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ABSTRACT 

The use of edge-oxidized graphene oxide (EOGO), produced by a mechanochemical 

process that allow to deliver a product suitable for large-scale production at affordable cost, as an 

additive in cement composites was investigated. Comprehensive experimental tests were 

conducted to investigate the effect of EOGO on the properties of cement composites. The 

experimental tests were designed for three subtasks: (1) investigation of the performance of EOGO 

and its mixing method on the strength, pore structure and microstructure of EOGO-cement 

composites, (2) evaluation of the rheological and fluidity behavior of EOGO-cement paste and 

mortar, and (3) investigation of the mechanism of the enhanced workability of EOGO-concrete. 

EOGO content ranged from 0.01% to 1% and two mix design methods were employed for cement 

paste and mortar to explore an optimum and feasible mix design of EOGO. Compressive and 

flexural strength tests were conducted to investigate the mechanical performance of EOGO-cement 

composites. Total porosity and water sorptivity were performed to investigate the pore structure 

of EOGO-cement paste and mortar. Furthermore, petrographic analyses were conducted to 

characterize the microstructure of EOGO-cement composites. Imaged based-mini-slump and flow 

table tests were performed to measure the fluidity of EOGO-cement paste and mortar. The 

rheological properties of EOGO-cement paste were measured through viscometer test. The 

mechanism of the enhanced workability of EOGO-concrete was investigated by performing slump 

and water absorption of aggregate in cement paste tests. The key findings are (1) the addition of 

EOGO into cement composites improves the compressive and flexural strength, (2) 0.05% of 

EOGO is the optimum content to improve the strength and pore structure of EOGO-cement 
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composites, (3) the addition of EOGO reduces the fluidity and increases the viscosity of EOGO-

cement composites, (4) the addition of EOGO improves the workability of concrete, and (5) dry-

mix design is feasible and more practical for large-scale production. 
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 INTRODUCTION1
 

 Research Motivation 

Recently, developments in the field of nanotechnology have prompted the creation of 

innovative nanoscale fibers, which has resulted in the inception of multifunctional materials [1]. 

Moreover, carbon nanomaterials such as graphene, carbon nanofiber (CNF), and carbon nanotubes 

(CNTs) have been studied and adopted as reinforcing materials in cement-based mixtures. 

Currently, Graphene oxide (GO), another 2D form of carbon-based nanomaterial, has garnered 

much interest due to its unique properties that can effectively enhance the properties of cement-

based materials. However, GO utilized in previous studies have been made by using common 

methods like Hummer’s method, a chemical process to oxidize graphite, which appears untenable 

as an additive in concrete due to the scalability and cost. One of the major hindrances encountered 

by previous studies that prevented of the incorporation of GO into concrete (relatively large scale) 

is the small-scale production of GO. 

Another hindrance to the addition of GO into concrete is the dispersion issue of GO in the 

mix. With respect to this, graphene oxide utilized in this research was produced with the use of an 

innovative mechanochemical process. This innovative technology eliminates the costs of 

hazardous waste disposal and offer a product appropriate for large-scale production at affordable 

prices. This promising alternative method of producing large-scale production of graphene oxide 

is a criterion for introducing GO into the concrete industry. Additionally, this technology produces 

                                                 

1 The partial content of this chapter appeared in: 
Alharbi, Y., An, J., Cho, B.H., Khawaji, M., and Nam, B.H.* “Mechanical and Pore Structure Characteristics of Edge- 
Oxidized Graphene Oxide (EOGO)-Cement Composites: Dry and Wet-Mix Design Methods”, Nanomaterials (2018) 
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edge-oxidized graphene oxide (EOGO) alongside a few layers. The preparation of GO with other 

common methods (e.g. Hummer’s method) produces a full oxidation (bottom, top, and edges) 

graphene oxide. This particular GO is composed of a strong van der Waals force that requires a 

sonicater to disperse the GO layers in the water, which make using it as a powder difficult being 

well dispersed into the cement composites. Nevertheless, the van der Waals force between GO 

layers can be weakened with the use of the edge of the oxygen-containing functional groups [2,3], 

and this will assist for a better dispersion of EOGO as dry powder in cement composites compared 

to GO. In this matter, EOGO, its mixing methods, and the effects of each mix on the properties of 

the cement composites, including its feasibility as an additive material should be carefully 

examined. 

 Research Objectives 

EOGO produced by a mechanochemical process can be done in a large scale with 

significantly reduced cost, which allows for practical use in infrastructure construction. The critical 

objectives of current research are to:  

• Evaluate the mechanical performance, pore structure of EOGO-cement composite and 

identify the optimum content of EOGO.  

• Explore a feasible and more practical mix design for massive EOGO-cement composites 

production by comparing two different mix design methods (Dry-mix design and Wet-mix 

design). 

• Evaluate the effect of EOGO on cement hydration and the microstructure of cement 

composites.  
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• Investigate the effect of EOGO for both mix design methods on the rheology and fluidity 

behaviors of cement paste and mortar. 

• Investigate the mechanism of the workability of EOGO-concrete.  

 Organization of Dissertation 

This dissertation consists of six chapters that are organized as follows: Chapter one presents 

the research motivation and objectives. Chapter two is a literature review of nanomaterials and 

their effects on cement composites properties. There are specific details dedicated to the properties 

of graphene oxide, the nanomaterial investigated in this research. Chapter three characterizes the 

performance of EOGO-cement composites. Extensive tests are conducted to investigate the effect 

of EOGO on the strengths of cement paste, mortar and concrete as well as the total porosity and 

durability of cement paste and mortar. In addition, two different mix designs were employed to 

evaluate the feasibility of using EOGO as an additive material in cement composites. Chapter four 

presents the rheological properties of cement paste with the addition of EOGO, and the effect of 

EOGO on the workability of mortar and concrete. In chapter five, a mechanism study on the 

workability of EOGO-concrete is delineated. Chapter six provides the conclusion and 

recommendations. 
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 LITERATURE REVIEW2
 

 Introduction 

Presently, the popularity of ordinary Portland cement (OPC) has been retained as the 

chosen construction material in the civil engineering field. The international cement production 

has exceeded 3.6 billion tons in order to meet the demands of new infrastructure and building 

construction, particularly in rapidly developing countries like India and China [4]. Furthermore, 

cement is considered the principal binder that holds the aggregates together for the production of 

concrete when water is present for hydration. As engineered material, concrete composites are 

desired for their excellent compressive strength. Nevertheless, the main drawback to the use of 

concrete is the nature of its brittle material, which is attributed to its poor resistance to crack 

formation, strain capacities, and low tensile strength. Depending on the mix proportions of cement, 

water, and aggregates, the concrete’s tensile strength is found within 2 to 8 MPa [5]. Numerous 

efforts have been made to improve the cement-based material performance through the 

manipulation of the cement composite properties with admixtures [6–8], supplementary 

cementitious materials [9–12], and fibers [13–15]. Fibers replace large cracks with a dense 

microcracks system but cannot stop the crack initiation at nanoscale. The advancements of 

nanotechnology have offered interesting chances to likewise increase the performance bar with the 

inclusion of nanomaterials in cement. Many recent studies have been conducted on developed 

nanomaterials like graphene and graphene oxide (GO) sheets, nano-silica (nano-SiO2), and carbon 

                                                 

2 The partial content of this chapter also appeared in: 
Alharbi, Y., An, J., Cho, B.H., Khawaji, M., and Nam, B.H.* “Mechanical and Pore Structure Characteristics of Edge- 
Oxidized Graphene Oxide (EOGO)-Cement Composites: Dry and Wet-Mix Design Methods”, Nanomaterials (2018) 
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nanotubes (CNTs). In this chapter, the current research on effects of GO on cement composite 

properties are reviewed, including hydration, rheology, workability, mechanical, and 

microstructure properties. 

 Characterization of Graphene and GO  

 Graphene 

Graphene is a single atom thick sheet of carbon atoms, which are covalently bonded 

directly to three other atoms alongside a length of carbon-carbon bond of about 0.142 nm. It forms 

a hexagonal ring type of structure [16]. On the other hand, graphite is known as a 3-dimensional 

layered crystal lattice structure that is made by a stack of parallel 2-dimensional (2D) graphene 

sheets, which is indicated in Figure 2-1. The adjacent graphene sheets present in the graphite are 

bonded by weak forces of van der Waals with the separation distance of 0.335 nm from one 

another. The graphene is the fundamental building block of the entire graphitic carbon forms like 

fullerenes and nanotubes (CNTs) [17] as shown in Figure 2-2 . 

 

Figure 2-1. Layered structure of graphite showing carbon atoms tightly bonded in hexagonal rings [16] 
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Figure 2-2. Basis of all graphitic forms. Graphene is a 2D building material for other dimensionalities of 
carbon materials (Reproducing with permission from [18], Springer Nature, 2007) 

For decades, scientists have theorized about graphene, but nothing thinner than 50 to 100 

layers was produced prior to 2004. Geim et al. [19] were able to get and identify a single layer of 

graphene. Since the first demonstration of monolayer graphene was reported, there has been 

tireless effort to achieve high quality, pristine graphene. Much of the reason is its excellent in-

plane structural, electrical, mechanical, and thermal properties. Nevertheless, graphite exfoliation 

to monolayer graphene sheet is considered extremely essential in the accomplishment of these 

excellent properties. Graphene has very large surface area and is densely packed due to van der 

Waals interactions. Thus, graphene layers have to be perfectly separated from each other or they 

tend to reaggregate and restack. Due to this, a major difficulty in synthesis of bulk quantity 

graphene is aggregation avoidance. 
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 Graphene Oxide (GO) 

2.2.2.1 Structure of GO 

Graphene oxide (GO) is the highly oxidized derivative graphene that have different 

oxygen-containing functional groups like hydroxyl (-OH), carbonyl (-C=O), and even carboxyl (-

COOH) groups [16]. These groups can be found on both the edge and basal planes of nanosheets, 

as schematically shown in Figure 2-3. 

 

Figure 2-3. Schematic structure of graphene oxide (GO) sheet associated with the functional groups [16]. 

GO is essentially produced through the chemical oxidation of graphite, with subsequent 

dispersion and exfoliation in water or in other suitable organic solvents. The good solubility of GO 

in water makes graphene oxide an interesting material that is capable of being utilized in different 

devices such as transparent conducting films, flexible displays, and transistor for massive area 

electronics. The precise atomic structure of GO is still uncertain due to its amorphous characters 

and the inhomogeneous distribution of oxygen groups. Regardless of this, there have been a few 

model propositions over years. In the 1939, Hofmann and Holst [20] proposed the first humble 

model of GO: simple epoxy groups held together on the planar graphene layers. Then Ruess in 

1946 [20] proposed a different model than that of Hofmann, one that, incorporates hydroxyl groups 
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into the ether-oxygen and basal plan functionalities, which are randomly spread out on the carbon 

skeleton. This particular model provided a change to the structure of the basal plane directly to a 

sp3 hybridized system, instead of the sp2 hybridized Hofmann’s model; Ruess still assumed the 

presence of a repeating unit, allowing for the formation of a regular lattice structure. 

Describing the graphite oxide acidic properties, requires a history back to 1957, where 

Hofmann et al. [20] were able to revisit the previous structure where carbonyl and hydroxyl groups 

were incorporated on graphene planes. In 1969, Scholz and Boehm [21] were able to propose a 

fresh structure alongside corrugated carbon backbone, in which were the hydroxyl and carbonyl 

groups were bonded. At the same time, Nakajima et al. [22,23] proposed a model whereby 

graphene oxide is composed of two carbon layers linked to each other by sp3 carbon-carbon bonds, 

which are perpendicular to the layers where the hydroxyl and carbonyl groups are found in relative 

amounts. 

In 1998, Lert and Klinowski [24] proposed what is now the most well-known model. They 

included carboxyl groups only on the edges of GO sheet.  

2.2.2.2 Synthesis of GO 

Graphite oxide was initially synthesized by the British chemist B. C. Brodie in 1859 [25]. 

He was investigating the graphite structure by the observation of the reactivity of graphite flakes. 

Out of the different reactions he performed, one of them consisted of the inclusion of potassium 

chlorate (KCIO3) directly to slurry of graphite with respect to a fuming nitric acid (HNO3). The 

obtained material consisted of hydrogen, oxygen, and carbon, with C:H:O composition of 

(80.13:0.58:19.29). Successive oxidative treatments determined an additional increase in the 
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oxygen content with C:H:O proportion variation to (61.04:1.85:37.11). Oxygen presence made the 

material dispersible in basic water or pure water, but not in acidic media; this made Brodie identify 

the material as “a graphic acid.” 

Nearly 40 years after the Brodie’s discovery, Staudenmaier in 1898 enhanced the protocol 

provided by Brodie using a mixture of sulfuric and fuming nitric acid followed by the include of 

potassium chlorate in many aliquots over the course of the reaction. This small alteration in the 

procedure brought an overall extent of oxidation (C:O_2:1), which is the same as what was 

obtained by Brodie with a different oxidation approach. However, Staudenmaier’s protocol was 

performed in just one reaction. 

After another 60 years, Hummers and Hoffman [26] established an alternative process for 

graphite oxidation that integrates the combination of sodium nitrate (NaNO3) and potassium 

permanganate (KMnO4) in concentrated sulfuric acid (H2SO4). This achieved the same levels of 

oxidation obtained with the former method.  

There are at least three different vital benefits of the Hummer’s method compared to the 

previous ones: (1) the reaction can be completed in just a few hours; (2) a replacement of KClO3 

by KMnO4 improves the safety of the reaction by preventing the explosive production of Chlorine 

dioxide (ClO2); (3) The utilization of NaNO3, rather than fuming nitric acid, eliminates the acid 

fog formation. Nevertheless, it has two drawbacks: the oxidation reaction releases toxic gasses, 

which are nitrogen dioxide and dinitrogen tetroxide (NO2 and N2O4). In addition, the residual 

nitrate and sodium (NO3
- and Na+ ) ions are hard to remove from the waste water, which are made 

during the processes [27]. Modified Hummer’s method follows the same procedures of Hummer’s 

method without using sodium nitrate (NaNO3) [28].  
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2.2.2.3 Morphology of GO 

GO’s morphological features can be observed with the use of different microscopic 

techniques: Transmission and Scanning Electron Microscopy (TEM and SEM), and Atomic Force 

Microscopy (AFM). The thickness and number of layers are given by the AFM. As observed by 

Stankovich et al. [29], an exfoliated sample thickness of GO tends to be uniform and close to 1nm 

(Figure 2-6). 

 

Figure 2-4. AFM image of GO sheets with three height profiles in different locations (Reproducing with 
permission from [29]. Copyright Elsevier, 2007). 

When Shang et al. [30] synthesized graphene oxide, the results showed that GO sheet’s 

average thickness after ultrasonication is roughly 1nm. This result is consistent with the research 

conducted by Stankovich et al. [29]. 

Wang et al. [31] utilized the AFM, TEM and elemental analysis for the characterization of 

synthesized GO (Hummer’s method). The results demonstrated that GO is an almost transparent 
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nanosheet with many wrinkled and folded feature. The AFM results showed irregular shapes with 

around 1 µm length and around 1 nm thickness. Scanning Electron Microscopy (SEM) is one of 

the most popular techniques used by authors for the morphological characterization of GO. 

Shahriary et al. [32] observed a layered structure, formed of ultrathin film that folds in space of 

the synthesized GO.  

 Cement Hydration of GO-Cement Composites 

Cement is mainly composed of silicates (tricalcium silicate C3S and dicalcium silicate C2S) 

and aluminates (tricalcium aluminate C3A and tetracalcium aluminoferrite C4AF). Table 2-1 shows 

the main cement constituents prior to hydration [33]. 

Table 2-1. Principal cement constituents [33]. 

Constituents Chemical formula Notation Name 

Tricalcium silicate 3CaO · SiO2 C3S Alite 

Dicalcium silicate 2CaO · SiO2 C2S Belite 

Tricalcium aluminate 3CaO · Al2O3 C3A Celite 

Tetracalcium aluminoferrite 4CaO · Al2O3 · Fe2O3 C4AF - 

 

The aluminates hydrate faster compared to the silicates. Also, the aluminates hydrates are 

relevant for the setting and hardening process, but they have no impact on the mechanical 

properties of the cement. The silicate hydration majorly determines the final mechanical properties 

of the cement but have no effects on the setting process. The aluminates’ hydration reaction should 

be considered. Once the water is added to cement, the hydration of C3A is immediate; it becomes 

critically exothermic and generates similar C4AF hydration crystals. The reaction of water and C3A 
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is extremely fast and has to be slowed down by adding gypsum to the mixture. Upon contact with 

water, calcium ions (Ca+) and sulfate ions (SO4
-) are both released to react directly with the 

aluminates ion (Al4O-) to form a trisulfate known as Ettringite (3CaO · Al2O3 · 3CaSO4 · 32H2O) 

that tend to transform to the monosulfate form [36]. Moreover, the Ettringite is characterized by a 

needle-like structure, rather than the monosulfate that has a plate morphology. Also, the Ettringite 

provides a covering for the cement grain that reacts and slows the reaction for some hours. The 

quantity of gypsum required is based on the content either of silicates or of C3A; the sulfate does 

not only delay the aluminates’ hydration, but also increases the speed of the silicates’ hydration. 

The C4AF hydration provides similarly hydrated products, which is Ettringite, but its hydration is 

not fast as C3A [34]. 

At this point, the hydration of silicates should be considered. This reaction prompts two 

different products: hexagonal crystals of calcium hydroxide, known as Portlandite (Ca(OH)2) and 

a variety of calcium hydrate product that have the same structure with various composition (various 

proportion Si/Ca and bonded water) called cement gel or gel C-S-H. Meanwhile, considering a 

given mass, the C2S produces a larger quantity of gel C-S-H with respect to the C3S. The hydration 

of C3S generates a larger quantity of Portlandite, but both C2S and C3S contribute to the total 

amount of Portlandite and of C-S-H. The Portlandite crystals tend to be weak and subject to 

fracturing due to the weaker bonds between the layers of its crystals. Otherwise, the nanostructure 

of the C-S-H is still a debatable topic because their structure has not fully resolved. The C-S-H 

structure represents 80% of the final volume and 50% of hardened mass. Thus, it is responsible of 

the mechanical properties of cement composites. 
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Anhydrous cement is made up of four different mineral types namely alite (C3S), belite 

(C2S), aluminate (C3A) and ferrite (C4AF). When water is added to the cement grains, different 

chemical reactions take place simultaneously to prompt the rigid cement paste formation. The 

resulting porous multi-phase matrix is composed of CH with some traces of unhydrated clinker 

and aluminates integrated into the binding agent, the C-S-H gel. The CH byproduct is responsible 

for the cement alkalinity. Therefore, additional attention has to be considered towards the dispersal 

of nanomaterials in a cement medium of high pH value. Additionally, the heterogeneous nature of 

cement contains mostly calcium ions with some aluminum, potassium, magnesium, sulfur ions, 

and sodium. The interaction of nanomaterials with these ions must also be taken into account [35]. 

In general, the adoption of nanomaterials like nanofibers, nanotubes, or nanosilica can help 

in the acceleration of the hydration degree [36]. GO likewise helps in the acceleration of hydration 

rate. The non-evaporated water can be measured with the help of TGA with the progression of 

hydration per time. The intention of the test is to measure the hydration degree by recording the 

CH content and non-evaporable water within the cement composite. Moreover, GO cement tends 

to increase the non-evaporable water content by around 9 % and CH by roughly 6 % [37]. The 

disparity in CH content and water is consistently at a higher proportion compared to the ordinary 

Portland cement (OPC) for all ages. Therefore, GO increases the degree of crystallinity in 

polymeric nanocomposite by providing preferential nucleation site at its oxygen functional groups. 

According to the study conducted by Gong et al. [37], the creation of hydration products was 

monitored periodically under SEM. They found that the functional groups of GO play an important 

role as the growth points of hydration products through attraction of C3A, C3S, and C2S. 
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The cement hydration was examined within the presence of GO by several researchers. Lv 

et al. [38] proposed a regulatory mechanism of GO on cement hydration products. The GO surface 

is composed of numerous oxygen functional groups, which majorly consist of O, HO, and COOH. 

The active functional groups react preferentially with C3S, C2S and C3A and form the growth 

points of the hydration products, while the Portland cement temporarily retards the hydration 

reaction. The slowed hydration reaction continues to take place at the growth points on the GO 

surface. The growth pattern and growth point of the hydration products are all controlled by GO, 

which is known as a template effect. GO is capable of making numerous neighboring rod-like 

hydration crystals on the same GO surface develop flower shaped crystals and thick column-like 

shape. These columnar products are composed of rod-like of ettringite (AFt), monosulfate (AFm), 

calcium hydroxide (CH) and calcium silicate hydrate gel (CASAH), which grow further from the 

surface of the GO in similar direction because of increased stress around them, keeping the column 

shape. The moment the column-shaped crystals are grown into pore, crack or loose structure, there 

is an isolated growth. They are likewise made into completely-bloomed flower-like crystals, which 

disperse in cracks and pores as fillers and crack arrestors to prevent the propagation of cracking. 

When GO content exceeds 0.04%, the growth points become extremely dense to create single 

flower-like crystals. Thus, the hydration crystals will then take on a polyhedron shape and develop 

a compact structure. Moreover, the flower-like crystals often generated in the gap and holes of the 

cement composites create cross-linking structure, which have greatly contributed to improving 

toughness of cement composites.  

Lv et al. [38] also investigated the influence of cement hydration time on the microstructure 

of cement composites with incorporating 0.03% GO. The results of the SEM showed that GO can 
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possibly facilitate the formation of flower-like hydration crystals. On the first day, SEM showed 

irregular and small sphere-shaped particles, similar to budding flowers. Many of small rod-like 

crystals had developed after three days. There was an observation of the presence of small quantity 

of incomplete flower-like crystals, which can be possibly made by the rod-like crystals. At seven 

days, the hydrated crystals began to look like incomplete flowers with “petals.” The flower-like 

crystals showed a fuller and larger flower-like shape at 28 days. Meanwhile, hydrated crystals 

become denser at 60 and 90 days and the likelihood of forming linked clusters were observed. 

These results confirm the regulating effect of GO on the formation of flower-like hydration crystals 

with their likelihood to develop huge compact cross-linking structure through the flower-like 

crystals over time. 

 The influence of GO on cement hydration also studied by [39]. Two contents of GO, which 

are 0.02% (CG2) and 0.04% (CG4), were utilized for this reason. They carried out a measurement 

of the hydration heat development of cement paste mixes C (control mix), CG2 and CG4 within 

72 hours. The results for all cement pastes resembled that of typical Portland cement paste [40], 

which consists of five different stages: initial reaction, induction period, acceleration period, 

deceleration period and decline period. The addition of GO did not eliminate or add peaks, but 

only altered the peaks intensity. The quantity of GO in CG2 used appeared extremely low to cause 

any essential change of hydration heat development, as the two curves are closely identical. 

However, the cement hydration process in CG4 was discovered to be accelerated with GO addition, 

since higher heat (higher peaks) was recognized. Additionally, the characteristic sulphate depletion 

peak [40] at about 12 hours, which is associated with renewed formation of ettringite [40] turned 

out to be highly recognizable compared to the sample C. It is clear that there was no prolonging of 
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the induction period by the integration of GO, but the heat flow was raised (local minimum), 

particularly at the final point of the induction period by around 6.8%. Compared to sample C, CG4 

reached the main hydration peak about 3.5% sooner and the peak was increased by about 3.8%, 

which suggested that the integration of GO accelerated the induction and acceleration periods of 

the cement hydration. 

From the results of the hydration heat of this study, the introducing of GO increased the 

hydration peak and hydration rate in the acceleration period. It is evident that the addition of GO 

provided more nucleation sites for the growth of hydration products. 

 Mechanical Properties of GO-Cement Composites 

Currently, GO has attracted great interest because of its unique properties that can 

effectively improve the properties of cement-based materials. Researchers have found that GO 

with oxygen-containing functional groups improves the performance of GO-mixed cement 

composites [12,37,38,41–43]. Lv et al. [41] investigated the influence of GO sheets on formation 

process and cement hydration crystals shape for their direct effect on the mechanical resistance of 

cement composites. They observed that incorporation of low dosage of GO (<0.03%) formed 

flower-like crystals. As amount of GO was increased to above 0.03%, polyhedral or lamellar 

crystals were formed. Furthermore, they noted that the compressive strength increased 34.3% and 

38.1% by adding 0.03% and 0.05%, respectively of cement weight GO to plain cement paste. The 

corresponding flexural strength showed a respective improvement of 52.4% and 52.3% compared 

to the plain cement paste.  
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Wang et al. [42] reported that the incorporation of 0.05 wt.% GO to cement paste increased 

the 28th-day compressive and flexural strength by 40.4% and 90.5%, respectively. Also, the 

compressive and flexural strength of cement mortar, when they added the same percentage of GO, 

increased by 24.4% and 70.5%, correspondingly. An improvement in compressive and flexural 

strength of 15-33% and 41-59%, respectively over ordinary Portland cement paste was reported 

for the addition of 0.05 wt.% GO [43]. An investigation of the effect of graphene oxide nanoplates 

(GONPs) on the properties of cementitious materials was conducted by Tong et al. [12], and they 

found that GONPs reshaped the cement paste microstructure and showed a better interfacial bond 

between GONPs and C-S-H gels precipitated around them. The compressive strength of mortar 

samples improved due to the role of the functional groups of graphene oxide.  

Gong et al. investigated the effect of GO on Portland cement paste, and they found that 

adding 0.03% by cement weight of GO sheets to the plain cement paste can enhance the 

compressive and tensile strength by more than 40%. However, the reduction of the workability 

was observed [37]. Lv et al. [38] revealed that the compressive, flexural and tensile strength of 

cement composites significantly increased by around 40%, 60%, and 79%, respectively when 

0.03% by cement weight of GO was added to the cement paste. 

Babak et al. [44] revealed that the tensile strength of GO-cement composite increased by 

48% compare to control sample because of the non-agglomeration of GO in the matrix and 

nucleation of C-S-H around GO platelets. The Young’s modulus of GOCC ranged between 5-20 

GPa depending on the GO content as reported by Horszczaruk et al. [45]. After they compared 

nanosilica cement composite with GO cement composite, they conclude that the latter has similar 

effect on the hydration process resulting in an emerging nanomaterial into cement composites. 
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 Pan et al. [46] found that the addition of 0.05 wt. % GO in cement composites can increase 

the compressive strength up to 15-33% and flexural strength up to 41-59%, respectively. In 

addition, Elastic modulus increased from 3.48 GPa to 3.70 GPa for cement paste indicating slight 

increased only probably due to the forming of low number of cracks by the crack arresting of GO. 

Furthermore, Pan et al. [46] observed, based on SEM image, that compared to other nano-fillers, 

GO exhibited unique 2D structure which can deflect, tilt or twist around the crack. This structure 

allows for better mechanical properties of samples. Moreover, the pore volume and pore diameter 

comparison between the plain cement paste and GO-cement paste found to be quite similar in this 

aspect.  

 Pore Structure of GO-Cement Composites 

It is hypothesized that the carbon-based material is able to improve concrete permeability 

by improving the pore structure, which results in improved resistant to fluid ingress and chemical 

attacks. There is a direct relationship that exists between concrete durability and the mobility of 

fluids with concrete [47]. The durability is related to the ease with which liquids and gasses are 

able to enter the concrete [48,49],what is denied as transport properties. Transport properties highly 

depend on pore size distribution, total porosity, pore connectivity and its tortuosity [50,51]. 

Recently, it has been recognized that sorptivity is a significant index of concrete durability [52]. 

The durability of concrete can be improved if the resistance to water penetration is increased [53]. 

It is vital to analyze the porosity of nano-reinforced cement because of the close relation to the 

mechanical properties. Many techniques can be utilized to quantify the porous nature of cement 
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such as water sorptivity, nanoindentation, and mercury intrusion porosimetry (MIP). 

Nanomaterials play an instrumental role in refining the pore structure.  

GO has been shown to have a profound impact on the pore structure and surface area at the 

nanoscale. The increased surface area directly corresponds to the development of a highly porous 

phase. Small pores, measuring between 1 and 10 nm (also called gel pores), are made up of pore 

system in C-S-H gel. The porosity of GO-cement described in a pore size distribution characterized 

by using an alternative method, which is MIP [37]. The inclusion of GO is able to successfully 

refine the microstructure of cement composite by lowering the number of capillary pores (between 

10 nm and 10 µm) by 27.7%. This is related to the accelerated hydration owing to the 2D shape of 

GO. 

 Rheological Properties of GO-Cement Composites 

In general, the addition of GO in cement composites decreases the workability and 

increases the viscosity due to the large surface area [30,31,39,46,54,55]. Wang et al. [31] noted 

that two dosage of GO (0.01 wt.% and 0.03 wt.%) reduced the cement paste fluidity by 13.2% and 

32.1% and increased the apparent viscosity and yield stress due to the large surface area and high 

number of oxygen-containing functional groups of GO that lead to cement particles agglomeration 

and a flocculation structure formation. Shang et al. [30] reported that adding 0.08% by cement 

weight of GO to cement composites decreased the fluidity by approximately 57% while the plastic 

viscosity increased by approximately 32% compared to the plain cement paste. This is due to the 

agglomeration and flocculation formations. These formations occurred probably because of the 

electrostatic interactions between GO and cement particles.  
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Wang et al. [54] studied the effect of a GO additive on the rheological behavior of fresh 

cement pastes. They observed that the addition of GO generated new flocculation structures and 

re-agglomerated the cement particles. The greater incorporation of GO content increased the 

cement particles agglomeration and flocculation structures, sharply increasing the plastic viscosity 

and yield stress. The traditional mini-slump test, which accompanied the rheological studies, 

addressed the workability dilemma in depth. The results showed a 50% reduction of cement paste 

workability, which was confirmed by the viscosity test result [55]. Gong et. al [37] observed that 

when 0.03% by weight GO was added to cement paste, the fluidity reduced by around 35% 

compared to the plain sample. Further tests using 0.03% by cement weight of GO in cement paste 

showed a remarkable decline in the mini-slump diameter by 21% compared to the plain specimen 

due to GO agglomeration that entrap a high amount of mixing water [39].  

Pan et al. [46] demonstrated that the incorporation of 0.05% by weight GO reduced the 

cement paste workability by around 42% via a mini-slump test. Based on the previous studies, 

there is a contrast correlation between the cement composites workability and GO concentration. 

The main cause of this issue may be the large surface area of GO, that requiring water to wet their 

surface reduces the free water in cement matrices required for lubrication. Also, the large scale 

agglomerates of nanomaterials reduce the cement composites fluidity [30]. 

 Workability of Concrete 

The quality of concrete structure relies on the quality of every component used in the 

concrete mixture. Nevertheless, this is not considered the only dominating factor. The quality of 

the concrete structure is also highly reliant on the workability of the fresh concrete in the course 
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of transportation, placement, compaction and consolidation. The definition of the term 

“workability” in ASTM C125 [56] is “A property determining the effort required to manipulate a 

freshly mixed quantity of concrete with minimum loss of homogeneity.” Concrete is a complex 

composite material. The properties of the concrete when it is still fresh can greatly affect the 

characteristics of the concrete when set. At the time of casting, the concrete should easily flow into 

all crevices and corners with little or no segregation. The presence of congested reinforcement or 

awkward sections makes this process more difficult. As a result, this often usually leads to non-

homogenous and hardened honeycombed mass. In today’s modern concrete technology, it is even 

more important to define the flow of concrete when special concretes, such as self-compacting 

concrete (SCC) or high-performance concrete (HPC), are utilized. Also important is to note when 

concrete is poured in structures that are highly reinforced. These situations require great control of 

workability. Thus, one of the basic criteria for a good concrete structure is that the fresh concrete 

has good workability at the time of casting. Many factors affect the workability of concrete. They 

include water-cement ratio (w/c), the proportions of the mixture, size of aggregate, the surface 

texture of aggregate, the shape of aggregate, absorption of aggregate and admixture use. Water-

cement ratio greatly affects the workability and it is directly proportional to workability. When the 

water to cement ratio is increased, the workability of concrete is also increased. In addition, the 

properties of the aggregate including shape, surface texture, size, and absorption have also 

significant effect on concrete workability. Aggregates that are large in size need less surface area, 

resulting in the reduction of the paste content [57]. Aggregates that are flaky-shaped and/or 

elongated reduce the workability because of poor packing unlike rounded aggregates [48,57]. 

Smooth surface aggregate provides more workable concrete compared to concrete with rough 
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texture [58]. The absorption of water by the aggregates causes the loss of the workability of 

concrete [59,60]. This also decreases the effective water-cement ratio (w/c) [61]. The absorption 

rate of water by the aggregate at the initial stage is critical in order to predict the workability loss 

of concrete [62]. 

 The slump test is a commonly used practical test. It gives an insight into the variations in 

uniformity of a fresh concrete mixture of a given nominal proportion as a result of its simplicity. 

This test is prescribed by EN 12350-2 in Europe and ASTM C143 in the United States. The 

apparatus comprises a truncated metal cone that is 300 mm high with a base diameter of 200 mm 

and a top diameter of 100 mm. To carry out the test, the procedure requires that the cone is filled 

up in three layers of the same volume. Each layer is rodded 25 times. Then the last layer is struck 

off and leveled. The cone is then gradually lifted up vertically, allowing the concrete sample to 

slump down under the influence of gravity. 

 Research Gap and Focus of this Research 

Previous studies focused on the effect of GO sheets, prepared with common chemical 

processes (e.g., Hummer’s method) to produce GO sheets with full oxidations (edges, top, and 

bottom). These methods make the price of GO very high (approximately $100/g), which is one of 

the major challenges in promoting GOs in large-scale constructions. The high price of this GO 

limits its practical usage within the construction industry. The graphene oxide used in this research 

is produced by a ball milling process along with common reactants. Graphite powder was subjected 

to milling with non-toxic oxidizing agents. The result was edge-oxidized graphene oxide (EOGO) 

with a few layers. The direct milling process could achieve a dramatic reduction in cost in the 
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manufacture of EOGO by eliminating hazardous waste disposal [63]. Therefore, this innovative 

mechanochemical process can reduce the price of graphene oxide to under $1.0/g. Consequently, 

this low-cost alternative nanomaterial can be used in construction fields due to the economic 

advantages. In addition, EOGO can be used to improve the electrical and thermal conductivity of 

polymers, coating, and composites [64]. 

The other challenge of introducing GO into large-scale constructions is the dispersion 

method of GO. Using a sonication method to disperse GO in water is well known as the ideal 

method [20,35]. However, this method may not be practical for high quantities of cement paste or 

concrete. Therefore, in this study, EOGO is dispersed as powder in cement before mixing with 

water to investigate the feasibility of using EOGO as an additive material. The interaction of 

cement particles with the conventional GO will be higher than EOGO because the oxygen-

containing functional groups in GO are higher compared to those in EOGO. This may cause higher 

agglomeration of cement particles with GO when compared with EOGO. The van der Waals force 

between GO layers can be weakened with the use of the edge of the oxygen-containing functional 

groups [2,3]. This will assist in giving a better dispersion of EOGO as powder in cement 

composites compared to GO. Therefore, EOGO and its mixing methods should be carefully 

examined to observe the effects that can be had on cement composite properties along with the 

feasibility of EOGO as an additive material. 

In this research, two mix design methods are used: (1) Dry-mix design, where EOGO and 

cement powders are mixed before cement paste and mortar formation and (2) Wet-mix design 

where a sonicator is used for 20 minutes to disperse EOGO into water while using that as the 

mixing water for cement paste and mortar mixes. To quantify the difference between dry and wet-
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mix design methods, this research experimentally investigates the effect of different mixing 

methods of EOGO in the cement paste and mortar on the mechanical properties, total porosity, and 

sorptivity. Five percentages of EOGO between 0.01% and 1.0% by cement weight for both mix 

design methods were used in for this purpose. Furthermore, dry mix design was applied to concrete 

to investigate mechanical and workability performance of EOGO-concrete. The mechanism of the 

effect of EOGO on the workability of concrete is also studied in this research. 
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 PERFORMANCE CHARACTERIZATION OF EOGO-
CEMENT COMPOSITES3

 

 Introduction 

This chapter presents an investigation on the use of EOGO in cement composites including 

cement paste, mortar, and concrete. Performance characterization of EOGO-cement composites is 

discussed in detail. EOGO produced from graphite through a mechanochemical process 

characterized by advanced material conversion methods. The design variables explored in the 

mixture include EOGO content ranged from 0.01% to 1% by cement weight. The mix design 

method is classified into two designs: (1) Dry-mix design of EOGO mixed with cement as a dry 

powder prior to paste formation and (2) Wet-mix design of a sonicated EOGO solution used during 

paste formation. Comparative effects of the mix design method on compressive and flexural 

strength of cement paste and mortar were evaluated. Moreover, microstructures and crystalline 

phase changes of cement paste were also analyzed. The comparative effects extend to evaluate the 

pore structure include the total porosity and water sorptivity of cement paste and mortar for both 

mix designs. To investigate the feasibility of using EOGO in concrete industry, EOGO was applied 

to concrete to investigate strength performance of EOGO-concrete. Based on the mechanical 

properties of EOGO-cement paste and mortar, EOGO contents used with concrete were 0.01%, 

0.05%, and 0.1% by cement weight. In addition, dry-mix design as a practical method was 

                                                 

3 The content of this chapter appeared and will be appeared in: 
Alharbi, Y., An, J., Cho, B.H., Khawaji, M., and Nam, B.H.* “Mechanical and Pore Structure Characteristics of Edge- 
Oxidized Graphene Oxide (EOGO)-Cement Composites: Dry and Wet-Mix Design Methods”, Nanomaterials 2018, 
8(9), 718.  
An J., Nam B.H.*, Alharbi Y., Khawaji M., and Cho B.H. “Edge-oxidized graphene oxide (EOGO) in Cement 
Composites: Cement Hydration and Microstructure”, Peer-reviewed journal paper. 
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employed for concrete mixes to prepare specimens for compressive and flexural strength of 

concrete with EOGO.  

 Materials 

 Edge-oxidized Graphene Oxide (EOGO) 

Graphene oxide (GO) used in previous studies have been made using chemical methods 

(e.g. Hummer’s method) [2,3,5–9,11,12], a chemical process of oxidizing graphite, which is 

untenable as an additive in cement and concrete because of cost and scalability. Traditional 

methods for producing, such as Hummer’s method, depend on strong and somewhat harmful 

oxidizing agents and acids (H2O2, H2SO4 and KMnO4) and produces significant quantities of acidic 

byproduct [1]. Figure 3-1 shows the typical manufacturing process of GO through the chemical 

process. 

 

Figure 3-1. Chemical method for producing graphene oxide. 
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EOGO used in this study were produced using an innovative mechanochemical process 

which uses milling technology (like those in the mining industry) with common reactants yielding 

EOGO more cost-effectively and scalability (Figure 3-2). This innovative technology directly 

mills graphite power with a non-toxic oxidizing agent using conditions that minimize collision 

forces. It also optimizes shearing forces; thus, graphite powder is simultaneously oxidized and 

delaminated with a few layers suitable for the manifold purpose. These proprietary achievements 

eliminate hazardous waste disposal costs and deliver a product suitable for large-scale production 

at commodity-type prices [16,17]. This promising alternative method to producing EOGO on a 

large-scale is a requirement for introducing EOGO into the concrete industry. One of the major 

hindrances encountered by previous researches that prevented the introduction of EOGO into 

concrete on a relatively large scale is the small production of EOGO. This impediment can be 

overcome with the manufacturing process of ball-milling EOGO, as shown in Figure 3-2.  

 

Figure 3-2. Mechanochemical process of producing edge-oxidized graphene oxide (EOGO) 
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In addition, the GO produced by chemical method and EOGO produced by ball-milling 

method were characterized by petrographic analysis (Transmission Electron Microscopy (TEM) 

and Atomic Force Microscopy (AFM)). The results of TEM and AFM for both GO and EOGO are 

illustrated in Figures 3-3 and 3-4, respectively. Figure 3-3a shows the TEM image of GO and 

demonstrates that GO is a flat sheet like silk with folds and wrinkles at several places [30]. Figure 

3-3b illustrates the TEM image of EOGO and indicates the presence of multi-layers of EOGO. 

The overlapping areas of EOGO clearly show that EOGO has the multi-layers, and the edge of 

EOGO is angular and square. This rough surface of EOGO is due to the mechanical process of 

ball-milling. Figure 3-4a shows the AFM image of GO and illustrates irregular shapes of GO sheets 

with a dimension of roughly 1 µm and a thickness of approximately 1 nm, indicating that the GO 

sheets are exfoliated into a monolayer [30]. Figure 3-4b shows the AFM image of EOGO and 

illustrates that EOGO flakes have irregular shapes with an average dimension of about 400 nm and 

a thickness of about 2.75 nm. This effectually proves that EOGO has multi-layers.  

The EOGO content as a percentage of the cement weight was added into cement paste 

and mortar. For example, 0.01% of EOGO means 0.01% by cement weight of EOGO. Table 3-1 

summarizes the chemical compositions and physical properties of EOGO produced by both ball-

milling and chemical methods. The EOGO is hydrophilic, readily suspends in water, and can be 

functionalized with unique groups. 
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Table 3-1. Chemical and physical properties of graphene oxide (EOGO and GO) [35,64]. 

 EOGO (Ball-milling method) GO (Chemical method) 
Carbon (%) 90-95 49-56 
Oxygen (%) 5-10 41-50 
Surface area (m2/g) 200-300 700-1500 
Density (g/cm3) ~1.0 ~1.8 

 

Figure 3-3. The TEM images of (a) GO (Reproducing with permission from [30]. Copyright Elsevier, 
2015) and (b) EOGO [64]  

 

Figure 3-4. The AFM image and height profile of (a) GO (Reproducing with permission from [30]. 
Copyright Elsevier, 2015) and (b) EOGO [64]  
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 Ordinary Portland Cement (OPC) 

Ordinary Portland cement type I according to ASTM C150 [65] (American Society for 

Testing and Materials) is used as primary binding material in casting of cement composite. The 

chemical compositions of the cement are shown in Table 3-2.  

Table 3-2. Chemical composition of ordinary Portland cement 

Component SiO2 CaO Al2O3 SO3 Fe2O3 IR LOI 
 % 21.49 64.90 4.21 0.7 3.50 1.10 - 

 Fine and Coarse Aggregates 

Florida Department of Transportation (FDOT) certified sand passing the sieve 4.75 mm is 

obtained from CEMEX and used as a fine aggregate. The gradation curve of the sand met the 

ASTM requirement (ASTM C33 [22]) as shown in Figure 3-5. Fineness modulus of the fine 

aggregate is 2.36, which also complies with the American Concrete Institute (ACI) requirement 

(2.3 to 3.1).  

Coarse aggregates obtained from CEMEX with maximum size of 12 mm was used The 

sieve analysis for the coarse aggregate (Figure 3-6) demonstrated that the particle sizes for the 

coarse aggregate fell inside the ASTM certified zone (ASTM C 136 [23]). 

The specific gravities of fine and coarse aggregates were 2.66 and 2.55, respectively. The 

absorptions of fine and coarse aggregates were 0.52% and 3.9% by weight of aggregate, 

respectively.  
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Figure 3-5. Gradation curves for fine aggregate and ASTM C33 [22] grading requirements for fine 
aggregate. 

 

Figure 3-6. Gradation curves for coarse aggregate and ASTM C33 [22]grading requirements for coarse 
aggregate. 
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 Mix Design 

 EOGO-Cement Paste and Mortar 

The cement paste and mortar with EOGOs were prepared at different concentrations of 

EOGO, varying from 0.01% to 1.0% by weight of cement. Two different mix designs, the dry-mix 

and wet-mix, were explored in order to identify the best performing mix design for both cement 

paste and mortar. Dry-mix design is prepared by mixing EOGO and cement powders before 

cement paste and mortar formation. Wet-mix design is prepared by using the EOGO solution as 

the mixing water with cement paste and mortar mixes.  

Figure 3-7 shows dry EOGO powder and EOGO dispersed solution. For dry-mix design, 

EOGO powder is dispersed by being physically rubbed for a minute to apply shearing force, and 

then ASTM C305-14 [66] was followed for mixing procedures for both cement paste and mortar. 

To disperse EOGO in water for the wet-mix design, EOGO powder first is poured into water. A 

sonicator is utilized for 20 minutes in order to disperse the EOGO into the water. The solution is 

then used as the mixing water.  

The ASTM C305-14 [66] procedure was used for mixing both the cement paste and mortar. 

The weight ratio of water to cement was kept at 0.5 for cement pastes and 0.45 for mortars. Mix 

proportions of plain (control) and EOGO-cement pastes and mortars can be found in Table 3-3. 

The control cement paste and mortar samples denoted as CP for cement paste and CM for mortar.  

The EOGO-cement paste specimens are named as GPD for cement paste mixed with the 

dry-mix design and GPW for cement paste mixed with the wet-mix design. Similarly, The EOGO-

mortar specimens are named GMD for the dry-mix design and GMW for the wet-mix design. The 

number after the abbreviation represents the percentage of EOGO by weight of cement. 
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Figure 3-7. Edge-oxidized graphene oxide (EOGO): (a) Dry EOGO powder; (b) EOGO solution; and (c) 
the equipment for ball milling process [64] 
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Table 3-3. Cement paste and mortar mix proportions. 

Specimen ID w/c ratio 
Water 
(ml) 

Cement 
(gm) 

Sand 
(gm) 

EOGO 
(gm) 

CP 0.5 1750 3500 - - 
GPD 0.01 0.5 1750 3500 - 0.35 
GPD 0.05 0.5 1750 3500 - 1.75 
GPD 0.1 0.5 1750 3500 - 3.5 
GPD 0.5 0.5 1750 3500 - 17.5 
GPD 1.0 0.5 1750 3500 - 35 
GPW 0.01 0.5 1750 3500 - 0.35 
GPW0.05 0.5 1750 3500 - 1.75 
GPW 0.1 0.5 1750 3500 - 3.5 
GPW 0.5 0.5 1750 3500 - 17.5 
GPW 1.0 0.5 1750 3500 - 35 
CM 0.45 780 1686 4215 - 
GMD 0.01 0.45 780 1686 4215 0.1686 
GMD 0.05 0.45 780 1686 4215 0.843 
GMD 0.1 0.45 780 1686 4215 1.686 
GMD 0.5 0.45 780 1686 4215 8.43 
GMD 1.0 0.45 780 1686 4215 16.86 
GMW 0.01 0.45 780 1686 4215 0.1686 
GMW0.05 0.45 780 1686 4215 0.843 
GMW 0.1 0.45 780 1686 4215 1.686 
GMW 0.5 0.45 780 1686 4215 8.43 
GMW 1.0 0.45 780 1686 4215 16.86 

 EOGO-Concrete 

Cement, water, fine, and coarse aggregates were mixed in a conventional rotary drum 

concrete mixer in accordance with ASTM C192 procedure [67] with different percentages of 

EOGO (0.01–0.1 wt.%). Detailed mix proportioning of concrete mix can be found from Table 3-

4. Unlike EOGO-combined paste and mortar mixes (0.01–1.0 wt.% of EOGO), EOGO was added 

to concrete mix from 0.01 % to 0.1 wt.% since the optimum content of EOGO was found as 0.05% 

for the strength improvement of EOGO-combined paste and mortar. Moreover, dry-mix design 

only was used for the concrete mix. To make EOGO solution for wet-mix, applying sonication is 
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necessary. Massive production of GO-solution using the ultra-sonicated method would be 

challenging and costly for practical use. Therefore, wet-mix design may not be feasible for field 

construction. The specimen ID is referred as C (concrete) and GCD (EOGO-combined concrete 

with Dry-mix design). 

Table 3-4. Mix proportions of EOGO-concrete. 

Specimen ID 
w/c Water Cement EOGO Fine agg. Coarse agg.   

Ratio (kg/m3) (kg/m3) (kg/m3) (kg/m3) (kg/m3)  

CC 0.5 186 372 - 609 1227  

GCD0.01 0.5 186 372 0.372 609 1227  

GCD0.05 0.5 186 372 0.186 609 1227  

GCD0.1 0.5 186 372 0.372 609 1227  

 Experimental Procedure 

 EOGO-Cement Paste and Mortar 

3.4.1.1 Mechanical property tests 

Compressive strength tests of EOGO-cement paste and mortar were conducted according 

to ASTM C109 [68] on cubic specimens (50 mm × 50 mm × 50 mm). A static hydraulic testing 

system with loading control at a rate of 900 N/sec was used for this test as shown in Figure 3-9a. 

The loading history indicated by the testing machine was recorded until failure of the samples.The 

flexural strength was measured by following a procedure as prescribed by ASTM C348 [69]. 

Three-point loading flexural strength tests were performed on 50 mm × 100 mm × 25 mm prisms. 

A total of 264 specimens were prepared for cement paste and mortar tests.  
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3.4.1.2 Porosity test 

Effect of the mixing method of EOGO on the total porosity of EOGO-cement pastes and 

mortars was investigated by conducting the porosity test according to ASTM C1754/C1754M-12 

[70] which is a gravimetric method. Two cylinders with 75 mm diameter and 150 mm height were 

prepared for each cement composite mix. A total of 88 specimens were prepared for this test. The 

test was performed at 7 and 28 days. At first, the submerged mass of each specimen was measured 

until the submerged mass became constant. Secondly, the specimens were placed in an oven at a 

temperature of 38 ± 5 oC and the mass of the drying specimens were measured every 24 hours until 

the mass became constant. 

3.4.1.3 Water sorptivity test 

The water absorption rate of cement composites was determined by conducting water 

sorptivity test for each cement paste and mortar specimen in accordance to ASTM C1585-13 [71]. 

Two-disc specimens (100 mm in diameter and 50 mm in height) were prepared for each mix. A 

total of 44 specimens were prepared for this test, and the test was performed at 28 days. The water 

absorption rate was measured by exposing the bottom surface of cement paste and mortar 

specimens to water. The other surfaces were sealed with Latex based water proof paint. As 

illustrated in Figure 3-8, the water level in the test setup was maintained approximately 2 mm from 

the bottom of the specimens as specified in the standard method. The weight variation of each 

specimen was recorded at specific time intervals after the first contact with water. Mainly, this test 

determines the increase in cement paste or mortar prism masses due to capillary-rise absorption. 

The mathematical equation to calculate the absorption can be expressed as: 



 

37 

𝐼 = 𝑚𝑡𝑎∗𝑑   ( 1 ) 

Where I = is the absorption (mm), 𝑚𝑡 is the change in specimen mass (g) at the time t, a 

is the exposed area of the specimen (mm2), and d is the density of the water (g/mm3). 

Figure 3-8. Schematic of water sorptivity test setup 

 EOGO-Concrete 

3.4.2.1 Mechanical Property Test 

The compressive and flexural strength tests were conducted according to ASTM C39 [72] 

and ASTM C293 [73], respectively on concrete cylinder with 100 mm diameter and 200 mm height 

for compressive strength and 75 mm × 260mm × 70 mm prisms for flexural strength tests that were 

carried out by displacement control at a rate of 0.005 mm/min. The compressive and flexural 

strength tests setups are shown in Figure 3-9b and c. A total of 48 specimens were prepared for 

concrete tests. All specimens were cured at 25 oC and 90% relative humidity and tested at 7 and 

28 days. All tests were conducted in triplicate to evaluate the influence of EOGO content on the 

strengths of cement composites. Then the results were averaged. 
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Figure 3-9. Mechanical properties testing setup: (a) compressive strength for cube specimens, (b) 
compressive strength for cylinder specimens and (c) flexural strength for beam specimens 

 Results 

 Cement Paste Study 

3.5.1.1 Compressive and Flexural Strengths 

The results of the compressive and flexural strength tests for cement pastes using dry-mix 

design method are shown in Figures 3-10 and 3-11. The compressive and flexural strength 

increased as EOGO content rose until the EOGO reached 0.05%. Then a reduction in the strength 

with a further increase in EOGO content is observed. The compressive and flexural strength of 

control specimens (CP) were 23.66 MPa and 4.8 MPa at 7 days, and 31.12 MPa and 5.48 MPa at 

28 days, respectively. Figure 3-10 shows that specimens containing 0.05% and 0.1% of EOGO 

(GPD 0.05 and GPD 0.1) exhibited 14.93% and 13.11% increase in compressive strength at 7 days 

compared to CP. After 28 days, the compressive strength increased 19.6% and 17% in comparison 
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with CP. Figure 3-11 shows that the flexural strength of GPD 0.05 and GPD 0.1 increased by 

33.95% and 28.18% at 7 days when compared to CP. Also, the flexural strength of GPD 0.05 and 

GPD 0.1 increased 28.02% and 23.18% at 28 days, respectively compared with that of CP. 

Therefore, the optimum EOGO content was 0.05% (GPD 0.05). However, the strength of 

specimens containing 0.1% (GPD 0.1) were slightly lower than those of GPD 0.05. These results 

indicate that using dry-mix design for cement paste containing EOGO specimens has significant 

effect on the mechanical properties of those specimens.  

Figure 3-10. Compressive strength of EOGO-cement pastes with dry-mix design. 
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Figure 3-11. Flexural strength of cement pastes with dry-mix design 

To compare the effect of different mix design methods, namely the dry and wet-mix design 

methods, specimens that were mixed by wet-mix design methods (GPW) were tested. The results 

of the compressive and flexural strength tests of those specimens are shown in Figures 3-12 and 

3-13. The compressive and flexural strength of GPW specimens are higher than those of CP and 

show a similar pattern of strengths improvement compared with GPD specimens.  

Figure 3-12 shows that the compressive strength of GPW 0.05 and GPW 0.1 increased by 

19.39% and 26.92% at 7 days, respectively. It is also found that compressive strength of GPW 

0.05 and GPW 0.1 increased 25.54% and 16.20% at 28 days, respectively compared with that of 

CP. Moreover, Figure 3-13 shows that the flexural strength after 7 days curing of GPW 0.05 and 

GPW 0.1 increased by 34.85% and 29.12%. In addition, after 28 days curing, the flexural strength 

of GPW 0.05 and GPW 0.1 improved 37.34% and 22.25% , respectively compared with that of 
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CP. These results indicate that GPW 0.05 and GPW 0.1 exhibited a higher improvement of the 

mechanical properties of GPW specimens among the other percentages. 

Figure 3-12. Compressive strength of EOGO-cement pastes with wet-mix design 
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Figure 3-13. Flexural strength of EOGO-cement pastes with wet mix design. 

3.5.1.2 Total Porosity 

Figure 3-14 shows the relationship between the porosity of the control mix and the mixes 

with different EOGO contents cured at 7 and 28 days performing dry-mix design method. It is 

clearly seen that the porosity of GPD samples at 7 days slightly decreased when the EOGO content 

was 0.05% and more when compared to the control cement paste (CP). The porosity of all GPD 

specimens cured at 28 days were less than the CP. This indicates that the addition of EOGO using 

dry-mix design reduces the porosity of EOGO-cement paste specimens. However, the reduction 

in the porosity of EOGO-cement pastes at 7 and 28 days was not significant. For instance, the 

greatest reduction of 5% in the porosity was observed on the 28 day of cured specimen when 

EOGO was 0.1%. 

0

1

2

3

4

5

6

7

8

9

10

0 0.01 0.05 0.10 0.50 1.0

Fl
ex

ur
al

 s
tr

en
gt

h 
(M

Pa
)

EOGO content (%)

7 days 28 days



 

43 

 To compare the effects of different mix design methods on the porosity of cement paste, 

the porosity of GPW samples prepared by using wet-mix design were measured. Figure 3-15 

illustrates the effect of the addition of EOGO on the porosity of cement paste cured at 7 and 28 

days. It was observed that GPW 0.05 exhibits the highest reduction in the porosity among GPW 

samples at 7 and 28 days. The porosity of GPW 0.05 cured at 7 and 28 days decreased by around 

4.5% and 6%, respectively compared to CP. In addition, it can be seen that the porosity at 7 and 

28 days of GPW samples are less than that of GPD samples. For example, the porosity at 28 days 

of GPW 0.05 is around 6% lower than that of GPD 0.05.  

Figure 3-14. Effect of EOGO on the porosity of cement pastes with dry-mix design. 
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Figure 3-15. Effect of EOGO on the porosity of cement pastes with wet-mix design. 

3.5.1.3 Water Sorptivity Test 

To investigate the effect of EOGO on a capillary pore system of EOGO-cement composite, 

the rate of capillary-rise absorption by the hardened EOGO-cement composite specimens were 

measured by sorptivity test. The capillary pore system of cement composite plays an important 

role of water penetration through the microstructure of cement composite. There is a strong 

relationship between the capacity of water to penetrate the microstructure and durability of cement 

composite. EOGO-composites (GPD and GPW) were chosen for sorptivity test to focus on the 

effect of mix-designs. Figures 3-16 and 3-17 show the sorptivity results of the dry- and wet-mix 

designs (GPD and GPW), respectively. The rate of water absorption by GPD and GPW were 

determined by the mass of a specimen resulting from absorption of water as a function of time. 
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The increase in mass is due to capillary-rise absorption. In Figure 3-16 and 3-17, the absorption 

values were plotted against the square root of a as per the ASTM C1585-13 standard. 

The unit of the square root of time is used for the x-axis because the absorption which is 

the capillary suction in cement composite is approximately proportional to the square root of time 

according to the diffusion theory. The absorption was measured over nine days. The result of 

sorptivity test can be divided into two phases which are initial and secondary sorptivity. The initial 

sorptivity is defined as the slopes of the linear regression up to the first six hours. Secondary 

sorptivity is defined as the slopes of the linear regression from first day to the ninth day. The initial 

sorptivity slope is generally steeper than the secondary sorptivity slope, indicating a greater rate 

of absorption during initial sorptivity. In addition, the change in slope of the absorption curve in 

the late stage, secondary sorptivity signifies the saturation of a specimen. As can be seen in Figure 

3-16 and 3-17, the rate of water absorption of EOGO-composites is lower than the control 

specimen (CP) except GPD1.0. This result of low rate of absorption of EOGO-composites signifies 

that that EOGO may mean different things. It may be either reduce a continuity of capillary pores 

or reduce the total amount of pores in cement composite. Or it could mean the reduction of both 

because of the rate of absorption can be mostly improved by a refinement of capillary pore system. 

In addition, the strength increment of EOGO-composites might be explained by this absorption 

refinement of EOGO-composite. Either reductions of a continuity of capillary pores or the total 

amount of pores in cement composite can improve the strength of cement composite.  

It is interesting to note that the lowest rate of absorption is found from GPD0.05 and 

GPW0.1 for the dry and wet-mix designs. In the case of the wet-mix design, the absorption results 

of GPW0.05 and GPW0.1 are very similar. The reduction of initial and secondary absorptions for 



 

46 

GPD0.05 are 29% and 48%, respectively. The reduction of initial and secondary absorptions for 

GPW0.05 are 70% and 57%, respectively. All results of the initial and secondary sorptivity of 

EOGO-composites are presented in Table 3-5. This improvement in sorptivity with the addition of 

0.05% EOGO has a strong correlation with the strength improvement of EOGO-composite. It was 

found that the optimum EOGO content for the strength improvement is 0.05% of EOGO. Both 

sorptivity and strength of cement composite can be improved by a refinement of microstructures 

of cement composite. Through the refinement of microstructures, the capability of water to 

penetrate the microstructures of cement composite can be diminished, thus the sorptivity of cement 

composite can be reduced. Moreover, with the refinement of microstructures, the continuity of 

capillary pores and the total amount of pores could be diminished, thus possible locations of stress 

concentration can be reduced. The stress concentration typically happens at the continuous 

capillary pores or a pore itself. Based on the results of strength and sorptivity tests, the addition of 

0.05% EOGO refine the microstructures of cement composite well. A more in-depth 

microstructure analysis of EOGO composite is discussed in the section 3.5.1.4. 
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Figure 3-16. Water sorptivity of EOGO-cement pastes with dry-mix design. 

Figure 3-17. Water sorptivity of EOGO-cement pastes with wet-mix design. 
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Table 3-5. Initial and secondary sorptivity of cement pastes for dry and wet-mix designs* 

Samples Initial sorptivity 
(mm/s1/2) 

% reduction compared 
to plain paste 

 Secondary sorptivity 
(mm/s1/2) 

% difference with 
plain paste 

CP 0.0183 -  0.0035 - 
GPD 0.01 0.0147 -19.7  0.0028 -20.0 
GPD 0.05 0.0130 -29.0  0.0018 -48.6 
GPD 0.1 0.0140 -23.5  0.0027 -22.9 
GPD 0.5 0.0170 -7.1  0.0040 +14.3 
GPD 1.0 0.0183 0  0.0042 +20.0 
GPW 0.01 0.0118 -35.5  0.0030 -14.3 
GPW0.05 0.0054 -70.5  0.0015 -57.1 
GPW 0.1 0.0048 -73.8  0.0012 -65.7 
GPW 0.5 0.0126 -31.1  0.0033 -5.7 
GPW 1.0 0.0146 -20.2  0.0034 -2.9 

* (-ve means reduction, and +ve means increase compared to CP)  

3.5.1.4 Microstructure Analysis 

3.5.1.4.1 X-Ray Diffractometer (XRD) Analysis 

In order to investigate the phase identification and crystalline phase change of EOGO-

cement composites with the change in concentration of EOGO in cement mix, XRD analysis was 

carried out after different curing times of 7 and 28 days. EOGO-cement composite specimen with 

dry-mix design (EOGO ranging from 0.01 to 0.1%) was specifically chosen for the XRD analysis 

based on the strength result. As found in the section 3.5.1, dry-mix design is feasible and practical 

for cement/concrete industry in comparison with wet-mix design since ultra-sonication can be 

omitted. The diffraction patterns of EOGO-cement composites were recorded by using Rigaku 

D/MAX XRD II with CuKa radiation at wavelength of 1.545Å operated at 40 mA and 45 kV. The 

range of the diffraction angle is from 5 to 60°. Figure 3-18 shows the diffraction patterns of EOGO-

cement composites with shorthand notations of crystalline compounds. To verify the phase 

identification of crystalline compounds, the peak diffraction position of each crystalline compound 

is presented in Table 3-6. 
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(a) XRD pattern of GPD specimen (Day 7) (b) XRD pattern of GPD specimen (Day 28) 

Figure 3-18. The diffraction patterns of EOGO-cement paste cured at (a) 7 days and (b) 28 days 

Table 3-6. Phase identification of EOGO-cement composite [74–76]. 

Compound Chemical Formula 
Shorthand 
Notation 

Crystal Structure Peak Position 2θ° 

Portlandite Ca(OH)2 CH Hexagonal 18.10, 34, 47 

Alite 3CaO.SiO2 C3S Triclinic 29.44, 41, 51.7 

Belite 2CaO.SiO2 C2S Monoclinic 32.2 

Celite 3CaO.Al2O3 C3A Isometric 32.6 

Ettringite Ca6Al2(SO4)3(OH)12.26H2O AFt Hexagonal 9.24, 15.8, 22.9, 50.7 

 

The XRD results in Figure 3-18 shows the presence of major hydration product of cement 

which are portlandite (CH) and ettringite (AFt). The other major hydration product, calcium 

silicate hydrate (CSH), is not presented in the XRD result since CSH is amorphous. Figure 3-18 
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also shows that the major phases of Portland cement such as alite (C3S), belite (C2S) and celite 

(C3A) are presented in the harden EOGO-cement composites cured at 7 and 28 days.  

Peak positions of XRD intensity of control specimen and EOGO-cement composites are 

similar. However, the magnitude of XRD intensity of specimens are varied. According to Klug, 

Reynolds and other researchers, the intensity (y-axes of Figure 3-18) of the XRD result offers the 

information about the relative percentage of a crystalline compound in the specimen. To quantify 

the crystalline phase change of EOGO-cement composites with the change in concentration of 

EOGO, the rate of increase/decrease of relative crystalline compounds were calculated using 

following equation: 

 X(%) = 𝐼𝐸𝑂𝐺𝑂−𝐼𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝐼𝐶𝑜𝑛𝑡𝑟𝑜𝑙 × 100      ( 2 ) 
 

Where, X (%) is the percentage increase or decrease in crystalline phase change of EOGO-

cement composite. IEOGO and IControl are the peak intensities corresponding to crystalline 

compounds in EOGO-cement composite and control specimen. 

Table 3-7 demonstrates the rate of increase and decrease of relative crystalline compounds 

based on the intensity of XRD result with the proposed equation. It was observed that CH crystal 

formation was expedited with the addition of EOGO in cement mix. This acceleration of CH 

crystal formation indicates two possible hypotheses. First, EOGO acts as Nano-seeding material 

to promote CH crystal formation. Second, EOGO expedites CH crystal formation by delaying and 

hindering the formation of other hydration products such as CSH and AFt. For the first hypothesis, 

the acceleration of CH crystal formation due to the presence of EOGO can be supported and 
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explained with the mix proportion. Since mix proportions of EOGO-cement composites are the 

same as the control except the amount of EOGO, the total amount of alite and belite are same for 

all cases. The CH crystal formation increases when alite and belite dissolve and react with water 

molecules in cement pore solution. The reduction of alite and belite compounds in EOGO-cement 

composite in comparison with the control can be found in Table 3-7. In other words, the reaction 

of alite and belite with water was catalysed by EOGO. Unlike the first hypothesis, the second 

hypothesis is unsuitable according to the strength result. Since CSH is primarily responsible for 

the strength gain, the total amount of CSH in EOGO-cement composite should be higher than the 

control specimen based on the strength result. In addition, it is noteworthy that the highest increase 

rate of CH crystal is found with GPD0.05 at different hydration times (see Table 3-7). This result 

corresponds to the highest strength result of GPD0.05 among all EOGO-cement composites by 

dry-mix design. 

Another hydration product which was chosen for XRD analysis is ettringite (Aft). The rate 

of ettringite formation depends on the curing time. On day seven of curing, the rate of ettringite 

formation decreased in proportion to the addition of EOGO. On the contrary, the rate of ettringite 

formation at 28 days has increased in proportion to the addition of EOGO. There is no clear 

mechanism found regarding this phenomenon. However, it can be noted that there is a relationship 

between celite (C3A) and ettringite formation. It is known that ettringite forms by the reaction 

between celite and gypsum. As can be seen in Table 3-7, the rate of ettringite formation decreases 

with the increment of unhydrated celite (On the 7the day). And, it increases with the reduction of 

celite (at 28th day). This indirectly points toward the delayed reaction between celite and gypsum 

at the early stage of hydration with the presence of EOGO. 
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Table 3-7. Rate of increase/decrease of relative crystalline compound of EOGO-cement composite 

Day Specimen ID 
Rate of increase/decrease (%) of relative crystalline compound 

CH 
(Portlandite) 

C3S 
(Alite) 

C2S 
(Belite) 

C3A 
(Celite) 

Aft 
(Ettringite) 

7 
GOD0.01 1.3 -5.7 -34.0 8.9 -10.8 
GOD0.05 31.5 -26.1 -30.0 9.4 -15.6 
GOD0.1 24.2 -30.4 -26.0 10.0 -19.7 

28 
GOD0.01 9.7 -6.4 -10.8 1.7 4.3 
GOD0.05 27.0 -10.9 -11.7 -3.3 7.1 
GOD0.1 20.8 -4.3 -6.4 -5.0 10.0 

3.5.1.4.2 Scanning Electron Microscopy (SEM) and Electron Dispersive Spectroscopy 
(EDS) Analyses 

SEM and EDS analyses helped in investigating microstructures and chemical composition 

of cement hydration products when EOGO was introduced into cement matrix. EOGO-cement 

composite specimen with the optimum EOGO content (0.05%) made by the dry-mix design 

(GPD0.05) was chosen for the microstructural analysis as described in Section 3.5.1.4.1 SEM/EDS 

analyses of GPD0.05 mixes were carried out with the designated time intervals (15 minutes, 1 

hour, 24 hours and 72 hours) to evaluate the microstructure change of cement composite caused 

by EOGO. To investigate the crystalline structures of each specimen, interested spots of crystalline 

structures were chosen from the image of SEM and a high-energy beam of X-ray was emitted to 

those chosen spots. Yellow boxes indicate those chosen spots of crystalline structures for EDS 

analysis. 

Figure 3-19a shows the crystal morphology of GPD0.05 at 15 minutes (5.0 kX 

magnification). As Figure 3-19a shows, it is difficult to judge the exact crystalline phase based on 

the morphology since it is the beginning stage of a nucleation. Table 3-8a shows the chemical 

compositions of yellow boxes (1, 2, and 3) of GPD0.05 at 15 minutes. The results of 1 and 2 areas 
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show that these spots have the high percentage of carbon and oxygen which indicate the presence 

of EOGO. Moreover, these spots (1 and 2) have a relatively high percentage of calcium element 

compared to other elements. It may indicate that the dissolved calcium ions from cement particle 

initiate a nucleation of crystalline phase on EOGO or at least calcium ions and the functionalized 

oxygen groups of EOGO react to each other. Unlike yellow boxes of 1 and 2, the crystal 

morphology and chemical composition of yellow spot of number 3 indicate that it is ettringite. The 

needle-shape crystal and the presence of calcium, sulfur, and aluminum elements are the evidence 

of ettringite. Figure 3-19b shows crystal morphology of GPD0.05 at 1 hour (5.0 kX magnification). 

In comparison with Figure 3-19a, amorphous morphology of C-S-H (boxes 1 and 3) and needle-

shaped ettringite (spot 4) can be clearly seen from Figure 3-19b. The result of EDS analysis (Table 

3-8b) also supports the findings from SEM image. Crystals in yellow box 2 could be a combination 

of ettringite and C-S-H. It is noteworthy that carbon element is found in high percentage in CSH 

in comparison with ettringite. It may indicate either EOGO is embedded in CSH or CSH forms on 

EOGO. Figure 3-19c presents cement hydration products of GPD0.05 at 24 hours (10.0 kX 

magnification). Unlike the previous two SEM images (15mins and 1hour) of GPD specimen, 

Figure 3-19c shows a different pattern of hydration products. Different crystal phases of CSH and 

Aft are blended as one. Even though microstructures in boxes 1 and 2 look like a bundle of 

ettringite, EDS data of Table 3-8c indicates that those hydration products are a mixture of CSH 

and ettringite. In addition, EDS data of three boxes (1, 2 and 3 in Figure 3-19c) shows that EOGOs 

are spread out in those spots. Figure 3-19d depicts microstructures of GPD0.05 at 172 hours (10.0 

kX magnification). SEM image of Figure 3-19d shows different types of hydration products more 

clearly. Hydration products in boxes 1 and 4 clearly show amorphous morphology of CSH. Also, 
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the needle-shaped hydration product at spot 3 is ettringite crystal. EDS data of boxes 1, 4 and spot 

3 (Table 3-8d) are in good agreement with the morphologies of those hydration products. The 

hydration product in box 2 looks as if it is an amorphous CSH; however, it is jennite, one of the 

ordered crystalline CSHs according to the EDS data. EDS data of area 2 (Table 3-8d) shows Ca/Si 

ratio of 2.5 which directly indicates the presence of jennite in that area. It is noteworthy that carbon 

elements are mostly found in either amorphous or crystalline CSHs not in other crystalline 

compounds such as ettringite crystal. This observation may support two possible explanations 

made in the previous sections. Firstly, amorphous CSH initiates or forms on EOGO due to the 

presence of the functionalized oxygen groups. Second, EOGO is embedded in CSH to reinforce 

microstructures. To achieve higher strength, EOGO-cement composite should either have more of 

CSH or become denser. In other words, the addition of EOGO makes either more of CSH in cement 

mix or makes the cement composite denser. XRD data indirectly proves more of CSH formation 

in EOGO-cement composite. Moreover, EDS data indicates that EOGO are well distributed in 

different locations of CSH. 
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Figure 3-19. SEM images of EOGO-cement composite (0.05% EOGO) specimen at (a) 15 mins, (b) 1hr, 
(c) 24hrs and (d) 72hrs with different resolutions. 
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Table 3-8. EDS analysis on EOGO-cement composite (Locations of EDS in Figure 3-19) 

Time Shots 
C 

(%) 
O 

(%) 
Al 
(%) 

Si 
(%) 

S 
(%) 

Ca 
(%) 

Total 
(%) 

Probable 
Compounds 

15 mins 1(Area) 62.20 19.35 --- 0.09 6.54 11.83  Nucleation + EOGO 

(a) 2(Area) 49.02 26.23 --- 0.43 1.21 23.12 100 Nucleation + EOGO 

 3(Point) 0.61 ---- 0.46 0.06 27.51 71.37  Ettringite (AFt) 

1 hr 1(Area) 14.94 47.28 1.91 8.30 --- 27.56  C-S-H + EOGO 

(b) 2(Point) 9.27 55.56 3.97 3.75 3.59 23.86 100 AFt + C-S-H + EOGO 

 3(Area) 16.73 54.56 1.94 5.31 --- 21.46  C-S-H + EOGO 
 4(Point) 6.12 42.54 3.59 6.51 6.66 34.58  AFt+ EOGO 

24 hrs 1(Area) 25.32 52.15 3.48 2.28 1.89 14.87  C-S-H + AFt+ EOGO 
(c) 2(Area) 21.29 48.32 2.83 5.33 2.34 19.91 100 C-S-H + AFt + EOGO 

 3(Point) 34.75 45.76 1.00 3.98 1.42 13.10  C-S-H + AFt + EOGO 
72hrs 1(Area) 13.29 30.91 --- 4.03 --- 51.79  C-S-H + EOGO 

(d) 2(Point) 17.10 41.53 2.40 11.69 --- 27.30  Jennite + EOGO 
 3(Point) --- 13.70 2.58 9.23 5.47 69.01 100 AFt 
 4(Area) 19.28 41.68 --- 10.72 --- 28.34  C-S-H + EOGO 
 5(Point) --- 7.29 1.58 12.91 2.35 75.87  AFt 

 

Based on the investigations of the analyses of XRD and SEM/EDS, a potential reaction 

mechanism between EOGOs and cement hydration products can be proposed as shown in Figure 

3-20. EOGO with the functional oxygen groups such as -OH and -COOH may act as a Nano- 

seeding material to promote the nucleation of C-S-H and other cement hydration products. This 

would make EOGO-cement composite denser. As a result, strength of cement composite was 

enhanced with the increase of hydration products, especially CSH in cement composite. In 

addition, sorptivity of cement composite was improved with the reduction of a continuity of 

capillary pores and the total amount of pores in cement composite. Figure 3-20 is a schematic 

diagram to explain the proposed role of EOGO in cement composite. The black dot and gray dot 

in Figure 3-20 indicate cement particle and EOGO, respectively. The expansion of the dots 

represents the crystal growth from cement particle and EOGO. Figure 3-20a shows the 
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crystallization of hydration products in cement pore solution at 3-day (left) and 28-day (right) with 

the absence of EOGO. Figure 3-20b shows the crystallization of hydration products in cement pore 

solution with the presence of EOGO (gray dots) at 3-day (left) and 28-day (right). By adding 

EOGOs which could be initiating points of the crystallization of dissolved ionic components from 

cement particles in cement pore solution, EOGO-cement composite can be denser, and the 

capillary pore system can be refined.  

  

             (a)               (b) 

Figure 3-20. Schematic diagram of crystal growth at 3 and 28 days of (a) control mix and (b) EOGO-
cement composite 

 Cement Mortar Study 

3.5.2.1 Compressive and Flexural Strengths 

The results of the compressive and flexural strength tests for the mortar samples prepared 

by dry-mix design are illustrated in Figures 3-21 and 3-22. The compressive strength of specimens 

without EOGO (CM) and EOGO-mortar specimens (GMD) are shown in Figure 3-21. The 

compressive strengths of CM were 29.9 MPa at 7 days and 36.8 MPa at 28 days. All GMD 

specimens showed higher compressive strengths compared with CM. Specimens with EOGO 
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contents of 0.05% (GMD 0.05) and 0.1% (GMD 0.1) exhibited the greatest compressive strength 

among the other specimens. The compressive strength of GMD 0.05 and GMD 0.1 were 35.1 MPa 

and 34.3 MPa at 7 days, representing approximately 17% and 15% increases compared with CM. 

The compressive strength of GMD 0.05 and GMD 0.1 were 43.7 MPa and 42.5 MPa at 28 days, 

representing approximately 19% and 16% increases compared with CM. Figure 3-22 shows the 

flexural strength of EOGO-mortar with different EOGO contents. The flexural strengths of CM 

were 5.1 MPa at 7 days and 6.5 MPa at 28 days. The flexural strength of GMD 0.05 and GMD 0.1 

were 6.5 MPa and 6.2 MPa at 7 days, representing 17% and 15% increases compared with CM 

while the flexural strengths of those specimens were 7.5 MPa and 7.4 MPa after 28 days of curing, 

representing 16 and 14% compared with CM. The results indicate a remarkable increase in the 

mechanical properties of EOGO-mortars when 0.05% and 0.1% of EOGO were incorporated using 

dry-mix design.  

Figure 3-21. Compressive strength of EOGO-mortars with dry-mix design 
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Figure 3-22. Flexural strength of EOGO-mortars with dry-mix design 

To compare the effect of the mix design on the mechanical properties of mortars containing 

EOGO, strength tests were conducted on wet-mix mortars. Figures 3-23 and 3-24 show the 

compressive and flexural strengths of the EOGO-mortar specimens. Figure 3-23 illustrates that the 

compressive strength of all GMW samples are higher than the CM specimens at both curing times. 

It can be seen that GMW 0.05 and GMW 0.1 had the highest compressive strength compared with 

the other specimens, similar to dry-mix design. The compressive strength at 7 days of GMW 0.05 

and GMW 0.1 were 35.6 MPa and 37.9 MPa, respectively, which increased 19% and 27% 

compared with CM. The compressive strength at 28 days of GMW 0.05 and GMW 0.1 were 44.1 

MPa and 45.8 MPa, respectively, which increased 20% and 25% compared with CM. Figure 3-24 

shows that the flexural strength of GMW 0.05 and GMW 0.1 were 6.7 MPa and 6.4 MPa, 

respectively at 7 days, which are 31% and 26% higher than that of CM. Flexural strength after 28 
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days curing of GMW 0.05 and GMW 0.1 were 7.6 MPa and 7.4 MPa, respectively, which are 17% 

and 14% higher that of CM.  

Figure 3-23. Compressive strength of EOGO-mortars with wet-mix design 

Figure 3-24. Flexural strength of EOGO-mortars with wet-mix design. 
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In comparison of dry and wet-mix designs, the wet-mix method is shown to exhibit slightly 

higher compressive and flexural strengths at 28 days over all percentages of EOGO for cement 

paste. For example, the compressive and flexural strength at 28 days of GPW 0.05 are around 5% 

and 7%, respectively higher than GPD 0.05. The strengths of GMW specimens were somewhat 

like those of GMD specimens when EOGO contents were 0.1% and lower. However, when EOGO 

content in mortars was 0.5% and higher, the compressive and flexural strengths of GMW 

specimens were higher than those of GMD. For instance, the compressive and flexural strength at 

28 days of GMW 1.0 are 10.5% and 10.6% higher than those of GMD 1.0. This is due to that the 

large content of EOGO with wet-mix design (GMW 1.0) has a better exfoliation and dispersion 

compared to GMD 1.0 with dry-mix design. Consequently, GMW 1.0 has a better effect on the 

mechanical properties of EOGO-mortars than GMD 1.0. 

3.5.2.2 Total Porosity 

Porosity for both dry and wet-mix design methods were measured in order to observe the 

effect of different percentages of EOGO on the total porosity of cement mortar. Figure 3-25 shows 

the effect of the addition of different contents of EOGO on the porosity of mortar mixes cured at 

7 and 28 days using dry-mix design. The results indicate that the total porosity of GMD specimens 

decreased compared to the control mortar (CM) specimen. It was observed that the porosity 

decreases when the EOGO content increases up to 0.1%, then it begins to increase when 0.5% and 

more of EOGO is added. The porosity at 28 days of GMD 0.05 and GMD 0.1 has the most 

reduction in strength among all GMD samples which they decreased by 6.6% and 7.1% compared 
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to CM. This result demonstrates that using dry-mix design can affect the total porosity of EOGO-

cement mortars by adding moderate percentages of EOGO (0.05% and 0.1%). 

Then the porosity cured at 7 and 28 days of GMW mixes that were prepared by using wet-

mix design were measured. Figure 3-26 shows the effect of various of EOGO percentages on the 

porosity of cement mortars using wet-mix design method. The results show that all GMW samples 

have a lower result than the CM. The general trend is similar to that of dry-mix design. GMW 0.05 

and GMW 0.1 have the most reduction in the porosity for both curing times. The porosity at 28 

days of GMW 0.05 and GMW 0.1 decreased by approximately 7.9% and 8.2% compared to the 

CM.  

Figure 3-25. Effect of EOGO on the porosity of mortars with dry-mix design. 
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Figure 3-26. Effect of EOGO on the porosity of mortars with wet-mix design. 

3.5.2.3 Water Sorptivity  

Water sorptivity test with different concentration of EOGO was conducted for both dry and 

wet-mix design methods in order to investigate water absorption rate of cement mortar. Figures 3-

27 and 3-28 show the cumulative absorption of different EOGO-mortar mixes using dry and wet-

mix design. Figure 3-27 shows that the addition of EOGO to mortar using dry-mix design reduces 

the water absorption of EOGO-mortar specimens.  

The results are summarized in Table 3-9. It is seen that the GMD 0.05 and GMD 0.1exhibit 

the lowest initial and secondary sorptivity. The same trend was found for dry-mix design of 

EOGO-cement paste specimens. The initial sorptivity of GMD 0.05 and GMD 0.1% reduced by 

27.3% and 48%, respectively, while the secondary sorptivity of the same samples reduced by 40% 

and 27.3%, respectively, compared to the control sample (CM). This pattern is consistent with the 

porosity test at 28 days of mortars with dry-mix design method. The results indicate a less effective 
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of the addition of EOGO in cement mortar mixes using dry-mix design when the EOGO percentage 

is 0.5% or more.  

The water sorptivity test also was performed on EOGO-mortar specimens using wet-mix 

design to compare the effect of the mixing method of EOGO in cement mortars on the water 

absorption of those specimens. Figure 3-28 illustrates the plot of water absorption against the 

square root of time of EOGO-mortar specimens that mixed by using wet-mix design method. It is 

apparent that the water absorption decreases with the addition of EOGO in cement mortars. GMW 

0.05 and GMW 0.1 samples show a significant reduction in the initial and secondary sorptivity. 

The initial sorptivity of GMW 0.05 and GMW 0.1% reduced by 48.9% and 37.3%, respectively, 

while the secondary sorptivity of the same samples reduced by 55.6% and 40%, respectively 

compared to CM.  
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Figure 3-27. Water sorptivity of EOGO-mortars with dry-mix design. 

Figure 3-28. Water sorptivity of EOGO-mortars with wet-mix design. 
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Table 3-9. Initial and secondary sorptivity of mortars for dry and wet-mix designs*. 

Samples Initial sorptivity 
(mm/s1/2) 

% reduction compared 
to plain mortar 

 Secondary sorptivity 
(mm/s1/2) 

% difference with 
plain mortar 

CM 0.007 -  0.0014 - 
GMD0.01 0.0057 -22.8  0.0013 -7.7 
GMD0.05 0.0055 -27.3  0.001 -40.0 
GMD 0.1 0.0047 -48.9  0.0011 -27.3 
GMD 0.5 0.0058 -20.7  0.0016 +12.5 
GMD 1.0 0.0061 -14.8  0.0019 +26.3 
GMW0.01 0.0054 -29.6  0.0011 -27.3 
GMW0.05 0.0047 -48.9  0.0009 -55.6 
GMW 0.1 0.0051 -37.3  0.001 -40.0 
GMW 0.5 0.0062 -12.9  0.0012 -16.7 
GMW 1.0 0.0069 -1.4  0.0016 +12.5 

* (-ve means reduction, and +ve means increase compared to CM)  

It is interesting to note that when EOGO contents were 0.5% and 1.0% (GMW 0.5 and 

GMW 1.0), there was insignificant effect on the water absorption rate compared to the other 

percentages of EOGO. This result was observed with both dry and wet-mix design methods for 

cement paste and with dry-mix design for mortar. In addition, the results of water sorptivity of 

GMW specimens were slightly lower than those of GMD specimens. For instance, the secondary 

sorptivity of GMW 0.05 and GMW 0.1 are 10% and 9% lower than GMD 0.05 and GMD 0.1 

specimens. This indicates that wet-mix design has a slightly better influence on water sorptivity of 

EOGO-mortar mixes than dry-mix design.  

 Concrete Study 

3.5.3.1 Compressive and Flexural Strength 

To investigate the feasibility of the use of EOGO in the concrete industry with no regard 

for the sonication, dry EOGO powder was incorporated into concrete mix. The effect of EOGO on 

the strength of hardened concrete was investigated. The specimen identifications with GCD 
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indicate that EOGO-combined concrete specimens were made with Dry-mix design. Figure 3-29 

and 3-30 show the results of compressive and flexural strength tests of GCD specimens. As 

expected, the results indicate that the compressive and flexural strengths of GCD specimens are 

higher than the control concrete (CC) specimens at 7 and 28 days. This result confirms that the 

addition of EOGO in cement composite can lead to the improvement in strength. Also as 

importantly, 0.05% EOGO addition results in 16% strength increment compared to the control CC 

specimen. From the strength test results of EOGO-combined paste and mortar, 0.05% EOGO 

addition was found as the optimum EOGO amount. And, this optimum EOGO amount was the 

reason for the range of EOGO content (0.01%–0.1%) for CC specimen. Similarly seen in EOGO-

cement paste and mortar was that 0.05 wt.% of EOGO led to the highest flexural strength increment 

of GCD specimen. This phenomenon might be due to more cement hydration products and two-

dimensional interlocking between hydration products. In addition, the ability of EOGO to reduce 

the nano and micro-cracks propagation can explain the strength improvement of EOGO-concrete.  
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Figure 3-29. Compressive strength results of EOGO-concrete with dry-mix design. 

 

Figure 3-30. Flexural strength results of EOGO-concrete with dry-mix design. 
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 Discussion 

The results of the mechanical properties of EOGO-cement composites show significant 

improvements compared to cement composites without EOGO as presented in sections 3.5.1.1 and 

3.5.2.1. This was the case for both dry and wet-mix design methods. These improvements can be 

attributed to the following rationale. First, EOGO as a two-dimensional nanomaterial can 

effectively hinder the propagation of nano-cracks. It is believed that the extremely small size of 

graphene oxide can resist crack initiation at very early stages, which are measured by nano-cracks 

and bridge cracks in the cement matrix [77,78]. Second, the EOGO functionality has an impact on 

the crystal seed growth of the calcium silica hydrate (C-S-H) gels [38,79–82]. Oxygen groups 

alongside the edges of the EOGO may react with dissolved ions of cement grains, and thus promote 

the cement hydration reaction to produce more cement hydration products such as C-S-H and 

calcium hydroxide (Ca (OH)2) compared to the control mix. Third, EOGO as a nano-scale material 

can fill the nano- and micro-pores of the cement matrix. This phenomenon is called either nano- 

or micro-filler effect [39,78,83]. The mechanical properties of EOGO-cement composites 

exhibited the greatest improvements when EOGO content was 0.05%. Previous studies conclude 

that small amount of graphene oxide provide significant improvements in the mechanical 

properties of cement composites [30,38,84–87]. For both cement paste and mortar, it is noted that 

the trend of the compressive and flexural strength decreased after the optimum content of EOGO 

(0.05%). The main reason is that increasing EOGO content causes agglomeration of EOGO flakes. 

This agglomeration form large voids in cement matrix and stresses cannot be transferred across 

the bundles. If the EOGO bundles remain intact, they are not within the nanoscale range. As a 

result, they gather between hydration products and create zones of weakness instead of filling the 
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nanosized void in the cement matrix [44]. In addition, for both mix designs, the significant 

improvement in mechanical properties with incorporating 0.05% of EOGO can be referred to the 

significant reduction in capillary pores when the same percentages added to cement paste and 

mortar. Moreover, the mechanical properties of cement composites show good improvement when 

0.1% of EOGO was incorporated to the mixes.    

The test results have shown that effects of EOGO in terms of strength improvements on 

cement paste and mortar are less than the use of conventional GO nanosheet, which is produced 

by chemical process such as Hummer’s method. Previous studies for effects of GO nanosheets on 

cement paste and mortar have reported significant improvement of compressive and flexural 

strength up to 40% and 60%, respectively [38,41–43,47,88]. Therefore, the difference of the 

strength increments is due to the different degree of hydration by different amounts of functional 

oxygen groups and different layer characteristics in between EOGO and GO. EOGO has relatively 

lower percentages of oxygen and more layers in comparison with GO [45].  

The total porosity of cement composites containing EOGO for both dry and wet-mix design 

methods cured at 28 days are lower than those cured at 7 days. The increase of curing time provides 

more sufficient environment for cement hydration, reducing the total porosity of cement based 

materials [89,90]. A slight reduction in the total porosity of cement composites specimens was 

noticed after the incorporation of EOGO for both mix designs compared to the control samples as 

presented in sections 3.5.1.2 and 3.5.2.2. A similar result has been reported in cement composites 

incorporating graphene oxide [37,39]. The possible mechanism is that the EOGO as a nano-scale 

material can fill the nano and micro-pores of the cement matrix. Additionally, the addition of the 

2D shape of graphene oxide accelerates the hydration of cement composites, refining the 
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microstructure by reducing the total porosity [35]. Interestingly, increasing the EOGO content to 

0.5% or more has a lower effect in reducing the porosity of cement composites for both mix 

designs. This could be because of poor dispersion and workability that exacerbate large pores [39].  

The results of the water sorptivity tests for both dry and wet-mix design show the 

significant effect of EOGO on the water sorptivity of cement composites as presented in sections 

3.5.1.3 and 3.5.2.3. Water absorption rate is mostly influenced by the capillary pores. The capillary 

pore size can be classified as: large capillaries or macropores (50-10,000 nm), large mesopores 

(10-50 nm), and small mesopores (2.5-10 nm) [33,39]. According to Li et al. [39], the addition of 

graphene oxide has no significant effect on pores larger than 50 µm, but it significantly reduces 

the large capillary pores (50-10,000 nm) and can refine the pore structure. The significant reduction 

in large capillary pores was detected based on the results of the water sorptivity test. Also observed 

was the low rate of absorption of EOGO-composites. The results indicate that the addition of 

EOGO may reduce either a continuity of capillary pores or the total amount of pores in cement 

composite. It may also be both because the rate of absorption can be mostly improved by a 

refinement of capillary pore system. In addition, the strength increment of EOGO-composites 

might be explained by this absorption refinement of EOGO-composite. Either reductions of a 

continuity of capillary pores or reducing the total amount of pores in cement composite can 

improve the strength of cement composite. The results also show that further addition of EOGO 

beyond 0.1% did not further reduce the water absorption rate. This phenomenon indicate an 

introduction of larger pores due to the poor workability of cement composites with 0.5% and more 

of EOGO [39]. In addition, incorporating 0.5% or more of EOGO would cause agglomeration of 

EOGO due to the poor dispersion that can form large voids within cement composites, into porous 
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clusters. This led to more pathways for water to be sucked by the specimens. This improvement in 

sorptivity with the addition of 0.05% EOGO has a strong correlation with the strength 

improvement of EOGO-composite. It was found that the optimum EOGO content for the strength 

improvement is 0.05% of EOGO. Both sorptivity and strength of cement composite can be 

improved by a refinement of microstructures of cement composite. Through the refinement of 

microstructures, the capability of water to penetrate the microstructures of cement composite can 

be diminished. Thus, the sorptivity of cement composite can be reduced. Furthermore, with the 

refinement of microstructures, the continuity of capillary pores and the total amount of pores could 

be diminished. Consequently, possible locations of stress concentration can be reduced. The stress 

concentration typically happens at the continuous capillary pores or a pore itself. Based on the 

results of strength and sorptivity tests, the addition of 0.05% EOGO refines the microstructures of 

cement composite well. 

In comparison of dry and wet-mix designs, the results show that wet-mix design has better 

effect on compressive and flexural strengths, total porosity, and water absorption rate of cement 

composites than dry-mix design. This is attributed to the better exfoliation and dispersion of EOGO 

in the cement matrix with wet-mix design. The well dispersion of EOGO in cement matrix may 

increase the filling and interlocking effect of EOGO, inducing a structure with fewer pores. 

Moreover, the well-dispersed EOGOs in water with wet-mix design have a larger surface area than 

dry powder of EOGOs in dry-mix design because of the lower agglomeration. The larger surface 

area of EOGOs absorbs more free water in the mixes and has more oxygen-containing functional 

groups, which equates to more nucleation sites. These groups can react as a binder between 
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graphene oxide nanoflakes and cement paste to obtain greater uniformity of the cement matrix 

[45,91,92], leading to lower capillary pores and higher strengths.  

However, the compressive and flexural strengths gained by the dry-mix design method are 

sufficiently high as structural materials. In addition, using dry-mix design showed significant 

improvements in reducing capillary pores of cement composites. The use of edge of the oxygen-

containing functional groups is able to make the van der Waals force between EOGO layers 

weaker. This results in good dispersion of the dry powder of EOGO in cement matrix [2,3]. 

Therefore, the study results support that the dry-mix design is economical, feasible, and practical 

for EOGO-cement composites and it can be implemented in concrete industry. 

 Summary and Conclusion 

This chapter investigated the use of EOGO in cement composites includeing cement paste, 

mortar, and concrete. A series of laboratory tests were conducted to evaluate the mechanical 

performance, total porosity, and water sorptivity of EOGO-cement composites. To identify the 

optimum content of EOGO as well as feasible mix design, different variables were considered in 

the mix design including EOGO content, mix method while using extensive experimental tests. In 

addition, microstructural and crystallography analyses (SEM/EDS and XRD) were performed to 

investigate the mechanism of EOGO in strength, microstructures and crystalline phase change of 

cement composites. The following conclusions were made on the research findings: 

• Mechanical properties of EOGO-cement composites have been improved compared to 

the control specimen. According to compressive and flexural strength tests, in most 

cases, the strength of EOGO-cement composites is higher than the control specimens. 
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• Based on the mechanical test results of EOGO-cement composites, the optimum 

content of EOGO to achieve the highest strength is 0.05% with respect to the weight of 

Portland cement in the cement mix. 

• For both dry and wet-mix designs, the addition of EOGO has a minor effect on the total 

porosity of cement composites. For sorptivity test, most of EOGO-cement composites 

showed significantly improvement. This indicates a reduction of a continuity of 

capillary pores and the total amount of pores due to the promoted nucleation of 

hydration products and filling effect, leading to an improvement in the durability of the 

cement composites.  

• The petrographic quantitative analysis of XRD data indicates that EOGO may act as 

Nano-seeding material in cement pore solution to promote CSH and other hydration 

products. Petrographic analyses (SEM/EDS) are in good agreement with XRD analysis. 

EOGOs are mostly found in the presence of CSH, confirming EOGO having a potential 

role as nano-seeding material in the cement composite.  

• There is no significant difference between dry and wet-mix design in strength increase 

rate. For the mass production of EOGO-cement composite, dry-mix design is feasible 

and more practical for cement/concrete industry compared to wet-mix design. Unlike 

dry-mix design, wet-mix design requires applying ultra-sonication to EOGO-water 

solution prior to paste formation. 
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 RHEOLOGICAL AND WORKABILITY BEHAVIOR OF 
EOGO-CEMENT COMPOSITES4

 

 Introduction 

 This chapter mainly investigates rheological behaviors and properties of EOGO-cement 

composites. In general, the addition of GO produced by common methods in cement composites 

decreases the workability and negatively affect the rheological properties due to the large surface 

area [30,31,39,46,54,55]. These studies reported that the loss fluidity of cement paste and mortar 

relates proportionally to the amount of GO mixed with cement paste and mortar. For example, Pan 

et al. [46] demonstrated that the incorporation of 0.05% of GO by cement weight reduced the 

cement paste fluidity by around 42% via a mini-slump test. Shang et al. [30] reported that adding 

0.08% by cement weight of GO to cement composites decreased the fluidity by approximately 

57% while the plastic viscosity increased by approximately 32% compared to the plain cement 

paste (due to the agglomeration and flocculation formations). The effect of EOGO as a new 

nanomaterial on the workability and rheological properties of cement composites was 

experimentally investigated. Moreover, two mix design methods, dry and wet-mix, were 

investigated and their performances were compared. Mini-slump test with image processing was 

conducted to measure the flowability of EOGO-cement paste using the two different mix designs 

and different amounts of EOGO ranging from 0.01% to 1.0%. The rheological parameters, 

apparent viscosity, and shear stress of EOGO-cement paste were also investigated through 

conducting viscometer tests. To investigate the effect of EOGO and its mixing methods on the 

                                                 

4 The content of this chapter will appear as a peer-reviewed journal paper, authored by the author of dissertation. 
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workability of mortar, the flow table test was performed by using the same image processing 

procedure conducted with cement paste. For concrete, dry-mix design with different EOGO 

amounts ranging from 0.01% to 0.1% were used to investigate the effect of EOGO on the 

workability of concrete. The slump test as a common method was used for this purpose.  

 Materials 

 Edge-Oxidized Graphene Oxide (EOGO) 

Edge-oxidized graphene oxide (EOGO) as described in section 3.2.1 is used in this study 

as an additive nanomaterial in two conditions, which are dry powder and solution.  

 Ordinary Portland Cement 

Ordinary Portland cement type I according to ASTM C150 [65] is used in casting of cement 

composites. The chemical compositions of the cement are presented in section 3.2.2.  

 Aggregates 

Fine and coarse aggregates used for investigating the effect of EOGO on the rheological 

and workability behavior of cement composites are presented in section 3.2.3. 
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 Experimental Procedure 

 Mini-Slump Test 

A mini-slump test was conducted to evaluate the effect of EOGO on the fluidity of cement 

pastes. In this study, image processing was employed to accurately measure the flow (or spreading) 

area of cement paste. Immediately after mixing, the mixtures were poured into a mini-slump cone 

with 100 mm bottom diameter, 70 mm top diameter, and 50 mm height. Figure 4-1 shows a 

schematic diagram of the test setup to measure the final spreading area of the cement pastes. A 

flow table that meets ASTM C230/C230M-14 specifications [93] was mounted on a black poster 

board. A high-resolution digital camera was installed on the top part records images of the 

spreading areas of mixtures, and image processing was then applied to determine the spreading 

areas of the mixtures. This 2-D image processing technique quantifies the spreading areas based 

on the pixel count.  

The color image of the paste on a gold background was converted to a 256-level gray scale 

image, with black corresponding to 0 and white corresponding to 255. The image was then 

converted to a binary image using the threshold option. All pixels with a gray level of 128 and 

higher were converted to white and those with a value of 127 and lower were converted to black 

[94]. The binary image was inverted and saved as a bitmap file. The bitmap file was processed 

using MATLAB where the MATLAB code counts the area of pixels based on the difference 

between the color of the table (1 = white) and the specimen (0 = black). In order to validate the 

employed method, the surface area of a known area, which is a black rubber circle (Area = 193.6 

cm2), was measured by image processing (Area = 196.26 cm2), and then was compared with the 

calculated surface area. The result showed that the difference was around 1.37%. 
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Figure 4-1. Schematic of flow table/mini-slump test setup 

 Viscometer Test 

The rheological parameters of the cement pastes were measured using BROOKFIELD DV-

II+Pro Viscometer as shown in Figure 4-2. A 600-ml low form Griffin beaker and spindle SC4-27 

were used. After mixing, the cement paste specimens were poured into the 600-ml beaker to 

perform the rheological measurements. The speed was raised from 20 to 150 rpm with seven speed 

intervals. The rheological parameters, apparent viscosity, and shear stress were measured during 

the test. Plastic viscosity (𝜂𝑃) and the yield stress (𝜏0) can be found from the slope and intercept 

of the linear Bingham model between the shear stress and shear rate [30]. The mathematical form 

of the Bingham equation model is: 
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𝜏 = 𝜏0 + 𝜂𝑝𝛾   ( 3 ) 

Where 𝜏 is the shear stress (Pa), 𝜏0 is the yield stress (Pa), 𝜂𝑝 is the plastic viscosity (Pa.s), and 𝛾 is the shear rate (Sec-1). 

 

Figure 4-2. Viscometer device used to measure the viscosity of cement pastes 

 Flow Table Test 

The flow table test was employed to evaluate the influence of EOGO on the workability of 

mortar. ASTM C1437-15 [95] was adopted for the test procedures. The mortar mixtures were 

poured into a cone with 100 mm bottom diameter, 70 mm top diameter, and 50 mm height. The 

cone was set on the flow table that meets ASTM requirements [93] . The same apparatus that used 

for the mini-slump test was used to carry out this test. The same image processing technique where 
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the coded MATLAB program counts the pixels was also applied to calculate the spreading area 

with each blow (25 blows according to [95]). 

 Results and Discussion 

 Effect of EOGO on the Fresh Cement Paste 

4.4.1.1 Fluidity 

Figures 4-3 and 4-4 show the image processing results of the flow of cement paste 

specimen prepared by the dry and wet mix design methods, respectively. It is observed that the 

flow areas are decreased when the EOGO content increases for both mix design methods. In 

addition, the reduction in the fluidity is significant when 0.5% and 1.0% of EOGO are added for 

both mix designs. Figure 4-5 shows the relationship between the flow (or spreading) area and the 

EOGO content in the mixes for both dry and wet mix design methods. The flow areas reduce with 

increasing the EOGO content. This result indicates that the addition of EOGO reduces the fluidity 

of cement paste, which is consistent with past research in literature [30,31,39,46,54,55].  

The flow area of the control sample was around 350 cm2. The flow areas of GPD 0.01, 

GPD 0.05, and GPD 0.1 reduced to 339.89 cm2, 318.64 cm2, 311.64 cm2, respectively. Similarly, 

the flow areas of GPW 0.01, GPW 0.05, and GPW 0.1 decreased to 338.74 cm2, 312.77 cm2, and 

302.58 cm2, respectively. Adding 0.5% and 1.0% of EOGO to the cement matrix in dry and wet-

mix cases exhibited the highest reduction in fluidity of samples. The flow area of GPD 0.5 and 

GPD 1.0 reduced to approximately 256 cm2 and 230 cm2, respectively, and the flow area of GPW 

0.5 and GPW 1.0 reduced to around 244 cm2 and 217 cm2 respectively. Figure 4-5 shows when 

the EOGO content was 0.1% and lower, the influence of EOGO addition was not significant; 
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however, EOGO addition higher than 0.5% showed significant reduction in the cement paste 

fluidity. This observation is shown in both dry and wet-mix designs. Table 4-1 presents the 

reduction percentages of GPD and GPW samples with all EOGO contents. It is clear that adding 

0.5% and 1.0% of EOGO to cement matrix can noticeably reduce the fluidity. The reduction 

percentages of the flow areas of GPD 0.5 and GPD 1.0 were approximately 43% and 51%, 

respectively, compared to the control sample. The flow areas of GPW 0.5, and GPW 1.0 decreased 

by around 45%, and 60%, respectively, compared to the control sample.  

 

Figure 4-3. Original and processed images for cement pastes (Dry-mix design) 
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Figure 4-4. Original and processed images for cement pastes (Wet-mix design) 

Figure 4-5. Comparison between the effect of the mixing method of EOGO on the fluidity of cement 

pastes 
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Table 4-1. Results of the mini-slump test of cement pastes. 

Specimen ID Flow area (cm2) Reduction percentage (%) 

CP 350.06 0 
GPD 0.01 339.89 3.34 
GPD 0.05 318.64 9.86 
GPD 0.1 311.62 12.34 
GPD 0.5 256.64 43.12 
GPD 1.0 230.75 51.71 
GPW 0.01 338.74 4.35 
GPW0.05 312.77 11.92 
GPW 0.1 302.58 15.69 
GPW 0.5 244.59 45.82 
GPW 1.0 217.43 61.0 

 

Table 4-1 shows a difference between the flow areas of GPD and GPW. GPW samples 

exhibit more reduction in the cement pastes fluidity than GPD. The possible reason is that the 

surface area of EOGOs increases after they are sonicated as a part of the wet-mix design compared 

to that in dry-mix design. This increase in surface area increases water absorption. Hence, the free 

water in cement paste decreases, decreasing the particle space and leading to an immediate increase 

in the friction between particles. However, the difference between GPD and GPW fluidities was 

not statistically significant. For instance, the difference of the flow area of GPD 0.05 and GPW 

0.05 is 2%. The highest difference observed of 6% was between GPD 1.0 and GPW 1.0. This 

indicates that using dry-mix design is also effective although EOGO is well dispersed with wet-

mix design. 

4.4.1.2 The Rheological Properties 

Figures 4-6 and 4-7 illustrate the curves of shear rate with apparent viscosity under different 

EOGO contents for dry and wet-mix designs. Figure 4-6 shows that the apparent viscosity 
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decreases dramatically with the increase in shear rate. Eventually it is stabilized with dry-mix 

designs. Meanwhile, at the same shear rate, the apparent viscosity increased with the increase of 

EOGO content in the mix. When the EOGO content was 0.01% (GPD 0.01), the apparent viscosity 

of the cement paste was close to the control specimen (CP), where the maximum increase 

percentage compared to the control sample is 2.7%. The highest percentage increase of the 

apparent viscosity of GPD 0.05, GPD 0.1, GPD 0.5, and GPD 1.0 are approximately 9.3%, 14.5%, 

30.7%, and 51%, respectively when compared to the control sample. Figure 4-7 shows the same 

trend as Figure 4-6, where the apparent viscosity-shear rate curves shift upward with the increase 

of EOGO content with the wet-mix design. For any given content of EOGO, at high and low shear 

rate, the increase in EOGO content increases the apparent viscosity. The highest percentage 

increase from the control sample of the apparent viscosity of GPW 0.01, GPW 0.05, GPW 0.1, 

GPW 0.5, and GPW 1.0 are 7%, 13.3%, 21.5%, 35.4%, and 59.2%, respectively. The results 

indicate that the plastic viscosity of cement pastes with wet-mix design is higher than that with 

dry-mix design. 

Figures 4-8 and 4-9 show the variation of shear stress with shear rate for dry and wet-mix 

designs with various EOGO contents. At the same shear rate, the shear stress increases as EOGO 

content increases for both mixing methods. As can be seen in Figures 4-8 and 4-9, the variation of 

shear stress with shear rate for both mix designs exhibit similar ascending trends. This indicates 

that the two mixing methods for incorporating EOGO in fresh cement pastes evaluated in this 

study have a remarkable effect on the shear stress under different shear rates. Furthermore, the 

shear stress in cement paste with dry-mix design is less than that in cement paste with wet-mix 
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design at the same shear rate. This indicates that dry-mix design may cause the shear stress in the 

cement paste to decrease. 

Figure 4-6. Effect of EOGO contents on the apparent viscosity of cement paste (Dry-mix design). 

Figure 4-7. Effect of EOGO contents on the apparent viscosity of cement paste (Wet-mix design) 
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Figure 4-8. Effect of EOGO content on the shear stress of cement paste (Dry-mix design) 

Figure 4-9. Effect of EOGO content on the shear stress of cement paste (Wet-mix design) 
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The plastic viscosity values of cement pastes are calculated based on the Bingham’s model. 

Figure 4-10 shows a comparison between dry and wet-mix designs based on the effect of EOGO 

content on the plastic viscosity of cement pastes. The results show that the plastic viscosity 

increases with higher addition of EOGO for both mix designs. When 1.0% of EOGO is added to 

the cement paste with dry-mix design, the plastic viscosity of the control cement paste increased 

from 0.2643 to 0.3809 in Pa·s, which is around 44% higher than that of the control sample. For 

wet-mix design method with the same 1.0% of EOGO, the plastic viscosity of the control cement 

paste increased from 0.2643 Pa·s to 0.4143 Pa·s, which is about 57% higher. The results show that 

wet-mix design has a greater effect on the plastic viscosity than dry-mix design of the cement 

paste. In addition, the results show that the difference between the plastic viscosity of cement 

pastes with wet-mix design and dry-mix design increases when the addition of EOGO increases. 

For example, the plastic viscosity of GPW 0.05 and GPW 1.0 are higher than GPD 0.05 and GPD 

1.0 by approximately 2.7% and 8.7%, respectively. The possible reason is that the surface area of 

EOGO decreases when it used as a dry addition in cement matrix (GPD). The decreased surface 

area accordingly reduces the absorption of water. This increases the free water in the matrix, 

contributing more spacing between cement particles and reducing the friction between these 

particles. As a result, the fluidity is increased, and the viscosity is decreased compared to GPW. In 

addition, the degree of flocculation is small in GPD, and the force of connection between structures 

is weak. In contrast, the EOGO in GPW promotes flocculated structures, leading to more formation 

of structure in the cement paste matrix. It also increases the viscosity that requires high shear stress 

to break up the cement paste [31]. The large amount of free water entrapped by the flocculated 
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structures causes the lack of the free water that increases the friction resistance of the cement paste 

and EOGO particles [30]. 

Figure 4-10. Effect of EOGO content on the plastic viscosity of cement paste with dry and wet-mix 

design methods 

In the actual concrete engineering, the rheological properties of cement paste are not widely 

used, mostly because the correlation between the fluidity and rheological parameters is not fully 

understood [96]. In this study, the relationship between plastic viscosity and fluidity of cement 

paste was estimated by mathematical fitting as presented in Figures 4-11 and 4-12. Figure 4-11 

shows the relation between the plastic viscosity and fluidity of cement paste with dry mix design. 

The correlation coefficient of the linear fitted equation is 0.936. Figure 4-12 shows the relation 

between the plastic viscosity and fluidity of cement paste with wet mix design. The correlation 
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coefficient of the linear fitted equation is 0.953. This indicates an improved correlation between 

the plastic viscosity and the fluidity for both mix design. As a result, the plastic viscosity 

measurements can be used to predict the actual workability [31]. The mini-slump test results were 

confirmed by the viscosity test results. The both tests showed the same trend and the results were 

consistent. For both tests, the GPW samples showed lower fluidity and higher apparent viscosity 

compared to GPD samples. The difference of the plastic viscosity and the fluidity between GPD 

and GPW samples was around 10%. It can be concluded that even though well dispersion of EOGO 

in GPW specimens is superior to the dry powder of EOGO in GPD specimens, using EOGO in dry 

condition affect fluidity and the viscosity of the cement paste.  
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Figure 4-11. Correlation between the plastic viscosity and the fluidity of cement paste (Dry-mix design) 

Figure 4-12. Correlation between the plastic viscosity and the fluidity of cement paste (Wet-mix design) 
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 Effect of EOGO on the Fresh Cement Mortar 

Figures 4-13 and 4-14 show the original and the image processing of the final spreading 

areas of each EOGO content in mortars with dry and wet-mix design. Figures 4-13 and 4-14 show 

that the spread mortar of the control sample is contracted with the increase of EOGO content of 

dry mix design. This can be clearly seen in the spread of the control sample in comparison with 

GMD 0.5 and GMD 1.0.  

 

Figure 4-13. Original and processed images for mortars with dry-mix design 
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Figure 4-14. Original and processed images for mortars with wet-mix design 

Figure 4-15 shows the spreading areas of 25 blows of the dry-mix design of mortars CM, 

GMD 0.01, GMD 0.05, GMD 0.1, GMD 0.5, and GMD 1.0. The spreading area increases as the 

number of blows increases. Conversely, spreading area decreases as the EOGO content increases. 

 Figure 4-16 shows the spreading areas of mortars with the number of blows of wet-mix 

design GMW 0.01, GMW 0.05, GMW 0.1, GMW 0.5, GMW 1.0, and the control sample CM. 

Similar to dry-mix, the spreading area increases with the increase of the number of blows. The 

relation between the spreading area and the number of blows shifts down with the increase of the 

EOGO content.  

Figure 4-17 and Table 4-2 show the final spreading area of mortars after 25 blows with 

different EOGO contents for both dry and wet-mix designs. The final spreading area of the control 

mortar decreased as the addition of the EOGO increased. This result indicates that incorporation 

of EOGO reduces the workability of mortars. It can be seen that the reduction in the workability 
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of mortars was significant when EOGO content was 0.1% and higher for both mix designs. The 

spreading area of the control mortar is 177.42 cm2. This value is reduced to 145.81 cm2, 140.58 

cm2, and 136.13 cm2 for GMD 0.1, GMD 0.5, and GMD 1.0, respectively, which are 21.67%, 

26.2%, and 30.33% less than the spreading area of the control sample. For wet- mix design, the 

spreading area of the control mortar is reduced to 143.87 cm2, 132.84 cm2, and 127.55 cm2 for 

GMW 0.1, GMW 0.5, and GMW 1.0, respectively, which are 23.32%, 33.56%, and 39.10% less 

than the spreading area of the control sample. The large surface area and agglomeration effects, 

which are both caused by the reduction of the cement paste fluidity, can explain the reduction of 

the mortar workability with the addition of EOGO.  

It can be observed from Figure 4-17 that the spreading areas of wet-mix design samples is 

lower than those of dry-mix design. The well-dispersion of EOGO in water may increase the 

surface area of EOGO when compared to using EOGO as a dry powder, absorbing more free water 

in the mix and leading to more reduction in the workability. The difference between the spreading 

areas of dry-mix design and wet-mix design were less than 5% when EOGO content were 0.01%, 

0.05% and 0.1%. When EOGO content were increased to 0.5% and 1.0%, this difference in 

spreading area also increased to be around 7% and 10%, respectively. The same trend was found 

for the effect of EOGO and mixing methods on the fluidity of the cement paste. This finding 

indicates that using EOGO is effective since it plays the same role as GO in the reduction of the 

workability of cement composites. Furthermore, using EOGO with a dry-mix design is a 

competitive option.  
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Figure 4-15. Effect of EOGO content on the mortars workability (Dry-mix design) 

Figure 4-16. Effect of EOGO content on the mortars workability (Wet-mix design) 
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Figure 4-17. Comparison between the effect of the mixing method of EOGO on the workability of 

mortars 

Table 4-2. The flow table test results of mortar (at the final blow) 

Specimen ID Flow area (cm2) Reduction percentage (%) 

CP 177.42 0 
GMD 0.01 163.67 8.40 
GMD 0.05 158.32 12.06 
GMD 0.1 145.81 21.67 
GMD 0.5 140.58 26.21 
GMD 1.0 136.13 30.33 
GMW 0.01 160.06 10.86 
GMW0.05 157.42 12.70 
GMW 0.1 143.87 23.32 
GMW 0.5 132.84 33.56 
GMW 1.0 127.55 39.10 
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 Effect of EOGO on the Fresh Concrete 

Different concrete mixes were made with different percentages of EOGO, which are 

0.01%, 0.05%, and 0.1% by the weight of cement using dry-mix design. The variation of slump 

with the EOGO contents for all mixes are illustrated in Figure 4-18. The results show that the 

slump values of all EOGO-concrete mixes (GCD) are higher than that of the control sample (C). 

In addition, the figure shows that the slump of GCD mixes increases with the increase of EOGO 

content. This means that the concrete workability can be improved by low or moderate (0.01% to 

0.1%) addition of EOGO. The results signify that the increase in the slump was not significant 

when EOGO content increased from 0.05% to 0.1%. This indicates that further increase of EOGO 

beyond 0.1% may reduce the slump, thus, reducing the concrete workability. The reason may be 

that EOGO reduces the free water absorbed by dry aggregate, leading to an increase the effective 

ratio of water to cement in the mixes. Chapter 5 discusses this in detail. 

 

Figure 4-18. Slump test results of EOGO-concrete with dry mix design. 
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 Summary and Conclusion 

EOGOs as an additive in cement composites result in reduced fluidity and workability, 

which is a similar trend in other studies investigating GO-cement composites. One of the 

mechanisms can be physical distribution of nanoparticles as an additive, which can cause higher 

viscosity in fresh cement composites. Another mechanism can be the large surface area of 

graphene oxide and the presence of oxygen containing functional groups on the surface, leading 

to an absorption of a large amount of free water during the early aging stages. Previous studies 

have shown that the effect of cement paste and mortar workability of GO nanosheets is much 

higher than EOGO. For example, this investigation showed that the workability of the cement 

paste with wet-mix design decreased by 12% when incorporating 0.05% of EOGO compared to 

the control sample. On the other hand, Pan et al. [46] noted that the reduction in the workability of 

cement paste was around 42% when adding 0.05% of GO to the plain cement paste. There are a 

few reasons for this. First, the amount of oxygen functional group in EOGO (5-10%) is less than 

that in the chemically manufactured conventional GO (40-50%). The number of oxygen functional 

group plays a crucial role in initiating faster hydration process, determining hydration crystal shape 

and enhancing performance of cementitious composites [15]. Of interest is the low to moderate 

addition of EOGO in concrete improved its workability, when it is generally known that EOGO 

reduces the workability of other types of cement composites such as cement paste and mortar. The 

following conclusions have been made based on the research findings: 

• For both dry and wet-mix designs, the use of EOGO reduces the fluidity and workability 

of cement paste and mortar. The viscosity increases as the addition of EOGO increases. 

This result may be attributed to the large surface area of EOGO, leading to more absorption 
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of the free water in the mixes, and the fast re-agglomeration of cement particles due to the 

oxygen-containing functional groups in EOGO.  

• The rheological properties of cement paste, and the workability of mortars are more 

affected by the mixes containing well-dispersed EOGO (wet mix design) than those 

containing dry powder EOGO (dry mix design). This phenomenon can be rationalized in 

that the wet-mix design requires more water.  

• The slump test results show that the addition of EOGO improves the workability of 

concrete with dry-mix design. This improvement can be attributed to low absorption of the 

free water by coarse aggregates when EOGOs are added to concrete mixes. 

• The results reveal that the dry-mix design method also has an influence on the workability 

of cement composites. This indicates that dry-mix design is feasible and might be an 

economical and practical alternative method for EOGO-cement composites for large-scale 

production.   
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 MECHANISM STUDY ON THE WORKABILITY OF EOGO-
CONCRETE5

 

 Introduction 

In this chapter, the workability of concrete in the presence of EOGO is studied to 

investigate the mechanism behind the workability improvement of concrete when EOGO is added. 

It is hypothesized that EOGOs are interacted with the surface of coarse aggregate. Aggregate 

absorption controls the level of the interaction between EOGOs and aggregate. This interaction 

causes a reduction in the water absorbed by the dry coarse aggregate, leading to increase the 

effective w/c in the mixes. To study this hypothesis, different types of coarse aggregates with 

different absorption capacity were used for this purpose. Coarse aggregate types include limestone, 

granite, glass balls, and lightweight aggregates. These aggregates were used in oven dry conditions 

to assess the effect of EOGO on the slump measurements of concrete mixes. Lightweight 

aggregates (LWAs) also were used in saturated surface dry (SSD) condition for comparison 

purposes. Based on the results found in section 4.4.3, there is a small difference between the effects 

of EOGO content (0.05% and 0.1%) on the workability of concrete. Consequently, the amount of 

EOGO used in this investigation was kept at 0.05% by cement weight for economy perspective. 

Two mixes were made for each type of aggregates. One of those mixes for control concrete and 

the another for EOGO-concrete. To eliminate the variables affecting the workability of concrete, 

size of aggregates, EOGO content, and w/c ratio were kept same for all mixes. In addition, two 

types of tests were performed in this investigation, slump test and water absorption of aggregate 

                                                 

5 The content of this chapter will appear as a peer-reviewed journal paper, authored by the author of dissertation. 
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in presence of cement paste test in order to evaluate the suggested hypothesis. Figure 5-1 illustrates 

the flow chart that describes the process followed for this study. 
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Figure 5-1. The overview of the existing study 

Mechanism of the workability of EOGO-Concrete  

Hypothesis: 

EOGO reduce the water absorbed by dry aggregates 
 

Low water absorption 

Slump is 
increased 

More free water 

Aggregate absorption in cement paste test 

Slump test 

EOGO + Limestone EOGO + Granite EOGO + LWA (OD) EOGO + Glass balls 

EOGO + Limestone EOGO + Granite EOGO + LWA 

Improve the workability 

Slump is reduced 

LWA (OD) LAW (SSD) 
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 Materials 

 EOGO 

EOGO as dry powder is used for this investigation, and its properties were described in 

section 3.2.1.  

 Ordinary Portland Cement 

Ordinary Portland Cement Type I, presented in section 3.2.2, is used with all concrete 

mixtures. Chemical composition of the Ordinary Portland Cement is shown in Table 3-2.  

 Aggregates 

5.2.3.1 Fine Aggregate 

Standard sand as fine aggregate was used for the concrete mixtures. The gradation of fine 

aggregate is presented in Figure3-5. 

5.2.3.2 Coarse Aggregates 

Four types of coarse aggregates were used to investigate the effect of EOGO on concrete 

workability. The aggregate selection was based on their absorption capacity. These aggregate types 

are glass balls (No absorption), granite (Low absorption), limestone (Medium absorption), and 

lightweight aggregate (High absorption). lightweight aggregate (LWA) used in this research was 

expanded clay. A single size of all aggregate types (1/2” or 12.5mm) was used as shown in Figure 

5-2 to eliminate the aggregate gradation effect on the workability of concrete. The properties of 

these aggregates are listed in Table 5-1. 
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Figure 5-2. Various types of coarse aggregates used in this investigation. 

Table 5-1. Characteristic properties of coarse aggregates. 

Properties Limestone Granite  Glass balls LWA 

Bulk Specific Gravity (OD) 2.55 2.69 2.51 0.76 
Dry Rodded Unit Weight (kg/m3) 1577.7 1596.8 1541.3 435.1 

Water Absorption (%) 3.96 0.62 0 23.68 
Particle Shape Subangular Subangular Rounded Rounded 

Grain size (mm) 12.5 12.5 12.5 12.5 
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 Mix Design 

A total of 12 mixes were considered in this research. All concrete mixes had the same 

volumetric proportion of fine and coarse aggregates. Coarse (limestone and granite) and fine 

aggregates were used in oven dry (OD) condition while LWAs were used in two different 

conditions, which are OD and saturated surface dry (SSD). In oven dry condition, the aggregates 

were oven-dried at 105 oC for 24 hours before mixing for oven dry (OD) mixes, which are 10 

mixes. In addition, LWAs were soaked in water for 24 hours for SSD mixes, which are two mixes. 

After 24 hours, the excess water was removed, and the aggregates were used in SSD condition. 

The water to cement (w/c) ratio was 0.5 for all cases. For EOGO-concrete mixes, EOGO (0.05%) 

was manually mixed with the cement as a dry powder prior to adding the water for concrete 

mixture.  

All of the mix designs are summarized in Table 5-2. In this table, control concrete and 

concrete with EOGO made with limestone aggregate are denoted as LCC and LGC, respectively. 

GCC and GGC are referred to control concrete and concrete with EOGO made with granite 

aggregate. Concrete mixed with glass ball is denoted as GBCC for control concrete and GBGC is 

concrete with EOGO. For lightweight concrete, LWCC is control concrete mixed with lightweight 

aggregate and LWGC is EOGO-concrete mixed with lightweight aggregate.  
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Table 5-2. Mix design of all concrete mixtures. 

Concrete type 
Total 
water Cement EOGO 

Fine 
aggregate Coarse aggregate 

 (kg/m3) (kg/m3) (g/m3) (kg/m3) Limestone 
(kg/m3) 

Granite 
(kg/m3) 

Glass balls 
(kg/m3) 

LWA 
(kg/m3) 

LCC 242 408 - 789 848 - - - 
LGC 242 408 204 789 848 - - - 
GCC 213 408 - 806 - 848 - - 
GGC 213 408 204 806 - 848 - - 
GBCC 193 378 - 866 - - 819 - 
GBGC 193 378 189 866 - - 819 - 
LWCC  250 378 - 891 - - - 241 
LWGC  250 378 189 891 - - - 241 

 Experimental Tests 

 Slump Test 

The workability of concrete was measured by using a slump cone that has 100 mm diameter 

at the top, 200 mm diameter at the bottom, and is 300 mm in height. The slump test of EOGO-

concrete was performed immediately according to ASTM C 134 [97] for all concrete mixes made 

with the four types of aggregates. Six consecutive readings of slump test for one mix ID were taken 

within 30 minutes in order to minimize testing errors, and the records were averaged as a slump 

value of the mixture. 

 Aggregates Absorption Test  

5.4.2.1 Test Method 

A test method was developed by Bello et al.[98] was adopted to assess the water absorption 

in cement paste of coarse aggregates. This method was performed to investigate the effect of 

EOGO on the absorption of aggregates in fresh concrete. The relationship between the mass of wet 

aggregates particles extracted from cement paste (A1) and dry aggregates after oven-dried (A2) can 
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be utilized to obtain the quantity of absorbed water by coarse aggregates in cement paste. All the 

cement paste/aggregate mixes had the same volumetric proportion. The mix proportions used are 

shown in Table 5-3. The cement and water were hand mixed for a minute for control and EOGO-

cement paste. Then the coarse aggregates were added to the cement paste mixture in a bowl and 

hand mixed for another minute. After that, coarse aggregate particles were extracted from the paste 

after 15 minutes by sieving with 4.75 mm sieve and then weighed as wet condition. These particles 

were oven-dried to constant weight at 105 oC and the particles weight measured as dry condition.  

Table 5-3. Mix proportions of coarse aggregates/cement paste mixes. 

Mix ID Total water Cement EOGO Coarse aggregate 

 (g) (g) (g) Limestone 
(g) 

Granite 
(g) 

LWA 
(g) 

LCP 152 264 - 528 - - 
LGP 152 264 0.132 528 - - 
GCP 136 264 - - 629 - 
GGP 136 264 0.132 - 629 - 
LWCP  169 264 - - - 155 
LWGP  169 264 0.132 - - 155 

5.4.2.2 Test Procedure 

First, aggregates included limestone, granite, and lightweight aggregates mentioned in 

section 3.5.1.2.2 were prepared. The aggregates were sieved, and only the aggregates retained on 

the 12.5 mm sieve were used to eliminate the size or gradation effect in this investigation. The 

aggregates were oven-dried at 105 oC for 24 hours and allowed to cool at room temperature. After 

cooling, the designed weight was measured (A0) before testing.  

Second, the cement paste was mixed by hand for a minute. For EOGO-paste, 0.05% by 

cement weight of EOGO was manually mixed with the cement before adding the mixing water. 
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The water to cement ratio (w/c) was kept at 0.5 for all mixes. After that, coarse aggregates were 

mixed in a bowel with the cement paste for a minute. Summarily, the bowl was covered with 

plastic wrap in order to avoid water loss. The samples were kept at a room temperature and relative 

humidity of 50% for 15 minutes before sieving.  

Third, the cement paste and aggregate mixtures were mixed again before the aggregates 

were mechanically separated from cement paste by sieving, and the mixtures were poured in a 4.75 

mm sieve with the bottom pan. These sieves were placed on a sieve shaker and sieved for three 

minutes to extract the aggregate particles and to collect the excess cement paste.  

Finally, the aggregates particles surrounded by fresh cement paste were weighed in wet 

condition (A1). These particles were oven-dried at 105 oC to constant weight within 48 hours. After 

that, the weight of dried particles was measured (A2) after cooling at room temperature. Figure 5-

3 illustrates the different conditions of materials during the test procedure. The water absorption 

in fresh cement paste for various types of coarse aggregates can be obtained at different time 

intervals as [98]: 

𝑊(𝑡) =  [[𝑐(𝐴1 − 𝐴2) − 𝑤(𝐴2 − 𝐴0)]/[𝐴0(𝑐 + 𝐴0 − 𝐴2)]] ∗ 100 ( 4 ) 

 Where 𝑊(𝑡) is the percent of water absorption of coarse aggregates in cement paste at 

time t, c is the cement content in grams, 𝐴0 is the dry aggregate weight before mixing, 𝐴1 is the 

weight in grams of coarse aggregate particles surrounded by fresh cement paste at wet condition, 

and 𝐴2 is the weight in grams of coarse aggregate particles after being oven dried. 
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Figure 5-3. The phases of the test procedure. 

 Results and Discussion 

 Slump 

Workability of concrete is normally measured using slump test. Figure 5-4 shows the slump 

measurements carried out six repeated times after mixing of concrete with different types of 

aggregate. These aggregates were sieved and only the aggregates retained on sieve 12.5 mm were 

used. In addition, these aggregates were oven dried for 24 hours before being used for the concrete 
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mixes. The glass balls were not dried as they have zero water absorption. Figure 5-4 (a) illustrates 

that adding 0.05% of EOGO to concrete mixed with limestone aggregate can increase the slump 

of concrete mix compared with control sample. Same trend was observed when concrete mixed 

with granite and LWA aggregates as shown in Figure 5-4 (b) and (d). However, concrete mixed 

with glass balls shows lower or no effect on concrete slump in the presence of EOGO when 

compared with control concrete as shown in Figure 5-4 (c). The concrete slump of some reading 

of each mix is shown Figure 5-5. 

 

Figure 5-4. Repeatability of slump measurements of concrete made with different types of aggregate: (a) 
Limestone, (b) Granite, (c) Glass balls, and (d) LWA. 
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Figure 5-5. Some concrete slump pictures for different mixes. 

The average values of the six readings are presented in Figure 5-6. The results of slump 

show that the slump was increased when EOGO was added to concrete mixes except for concrete 

mixed with glass balls. The slump of concrete mixed with limestone aggregate and 0.05% of 

EOGO (LGC) is increased by about 17% compared to the control sample (LCC). The slump of 

concrete also was increased by around 9% when EOGOs were added to concrete mixed with 

granite aggregate (GGC) compared with control one (GCC). The increase in the slump of concrete 

mixed with LWA and EOGOs (LWGC) compared to the control sample (LWCC) reached to 23%. 

This is the highest improvement in the workability of concrete among the other concrete mixes 

with limestone and granite aggregate. In contrast, the slump was decreased with adding EOGOs 
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to concrete mixed with glass balls (GBGC) by around 2% compared with control concrete 

(GBCC).  

 

Figure 5-6. Average values of variation of the slump repeatability tests for concrete mixed with different 
types of aggregate. 

Concrete mixes with aggregates that have absorption capacity have improvements in 

workability through slump increase when EOGO was added. However, the workability of concrete 

made with glass balls, which have zero absorption capacity, was slightly decreased after 

incorporation of EOGO. Fresh concrete with LWA (23.68% absorption) causes higher slump to 

increase than limestone (3.96% absorption) and granite (0.62% absorption). Fresh concrete with 

glass balls (0% absorption) and EOGO has negative slump effect because EOGO are dispersed in 

cement matrix and reduce the workability. The EOGO may interacted with the surface of 

aggregate. The aggregates absorption controls the level of the interaction between EOGO and 

aggregate. Therefore, the amount of water absorbed by dry aggregates is reduced in the mix 

includes EOGO. This leads to increase the effective water in the concrete mixes.  
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In order to investigate the effect of EOGO addition on the condition of aggregate, LWAs 

that have high absorption capacity and uniform shape were chosen for this purpose. LWA were 

mixed with concrete in two different conditions (OD and SSD) before conducting slump test. The 

purpose of using aggregate with different condition is to investigate the absorption effect with the 

same type of aggregate since aggregate with SSD condition will have very low or zero absorption. 

The slump measurements of concrete made with LWA in OD and SSD condition are presented in 

Figure 5-7. 

 

Figure 5-7. Repeatability of slump measurements of concrete made with different conditions of LWA. 

The results in Figure 5-7 (a) and (b) show that the slump of concrete mixes with LWA in 

OD condition is higher than SSD condition. This is attributed to the fact that LWAs do not fully 

absorb the total water added for absorption. As a result, there is more effective water in the concrete 

mixes with OD aggregates, leading to more workable mixes than those with SSD aggregates. In 

addition, slump loss with time is greater with dry aggregates due to the water absorption by dry 
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aggregate compared to SSD aggregates. The average of the six reading as shown in Figure 5-8 

demonstrates that the addition of 0.05% of EOGO into concrete mixes with LWAs in OD condition 

(LWGC (OD)) increased the slump by around 23% compared to LWCC (OD). The results also 

illustrate that the incorporation of 0.05% of EOGOs into concrete mixed with LWAs with SSD 

condition has lower or no effect on the slump of concrete. This phenomenon supports the indication 

that EOGO in cement matrix reduces the water absorbed by dry aggregates, resulting in increased 

the effective water in concrete mixes. 

 

Figure 5-8. Average values of variation of slump measurements of concrete with different conditions of 
LWA 

 Aggregate Absorption  

The water absorbed by aggregates in cement paste was investigated to represent the actual 

water absorption during the mixing of concrete. The water absorption in cement paste is slower 

than that in pure water. This is due to the small particles in cement matrix blocking the surface 

aggregate pores. Also, the cement consumes some water for hydration process. In addition, the 
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viscosity of pure water is lower than cement paste. This effect depends on whether cement paste 

can be absorbed by aggregates or not. A study by Zhang and Gjorv showed that aggregates did not 

absorb any cement paste [99]. Therefore, it appears that aggregates only absorb water even in the 

presence of cement paste. The water absorption of limestones, granite, and lightweight aggregates 

in pure water was measured over the time. It is based on weighing the aggregates in SSD condition 

after submerging the known weight of oven-dried aggregates in pure water at specific intervals. 

Figure 5-9 shows the results of water absorption in pure water of different types of aggregate over 

time. The results illustrate that LWAs have a higher water absorption rate compared to limestone 

and granite. In addition, granite aggregates show no difference in the water absorption with time.  

Figure 5-9. Water absorption rate of (a): limestone aggregate, (b) Lightweight aggregate, and (c): granite 
aggregate. 
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A test method proposed by Bello et. al [98] was adopted for estimating the water absorption 

of different types of aggregates in the presence of control and EOGO-cement paste. The test was 

performed with dry limestone, granite and lightweight aggregates in cement paste of w/c ratio of 

0.5. The test was repeated five times and the time interval 15 minutes was chosen for all mixes. 

Table 5-4 shows the results of water absorption of all types of aggregates in plain and EOGO-

cement paste. Generally, the water absorption values of aggregates in cement paste are lower than 

those in pure water. The water absorption at 15 minutes of limestone aggregates was reduced from 

2.61% in pure water to 1.6% in control cement paste. For granite aggregates, the water absorption 

in cement paste was decreased from 0.3% in pure water to 2.1% in control cement paste. In 

addition, the water absorption of LWA at 15 minutes in cement paste was decreased from 16.76% 

in pure water to be 15% in control cement paste. These differences were expected due to the 

reasons mentioned previously in this section.  

Figure 5-10 illustrates the average values of water absorption tests in cement paste. The 

results demonstrate that the addition of EOGO into cement paste reduced the water absorbed by 

coarse aggregates compared by plain cement paste. The water absorption of limestone aggregates 

in aggregates-cement paste mixture decreased from 1.63% to 0.38% when EOGOs were added. 

The absorption percentage of granite aggregates decreased from 0.21% in control cement paste 

mixture to 0.12% in EOGO-cement paste. For LWA, the incorporation of EOGOs into cement 

paste decreased the water absorption from 15% to 4.2%. The reason for this is that when coarse 

aggregate particles coated by EOGO-cement paste, the water penetration into the pores of 

aggregates seems limited in comparison with control cement paste. The results prove that the water 

absorbed by aggregates is reduced in the presence of EOGO in cement paste, leading to having 
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more effective water in mixtures. This ultimately results in more workable concrete. In addition, 

these results can also explain the higher slump of concrete mixes when EOGO was added.  

 

Figure 5-10. Average water absorption values of different types of aggregate in cement paste. 
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Table 5-4. Water absorption of different types of aggregates in cement paste. 

Aggregate Mixture     Test result  Average  
Type ID Series C (g) W (g) A0 (g) A1 (g) A2 (g) W (%)  W (%) 

Limestone C-concrete 1 264.0 132.0 528.6 575.7 554.9 1.61  

1.63 

  2 264.0 132.0 528.5 578.8 556.8 1.66  

  3 264.0 132.0 528.8 582.5 559.5 1.64  

  4 264.0 132.0 528.5 581.4 558.7 1.62  

  5 264.0 132.0 528.6 579.8 557.7 1.61  

           
Limestone EOGO-concrete 1 264.0 132.0 528.6 570.2 555.1 0.39  

0.38 

  2 264.0 132.0 528.5 571.4 555.9 0.38  

  3 264.0 132.0 528.5 573.8 557.6 0.35  

  4 264.0 132.0 528.7 573.4 557.2 0.41  

  5 264.0 132.0 528.6 572.8 556.9 0.37  

           
Granite C-concrete 1 264.0 132.0 629.7 658.2 555.1 0.39  

0.21 

  2 264.0 132.0 629.6 659.8 555.9 0.38  

  3 264.0 132.0 629.6 658.7 557.6 0.35  

  4 264.0 132.0 629.8 661.0 557.2 0.41  

  5 264.0 132.0 629.7 660.1 556.9 0.37  

           
Granite EOGO-concrete 1 264.0 132.0 629.6 657.3 647.6 0.12  

0.12 

  2 264.0 132.0 629.5 656.6 647.2 0.09  

  3 264.0 132.0 629.7 657.2 647.6 0.11  

  4 264.0 132.0 629.7 657.6 647.9 0.10  

  5 264.0 132.0 629.5 658.3 648.1 0.15  

           
LWA C-concrete 1 264.0 132.0 154.9 212.6 179.3 15.0  

15.0 

  2 264.0 132.0 155.0 213.1 179.8 14.9  

  3 264.0 132.0 155.0 214.0 180.3 15.0  

  4 264.0 132.0 154.9 212.5 179.1 15.1  

  5 264.0 132.0 155.0 212.8 179.3 15.2  

           
LWA EOGO-concrete 1 264.0 132.0 155.0 207.9 186.4 4.2  

4.2 

  2 264.0 132.0 155.0 207.0 186.0 4.0  

  3 264.0 132.0 155.0 206.8 185.6 4.3  

  4 264.0 132.0 155.1 202.7 183.0 4.1  

  5 264.0 132.0 155.0 203.9 183.8 4.1  
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 Summary and Conclusions 

In this chapter, two experimental tests were evaluated to investigate the mechanism of the 

workability of EOGO-concrete improvement. Different types of coarse aggregates were used for 

this investigation. Concrete mixes for each type of aggregate were made to conduct slump and 

aggregate absorption tests. EOGO content was kept 0.05% for all mixes based on the results found 

in section 4.4.3. Based on the current experimental results and discussion in Chapter 5, the 

following conclusions may be drawn: 

  
• The slump of concrete mixed with dry limestone, granite and lightweight aggregates 

increases when EOGO is added compared to control concrete, leading to workability 

improvement. Nevertheless, there is negative slump of EOGO-concrete mixed with glass 

balls aggregates because EOGO is dispersed in cement matrix and reduces the workability. 

This indicates that the inclusion of EOGO into concrete reduces the water absorbed by dry 

coarse aggregates in mixes, leading to an increase in effective water in the mixes and as 

well as the workability.    

• Concrete mixed with dry LWAs, which has high absorption capacity, causes higher increase 

in the slump when EOGO is added compared to the concrete mixed with limestone or 

granite aggregates. This finding demonstrates that the effect of EOGO is correlated with 

the absorption capacity of coarse aggregate.  

• The slump of EOGO-concrete mixes with LWAs in SSD condition, which has no 

absorption capacity, has low or no change compared with the control samples. This result 

strongly supports the hypothesis that EOGO reduces the water absorbed by coarse 
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aggregate in OD condition when mixed with concrete. 

• The results of aggregate absorption test indicate that the water absorption of coarse 

aggregate in cement paste is different than that in pure water. This is due to different reasons 

including the fact that the viscosity of cement paste is higher than of pure water. Hydration 

process consumes water, and some pores on the surface of the aggregates are blocked by 

small particles.  

• The addition of EOGO in cement paste/coarse aggregate mixes reduces the water absorbed 

by dry coarse aggregates. Mixes with dry LWAs has a higher reduction in water absorption 

when EOGO is added, compared to the mixes with limestone or granite aggregates. This 

finding is consistent with the slump test results and supports the suggested hypothesis.   
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 CONCLUSIONS AND RECOMMENDATION6
 

 Conclusions 

Finally, an overview of the major conclusions drawn from this study is summarized below: 

• The mechanical properties of all EOGO-cement pastes and mortars were improved over 

the control cement composite specimens for both dry and wet-mix designs. In addition, it 

was observed that 0.05% by cement weight of EOGO is the optimum concentration for 

the improvement of strength of cement paste and mortar for both mix designs.  

• For both dry and wet-mix designs, the addition of EOGO has a slight positive effect on 

the total porosity of cement composites. For water sorptivity test, most of EOGO-cement 

composites showed significant improvement, indicating a reduction of a continuity of 

capillary pores and the total amount of pores due to the promoted nucleation of hydration 

products and filling effect. This ultimately leads to an improvement in the durability of 

the cement composites.  

• The petrographic Quantitative analysis of XRD data indicates that EOGO may act as 

Nano-seeding material in cement pore solution to promote CSH and other hydration 

products. Petrographic analyses (SEM/EDS) are in agreement with the XRD analysis. 

EOGOs are mostly found in the presence of CSH, confirming EOGO having a potential 

                                                 

6 The partial content of this chapter appeared and will be appeared in: 
Alharbi, Y., An, J., Cho, B.H., Khawaji, M., and Nam, B.H.* “Mechanical and Pore Structure Characteristics of Edge- 
Oxidized Graphene Oxide (EOGO)-Cement Composites: Dry and Wet-Mix Design Methods”, Nanomaterials 2018, 
8(9), 718.  
An J., Nam B.H.*, Alharbi Y., Khawaji M., and Cho B.H. “Edge-oxidized graphene oxide (EOGO) in Cement 
Composites: Cement Hydration and Microstructure”, Peer-reviewed journal paper. 
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role as nano-seeding material in cement composite.  

• For both dry and wet-mix designs, the use of EOGO reduces the fluidity and workability 

of cement paste and mortar, while the viscosity increases as amount of EOGO increases. 

This may be due to large surface area of EOGO leading to high absorption of the free 

water in the mixes. It may also be due to fast re-agglomeration of cement particles because 

of the oxygen-containing functional groups in EOGO.  

• The rheological properties of cement paste, and the workability of mortars are more 

affected by the mixes containing well-dispersed EOGO (wet-mix design) than those 

containing dry powder EOGO (dry-mix design). The reason is that wet-mix design 

increases the water requirement of the mixes. 

• The comparison of dry and wet-mix designs showed that the mechanical properties of 

EOGO-cement composites using the wet-mix design method was slightly improved 

compared to dry-mix design. This difference is likely due to wet-mix design exhibiting a 

higher reduction in the workability of cement composites compared to dry-mix design. 

Wet-mix design has better exfoliation and dispersion of EOGO in cement matrix. 

• The results reveal that the dry-mix design method also has a significant influence on the 

workability and the mechanical properties of cement composites. This indicates that dry-

mix design is feasible and might be an economical and practical alternative method for 

EOGO-cement composites for large-scale production.   

• The slump of concrete mixed with dry limestone, granite, and lightweight aggregates 

increases when EOGO is added compared to control concrete, leading to workability 
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improvement. Nevertheless, there is negative slump of EOGO-concrete mixed with glass 

balls aggregates because EOGO is dispersed in cement matrix and reduces the workability. 

This indicates that the inclusion of EOGO into concrete reduces the water absorbed by dry 

coarse aggregates in mixes, leading to an increase of the effective water in the mixes as 

well as the workability.    

• Concrete mixed with dry LWA, which has high absorption capacity, causes higher increase 

in the slump when EOGO is added compared to the concrete mixed with limestone or 

granite aggregates. This finding demonstrates that the effect of EOGO is correlated with 

the absorption capacity of coarse aggregate.  

• The slump of EOGO-concrete mixed with LWA in SSD condition (which has no absorption 

capacity) has low or no change compared to the control samples. This result strongly 

supports the hypothesis of that EOGO reduces the water absorbed by coarse aggregate in 

OD condition when mixed with concrete. 

• The results of aggregate absorption test indicate that water absorption of coarse aggregates 

in cement paste is different for water absorption of aggregates in pure water. This is due to 

different reasons including the viscosity of cement paste being higher than that of pure 

water, hydration process consuming water, and some pores on the surface of the aggregates 

being blocked by small particles.  

• The addition of EOGO in cement paste/coarse aggregate mixes reduces the water absorbed 

by dry coarse aggregates. Mixes with dry LWAs has a higher reduction in water absorption 

when EOGO is added compared to the mixes with limestone or granite aggregates. This 
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finding is consistent with the slump test results and supports the suggested hypothesis. 

 Recommendations 

From the results, the improvement in the strength of cement composites is mainly because 

of the number of oxygen-containing functional groups on the edge of EOGO, bridging, and filling 

effects. Functional groups play an important role in acting as a nano-seed to promote nucleation 

of cement hydration product. It is recommended to increase the number of oxygen-functional 

groups in EOGO by changing the ball-milling time and oxidation process. This can increase its 

effect on the cement composites properties including strength, durability and microstructure.  

The dispersion of EOGO as additive nanomaterial in cement matrix is extremely important. 

Using high shear mixer is recommended to better disperse dry EOGO in cement matrix. The well- 

dispersion of EOGO in cement matrix can help to improve the strength, porosity, and durability of 

cement composites. 

 Future Work 

There are two interesting research tasks that are worth investigation further:  

• The effect of EOGO on the interfacial transitional zone (ITZ), which has directly influence 

on the strength of concrete, can be investigated. This will provide better understanding of 

the improvement in the strength and workability of EOGO-concrete.  

• The results from the current study indicate that the addition of EOGOs improve the 

workability of concrete. The EOGOs interact with the surface of the aggregate, and the 

absorption of aggregate controls the level of the interaction between EOGOs and aggregate. 

Therefore, four types of aggregate with different absorption capacities are used based on 
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these criteria. Further research can be done on the effect of EOGOs on the workability of 

concrete using aggregate with different surface area and gradation.  
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