus pyogenes and Enterococcus faecium of 8mg/ml, 4mg/ml and 16mg/ml, 

respectively[84].  

 

 

 

 

 

 

 

(a) 
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Figure 2.1.Streptomyces sp. SANK 60405 wild type and structure. (a) Streptomyces 
sp. SANK 60405 wild type strain grew on R2YE plates. (b) Structure of A-90289 and 
caprazamycin. 
 

The biosynthetic gene cluster of caprazamycin has been cloned and characterized 

recently [85]. Shortly thereafter, the gene cluster of A-90289 was reported by M. 

Funabashi, et al in 2010 and demonstrated that there are 41 orfs that are 

responsible for the biosynthesis of A-90289 (Fig2.2) [56]. The sequence comparison 

of A-90289 gene cluster and caprazamycin gene cluster showed very high similarity 

(ORFs having between 80-91% sequence identities). However, there are clear 

differences within the boundary regions, and of particular interest is the gene for a 

sulfotransferase (LipB) that is found at the upstream boundary of the A-90289 gene 

cluster and not found within the caprazamycin gene cluster, which is expected based 

on structural comparisons of these two compounds. 

 

 
Figure 2.2. The A-90289 biosynthetic gene cluster.All the orfs in A-90289 gene 
cluster is shown in blue. The five orfs (lipP-L) that are involved in aminoribosyl 
moiety incorporation is highlighted in yellow. 

(b) 
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The first insight into how the disaccharide core is assembled was unveiled upon 

cloning of the biosynthetic gene clusters for these lipopeptidyl nucleoside antibiotics 

along with liposidomycin and muraymycin [56,85,86,87], which revealed six-shared 

genes encoding a putative serine hydroxymethyltransferase (shmt for the A-90289 

gene cluster), an non-heme, Fe(II)-dependent dioxygenase (lipL), a putative 

nucleotidylyltransferase (lipM), glycosyltransferase (lipN), aminotransferase (lipO), 

and uridine phosphorylase (lipP). We initially demonstrated that LipL is a non-heme, 

Fe(II)-dependent α-ketoglutarate:UMP dioxygenase that catalyzes the conversion 

UMP to uridine-5′-aldehyde (1) during A-90289 biosynthesis (Fig 2.3)[88]. In turn we 

proposed that uridine-5′-aldehyde (1) serves as the substrate for a putative SHMT 

LipK (Serine hydroxymethyltransferase), catalyzing an aldol-type reaction using 

glycine as a co-substrate to generate 5′-C-glycyluridine. We have subsequently 

shownuridine-5′-aldehyde (1) is a substrate for LipK along with L-threonine to form 

5′-C-glycyluridine [89]. Based on the conjecture that the most efficient overall 

biosynthetic pathway will be employed, we subsequently hypothesized 

uridine-5′-aldehyde (1) is also an intermediate in the pathway leading to the 

aminoribosyl moiety, which would necessitate aminotransfer, phosphorolysis, ribose 

activation, and ribosyltransfer by LipO, LipP, LipM and LipN, respectively (Fig 2.3).  
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Figure 2.3. Proposed biosynthetic pathway for the incorporation of the aminoribosyl 

moiety of A-90289. 

 

The apparent involvement of a nucleotidylyltransferase and glycosyltransferase 

suggested the pathway leading to the aminoribosyl moiety does not parallel the 

known ribosylation pathways that are PRPP-dependent but instead utilizes an 

NDP-sugar as the activated, sugar donor. Thus, the original biosynthetic pathway for 

amino-ribose moiety incorporation into A-90289 was proposed (Fig 2.3), a pathway 

that follows the archetypical sugar biosynthetic paradigm described in section 1.7.  

 

We envisioned 4 potential routes leading to the final aminoribosyl moiety attachment 

based on bioinformatics analysis catalyze. Two routes would start from uridine, 

wherein a phosphorylase (LipP) catalyzed the formation of a ribose-1-phosphate 

intermediate. In one route: the nucleotidylyltransferase (LipM) catalyses formation of 

the activated NDP-sugar, which is followed by oxidization of the primary hydroxyl 

group by a putative dehydrogenase (LipV) to give the aldehyde. The ribose then 

undergoes transamination by aminotransferase (LipO). The second route starting 

from uridine is catalysis by the dehydrogenase (LipV) to generate the 5′-aldehyde of 
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ribose-1-phosphate, and an amine group is introduced in a reaction catalyzed by the 

aminotransferase (LipO). This aminoribosyl moiety is then transferred to NTP 

(nucleoside triphosphate) to form the activated sugar counterpart catalyzed by the 

nucleotidylyltransferase (LipM). Finally this activated NDP (nucleoside 

diphosphate)-sugar could be finally transferred to an acceptor to complete the ribose 

incorporation by glycosyltransferase (LipN). Another two hypothetical routes would 

start with UMP, which is oxidized by dioxygenase (LipL) to form uridine-5′-aldehyde, 

and then converted to the ribose-1-phosphate derivative by the uridine 

phosphorylase. Following transamination, the nucleotidylyltransferase (LipM) 

catalyzes the formation of the amino-ribosyl-NDP sugar, which serves as the 

activated sugar for transfer by the glycosyltransferase (LipN) to the acceptor to form 

the final disaccharide. Alternatively, transamination could occur prior to formation of 

the ribose-1-phosphate, which is then processed by LipM and LipN. 

 

We now present the delineation of the biosynthetic pathway for incorporating this 

moiety by functionally assigning four enzymes, LipP-N. Our results define a new 

sugar-like pathway for ribose incorporation that does not originate from PRPP. These 

results also reveal a unique O-ribosylation pathway that indeed parallels the typical 

glycosylation paradigm yet with significant distinctions that are disclosed herein. 

 

2.2. Materials and methods 

 

2.2.1. Chemicals and Reagents 

 

Uridine, uracil, UTP, UDP, UMP, TTP, CTP, GTP, TMP, CMP, GMP, o-phthalaldehyde 

(OPA), L-Methionine, L-glutamate, L-aspartate and other amino donors were 

purchased from Sigma-Aldrich (St. Louis, MO) or Promega (Madison, WI). Buffers, 

salts, and media components were purchased from Fisher Scientific (Pittsburgh, PA). 

Synthetic oligonucleotides were purchased from Integrated DNA Technologies 
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(Coralville, IA). Wizard® Plus SV Minipreps DNA Purification Systems, Wizard® SV 

Gel and PCR Clean-Up System were purchased from Promega (Madison, WI, USA). 

pET-30 Xa/LIC Vector Kit was purchased from Calbiochem (San Diego. CA, USA). 

InstaGene Matrix was purchased from Bio-Rad (Hercules, CA). Ni-NTA agarose was 

purchased from Qiagen (Valencia, CA). Amicon Ultra 10000 MWCO centrifugal filter 

was purchased from Millipore (Billerica, MA). PD-10 desalting column was 

purchased from GE Healthcare (Pittsburgh, PA). DNA sequencing was performed 

using the BigDye™Terminator version 3.1 Cycle Sequencing kit from Applied 

Biosystems, Inc. (Foster City, CA) and analyzed at the University of Kentucky 

Advanced Genetic Technologies Center. 

 

2.2.2. Instrumentation 

 

UV/Vis spectroscopy was performed with a Bio-Tek µQuant microplate reader using 

Microtest™ 96-well plates (BD Biosciences) or a Shimadzu UV/Vis-1800 

Spectrophotometer. HPLC was performed with a Waters Alliance 2695 separation 

module (Milford, MA) equipped with a Waters 2998 diode array detector and an 

analytical Apollo C-18 column (250 mm x 4.6 mm, 5 μm) or a semi-preparative 

Apollo C-18 column (250 mm x 10 mm, 5 μm)  purchased from Grace (Deerfield, IL). 

Electrospray ionization-MS was performed using an Agilent 6120 Quadrupole MSD 

mass spectrometer (Agilent Technologies, Santa Clara, CA) equipped with an 

Agilent 1200 Series Quaternary LC system and an Eclipse XDB-C18 column 

(150mm x 4.6 mm, 5 μm, 80Å). High-resolution MS was obtained at the University of 

Minnesota, Department of Chemistry Mass Spectrometry Facility. NMR data were 

collected using a Varian Unity Inova 300, 400 or 500 MHz Spectrometer (Varian, Inc., 

Palo Alto, CA). 31P chemical shifts were assigned relative to phosphoric acid 

standard. 
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2.2.3. Bacterial Strains and Enzymes 

 

NovaBlue GigaSingles™ Competent Cells was purchased from Calbiochem (San 

Diego. CA, USA). One Shot® BL21 (DE3) Chemically Competent E. coli was 

purchased from Invitrogen (Camarillo, CA). TaKaRa LA Taq® DNA polymerase with 

GC Buffer was purchased from Takara Bio Inc (Otsu, Shiga, Japan), T4 DNA ligase, 

NdeI, and Hind III were purchased from New England Biolabs (Ipswich, MA). Expand 

long template PCR system was purchased from Roche Applied Science 

(Indianapolis, IN). 

 

2.2.4. Synthesis of uridine-5′-aldehyde, 1 

 

The synthesis of uridine-5′-aldehyde (1) followed a previously described procedure 

[88]. 
 

2′,3′-O-p-Methoxybenzylideneuridine. To a solution of uridine (2.0 g, 8.2 mmol) in dry 

THF (30 mL), ZnCl2 (1.1 g, 8.2 mmol) and p-methoxybenzaldehyde (4 mL, 32.8 

mmol) was added. The turbid mixture was stirred for 2 days at room temperature and 

THF was removed. The product was precipitated by the addition of diethyl ether (50 

mL), which was filtered, washed with water (2 × 25 mL) and diethyl ether (2 × 25 mL). 

Crystallization from hot water containing a little ethanol provided 

2′,3′-O-p-methoxybenzylideneuridine (2.1 g, 71%) as white solid. Mp: 205-206 °C (lit: 

207-208 °C) (1). 1H-NMR (DMSO-d6, 500 MHz) (2): δ 11.40 (brs, 1H), 7.83 and 7.75 

(2 × d, 1H, J = 8.0 Hz), 7.45 and 7.40 (2 × d, 2H, J = 8.5 Hz), 6.98 and 6.96 (2 × d, 

2H J = 9.0 Hz), 6.06 and 5.92 (2 × s, 1H), 5.95 (2 × d, 1H, J = 3.0 Hz), 5.65 (2 × dd, 

1H, J = 8.0, 2.0 Hz), 5.13 and 5.09 (2 × brs, 1H), 4.99 and 4.97 (2 × dd, 1H, J = 6.5, 

2.5 Hz), 4.87 and 4.82 (2 × dd, 1H, J = 6.5, 3.0 Hz), 4.24 and 4.15 (2 × dd, 1H, J = 

4.5, 3.5 Hz), 3.78 and 3.77 (2 × s, 3H), 3.65 and 3.61 (2 × m, 2H). 
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Uridine-5′-aldehyde, 1. Trifluoroacetic acid (0.2 mL, 2.5 mmol) was added to an 

ice-cooled solution of 2′,3′-O-p- methoxybenzylideneuridine (1.0 g, 2.76 mmol), 

N,N′-dicyclohexylcarbodiimide (3.1 g, 15 mmol), and pyridine (0.04 mL, 5 mmol) in 

anhydrous dimethyl sulfoxide (13 mL), and the resulting mixture was stirred at room 

temperature for 16 h. Ethyl acetate (50 mL) was added to the reaction mixture and 

precipitated N,N′-dicyclohexylurea was filtered off while washing with another portion 

of ethyl acetate (50 mL). Combined filtrates were washed with water (2 × 50 mL), 

dried (Na2SO4), and concentrated to give crude 2′,3′-O-p-methoxybenzylideneuridine 

5′-aldehyde as a white solid. Without further purification, the compound was 

dissolved in a solution of 90% trifluoroacetic acid (20 mL) and stored at 37 °C for 16 

h and then concentrated. An aqueous solution (30 mL) of the residue was washed 

with chloroform (2 × 15 mL) and ethyl acetate (20 mL). Removal of the water 

afforded compound uridine-5′-aldehyde (1) (360 mg, 54% in two steps) as off-white 

foam. The compound is extremely hygroscopic in nature and exists mostly in 

hydrated form. 1H-NMR (D2O, 500 MHz)(3): δ 7.88 (d, 1H, J = 8.0 Hz), 5.96 (d, 1H, J 

= 6.0 Hz), 5.88 (d, 1H, J = 8.0 Hz), 5.17 (d, 1H, J = 4.0 Hz), 4.37 (dd, 1H, J = 6.0, 5.5 

Hz), 4.32-4.26 (1H, m), 4.00 (dd, 1H, J = 4.0, 3.5 Hz); 13C-NMR (D2O, 125 MHz): δ 

166.05, 151.74, 141.88, 102.44, 88.53, 86.17, 73.26, 69.60. 

O N

H
NO O

HO

O O

OMe
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2.2.5. Synthesis of 5′-amino-5′-deoxyuridine, 2 
 

The synthesis of 5′-amino-5′-deoxyuridine (2) followed a previously described 

five-step procedure with minor modifications [90]. Lithium azide was prepared from 

sodium azide and lithium sulfate as previously described [91]. 

 

2´,3´-O-Isopropylideneuridine.To a solution of uridine (3) (10 g; 41 mmol) and 

ρ-toluenesulfonic acid monohydrate (1.2 g; 7 mmol) in anhydrous DMF containing 4 

Å molecular sieves was added 2,2-dimethoxypropane (20 mL, 164 mmol), and the 

mixture heated at 40 °C until completion (3 hr) as monitored using TLC 

(CHCl3:MeOH, 12:1). DMF was removed by rotary evaporation and the solid 

re-dissolved in ethyl acetate (100 mL) and washed with water (2 × 40 mL) and 

saturated sodium bicarbonate in water (2 × 40 mL). The ethyl acetate extract was 

dried and the product purified by silica gel chromatography (CHCl3:MeOH, 12:1) to 

yield 6.3 g (56 %) of 2´,3´-O-isopropylideneuridine.1H-NMR (CDCl3, 500 MHz): δ 

9.83 (s, 1H), 9.74 (s, 1H), 7.45 (t, 1H, J = 7.0 Hz), 5.73 (d, 1H, J = 8.0 Hz), 5.68-5.60 

(m, 1H), 5.05-4.97 (m, 1H), 4.96-4.91 (m, 1H), 4.28 (brs,1H), 3.90 (d, 1H, J = 11.0 

Hz), 3.80 (d, 1H, J = 11.0 Hz), 1.57 (s, 3H), 1.35 (s, 3H). 
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2´,3´-O-Isopropylidene-5´-O-toluenesulfonyluridine. 

To a solution of2´,3´-O-Isopropylideneuridine (6.25 g, 21 mmol) in dichloromethane 

(90 mL) was added pyridine (5.4 mL, 63 mmol) and p-toluenesulfonyl chloride (16.8 

g, 84 mmol), and the solution stirred at room temperature until completion (24 hr) as 

monitored by TLC (CHCl3:MeOH, 25:1).  Following the addition of water (50 mL), 

the product was extracted with chloroform (2 x 50 mL) and washed with saturated 

sodium bicarbonate in water (2 x 50 mL). After removal of chloroform and 

dichloromethane by rotary evaporation, the product was purified by silica gel 

chromatography (CHCl3:MeOH, 25:1) to yield 7.54 g (78 %) of 

2′,3′-O-Isopropylidene-5′-O-toluenesulfonyluridine. 1H-NMR (CDCl3, 500 MHz): δ 

8.51 (s, 1H), 7.77 (d, 2H, J = 8.0 Hz), 7.34(d, 2H, J = 8.0 Hz), 7.22 (d, 1H, J = 8.0 Hz), 

5.70 (dd, 1H, J = 8.0, 2.0 Hz), 5.66 (d, 1H, J = 2.0 Hz), 4.91 (dd, 1H, J = 6.0, 2.0 Hz), 

4.78 (dd, 1H, J = 6.0, 3.5 Hz), 4.39-4.30 (m, 1H), 4.28-4.21 (m, 2H), 2.44 (s, 3H), 

1.54 (s, 3H), 1.33 (s, 3H). 
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5´-Azido-5´-deoxy-2´,3´-O-isopropylideneuridine. 

To a solution of 2′,3′-O-Isopropylidene-5′-O-toluenesulfonyluridine (6.5 g, 14.8 mmol) 

in DMF (30 mL) was added lithium azide (3.7 g, 75.5 mmol), and the solution heated 

at 45 °C until completion (16 hr) as monitored using TLC (hexanes:ethyl acetate, 1:1).  

After removal of DMF by rotary evaporation, the product was purified by silica gel 

chromatography (CHCl3:MeOH, 25:1) to yield 4.2 g (92 %) of 

5´-azido-5´-deoxy-2´,3´-O-isopropylideneuridine. 1H-NMR (CDCl3, 500 MHz): δ 8.67 

(s, 1H), 7.29 (d, 1H, J = 8.5 Hz), 5.76 (dd, 1H, J = 8.0, 2.0 Hz), 5.67 (d, 1H, J = 2.0 

Hz), 4.98 (dd, 1H, J = 6.5, 2.0 Hz), 4.81 (dd, 1H, J = 6.5, 4.0 Hz), 4.30-4.20 (m, 1H), 

3.62 (d, 2H, J = 4.0 Hz), 1.57 (s, 3H), 1.35 (s, 3H). 

 

 

 

5´-Azido-5´-deoxyuridine. 

2′,3′-O-Isopropylidene-5′-O-toluenesulfonyluridine (4.1 g, 13.3 mmol) was added to 

90% TFA in water (75 mL) and the solution stirred at room temperature until 
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completion (10 min) as monitored by TLC (CHCl3:MeOH, 6:1).  After drying by 

rotary evaporation, the product was purified by silica gel chromatography 

(CHCl3:MeOH, 6:1) to yield 2.9 g (81 %) of 5´-azido-5´-deoxyuridine.1H-NMR 

(CD3OD, 500 MHz): δ 7.72 (d, 1H, J = 8.0 Hz), 5.84 (d, 1H, J = 4.5 Hz), 5.74 (d, 1H, J 

= 8.0 Hz), 4.22 (t, 1H, J = 5.5 Hz), 4.10 (t, 1H, J = 5.5 Hz), 4.08-4.02 (m, 1H), 3.68 

(dd, 1H, J = 13.0, 3.0 Hz), 3.60 (dd, 1H, J = 13.0, 4.5 Hz). 

 

 

 

5′-Amino-5′-deoxyuridine, 2. 

5′-azido-5′-deoxyuridine (2 g, 7.43 mmol) was suspended in anhydrous methanol (48 

mL) and purged with N2. Following the addition of 10% Pd/C (0.4 g), H2 gas was 

bubbled through and the solution was stirred for at room temperature until 

completion (3 hr) as monitored by TLC (CHCl3:MeOH:acetic acid 1:1:1). After 

filtration and drying by rotary evaporation, the product was purified by silica gel 

chromatography (CHCl3:MeOH:acetic acid 1:1:1) to yield 1.7 g (96 %) of 

5′-amino-5′-deoxyuridine (2).1H-NMR (CD3OD, 500 MHz): δ 7.66 (d, 1H, J = 8.5 Hz), 

5.77 (d, 1H, J = 4.5 Hz), 5.71 (d, 1H, J = 8.5 Hz), 4.22 (dd, 1H, J = 6.0, 5.0 Hz), 3.99 

(dd, 1H, J = 6.0, 5.0 Hz), 3.95-3.88 (m, 1H), 2.96 (dd, 1H, J = 13.5, 4.5 Hz), 2.88 (dd, 

1H, J = 13.5, 7.0 Hz). 
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2.2.6. Synthesis of 5′-amino-2′,5′-dideoxyuridine, 7 
 

The synthesis of 5′-amino-2′,5′-dideoxyuridine(7) followed a previously described 

two-step procedure with minor modifications [79]. Lithium azide was prepared from 

sodium azide and lithium sulfate as previously described [78]. 

 

5′-Azido-2′,5′-dideoxyuridine. To a solution of 2′-deoxyuridine (0.95 g, 4.2 mmol) in 

dry DMF (20 mL) was sequentially added triphenylphosphine (1.2 g, 4.6 mmol), 

lithium azide (1.07 g, 22 mmol), and carbon tetrabromide (1.5 g, 4.6 mmol), and the 

solution stirred vigorously at room temperature until completion (16 hr) as monitored 

by TLC (CHCl3:MeOH, 15:1). After drying by rotary evaporation, the product was 

purified by silica gel chromatography (CHCl3:MeOH, 15:1) to yield 0.74 g (70 %) of 

5′-azido-2′,5′-dideoxyuridine.1H-NMR (300MHz, D2O): δ 7.82 (d, 1H, J = 13.5 Hz), 

6.29 (t, 1H, J = 11.5Hz), 5.92 (d, 1H, J = 14.0Hz), 4.53-4.45 (m, 1H), 4.15-4.07 (m, 

1H), 3.76-3.55 (m, 2H), 2.46-2.39 (m, 2H); 13C-NMR (75MHz, D2O): δ 166.3 (C), 

151.7 (C), 142.1 (CH), 102.5 (CH), 85.8 (CH), 84.7 (CH), 71.1 (CH), 51.8 (CH2), 38.3 

(CH2). 
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5′-Amino-2′,5′-dideoxyuridine, 7.5′-azido-5′-deoxyuridine (0.5 g, 2.0 mmol) was 

suspended in anhydrous methanol (12 mL) and purged with N2. Following the 

addition of 10% Pd/C (0.1 g), H2 gas was bubbled through and the solution was 

stirred for at room temperature until completion (3 hr) as monitored by TLC 

(CHCl3:MeOH:acetic acid 1:1:1). After filtration and drying by rotary evaporation, the 

product was purified by silica gel chromatography (CHCl3:MeOH:acetic acid 1:1:1) to 

yield 0.38 g (84 %) of 5′-amino-2′,5′-dideoxyuridine(7).1H-NMR (300 MHz, D2O): δ 

7.67 (d, 1H, J = 13.5 Hz), 6.25 (t, 1H, J = 11.5 Hz), 5.88 (d, 1H J = 13.5 Hz), 

4.55-4.35 (m, 1H), 4.08-4.00 (m, 1H), 3.20-2.90 (m, 2H), 2.50-2.38 (m, 2H); 
13C-NMR (75 MHz, D2O): δ 169.3 (C), 153.8 (C), 142.1 (CH), 102.6 (CH), 86.5 (CH), 

85.2 (CH), 71.7 (CH), 42.5 (CH2), 38.2 (CH2). 
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2.2.7. Cloning of genes for heterologous expression 

 

Genes were amplified by PCR using Expand Long Template PCR System with 

supplied Buffer 2, 200 μM dNTPs, 5% DMSO, 10 ng DNA template, 5 U DNA 

polymerase, and 200 nM each of the separate primer pairs (Table 1). DNA templates 

for PCR cloning were E. coli DH5α genomic DNA (Ecudp) or cosmid pN1 (lipP, M, O 

and N genes). The PCR program included an initial hold at 94 °C for 2 min, followed 

by 30 cycles of 94 °C for 10 s, 56 °C for 15 s, and 68 °C for 50 s. The gel-purified 
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PCR product was inserted into pET-30 Xa/LIC using ligation-independent cloning as 

described in the provided protocol to yield pET30-LipP, pET30-Ecudp, pET30-LipM, 

etc (Table 2). The genes were sequenced to confirm PCR fidelity. 

 

Table 1. List of primers used in A-90289. 

Primers Oligonucleotide sequence 
lipP_for 5′-GGTATTGAGGGTCGCATGAACGAGACAATCGGGGTTG-3′ 
lipP_rev 5′-AGAGGAGAGTTAGAGCCCTAGACATGGATCATCCCCG-3′ 
Ecudp_for 5′-GGTATTGAGGGTCGCATGTCCAAGTCTGATGTTTTTCATC-3′ 
Ecudp_rev 5′- AGAGGAGAGTTAGAGCCTTACAGCAGACGACGCGCCG -3′ 
lipO_for 5′- GGTATTGAGGGTCGCATGTCCGTGCTGGGGCGG -3′ 
lipO_rev 5′- AGAGGAGAGTTAGAGCCTCATGAGGGCTTCTTCGGTG-3′ 
lipO(K282A)
_for 

5′-GACCTGACCGCCTTCAGCGCGGGCCTGACCAACGGCGTG-
3′ 

lipO(K282A)
_rev 

5′-CACGCCGTTGGTCAGGCCCGCGCTGAAGGCGGTCAGGTC-
3′ 

lipM_for 5′- GGTATTGAGGGTCGCATGAAGGTGTCCGTCATCATC -3′ 
lipM_rev 5′- AGAGGAGAGTTAGAGCCTCAGCACTCCGGGCATCG-3′ 
lipN_for 5′- GGTATTGAGGGTCGCATGCCCGGAG -3′ 
lipN_rev 5′- AGAGGAGAGTTAGAGCCTCATCGTCC-3′ 

 

Plasmids were introduced into E. coli BL21 (DE3) cells, and the transformed strains 

were grown in LB supplemented with 50 μg/mL kanamycin. Following inoculation of 

500 mL of LB with 50 μg/mL kanamycin, the cultures were grown at 18°C until the 

cell density reached an OD600 ~ 0.5 when expression was induced with 0.1 mM IPTG. 

Cells were harvested after an overnight incubation at 18 °C and lysed using a French 

Press with one pass at 15000 psi. Following centrifugation the protein was purified 

using affinity chromatography with Ni-NTA agarose, and the recombinant proteins 

were desalted into 50 mM Tris-HCl (pH 8), 100 mM NaCl, and 5 % glycerol using a 

PD-10 desalting column. The purified protein was concentrated using an Amicon 

Ultra 10000 MWCO centrifugal filter and stored as glycerol stocks (40%) at -20 °C. 

Protein purity was assessed as by 12% acrylamide SDS-PAGE; His6-tagged proteins 

were utilized without further modifications. 
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Table 2. List of plasmids constructed/used in A-90289. 

Strain/Plasmid Characteristics and Relevance References 
E.coli Nova-Blue host for routine cloning works  Novagen 
E.coli BL21 (DE3) host for protein expression Novagen 
pET30 expression vector Novagen 
pET30-lipP lipP gene cloned to pET30 This study 
pET30-Ecudp Ecudp gene cloned to pET30 This study 
pET30-lipO lipOgene cloned to pET30 This study 
pET30-lipM lipM gene cloned to pET30 This study 
pET30-lipN lipN gene cloned to pET30 This study 
pUWL201pw expression vector This study 
pUWL201pw-lipM lipM gene cloned to pUWL201pw This study 
pUWL201pw-lipO lipO gene cloned to pUWL201pw This study 
pUWL201pw-lipO 
(K282A) 

lipO(K282A) gene cloned to pUWL201pw This study 

pUWL201pw-lipN lipN gene cloned to pUWL201pw This study 

 

2.2.8. In vitro characterization of LipP 

 

Reactions consisted of 25 mM potassium phosphate pH 7.5, 2 mM uridine (3) or 

analogue, and 100 nM LipP at 30 °C, and terminated by the addition of cold TCA to 5% 

(w/v) or by ultrafiltration using a Microcon YM-3. Following centrifugation to remove 

protein, the reaction components were analyzed by HPLC using a C-18 

reverse-phase column. A series of linear gradients was developed from 0.1 % TFA in 

5 % acetonitrile (A) to 0.1 % TFA in 90% acetonitrile (B) in the following manner 

(beginning time and ending time with linear increase to % B): 0-4 min, 100% B; 4-24 

min, 50% B; 24-26 min, 100% B; 26-32 min, 100% B; and 32-35 min, 0% B. The flow 

rate was kept constant at 1.0 mL/min, and elution was monitored at 260 nm. LC-MS 

was performed using a linear gradient from 0.1% formic acid in water to 0.1% formic 

acid in acetonitrile over 20 min. The flow rate was kept constant at 0.4 mL/min, and 

elution was monitored at 254 nm. 

 

The effect of pH on LipP activity was carried out in 50 mM indicated buffer, 2.5 mM 

potassium phosphate, 2.5 mM uridine (3), and 1 μM LipP for 5 min at 30 °C. The 
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reactions were terminated with 0.1 M sodium hydroxide, and uracil (4) formation was 

determined by UV/Vis spectroscopy with Δε290 nm = 5, 700 M-1 at pH 13. To determine 

the kinetic constants with respect to the co-substrate nucleoside, reactions were 

carried out in 50 mM Tris-HCl pH 9.0 consisting of saturating phosphate (1.5 mM) 

and variable nucleoside (10 - 4,700 M uridine, 10 – 10,000 M 2′-deoxy-uridine (11), 8 

- 800 M 5′-amino-5′-deoxyuridine (2), or 30 - 3000 M uridine-5′-aldehyde (1), and 100 

nM LipP at 30 °C under initial velocity conditions. Single substrate kinetics at pH 7.5 

was carried out using identical conditions except with increased LipP (730 nM). 

Kinetic analysis with EcUdp was carried out with final enzyme concentrations of 100 

nM at pH 9.0 and 200 nM at pH 7.5. 

 

2.2.9. Subcloning and expression in S. lividans TK-64 
 

Plasmids pET30-lipM, pET30-lipO, pET30-lipO(K282A) and pET30-lipN were 

digested with NdeI-HindIII and the DNA fragment of the expected size was purified 

and ligated to the identical sites of pUWL201pw to yield pUWL201pw-lipM, 

pUWL201pw-lipO, pUWL201pw-lipO(K282A), and pUWL201pw-lipN, respectively. 

The resulting plasmids were transformed into S. lividans TK-64 using PEG-mediated 

protoplast transformation and plated on R2YE. After 14 hr at 28 °C, the plates were 

overlaid with 1 mL of water supplemented with 200 μg of thiostrepton. Single 

colonies were transferred to fresh R2YE plates supplemented with 10 μg/mL 

thiostrepton, and after 4 days at 28 °C positive transformants were confirmed by 

colony PCR using InstaGene Matrix from Bio-Rad and LA-Taq polymerase with GC 

buffer II. A single colony was utilized to inoculate 50 mL R2YE containing 10 μg/mL 

thiostrepton, grown for 2 days at 28 °C at 250 rpm, and 2 mL transferred to fresh 50 

mL containing 10 μg/mL thiostrepton. Following growth for 3 days at 28 °C at 250 

rpm, the cells were collected by centrifugation and washed with 10% glycerol prior to 

lysis by French press and protein purification as described above. 
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2.2.10. In vitro characterization of LipM 
 

Reactions consisted of 50 mM potassium phosphate pH 7.5, 5 mM MgCl2, 2 mM 

uridine (3) or analogue, 5 mM nucleotide triphosphate, 5 μM LipP, and 1 μM LipM at 

30 °C, and the reaction terminated by the addition of cold TCA to 5% (w/v) or by 

ultrafiltration using a Microcon YM-3. The activity of LipM was tested with 

sugar-1-phosphates generated in situ from synthetic uridine (3), 2′-deoxy-uridine 

(11), 5′-amino-5′-deoxyuridine (2), or 5′-amino-2′,5′-dideoxyuridine  (7) and the 

cosubstrate nucleotide UTP, dUTP, TTP, rCTP, dCTP, dGTP, rGTP, dATP, or rATP. 

Following centrifugation to remove protein, the reaction components were analyzed 

by HPLC using a C-18 reverse-phase analytical column. A series of linear gradients 

was developed from 40 mM phosphoric acid-triethylamine pH 6.5 (C) to 20% 

methanol (D) in the following manner (beginning time and ending time with linear 

increase to % D): 0-8 min, 100% D; 8-18 min, 60% D; 18-25 min, 95% D; 25-32 min, 

95% D; and 32-35 min, 0% D. The flow rate was kept constant at 1.0 mL/min, and 

elution was monitored at 260 nm. LC-MS and NMR were performed as above. 

 

2.2.11. OPA-modification and analysis of the LipM product 

 

Amine-containing compounds were detected by precolumn modification with 

o-phthalaldehyde (OPA). Following the enzyme reaction, LipM was removed by 

ultrafiltration and an equal volume of OPA solution (to 4 mg of OPA was  

sequentially added 50 μL ethanol, 4.5 mL 0.1 M sodium borate pH 9.5, and 11 μL 

β-mercaptoethanol) was added. The modified reaction components were analyzed 

by HPLC using a C-18 reverse-phase analytical column. A series of linear gradients 

was developed from 50 mM sodium acetate pH 6.0 in 5% acetonitrile (A) to 50 mM 

sodium acetate pH 6.0 in 50% acetonitrile and 40% methanol (B) in the following 

manner (beginning time and ending time with linear increase to % B): 0-4 min, 0% B; 

4-24 min, 50% B; 24-26 min, 100% B; 26-32 min, 100% B; and 32-35 min, 0% B. The 

flow rate was kept constant at 1.0 mL/min, and elution was monitored at 335 nm. 
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LC-MS was performed using a linear gradient from 0.1% formic acid in water to 0.1% 

formic acid in acetonitrile over 20 min. The flow rate was kept constant at 0.4 mL/min, 

and elution was monitored at 335 nm. 

 

2.2.12. Production of the LipM product for mass and NMR spectroscopy 
 

Large scale production and isolation of the OPA-modified product was identical to 

the reactions described above using 5′-amino-5′-deoxyuridine (2) and UTP as the 

starting substrates with the following modifications: sodium acetate was substituted 

with ammonium acetate for HPLC and a semipreparative HPLC column was used 

with a flow rate of 3.5 mL/min. The peak corresponding to the product 

(5′-isoindolinine-5′-deoxyribose-1′,2′-cyclic phosphate) was collected and 

freeze-dried prior to spectroscopic analysis. 1H-NMR (500MHz, D2O): δ 7.72 (d, 1H, 

J =7.5 Hz, H-7), 7.62 (t, 1H, J = 7.5 Hz, H-5), 7.54 (d, 1H, J =7.5 Hz, H-4), 7.50 (t, 1H, 

J = 7.5 Hz, H-6), 5.90 (dd, 1H, J = 4.5, 17.5 Hz, H-′), 4.95-4.80 (m, 1H, H-2′), 4.65 (d, 

1H, J =18.0 Hz, H-3), 4.53 (d, 1H, J =18.0 Hz, H-3), 4.32-4.29 (m, 1H, H-4′), 

3.99-3.93 (m, 2H, H-3′, H-5′), 3.87 (d, 1H, J =15.0 Hz, H-5′); 13C-NMR (125 MHz, 

D2O): δ 171.1 (C-1), 142.3 (C-1a), 132.2 (CH-5), 130.6 (C-3a),  127.9 (CH-6), 122.9 

(CH-4), 122.8 (CH-7), 100.9 (CH-1′), 78.3 (CH-2′), 78.1 (CH-4′), 71.7 (CH-3′), 52.1 

(CH2-3), 42.8 (CH2-5′); 31P-NMR (202.5 MHz, D2O): δ19.05. 

 

Large scale isolation of the LipM product starting from 

5′-amino-2′,5′-dideoxyuridine(7) was carried out with HPLC using a C-18 

reverse-phase semipreparative column. A series of linear gradients was developed 

from 50 mM acetic acid-triethylamine pH 6.5 (C) to 50 mM acetic acid-triethylamine 

pH 6.5 containing 20 % methanol (D) in the following manner (beginning time and 

ending time with linear increase to % H): 0-8 min, 0% D; 8-18 min, 60% D; 18-25 min, 

95% D; 25-32 min, 95% D; and 32-35 min, 0% D. The flow rate was kept constant at 

3.5 mL/min, and elution was monitored at 260 nm. The peak corresponding to the 
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product UDP-5″-amino-2″,5″-dideoxyribose (8) was collected and freeze-dried prior 

to spectroscopic analysis.1H-NMR (500MHz, D2O): δ 7.95 (d, 1H, J = 8.0 Hz, H-5), 

6.00-5.88 (m, 3H, H-4, H-1′, H-1′′), 4.45-4.33 (m, 3H, H-4′, H-3′, H-2′), 4.30-4.17 (m, 

4H, H-5′, H-4′′, H-3′′), 3.33 (d, 1H, J = 13.0 Hz, H-5′′), 2.98 (dd, 1H, J = 12.5, 10.5 Hz, 

H-5′′), 2.53-2.45 (m, 1H, H-2′′), 2.24-2.15(m, 1H, H-2′′); 13C-NMR (125 MHz, D2O): δ 

166.1 (C-3), 151.7 (C-1), 141.6 (CH-5), 102.5 (CH-1′′), 100.9 (CH-4), 88.3 (CH-1′), 

83.2 (CH-4′′), 81.8 (CH-3′), 73.7 (CH-2′), 71.7 (CH-3′′), 69.5 (CH4′), 64.7 (CH2-5′), 

41.0 (2 × CH2, 2′′ & 5′′); 31P-NMR (202.5 MHz, D2O): δ -11.66 (d, J = 20.4 Hz),  

-13.67 (d, J = 17.8 Hz).  

 

2.2.13. In vitro characterization of LipO activity 
 

Reactions consisted of 50 mM potassium phosphate pH 7.5, 2 mM 

uridine-5′-aldehyde (1), 2 mM amine donor, 200 μM PLP, and 1 μM LipO at 30 °C, 

and the reaction terminated by the addition of cold TCA to 5% (w/v) or by 

ultrafiltration using a Microcon YM-3. Alternatively, PLP was eliminated from the 

reaction mixture to give comparable results. HPLC analysis of the reaction was 

similar to that described for LipM. 

 

2.2.14. Site-directed mutagenesis of LipO 

 

A K282A point mutation of LipO was generated by PCR amplification using 

pET30-LipO as a template and the Expand Long Template PCR system. Reactions 

were performed using the manufacturer′s provided Buffer 2 with 5% DMSO, primers 

(Table 2) and the reverse complement (the engineered Ala codon is underlined), and 

a PCR program consisting of an initial hold at 94 °C for 2 min followed by 20 cycles 

of 94 °C for 10 s, 56 °C for 20 s, and 68 °C for 7 min. The template DNA was 

digested with 10 units of DpnI for 1 h at 37 °C and transformed into E. coli DH5α 

competent cells. The introduction of the correct point mutation and the sequence of 
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the entire gene including 200 bp upstream and downstream were confirmed by DNA 

sequencing to yield pET30-lipO(K282A).  

 

2.2.15. In vitro characterization of LipN activity 
 

Reactions consisted of 50 mM potassium phosphate pH 7.5, 2 mM 

5′-amino-5′-deoxyuridine (2), 2.8 µM LipP at 30 °C for 2 hours. LipP was removed by 

ultrafiltration, and 86µL of the filtrate was added to a solution of 5 mM MgCl2, 2 mM 

UTP, 1 mM uridine (3), 12 µM LipM, and 7 µM LipN (final volume of 100 mL) and 

incubated at 30 °C for the indicated time points. HPLC analysis was performed using 

a TFA mobile phase as described above. 

 

2.2.16. Production of the LipN product for mass and NMR spectroscopy 

 

Large scale isolation of the LipN product starting from 5′-amino-5′-deoxyuridine 

(2)was carried out with HPLC using a C-18 reverse-phase semipreparative column 

using the above conditions for OR25 starting from 5′-amino-2′,5′-dideoxyuridine(7) 

except acetic acid-triethylamine was substituted with TFA. The peak corresponding 

to the product 5′-O-(5′′-amino-5′′-deoxyribose)-uridine (9) was collected and 

freeze-dried prior to spectroscopic analysis. 1H-NMR (500MHz, D2O): δ 7.73 (d, 1H, 

J = 8.5 Hz, H-5), 5.89 (d, 1H, J = 8.5 Hz, H-4), 5.86 (d, 1H, J = 3.0 Hz, H-1′), 5.11 (s, 

1H, H-1′′), 4.38-4.34 (m, 1H, H-2′), 4.29-4.07 (m, 6H, H-2′′, H-3′, H-3′′, H-4′, H-4′′, 

H-5′), 3.80-3.71 (m, 1H, H-5′), 3.38 (d, 1H, J = 13.0 Hz, H-5′′), 3.04 (dd, 1H, J = 10, 

13.0 Hz, H-5′′), 13C NMR (125 MHz, D2O): δ 166.0 (C-3), 151.3 (C-1), 141.7 (CH-5), 

107.8 (CH-1′′), 101.9 (CH-4), 90.1 (CH-1′), 81.9 (CH-3′), 78.3 (CH-3′′), 73.9 (CH-4′), 

73.2 (CH-2′), 72.5 (CH-4′′), 69.1 (CH-2′′), 68.1 (CH2-5′), 43.2 (CH2-5′′).  
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2.3. Results: LipP Characterization 

 

2.3.1. In vitro characterization of LipP activity 

 

Our previous results have demonstrated that a non-heme, Fe(II)-dependent 

α-KG:UMP dioxygenase generatesuridine-5′-aldehyde (1) from UMP to initiate the 

biosynthesis of the modified uridine (3) component,5′-C-glycyluridine, of A-90289 [88]. 

Thus, the aminoribosyl moiety was potentially derived from uridine (3), 

uridine-5′-aldehyde (1) or 5′-amino-5′-deoxyuridine (2) (Fig 2.4). These hypothetical 

intermediate were therefore synthesized with the expectation that one of these would 

serve as a substrate for the phosphorylase LipP.  

 

 
 

Figure 2.4. Proposed biosynthetic pathway for the incorporation of the aminoribosyl 

moiety of A-90289. 

 

Bioinformatics analysis revealed LipP has sequence similarity to proteins annotated 

as uridine phosphorylases (Udp), an enzyme family that catalyzes the 
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phosphorolysis of uridine (3) or—less efficiently—thymidine nucleosides to generate 

α-D-ribose-1-phosphate and uracil (4) or thymine, respectively, to initiate nucleotide 

salvage pathways (Fig 2.5)[92]. Although inactive with the 5′-monophosphorylated 

nucleotide, both human and mouse Udp have been shown to have modest activity 

with unnatural 5′-deoxynucleosides [93,94]. However, the potential activity of Udp 

with the 5′-modifications under investigation has not been reported, so it remained 

unclear as to the chemical identity of the LipP substrate.  

 

 

Figure 2.5. Phosphorylase reaction catalyzed by LipP. 

 

The lipP gene was cloned and expressed in E. coli to yield soluble protein with the 

expected size (Fig 2.6). Initial activity tests using HPLC revealed uridine (3) is rapidly 

converted to uracil (4) and α-D-ribose-1-phosphate by LipP (Fig 2.7 a) as expected. 

In addition to the formation of the pyrimidine base, LC-MS analysis of the reaction 

revealed an (M - H)- ion at m/z = 228.7 that was absent in the control (Fig 2.8 c), a 

mass that is consistent with the molecular formula C5H9NO8P of the expected 

productα-D-ribose-1-phosphate. Further activity tests revealed the hypothetical 

pathway intermediates uridine-5′-aldehyde (1) and 5′-amino-5′-deoxyuridine (2) were 

also converted to uracil (4) and the respective sugar-1-phosphate by LipP (Fig 2.7 

b,c), thus warranting further kinetic investigation for LipP. 
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Figure 2.6. SDS-PAGE analysis of purified His6-LipP (expected MW of 52.9 kD). 

 

 

 

Figure 2.7. Characterization of LipP by HPLC. (a) HPLC analysis using uridine (3) 
after (I) 30 min without LipP, (II) 5 min reaction, (III) 30 min reaction, and (IV) 
authentic uracil (4). (b) HPLC analysis using 5′-amino-5′-deoxyuridine (2) after (I) 30 
min without LipP, (II) 30 min reaction, and (III) authentic uracil (4).(C) HPLC analysis 
of the reaction using substrate uridine-5′-aldehyde (1) after (I) 3 hr without LipP, (II) 3 
hr reaction, and (III) authentic uracil (4). A260, absorbance at 260 nm. 
 
 
 
 
 
 
 
 

His6-LipP 

(a) (b) 

(c) 
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Figure 2.8. LC-MS analysis of the phosphorylase reaction. (a) Mass spectrum for 
the ion peak eluting at time t = 2.852 min of the reaction mixture without enzyme. (b) 
Mass spectrum for the ion peak eluting at time t = 2.852 min of the EcUdp reaction. 
(c) Mass spectrum for the ion peak eluting at time t = 2.852 min of the LipPreaction. 

 

2.3.2. Kinetics characterization of LipP 

 

The pH profile for LipP was initially examined using 5′-amino-5′-deoxyuridine (2) or 

uridine (3) as a substrate and detection of uracil (4) by UV/Vis spectroscopy (Fig 2.9 

a)[95], revealing an apparent optimal activity for LipP at pH = 9.0, which is 

moderately higher than reported for EcUdp (pH ~ 7.5) (Fig 2.9 b) [96]. As a result, 

single substrate kinetic analysis was performed at both pH 9.0 and 7.5 with all 

hypothetical pathway intermediates (Fig 2.9 c-f). The extracted kinetic constants 

(Table 3) revealed that LipP has comparable efficiency with 5′-amino-5′-deoxyuridine 

(2) and uridine (3) at pH 9.0, thus both appear to be viable substrates in vivo. 

Saturation kinetics could not be reached with uridine-5′-aldehyde (1) (Fig 2.9g), and 

the relatively low first-order rate constant of k = (3.0 ± 0.5) x 10-2 min-1 suggests that 

uridine-5′-aldehyde (1) is less probable as the in vivo substrate.  

(a) (b) 

(c) 
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Figure 2.9. Kinetic characterization of LipP. a) Assay by UV/Vis spectroscopy by 
taking advantage of the different absorption profiles of uridine (3) and uracil (4) at 
alkaline pH. Shown are spectra of standards are pH ~ 13. (b) pH profile using the 
indicated buffers. (c) Single-substrate kinetic analysis with variable uridine (3)at pH 

3 

4 

(a) (b) 

(c) (d) 

pH = 7.5 

(e) 

pH = 7.5 

(f) 

pH = 9.0 

(g) 
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9.0. (d) Single-substrate kinetic analysis with variable 5′-amino-5′-deoxyuridine (2)at 
pH 9.0. (e) Single-substrate kinetic analysis with variable uridine (3) at pH 7.5. (f) 
Single-substrate kinetic analysis with variable 5′-amino-5′-deoxyuridine (2) at pH 7.5. 
(g) Single-substrate kinetic analysis with variable uridine-5′-aldehyde (1) at pH 9.0. 
 
Table 3. Extracted kinetic constants for LipP and EcUdp. 
 
Enzym
e 

pH Substratea Km 
(μM) 

kcat 
(min-1) 

kcat/Km 

(μM-1min-

1) 

Relative 
efficienc
y 

LipP 9.
0 

Uridine (3) 87 ± 21 (1.3 ± 0.1) x 
102 

1.5 100 

Thymidine (2.8 ± 0.2) x 
103 

5.3 ± 0.2 1.9 x 10-3 0.13 

ADU (2) (2.1 ± 0.3) x 
102 

(2.6 ± 0.2) x 
102 

1.2 80 

2′-deoxyU(1
1) 

(3.1 ± 0.4) x 
103 

(2.1 ± 0.8) x 
102 

6.8 x 10-2 4.5 

7.
5 

Uridine NAb NAb   
ADU (2) (2.6 ± 0.5) x 

102 
34 ± 1.6  1.3 x 10-1 8.7 

EcUdp 9.
0 

Uridine (3) (1.3 ± 0.2) x 
103 

(2.6 ± 0.1) x 
103 

2 100 

  ADU (2) (1.0 ± 0.2) x 
103 

(9.7 ± 0.7) x 
102  

1.0 49 

 7.
5 

Uridine (3) (1.5 ± 0.1) x 
103 

(1.6 ± 0.1) x 
103  

1.1 55 

  ADU (2) (2.0 ± 0.5) x 
103 

(3.2 ± 0.4) x 
102  

1.6 x 10-1 8 

        aADU, 5′-amino-5′-deoxyuridine; 2′-deoxyU, 2′-deoxyuridine. 
         bnot applicable, non-Michaelis-Menten kinetics was observed. 
 

2.3.3. In vitro characterization of EcUdp activity 

 

Initial activity tests using HPLC revealed uridine (3) is rapidly converted to uracil (4) 

and α-D-ribose-1-phosphate by EcUdp (Fig 2.10 b) as expected. This enzyme was 

characterized in vitro with hypothetical intermediates in the biosynthesis of the 

5-amino-5-deoxyribosyl moiety of A-90289. For comparisons the udp gene from E. 

coli was also cloned and expressed to yield recombinant EcUdp (Fig 2.10 a). In 

addition to the formation of the pyrimidine base, LC-MS analysis of the reaction 
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revealed an (M - H)- ion at m/z = 228.7 that was absent in the control (Fig 2.8b), a 

mass that is consistent with the molecular formula C5H9NO8P of the expected 

product α-D-ribose-1-phosphate. Further activity tests revealed the hypothetical 

pathway intermediates uridine-5′-aldehyde (1) and 5′-amino-5′-deoxyuridine (2) were 

also converted to uracil (4) and the respective sugar-1-phosphate by EcUdp (Fig 

2.10 c,d), thus warranting further kinetic investigation for EcUdp. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.10In vitro characterization of EcUdp with hypothetical intermediates. (a) 
SDS-PAGE analysis of purified His6-EcUdp (expected MW of 32.2 kD). (b) HPLC 
analysis using substrate uridine (3) after (I) 30 min without EcUdp, (II) 30 min 
reaction, and (III) authentic uracil (4). (c) HPLC analysis using substrate 1 after (I) 30 
min without EcUdp, (II) 30 min reaction, (III) 3 hr reaction and (IV) authentic uracil (4). 
(d) HPLC analysis using substrate 5′-amino-5′-deoxyuridine (2) after (I) 30 min 
without EcUdp, (II) 30 min reaction, and (III) authentic uracil (4).  
 

2.3.4. Kinetics characterization of EcUdp 

 

Single substrate kinetic analysis for EcUdp was performed at both pH 9.0 and 7.5 

with all hypothetical pathway intermediates (Fig 2.11a). The extracted kinetic 

constants (Table 3) revealed that EcUdp has comparable efficiency with 

His6-EcUdp 

(a) (b) 

4 

1 

(c) (d) 

2 

4 
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5′-amino-5′-deoxyuridine (2) and uridine (3) at pH 9.0. Although the Km and kcat for 

each respective substrate were lower for LipP relative to EcUdp, the efficiencies and 

kinetic trends for both enzymes were quite comparable 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.11. Kinetics analysis of EcUdp. (a) Single-substrate kinetic analysis with 
variable uridine (3) at pH 9.0. (b) Single-substrate kinetic analysis with variable 
uridine (3) at pH 7.5. (c) Single-substrate kinetic analysis with variable 
5′-amino-5′-deoxyuridine (2) at pH 9.0. (d) Single-substrate kinetic analysis with 
variable 5′-amino-5′-deoxyuridine (2) at pH 7.5. A260, absorbance at 260 nm. 

 

2.4. Results: LipM Characterization 

 

2.4.1. In vitro characterization of LipM activity 

 

Since the kinetic analysis revealed both 5′-amino-5′-deoxyuridine (2) and uridine (3) 

are good substrates for LipP, while uridine-5′-aldehyde (1) is not, we eliminated one 

potential biosynthetic pathway leaving three potential pathways (Fig 2.12). The 

downstream enzyme LipM was characterized next to further define the pathway (Fig 

2.12). Bioinformatics analysis of LipM revealed sequence similarity to proteins 

annotated as putative nucleotidylyltransferases. The potential reaction catalyzed by 

pH = 9.0 pH = 7.5 
(a) (b) 

kcat/Km =  

2.0 uM-1min-1 

kcat/Km =  

1.1 uM-1min-1 

(c) 

pH = 9.0 

kcat/Km =  

1.0 uM-1min-1 

pH = 7.5 

kcat/Km =  

0.16 uM-1min-1 

(d) 
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LipM is shown in Fig 2.13. To interrogate the activity in detail, lipM was expressed in 

E. coli, however the recombinant protein was insoluble using a variety of growth and 

induction conditions. Therefore, we turned to S. lividans TK64 as a host, which 

resulted in the successful preparation of soluble, recombinant LipM (Fig 2.14 a).  

 

 
 
Figure 2.12. Proposed biosynthetic pathway for the incorporation of the 
aminoribosyl moiety of A-90289. 
 
 

 

Figure 2.13. Reaction catalyzed by LipM including in situ generation of the substrate 
and amine derivatization with o-phthalaldehyde (OPA).  
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The activity of LipM was tested with α-D-ribose-1-phosphate or 

5-amino-5-deoxy-α-D-ribose-1-phosphate (5) generated in situ by LipP, and analysis 

of these reactions revealed a new peak was formed only in the presence of 

5-amino-5-deoxy-α-D-ribose-1-phosphate (5) and UTP or - to a lesser extent - TTP, 

CTP, or GTP (Fig 2.14 b and Fig 2.15). Unexpectedly, the new peak derived from 

activity tests with 5-amino-5-deoxy-α-D-ribose-1-phosphate (5) and the different 

NTPs had the same retention time and UV/Vis spectrum as the respective nucleotide 

monophosphate (NMP), and co-injections with authentic material and LC-MS 

revealed this to be the case.  

 

 

Figure 2.14. Characterization of LipM. (a) SDS-PAGE analysis of purified His6-LipM 
(expected MW of 31.3 kD). (b) HPLC analysis starting with 5′-amino-5′-deoxyuridine 
(2) or uridine (3). (I) authentic UTP, (II) 3 hr reaction with substrate uridine (3), with 
LipP, (III) 3 hr reaction with substrate uridine (3), with LipP and LipM, (IV) 3 hr 
reaction with substrate 5′-amino-5′-deoxyuridine (2), with LipP, (V) 3 hr reaction with 
substrate 5′-amino-5′-deoxyuridine (2), with LipP and LipM, and (VI) authentic UMP. 
A260, absorbance at 260 nm. 
 
 
 
 
 
 

His6-LipM 

(a) (b) 

I 

II 

IV 

III 

V 

VI 
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Figure 2.15. In vitro characterization of LipM with alternative NTPs. (a) HPLC 
analysis after (I) 3 hr without LipP, (II) 3 hr reaction, and (III) authentic TMP. (b) HPLC 
analysis after (I) 3 hr without LipP, (II) 3 hr reaction, and (III) authentic CMP. (c) 
HPLC analysis after (I) 3 hr without LipP, (II) 3 hr reaction, and (III) authentic GMP. 
A260, absorbance at 260 nm. 
 

2.4.2. In vitro characterization of OPA modified 5′-amino-5′-deoxyuridine (2) 
catalyzed by LipM 

 

We hypothesized that the NMP was generated by the degradation of the product via 

intramolecular attack of the 2-hydroxy group of the aminoribosyl unit on the proximal 

phosphate, a phenomenon that was previously observed upon characterization of 

apiofuranosyl-1,2-cyclic phosphate as the product of the plant bifunctional 

UDP-apiose/UDP-xylose synthase that catalyzes decarboxylation of UDP-glucuronic 

acid[97]. To detect any potential amine-containing product, the reaction components 

were first modified with OPA prior to injection, and two new peaks were identified by 

HPLC (Fig 2.16).  

(a) (b) 

(c) 
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Figure 2.16. OPA-modified substrate reaction catalyzed by HPLC.HPLC analysis of 
reaction mixtures with OPA derivatization starting with 5′-amino-5′-deoxyuridine (2) 
after (I) 30 min without LipP, (II) 30 min without LipM (II), 30 min reaction (III), and 3 
hr reaction (IV). A335, absorbance at 335 nm. 
 

The first peak was identified as residual OPA-modified 

5-amino-5-deoxy-α-D-ribose-1-phosphate (OPA-5), while LC-MS analysis of the 

remaining peak yielded an (M - H)- ion at m/z = 385.6, consistent with the molecular 

formula C15H18NO7PS of an OPA-modified 

5-amino-5-deoxy-α-D-ribose-1,2-cyclicphosphate (OPA-6) (expected m/z = 386.1) 

(Fig 2.13and Fig 2.17 a,b). Large-scale purification of OPA-6 and subsequent 

LC-MS and 1D and 2D NMR spectroscopic characterization (Fig 2.15 

c,d-2.21)—notably the 1H-31P HMBC data that was consistent with the very recently 

discovered metabolite α-D-ribose-1,2-cyclicphosphate[98] (Fig 2.22)—revealed the 

expected degradation product (an isoindol-1-one) for OPA-6[99]. Although the 

genuine identity of the product of the LipM-catalyzed reaction remained elusive at 

this stage, the results did reveal that LipM only utilizes a sugar-1-phosphate 

containing a primary amine functionality. 
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Figure 2.17. LC-MS analysis of the OPA-modified LipM product. (a) LC analysis of 
the LipM product prior to purification. (b) Mass spectrum for the peak at elution time t 
= 11.4 min displaying the expected isotopic distribution (inset). (c) LC-MS analysis of 
the LipM product following purification using total negative ion current for detection. (d) 
Mass spectrum for the peak eluting at time t = 9.6 min. A335, absorbance at 335 nm. 

 

(a) (b) 

(d) (c) 
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Figure 2.18. Characterization of 5′-isoindolinine-5′-deoxy-α-D-ribose-1′,2′-cyclic 
phosphate by 1D NMR.  (a) 1H-NMR spectrum. (b) 13C-NMR spectrum. (c) 31P-NMR 
spectrum.  *Acetic acid 
 
 
 
 
 
 
 
 
 
 
 

(a) 

(c) 

(b) 
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Figure2.19. gCOSY NMR spectrum of 5′-isoindolinine-5′-deoxy-α-D-ribose-1′,2′- 
cyclicphosphate.  
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Figure 2.20. gHSQCNMR spectrum of 5′-isoindolinine-5′-deoxy-α-D-ribose-1′,2′- 
cyclicphosphate. 
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Figure 2.21.1H-13C gHMBC NMR spectrum of5′-isoindolinine-5′-deoxy-α-D-ribose- 
1′,2′- cyclicphosphate. 
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Figure 2.22.1H-31P HMBC NMR spectrum of 5′-isoindolinine-5′-deoxy-α-D-ribose- 
1′,2′- cyclicphosphate 
 

2.4.3. In vitro characterization of substrate 5′-amino-2′,5′-dideoxyuridine (7) 
catalyzed by LipM 

 

We rationalized that a stable LipM product would be attainable by using a 

2-deoxyribose-containing surrogate substrate. EcUdp as well as other UDPs are 

known to catalyze phosphorolysis using thymidine (12) or 2′-deoxyuridine 

(11)[96,100], and similarly LipP catalyzed the reaction with either substrate (Fig 2.24 

a,b), although the latter was determined to be nearly 35-fold more efficient (Table 3 

and Fig 2.23 c,d). Identical to the results utilizing 5′-hydroxy nucleosides (i.e. uridine 

3), in situ generation of 2-deoxy-α-D-ribose-1-phosphate did not yield a product when 
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tested with LipM. Subsequently, the potential substrate 5′-amino-2′,5′-dideoxyuridine 

(7) was synthesized from 2′-deoxyuridine (11), and the reaction catalyzed by LipM 

was tested in Fig 2.24 a. HPLC analysis with this surrogate substrate revealed it was 

processed by both LipP and LipM, generating two new peaks with uridine (3)-like 

chromophores (UVmax~260 nm) (Fig 2.24 b). While the minor peak was identified as 

UDP, the major peak did not co-elute with any known uracil (4)-containing metabolite. 

LC-MS analysis of the purified new peak revealed an (M - H)- ion at m/z = 517.6, 

consistent with the molecular formula C14H23N3O14P2 of 

UDP-5″-amino-2″,5″-dideoxyribose (8) (expected m/z = 518.1) (Fig2.25). NMR 

analysis, including 1H-, 13C-, and 31P-NMR, 1H-1H COSY, and 1H-13C HMBC (Figs 

2.26-28), confirmed the identity of the product as UDP-5″-amino-2″,5″-dideoxyribose 

(8), thus consistent with the function of LipM as a 

UTP:5-amino-5-deoxy-α-D-ribose-1-phosphate uridylyltransferase.  

 

Figure 2.23. HPLC and Kinetic analysis of LipP with 2′-deoxynucleosides.(a) HPLC 
analysis using thymidine (12)after (I) 3 hr without LipP and (II) 3 hr reaction. (b) 
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HPLC analysis using 2′-deoxyuridine (11)after (I) 3 hr without LipP and (II) 3 hr 
reaction. (c) Single-substrate kinetic analysis with variable thymidine (12) at pH 9.0. 
(d) Single-substrate kinetic analysis with variable 2′-deoxyuridine (11) at pH 9.0. A260, 
absorbance at 260 nm. 
 

 
Figure 2.24. Characterization of LipM with substrate 5′-amino-2′,5′-dideoxyuridine(7). 
(a) Enzymatic preparation of the substrate using LipP and the dideoxyuridine 
analogue 5′-amino-2′,5′-dideoxyuridine(7) and the reaction catalyzed by LipM to 
generate UDP-5″-amino-2″,5″-dideoxyribose (8). (b) HPLC analysis of the reaction 
starting with 5′-amino-2′,5′-dideoxyuridine(7) after (I) 3 hr without UTP and LipP, (II) 3 
hr without LipM, (III) 1 hr reaction, (IV) 3 hr reaction, and (V) authentic UDP. A260, 
absorbance at 260 nm. 
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Figure 2.25. LC-MS of the LipM product UDP-5″-amino-2″,5″-dideoxyribose (8) 
generated from surrogate substrate 5′-amino-2′,5′-dideoxyuridine(7). (a) LC analysis 
of UDP-5″-amino-2″,5″-dideoxyribose (8) following purification. (b) Negative ion 
mass spectrum for the peak at elution time t = 3.3 min. (c) Positive ion mass 
spectrum for the peak at elution time t = 3.3 min. A260, absorbance at 260 nm. 
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Figure 2.26. Characterization of UDP-5″-amino-2″,5″-dideoxyribose (8)by 1D NMR.  
(a) 1H-NMR spectrum. (b) 13C-NMR spectrum. (c) 31P-NMR spectrum.  *Et3N 
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Figure 2.27. gCOSY NMR spectrum of UDP-5″-amino-2″,5″-dideoxyribose (8). 
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Figure 2.28. gHSQC NMR spectrum of UDP-5″-amino-2″,5″-dideoxyribose (8). 
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2.5. Results: LipO Characterization 

 

2.5.1. In vitro characterization of LipO wild-type and mutant protein 

 

 
 
Figure 2.29. Proposed biosynthetic pathway for the incorporation of the 
aminoribosyl moiety of A-90289. 

 

After confirming that LipM only utilized the amine-containing ribose-1-phosphate to 

produce the activated UDP sugar, a second hypothetical pathway was eliminated 

(Fig 2.29). Thus, there were only two pathways left. To differentiate between thses 

two, we next turned our attention to the remaining enzyme, LipO. LipO has modest 

sequence similarity to several proteins predicted to belong to the 

pyridoxal-phosphate (PLP)-dependent aspartate aminotransferase (Type I) 

superfamily [101][102]. Of note is the sequence similarity of LipO to PacE (37 % 

identity / 51 % similarity) involved in the biosynthesis of the pacidamycin family of 

antibiotics. The pacidamycins consist of an enamide-containing nucleoside with a 

5′-amine functionality as the sole ribose-derived unit, which we and others have 

previously speculated proceeds through uridine-5′-aldehyde (1) as an intermediate 
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[88,103,104,105] (Fig2.30), which would necessitate transamination at the 

nucleoside level to yield the nucleoside building block. Thus, we envisioned an 

analogous biosynthetic pathway such that LipO catalyzes aminotransfer utilizing the 

corresponding nucleoside uridine-5′-aldehyde (1). 

 

 

 

 

 

 

 

 

 

 

 
 
 
Figure 2.30. Putative biosynthesis of enamide-containing nucleoside antibiotics. 
Putative pathway and intermediates leading to the enamide-containing nucleoside 
moiety found in pacidamycins. 

 

Similarly to LipM, the gene product of lipO was only soluble when expressed in S. 

lividans TK64 (Fig 2.31 a) and was shown by UV/Vis spectroscopy to co-purify with 

the cofactor PLP (Fig 2.31 b). The mutant LipO(K282A), expected to be unable to 

form an internal aldimine with Lys and hence be inactive, was also produced in S. 

lividans TK64 to yield a purified protein devoid of bound PLP (Fig 2.31 a,b). 
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Figure 2.31LipO wild-type and mutant protein expression and UV/Vis spectrum 
analysis. (a) SDS-PAGE analysis of purified His6-LipO (lane 1) and His6-LipO 
(K282A) (lane 2, expected MW of 50.7 kD). Several attempts to purify the wild-type 
enzyme yielded the same contaminating protein band, which is currently under 
investigation to resolve this issue. (b) UV/Vis spectrum of LipO (wild-type) and 
LipO(K282A) (mutant). 
 

2.5.2. LipO activity analyzed by HPLC and conversion efficiency with different 
amino donors 

 

The activity of LipO was next monitored by HPLC using diode array for detection, 

and to simplify the analysis, the putative product 5′-amino-5′-deoxyuridine (2) was 

synthesized and used as a standard. When LipO was incubated with 

uridine-5′-aldehyde (1) and L-glutamate or L-aspartate, two common amine donors 

for the Type 1 aminotransferase superfamily, a small peak representing < 1 % 

conversion appeared in both cases, which was confirmed as 

5′-amino-5′-deoxyuridine (2) by LC-MS and co-injections with authentic 

5′-amino-5′-deoxyuridine (2) (Fig 2.32 a); in contrast, no new peak was observed 

with LipO (K282A) (Fig 2.32 b). Further analysis revealed several potential amine 

donors were substrates—findings similar to many other characterized 

aminotransferases [102], however, the highest specific activity was obtained with 

L-methionine followed by N-acetylcysteine, L-arginine, and S-adenosyl-L-methionine 

(Table 4). Finally, the reverse reaction of LipO using 5′-amino-5′-deoxyuridine (2) 

and 4-methylthio-2-oxobutanoate or other amine acceptors as substrates was not 

observed, suggesting that the equilibrium of aminotransfer favors formation of 

(b) (a) 
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5′-amino-5′-deoxyuridine (2). The results are consistent with the functional 

assignment of LipO as a methionine: uridine-5′-aldehyde (1) aminotransferase and, 

importantly, that 5′-amino-5′-deoxyuridine (2) is the likely intermediate in the 

biosynthesis of the aminoribosyl moiety of A-90289. 

 

 
 
Figure 2.32. HPLC characterization of LipO. (a) HPLC analysis starting with 
uridine-5′-aldehyde (1) after (I) 4 hr without LipO, (II) 4 hr reaction with glutamate as 
an amine donor, (III) 4 hr reaction with L-methionine as an amine donor, (IV) 4 hr 
reaction with L-methionine as an amine donor spiked with authentic 
5′-amino-5′-deoxyuridine (2), and (V) authentic 5′-amino-5′-deoxyuridine (2). (b) 
HPLC analysis of 4 hr reaction with (I) wild-type LipO and (II) LipO(K282A). A260, 
absorbance at 260 nm. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) (b) 
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Table 4. Amino donor substrates for LipO. 
 

Amino Donor 

Relative 
Specific 
Activitya 

L-methionine 100 
N-acetyl- L-cysteine 58 
L -arginine 58 
S-adenosyl- L-methionine 55 
L-ornithine  50 
L-isoleucine methylester 47 
L-histidine  47 
O-phospho- L-serine 47 
L-glutamine 44 
L-proline 44 
L-asparagine 21 
L-phenylalanine 19 
L-lysine 16 
L-histidine 13 
DL-alanine 13 
L-cysteine 11 
S-adenosyl- L-homocysteine 9.4 
glycine 7.1 
L-tyrosine 7.1 
L-isoleucine 5.0 
L-serine 5.0 
L-threonine 3.8 
L-valine 3.5 
L-serine 2.9 
L-glutamate 2.3 
DL-isoleucine 1.8 
L-tryptophan 1.5 
β-alanine 1.5 
D-cysteine 1.2 
D-alanine 0.9 
NH4OH 0.9 
L-aspartate 0.6 

 
aThe specific activity of LipP with L-methionine is 0.12 μmol min-1 mg-1 at 30 °C and 
pH = 7.5, which is comparable to the specific activity of methionine-glyoxylate 
transaminase from Brassica sp [106]. 
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2.6. Results: LipN Characterization 

 

2.6.1.In vitro characterization of LipN activity 

 

 
 
Figure 2.33. Proposed biosynthetic pathway for the incorporation of the 
aminoribosyl moiety of A-90289. 

 

After the activity of LipO was confirmed, the biosynthetic pathway for the 

aminoribose was revealed to start with UMP with sequential catalysis by LipL, LipO, 

LipP and LipM. We finally turned our attention to LipN, which has low sequence 

identity to a small number of proteins annotated as putative glycosyltransferases. 

We hypothesized that LipN utilized UDP-5″-amino-2″,5″-dideoxyribose (8) as a sugar 

donor. Once again, soluble protein was only obtained upon heterologous expression 

in S. lividans TK64 (Fig 2.34 a). Unfortunately UDP-5″-amino-2″,5″-dideoxyribose (8) 

was not stable upon storage, in this case degrading to UDP and an undetermined 

product likely by hydrolysis of the anomeric bond (Fig 2.34 b). Thus we again relied 
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on the in situ generation of substrate beginning with 5′-amino-5′-deoxyuridine (2) or 

5′-amino-2′,5′-dideoxyuridine(7). While no glycosyltransferase activity was observed 

with PRPP or ribose-1-phosphates generated with LipP, HPLC analysis of LipN 

reactions using surrogate acceptor uridine (3) revealed a new, small peak starting 

from either 5′-amino-5′-deoxyuridine (2)(Fig 2.35) or 5′-amino-2′,5′-dideoxyuridine(7) 

(Fig 2.36) as the ultimate sugar donor generated from LipP and LipM. Our pilot 

experiments suggested higher yields were obtained with the genuine sugar donor 

UDP-5-amino-5-deoxy-α-D-ribose, and thus no further experiments were undertaken 

with UDP-5″-amino-2″,5″-dideoxyribose (8). Following large-scale purification of the 

LipN - product generated from 5′-amino-5′-deoxyuridine (2) and uridine (3), mass 

and complete NMR spectroscopic analysis (Fig 2.37-40)—notably the 1H-13C HMBC 

demonstrating the H-1′′and C-5′ correlation (Fig 2.41)—revealed the identity of the 

new product as 5′-O-(5′′-amino-5′′-deoxy-α-D-ribose)-uridine (9) (Fig 2.35). Thus, the 

function of LipN is assigned as a 5-amino-5-deoxy-α-D-ribosyltransferase that 

catalyzes the terminal step in the biosynthesis of the aminoribosyl moiety.   

 
Figure 2.34. LipN protein gel and HPLC analysis the degradation of 
UDP-5″-amino-2″,5″-dideoxyribose (8).(a) SDS-PAGE of partially purified His6-LipN 
(expected MW of 42.3 kD). (b) HPLC analysis using ion-pairing chromatography 
revealing the degradation of UDP-5″-amino-2″, 5″-dideoxyribose (8) to UDP following 
storage at -20 °C for one week. 

(a) 
(b) 
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Figure 2.35. In vitro characterization of LipN with substrate 5′-amino-5′-deoxyuridine 
(2). (a) Enzymatic preparation of the sugar donor substrate using LipP and LipM, and 
the reaction catalyzed by LipN using the surrogate acceptor substrate 3 to generate 
5′-O-(5′′-amino-5′′-deoxy-β-D-ribose)-uridine (9). (b) HPLC analysis of the reaction 
starting with 5′-amino-5′-deoxyuridine (2) after (I) 3 hr without LipN and (II) 3 hr 
reaction. *indicates expected retention time for residual UTP and co-product UDP. 
A260, absorbance at 260 nm. 
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Figure 2.36. In vitro characterization of LipN with substrate 
5′-amino-2′,5′-dideoxyuridine (7). (a) Enzymatic preparation of the sugar donor 
substrate using LipP and LipM, and the reaction catalyzed by LipN using the 
surrogate acceptor substrate uridine (3) to generate the putative product shown. (b) 
HPLC analysis using uridine (3) as the acceptor substrate and UDP-5″-amino-2″, 
5″-dideoxyribose (8) as the donor substrate (generated in situ starting from 
5′-amino-2′,5′-dideoxyuridine (7) after (I) 3 hr without LipN and (II) 3 hr reaction. 
*indicates expected retention time for residual substrate UTP and product UDP. A260, 
absorbance at 260 nm. 
 
 
 
 

(b) 

(a) 
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Figure 2.37. LC-MS of the LipN product 5′-O-(5′′-amino-5′′-deoxy-β-D-ribose)-uridine 
(9) starting form 5′-amino-5′-deoxyuridine (2) as the ultimate sugar donor and uridine 
(3) as a surrogate acceptor. (a) LC analysis of 
5′-O-(5′′-amino-5′′-deoxy-β-D-ribose)-uridine (9) following purification. (b) Positive ion 
mass spectrum for the peak at elution time t = 3.2 min. A260, absorbance at 260 nm. 
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Figure 2.38. Characterization of 5′-O-(5′′-amino-5′′-deoxy-β-D-ribose)-uridine (9) by 
1D NMR.  (a) 1H-NMR spectrum. (b) 13C-NMR spectrum. *unidentified impurity 
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Figure 2.39. gCOSY NMR spectrum of 5′-O-(5′′-amino-5′′-deoxy-β-D-ribose)-uridine 
(9). 
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Figure 2.40. gHSQC NMR spectrum of 5′-O-(5′′-amino-5′′-deoxy-β-D-ribose)-uridine 
(9). 
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Figure 2.41.1H-13C gHMBC NMR spectrum of 5′-O-(5′′-amino-5′′-deoxy-β-D-ribose)- 
uridine (9). 
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2.7. Conclusion 

 

In summary, we have completed the functional assignment of five enzymes involved 

in the modification and incorporation of the aminoribosyl moiety of A-90289 

antibiotics. The pathway is initiated by the LipL-catalyzed conversion of a novel 

ribosyl donor UMP to form the aldehyde uridine-5′-aldehyde (1) [88]. Following 

introduction of the amine by LipO, LipP catalyzes phosphorolysis to initiate “salvage” 

of the modified sugar and LipM subsequently catalyzes the formation of an activated 

pentofuranose that serves as the final sugar donor. Finally, the ribosyltransferase 

LipN completes the pathway by incorporation of the aminoribosyl moiety, the identity 

of which is apparently dictated by the specificity of the pathway-initiating enzyme 

LipL and the penultimate enzyme LipM. The end result is a sugar biosynthetic 

pathway highlighted in Fig 2.42 that not only establishes an alternative mechanism 

for ribosylation but also features intriguing variations of the established paradigm for 

glycosylation. 

 

 

Figure 2.42. Finalized biosynthetic pathway for the incorporation of the aminoribosyl 
moiety of A-90289. 

 

2.8. Discussion 

 

Bacterial natural products are notorious for their diverse array of sugar modifications 

that are typically critical for their biological activity. As a result there has been a 

significant effort toward understanding the molecular details behind incorporation of 

 Threonine 
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these sugars, in part with the expectation that the results will ultimately enable 

rationale manipulation of sugar biosynthetic pathways as a strategy to produce novel 

glycosylated compounds [63,64]. Undoubtedly, the identification and 

characterization of new pathways will afford more tools for applying such a structural 

diversification approach, and thus we initiated studies toward delineating the 

biosynthetic mechanism of a unique pentofuranose—an aminoribosyl moiety found 

in several lipopeptidyl nucleosides of potential therapeutic significance as antibiotics. 

Our strategy to unravel the pathway was to reconstitute the enzyme activities in vitro, 

which ultimately required the use of the heterologous host S. lividans TK64 to obtain 

three of the four enzymes in soluble form. Our prior results with LipL demonstrated 

this enzyme had strict specificity for the substrate UMP to initiate the pathway [88], 

an attribute that was not reciprocated by the four enzymes assigned in this study. 

LipO utilized a variety of amine donors with L-methionine as the slightly preferred 

amine source, the biological relevance of which is currently under investigation. 

Likewise, the phosphorylase LipP was equally efficient with hypothetical pathway 

intermediates 5′-amino-5′-deoxyuridine (2) and uridine (3). Sequence analysis of the 

whole genomes of the Actinomycetales has revealed minimally one 5′-nucleosidase 

is encoded within the chromosomal DNA suggesting these organisms have the 

capability to convert the nucleic acid building block UMP to uridine (3). Thus, based 

solely on the results with LipP, the identity of the in vivo substrate could not be 

established. However, the realization that the amine needs to be incorporated prior 

to formation of activated sugar would necessitate an additional, unidentified enzyme 

to oxidize α-D-ribose-1-phosphate prior to LipO catalysis if uridine (3) was indeed the 

pathway precursor. Thus, we currently prefer a pathway originating from UMP 

without the involvement of uridine (3) as shown in Figure 2.42. 

 

While we were initially disheartened by the lack of substrate specificity of LipP, this 

low specificity turned out to be critical for discovering the function of LipM by 

enabling the preparation of a surrogate substrate that was converted to a less 

unstable product for structural elucidation. Similarly, we took advantage of the 
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promiscuity of LipN with respect to the sugar acceptor to define its function as a 

ribosyltransferase. Interestingly, although the genuine sugar donor 

UDP-5-amino-5-deoxy-α-D-ribosewas initially only indirectly identified as the LipM 

-product based on the identification of UMP and OPA modified 

5-amino-5-deoxy-α-D-ribose-1,2-cyclicphosphate (OPA-6) and—despite exhaustive 

attempts—could not be directly observed by MS, our successful analysis of LipN 

with in situ generated UDP-5-amino-5-deoxy-α-D-ribose suggests that this activated 

sugar is formed yet is refractive to direct characterization using the conditions 

employed here. Although it remains a possibility that 

5-amino-5-deoxy-α-D-ribose-1,2-cyclicphosphate (6) is generated enzymatically by a 

contaminating protein, several activated sugars are known to be unstable; for 

instance, it has recently been reported that the expected product of 

UDP-apiose/UDP-xylose synthase can be transiently detected by high-field NMR 

prior to degrading to the isolable apiofuranosyl-1,2-cyclic phosphate [97] and the 

activated carbocycle NDP-valienol can only be detected by MS within the crude 

reaction mixture [107]. 

 

Although the glycosylation process predominantly involves the incorporation of 

hexoses, it is not limited to these sugars: several pentose units, for example, are 

derived from this glycosylation mechanism that typically proceeds with 

decarboxylation of an NDP-glucuronic acid (Fig 2.43) [97,108,109,110,111,112]. 

Alternatively, sugar salvage pathways from plants [113,114][115], and the 

thermophilic bacterium Thermus caldophilus GK24 [116] have been characterized 

that utilize broad-specificity nucleotidylyltransferases capable of activating the 

pentopyranosyl phosphates of D-xylose and L-arabinose albeit with lower efficiencies 

than the α-D-hexopyranosyl phosphates of glucose and galactose. Furthermore, a 

nucleotidylyltransferase from Salmonella enterica typhimurium LT2 (Ep) has been 

extensively studied and shown to utilizeα-D-xylose-1-phosphate along with dozens of 

α-D-hexopyranosyl phosphates [117,118,119]. Although a more in depth investigation 

is underway, our results identified LipM as an unusual 
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α-D-pentofuranosyl-1-phosphate-activating enzyme with an apparently more refined 

specificity and hence well-defined role in A-90289 biosynthesis. Furthermore, LipM 

was shown to have an absolute requirement for the primary amine functionality, 

which is likewise unusual relative to other bacterial nucleotidylyltransferases that 

have been demonstrated to activate unnatural aminohexoses although with equal or 

less efficiency relative to the hydroxylated counterpart [118,119,120,121,122]. 

 

 
 

Figure 2.43. The conventional glycosylation mechanism with an NDP-sugar as the 
sugar donor. 
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Chapter three: Biosynthetic pathway of 2′-deoxyaminoribosyl moiety of 
muraminomicin 

 

3.1. Background 
 

Muraminomicin, which is isolated from Streptosporangium amethystogenes SANK 

60709, was discovered based on its potent inhibitory activity on bacterial translocase I 

(IC50=12.8 ng/ml)[84]. Subsequently, muraminomicin was shown to have excellent anti 

Gram-positive bacteria activity against strains like S. aureus & B. subtilis 

[123].Structural determination revealed muraminomicin belonged to the peptidyl 

nucleoside antibiotics family (Fig 3.1). However, unlike A-90289 and caprazamycins, 

a few unique structural features were uncovered. These included a deoxyheptose in 

place of the permethylated rhamnose, an appended succinyl moiety, and the 

incorporation of 2-deoxyribosyl. The structure-activity relationship of muraminomicin 

is still not defined, and nothing is known about how this molecule is assembled. In 

order to pinpoint the factors controlling the incorporation of these and other structural 

variations observed in muraminomicin, the biosynthetic gene cluster of 

muraminomicin has been identified and five 2-deoxyfuranoses biosynthetic related 

enzymes (Mra20-Mra24) were uncovered, all with sequence similarity to those 

identified within the A-90289 gene cluster. Thus, it appeared that the 2-deoxyribose 

followed the unusual paradigm revealed from analysis of the A-90289 biosynthetic 

pathway. 
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Figure 3.1. Structures of representative lipopeptidyl nucleoside antibiotics containing 
an aminoribofuranoside appendage (blue). 

 

Significantly natural product with a similar 2-deoxyfuranose structure are rare, and 

thus by unraveling the biochemical events in muraminomicin biosynthesis is expected 

to provide us novel and valuable information that can be used to prepare new 

compounds. We have now successfully defined the function of the two of the enzymes 

to provide insight into how this deoxy furanose is assembled de novo. 
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3.2. Materials and methods 

 

3.2.1. Chemicals and instrumentation 

 

Nucleoside bases, nucleosides, and nucleotides were purchased from Sigma or 

Promega. Buffers, salts, and media components were purchased from Fisher 

Scientific. UV/Vis spectroscopy was performed with a Bio-Tek µQuant microplate 

reader using Microtest™ 96-well plates or a Shimadzu UV/Vis-1800 

Spectrophotometer. Synthetic oligonucleotides were purchased from Integrated DNA 

Technologies. DNA sequencing was performed using the BigDye™Terminator 

version 3.1 Cycle Sequencing kit from Applied Biosystems, Inc. and analyzed at the 

University of Kentucky Advanced Genetic Technologies Center. HPLC was 

performed with a Waters Alliance 2695 separation module (Milford, MA) equipped 

with a Waters 2998 diode array detector and an analytical Apollo C-18 column (250 

mm x 4.6 mm, 5 μm) or a semi-preparative Apollo C-18 column (250 mm x 10 mm, 5 

μm)  purchased from Grace. Electrospray ionization-MS was performed using an 

Agilent 6120 Quadrupole MSD mass spectrometer equipped with an Agilent 1200 

Series Quaternary LC system and an Eclipse XDB-C18 column (150mm x 4.6 mm, 5 

μm, 80Å). NMR data were collected using a Varian Unity Inova 300, 400 or 500 MHz 

Spectrometer. 

 

3.2.2. Synthesis of substrates 

 

The synthesis of 5′-amino-5′-deoxyuridine (2) and 5′-amino-2′,5′-dideoxyuridine (7) 

was described in section 2.2.5 and 2.2.6 [124]. The identical two-step procedure for 

the latter was used to synthesize 5′-amino-5′-deoxythymidine (10) (see below). 

Step 1: 5′-Azido-5′-deoxythymidine.1H-NMR (500MHz, D2O): δ 7.55 (s, 1H), 6.27 (t, 

1H, J = 7 Hz), 4.51-4.45 (m, 1H), 4.08-4.04 (m, 1H), 3.72-3.51 (m, 2H), 2.50-2.31 (m, 

2H), 1.89-1.82 (s, 3H); 13C-NMR (100MHz, D2O): δ 166.2 (C), 151.4 (C), 136.97 

(CH), 111.2 (CH), 84.8 (CH), 84.1 (CH), 70.5 (CH), 51.2 (CH2), 37.4 (CH2), 11.2 
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(CH3).

 

 

 
Step 2: 5′-Amino-5′-deoxythymidine, 2.1H-NMR (500 MHz, D2O): δ 7.36 (s, 1H), 6.07 

(t, 1H, J = 7 Hz), 4.38-4.30 (m, 1H), 4.08-3.95 (m, 1H), 3.35-3.08 (m, 2H), 2.45-2.22 

(m, 2H), 1.78-1.70 (s, 3H); 13C-NMR (125 MHz, D2O): δ 166.1 (C), 151.3 (C), 138.3 

(CH), 111.2 (CH), 86.5 (CH), 81.6 (CH), 71.2 (CH), 41.0 (CH2), 37.3 (CH2), 11.3 

(CH3). (×: acetate)  
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3.2.3. Cloning of the muraminomicin gene cluster 

 

Streptosporangium amethystogenes sp. SANK 60709genomic DNA was partially 

digested with Sau3AI to give ~40-kb DNA fragments that were dephosphorylated with 

bacterial alkaline phosphatase (BAP) and ligated into BamHI-digested cosmid vector 

SuperCos1-P that contains the loxP site in SuperCos1 and was dephosphorylated by 

BAP after XbaI digestion. The ligation products were packaged with Gigapack III Gold 

packaging extract as described by the manufacturer, and the resulting recombinant 

phage was used to transfect E. coli XL-1 Blue MR. Approximately 10,000 colonies 

from the obtained genomic library were screened by colony hybridization using 

digoxigenin (DIG)-labeled DNA obtained by PCR using degenerate primers as 

previously described[125]. Hybridization was carried out using DIG easy hyb at 42 °C 
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and the resulting filter was washed under high stringency conditions (0.1 X SSC 

including 0.1 % SDS, 68 °C). Detection was performed using CDP-Star according to 

the manufacturer′s procedures. 

 

Based on restriction digest analysis, four positive cosmids, pMra01-04, were isolated 

and sequenced using a Roche GS FLX system. Potential open reading frames were 

defined using Frameplot 4.0, and database comparison for sequence homology was 

performed with BLAST search tools using the National Center for Biotechnology 

Information. The sequence has been deposited at GenBank under accession no. 

AB746937. 

 

3.2.4. Construction of genomic cosmid libraries 

 

Genomic DNA of muraminomicin was isolated following a standard instruction [126]. 

Then the genomic DNA was packaged using BigEasy® v2.0 Linear Cloning Kits [127]. 

Firstly, the genomic DNA was partially digested with NotI to generate restriction 

fragments. Then the produced fragments were ligated to the pJAZZ® vector and 

transformed into BigEasy TSATM electrocompetent cells. More than 5000 colonies 

were obtained as positive clones. Degenerate primers (mra24_probe_for and 

mra24_probe_rev) (Table 5) were designed to amplify the internal nucleotide 

sequences of dioxygenase from the genomic DNA of Streptosporangium 

amethystogenes sp. The amplified fragments were labeled with DIG and preceded 

with hybridization and finally used for screening. The colony hybridization and 

southern blot analyses revealed four different cosmid clones.  

 

3.2.5. Inactivation of mra20 gene by PCR targeting 
 

The double crossover inactivation experiment was carried out using a modified 

PCR-targeting REDIRECT protocol [128]. Briefly, a chloramphenicol resistance gene 

with engineered flanking flippase recognition target (FRT) was used as a template to 
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amplify disruption cassette using the primer pair (mra20_inact_for, mra20_inact_rev) 

(Table 5). E. coli BW25141/pKD78 (ampr) cell was transferred with pMra02 cosmid. 

The resulting chloramphenicol inactivation cassettes were then introduced into E. coli 

BW25141/pKD78 (ampr) by electroporation. The incubation temperature was 

increased from 30°C to 37°C to eliminate the temperature sensitive cosmid, and the 

resulting amp and apr resistant colonies were harvested for further use. A control 

primer pair (mra20_con_for + mra20_con_rev) was created from nearly upstream of 

mra20 and was used to confirm the replacement of the targeted gene with the 

chloramphenicol cassette (Table 5). The final mutated cosmid (pMra02-mra20-) was 

transformed into E. coli ET12567/pUZ8002 and conjugated into muraminomicin 

producing strain following the standard protocol procedure. 

 

3.2.6. Cloning of genes for heterologous expression 

 

Genes were amplified by PCR using Expand Long Template PCR System from 

Roche with supplied Buffer 2, 200 μM dNTPs, 5% DMSO, 10 ng DNA pMra02, 5 U 

DNA polymerase, and 200 nM each of the following primer pairs (Table 5). The PCR 

program included an initial hold at 94 °C for 2 min, followed by 30 cycles of 94 °C for 

10 s, 56 °C for 15 s, and 68 °C for 60 s. The gel-purified PCR product was inserted 

into pET-30 Xa/LIC using ligation-independent cloning as described in the provided 

protocol to yield pET30-mra20 to pET30-mra24 (Table 6). The genes were 

sequenced to confirm PCR fidelity. 
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Table 5. List of primers used in muraminomicin. 

 

Primers Oligonucleotide sequence 
mra20_for 5′- GGTATTGAGGGTCGCATGAACGAGAT -3′ 
mra20_rev 5′- AGAGGAGAGTTAGAGCCTCACCCGG -3′ 
mra23_for 5′- GGTATTGAGGGTCGCATGTCGGTCG -3′ 
mra23_rev 5′- AGAGGAGAGTTAGAG CCTCAGCCGA -3′ 
mra21_for 5′- GGTATTGAGGGTCGCATGAGCGGGA-3′ 
mra21_rev 5′- AGAGGAGAGTTAGAGCCTCATCCGAC-3′ 
mra22_for 5′- GGTATTGAGGGTCGCATGGCACCCG -3′ 
mra22_rev 5′- AGAGGAGAGTTAGAGCCTCACTCTGA-3′ 
mra24_for 5′- GGTATTGAGGGTCGCATGAGCCAATT -3′ 
mra24_rev 5′- AGAGGAGAGTTAGAGCCTCAAGCGG-3′ 
mra20_inact_for 5′-CCTGGACGCGCTCGATACGGCGGGAAGGCACGTCGGA

TGATTCCGGGGATCCGT CGACC-3′ 
mra20_inact_rev 5′-CTCTGTTACCGGCGGGAAGACGCCGCCAACGGGTGTTC

A TGTAGGCTGGAGCTGCTTC-3′ 
mra20_con_for 5′-GCCGGCGTCGCCGACGT-3′ 
mra20_con_rev 5′-TTCACGCGCGGATTACG-3′ 
mra24_probe_for 5′-GAACGGCACACAGACCGAAC-3′ 
mra24_probe_rev 5′-ATCTTGTCGCAGACGCCGAG-3′ 

 

 

Plasmids were introduced into E. coli BL 21(DE3) cells, and the transformed strains 

were grown in LB supplemented with 50 μg/mL kanamycin. Following inoculation of 

500 mL of LB with 50 μg/mL kanamycin, the cultures were grown at 18°C until the 

cell density reached an OD600 ~ 0.5 when expression was induced with 0.1 mM IPTG. 

Cells were harvested after an overnight incubation at 18 °C and lysed using a French 

Press with one pass at 15000 psi. Following centrifugation the protein was purified 

using affinity chromatography with Ni-NTA agarose from Qiagen, and the 

recombinant proteins were desalted into 50 mM Tris-HCl (pH 8), 100 mM NaCl, and 

5 % glycerol using a PD-10 desalting column. The purified protein was concentrated 

using an Amicon Ultra 10000 MWCO centrifugal filter and stored as glycerol stocks 

(40%) at -20 °C. Protein purity was assessed as by 12% acrylamide SDS-PAGE; 

His6-tagged proteins were utilized without further modifications. 
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Table 6. List of plasmids constructed/used in muraminomicin. 

 

Strain/Plasmid Characteristics and Relevance References 
E.coli Nova-Blue Host for routine cloning works  Novagen 
E.coli BL21 (DE3) Host for protein expression Novagen 
pET30 Expression vector Novagen 
pET30- mra20 mra20 gene cloned to pET30 This study 
pET30- mra23 mra23 gene cloned to pET30 This study 
pET30- mra21 mra21gene cloned to pET30 This study 
pET30- mra22 mra22 gene cloned to pET30 This study 
pET30- mra24 mra24 gene cloned to pET30 This study 
pUWL201pw Expression vector This study 
pUWL201pw- mra21 mra21 gene cloned to pUWL201pw This study 
pUWL201pw- mra22 mra22 gene cloned to pUWL201pw This study 
pUWL201pw-mra24 mra24 gene cloned to pUWL201pw This study 

 

3.2.7. In vitro characterization of Mra20 

 

Reactions consisted of 25 mM potassium phosphate pH 7.5, 2 mM 

5′-amino-5′-deoxyuridine (2) or analogue, and 100 nM Mra20 at 30 °C, and 

terminated by the addition of cold TCA to 5% (w/v) or by ultrafiltration using a 

Microcon YM-3. Following centrifugation to remove protein, the reaction components 

were analyzed by HPLC using a C-18 reverse-phase column. A series of linear 

gradients was developed from 40 mM phosphoric acid-triethylamine pH 6.5 (A) to 20% 

methanol (B) in the following manner (beginning time and ending time with linear 

increase to % B): 0-8 min, 0% B; 8-18 min, 60% B; 18-25 min, 95% B; 25-32 min, 95% 

B; and 32-35 min, 0% B. The flow rate was kept constant at 1.0 mL/min, and elution 

was monitored at 260 nm.  

 

To determine the kinetic constants with respect to the co-substrate nucleoside, 

reactions were carried out in 50 mM Tris-HCl pH 9.0 consisting of saturating 

phosphate (1.5 mM) and variable nucleoside (25 – 5,000 μM), and 100 nM Mra20 at 

30 °C under initial velocity conditions. The reactions were terminated with 0.1 M 
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sodium hydroxide, and nucleobase formation was determined by UV/Vis 

spectroscopy with ∆ε300 nm = 3, 700 M-1 at pH 13 for thymine (13) and ∆ε290 nm = 5, 700 

M-1 at pH 13 for uracil (4). 

 

3.2.8. In vitro characterization of Mra23 
 

Reactions consisted of 50 mM potassium phosphate pH 7.5, 5 mM MgCl2, 2 mM 

thymidine (12) or analogue, 5 mM UTP, 5 μM Mra20, and 1 μM Mra23 at 30 °C, and 

the reaction terminated by the addition of cold TCA to 5% (w/v) or by ultrafiltration 

using a Microcon YM-3. The activity of Mra23 was tested with sugar-1-phosphates 

generated in situ from synthetic 5′-amino-2′,5′-dideoxyuridine(7), thymidine (12), 

5′-amino-5′-deoxythymidine (10)or 2′-deoxyuridine (11) with co-substrate UTP. 

Following centrifugation to remove protein, the reaction components were analyzed 

by HPLC using a phosphoric acid-triethylamine mobile phase as described above. 

LC-MS was performed using a linear gradient from 0.1% formic acid in water to 0.1% 

formic acid in acetonitrile over 20 min. The flow rate was kept constant at 0.4 mL/min, 

and elution was monitored at 254 nm. 

 

3.2.9. Subcloning and expression in S. lividans TK-64 

 

Plasmids pET30-mra21, pET30-mra22 and pET30-mura24 were digested with 

NdeI-HindIII and the DNA fragment of the expected size was purified and ligated to 

the identical sites of pUWL201pw to yield pUWL201pw-mra21, pUWL201pw-mra22 

and pUWL201pw-mra24, respectively (Table 6). The detailed procedures were 

described insection 2.2.8.  

 

3.2.10. In vitro characterization of Mra21 

 

Reactions consisted of 50 mM potassium phosphate pH 7.5, 2 mM 
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uridine-5′-aldehyde (1), 2 mM amine donor, 200 μM PLP, and 1 μM Mra21 at 30 °C, 

and the reaction terminated by the addition of cold TCA to 5% (w/v) or by 

ultrafiltration using a Microcon YM-3. Different amino acids were used as amine 

donors to test Mra21 activity. HPLC analysis of the reaction was similar to that 

described for LipM. 

 

3.2.11. In vitro characterization of Mra22 

 

Reactions consisted of 50 mM potassium phosphate pH 7.5, 2 mM 

5′-amino-2′,5′-dideoxyuridine(7) or 5′-amino-5′-deoxythymidine (10), 2.8 μM Mra20 at 

30 °C for 2 hours. Mra20 was removed by ultrafiltration, and 86 μL of the filtrate was 

added to a solution of 5 mM MgCl2, 2 mM UTP, 1 mM 2′-deoxyuridine (11), 12 μM 

Mra23, and 7 μM Mra22 (final volume of 100 mL) and incubated at 30 °C for the 

indicated time points. HPLC analysis was performed using a TFA mobile phase as 

described above. 

 

3.2.12. In vitrocharacterization of Mra24 

 

Reactions consisted of 50 mM Tris-HCl (pH 7.5), 0.5 mM UMP or 2′-deoxy UMP, 1 

mM α-KG, 0.2 mM ascorbate, 0.1 mM FeCl2, and 3 μM Mra24at 30 °C. Control 

reactions were performed with or without the addition of corresponding components 

or enzyme. The reaction terminated by the addition of cold TCA to 5% (w/v) or by 

ultrafiltration using a Microcon YM-3. HPLC analysis of the reaction was similar to 

that described for LipM. 

 

3.3. Results: Identification of muraminomicin gene cluster 

 

The structural similarity to liposidomycin, caprazamycin, and A-90289 suggested the 

muraminomicin gene cluster shares most of the biosynthetic genes. We recently 

91 



 

reported the utility of using degenerate primers for a gene annotated as aserine 

hydroxymethyltransferase (described in section 2.1) to specifically identify the genetic 

locus involved in the biosynthesis of these related nucleosides, and this strategy was 

employed here to amplify DNA fragments with the expected size from 

Streptosporangium amethystogenes sp. SANK 60709 genomic DNA. The amplified 

DNA was utilized as a probe to ultimately identify 4 cosmids (pMra01-04) that were 

sequenced and analyzed, yielding 53 complete orfs within 73.6 kb of contiguous DNA 

(Fig 3.2a and Table 7). Of these orfs, 22 were shared amongst all of the 

aforementioned clusters and a minimum of 2 orfs were unique to the muraminomicin 

gene cluster: mra3 encoding a hypothetical membrane protein and mra3 encoding a 

putative C-methyltransferase of the radical SAM superfamily and mra4 encoding a 

hypothetical membrane protein. These orfs are inserted within a subcluster of genes 

responsible for the biosynthesis of the permethylated rhamnose, and the gene 

encoding a 3′-O-methyltransferase involved in A-90289 and caprazamycin 

biosynthesis (Fig3.2b) is missing from the muraminomicin gene cluster. Thus, it is 

proposed that Mra3 catalyzes C-methylation at C-6 of rhamnose to generate the 

unusual heptose found in muraminomicin while Mra4 functions as a 

3-O-succinyltransferase (Fig3.1). 
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Figure 3.2. Genetic architecture of the muraminomicin gene cluster. (a) Organization 
of the ~74-kb of sequenced DNA. (b) Comparison of the subcluster of genes involved 
in the biosynthesis of the rhamnosyl moiety. (c) Comparison of the subcluster of 
genes involved in the biosynthesis of the aminoribosyl moiety. 
 
Table 7. Annotation of ORFs within the muraminomicin gene cluster. 

Protein
a 

Size
b 

Proposed function 
Sequence similarity (protein,  

accession no., origin) 

Identity / 

similarityc 

A-90289
d 

Identity % 

ORF-1

 

25

 

RNA polymerase,sigma 

  

  

SrosDRAFT_47470 

 

   

 

93/97 
  

ORF-1

 

12

 

anti-anti-sigma factor  SrosDRAFT_47460 

 

   

 

89/94 
  

ORF-1

 

35

 

hypothetical protein SghaA1_010100033943 

 

   

 

62/72 
  

ORF-1

 

23

 

response regulator SrosDRAFT_47450 

 

   

 

89/94 
  

ORF-1

 

56

 

PAS domain S-box protein  SrosDRAFT_47440 

 

   

 

89/95 
  

ORF-1

 

39

 

glycosyltransferase SrosDRAFT_47420 

 

   

 

83/92 
  

ORF-1

 

32

 

hypothetical protein  SrosDRAFT_47400 

 

   

 

74/82 
  

ORF-9 24

 

hypothetical protein  FRAAL6120 (YP_716259) 

   

49/65 
  

ORF-8 36

 

sugar diacid utilization 

  

SrosDRAFT_47390 

 

   

 

79/84 
  

ORF-7 30

 

L-proline dehydrogenase  SrosDRAFT_47380 

 

   

 

83/89 
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Table 7 (continued) 
ORF-6 56

 

delta-1-pyrroline-5-carbox

  

SrosDRAFT_47370 (ZP_04474156) 

   

 

92/95 
  

ORF-5 18

 

hypothetical protein  SrosDRAFT_40310 (ZP_04473452) 

   

 

84/90 
  

ORF-4 15

 

DNA-binding protein SrosDRAFT_40320 (ZP_04473453) 

   

 

70/79 
  

ORF-3 29

 

hypothetical protein SGR_1524 (YP_001823036) 

    

49/62 
  

ORF-2 30

 

NmrA family protein  Franean1_1468 (YP_001505814) 

   

65/76 
  

ORF-1 19

 

tetR-family transcriptional 

  

Franean1_1469 (YP_001505815) 

   

72/80 
  

Mra1 39

 

rhamnosyltransferase Cpz31 (ACQ63639) 

   

78/88 LipB1 74 

Mra2 39

 

sugar 

 

Cpz30 (ACQ63638) 

   

78/82 LipA1 74 

Mra3 52

 

radical SAM 

   

CalU22 (AAM94801) 

  

67/81 
  

Mra4 38

 

predicted membrane 

 

NdasDRAFT_4699 (ZP_04335569) 

     

 

55/67 
  

Mra5 26

 

sugar 

  

Cpz29 (ACQ63637) 

   

81/89 LipZ 83 

Mra6 21

 

TmrB-like protein  Cpz27 (ACQ63635) 

   

71/80 LipX 67 

Mra7 39

 

SAM-dependent 

 

Cpz26 (ACQ63634) 

   

74/84 LipW 72 

Mra8 32

 

alcohol dehydrogenase Cpz25 (ACQ63633) 

   

88/93 LipV 86 

Mra9 60

 

hypothetical protein Cpz24 (ACQ63632) 

   

69/78 LipU 68 

Mra10 34

 

lipase Cpz23 (ACQ63631) 

   

78/88 LipT 79 

Mra11 12

 

ABC multidrug resistance 

 

Cpz22 (ACQ63630) 

   

77/84 LipS 76 

Mra12 49

 

acyltransferase Cpz21 (ACQ63629) 

   

75/85 LipR 76 

Mra13 35

4 

acyl-CoA synthase Cpz20 (ACQ63628) 

 

87/90 LipQ 84 

Mra14 42

 

SHMT-like 

 

 

Cpz14 (ACQ63622) 

   

81/87 LipK 83 

Mra15 44

 

aminotransferase Cpz13 (ACQ63621) 

   

77/86 LipJ 76 

Mra16 18

 

TmrB-like protein Cpz12 (ACQ63620) 

   

72/81 LipI 71 

Mra17 21

 

SAM-dependent 

 

Cpz11 (ACQ63619) 

   

75/86 LipH 78 

Mra18 17

 

beta-hydroxylase Cpz10 (ACQ63618) 

   

84/91 LipG 80 

Mra19 32

 

AraC family transcriptional 

 

Cpz9 (ACQ63617) 

   

65/72 LipF 61 

Mra20 
45

5 

pyrimidine-nucleoside 

phosphorylase 

DealDRAFT_0710 (ZP_03728855) 

Dethiobacter alkaliphilus AHT 1 
46/63 LipP 42 

Mra21 43

 

aminotransferase CetH (ACH85568) 

    

52/64 LipO 41 

Mra22 36

 

glycosyltransferase Orf13 (BAI23321) 

  

39/57 LipN 36 

Mra23 23

 

nucleotidylyltransferase  Amir_3895 (YP_003101615) 

    

40/51 LipM 33 

Mra24 21

 

dioxygenase Orf7 (BAI23315) 

  

41/56 LipL 40 

ORF1 32

 

DNA polymerase beta 

    

Mpop_3269 (YP_001925955) 

   

29/43 
  

ORF2 61

 

glucose-methanol-choline 

  

SACE_4301 (YP_001106495) 

   

 

46/58 
  

ORF3 16

 

hypothetical protein  N9414_23023 (ZP_01630686) 

   

33/48 
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Table 7 (continued) 
ORF4 19

 

hypothetical protein  SrosDRAFT_27630 (ZP_04472191) 

   

 

74/83 
  

ORF5 50

 

hydrolase Svir_18520 (YP_003133702) 

   

 

62/72 
  

ORF6 18

 

NADPH-dependent FMN 

  

Pat9bDRAFT_2775 (ZP_05729459) 

   

43/65 
  

ORF7 33

 

amino acid adenylation 

   

Sare_4562 (YP_001539321) 

   

49/62 
  

ORF8 39

 

acyl-CoA dehydrogenase  TcurDRAFT_15750 (ZP_04030556) 

   

 

73/84 
  

ORF9 28

 

hypothetical protein  hyg24 (ABC42561) 

  

43/56 
  

ORF10 30

 

Short-chain 

  

Bxe_B2739 (YP_552606) 

   

57/71 
  

ORF11 38

 

hypothetical protein  Plav_2009 (YP_001413280) 

   

63/78 
  

ORF12 14

 

hypothetical protein  Veis_2934 (YP_997688) 

   

57/73 
  

ORF13 38

 

acyl-CoA dehydrogenase  TcurDRAFT_39460 (ZP_04032895) 

   

 

50/65 
  

 
aSequences are deposited at NCBI (accession no. AB746937).bNumbers are in 
amino acids.c% sequence identity and similarity for the entire length of the 
proteins.dSequences are deposited at NCBI (accession no. AB530986). 
 

In contrast to the obvious differences within the genetic architecture of the locus 

involved in the biosynthesis of the rhamnosyl moiety, the five gene subcluster 

required for aminoribose formation appeared essentially the same for theA-90289 and 

muraminomicin gene clusters (Fig3.2c). However, minimally two differences were 

uncovered upon closer bioinformatics analysis: (i) the sequence identity between 

LipP-L and Mra20-24 were considerably lower compared to the remaining shared 

ORFs and (ii) the LipL homologue, Mra24, is lacking ~60 amino acids at the 

C-terminus that contains a His residue that is part of the HX(D/E)XnH motif (X is any 

amino acid), which is essential for Fe(II) binding and hence activity. Therefore, it is 

highly likely that Mra24 does not encode a functional non-heme Fe(II), 

α-KG-dependent dioxygenase. 

 

To provide initial evidence that the correct genetic locus was identified prior to 

completion of the sequencing, we introduced cosmid pMra02 into the heterologous 

host Streptomyces lividans TK21 with the expectation that this cosmid contains a 

genetic element involved in muraminomicin resistance. In contrast to controls using 

the empty vector, S. lividans TK21/pMra02 was resistant to muraminomicin at 100 mg 
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mL-1 on solid media (Fig 3.3). Retrospective analysis of this cosmid sequence reveals 

two potential resistance candidates mra11 and mra16 that encode a putative 

ABC-transporter and a protein with similarity to tunicamycin-resistance protein TmrB, 

respectively [129]. Although muraminomicin was not produced by the recombinant 

strain, a red phenotype was observed upon introduction of pMra02 and 

muraminomicin selection, suggesting the cosmid and antibiotic likely up regulate 

additional host genes such as those potentially involved in actinorhodin biosynthesis. 

Encoded within pMra02 is a protein with similarity to AraC positive regulatory protein, 

which may be partially responsible for this phenotypic output. The identity of the 

individual genes involved in resistance and regulation is currently under investigation, 

nevertheless, the results are consistent with the role of the genetic locus in 

muraminomicin production. 

 

 

 

 

 

 

 

 
 
 
 
 
Figure 3.3. Resistance conferred by pMra02 upon heterologous expression in 
Streptomyces lividans TK21. 

 

 

 

 

 

S. lividans TK21/pSuperCos-P 

S. lividans TK21/pMra02 
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3.4. Results: Functional assignment of Mra20 as a low specificity pyrimidine 
nucleoside phosphorylase 

 

3.4.1 In vitro characterization of Mra20 activity 

 

Pyrimidine nucleoside phosphorylases catalyze the phosphorolysis of thymidine or 

uridine nucleosides to generate 2-deoxy-α-D-ribose-1-phosphate and thymine or 

α-D-ribose-1-phosphate and uracil as described for LipP, respectively [130,131]. 

Although thymidine phosphorylases from several organisms are highly specific for the 

2′-deoxyribosyl moiety, some are reported to have very little discrimination at this 

position. LipP was slightly specific for the hydroxylated ribose; additionally, efficiency 

with 5′-amino-5′-deoxyuridine (2) was comparable to that of uridine (3)[124].  

 

The mra20 gene, which is homologous to lipP, was cloned and expressed in E. coli to 

yield soluble protein (Fig 3.4a). Using HPLC for detection, initial activity tests with 

Mra20 revealed uridine (3) was converted to uracil (4) and α-D-ribose-1-phosphate 

(Fig 3.4b), and identically to LipP [124], the Mra20-catalyzed reaction also proceeded 

with 5′-amino-5′-deoxyuridine (2) (Fig3.4c). Additional activity tests revealed 

hypothetical pathway intermediates 2′-deoxyuridine (11), 

5′-amino-2′,5′-dideoxyuridine (7), thymidine (12) and 5′-amino-5′-deoxythymidine (10) 

were also converted to uracil (4) or thymine (13) and the respective 

sugar-1-phosphate by Mra20 (Fig 3.5), thus warranting further kinetic investigation. 

 

 

(a) (b) 
4 

3 
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Figure 3.4. In vitro characterization of Mra20.(a) SDS-PAGE analysis of partially 
purified His6-Mra20 (expected MW of 52.5 kD). (b) HPLC analysis using uridine (3) 
after 1 hr without Mra20 (I), 1 hr reaction (II) and authentic uracil (4) (III). (c) HPLC 
analysis using 5′-amino-5′-deoxyuridine (2)after 1 hr without Mra20 (I), 1 h reaction (II) 
and authentic uracil (4) (III). A260, absorbance at 260 nm. 
 
 
 

 
  
 

 

Figure 3.5. Activity of Mra20 with 2′-deoxynucleosides. (a) Phosphorolysis reaction 
catalysed by Mra20. (b) HPLC analysis following a 1 h reaction using 2′-deoxyuridine 

(a) 

(c) (b) 
4 

7 

11 

13 

10 

12 

(c) 
4 

2 
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(11) without Mra20 (I), 2′-deoxyuridine (11) with Mra20 (II), 
5′-amino-2′,5′-dideoxyuridine(7) without Mra20 (III), 5′-amino-2′,5′-dideoxyuridine(7) 
with Mra20 (IV), and authentic uracil (4). (c) HPLC analysis following a 1 hr reaction 
using thymidine (12) without Mra20 (I), thymidine (12) with Mra20 (II), 
5′-amino-5′-deoxythymidine (10) without Mra20 (III), 5′-amino-5′-deoxythymidine (10) 
with Mra20(IV), and authentic thymine (13). 

 

3.4.2. Kinetics characterization of Mra20 

 

For comparative purposes, single substrate kinetic analysis was performed under the 

optimized conditions for LipP using UV/Vis spectroscopy for detection of the free 

nucleobase under alkaline conditions. All of the tested substrates displayed typical 

Michaelis–Menten kinetics (Fig 3.6), and the extracted kinetic constants revealed that 

Mra20 is most efficient with thymine containing nucleosides with little preference for 

the C-5′ functional group (Table 8). Although the Km and kcat were both significantly 

increased, the efficiency with 2′-deoxyuridinederivatives was quite comparable to the 

respective thymine containing nucleoside. Similar to LipP, these kinetic results 

suggest that Mra20 has little preference toward any hypothetical pathway 

intermediates, and thus cannot be utilized to delineate the timing of the biochemical 

events. However, in contrast to LipP, Mra20 has a modest specificity toward the 

2′-deoxynucleosides relative to the hydroxylated counterpart, which is consistent with 

the observed 5-amino-2,5-dideoxyribosyl moiety that is found in the muraminomicins. 
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Figure 3.6. Single-substrate kinetic analysis of Mra20. Data were fitted to the 
Michaelis-Menten equation and extracted kinetic constants are given in Table 8. 
 
Table 8. Extracted kinetic constants for Mra20. 
 

Substrate Km (mM) kcat (min-1) 
Relative efficiency 

(%) 

11 1.8 ± 0.3 28 ± 2 61 

7 0.87 ± 0.24 16 ± 2 75 

12 0.12 ± 0.04 2.9 ± 0.2 100 

10 0.13 ± 0.05 3.1 ± 0.3 93 

3 0.43 ± 0.07 0.9 ± 0.1 8 

2 0.82 ± 0.21 4.0 ± 0.3 19 

 

 [11] (μM)  

  

[7] (μM) 

[12] (μM) [10] (μM) 

  [3] (μM) [2] (μM) 

100 



 

3.5. Results: Bifunctional assignment of Mra20 as a potential nucleoside 
phosphorylase and cytidine deaminase. 

 

3.5.1 In vitro characterization of Mra20 deaminase activity 

 

Mra20 is most efficient with thymine containing nucleosides as described above 

(Table 8). This suggests Mra20 has some specificity for a 2′-deoxy nucleoside. During 

our screen of potential substrates, we unexpectedly observed an activity with cytidine. 

This observation was unusual since pyrimidine nucleosides phosphorylases that use 

uridine or thymidine cannot turnover cytidine. This Mra20 was first confirmed to 

catalyze phosphorolysis of cytidine to generate ribose-1-phosphate and a UV-active 

base as shown by HPLC (Fig 3.7). Interestingly, the base counterpart generated from 

cytidine had the same retention time with uracil instead of cytosine (Fig 3.8). 

 

 
 

Figure 3.7. Proposed phosphorolysis reaction with cytidine catalyzed by Mra20. 
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Figure 3.8. Activity of Mra20 with cytidine. HPLC analysis following a 1 hr reaction 
using cytidine without Mra20 (I), cytidine with Mra20 (II), authentic cytosine (III) and 
authentic uracil (IV). 

 

To confirm the product was uracil rather than cytosine, LC-MS was performed to 

analyze and distinguish the substrate cytidine and product using authentic uracil and 

cytosine as controls. LC-MS analysis of cytosine revealed the expected (M - H)- ion at 

m/z = 110.0 and uracil revealed the expected (M - H)- ion at m/z = 111.0. The product 

of Mra20reaction starting from cytidine yielded an (M - H)- ion at m/z = 110.9, which 

was consistent with uracil and not cytosine (Fig 3.9). 1H-NMR analysis of the Mra20 

product demonstrated that the proton signal shift of the product was identical to the 

proton signal of uracil compare to cytosine (Fig 3.10). Thus, both LC-MS and 1H-NMR 

confirmed that this product is uracil. 
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Figure 3.9. LC-MS of the Mra20 product with cytidine. (a) Negative ion mass 
spectrum for the peak of cytidine. (b) Negative ion mass spectrum for the peak of 
cytosine. (c) Positive ion mass spectrum for the peak of the product of cytidine with 
Mra20. (d) Negative ion mass spectrum for the peak of uracil.  
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Cytidine + Mra20 Uracil 
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Figure 3.10. Characterization product of Mra20-catalyzed cytidine reaction by 1D 
NMR. (a) 1H-NMR spectrum of the product of cytidine with Mra20. (b) 1H-NMR 
spectrum of uracil. (c) 1H-NMR spectrum of cytosine.   
 

3.5.2. Replacement of O16 with O18 in Mra20-catalyzed cytidine reaction 

 

To further confirm uracil as the product and to explore the deamination mechanism of 

cytosine to uracil, O18 was used to replace the H2O (O16) in the Mra20-catalzyed 

cytidine reaction. The product was analyzed by LC-MS revealing an (M - H)- ion at m/z 

= 112.9, a 2 unite increase compared to uracil, (M - H)- ion at m/z = 111.0. This result 

indicated that the origin of new oxygen atom on the 4-carbonyl of uracil originates 

from H2O (Fig 3.11). 
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Figure 3.11. Characterization of Mra20-catalyzed reaction using O18. (a) Proposed 
reaction of cytidine catalyzed by Mra20 using O18. (b) LC-MS analysis of the product 
from the reaction of Mra20 with cytidine (Negative ion mass spectrum ). 
 

3.5.3. Characterization of NH3 production in Mra20-catalyzed cytidine reaction 

 

The results above suggest ammonia is also produced during the conversion of 

cytidine to uracil. To confirm that free ammonia (NH3) was produced from this reaction, 

glutamate dehydrogenase (GLDH), α-ketoglutarate (α-KG) and NADPH was used in a 

coupled enzyme assay. The GLDH catalyzes the reductive conversion of α-KG to 

glutamate using NH3 as the source of amine as shown in Fig 3.12a. Since NADPH 

has a UV absorption maximum at 340 nm, the reaction was monitored by UV-Vis 

spectroscopy by monitoring the decrease in absorbance over a 1 hr reaction. As time 

increased, a linear decrease in absorbance was observed indicating the 

α-KG-glutamate interchange reaction happened and confirms the existence of free 

NH3 (Fig 3.12b). 
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Figure 3.12. Characterization of NH3 production. (a) Reaction of α-KG and NH3 

catalyzed by GLDH to generate glutamate. (b) change of NADPH monitored by 
UV-Vis. (I) Control reaction with NADPH, α-KG, cytidine and GLDH added, without 
addingMra20; (II) Reaction with NADPH, α-KG, cytidine and GLDH added, 
addingMra20. 
 

3.6. Results: Functional assignment of Mra23 as a primary 
amine-requiringNucleotidylyltransferase 

 

Bioinformatic analysis revealed Mra23 has sequence similarity to LipM and other 

nucleotidylyltransferases, enzymes that utilize a sugar-1-phosphate and 

nucleotide-5′-triphosphate to generate NDP-sugars [132]. The Mra23 homologue from 

the A-90289 pathway (LipM) has already been demonstrated to function as a 

nucleotidylyltransferase, using 5-amino-5-deoxy-α-D-ribose-1-phosphate and UTP to 

generate the activated sugar, and, interestingly, is only able to turn over 

ribose-1-phosphate with a 5-amine functionality. 

 

Similarly to Mra20, the gene product of mra23 was soluble when produced in E. coli 

(Fig 3.13a). The activity of Mra23 was tested with 2-deoxy-α-D-ribose-1-phosphate or 

5-amino-2,5-dideoxy-α-D-ribose-1-phosphate generated in situ by Mra20 from 

(a) 

(b) 

α-KG Glutamate 
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II 

     NADPH 
     NADPH+Mra20 
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2′-deoxyuridine (11) and nucleosides 5′-amino-2′,5′-dideoxyuridine(7), 

5′-amino-5′-deoxythymidine (10), thymidine (12), and analysis of these reactions 

revealed a new peak was formed only in the presence of 

5-amino-2,5-dideoxy-α-D-ribose-1-phosphate from 5′-amino-2′,5′-dideoxyuridine(7) or 

5′-amino-5′-deoxythymidine (10) and UTP (Fig 3.14, Fig 3.13b,c). LC-MS analysis of 

the purified new peak revealed an (M-H)- ion at m/z = 517.6, consistent with the 

molecular formula C14H23N3O14P2 of UDP-5-amino-2,5-dideoxyribose 

UDP-5″-amino-2″,5″-dideoxyribose (8)(expected m/z = 518.1) (Fig 3.14a, Fig 3.15). 

We had previously characterized UDP-5″-amino-2″,5″-dideoxyribose (8) by HR-MS 

and complete NMR analysis using LipP and LipM starting from 

5′-amino-2′,5′-dideoxyuridine(7), and thus co-injections were utilized to confirm the 

product of Mra20 and Mra23 (Fig 3.14). In total, the data is consistent with the 

function of Mra23 as a 

UTP:5-amino-2,5-dideoxy-α-D-ribose-1-phosphateuridylyltransferase as the 

penultimate catalyst for formation of the disaccharide of muraminomicin. 
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Figure 3.13. In vitro characterization of Mra23 with thymidine (12). (a) SDS-PAGE 
analysis of purified His6-Mra23 (expected MW of 29.6 kD). (b) HPLC analysis of the 
reaction starting with uridineafter 3 hr without Mra23 (I) and 3 hr reaction (II). 
(c)HPLC analysis of the reaction starting with thymidine (12) after 3 hr without Mra23 
(I) and 3 hr reaction (II). A260, absorbance at 260 nm. 
 

 

 

 
 
 
Figure 3.14. Characterization of Mra23 with 5′-amino-5′-deoxythymidine (10). (a) 
Enzymatic preparation of the substrate using Mra20, and the reaction catalyzed by 

(c) 
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Mra23 to generate UDP-5″-amino-2″,5″-dideoxyribose (8). (b) HPLC analysis 
following a 3 hr reaction starting from 5′-amino-5′-deoxythymidine (10) without Mra23 
(I), 5′-amino-5′-deoxythymidine (10) with Mra23 (II), a 12 hr reaction starting from 
5′-amino-2′,5′-dideoxyuridine (7) with LipM from the A-90289 biosynthetic pathway 
replacing Mra23 (III), and a 12 hr reaction starting from 5′-amino-2′,5′-dideoxyuridine 
(7) with LipM coinjected with purified UDP-5″-amino-2″,5″-dideoxyribose (8) 
generated by Mra23 (IV). 
 
 

 
 
Figure 3.15. LC-MS of the Mra23 product UDP-5″-amino-2″,5″-dideoxyribose (8) 
generated from substrate 5′-amino-5′-deoxythymidine (10). (a) LC analysis of 
UDP-5″-amino-2″,5″-dideoxyribose (8) following purification. (b) Negative ion mass 
spectrum for the peak at elution time t = 3.5 min. (c) Positive ion mass spectrum for 
the peak at elution time t = 3.5min. A260, absorbance at 260 nm. 
 

The substrate specificity of Mra23 is intriguing for a couple of reasons. Firstly, the 

transfer of ribosyl units onto acceptor molecules typically occurs with 

5-phosphoribosyl-1-pyrophosphate, and the characterization of Mra23 and LipM has 

revealed a ribosyl transfer paradigm using NDP-sugars [124]. This realization may 

ultimately provide an opportunity to diversify structures by incorporating unnatural 

ribosyl units in place of the native sugar via a combinatorial biosynthetic strategy. 

(b) 

(a) 

(c) 
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Secondly, several characterized nucleotidylyltransferases are known or have been 

engineered by mutagenesis to acceptaminosugar-1-phosphates; however, these 

enzymes in general have little discrimination between the amine or hydroxyl 

group[118,120,121,122]. Both Mra23 and LipM now establish a 

nucleotidylyltransferase family whose activity is absolutely dependent upon the amine 

functionality, and on-going structural efforts will undoubtedly establish the molecular 

details behind this unusual specificity. 

 

The combined results now allow us to define a probable pathway leading to the 

disaccharide core starting from either TMP or 2′-deoxyUMP (Fig 3.16). Through an as 

of yet unclear mechanism, the 5′-aldehyde is installed to serve as the substrate for the 

putative aminotransferase Mra21 to generate 5′-amino-2′,5′-dideoxyuridine (7) or 

5′-amino-5′-deoxythymidine (10). Following phosphorolysis of the glycosidic bond by 

Mra20, the aminosugar-1-phosphate is activated as the UDP-sugar by Mra20 prior to 

transfer to the acceptor molecule, which is most likely 2′-deoxy-5′-C-glycyluridine. 

 
 

Fig. 3.16. Proposed biosynthetic pathway of the disaccharide core of the 
muraminomicins. 
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3.7. Results: In vitro characterization of Mra21 activity 

 

Similar to LipO, bioinformatics analysis of Mra21 revealed sequence similarity to 

proteins annotated as putative aminotransferase. The potential reaction catalyzed by 

Mra21 was shown in Fig 3.17. To interrogate the mechanism of amine group 

incorporation, mra21 was first expressed in E. coli, however the recombinant protein 

was insoluble using a variety of growth and induction conditions. Therefore, we 

turned to Streptomyces lividans TK64 as a host, which resulted in the successful 

preparation of soluble, recombinant Mra21 (Fig 3.18a). 

 

 
 
Figure 3.17. Proposed reaction catalyzed by Mra21.  
 

Since the true substrate for Mra21 was not available, 5′-aldehyde-uridine (1) was 

used as a substitute substrate to test the activity of Mra21 (Fig 3.18b). Unexpectedly, 

no new peak was detected after Mra21 incubated with 5′-aldehyde-uridine (1) and 

different amino donors, even though several different buffer conditions were tested. 

This result suggests Mra21 has specificity for the 2′-deoxynucleoside or, alternatively, 

the wrong amino donors were used. Hence further characterization with Mra21is 

needed to verify the activity, and efforts are underway to synthesis the potential 

substrate 2′-deoxthymidine-5′-aldehyde. 
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Figure 3.18. Characterization of Mra21. SDS-PAGE analysis of purified His6-Mra21 
(expected MW of 50.8 kD).  
 

3.8. Results: In vitro characterization of Mra22 activity 

 

We then turned our attention to Mra22, which has sequence identity to a small 

number of proteins annotated as putative glycosyltransferases by bioinformatics 

analysis. Similar to LipN, Mra22was predicted to transfer a 2′-deoxysugar to the 

sugar accepter to generate the final glycoside as shown in Fig 3.19. To test the 

activity of Mra22, mra22 was first tried to express in E. coli, however, same as Mra21, 

the recombinant protein was insoluble using a variety of growth and induction 

conditions. Therefore, Mra22 was tried to express from Streptomycin lividans TK64, 

which resulted in the soluble, recombinant Mra22 (Fig 3.20a). 
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Figure 3.19. Proposed reaction catalyzed by Mra22. 

 

 

 

(a) (b) 

113 



 

 

Time (min)

A
26

0

0 5 10 15 20 25

UDP
4

UTP

I

II
UMP

11
New Peak

 
Figure 3.20. Characterization of Mra22. (a) SDS-PAGE analysis of purified 
His6-Mra22 (expected MW of 45 kD). (b) HPLC analysis of the reaction with 
2′-deoxyuridine (11)starting with 5′-amino-5′-deoxythymidine (10) after (I) 3 hr without 
Mra22 and (II) 3 hr reaction. (c) HPLC analysis of the reaction starting with 
5′-amino-2′,5′-dideoxyuridine(7) after (I) 3 hr without Mra22 and (II) 3 hr reaction. (d) 
HPLC analysis of the reaction starting with 5′-amino-5′-deoxyuridine (2) after (I) 3 hr 
without Mra22 and (II) 3 hr reaction. A260, absorbance at 260 nm. 
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Figure 3.21. HPLC characterization of Mra22. (a) HPLC analysis of the reaction with 
uridine (3) starting with 5′-amino-5′-deoxythymidine (10) after (I) 3 hr without Mra22 
and (II) 3 hr reaction. (c) HPLC analysis of the reaction starting with 
5′-amino-2′,5′-dideoxyuridine(7) after (I) 3 hr without Mra22 and (II) 3 hr reaction. (d) 

(a) 

(b) 

(c) 
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HPLC analysis of the reaction starting with 5′-amino-5′-deoxyuridine (2) after (I) 3 hr 
without Mra22 and (II) 3 hr reaction. A260, absorbance at 260 nm. 

 

With the soluble protein in hand, the activity of Mra22 was tested with in situ 

generation of substrate beginning from5′-amino-5′-deoxyuridine (2), 

5′-amino-2′,5′-dideoxyuridine (7) and 5′-amino-5′-deoxythymidine (10). HPLC 

analysis of Mra22 reactions revealed a new peak while using 2′-deoxyuridine (11) as 

surrogate acceptor (Fig 3.20 b, c, d). However, no new peak was detected while 

using uridine (3) as surrogate acceptor (Fig 3.21 a, b, c). Although the yield for the 

new peak was very low, the product of the peak was purified and finally analyzed by 

NMR. However, 1H and 13C NMR analysis of this new peak shown that it was uridine, 

rather than the expected compound (data not shown). Thus the true function of 

Mra22 needs further investigation. 

 

3.9. Results: In vitro characterization of Mra24 activity 

 

3.9.1. In vitro characterization of Mra24 activity 

 

Similar to LipL, Mra24 has sequence similarity to proteins annotated as putative a 

non-heme Fe(II) and α-ketoglutarate (α-KG)-dependent dioxygenase based on 

bioinformatics analysis. Previous results have demonstrated that LipL from A-90289 

gene cluster is Fe(II)- and α-ketoglutarate (α-KG)-dependent dioxygenase, and UMP 

was the only substrate for LipL [88]. Based on this, we hypothesized that 

2′-deoxyUMP might be the substrate for Mra24 as shown in Fig 3.22. To investigate 

the potential of oxidization process, mra24 was first tried to express in E. coli, and a 

soluble protein was obtained (Fig 3.23 a). 

 

116 



 

 

Figure 3.22. Proposed reaction catalyzed by Mra24.  
 

The potential activity of Mra24 was analyzed by HPLC using 2′-deoxyUMP and UMP 

as substrates. Unexpectedly, the formation of 2′-deoxyuridne (11) and uridine (3) 

was detected instead of an oxidized product after incubation with enzyme (Fig 3.23b, 

3.24). This result suggested that Mra24 functioned as a phosphatase instead of 

dioxygenase. To confirm these results, we expressed the mra24 gene in S. lividans 

TK64, and soluble protein was also obtained. The same reaction was repeated with 

the newly purified Mra24 enzyme. Unfortunately, the same results were obtained as 

the reaction catalyzed by the enzyme purified from E. coli. Thus, regardless of the 

source, it appeared Mra24 functions as a phosphatase, and kinetic studies are 

ongoing to ascertain the significance of this activity. 
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Figure 3.23. Characterization of Mra24 with 2′-deoxyUMP. (a) SDS-PAGE analysis 
of purified His6-Mra24 (expected MW of 28 kD). (b) HPLC analysis of the reaction with 
2′-deoxyUMP and Mra24 after (I) 1 hr authentic 2′-deoxyUMP without Mra24, (II) 1 hr 
reaction with Mra24, (III) 1 hr authentic 2′-deoxyuridine (11), (IV) 1 hr reaction with 
Mra24, without α-KG, (V) 1 hr reaction with Mra24, with EDTA. A260, absorbance at 
260 nm. 
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Figure 3.24.  Characterization of Mra24 with UMP. HPLC analysis of the reaction 
with UMP and Mra24 after (I) 1 hr authentic UMP without Mra24, (II) 1 hr reaction with 
Mra24, (III) 1 hr authentic uridine (3), (IV) 1 hr reaction with Mra24, without α-KG, (V) 
1 hr reaction with Mra24, with EDTA. A260, absorbance at 260 nm. 

 

3.9.2. Blast and alignment Mra24 with other dioxygenases 

 

Sequence analysis of Mra24 when compared to dioxygenasesof the same 

superfamily showed that Mra24 was lacking ~60 amino acids at the C-terminus. The 

C-terminus contains a His residue that is critical for activity due to its role in Fe(II) 

binding that is essential for activity (Fig 3.25). Therefore, this might explain why 

mra24 does not encode a functional non-heme Fe(II), α-KG-dependent dioxygenase. 

Importantly, this suggests that the assembly of the deoxyaminoribose of 

muraminomicin has significant differences compared to that for A-90289 

biosynthesis. These variations are part of our ongoing research efforts. 
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Figure 3.25.  AlignMra24 with similar dioxygenases from other strains. The three red 
box stands for the active site for these dioxygenases. Green box showed the miss of 
amino acids of Mra24 comparing to other dioxygenases. 
 

3.9.3. Streptosporangiumamethystogenes genomic gene library construction 
 

The blast analysis of the whole gene cluster of muraminomicin showed that Mra24 

was the only dioxygenase inside the gene cluster. One possibility was that the gene 

encoding the expected dioxygenase function was located elsewhere in the 

chromosome. To probe this theory, a Streptosporangium amethystogenes genomic 

library was constructed using pJAZZ-OK vector. The recombinant DNA was 

transformed into E.coli Bigeasy TSA cells, and primers were to amplify 

dioxygenase-encoding genes from genomic DNA. The expedted 520-kb amplified 

fragment was obtained and labeled with DIG and used to screen the cosmid library. 

Following colony hybridization and southern blot analysis, four positive colonies 

were identified and selected for sequencing. Unfortunately, none of the four colonies 

showed the right gene sequences for a dioxygenase. Thus, we opted to focus on the 

development of a genetic system within the producing strain to ascertain the 

significance of individual orfs in muraminomicin biosynthesis. 
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Figure 3.26. Colony Hybridization of Streptosporangiumamethystogenes genomic 
gene library using dioxygenase gene probes. Four positive colonies were found after 
hybridization. 

 

3.10. Development of a genetic system for in vivo muraminomicin studies 
 

We have successfully characterized two enzymes - Mra20 and Mra23 - involved in the 

assembly of the 5-amino-2,5-dideoxyribofuranoside. As for three other enzymes, their 

activity and functionality are still unknown – despite the ability to obtain soluble protein. 

The results suggested Mra20 and Mra23 played a critical role in the identity of the 

aminoribosyl appendage of muraminomicin, yet several questions remained. We 

therefore attempted to develop a robust genetic system within the muraminomicin 

producing strainas a strategy to further delineate muraminomicin biosynthesis. It is 

expected that a genetic system will (i) reconfirm the reactions catalyzed by enzymes 

in vitro, (ii) establish an essential role for individual orfs in muraminomicin 
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biosynthesis, (iii) verify the identity of the muraminomicin gene cluster, (iv) provide a 

platform to rationally design and develop muraminomicin analogues. To carry out this 

strategy, the following procedures were conducted. 

 

First, we explored different growth conditions for muraminomicin strain. Unlike 

Streptomyces, little information is available on the growth conditions for the 

Streptosporangium genus. The limited literature suggest optimal growth may require 

oatmeal, metal iron and some other nutritional factors [133][134]. Thus, various 

culture media were tested to obtain the best growth and sporulation conditions for 

the muraminomicin strain (Table 9).The results suggest the best condition for 

Streptosporangium growth was MS medium plus oatmeal, the other medium (ISP2, 

R2YE, etc) were not as efficient for attaining a dense culture (Fig 3.27). Furthermore, 

the best condition for sporulation was also the oatmeal agar medium, with or without 

metals supplemented (Table 9). This growth condition is now being used with the 

goal of developing a genetic system. 

 

Table 9. Different culture conditions for Streptosporangium sp. SNAK 60709. 
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Figure 3.27. Streptosporangium sp. SANK 60709strain. 
 

We initially targeted the inactivation of mra20 gene of Streptosporangium sp. using a 

double-crossover PCR targeting system. Although many conditions were attempted 

with this strain, a successful mutant strain was not attainable. Thus, the genetic 

system for in vivo muraminomicin studies is still under investigation. 

 

3.11. Conclusion 

 

The biosynthetic gene cluster for muraminomicin has been identified. Two enzymes 

involved in the assembly of the aminoribosyl moiety of muraminomicin have been 

functionally assigned: Mra20 that catalyzes phosphorolysis to initiate “salvage” of the 

aminoribose and Mra23 that activates this sugar for subsequent ribosyltransfer. The 

three other enzymes are still under investigation. The established specificity of Mra20 

and Mra23 explains at least in part the incorporation of a 2-deoxy and 

5-amino-5-deoxy sugar, respectively, into muraminomicin. The results now set the 

stage to explore both upstream events, such as the unclear mechanism of 

5′-aldehyde formation, and the downstream event of ribosylation. Additionally, the 

uncovering of the genetic locus for muraminomicin biosynthetic locus provides further 

information for defining a complete biosynthetic mechanism for lipopeptidyl 

nucleoside antibiotics. 

Copyright © Xiuling Chi 2013 
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Chapter four: Summary 

 

MraY (translocase I), one of the key enzymes involved in peptidoglycan cell wall 

biosynthesis, is an appealing target for discovering novel bioactive natural products 

for clinical use. Lipopeptidyl nucleoside antibiotics, inhibitors of MraY, have been 

recently discovered that have excellent anti Gram-positive bacteria activity. The 

prominent feature of this family is they all comprise an unusual sugar appendage, a 

key component for their antibacterial action. Based upon the bioinformatic analysis 

of A-90289 biosynthetic gene cluster, the biosynthetic pathway for aminoribosyl unit 

incorporation was firstly proposed and then confirmed by in vitro enzyme 

characterization. Five enzymes participated in the assembly of the sugar moiety and 

a distinct ribosylation pathway was identified. Uridine-5′-monophosphate was 

uncovered as the precursor for using sequential catalysis by a dioxygenase, 

aminotransferase, phosphorylase, nucleotidylyltransferase and glycosyltransferase. 

This distinctive biosynthetic pathwaywas further confirmed by studies of the 

biosynthesis of muraminomicin, whose structure is similar to A-90289. Unlike 

A-90289, however, muraminomicin has a unique 2′-deoxy sugar component. The 

biosynthetic gene cluster was identified and analyzed by bioinformatics. Two key 

enzymes, a phosphorylase and a nucleotidylyltransferase, were characterized in 

vitro and exhibited highly similar functionality as the homologous enzymes from 

A-90289. The cumulative results in A-90289 and muraminomicin provide valuable 

insight into investigating and discovering other lipopeptidyl nucleoside antibiotics and 

the preparation of their analogues by combinatorial biosynthetic strategies.  
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