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ABSTRACT 

Our socio-infrastructure systems are becoming more and more vulnerable due to the increased 

severity and frequency of extreme events every year. Effective disaster management can minimize 

the damaging impacts of a disaster to a large extent. The ubiquitous use of social media platforms 

in GPS enabled smartphones offers a unique opportunity to observe, model, and predict human 

behavior during a disaster. This dissertation explores the opportunity of using social media data 

and different modeling techniques towards understanding and managing disaster more 

dynamically. In this dissertation, we focus on four objectives. First, we develop a method to infer 

individual evacuation behaviors (e.g., evacuation decision, timing, destination) from social media 

data. We develop an input output hidden Markov model to infer evacuation decisions from user 

tweets. Our findings show that using geo-tagged posts and text data, a hidden Markov model can 

be developed to capture the dynamics of hurricane evacuation decision. Second, we develop 

evacuation demand prediction model using social media and traffic data. We find that trained from 

social media and traffic data, a deep learning model can predict well evacuation traffic demand up 

to 24 hours ahead. Third, we present a multi-label classification approach to identify the co-

occurrence of multiple types of infrastructure disruptions considering the sentiment towards a 

disruption—whether a post is reporting an actual disruption (negative), or a disruption in general 

(neutral), or not affected by a disruption (positive). We validate our approach for data collected 

during multiple hurricanes. Fourth, finally we develop an agent-based model to understand the 

influence of multiple information sources on risk perception dynamics and evacuation decisions. 

In this study, we explore the effects of socio-demographic factors and information sources such as 

social connectivity, neighborhood observation, and weather information and its credibility in 

forming risk perception dynamics and evacuation decisions.  
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CHAPTER 1: INTRODUCTION 

1.1 Background 

Extreme weather events have become more common these days due to climate change and other 

related causes. Since 1980 the U.S. has sustained 279 billion-dollar (cost exceeds $1 billion) 

climate and weather disasters with a total cost exceeding $1.825 trillion [1]. Recently hurricanes 

Harvey, Irma, and Maria have affected millions of people in several states in the USA. These 

extreme events have caused significant physical and socio-economic losses [2–5]. Effective 

disaster management is crucial to minimize the damage and save human lives. Traditionally, 

disaster management is considered as a cyclic process consisting of four main phases: mitigation, 

preparedness, response, and recovery [6, 7]. Among these four phases the preparedness phase 

includes activities, training, planning for an event that cannot be mitigated and often these types 

of plans are taken within very short times because of the dynamic and sometimes unpredictable 

nature of a disaster. For example, considering the severity and forecasted path of an approaching 

hurricane, emergency officials often declare evacuation orders for to save human life. Such 

evacuation orders are expected to propagate through multiple sources (traditional media, social 

networks, social media, etc.) to inform people living in the risk zone. In response to the evacuation 

order and forecasted risk, households take evacuation decisions, which depend on a complex and 

dynamic process varying over time and household locations [8–10]. The delivery of accurate and 

timely information is crucial to create situational awareness in the affected communities.  

Information about the time and severity of an incident greatly helps in taking organized decisions 

and increases coordination among the responding organizations during disaster preparedness, 

response, and recovery [11, 12]. 
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Online social media platform facilitates fast and easy exchange of information by allowing 

content creation, sharing, discussion, and with the ubiquitous use of social media platforms (e.g. 

Twitter, Facebook etc.), a massive volume of real-time data is available. Such data can provide 

valuable insights on human behavior during extreme events such as a hurricane [13–15].  

In disaster management, social media data have been used in different contexts such as  

understanding and detecting natural disasters [16–18], modeling human mobility [14, 19],  

evacuation detection [20], monitoring epidemics [21], responding to crises [22–24], analyzing 

sentiment [25, 26], crisis mapping [27–29], damage assessment [18, 30–32],  and so on. Social media 

users can also serve as social traffic sensors that traditional sensors cannot provide [33–35]. 

Moreover, traffic information from social media can supplement traditional physical sensors 

installed in road networks [36, 37]. Recently many researchers have used social media data to 

understand evacuation and to monitor damage/disruption. However, existing literature still lacks 

appropriate modeling approaches to explore the full potential of such data. Thus, novel approaches 

are needed to get the best of these real-time data such as social media, traffic sensors, etc. 

 On the other hand, researchers have adopted computational modeling approaches such as 

agent based model [38–40] to capture the dynamics of the collective evacuation behavior that 

evolves from the social interactions among households because of the challenges in collecting such 

empirical data [41, 42]. However, most of these existing models are based on hypothetical agents 

and hazards and did not consider the credibility of the information received from the mutual 

interaction between agents; these limitations suggest continual need of improvements of such 

model.  
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1.2 Motivation 

Broadly, the motivation behind this dissertation is to make disaster management more dynamic 

and pro-active by using social media data. To do that, we work on four inter-dependent studies. 

The motivation of choosing these studies are discussed below. 

1.2.1 Data-driven Evacuation Dynamics Model 

Traditionally, evacuation study largely depends on post disaster survey, which is both time 

consuming and costly. Thus, large-scale social media data can be used for a better understanding 

of evacuation behaviors during hurricanes [20]. However, one of the major challenges of using 

social media data is to reliably model evacuation decisions from such data. To date, the studies 

investigating social media data are limited to inferring evacuation choices. These studies [20, 43] 

have mainly adopted clustering approaches that locate a user during pre-evacuation and evacuation 

periods. A recent case study[44] on hurricane Sandy Twitter data shows the relationship between 

social connectivity and evacuation decision without specifically modeling the real-time dynamics 

of evacuation decision-making. Using geotagged Facebook data from hurricane Irma, Harvey, and 

Maria, another recent study [45] has analyzed the influence of social ties on evacuation behavior. 

Although these studies have demonstrated the significant benefits of using location-based social 

media data in an evacuation context, they do not provide a modeling framework that can answer 

what, when, and where users participate in different activities during a hurricane. That motivate 

us to develop a modeling approach to understand the dynamics of evacuation decision using real-

time social media data. 

1.2.2 Crowdsourced and Traffic Sensor Data for Evacuation Traffic Forecast 

During a hurricane, mandatory or voluntary evacuation orders are issued over a large region so 

that potentially impacted people can move to safer places. Under a hurricane evacuation, it is 
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critical for emergency agencies to ensure smooth operations of interdependent infrastructure 

systems and emergency services. Efficient traffic operations can maximize the utilization of 

existing transportation infrastructure, reducing evacuation time and stress due to massive 

congestion. Accurately predicting evacuation traffic is critical to plan for effective traffic 

operations strategies. Most previous studies in traffic prediction focus on short-term prediction (< 

=1 hour) which is not often useful in disaster scenario. But because of the complex dynamic nature 

of evacuation participation, predicting evacuation traffic demand long ahead of the actual 

evacuation is a very challenging task. That motivate us to develop a model for predicting long-

term traffic demand by taking advance of real-time social media data and traffic sensor data. 

1.2.3 Monitoring Disruptions of Critical Infrastructure During Hurricane 

For effective disaster response and recovery operations, coordinated actions are required from the 

responsible organizations. Disruptions to infrastructure systems such as electricity/power, cell 

phone, internet, water, waste water, and other systems significantly affect the recovery time of a 

community [46]. Due to the interdependence among infrastructure systems, multiple types of 

disruptions (e.g., power outages, internet/cell phones, water service) are likely to co-occur during 

a disaster. To ensure an expedited recovery of the systems, rapid identification of the co-

occurrence of disruptions is necessary so that coordinated actions can be taken by multiple 

agencies. 

Although infrastructure performance data can be collected through physical sensing 

technologies such as drones, satellite, UAV etc. [47, 48], they might not be feasible due to the 

rapidly evolving nature of a disaster spreading over a large area [49]. Social media users have 

been used as sensors during disasters and several studies have found its potential for 

understanding situational awareness [16, 50]. Previous studies investigated social media sensing 
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for damage assessment [30], recovery [51], and inundation mapping [47]. Studies have also 

proposed query based approaches to identify topics related to critical infrastructure disruptions 

[49, 52]. However, these studies have not considered the co-occurrences of the types and extent 

of infrastructure disruptions.  

During an unfolding disaster, people from the affected regions share their opinions, views, 

concerns, and eye witnessed events in social media platforms. Such user-generated content can 

provide valuable information to extract disruption-related information. However, during a 

disaster, emergency managers face challenges to monitor the massive volume of social media 

posts in real-time [53]. Thus, to get actionable information, it is important to identify whether a 

post indicates an actual disruption or simply expresses user views or opinions about a disruption. 

Recent studies have mainly focused on identifying whether a particular social media post is 

damage related or not [31, 54]. However, since infrastructure systems are more interconnected, 

co-occurrences of disruptions in multiple infrastructures are more likely. That motivate us to 

develop an approach for identification and visualization of multiple types of infrastructure 

disruptions considering whether a particular damage related post is actual or not using real-time 

social media data. 

1.2.4 Agent-based Modeling  

Although, data-driven approach has the potential in unveiling the evacuation dynamics, it is 

difficult to understand the complex decision making process induced by risk perception that 

depends on individual’s socio-demographic attributes, and the complex interplay between the 

influence of information resources and social connection in forms of neighbors or other social 

networks. The agent-based modeling approach allows to understand the behavior of the 

agent/human under different scenario which are difficult to observe directly.  
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Few studies- including statistical model and agent based model - have considered multiple 

information sources [42, 55, 56]. The statistical models [55] of this type lack the dynamics of these 

information sources; the agent-based models are mostly based on synthetic data and do not 

consider the socio-economic and demographic factors. Most of the agent-based models rely on 

random seed values of evacuated households that might not be true regarding the socio-

demography of a region. Moreover, the role of multiple information sources is not well-known 

regarding shadow evacuation. That motivates us to develop an agent-based model that combines 

hydrologic characteristics, socio-demographic characteristics, and multiple information sources to 

understand the risk perception and evacuation behavior of the households of an area. 

1.3 Dissertation Objectives 

This dissertation presents studies to improve our understanding, and to fill the gaps of existing 

studies towards making better decisions during a disaster. The dissertation focuses on the 

following specific objectives: 

I. Develop a model using social media data that can capture the dynamics of hurricane 

evacuation by answering what, when and how users participate in different activities 

during evacuation. 

II.  Develop a model that can predict evacuation traffic for a longer time horizon (> 1 hour) 

utilizing real-time data from traffic sensors and social media. 

III. Develop a method to identify and monitor the co-occurrence of multiple types of 

infrastructure disruptions during a disaster from social media data. 

IV. Develop an agent-based model to understand the effect of multiple information sources 

(social network, neighborhood, weather forecasts, etc.) and its credibility in risk 

perception dynamics and evacuation decisions. 
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1.4 Contributions 

The dissertation has contributions in the following ways: 

• The dissertation will provide a better understanding and approach to collect evacuation 

decision, evacuation destination, and evacuation timing from textual, and location 

information of real-time social media data. Additionally, this research has proposed a 

model to understand the dynamics of hurricane evacuation by answering what, when and 

how users participate in different activities during evacuation. Such model in capturing 

evacuation dynamics does not exist in the literature. While the traditional evacuation study 

is mainly survey based, which is costly and time consuming, this model can be applied in 

real-time with low cost. 

• We developed a data driven model to predict evacuation traffic for a longer time horizon 

utilizing real-time data from traffic sensors and social media. Current approaches for 

evacuation demand modeling are based on fixed set of expectations and cannot adjust to 

any changes real-time. Existing data-driven traffic prediction model is mainly focused on 

short-term prediction or the long-term prediction model is not optimized for disaster 

scenario. Thus, this research can greatly help in proactive decision making during an 

evacuation scenario. 

• Developed an identification and visualization approach of multiple types of infrastructure 

disruptions using social media data which may reduce the disaster monitoring and 

response time.  

• Developed an agent-based model to understand the influence of multiple information 

sources (social networks, neighbors, forecasts) and its credibility on risk perception 
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dynamics and evacuation decisions. This study may help in policy making by 

understanding complex decision-making process during an emergency event. 

1.5 Structure of the Dissertation  

The remainder of the dissertation is divided into five chapters which shows how each chapter 

contributes to the goal of making disaster management more dynamics and pro-active. From 

chapter two to chapter five, each chapter outlines our specific objective in the larger context of 

disaster management, points out the limitation of earlier research, and finally our inter-disciplinary 

framework and modeling approach and estimation of the result are discussed in details to illustrate 

how our objective and proposed approach/framework/methodology contributes to the existing 

literature as well as to the practical applications.  

In chapter 2, we develop an input output hidden Markov model (IO-HMM) to infer 

evacuation decisions from user tweets. This chapter contributes to the objective one of this 

dissertation. To infer the underlying evacuation context from tweet texts, we first estimate a 

word2vec model from a corpus of more than 100 million tweets collected over four major 

hurricanes. Using input variables such as evacuation context, time to landfall, type of evacuation 

order, and the distance from home, the proposed method infers what activities are made by 

individuals, when they decide to evacuate, and where they evacuate to. To validate our results, we 

have created ground truth data, collected during hurricane Irma, of 324,012 tweets posted by 4,046 

unique users. Our findings show that the proposed IO-HMM method can be useful in inferring 

evacuation behavior in real time from social media data. As traditional survey-based studies are 

infrequent, costly, and often performed at a post-hurricane period, the proposed method can be 

very useful to practitioners for predicting evacuation behavior as a hurricane unfolds in real time. 
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In chapter 3, we develop a machine learning approach Long-Short Term Memory Neural 

Networks (LSTM-NN) and trained it using different combinations of input features and forecast 

horizon. We compare our prediction results against a baseline prediction and existing machine 

learning models. Results show that the proposed LSTM-NN model can predict evacuation traffic 

demand well up to 24 hours ahead. The proposed LSTM-NN model can significantly benefit future 

evacuation traffic management. This chapter contributes to the objective two of this dissertation. 

In chapter 4, we develop a method to detect co-occurrence of multiple types of disruptions 

and their locations. We propose a multilabel classification approach that can detect multiple types 

of disruptions along with the disruption status (actual disruption or not). We validate our approach 

using Twitter data collected during two real-world hurricanes: Hurricane Matthew and Irma. This 

chapter contributes to the third objective of this dissertation. 

Chapter 5 contributes to the final objective of this dissertation by developing an agent-

based model that captures the influence of multiple information sources in risk perception 

dynamics and evacuation decisions. In this study, we have integrated socio-demographic factors, 

forecasted flood depth, social network opinion dynamics, and neighbor’s activity observation to 

dynamically model risk perception and evacuation decisions. 

Finally, in chapter 6 we conclude the dissertation by discussing our overall finding the 

chapters, citing the limitations, and providing directions for future studies.  
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CHAPTER 2: MODELING THE DYNAMICS OF HURRICANE EVACUATION 

DECISIONS FROM TWITTER DATA: AN INPUT OUTPUT HIDDEN MARKOV 

MODELING APPROACH 

2.1 Introduction 

1Large-scale social media data can be used for a better understanding of evacuation behaviors 

during hurricanes [20]. However, one of the major challenges of using social media data is to 

reliably model evacuation decisions from such data. To date, the studies investigating social media 

data are limited to inferring evacuation choices. These studies [20, 43] have mainly adopted 

clustering approaches that locate a user during pre-evacuation and evacuation periods. A recent 

case study  [44] on hurricane Sandy Twitter data shows the relationship between social 

connectivity and evacuation decision without specifically modeling the real-time dynamics of 

evacuation decision-making. Using geotagged Facebook data from hurricane Irma, Harvey, and 

Maria, another recent study [45] has analyzed the influence of social ties on evacuation behavior. 

Although these studies have demonstrated the significant potential of using location-based social 

media data in an evacuation context, they have not developed any modeling framework that can 

answer what, when, and where users participate in different activities during a hurricane.  

In this chapter, we present a modeling approach for understanding the dynamics of 

hurricane evacuation from social media data. In particular, we have developed an input-output 

hidden Markov model (IO-HMM) to infer evacuation behavior from social media data. We have 

gathered large-scale Twitter data during hurricane Irma and used the spatio-temporal and 

contextual sequences from this data to run the proposed model. Hurricane Irma, the largest storm 

ever recorded in the Atlantic Ocean, made its landfall on the southern coastal areas of Florida. The 

 
1 Roy, KC, Hasan, S. Modeling the dynamics of hurricane evacuation decisions from twitter data: an input output 
hidden markov modeling approach. Unser 2nd review in Transportation Research Part C: Emerging Technologies 
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storm generated a massive amount of social media posts nationwide, especially in Florida. This 

chapter has the following contributions: 

• We implement a process to gather hurricane evacuation information from geo-tagged 

Twitter data. We validate the results by manually checking locations and tweet texts of the 

users. As traditional survey data is costly and often confined with small geographic region, 

this type of data can be used for understanding evacuation behavior during hurricane 

alongside with traditional approach. 

• We develop a Word2Vec model to extract contexts based on the tweets collected from 

multiple hurricanes (Sandy, Matthew, Harvey, and Irma). The model has been trained using 

more than 100 million tweets having about 882.54 million words (after filtering out the 

stop words, punctuations, emoticon, URLs). This model can contribute in future research 

to determine disaster contexts from Twitter data.  

• We develop an input output hidden Markov model from the sequences generated from user 

tweets. To the best of our knowledge, this is one of the first studies that use social media 

data for modeling the dynamics of hurricane evacuation decisions. The model can capture 

the dynamics of hurricane evacuation by answering what, when, and how users participate 

in different activities during a hurricane.   

2.2 Literature Review 

During a hurricane, timely evacuation is critical to reduce hazard risks and save human lives [57, 

58]. Despite the importance of evacuation, some people choose not to evacuate [59]. Therefore, a 

thorough understanding of the determinants of evacuation behavior is needed to protect the loss of 

lives, especially for the vulnerable communities [60]. Many studies have investigated population 

response during hurricanes from different perspectives, particularly focusing on evacuation 
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choices [61]. These topics include: evacuation decision making [60, 62–64], evacuation time [65–

67], evacuation demand [68], destination choice [69], and mode and route selection [70, 71]. 

However, most of these studies are based on post-disaster household surveys collecting 

information on population behavior instead of real-time dynamics. Studies [72–74] have 

developed high fidelity agent-based models to predict population responses in future hurricanes. 

One of the major shortcomings of these models is that factors influencing evacuation decisions do 

not change over time. Although a few models [75, 76]  considered the dynamics of evacuation 

decision-making process, these models depended on post-disaster surveys, mainly focusing on 

household characteristics with limited transferability (across regions, communities, and disaster 

contexts) [20, 77]. Survey data have limitations in capturing the dynamic nature of the evacuation 

decision‐making process [8]. 

However, hurricane response is a dynamic event with significant changes and uncertainties 

involving parameters beyond household characteristics. During a hurricane, emergency agencies 

and weather services issue frequent advisories providing information on the hurricane’s projected 

trajectory and category, wind speed, rainfall, storm surge, evacuation warning etc. Local and 

national news channels disseminate information on the present condition of the hazard and traffic 

situation. Context awareness, considering all these dynamic factors, plays a critical role for a large 

number of populations to decide whether to leave or not. Lee et al. explored the dynamics of 

visiting patterns to the weather-related websites during  Hurricane Katrina [78]. Yabe et al. 

developed a web-search query-based evacuation prediction model [79]. These studies mainly 

focused on understanding risk perceptions without modeling the spatial-temporal dynamics of 

evacuation behavior. As an alternative to relying on static post-disaster surveys, dynamic 

predictive models can be built employing real-time information received from multiple sources 
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including individuals, transportation facilities, and emergency services. For instance, Meyer et al. 

studied the dynamics of risk perception by using survey data collected during an approaching 

hurricane [80]. Studies also developed a physics-based hazard modeling approach to simulate 

evacuation uncertainty considering the physical interaction among multiple hazard components 

[81, 82]. However, these studies were based on simulated environments and did not use real-time 

information available from different sources[83–85]. Evacuation models can utilize the vast 

amount of streaming data available from social media, giving us real-time insights on individual 

actions during evacuations [20, 43, 86, 87].  

Recently, the role of social media in a disaster management context has gained a significant 

attention, mainly from the perspectives of crisis communication [12, 15, 87, 88], human mobility 

analysis [19, 89–91], nowcasting damage assessment [30], and event detection [86, 92]. However, 

its potential in understanding evacuation behavior is still underexplored. Existing studies on 

inferring evacuation decisions from social media data found home locations and displacements to 

determine if a user has evacuated or not. Chaniotakis et al. [43] used a density based clustering 

approach to identify home and geotagged tweet counts during an evacuation order to identify 

evacuation decision. Using hurricane Matthew data, Martin et al. [20] showed that Twitter data 

can be used to understand evacuation compliance behavior. This study considered user median 

locations during a normal period as their homes and median locations during a hurricane as their 

evacuation destinations. Using similar approach on hurricane Sandy twitter data, Kumar and 

Ukkusuri [44] studied the evacuation decision of New York City residents in relation to the social 

connection of the users, distance from coastline, and time to evacuation. They have found that 

higher number of social ties (number of friends, followers) decrease the likelihood to evacuate. A 

recent study using Facebook data of hurricane Irma, Harvey, and Matthew found a similar result 
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that social ties decrease the likelihood to evacuate [45]. However, these studies did not capture the 

dynamics of individual evacuation decisions requiring a modeling framework that can infer 

evacuation choices from geo-location data.    

In this chapter, we present an input output hidden Markov model to infer evacuation 

behavior from Twitter data. Hidden Markov models (HMMs) relate a sequence of observations to 

a sequence of hidden states that explain the observations [93]. HMMs have been widely used in 

speech recognition [94], protein topology [95], social science [96], and activity modeling [97]. 

HMMs have been used to classify activity categories considering spatiotemporal features [98] and 

to determine activity-location sequence from geo-location data [99]. Duong et. al [100] introduced 

a switching hidden semi-Markov model for online activity recognition and abnormality detection. 

Input-output hidden Markov model is an extension to the standard hidden Markov model for using 

the HMM in a supervised fashion [101]. IO-HMM has shown the added advantages over HMM to 

map the output sequences with the inputs in studies such as audio-visual mapping [101], price 

forecasting [102], hand-gesture [103] etc. Yin et. al [97] proposed an input output based modeling 

framework to infer urban activity patterns.  

2.3 Data Preprocessing and Description  

In this study, for inferring evacuation choices from social media posts, we have used 

Twitter data from hurricane Irma. Using its streaming API, we collected around 1.81 million tweets 

made by 248,763 users between September 5, 2017 and September 14, 2017. We collected the 

data using a bounding box covering Florida, Georgia, and South Carolina. To obtain user activities 

during a pre-disaster period, we also collected user-specific historical data using Twitter’s rest API 

which allows to collect the most recent 3,200 tweets for a given user. We collected user specific 

data for 19,000 users who were active for at least three days between the day the first evacuation 
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order was issued and the landfall day, so that we have enough data for capturing the activity 

dynamics during the evacuation.  

For our analysis, we have considered only the tweets with geo-location information. The 

geolocation information is provided either as a point (latitude, longitude) or a bounding box (area 

defined by two latitude and longitudes pairs). The point location is the exact location whereas the 

bounding box has different level of precision of where a tweet has been posted. We use the center 

point of a bounding box as the latitude and longitude of that place. To convert all the locations to 

a region under a geocoding system and to protect the privacy of the users, we have used geohash 

geocoding system with a precision of ~5 kilometers.   Geohash converts a latitude, longitude pair 

into a short string of letters and digits depending on the precision (length of the strings) [104]. In 

our study, we have used a geohash of length 5, which is equivalent to a region surrounded by ~ 5 km × 5 km area and has a reasonable resolution to capture the spatial dynamics. 

2.3.1 Preparing Evacuation Data 

From the historical tweets of a user, we extracted the most visited place during office hours (9:00 

AM to 6:00 PM) on weekdays and the most visited place during nighttime (10:00 PM to 7:00 AM). 

For each user, we assigned the most frequent office hour place and night hour place as office 

location and home location, respectively. For some users, the office and home location can be 

same because users may not be a worker or may have their offices within 5 km from home.  

Every year Florida attracts millions of visitors from home and abroad. We adopt several 

steps to remove the users who came from outside of Florida (international visitors and domestic 

users coming from states other than Florida). Through the filtering steps, we consider only the 

users whose home and office locations are within Florida, whose evacuation distance is less than 



16 

 

2,400 km (chosen based on the literature [105, 106]), and who have returned to their home after 

the landfall. 

In this study, we have focused on capturing the evacuation demand that is most likely to 

affect traffic flows on highways. Short distance evacuations (e.g., going to a nearby shelter) are 

not likely to impact highway traffic. Also, previous studies found that short distance evacuations 

are only a small percentage of the total evacuation count. During hurricane Floyd, very few 

evacuations were found less than 50 miles (~80.5 km); about 3.5% of the respondents chose a 

shelter or a church as an evacuation destination [105]. Based on hurricane Matthew Twitter data, 

a recent study [106] has found that evacuees are likely to move more than 200 km for an 

evacuation. During hurricane Irma, only 4% of the respondents were found to evacuate to a shelter 

[107, 108]. Moreover, some of the geotagged tweets do not have the necessary granularity (tweets 

with locations as a bounding box) to detect short distance evacuation. Thus, we select a threshold 

of 200 km to identify evacuation. After returning home, a user may not have any tweets posted 

from her home but may have posted from nearby locations. Thus, we select a 20 km distance 

threshold from someone’s home to identify the return of an evacuee. 

Starting from the beginning (10 days prior to landfall) of the location sequence to the 

landfall day, if a user has not tweeted from home or office but tweeted from somewhere else with 

a displacement of at least 200 kilometers, we consider that the user evacuated and the 

corresponding time as evacuation time. After landfall, a return is considered as the time when an 

evacuated user is first seen within the 20 kilometers from her home or office. We collect the 

information on evacuation orders from the official Twitter account of each county. We have 

considered the timings of the evacuation orders issued by each county. So, if someone evacuates 
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before the first official order, it is considered as an evacuation without an official order. We have 

found that 252 users have evacuated among 2,571 identified Florida users. 

We have manually checked the results of the above approach of identifying a user’s home 

location and evacuation (if any), it’s destination, and timing. Please see the supporting information 

section for details of the manual checking process. We compare the results from the manual 

checking process with the results obtained from this approach. We find that both the results match 

with respect to evacuation time and displacement traveled during evacuation. We use this resulting 

data as labeled dataset for the purpose of model estimation and validation. After all the processing, 

our final dataset contains 38,256 geotagged tweets, posted by 2,571 users from Florida.   

2.3.2 Data Exploration 

Figure 2.1 shows the origins and destinations of the evacuated users. Here the identified 

home location of an evacuee is considered as the origin and the evacuation destination place is 

considered as the destination. Figure 2.1 shows the result of 252 Florida-based users after filtering 

out the tourists/visitors. Residents of Florida evacuated to Georgia (Atlanta was one of the major 

destinations), Alabama, South Carolina, and North Carolina. Some users (at right bottom of Figure 

2.1, near coast) moved to places that are closer to the coast than before. This is reasonable as the 

projected path of hurricane Irma changed overnight on September 8, 2017. Initially, Irma was 

expected to hit from the east coast, but later it changed its path and was predicted to hit from the 

west coast. These results seem plausible according to the news update from different source during 

hurricane Irma [109, 110]. The majority of the evacuees were from Miami, Tampa, West Palm 

Beach etc. (see Figure 2.1) where mandatory evacuations were ordered.  

Figure 2.2 shows the distribution plot of evacuation time and return time of the users who 

evacuated during Irma. Figure 2.2(a) shows the marginal and joint frequency distributions of 



18 

 

evacuation time and return time. Figure 2.2(b) and 2.2(c) show the probability distribution of 

evacuation and return time considering the type of evacuation order received. Most evacuees left 

within 100 hours before the landfall (September 10, 2017); 18 to 42 hours before landfall was the 

most frequently chosen evacuation time window. On the other hand, 78 to 102 hours after the 

landfall was most frequently chosen return time window. People started evacuating before the 

official evacuation order (see Figure 2.2 (b)). Although the pattern of evacuation time is different 

for voluntary and mandatory orders, the patterns of return times are almost similar (see Figure 2.2 

(c)).  The resulting distributions are aligned to the actual evacuation time and return time according 

to the concurrent news reports during hurricane Irma [111, 112].      
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Figure 2.1 Evacuation Origin and Destination 
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Figure 2.2 Distributions of Evacuation Time and Return Time during Hurricane Irma (a) 

Joint distribution of evacuation time and return time; the top histogram on x axis shows the 

distribution of evacuation count in 24 hour intervals; the right histogram on y axis shows the 

distribution of return time in 24 hours interval; each cell in the heatmap shows both evacuation 

 

(a) 

(b) (c) 
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count and return count with respect to the corresponding 24 hour evacuation interval on x axis 

and return interval on y axis. (b) Probability distribution of evacuation time for mandatory and 

without mandatory evacuation order, and (c) Probability distribution of return time for 

mandatory and without mandatory evacuation order; the evacuation time and return time are 

expressed as the time difference from landfall time (September 10, 2017), a negative value 

indicates a period before the landfall and a positive value indicates a period after the landfall. 

2.4 Methodology 

We have used an Input Output Hidden Markov Model (IO-HMM) to identify activity 

sequence during a hurricane. We compare the results with a standard Hidden Markov Model 

(HMM). The model architecture is shown in Figure 2.3. The IO-HMM is similar to HMM, but it 

maps the input sequence to output sequences and applies the expectation maximization algorithm 

(EM) in a supervised fashion.  

In an HMM modeling framework, the system being modeled follows a Markov process with 

unobserved (i.e., hidden) states. Figure 2.3(a) shows a graphical representation of an HMM. The 

solid circles represent the observed information and the transparent circles represent the hidden 

state latent variables, in our case the activity types of a user. Here, the hidden states, (𝐻1, 𝐻2 … . 𝐻𝑇) 

are assumed to follow a Markov process that means a state, 𝐻𝑡 depends only on the previous state, 𝐻𝑡−1; i.e., 𝐻𝑡 = 𝑓(𝐻𝑡−1). On the other hand, for the observations (𝑂1, 𝑂2, … 𝑂𝑇), an observation, 𝑂𝑡 depends only on its current state, 𝐻𝑡; i.e., 𝑂𝑡 = 𝑓(𝐻𝑡).  

Unlike the standard HMM, in IO-HMM, the hidden state 𝐻𝑡 at time 𝑡, depends on the previous 

state 𝐻𝑡−1 and the input 𝐼𝑡 at time 𝑡; i.e., 𝐻𝑡 = 𝑓(𝐻𝑡−1 , 𝐼𝑡). Observation 𝑂𝑡 at time 𝑡 depends on 

both the hidden state 𝐻𝑡 and 𝐼𝑡 at time 𝑡; i.e., 𝑂𝑡 = 𝑓(𝐻𝑡, 𝐼𝑡) (see Figure 2.3(b)).  
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Here, 𝐼𝑡 ∈ 𝑅𝑚 is the input vector at time t. 𝑂𝑡 ∈ 𝑅𝑚 is an output vector, and 𝐻𝑡 ∈ {1,2, … . 𝑇} is 

a discrete state. Similar to HMM, IO-HMM has three set of parameters (𝜃): initial probability 

parameters (𝛼), transition model parameters (β), and emission model parameters (𝛾). 

 

(a) HMM 

 

(b) IO-HMM 

Figure 2.3 Graphical Model Specifying Conditional Independence Properties (a) For a 

Hidden Markov Model (b) For an Input Output Hidden Markov Model 

The likelihood of a data sequence given the model parameters (𝜃) is given by: 

𝐿(𝜃, 𝑂, 𝐼) = ∑ (𝑃𝑟(𝐻1|𝐼1; 𝛼). ∏ Pr(𝐻𝑡|𝐻𝑡−1, 𝐼𝑡, 𝛽) .𝑇
𝑡=2 ∏ Pr (𝑂𝑡|𝐻𝑡, 𝐼𝑡; 𝛾)𝑇

𝑡=1 ) 𝐻  (2.1) 

 

The model parameter is learned by expectation maximization algorithm [113]. For initial 

and transition models, we have used a multinomial logistic regression model. If we assume that 

there are 𝑘 hidden states, the equation of initial probability model becomes the following: 

Pr(𝐻1 = 𝑖|𝐼1; 𝛼) = 𝑒𝛼𝑖𝐼1∑ 𝑒𝛼𝑘𝐼1  𝑘  (2.2) 
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where 𝛼 is a coefficient matrix for initial probability model with 𝛼𝑖 represents the 

coefficients for the initial state being at state 𝑖. 
The transition from the state 𝑖 to the state 𝑗 can be modeled as: 

Pr(𝐻𝑡 = 𝑗 |𝐻𝑡−1 = 𝑖, 𝐼𝑡; 𝛽) = 𝑒𝛽𝑖𝑗𝐼𝑡∑ 𝑒𝛽𝑖𝑘𝐼𝑡𝑘  (2.3) 

where 𝛽  represents the transition probability matrices with the (𝛽𝑖𝑗) being the coefficients 

for transitioning to next state 𝑗 given the current state is 𝑖. 
For the output model, we have used a linear model for a continuous outcome:  

Pr(𝑂𝑡|𝐻𝑡 = 𝑖, 𝐼𝑡;  𝛾𝑖) = 1√2𝜋𝜎𝑖 𝑒−(𝑂𝑡−𝛾𝑖.𝐼𝑡)22𝜎𝑖2  (2.4) 

where, 𝛾𝑖 represents the emission coefficient when the hidden state is 𝑖. For a hidden state 𝑖, 𝛾𝑖 and 𝜎𝑖 denote the arrays of model coefficient and standard deviation of the linear model. 

And a logistic regression model is used for a categorical outcome:   

Pr(𝑂𝑡|𝐻𝑡 = 𝑖, 𝐼𝑡;  𝛾𝑖) = 𝑒𝛾𝑖𝐼𝑡∑ 𝑒𝛾𝑘𝐼𝑡  𝑘  ; 𝑖𝑓 𝑂𝑡 𝑖𝑠 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙 (2.5) 

where, 𝛾𝑖  denotes the model coefficient when the hidden state is 𝑖.  
Detailed descriptions of HMMs and the associated solution algorithms can be found in ref 

[94]. The IO-HMM model architecture and its formulation can be found in this ref [101]. 

2.5 Model Development 

An IO-HMM model considers data as sequences of inputs and outputs for each user. For 

that purpose, we need to process the data from raw tweets in that specific form. Figure 2.4 shows 

the sequence generation process. For a user, {𝑡1, 𝑡2, … … . . 𝑡𝑇} represent the times of the tweets 

posted at locations {𝑙1, 𝑙2, 𝑙3 … … . . 𝑙𝑇}, respectively. We have collected hurricane related 

information for each of the location (county level) such as whether the location had a mandatory 
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evacuation order or not, whether the location had a voluntary order or not, whether the time is 

before landfall or after landfall. This information is encoded as a binary variable in the sequence. 

Other information associated with each location is distance from home and time difference from 

landfall, similarity score of the posted tweet text with the evacuation context words. For simplicity, 

all information is not shown in Figure 2.4. We calculate the similarity score by training a word to 

vector model using tweets from 4 hurricanes (Irma, Matthew, Harvey, and Sandy).       

Figure 2.4 Schematic diagram of sequence generation. Here, 𝑙𝑖=location of the user when 

posting tweet 𝑖 ; 𝑡𝑒𝑥𝑡𝑖= texts of the tweet 𝑖 ; 𝑡𝑖= time of the tweet 𝑖 ; and 𝑇 = total number of 

tweets posted. 

2.5.1 Inferring Evacuation Context from a Tweet 

In general, the text of a tweet may reflect the underlying context such as hurricane 

awareness, evacuation intent, information sharing/seeking, power outage etc. We use a similarity 

score to quantify how similar a tweet is to an evacuation context (e.g., words such as ‘evacuate’, 

‘evacuating’, ‘sheltering’). We have used a vector space model called word2vec to learn the word 

vectors of an evacuation-related tweet.  

Vector Space Model [114] is a natural language processing tool to represent texts as a 

continuous vector where words that appear in the same contexts share semantic meaning 

[115],[116]. A detailed description of how the model works is given in the supporting information. 
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Once a model is trained, every word in the vocabulary will have a vector representation of a length 

equal to the vocabulary size (see supporting information). We train a word2vec model using 

CBOW architecture (please see the supporting information for details) on a corpus of 100 million 

disaster-related tweets, collected during multiple hurricanes (Hurricanes Sandy, Harvey, Matthew, 

and Irma). We calculate the cosine similarity [117] between two word vectors 𝑊𝑜𝑟𝑑𝑖  𝑎𝑛𝑑 𝑊𝑜𝑟𝑑𝑗 

by the following equation:  

  𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 = cos(𝜃) = 𝑊𝑜𝑟𝑑𝑖. 𝑊𝑜𝑟𝑑𝑗||𝑊𝑜𝑟𝑑𝑖||𝑊𝑜𝑟𝑑𝑗|| (2.6) 

Here, 𝑤𝑜𝑟𝑑𝑖 , 𝑊𝑜𝑟𝑑𝑗 ∈ {𝑣𝑜𝑐𝑎𝑏𝑢𝑙𝑎𝑟𝑦 𝑖𝑛 𝑡ℎ𝑒 𝑚𝑜𝑑𝑒𝑙}, 𝑘 = 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑤𝑜𝑟𝑑 𝑣𝑒𝑐𝑡𝑜𝑟. 

In our study, to calculate the similarity of a word to an evacuation context, 𝑤𝑜𝑟𝑑𝑖 ∈{′𝑒𝑣𝑎𝑐𝑢𝑎𝑡𝑖𝑜𝑛′,′ 𝑒𝑣𝑎𝑐𝑢𝑎𝑡𝑖𝑛𝑔′, ′𝑠ℎ𝑒𝑙𝑡𝑒𝑟𝑖𝑛𝑔′} and 𝑤𝑜𝑟𝑑𝑗 ∈ {𝑤𝑜𝑟𝑑𝑠 𝑖𝑛 𝑎 𝑡𝑤𝑒𝑒𝑡}. If a window size 

of 𝑛 is selected, then score of a tweet is calculated by summing up to 𝑛𝑡ℎ top score for the words 

present in the tweet. We have used the top one score to represent the similarity of a tweet with 

respect to an evacuation context. Similarity scores of the tweets posted at locations 𝑙1, 𝑙2, 𝑙3 … … . . 𝑙𝑇 are denoted by {𝑆𝑐𝑜𝑟𝑒𝑡𝑒𝑥𝑡1 , 𝑆𝑐𝑜𝑟𝑒𝑡𝑒𝑥𝑡2 , … … . . , 𝑆𝑐𝑜𝑟𝑒𝑡𝑒𝑥𝑡𝑇−1 , 𝑆𝑐𝑜𝑟𝑒𝑡𝑒𝑥𝑡𝑇}.  

2.6 Model Estimation 

As we obtain the sequences of all the information needed, we need to specify the inputs 

and outputs. In IO-HMM, both inputs and outputs are available at the training stage; but after 

training, the model should infer the outputs given its inputs. In general, the inputs are known before 

the start of a transition to a new state/activity, but the outputs are not known. In our model, we 

choose input variables that are likely to influence the decision of a user’s next activities. We select 

5 input variables including: the time difference from landfall in hours represented as negative to 
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positive where negative means a pre-landfall period (𝐼1), a binary variable representing a pre-

landfall or a post landfall period (𝐼2), an interaction variable representing the time difference from 

landfall only for a pre-landfall period (𝐼3), a binary variable representing if the user’s home 

location is under a mandatory evacuation order (𝐼4), and a binary variable representing if the user’s 

home location is under a voluntary evacuation order (𝐼5). As outputs, we choose two variables 

such as: current location’s distance from home (𝑂1) and evacuation similarity score (word2vec 

score) of the tweets posted in the location (𝑂2).We make several assumptions for selecting the 

dependencies among the initial, transition, and output models of the IO-HMM structure. We 

assume that the transition (see Figure 2.3b) between the hidden states depend on the current state 

and the input variables 𝐼1(time difference from landfall), I2(post landfall), 𝐼4(user’s home is under 

mandatory evacuation), 𝐼5(user’s home is under voluntary evacuation). We did not explicitly 

study the research question of what factors impact people’s evacuation behavior, rather we model 

this behavior as part of an activity dynamics process, where evacuation is considered as an activity 

type. The coefficient of these five input variables corresponding to an evacuation activity transition 

indirectly captures the factors impacting evacuation behavior.  Existing literatures have also found 

that variables like mandatory evacuation order, voluntary evacuation orders, time of landfall 

significantly affect people’s evacuation decisions[59, 107, 118]. We also assume that output 

variables include 𝑂1(home distance) and 𝑂2(word2vec score). These output variables depend on 

the current state and the input variables including 𝐼1(time difference from landfall), 𝐼3(time 

difference from landfall during pre-landfall), 𝐼4(user’s home is under mandatory evacuation) and 𝐼5(user’s home is under voluntary evacuation). Moreover, no input is chosen for the initial 

probability model and thus parameters will be learned by the EM algorithm only. Multinomial 

logistic regression is used as the transition and initial models. Since both the outputs distance from 
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home (𝑂1) and word2vec evacuation similarity score(𝑂2) are continuous, linear regression 

models are used as output models. 

In the given setting of IO-HMM, to unfold the dynamics of hurricane evacuation, we 

choose four types of latent activities (home activity, office activity, evacuation, and others) as 

hidden states. Home activity and office activity represent the activities when the user stays at home 

and office, respectively; any activities participated at other locations are defined as “other” 

activities. Starting from the first evacuation order to the landfall day, if a user has only other 

activity but no home/office activity and is found at a location of 200 kilometers or more away from 

home, we labeled it as an evacuation activity. We train the IO-HMM model using the labeled 

sequences of 80% (n=202) of the evacuated users and 80% (n=1855) of the non-evacuated users. 

To validate the model, we use the data from the 20% (n=50) of the evacuated users and 20% 

(n=463) of the non-evacuated users. We implement the models in Python programming language 

using IO-HMM package [97] available here https://github.com/Mogeng/IO-HMM.  

2.7 Results 

In this section, we describe the results of our evacuation dynamics model. First, we apply 

the standard HMM model to find the learned distribution of the selected outputs. Then we interpret 

the results of IO-HMM.  

2.7.1 HMM Results 

In the HMM structure, we have four latent states/activities considering the output variables 

as mixtures of gaussian distributions. Figure 2.5 shows the posterior distribution of home distance 

and word2vec score for each latent activity. Mean distances from home is 0, 22.64, 129.18, 699.97 

kilometers for home activity, office activity, other activity, and evacuation, respectively. The 

model has estimated higher average distance of 699.97 kilometer for evacuation activities. 

https://github.com/Mogeng/IOHMM
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Average distance for office activity is 22.64 kilometers with dispersion of 32.64 kilometer. We 

choose other activities as a broad category for simplicity of the model; it may include grocery 

shopping before hurricane, eating at restaurants, short or long trips etc., thus 129.18 kilometer of 

average distance with the highest dispersion of 340.44 kilometer seems reasonable. 

We are interested in learning how users respond to evacuation warning in their tweets. We 

find the word2Vec evacuation similarity scores as 0.54, 0.48, 0.48, and 0.50 for home activity, 

office activity, other activity, and evacuation, respectively. Although the difference is not that 

much, we see a higher score during home activity and evacuation activity. This means that users 

have tweeted about evacuation more during evacuation or home activity (0.54 and 0.50 word2vec 

similarity score). It is expected since evacuated users are more likely to share posts about 

evacuation. Also, during a hurricane, people are more likely to share evacuation related updates 

from their homes.  



29 

 

 

Figure 2.5 Posterior Distributions of Output Variables (Distance from Home and 

Word2Vec Score) for Different Activity Types (a) Home Activity (b) Office Activity (c) Other 

Activity (d) Evacuation 

2.7.2 IO-HMM Results 

Although an HMM can learn the latent activities from the observed tweets, it does not 

allow to incorporate contextual input variables to infer the latent activities and their relationship 

with the outputs. Table 2.1 shows the coefficients of the output model when applied an IO-HMM 

structure. We have considered other variables such as friends count and follower count; but the 

estimated coefficients for these variables are not significant. We have excluded these variables 
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from our final model. The output variable, distance from home, given the current state is a home 

activity has no coefficient. This is plausible since, for any user at home, distance from home is 

always zero. As expected, among all activities, the evacuation activity has the highest intercept for 

the distance from home output variable. The  coefficients of 𝐼1 𝑎𝑛𝑑 𝐼3, for an evacuation activity, 

are statistically insignificant, which indicates that evacuation distance does not depend on the time 

difference from landfall. For an evacuation activity, a positive coefficient of (𝐼4) indicates that if 

all other variables remain constant users from a mandatory evacuation zone are likely to evacuate 

longer distances compared to the users from no evacuation order zone. Same is true for the users 

from voluntary evacuation order zones (𝐼5). Thus, positive coefficients for both mandatory and 

voluntary order indicate that evacuated users from mandatory and voluntary evacuation zones will 

travel longer than a user from a zone with no evacuation order. 

Table 2.1 Coefficients of the Output Models for IO-HMM 

Output 

Variable

s 

Latent 

Variables 

 Input Variables 

Intercept 

Time 

differenc

e from 

landfall 

(hour), 𝑰𝟏  

Time 

difference 

from 

landfall*Pre

-landfall 

period 

(hour), 𝑰𝟑 

Home 

location 

under 

mandatory 

evacuation 

order, 𝑰𝟒 

Home 

location 

under 

voluntary 

evacuation 

order, 𝑰𝟓 

Distance 

from 

Home 

 

Home 
Activity 0 0 0 0 0 

Office 
Activity 22.565*** 0.015*** -0.021* 1.893* -5.724*** 

Other 
Activity 

111.639**
* 0.189*** -0.457*** -24.910*** 10.991*** 

Evacuatio
n 

585.724**
* -0.125 -0.572 

160.968**
* 

176.748**
* 

word2ve

c Score 

Home 
Activity 0.667*** 

-
0.0006*** 0.002*** 0.035*** -0.0272*** 

Office 
Activity 0.577*** 0.0005*** 0.001*** -0.030*** 0.019** 

Other 
Activity 0.571*** -0.001*** 0.011*** 0.015*** -0.013*** 
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Evacuatio
n 0.563*** 

-
0.0005*** 0.002*** -0.040*** -0.036* 

*Note: ~p*<0.1; **~p<0.05; ***~p<0.01;  

  

For word2vec evacuation similarity score, home activity has the highest intercept value. It 

means that if all the independent variables are equal to zero-- equivalent to the landfall day and no 

evacuation order has been issued-- users are more likely to post about evacuation from their homes. 

This is reasonable as users who are not required to evacuate are more likely to stay at home and 

may post evacuation related tweets. For evacuation activity, a negative coefficient of 𝐼1(-0.0005) 

and a positive coefficient of 𝐼3(0.002) indicate that evacuated users post more about evacuation 

during a pre-landfall period as time approaches to landfall compared to a post-landfall period. In 

other words, an evacuated user posts more about evacuation before landfall, probably because they 

have already evacuated and expressing concerns who are yet to evacuate. These variables (𝐼1, 𝐼3) 

have similar effect for home activity and other activities, indicating that in general users are 

expected to post more about evacuation before the landfall than in a post-landfall period. For home 

activity and other activity, mandatory evacuation order (𝐼4) has a positive coefficient and 

voluntary evacuation order (𝐼5) has a negative coefficient for word2vec evacuation similarity 

score. It means that if all other variables remain constant, while staying at home or participating 

in other activity, compared to a user from no evacuation order zone, a user from a mandatory 

evacuation order zones is likely to post more about evacuation whereas a user from voluntary 

evacuation order zones is likely to post less about evacuation. On the other hand, for evacuation 

activity, variables representing mandatory order zone and voluntary order zone have negative 

coefficients for word2vec evacuation similarity score. This indicates that evacuated users from a 

mandatory or voluntary order zone post less about evacuation compared to evacuees from a zone 
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with no evacuation order. This is plausible since evacuated users may have less time to tweet while 

traveling.  

Table 2.2 shows the coefficients of multinomial logistic regression (MNL) models for the 

transition models of IO-HMM. Given the current state, there are 4 MNL models to capture the 

transition among the hidden states (activity types). Here, any positive coefficient means that an 

increase in the associated variable will increase the probability to make a transition between the 

corresponding states. We have 80 different coefficients to capture the dynamics of transition 

between any two states. We mainly focus on interpreting the coefficients associated with 

evacuation. For instance, if we observe the coefficients of home: evacuation (see Table 2.2), a 

negative sign of the variable 𝐼2(i.e., a post landfall period) represents that if a user’s current state 

is a home activity, in comparison to a pre-landfall period, a post-landfall period decreases the 

likelihood to evacuate if all other variables remain constant. It is also same for office: evacuation, 

other: evacuation and evacuation: evacuation transitions (see Table 2.2). These results are quite 

expected as individuals are less likely to evacuate after the landfall.    

The coefficient of the variable time difference from landfall (𝐼1) is insignificant for the 

evacuation: evacuation transition; but it is significant and has negative coefficients for other 3 

transitions (i.e., home: evacuation, office: evacuation, other: evacuation).  This means that if 

everything remains constant, with increase in time difference from the landfall (as time becomes 

closer to landfall or away from landfall) these transitions are less likely to occur. The input variable 𝐼4 (home location under mandatory evacuation order) has positive coefficients for home: 

evacuation, office: evacuation, and other: evacuation but it has a negative coefficient for the 

evacuation: evacuation transition. A plausible explanation is that a user may evacuate directly from 

home/office (some user’s home and office are same) or may perform some other activities 
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(distance < 200 km) and then evacuate. The positive coefficient of 𝐼4 indicates that compared to 

the users from zones with no or voluntary evacuation order, users from mandatory evacuation 

order zones are more likely to evacuate. A negative coefficient of 𝐼4 for evacuation: evacuation 

transition means that users who evacuate from mandatory evacuation zone are less likely to remain 

in the evacuation state. It might be because due to their concerns about the damage of their home 

caused by the hurricane. The input variable 𝐼5 (home location under voluntary evacuation order) 

has positive coefficients for home: evacuation, office: evacuation transition and negative 

coefficients for other: evacuation and evacuation: evacuation transition. The positive coefficient 

of (𝐼5) indicates that compared to the users from no evacuation order, the users from voluntary 

evacuation order are more likely to evacuate given their current activity is home or office. The 

negative coefficient of 𝐼5 indicates that given the current state is other or evacuation, compared to 

the users from zones with no evacuation order, users from voluntary evacuation zone are less likely 

to evacuate or continue to maintain evacuation state.  

Table 2.2 Coefficients of the Transition Models for IO-HMM 

From Activity: To 
Activity 

Intercept 

Time 
difference 
from 
landfall 
(hour), 𝐼1 

Whether 
time is 
post 
landfall, (𝐼2) 

Home 
location 
under 
mandatory 
evacuation 
order, 𝐼4 

Home 
location 
under 
voluntary 
evacuation 

order, 𝐼5 

Home: Home 0.034*** 0.253*** 0.0001*** 0.521*** 0.051 

Home: Office 0.037*** -0.084 0.002*** -0.032 0.083 

Home: Other 0.121*** 0.521*** -0.001*** 0.088* 0.067 

Home: Evacuation -0.191*** -0.691*** -0.0003 0.401*** 0.201*** 

      

Office: Home 0.174*** 0.061 0.001*** -0.062** -0.293*** 

Office: Office 0.393*** 0.450*** 0.002*** 0.588*** 0.391*** 

Office: Other 0.282 0.364*** -0.001*** 0.196*** 0.069* 

Office: Evacuation -0.242*** -0.875*** -0.003*** -0.722*** 0.167*** 

      

Other: Home 0.159*** 0.023 0.001*** 0.228*** 0.065 
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Other: Office -0.062*** -0.157 0.002*** 0.111* -0.088 

Other: Other 0.103*** 0.957*** -0.004** 0.187*** 0.233*** 

Other: Evacuation -0.165*** -0.734*** -0.0002 0.236*** -0.177* 

      

Evacuation: Home -0.099 0.103 0.010*** -0.072 0.137 

Evacuation: Office -0.132 -0.460 0.0008 0.049 0.237 

Evacuation: Other -0.053 0.025 -0.0009 -0.372*** 0.147 

Evacuation: 
Evacuation 0.283*** 0.332 -0.010*** -0.394*** -0.523*** 

*Note: ~p*<0.1; **~p<0.05; ***~p<0.01;  

 

Figure 2.6 shows the combined effect of different variables contributing to the transition 

probability from one activity to another. The color of each cell represents the probability of making 

a transition from the associated row activity to the associated column activity. The sum of each 

row equals to 1 indicating that from the current state/activity type, it will make transition to any of 

the four activity types. Figure 2.6 (a) and 2.6 (b) show the transition probabilities 100 hours before 

landfall, whereas Figures 2.6 (c) and 2.6 (d) show the transition probabilities 100 hours after the 

landfall. Overall, before the landfall, given a current state, it has higher probabilities to make a 

transition to evacuation state compared to the post-landfall period. Figure 2.6 (a) and 2.6 (b) show 

the differences in transition probabilities between voluntary evacuation order and mandatory 

evacuation order at the home location. Given the current state is a home activity, compared to the 

voluntary evacuation order, a mandatory evacuation order has a higher probability of evacuation 

(0.25) and a lower probability of transitioning to the office (0.16). In both cases, we see that given 

that the current state is a home activity, the probability to participate in other activity is high (0.30 

and 0.26, respectively). Given the current state represents other activity, the probability to evacuate 

increases from 0.16 to 0.21 from zones with a voluntary evacuation order to zones with a 

mandatory evacuation order, respectively. Moreover, if the current state represents an office 

activity, the probability to evacuate decreases from 0.28 to 0.12 for a voluntary evacuation zone 
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to a mandatory evacuation zone, respectively. Besides, the probabilities that an evacuated user will 

continue to remain evacuated for voluntary and mandatory evacuation zones are 0.45 and 0.56, 

respectively. Similarly, Figure 2.6 (c) and (d) show the transition probabilities after 100 hours of 

the landfall for users under voluntary and mandatory evacuation zones, respectively. An individual 

from a voluntary evacuation zone has a lower probability (0.076) to continuing to remain 

evacuated (see Figure 2.6c), compared to an individual from a mandatory evacuation zone (0.11) 

(see Figure 2.6d). 

  

(a) 100 hours before landfall, home 

location under voluntary evacuation order 

(b) 100 hours before landfall, home 

location under mandatory evacuation order 
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Figure 2.6 Activity Transition Matrices under different scenarios 

  

 There is not much difference in the probability of returning to home activity for 

voluntary and mandatory evacuation zone after 100 hours of hurricane landfall (0.60 and 0.59 

probability that users will return to home given the current state is evacuation, for voluntary and 

mandatory order, respectively).  

  

(c) 100 hours after landfall, home 

location under voluntary evacuation order 

(d) 100 hours after landfall, home 

location under mandatory evacuation order 
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(a) for activity types (b) for activity types 

 

(c) for identifying evacuation decisions (d) for identifying evacuation decisions 

Figure 2.7 Classification Performance of IO-HMM. (a) and (b) represent the activity (home, 

office, other and evacuation) classification performance in terms of confusion matrix and ROC 

curve. (c) and (d) represent the evacuee (evacuated or not) identification performance in terms of 

confusion matrix and ROC curve. 
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Using the trained IO-HMM model, we predict the activity sequences for the test data (20% 

of the labelled dataset). Figure 2.7 shows the activity recognition performance of IO-HMM. The 

confusion matrix reports the numbers of predicted labels and the ratio of correctly predicted label 

to actual label. IO-HMM has 100 %, 98.17 %, 28.62% and 77.03% accuracy for recognizing home, 

office, other and evacuation activities, respectively (see Figure 2.7(a)). Using the standard HMM, 

we get 100%, 92.38%, 29.01%, and 62.51% accuracy for home, office, other and evacuation 

activity recognition, respectively. Thus, using a IO-HMM structure instead of a standard HMM 

structure improves accuracy.. Figure 2.7(b) shows the ROC curves which plot true positive rates 

vs. false positives rate under every possible classification threshold. For example, for home activity 

recognition, true positive rate answers the question when an actual activity is at home how often 

the model predicts it as a home activity (true home activity/all home activity). On the other hand, 

false positive rate for home activity recognition answers the question when actual activity is not at 

home how often the model predicts it as a home activity (false home activity/ all not home activity). 

In Figure 2.7(b) class 0, 1, 2, and 3 represent home, office, other, and evacuation activities, 

respectively.  Area under the curve or AUC represents the classification performance where AUC 

is percentage of the whole box which is under the ROC curve (range 0 to 1). If any ROC curve is 

close the diagonal line or AUC =0.5, the model is not any better than random guessing. We can 

see that the model has the AUC values of 0.98, 0.87, 0.94, 0.99 for home, office, other, and 

evacuation activity, respectively. 

We also report the performance of the IO-HMM model in identifying evacuation decision 

(if a user has evacuated or not) at an individual level. Using the test set, for each user, we convert 

the predicted activity sequence as a binary output by checking if any evacuation state is present in 

the predicted activity sequence or not. Then we compare the converted evacuation identification 
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result against our labelled data to estimate the model performance using confusion matrix and 

ROC curve. Figure 2.7(c) and 2.7(d) show the confusion matrix, ROC curve, respectively, for 

individual-level prediction. For identifying individual evacuation decision, the model has 92% and 

94% accuracy for non-evacuated and evacuated users, respectively (see Figure 2.7(c)). The model 

has the same AUC value of 0.98 for both evacuated and non-evacuated users. 

Figure 2.8 shows evacuation participation rates over time. From the labeled data, we 

separate evacuations in two categories: evacuation generated from zones with a mandatory 

evacuation order and evacuation generated from zones with a voluntary or no evacuation order. 

The evacuations from later zones are also known as shadow evacuation [119, 120]. We find that 

from our collected samples, around 65% evacuations are generated from the mandatory evacuation 

order zone and the remaining 35% are from a zone with either a voluntary or no evacuation order. 

Shadow evacuation causes additional traffic congestion and often hampers the evacuation of the 

actually threatened population [61].  Using the trained IO-HMM model, we predict the activity 

sequences of all the users (for both train and test data). We compare the predicted timing of 

evacuation state and the number of evacuated users with the labelled data. From Figure 2.8, we 

see that on aggregate the model identifies around 62% percentage of total evacuation as evacuation 

and around 38% as shadow evacuation. The model captures the overall trend of the evacuation 

timing and participation numbers.  
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Figure 2.8 Cumulative evacuation frequencies and predicted evacuation frequencies across 

time. 

2.8 Conclusions 

To better capture the dynamics of individual-level evacuation behavior, longitudinal spatio-

temporal data are needed covering both pre- and post-disaster periods. Traditional data collection 

approaches, such as household surveys, are static and conducted in a post-disaster period. This 

limits our ability to capture the dynamics of evacuation decision-making process such as 

determining the probability of evacuation given the states of the variables (e.g., evacuation order, 

projected landfall time) in the current and previous time-steps. With longitudinal data collected, 

we can determine the effects of the changes in variables over time on evacuation decisions. In 
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addition, since the data are collected in real time, we are able to capture the dynamics when the 

situation is evolving instead of at a post-disaster period.  

In this study, we use Twitter data from Hurricane Irma to develop a model for inferring 

individual hurricane evacuation dynamics. We have collected evacuation data from Twitter 

covering all counties of Florida. Based on the tweets of active users during an evacuation period, 

we develop an input output hidden Markov model to infer what type of activities individuals 

participate, the locations and timing of those activities, when they evacuate, and where they 

evacuate to. We model individual participation in four activity types (home activity, office activity, 

other activity, and evacuation) during a hurricane.  

The modeling approach provides rich insights on evacuation and other activity types during 

a hurricane both spatially and temporally. For instance, we have learned from real-time Twitter 

data to what extent individual social communication and evacuation distance depend on evacuation 

order type and time to landfall.  

 The results associated with the spatial variables (e.g., home location under a mandatory 

evacuation order, home location under voluntary evacuation order) indicate that if a user’s home 

location is under a mandatory or voluntary evacuation order, he/she is likely to evacuate longer 

distance compared to the users under no evacuation order. We also find that users from a 

mandatory evacuation zone are likely to post more about evacuation during home activity and the 

users from a voluntary evacuation zone are more likely to post about evacuation during an office 

activity compared to the users from no evacuation order zone. From the activity transition 

dynamics, we find that: given the current activity is a home activity, the probability to evacuate 

increases for both mandatory and voluntary evacuation order; given the  current activity is an office 

activity, the probability to evacuate increases for mandatory evacuation order and decreases for 
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voluntary evacuation order; and given the current activity is other activity, the probability to 

evacuate increases for mandatory evacuation order and decreases for voluntary evacuation order. 

The results associated with the variables related to temporal dynamics show that evacuation 

distance does not depend on time difference from landfall but the evacuation related tweets 

(representing evacuation context) are likely to increase with decrease in time difference from 

landfall in pre-disaster period given all other variables remain constant. We also find that, before 

the landfall as the time difference decreases, the likelihood of evacuation increases. And after the 

landfall as the time difference from landfall increases the probability of returning to home 

increases. Thus, this study can capture the dynamics of evacuation behavior both spatially and 

temporally within a single modeling framework. Such insights for hurricane evacuation are critical 

for emergency management. For instance, identifying the evacuated and not evacuated population 

during a hurricane can make its preparation more effective and dynamic. Another benefit of our 

modeling framework is that we can generate the behavior of a synthetic population by simulating 

their activity dynamics with the parameters estimated in this study. Such simulated data from the 

model based on the total population of a region will allow us to determine evacuation demand in 

real-time. 

This study has some limitations such as Twitter may have different penetration in different 

areas. Twitter users are not equally distributed across different age groups. Consequently, 

geotagged tweets may not represent the behavior of all population segments. We have assumed 

200 km as threshold distance for evacuation and 20 km distance as to return thresholds. Thus, our 

approach cannot detect shorter distance evacuation such as relocating to higher ground or better-

protected places or shelter within one’s local geography. This is due to the limitations in the 

granularity of our data because some users have a city/county level location instead of a precise 
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GPS location. Other variants of HMM can be applied to get better accuracy. Also, to verify our 

results data from other sources are not used as they are not currently available.   

In spite of the above limitations, this study adds to the growing literature on modeling the 

dynamics of evacuation behavior. In particular, it investigates the potential of using social media 

data for understanding evacuation dynamics. However, future research should focus on how to 

account for potential biases present in Twitter data. As social media data can be gathered in real 

time at large scale during a hurricane, our model can make evacuation traffic predictions and 

provide behavioral insights in real time. Since traditional survey data are costly and often 

conducted at a post-hurricane period, our method of using social media data can complement the 

traditional approaches of modeling evacuation behavior.   

2.9 Supporting Information 

2.9.1 Manual Checking of the Labeled Dataset 

We created an interactive map to manually check whether a user evacuated or not. For each 

user, we visualized the home, office, evacuation destination (if any), the visited locations, and the 

tweets. We checked the tweets if there was any mention that the user was evacuating or leaving 

home during the evacuation period. As an example, Figure 2.9 S1 shows the snapshot of our 

manual checking process for a user. The locations are plotted with a 5-km precision to protect user 

privacy. The user, shown in Figure 2.9 S1, had home and office in Lee County, FL and evacuated 

to Birmingham city, Alabama. While evacuating, the user tweeted from Tampa, FL indicating that 

he/she was aware of hurricane Irma’s changing path. We checked each user’s home location, 

evacuation destination (if any), traveled distance, and tweet text to infer whether the user evacuated 

or not. Using this process, we checked 252 evacuated users and 2,319 non-evacuated users. The 

manual checking was performed by two individuals.  
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Figure 2.9 (S1) Demonstration of the Manual Checking Process. It shows a snapshot of the 

interactive visualization a user’s home, evacuation destination, and visited places—containing 

tweet time, tweet text and distance from home. 

2.9.2 Word2Vec Model  

Word2vec is a predictive model developed by  Mikolov et al.[121, 122]. It contains two 

distinct algorithms: Continuous Bag-of-Words (CBOW) and Skip-Gram. Skip-Gram predicts 

context word given a target word and CBOW predicts the target word given the context word. 

Details of word2vec model can be found in refs [121–123]. It is a very simple, scalable, fast to 

train model that can learned over billions of words of text that will produce exceedingly good word 

representations. Word2vec uses the theory of meaning to predict between each word and the 

context word. Word2Vec contains two distinct algorithms, Continuous Bag-of-Words (CBOW) 
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and Skip-Gram, where Skip-Gram predict context word given the target word and CBOW predict 

the target word given the context word. Figure 2.10 S2 shows the CBOW architecture.  

Figure 2.10 (S2) The CBOW architecture predicting the current word based on the context 

 

In CBOW, for a window size C, the inputs are one-hot (size equal to vocabulary size, V) 

encoded context words {𝑥1, … . . , 𝑥𝑐}. The hidden layer ℎ is N-dimensional. The output/target word 𝑦𝑗 for the context input words is also one hot encoded of size 𝑉. The input layer and hidden layer 

are connected by weights matrix 𝑊 of dimension 𝑉 × 𝑁 and the hidden layer and output layer are 
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connected by another weight matrix 𝑊′ of dimension 𝑁 × 𝑉. The workflow of CBOW can be 

described in three steps described below. 

Forward Propagation 

This section describes how the output is computed from the input given that the input and 

output weight matrixes are known. Hidden layer output is computed first from the input layer and 

weight matrix 𝑊. This is computed as shown in equation (2.7) 

ℎ = 1𝐶  𝑊. (∑ 𝑥𝑖𝐶
𝑖=1 ) (2.7) 

which is the weighted average of the input vectors and weight matrix 𝑊. Next, the input 

to each node of output layer is computed by the following  𝑢𝑗 = 𝑣𝑤𝑗′ 𝑇 . ℎ (2.8) 

Where 𝑣𝑤𝑗′  is the 𝑗𝑡ℎ column of the output weight matrix 𝑊′. Finally, the outputs 𝑦𝑗 of the 

output layer are computed by applying a soft-max function as shown in equation (2.9). 

𝑦𝑗 = 𝑝 (𝑤𝑦𝑗|𝑤1, … … . . , 𝑤𝑐) = exp(𝑢𝑗)∑ exp(𝑢𝑗)𝑣𝑗=1  (2.9) 

 

As the output is computed, the weight matrix 𝑊 and 𝑊′ can be learned from by back-

propagating the errors. The process is discussed in the next section.  

Learning the Weight Matrices  

To learn the weight matrices, at first the 𝑊 and 𝑊′ are randomly initialized. By feeding 

the training examples sequentially and observing the predicted output, we get the error which is a 

function of difference between the actual and predicted output. It is also known as loss function. 
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The objective is to maximize the conditional probability of the output word given the input context, 

therefore our loss function will be the following: 𝐸 = −𝑙𝑜𝑔 𝑝(𝑤0|𝑤𝐼) 

= −𝑢𝑗∗ − log ∑ exp (𝑢𝑗′)𝑣
𝑗′=1  

= −𝑣𝑤0𝑇 . ℎ − log ∑ exp (𝑣𝑤𝑗′𝑇 . ℎ)𝑣
𝑗′=1  (9) 

Here 𝑗∗ is the index of the actual output word. The next step is to update the weight matrices 

based on the gradient. The gradient of this error is computed with respect to both weight matrices 

and correct them in the direction of this gradient. This optimization procedure is known as 

stochastic gradient descent. Details of the optimization procedure can be found here [124]. 

 

Word2Vec Sample Results 

We train the model with the corpus of hurricane related tweets collected from 4 hurricanes 

(Irma, Matthew, Harvey and Sandy). We use minimum word count=3 for preparing the 

vocabulary. We tran the model using a window size, C=32 for context words. Once the model is 

trained each word in the vocabulary will have a vector representation with its context words. The 

cosine similarity between two word vectors is computed using the equation 2.6. Figure 2.11 S3 

shows the top 15 similar words for ‘Evacuation’, ‘Evacuating’ and ‘Sheltering’. For example, 

similar words to evacuation 

Evacuation Evacuating Sheltering 
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Figure 2.11 (S3) Top 15 Word2Vec Cosine Similarity Score of Evacuation, Evacuating, and 

Sheltering 

 contains evac, evacuations, evacs, evacuations…, evacuate etc. which may have been used 

as a short form of evacuation and also evac is emergency service provider name in Volusia county. 

Other similar words are mandatory, curfews, patrols and a cell number (4092832172) etc. 

Evacuation is very related with mandatory order for evacuation. And patrol, curfew is also related 

to evacuation because during state of emergency, state issue curfew and police patrol monitor the 

situation during hurricane evacuation. This cell number (409-283-2172) is the contact number of 

Tyler County - Sheriffs' Association of Texas which was very active during Harvey evacuation 

period. Thus, the result shows very good consistency in finding out the related/similar word 
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CHAPTER 3: PREDICTING TRAFFIC DEMAND DURING HURRICANE 

EVACUATION USING REAL-TIME DATA FROM TRANSPORTATION SYSTEMS 

AND SOCIAL MEDIA 

3.1 Introduction 

2During recent hurricanes (Matthew, Irma), massive evacuations took place in the entire Florida 

region especially in its coastal counties. Millions of people were under mandatory evacuation 

orders, creating severe congestion in major evacuation routes especially in the interstate highways 

(I-75 and I-95). To alleviate congestion, emergency management agencies can adopt strategies 

such as opening hard shoulder for traffic, contraflow operations, modified traffic control, route 

guidance, and staged evacuation etc. However, traffic prediction plays the most critical role to 

decide upon the nature and extent of such congestion management strategies. Existing works on 

traffic prediction mainly focus on short term (5 mins to 1 hour) prediction, which is not adequate 

for managing hurricane evacuations that last several days. During hurricanes, traditionally adopted 

short-term features such as present and past traffic conditions are not enough to make traffic 

predictions. Social media messages and geotagged information about the actions taken by the users 

can provide valuable signals for predicting evacuation traffic in the long term. The objective of 

this study is to investigate how real-time information from traffic and social media sensors can be 

used to better predict long-term traffic demand during evacuation.  

We propose a machine learning approach for making long-term traffic prediction during 

evacuation. In particular, to predict traffic demand during a hurricane for different time horizons, 

 
2 Roy, KC, Hasan, S, Culotta, A, Eluru, N, Predicting Traffic Demand during Hurricane Evacuation Using 

Real-time Data from Transportation Systems and Social Media. Under 2nd review in Transportation Research Part C: 

Emerging Technologies 
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we propose a neural network model based on long-short term memory (LSTM-NN) architecture.  

We have used Twitter data from hurricanes Matthew and Irma and the corresponding traffic counts 

from the loop detectors in two major interstate highways (I-75 and I-95). We compare the results 

with a baseline forecast and other machine learning algorithms such as K-nearest neighbor 

regression (KNN regression), support vector regression (SVR), gradient boosting regression 

(GBR), and XGBoost regression (XGBR). Experimental results show that during hurricane 

evacuation, LSTM model captures the traffic demand irregularities better than the other models. 

In this work, we answer the following four research questions: 

• During hurricane evacuation, can we predict traffic demand for a longer time horizon 

utilizing real-time data from traffic sensors and social media? We collect traffic data and 

Twitter data during two major hurricane evacuation periods. We use these two data sources 

for predicting traffic demand for a longer forecast horizon (≥1 hour).     

• How far in advance can traffic demand be predicted during evacuation using real-time 

data? For that we apply the proposed models for different forecast horizons (1 hour to 30 

hours) and compare the predictive performance of the models.   

• How well does the predictive model perform when one of the data sources is not available? 

We apply the models for different combinations (only traffic data, only social media data, 

and combined) of the features and compare the predictive performance of the models. 

• How can we predict the uncertainties of the demand predictions during evacuation? We 

implement a machine learning model to predict possible errors in prediction and give the 

prediction with 90% confidence interval.  
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3.2 Literature Review 

Many previous studies investigated evacuation behavior during emergencies including hurricanes 

[125]. These studies mainly focused on understanding the factors relating to evacuation decisions 

[60, 126–129], mobilization time [130], departure time [67, 131] and destination choice [69, 132, 

133]. Behavioral response [134] to a disaster depends on many factors [135] such as previous 

evacuation experience [136], receiving a warning [137], higher risk perception [136], strong social 

network [137], gender (female) [138] etc. increase the likelihood to evacuate. On the other hand, 

factors such as frequent hazard experience [139], longer residence duration [137], fear of looting 

[140] etc. increase the likelihood of not to evacuate.  

Evacuation behavior also depends on the type of emergency events such as predictable 

events or evacuation with warning/notice (e.g. hurricane, flood), unpredictable events or no-notice 

evacuation (e.g. earthquake, chemical spills, terrorist attack)[141, 142], and short-notice 

evacuation (e.g. tsunami) [133]. For example, unlike hurricanes, tsunami evacuation destinations 

are likely to be within short distance (evacuation by foot is recommended)[143]. For destination 

choice of tsunami evacuation, Parady and Hato [133] proposed a spatially correlated logit model 

considering variables like distance, altitude difference, number of buildings, shelters, etc.; such 

spatial correlation is yet to be explored for hurricane evacuation. 

However in many cases, the covariates used in the models are not available for demand 

prediction during an unfolding disaster [8, 68]. Wilmot and Mei compared five types of models 

(participation rates, logistic regression and 3 types of neural networks) for predicting evacuation 

demand [144].  Xu et. al proposed an ordered Probit model for predicting evacuation demand for 

a future event using data from North Carolina [68].  Studies have proposed ensemble based 

framework [81, 82], integrated modeling approach [64], sequential logit [129], nested logit model 
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[145], random parameter model [76], portfolio choice model [108] to understand and predict 

evacuation. Although this type of modeling approach captures individual level evacuation 

participation in greater detail, these approaches highly depend on surveys that are difficult to 

collect as a hurricane unfolds in real-time. In our study, we use real-time data for predicting the 

traffic demand during evacuation for longer forecasting horizon.  

During a hurricane, traffic state abruptly changes depending on the time to landfall and 

hurricane intensity. Evacuation orders are issued considering the damaging effect of storm surge 

and the overall traffic impact. Evacuation process exerts significant challenges to transportation 

planning and operations processes [61, 146]. Litman described the planning (e.g., transportation) 

failures during hurricane Katrina and Rita [147]. During hurricane Katrina, only 60% of the 

projected vulnerable people were willing to or able to evacuate. In contrast, during hurricane Rita 

enormous response to evacuation orders created excessive traffic problems (e.g., 100-mile-long 

traffic jams, out of fuel etc.) and dozens of accidents or heat related deaths. Considering these 

experiences, evacuation orders were not issued during hurricane Harvey [148]. Incorporating real-

time data in evacuation planning can make evacuation traffic management more flexible, pro-

active, and effective.  

With ubiquitous sensors and smartphone devices, many real-time data sources are available 

now. Traffic detectors installed in the road networks provide multi-resolution real-time data. These 

data sources have been used for traffic state prediction by many studies. Seo et al. provide a 

comprehensive review of existing methods of highway traffic state (flow, volume, speed etc.) 

estimation [149]. However, these studies [150–155] mainly focus on short term (5 min to 1 hour) 

traffic state prediction. Modeling approaches include historical average and smoothing techniques 

[156], auto-regressive moving average models [156], Kalman filter algorithms [156], non-
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parametric regression [156], artificial neural networks (ANN) [156, 157] etc. However, during a 

hurricane, such short-term predictions are not adequate to adopt pro-active traffic management 

strategies. In addition, historical data and present traffic conditions are not enough to predict long-

term traffic states because of other external factors such as unexpected events [158]. During a 

hurricane, traffic flow does not follow typical periodical patterns; rather it changes abruptly 

depending on many complex factors such as time to landfall, changes in hurricane path, evacuation 

orders etc. 

Online social media is a major source of real-time data containing public opinion about 

real-world events. In disaster management, social media data have been used in different contexts 

such as  understanding and detecting natural disasters [16–18], modeling human mobility [14, 19],  

monitoring epidemics [21], responding to crises [22–24], analyzing sentiment [25, 26], and so on. 

Social media users can also serve as social traffic sensors that traditional sensors cannot provide 

[33–35]. Moreover, traffic information from social media can supplement traditional physical 

sensors installed in road networks [36, 37]. Ming et al. have developed a social media (Twitter) 

based event detection and subway passenger flow prediction model under event occurrence [159]. 

He et al. [158] developed a regression based approach for long term traffic prediction using Twitter 

data. However, this study did not investigate how well the method would perform in case of 

emergencies such as hurricanes. Adding features based on tweet counts can improve long-term 

traffic volume prediction [158]. However, traffic pattern considered in these studies are either 

recurrent in nature or only have a peak for some hours. During hurricane evacuation, traffic pattern 

is more unpredictable and can be significantly different from one hurricane to another hurricane.  

Existing approaches on traffic demand prediction model are not suitable in evacuation 

scenarios as these studies do not consider dynamic features such as time to landfall, evacuation 



54 

 

orders issued, and hurricane awareness that influence the temporal pattern of evacuation demand. 

In this chapter, we present an approach combining traffic sensor and Twitter data to predict traffic 

demand during hurricane evacuation for a longer forecast horizon.   

3.3 Study Area and Data Description 

In this study, for predicting traffic during evacuation, we have used both traffic volume 

and Twitter data. We collect traffic volume from two detectors: one in I-75 and the other one from 

I-95 interstate highway. We collect northbound volume data as we are interested in only the 

evacuation traffic moving from the affected regions. The detector at I-75 is located at I-75 north 

bound direction at mile marker 330.2 (see Figure 3.1) (detector id-9828). The detector at I-95 is 

located at north bound direction at zone id-10077, district 5, Florida at location I95-N US 92 (see 

Figure 3.1). These detectors are operated by the Florida Department of Transportation, and we 

have collected the data from Regional Integrated Transportation Information System 

(www.ritis.org). The data include traffic volume in 15 minutes intervals.  

http://www.ritis.org/
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Figure 3.1 Detector Locations at I-75 and I-95 and the Study Area 

For social media data, we have used Twitter data from hurricanes Matthew and Irma. We 

purchased hurricane Matthew data from Twitter. The data were purchased using keywords such as 

hurricane, matthew, hurricanematthew, huracan, huracanmatthew, huracan, storm, evacuation, 

evacuations, and FEMA. Matthew data contains 11.5 million tweets collected between September 

25, 2016 to October 24, 2016. We collected hurricane Irma data using Twitter streaming API for 

a selected bounding box covering Florida, Georgia, North Carolina, and South Carolina. For 

Detector 

Location 

at I-95 

Detector 

Location at 

I-75 
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hurricane Irma, we collected around 1.8 million geotagged tweets from September 5, 2017 to 

September 14, 2017. 

 

Figure 3.2 Traffic Volume for 15 Minutes Intervals at Interstate Highways during 

Hurricane Evacuation (a) Hurricane Matthew (b) Hurricane Irma 

3.4 Data Preparation 

Interstate highways I-75 and I-95 are the most popular routes during evacuations from 

Florida. We take the sum of the traffic volume of I-75 and I-95 to capture the overall traffic demand 

during evacuation from the associated regions. Figure 3.2 shows the traffic volume generated 

during hurricanes Matthew and Irma. During hurricane Matthew, I-95 traffic was higher than I-75 

traffic because Matthew was expected to hit on the east coast. On the other hand, during hurricane 

Irma, at first traffic on I-95 was higher than I-75; but later (after September 8, 2017) it was the 
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opposite. This is reasonable as the projected path of hurricane Irma changed overnight on 

September 8, 2017. Initially Irma was expected to hit from the east coast, but later it changed its 

path and was predicted to hit from the west coast. Hurricane Matthew Twitter data are filtered for 

geotagged tweets within the study region bounded by the coordinates (25.072, -82.963; 29.352, -

79.232).  Similarly, hurricane Irma data are also filtered by the tweets coming from our study area. 

We also filter both data sets by evacuation related tweets having words such as 'evacuation', 'evac', 

'sheltering', 'evacuating', 'evacuate' etc. We aggregated the tweets based on 15 minutes interval to 

be consistent with the traffic volume data. The traffic data have some gaps; since the missing data 

cover for a very small period, we linearly interpolate the missing data.  
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Figure 3.3 Twitter Features (a) for hurricane Matthew (b) for hurricane Irma 

 

Hurricane Irma Twitter data have also some missing data, which we have recovered by 

collecting historical data, using REST API, for the active users found in the streaming data during 

hurricane evacuation. We standardize the data before fitting the model. Figure 3.3 shows the 

created features: tweet count, unique user count, evacuation tweet count at 15 minutes interval for 
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both hurricanes Matthew (Figure 3.3a) and Irma (Figure 3.3b). We have also created the following 

features: time difference (in hours) from landfall, hour of the day, number of counties ordering 

mandatory evacuation, number of counties ordering voluntary evacuation, total number of 

populations under voluntary order, total number of populations under mandatory order. We have 

used 2018 population data collected from https://www.florida-

demographics.com/counties_by_population. We collect the issuance time of an evacuation order 

for a county from the official emergency management Twitter accounts of the corresponding 

county. Note that hurricane Matthew made its landfall on October 8, 2016 and hurricane Irma 

made landfall on September 10, 2017. In total, we retrieve 716 hourly observations, 263 are from 

Matthew and 453 are from Irma.  

 

3.5 Modeling Approach 

To predict traffic demand during a hurricane evacuation, we have developed a neural 

network approach. In particular, we use a long short-term memory neural network (LSTM-NN) 

architecture which is a special type of recurrent neural network (RNN). In machine learning, 

recurrent neural networks (RNN) are used for learning sequential trends. It has been used to solve 

many problems such as speech recognition [160], language modeling, image captioning etc. Unlike 

traditional neural networks, a recurrent neural network has loops in them (Figure 3.4(a) left) which 

allow to pass message to a successor. Figure 3.4(a) (right) shows a one neuron RNN unrolled over 

time. This chain-like nature reveals its potential to learn sequence both from current inputs and 

previous relevant information.  

Although standard RNN performs well in general time series forecasting, it performs less 

in learning long-term dependencies due to vanishing/exploding gradient problem during 

https://www.florida-demographics.com/counties_by_population
https://www.florida-demographics.com/counties_by_population
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backpropagation [161–163]. LSTM, introduced by Hochreiter and Schmidhuber, resolves this 

problem by remembering information for long period of time [162]. Like RNN, LSTM also has 

the form of a chain of repeating modules of neural network. Unlike RNN’s simple (e.g., a simple 

tanh layer) module, LSTM has four layers interacting in a very special way.  

Figure 3.4(b) shows an LSTM cell with different components in it. Here  𝜎 represents a 

sigmoid function 𝜎(𝑥) =  11+exp(−𝑥) and 𝑡𝑎𝑛ℎ represents a hyperbolic tangent function tanh(𝑥) =
exp(x)−exp(−x)exp(x)+exp(−x) . The key difference between LSTM and RNN is the cell state (𝐶𝑡) shown as a 

horizontal line in Figure 3.4(b). It runs through the entire chain with some minor linear interaction. 

Thus, it helps to keep track of long-term dependencies. It is also known as long-term state. LSTM 

allows to add or remove information to the cell state by some structures called gates. Gates are  

 

Activation 

function ∑    sum over    all 

input 

(a) RNN architecture. Adopted from [164] 
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Figure 3.4 Architecture of RNN (a) a single neuron RNN unrolled trough time (b) a standard 

LSTM cell 

composed of a sigmoid neural net and a pointwise multiplication operation (see Figure 

3.4(b)). An LSTM has three such gates: forget gate, input gate and output gate. Sigmoid layer 

gives output numbers between zero to one where zero means nothing and one means everything. 

LSTM also uses the previous short-term state (ℎ𝑡−1) and current input (𝑋𝑡) and feed this into the 

above discussed layers. The first step is to decide what information to forget. For this, the forget 

gate (𝑓𝑡) takes ℎ𝑡−1 and 𝑋𝑡 and outputs numbers between 0 to 1 for each element in the cell state. 

Mathematically, the operation is shown below in equation (3.1). 𝑓𝑡 = σ(Wf. [ht−1, 𝑥𝑡] + 𝑏𝑓) (3.1) 

where 𝑊𝑓 , 𝑏𝑓 are the weight matrices and bias for the corresponding forget gate neural 

network. The next step decides what new information to store in the cell states. It is performed in 

two parts: an input gate layer (𝑖𝑡) that decides which values to update through its sigmoid layer 

 

(b) LSTM cell 
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and a 𝑡𝑎𝑛ℎ layer that converts the values into a vector (𝑔𝑡) by its activation function. These two 

operations are shown below in equations (3.2) and (3.3).             𝑖𝑡 = σ(W𝑖. [ht−1, 𝑥𝑡] + 𝑏𝑖) (3.2) 

where, 𝑊𝑖 , 𝑏𝑖 are the weight matrices and bias for the corresponding input gate neural 

network. 𝑔𝑡 = tanh(W𝑔. [ht−1, 𝑥𝑡] + 𝑏𝑔) (3.3) 

where, 𝑊𝑔 , 𝑏𝑔 are the weight matrices and bias for the corresponding 𝑡𝑎𝑛ℎ layer. 

The next step is to update the old cell state (𝐶𝑡−1) into new state (𝐶𝑡). The new cell state 

will be the combined result after forget gate and input gate operations. Equation (3.4) shows the 

updated cell state: 𝐶𝑡 = ft ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ 𝑔𝑡 (3.4) 

 

The last step is to predict the outputs from the current LSTM. The output is a filtered 

version of the current cell state (𝐶𝑡). The previous state (ℎ𝑡−1) and input (𝑋𝑡) go through a sigmoid 

layer and the cell state go through a 𝑡𝑎𝑛ℎ layer (to push the values to be between −1 and 1). Then 

multiplication of this two gives the output which is the decided part of the cell state. The operations 

are shown in equations (3.5) and (3.6): 𝑜𝑡 = σ(W𝑜 . [ht−1, 𝑥𝑡] + 𝑏𝑜) (3.5) 

where, 𝑊𝑜 𝑎𝑛𝑑 𝑏𝑜 are the weight matrices and bias for the corresponding sigmoid layer. ℎ𝑡 = ot ∗ tanh (𝐶𝑡) = 𝑌𝑡 (3.6) 

where, 𝑌𝑡 is the output at time 𝑡. 
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3.6 Model Development 

The objective of this study is to predict hurricane traffic volume during evacuation for 

longer time horizon. We define the prediction problem as: given the traffic or Twitter data or both (𝑋𝑡) at time 𝑡, what is the traffic volume after ℎ time intervals 𝑌(𝑡+ℎ), where ℎ represents the 

forecast horizon. 

We have used traffic sensor data and Twitter data as inputs to the proposed LSTM-NN 

model. We use the LSTM model because of its well-known performance in time series prediction. 

Previous studies found that LSTM model [151] or hybrid or fusion of LSTM model [165–168] 

outperformed other machine learning models in traffic state prediction. Moreover, LSTM provides 

more flexibilities (with respect to the number of parameters and regularization) than other models 

and the training of a model (underfit or overfit) makes a difference in its performance [169]. 

Studies suggest that with appropriate training mechanisms, a deep learning model may be trained 

with 100 – 1000 samples [169–171]. In this study, we have selected the epoch size (number of 

complete – both forward and backward – passes) depending on the forecast horizon and features 

so that the model is trained optimally. Moreover, we have used dropout as a regularizer to prevent 

overfitting. 

The LSTM-NN input data (X) needs to be provided with specific dimensions of array where 

dimension of X indicates [samples, time steps, features].  Our features are multivariate as we are 

using 10 features (traffic volume, time difference from landfall, hour of the day, tweet count in the 

study area, evacuation related tweet count in the study area, unique user count, number of counties 

ordered mandatory evacuation, number of counties ordered voluntary evacuation, number of 

people under voluntary evacuation, number of people under mandatory evacuation) for a single 

time period. However, these features are used in different combinations—only sensor data, only 
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Twitter data, combination of both—to test how the model performs under different conditions of 

data availability. The time step dimension indicates how many time instances we are using to 

predict the output. For example, [𝑋𝑡−1, 𝑋𝑡] can be used to make prediction of 𝑌𝑡+ℎ.  

In our experiments, we find that a single layer LSTM with 50 neurons for all the models 

performs reasonably well. Batch size is a parameter which represents the number of training 

example to be considered in one forward or backward pass. Studies show that larger batch size 

degrades the quality of the model [172]. We find that batch size = 4 performs well on our data for 

all the forecast horizon. To determine the time horizons for which the model can perform well, we 

iteratively run the model for time horizons from 1 hour to 30 hours. For each time horizon, we run 

the model 5 times with different initializations. Along the run, we find the best epoch size (one 

forward and one backward pass on all training samples) to ensure that the model does not overfit.   

Table 3.1 presents the summary of the estimated parameters in our study. We implemented 

all the models in Python programing language. Unless otherwise specified in Table 3.1, we have 

used the default parameters of Keras [173] for LSTM and the default parameters of Scikit-learn 

[174] for the other models. 

We compare prediction accuracy of the proposed LSTM-NN model with traditional 

machine learning algorithms such as K-nearest neighbor regression (KNN regression), support 

vector regression (SVR), gradient boosting regression (GBR), and XGBoost regression (XGBR) 

models. We iteratively select the best parameters for these algorithms using a grid search approach 

[174]. Generally, for the KNN algorithm, a large number of neighbors underfits the model and a 

small number of neighbors overfits it. SVR tends to overfit with the increase in polynomial degree. 

For GBR and XGBR, model complexity increases (or overfit) with the increase of parameter value 

of max depth and the number of estimators. More details of these parameters and implementation 
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can be found here [164, 173, 174]. We report the average performance over 10-fold cross 

validation trials.  

Table 3.1 Summary of the model parameters 

Model 

Parameter setup 
(range of parameter values 

tried to find the best 
performance)  

Summary of the best parameters for forecast  
horizon 1 to 30 

(min, max, avg.) for numeric values 
{Frequency Distribution} for other type of parameters 

  Sensor Twitter Combined Important 

KNN 
Number of Neighbors (1, 15) 

(3, 14, 
12.5) 

(1, 14, 
11.33) 

(2, 14, 
11.66) 

(2, 14, 
10.06) 

p (1, 2) 
{1: 20, 
2: 10} 

{1: 26 
2: 4} 

{2: 17, 
1: 13} 

{1: 19, 
2: 11} 

SVR 

C (1, 1000) 
(201, 901, 
757.66) 

501 901 
854.33 

101 901 
544.33 

101 901 
627.66 

Degree (1, 4) 
{3: 13, 
2:10, 
1: 7} 

{2: 17, 
3: 13} 

{1: 16, 
2: 9, 
3:5} 

{1: 12, 
2: 11, 
3: 7} 

GBR 

Max Depth (2, 10) (2, 9, 6.33) 
(2, 9, 
5.53) 

(2, 9, 6.46) 
(2, 9, 6.1) 

Number of Estimator (5, 15) 
(7, 14, 
12.7) 

(9, 14, 
13.06) 

(9, 14, 
13.43) 

(8, 14, 
13.43) 

Sub Sample (.1, 1) 
(0.2, 1.0, 

0.54 
(0.2, 0.8, 

0.34) 
(0.2, 1.0, 

0.47) 
(0.2, 1.0, 

0.50) 

XGBR 

Learning Rate (0.03, 0.08) 
(0.03, 0.07, 

0.06) 
(0.03, 

0.07, 0.05) 
(0.03, 0.07, 

0.05) 
(0.03, 0.07, 

0.05) 

Max Depth (5, 8) 
{5: 19, 
6: 6, 
7: 5} 

{5: 18, 
7: 7, 
6: 5} 

{6: 11, 
5: 11, 
7: 8} 

{5: 14, 
7: 9, 
6: 7} 

Number of Estimator (5, 
500) 

(50, 500, 
260) 

(30, 500, 
183.66) 

(50, 500, 
455) 

(50, 500, 
380) 

LSTM 

Batch Size 4 

Epoch Size (1, 3000) 
(121, 2288, 

952.17) 
(4, 2993, 
930.51) 

(2, 2354, 
347.52) 

(5, 2999, 
720.27) 

Number of LSTM cells 50 

Dropout 0.50 

Optimizer ‘adam’ 
Learning Rate  0.0001 

 

To evaluate model performance, we have also created a baseline forecast. In this baseline 

forecast, the traffic volume in the next time interval is simply predicted as equal to the current 
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traffic volume. With forecast horizon ℎ, at a given time (𝑡), if the current traffic volume is 𝑌𝑡, 

traffic prediction for (𝑡 + ℎ)  is equal to 𝑌𝑡 (i.e., 𝑌𝑡+ℎ = 𝑌𝑡).  

Unlike other regression problems, in time series forecasting, the order of the observation 

is important to learn the sequence. Thus, keeping the order of the sequence, we have used 80% of 

the data as training set and the rest as validation dataset. To evaluate the performance of the 

implemented models, we have used Root Mean Squared Error (RMSE), Mean Absolute 

Percentage Error (MAPE) as performance measures. We choose the best model considering the 

performance over all forecast horizons (i.e., the model that shows overall stable performance). The 

equations for performance measures are given below: 

𝑅𝑀𝑆𝐸 = √∑ (𝑌𝑡+ℎ − 𝑦̂𝑡+ℎ)2𝑛𝑡=1 𝑛    (3.7) 

 

MAPE = ∑ |𝑌𝑡+ℎ − 𝑦̂𝑡+ℎ|𝑌𝑡+ℎ
𝑛

𝑡=1 × 100% 
(3.8) 

 

where, 𝑌𝑡+ℎis the actual traffic volume and 𝑦̂𝑡+ℎ is the predicted traffic volume for forecast 

horizon ℎ and 𝑛 is the number of test observations.  

Next, we implement an approach to estimate the confidence interval of the predicted traffic 

volume. We assume that for a forecast horizon h, the predicted traffic volume (𝑦̂𝑡+ℎ) follows a 

normal distribution, where the parameters, mean (𝜇𝑡+ℎ) and standard deviation(𝜎𝑡+ℎ), depend on 

the input variables(𝑋) at time 𝑡. Here, 𝜇𝑡+ℎ = 𝑓(𝑋𝑡) = 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑡𝑟𝑎𝑓𝑓𝑖𝑐 𝑣𝑜𝑙𝑢𝑚𝑒 (𝑦̂𝑡+ℎ) 𝑏𝑦 𝑡ℎ𝑒 𝑏𝑒𝑠𝑡 𝑚𝑜𝑑𝑒𝑙 (3.9) 
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To compute the standard deviation, we estimate separate models where the input is the 

same as the model for traffic volume prediction, and the output is the absolute error (|𝑌𝑡+ℎ − 𝑦̂𝑡+ℎ|) 

for the estimated best model for traffic volume prediction. 𝜎𝑡+ℎ = 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑏𝑦 𝑡ℎ𝑒 𝑏𝑒𝑠𝑡 𝑒𝑟𝑟𝑜𝑟 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑚𝑜𝑑𝑒𝑙   (3.10) 

Finally, we compute the confidence interval at 90% confidence level by the following: 𝐿𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑 𝑜𝑓 𝑦̂𝑡+ℎ  = 𝜇𝑡+ℎ − 1.65 ∗ 𝜎𝑡+ℎ 𝑈𝑝𝑝𝑒𝑟 𝑏𝑜𝑢𝑛𝑑 𝑜𝑓 𝑦̂𝑡+ℎ = 𝜇𝑡+ℎ + 1.65 ∗ 𝜎𝑡+ℎ. 

 

3.7 Results 

We implement the LSTM-NN model for different forecasting horizons ranging from 1 hour to 30 

hours. Also, we run the model separately considering 4 scenarios where only traffic sensor data, 

only Twitter data, combination of both, and only the top 4 important features are used. We consider 

two features (time difference from landfall and hour of the day) available for all four scenarios.  

We calculate the feature importance using permutation importance [175]. We calculate the 

importance of a feature based on RMSE score.  For each feature column, we shuffle the 

corresponding feature and compute the importance by checking how much RMSE has increased. 

Feature importance values for all the available features are shown in Figure 3.5 for different 

forecast horizons. It shows that for small time horizon (1 to 5 hours), traffic volume has the highest 

importance. As the forecast horizon increases (7 to 30 hours), importance value of time difference 

from landfall feature increases. This implies that in predicting traffic during evacuation for longer 

forecasting horizon time difference from the forecasted landfall time plays a very critical role. 

Interestingly, Twitter features have almost no importance for forecast horizon between (1-10 

hours), but the importance value increases from forecast horizon 11-15 hours. This matches the 
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intuition that people tweet well before the actual evacuation. For example, these tweets–

“Preparing to evacuate knowing full well that I could come back to nothing is kinda terrifying. 

#HurricaneIrma”, “Bags packed ready to evacuate if needed #HuracanIrma”–indicate user intent 

to evacuate before their actual evacuation. In addition, we are considering Twitter activities in the 

entire study region; but traffic is measured on two specific points (see Figure 3.1). It takes time to 

travel to the exit point from the other points within the study area. Nonetheless, it means that the 

Twitter features are very important in predicting traffic volume around 11-15 hours ahead.    

The test RMSE and test MAPE for of the models are shown in Figure 3.6. We run the 

models for different forecast horizons with different combination of features. Except for the 

Twitter only features, in all the combinations, 1-hour forecast horizon has the lowest RMSE and 

MAPE values. This is expected since we have the most recent information in this case for our 

prediction purpose. As the forecast horizon increases, RMSE and MAPE increase with some 

exceptions. 
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Figure 3.5 Feature Importance for Different Time Horizons 
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(a) 

 

(b) 



71 

 

Figure 3.6 Validation (a) RMSE (b) MAPE for different Forecast Horizons on Test Data. 

X-axis represents the forecast horizons, Y-axis shows the model names. The color within a cell 

represents the model performance in terms of RMSE in (a) and MAPE in (b). The greener the 

color the better is the performance. 

For forecast horizons 1 hour to 12 hours, the model trained with only sensor data has 

performed better than the models trained with only Twitter features or combined features. This is 

consistent with the results related to feature importance where we found that traffic volume has 

higher importance for shorter forecast horizons. Models trained with only Twitter features perform 

well for forecast horizons 10 hours to 19 hours (see Figure 3.6), which is also consistent with the 

feature importance analysis. This is probably due to the fact that people post about their hurricane 

awareness or evacuation intent prior to the actual action. Also, the distances between the sensor 

locations and the location of Twitter users are not same for all the areas within the study region. 

Thus, it may take some time to realize the traffic impacts of those users stating evacuation intent 

in Twitter. The result indicates that, when traffic sensor data is not available, Twitter data can be 

used to predict traffic demand during evacuation from 10 hours to 20 hours forecast horizons. 

However, models trained on combined features, containing all the available features, do not 

perform well (see Figure 3.6). Adding unnecessary features degrades model performance in this 

case. For all the models, performances are better for the important features among the four (sensor, 

Twitter, combined, important features) feature types. Using only important features, models are 

performing consistently better than the sensor features for forecast horizons 11 hours to 23 hours.  

The performances of all models are compared against a baseline forecast. For 1-hour and 

2-hour forecasting horizons, all models trained with only Twitter data failed to outperform the 

baseline results and for the other feature combinations only the LSTM models and SVR models 
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outperform baseline forecast. We can see that overall LSTM-NN models perform better than the 

baseline and other models for all feature types (see Figure 3.6). The performances of the LSTM-

NN models are more consistent across all forecast horizons compared to the other models. This 

shows the advantage of an LSTM-NN modeling framework to capture both short-term and long-

term dependencies in predicting traffic during evacuation. 

The LSTM-NN model performs best (RMSE=110, MAPE=13%) for 1-hour forecast 

horizon when trained with important features or only sensor features.  LSTM-NN model trained 

with only Twitter data has the best result (RMSE=203, MAPE= 28%) for 15-hour forecasting 

horizon, which is better compared to the performance found for the models trained with combined 

features and only sensor features for the same forecast horizon. This indicates that when traffic 

sensor data are unavailable, Twitter data can be used to obtain reasonable prediction on future 

evacuation demand. Using top 4 important features (adding Twitter features with the sensor data) 

lowers the RMSE value to 160 and MAPE value to 25% for a 15-hour forecast horizon for the 

LSTM-NN model.  

To further evaluate the prediction performance and the robustness of the models across 

hurricanes, we run two types of experiments. In the first type of experiment (Figure 3.7), we train 

models for different forecast horizons using full hurricane Matthew and part of Irma as training 

data and test the models using the remaining part of Irma data. In the second type of experiment 

(Figure 3.8), we train models for different forecast horizons using part of hurricane Matthew and 

part of Irma data as training data and the remaining parts of Matthew and Irma data as test data. In 

all these experiments, we use the LSTM models trained on important features only, derived 

previously. We report here only the results for 1-hour and 24-hour forecast horizons. In Figures 

3.7 and 3.8, (a) and (b) represent Matthew and Irma data and (1) and (2) represent 1-hour and 24-
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hour predictions, respectively. For a 24-hour forecast horizon, there is no prediction on the first 24 

hours of data, because training data are not available for 24 hours before a given period. 

Figures 3.77a.1 and 3.7b.1 together show the results of the LSTM model that has been 

trained over full hurricane Matthew data and a portion of hurricane Irma data and tested over the 

rest of the hurricane Irma data for 1-hour forecast horizon. Similarly, Figures 3.7a.2 and 3.7b.2 

together show the results of the LSTM model that has been trained over full hurricane Matthew 

data and a portion of hurricane Irma data and tested over the rest of the hurricane Irma data for 24-

hour forecast horizon.  

Figures 3.8a.1 and 3.8b.1 together show the results of the LSTM model that has been 

trained using part of hurricane Matthew and part of Irma data as training data and tested over the 

remaining parts of Matthew and Irma data for 1-hour forecast horizon. Similarly, Figures 3.8a.2 

and 8b.2 together show the results of LSTM model that has been trained over a part of hurricane 

Matthew and part of Irma data and tested over the remaining parts of Matthew and Irma data for 

24-hour forecast horizon.  

Prediction on training data fits well for both hurricanes Matthew and Irma for 1-hour and 

24-hour forecast horizons. On the other hand, prediction on the test data show that, prediction for 

1-hour forecast horizon fits better than the prediction for 24-hour horizon, capturing the trend well 

enough. We also find that the model is predicting better for hurricane Irma test data than hurricane 

Matthew test data. This is because we have more training data available for hurricane Irma than 

hurricane Matthew. As such the results can be further improved by recording the trends of traffic 

volume over time for multiple hurricanes. Although prediction accuracy decreases with longer 

forecast horizon, the implemented model learns the overall trend (increasing or decreasing 

evacuation traffic) well enough.   
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We have also shown the 90% confidence interval of the prediction on test set for 1-hour 

and 24-hour forecast horizons. We found that k-nearest neighbors (neighbors =3) perform best in 

predicting the absolute error. Predicted value by the best model (LSTM-NN) is always in between 

the predicted confidence interval. Moreover, the interval is greater when the demand prediction 

error is greater, and the interval is almost equal to zero when the LSTM-NN model make perfect 

traffic demand prediction (see Figure 3.7 and 3.8). Thus, the confidence interval prediction is 

working well in capturing the uncertainty in prediction by the LSTM-NN model. Evacuation 

demand prediction with its associated confidence interval will help interpret the prediction results 

more reliably.  
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Figure 3.7 Prediction with 90% confidence interval on training and test data when test data 

contains only hurricane Irma data. Here (a.1) and (b.1) show 1-hr forecast for Matthew and 

Irma, respectively and (a.2) and (b.2) show 24-hour prediction for Matthew and Irma, 

respectively. 
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Figure 3.8 Prediction with 90% Confidence Interval on training and test data when test 

data contains both Matthew and Irma data. Here (a.1) and (b.1) show 1-hr forecast for 

Matthew and Irma respectively, and (a.2) and (b.2) show 24-hour prediction for Matthew and 

Irma respectively. 

3.8 Limitations and Future Research Directions 

Our study has some limitations. We have used traffic demand collected from traffic 

detectors and there are detectors at only two highways (I75 and I95) at the downstream boundary 

of the study area. We have simplified the problem by adding the traffic from I-75 and I-95 to 

determine the total traffic demand during evacuation. Although most evacuees during evacuations 

use one of these two highways, this assumption may not hold in some areas. However, our 

approach can be generalized for any number of highways (any size of study area) given the 

availability of the data. In addition, traffic sensor data suffer from missing information. Machine 

learning techniques [176] can be used to fill the information gaps in traffic sensors. We have used 

evacuation related tweets based on the presence of certain pre-selected keywords. Natural language 

processing models [177] can be developed to infer evacuation intent from social media posts. 

Furthermore, Twitter data suffer from demographic biases; population from certain areas may post 

more evacuation related tweets compared to other areas. Such biases should be corrected to 

rigorously predict evacuation traffic from tweets. Thus, further research addressing sensor 

selection and bias correction for Twitter data may improve our prediction accuracy in future.  

Every hurricane is different from each other in many aspects, such as severity, hurricane 

path, and intensity. Thus, the generated evacuation traffic can be different from one hurricane to 

other. For example, evacuation traffic during hurricane Matthew and Irma shows different pattern 

(see Figure 3.2). Our approach presented in this study capture these two different patterns by 
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adopting some real-time features (sensors, social media posts etc.). Considering the unpredictable 

behavior of the hurricanes, hurricane specific model might perform better in predicting traffic 

during hurricane. While conducting our study, we find that many traffic sensors suffer disruptions 

during hurricane that makes it difficult to collect enough traffic sample to train separate models 

for each hurricane. Adopting domain adaption or transfer learning approach [178]  to train models 

on historical hurricane data set and calibrate the model as new hurricane data is available should 

be explored in future research.  

We have summed up the volumes of two major highways at the downstream cut-off points 

to get the total traffic volume at any given time irrespective of destination. Thus, evacuation 

destination choice (outside the study area) is less likely to have any effect on the traffic demand 

generated from the region. Our approach has missed the internal evacuation within the study area. 

However, because hurricane Irma was projected to affect a wide area (from East coast to West 

coast of Florida), such internal evacuation would be limited. Future study may adopt a spatially 

aware [179] deep learning technique considering relative location of the tweets and traffic sensors. 

A hybrid approach by combining a location aware Convolutional Neural Network [179] with an 

LSTM model (to capture the temporal effect) might be explored in future studies. 

 

3.9 Conclusions 

Traditional approaches for predicting hurricane evacuation demand use survey-based data 

and they work well upon a fixed set of assumptions, which may not be suitable for real-time traffic 

prediction. Information from real time data sources can make evacuation traffic management more 

dynamic, flexible, and proactive. In this study, we have used traffic sensor and Twitter data to 

predict traffic demand during evacuation for longer term forecasting horizons. We have applied a 
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machine learning model known as LSTM neural networks to predict traffic demand during 

evacuation for different forecast horizons ranging from 1 hour to 30 hours. We have applied the 

model for different combination of features (only traffic sensor data, only Twitter data, both sensor 

and Twitter data, only important features). Among the modeling approaches, LSTM-NN 

outperforms other models in terms of accuracy. Social media features show its best predictive 

power for 15 hours forecast horizon. Model trained on social media data can help make reasonable 

predictions of traffic during evacuation when sensor data are not available. We also implement a 

method to predict the confidence interval of the demand prediction made by the model. These 

approaches allow us to measure the reliability of the predicted traffic demand during evacuation.  

With increasing population and the number of hurricanes in the coastal regions, efficient 

and demand responsive evacuation traffic management is warranted. Our study integrates data 

from multiple sources which are readily available to predict traffic demand during hurricanes. 

While more studies are needed to predict evacuation traffic at a network-wide level, this study 

serves as a key step towards building a pro-active and demand responsive evacuation traffic 

management system. 
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CHAPTER 4: A MULTI-LABEL CLASSIFICATION APPROACH TO IDENTIFY 

HURRICANE-INDUCED INFRASTRUCTURE DISRUPTIONS USING SOCIAL 

MEDIA DATA 

4.1 Introduction 

3Cities and communities all over the world largely depend on critical infrastructure 

systems/services such as electrical power, water distribution, communication services, and 

transportation networks. The growing interconnectedness and interdependency among these 

systems have changed the organizational and operational factors and increased the vulnerability in 

the face of unwanted disruptions. These systems provide critical services to a large population, 

and thus when disrupted they affect our quality of life, local and regional economy, and the overall 

community well-being. The need to quickly identify disaster-induced infrastructure disruptions is 

growing because of the increasing number of natural disasters such as hurricane Michael, Irma, 

Harvey, and Florence and their enormous impacts to affected communities.  

For instance, hurricane Irma caused a substantial number of power outages in addition to 

transportation, communication, drinking water, and wastewater related disruptions. More than six 

million customers faced power outages during Irma. Storm related high winds and sustained storm 

surges cost approximately 3,300 megawatts of power generation [48]. Around 27.4% of cell phone 

towers in Florida were damaged due to hurricane Irma as reported by the Federal Communications 

Commission (FCC) [180]. Irma caused flooding to several areas throughout Florida, forcing health 

 
3 Roy, KC, Hasan, S, Mozumder, P. A multilabel classification approach to identify hurricane‐induced 

infrastructure disruptions using social media data. Comput Aided Civ 

Inf. 2020; 1– 16. https://doi.org/10.1111/mice.12573 
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officials to issue unsafe drinking water and boiling water notices [181, 182]. Moreover, dozens of 

sewage systems were overflowed after the power went out, which further exacerbated the drinking 

water condition [181].  

To ensure efficient operation and maintenance, it is important to gather real-time 

information about the performance and integrity of engineering systems. This is typically 

performed through a computational monitoring process that involves observation of a system, 

analysis of the obtained data, and prediction of future performance [183]. During a disaster, due 

to disruptions, the performance of critical infrastructures degrades rapidly—leading to cascading 

failures [56, 184]. In such extreme events, computational monitoring is required to assess the 

quickly changing condition of infrastructure systems and warn about an approaching failure or 

even a catastrophic event.  

Considering the severity and forecasted path of an approaching hurricane emergency 

officials often declare evacuation orders for to save human life. Such evacuation orders are 

expected to propagate through multiple sources (traditional media, social networks, social media, 

etc.) to inform people living in the risk zone. In response to the evacuation order and forecasted 

risk, households take evacuation decisions, which depends on a complex and dynamic process 

varying over time and household locations [8–10]. The delivery of accurate and timely information 

is crucial to create situational awareness in the affected communities. But the effectiveness of such 

information depends on the perceived credibility of the information sources and households' 

response to such information, which depend on the socio-economic characteristics of a household 

[55, 185, 186].  

In this study, we develop a multi-label classification approach to identify the co-occurrence and 

extent of multiple types of infrastructure disruptions. We also present a framework to create 
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dynamic disruption maps and case studies showing the developed approach based on Twitter data 

collected during hurricanes Irma and Michael. This study has the following contributions: 

• We consider multiple types of infrastructure disruptions (e.g., power, transportation, water, 

wastewater, and other disruption) and their co-occurrences in a social media post, instead of 

considering a simple binary classification problem (i.e., whether a post is disruption related 

or not).      

• To identify if a disruption related post reflects an actual disruption, we associate sentiments 

with disruption status—whether a post is reporting an actual disruption (negative), or 

disruption in general (neutral), or not affected by a disruption (positive).  

• We propose a dynamic mapping framework for visualizing infrastructure disruptions by 

adopting a geo-parsing method that extracts location from tweet texts.  

Instead of identifying disruption types and status in a single label, we identify disruption types 

and disruption status (through sentiment) separately. We adopt this approach since the neutral and 

positive sentiment about a disruption may also provide valuable information on the level of 

situational awareness about disruptions during a disaster. 

 

4.2 Literature Review 

According to the Department of Homeland Security, there are 16 critical infrastructure sectors 

[187]. Among these sectors, energy, communication, transportation, water/wastewater systems 

are the most vulnerable ones to a natural disaster. It is important to identify, characterize, and 

model infrastructure disruptions for a faster restoration and recovery operation [188–190]. Studies 

have focused on the recovery plans and damages due to extreme weather events [189, 191–194]. 

Several studies have proposed approaches to assess the reliability, resilience, vulnerability and 
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failure process of power, transportation, and water supply networks individually [195–201]. 

However, these critical infrastructures are inter-connected and inter-dependent [187, 202, 203]. 

Considering the increased connectedness and interdependencies among infrastructure systems, 

studies have proposed a holistic approach to assess the resilience to disruptions [3, 188, 204–206]. 

However, most of these studies are based on synthetic data or post-event data. Thus, they are not 

suitable for real-time decision-making.  

Recently, real-time condition monitoring is becoming very popular in manufacturing, 

maintenance, and usage of many engineering systems [183] and civil engineering infrastructures 

[207]. Computational models have been developed for estimating the properties of constructional 

materials [208], detecting damages to building structures [209, 210], predicting construction costs 

[211] etc. Another potential approach for monitoring infrastructures is by collecting real-time data 

using smartphones, leading to citizen-centered and scalable monitoring systems in a disaster 

context [212].  

During an ongoing disaster and post-disaster period, it is important to collect disruption data to 

take necessary actions as fast as possible. Due to the intensity and spread of a disaster, physical 

sensing techniques such as satellite, UAV (Unmanned Aerial Vehicle) etc. [47, 48] are not 

suitable. For example, after hurricane Irma, unmanned aerial drones, amphibious vehicles, 

airboats are used to perform damage assessment on inaccessible transmission and distribution 

lines [48]. A crowd-sourcing app that allows damage reporting might not be useful because of 

fewer participants. On the other hand, the ubiquitous use of social media on GPS enabled 

smartphone device, allows us to collect large-scale user generated data containing live and in situ 

events during a disaster [29]. Studies have already used social media data for crisis mapping [27–

29]. However, real-time crisis mapping requires location information, but only around 1% to 4% 
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of social media (e.g., Twitter) data posts are geo-tagged [29, 213, 214]. Studies have proposed 

several location-extraction methods from content/textual data [29, 213, 214]. In addition, the 

power of social media to connect a large group of population has drawn significant attention 

towards using social media platforms for disaster management [215–217]. Studies have analyzed 

social media data for understanding human mobility and resilience during a disaster [14, 19]. 

Kryvasheyeu et al. proposed that social media users can be considered as early warning sensors 

in detecting and locating disasters [16]. Studies have also explored social media data to understand 

evacuation behavior [20, 128] and damage assessment [18, 30–32].   

Damage assessment plays a vital role in resource allocation and coordination in disaster 

response and recovery efforts. Previous studies found that affected people provide damage related 

situational updates in social media [18, 30–32]. However, these studies do not consider the types 

of disruptions and are mainly suitable for post-disaster overall damage assessment. Most of these 

studies adopted simpler indicators of damage assessment such as frequency of disaster related 

tweets (based on keywords such as ‘sandy’, ‘hurricane sandy’, ‘damage’). The limitation of using 

pre-defined keywords is that a large number of such tweets/texts may not contain any damage 

related information. Some studies [218] adopted supervised machine learning based classification 

approaches to resolve this limitation. These studies [54, 219] adopted support vector machine, 

naïve Bayes, decision tree classification algorithms to analyze damage related social media posts. 

However, these studies considered damage identification as a binary (damage related or not) 

classification problem, which may include posts that are not reporting an actual 

damage/disruption. In addition, deep learning models were used for image and text data [220, 

221]. Image data are limited, computationally expensive, and cannot report disruptions in 

functionality such as power outage, communication disruptions etc.  
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The most relevant studies towards identifying an infrastructure disruption using social media 

posts are proposed by Fan et al. [49, 52]. The first study [49] has focused on summarizing the 

overall topics during a disaster given some predefined keywords, not suitable to identify 

disruptions from real-time data.  In the second study [52], the authors have developed a graph-

based method to identify situational information related to infrastructure disruptions by detecting 

time slices based on a threshold number of tweets. They compute content similarity within the 

detected time slices to get credible information. Some limitations of this approach include: it 

depends on keyword based filtering, which can miss out important information if appropriate 

keywords are not chosen; it requires the whole dataset as an input, which is not suitable for a real-

time prediction; it considers the content posted only on the burst timeframe that might miss out 

some actual disruption related posts. Moreover, this study does not consider that a single post may 

have information about multiple types of disruptions and cannot distinguish if a particular post is 

reporting an actual disruption or not. 

In summary, to the best of our knowledge, currently no study exists to identify the co-occurrence 

of multiple types of infrastructure disruptions using social media data. For this task, a multi-label 

classification approach [222] identifying multiple labels from a single input, can be useful.  

In this study, we use a multi-label text classification approach to identify multiple disruption 

types and their status using social media data. To develop our multi-label disruption classification 

approach, we use eight well-known models on text classification. We present two case studies to 

identify disruptions using Twitter data from hurricanes Irma and Michael. Finally, we visualize 

the spatio-temporal dynamics of infrastructure disruptions in a map of the affected regions.   
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4.3 Data Preparation 

In this study, we use Twitter data collected during hurricanes Irma and Michael for creating a 

dynamic disruption map of critical infrastructure disruptions. We use two different methods 

(Twitter streaming API and rest API) for data collection. A brief description of the data is provided 

in Table 4.1. 

 

Figure 4.1 Distribution of Label Frequency and Label Co-occurrence Frequency 

 

Table 4.1 Data Description 

Hurricane 

Name 

Regions (USA) 

No. of 

Tweets 

No. of Users 

Irma (Streaming API) FL, GA, SC 1,810,000 248,763 
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Irma (Rest API) 2,478,383 16,399 

Michael (Streaming 

API) 
FL, GA, SC, NC 3,534,524 1,289,204 

 

Using the streaming API, we collected about 1.81 million tweets posted by 248,763 users 

between September 5, 2017 and September 14, 2017 during hurricane Irma. We collected the 

tweets using a bounding box covering Florida, Georgia, and South Carolina. To collect data for 

more time span and to fill some missing values contained in the steaming API data, we used 

Twitter’s rest API to gather user-specific historical data. Twitter’s rest API allows collecting the 

most recent 3,200 tweets of a given user. We collected user-specific data for 19,000 users, who 

were active for at least three days within the streaming data collection period. Similarly, we 

collected data for hurricane Michael using a bounding box covering Florida, Georgia, South 

Carolina, and North Carolina, containing 3.53 million tweets posted by 1.29 million users 

covering from October 8, 2018 to October 18, 2018. 

To create an annotated disruption dataset, we manually labeled 1,127 tweets from hurricane 

Irma and 338 tweets (for testing purpose only) from hurricane Michael. The tweets were labeled 

by 5 human annotators. To ensure that we retrieve the right labels of the disruption types and 

sentiments, we only considered the labels when all 5 annotators agreed on it.  Each tweet can have 

one or more labels out of the ten possible labels including: not hurricane related, power/electricity 

disruption, communication disruption, road/transportation disruption, drinking water disruption, 

wastewater related disruption, other disruption, positive, negative, and neutral.  The first label 

indicates whether a tweet  is hurricane related or not. The next five labels indicate five types of 

infrastructure disruptions. The label, other disruption, indicates a disruption that does not fall into 
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the five types of infrastructure disruptions considered here. The last three labels indicate the 

possible sentiment towards a disruption. We give below three examples of disruption related 

tweets: 

• This tweet -“Update I'm the only community in my area with power I feel really lucky right 

now but I hope everyone else is safe”- mentions about power/electricity disruption but in a 

positive way. We would label such a tweet as (power/electricity disruption, positive).  

• This tweet- “we are in Clermont on Lake Minnehaha. We have no cable or power & cell 

service is spotty. When will be the worst here”- mentions about both power/electricity and 

communication disruptions. We would label this tweet as (power/electricity disruption, 

communication disruption, negative).  

• This tweet -“im trying to eat and watch as much netflix as i can just incase my power go out”- 

mentions about power/electricity disruption but does not indicate an actual disruption. We 

would label it as (power/electricity disruption, neutral).  

 

Figure 4.1 shows the frequencies and co-occurrences of the labels in the annotated dataset. It 

shows that the annotated data contain many “not hurricane related” tweets. Among the tweets 

related to different types of disruptions, power/electricity related disruptions have the highest 

frequency. Among the sentiment related labels, negative sentiment has the highest frequency. On 

the other hand, power/electricity disruption and negative sentiment are the most frequently co-

occurred labels in the annotated dataset. 

4.4 Methodological Approach 

The methodological approach adopted in this study has three main parts. The first part takes tweet 

texts as input and identifies disruptions and the sentiment towards the disruption. The second part 
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extracts the geo-location from the tweet’s metadata or text. The third part visualizes the 

disruptions geographically in a dynamic map of disruptions. Figure 4.2 shows the steps and 

information flow among those steps. Each part of the framework is described below: 

 

4.4.1 Disruption Identification 

The objective of this step is to identify infrastructure disruptions and sentiments from a given 

text input, where more than one disruption type might be present. We use a supervised multi-label 

classification approach. The input texts collected from Twitter posts contain many noises, which 

may degrade classification performance. Therefore, we process the data before feeding it into the 

model. The sequential steps are shown in Figure 4.2 (left side). 

4.4.2 Data Pre-processing 

In this step, we discard the unnecessary tweets and remove noise from a tweet. Since a retweet 

(starting with RT in the texts) does not provide any new information in the dynamics of disruption, 

we discard retweets from the data to avoid false spike in the disruption count. To clean the tweet 

texts, we remove the stop words (e.g., ‘a’, ‘an’ and ‘the’), short URLs, emoticons, user mentions 

(@Twitter user name), punctuations, and special characters (\@/#$ etc.). Finally, we tokenize 

(splitting texts into words) the texts and apply lemmatization (converting the words into noun, 

verb etc.) and stemming (converting words into root form) to the tokens. 

4.4.3 Data Processing 

In this step, we process the data for training models and predicting disruptions. In machine 

learning, training of a model refers to providing it with training data, which contains both inputs 

and correct answers, so that the algorithm can find the pattern to map the input features to the 

target/output features. We convert the preprocessed tokens as TF-IDF (Term Frequency-Inverse 
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Document Frequency), which measures the importance of a word in a document of a corpus 

(collection of documents). The details on TF-IDF can be found in this study [223]. The TF-IDF 

of a term/word (𝑤) is calculated as follows: 𝑇𝐹⁃𝐼𝐷𝐹(𝑤) = 𝑇𝐹(𝑤) × 𝐼𝐷𝐹(𝑤) (4.1) 

 where,  

𝑇𝐹(𝑤) = 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑖𝑚𝑒𝑠 𝑡𝑒𝑟𝑚 𝑤 𝑎𝑝𝑝𝑒𝑎𝑟𝑠 𝑖𝑛 𝑎 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑡ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑒𝑟𝑚𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡  

 

𝐼𝐷𝐹(𝑤) = 𝑙𝑜𝑔 𝑡ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠 𝑤𝑖𝑡ℎ 𝑡𝑒𝑟𝑚 𝑤 

We create the TF-IDF using both unigram and bigram of words. We remove the features that 

appear in less than 2 documents. To remove the effect of total word counts in a document, we 

apply 𝑙2 normalization (sum of the squared value of TF-IDF =1 for a document). To prevent data 

leakage, we calculate the TF-IDF considering the tweets available in the training dataset. The 

output of the model may contain multiple disruptions; thus we convert the annotated labels into 

multi-label formats. We represent the multi-label output as a binary/one hot encoded matrix 

indicating the presence of disruption type and the sentiment label. In our study, we have 10 

possible labels, so, each converted label is represented as 1 × 10 binary matrix where the value 1 

represents the presence and the value 0 represents the absence of a particular label.  

4.4.4 Model Selection 

The objective of this step is to find the best model that maps an input tweet text to the binary 

matrix representing one or more types of infrastructure disruptions and sentiment. In our study, 
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we choose a multi-label classification approach for identifying disruptions and sentiments. This 

approach generalizes the multiclass classification, where a single input/tweet can be assigned to 

multiple types of disruptions. Let 𝐿 = {𝜆𝑖} be the set of labels containing disruption types and 

sentiment, where, 𝑖 = 1 … … . |𝐿|. In our case, |𝐿| = 10. The objective of our disruption 

identification model, ℎ is that: given the input tweet, 𝑋 the model has to predict the disruption 

types and sentiments, 𝑌 ⊆ 𝐿. ℎ: 𝑋 → 𝑌   (4.2) 

We apply three methods that allow using the multiclass classification models for a multi-label 

classification task. The first method transforms a multi-label classification into multiple binary 

classification problems. This method is also known as binary relevance (BR) [222] that trains one 

binary classifier for each label independently. The equation for a binary classifier, ℎ𝜆𝑖 for a label 𝜆𝑖 can be expressed as below: ℎ𝜆𝑖 : 𝑋 → {¬𝜆𝑖 , 𝜆𝑖} (4.3) 

The BR method transforms the training data into |𝐿| datasets. The dataset 𝐷𝜆𝑖 for label 𝜆𝑖  
contains all the original dataset labeled as 𝜆𝑖 if the original example contains 𝜆𝑖, otherwise, as ¬𝜆𝑖. For an unseen sample, the combined model predicts all labels using the respective classifier. 

One of the disadvantages of the BR method is that it does not consider the correlation between 

labels. 

The second method transforms the multi-label classification problem into a multi-class 

classification problem. This method is known as label powerset (LP) that considers each subset 

of 𝐿 as a single label. Let, 𝑃(𝐿) be the powerset of 𝐿, which contains all possible subset of 𝐿. LP 

method considers each element of 𝑃(𝐿) as a single label. Now, in training LP learns one single 

label classifier ℎ, where: 
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ℎ: 𝑋 → 𝑃(𝐿) (4.4) 

The LP method has advantages over the BR method, because it takes the label correlations into 

account. However, it requires high computation time if the size of 𝑃(𝐿) is very big and majority 

of the subsets have very few members. Also, the LP method tends to overfit (performs well on 

training data but performs poorly on test data), when the number of labeled samples of the 

generated subsets is low. 

 

Figure 4.2 Methodological framework: disruption identification module (left); geo-

parsing module (right); and visualization module (middle) 
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As the third method, we apply an ensemble technique, known as Random k-Labelsets (RAKEL) 

adopted from the study [224]. This method constructs an ensemble of LP classifiers, where each 

LP classifier is trained on a small random subset of labels. Instead of using 𝑃(𝐿), it creates k-

labelset 𝑌 ⊆ 𝐿, where 𝑘 = |𝑌|. If the set of all distinct 𝑘-labelset is 𝐿𝑘, then |𝐿𝑘| = (|𝐿|𝑘 ). Given a 

user specified integer value for 𝑘 and 𝑚, where, 1 ≤ 𝑘 ≤ |𝐿| and 1 ≤ 𝑚 ≤ |𝐿𝑘|, the RAKEL 

algorithm iteratively constructs an ensemble of 𝑚 numbers of LP classifiers. However, for 𝑘 = 1 

and 𝑚 = |𝑘|, RAKEL method becomes a binary classifier ensemble of BR method. On the other 

hand, for 𝑘 = |𝐿|, 𝑚 becomes 1, and consequently, RAKEL method becomes a single label 

classifier of the LP method. Given a meaningful parameter of 𝑘 (2 𝑡𝑜 |𝐿| − 1), at each iteration, 𝑖 = 1 … . . 𝑚, without replacement it randomly selects a k-labelset, 𝑌𝑖 from 𝐿𝑘 and learns an LP 

classifier, ℎ𝑖. Where, ℎ𝑖: 𝑋 → 𝑃(𝑌𝑖) (4.5) 

 

For a given input, the label prediction is accomplished by a voting scheme from the ensemble 

combination. The RAKEL method solves the overfitting problem of the LP method but loses some 

correlations as it considers a random subset of the labels (LP method considers all possible 

subsets).  The full description of the RAKEL method can be found in this study [224].  

In multi-label classification, a prediction cannot be assigned as a hard right or wrong value, 

because a prediction containing a subset of the actual classes should be considered better than a 

prediction that contains none of them. Thus, traditional performance metrics (e.g., precision, 

recall) are not suitable for evaluating our disruption identification model. We choose the best 

model based on three generally used performance metrics in multi-label classification: subset 

accuracy, micro F1 score, and hamming loss. Here, subset accuracy and hamming loss are 
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example-based metrics and micro F1 measure is a label-based metric. For each test sample, an 

example-based metric computes the difference between true and predicted class labels and then 

calculate the average over all test samples. Whereas, a label-based metric first computes the 

performance for each class label, and then calculates the average over all class labels. Assuming 𝑦 as the set of true class labels, 𝑦̂ as the predicted set of labels, 𝐿 as the set of labels, 𝑦𝑙 as the 

subset of 𝑦 with label 𝑙,  𝑦̂𝑙 the subset of  𝑦̂ with label 𝑙, 𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠 the number of samples, the 

equations of these metrics are given below: 

 

𝑆𝑢𝑏𝑠𝑒𝑡 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝑦, 𝑦̂) = 1𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠 ∑ 1(𝑦̂𝑖 ≠ 𝑦𝑖)𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠−1
𝑖=0  (4.6) 

 

𝑀𝑖𝑐𝑟𝑜 𝐹1 𝑀𝑒𝑎𝑠𝑢𝑟𝑒(𝑦, 𝑦̂)  = 2 ×  |𝑦 ∩ 𝑦̂||𝑦| × |𝑦 ∩ 𝑦̂||𝑦̂||𝑦 ∩ 𝑦̂||𝑦| + |𝑦 ∩ 𝑦̂||𝑦̂|  (4.7) 

 

𝐻𝑎𝑚𝑚𝑖𝑛𝑔 𝐿𝑜𝑠𝑠(𝑦, 𝑦̂) = 1𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠 × |𝐿| ∑ ∑ 1(𝑦̂𝑙 ≠ 𝑦𝑙)𝐿
𝑙=0

𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠−1
𝑖=0  (4.8) 

 

We further check the predictive performance of the model computing a confusion matrix 

for each label (representing disruption types and sentiment). Table 4.2 shows the components of a 

confusion matrix. The rows represent the actual labels and the columns represent the predicted 

labels where positive means the existence of a particular label and negative means the absence of 

a particular label. For a particular sample, if the actual label is negative, a negative prediction by 

the model is assigned as true negative and a positive prediction is assigned as false positive. 
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Similarly, if the actual label is positive, a positive prediction is assigned as true positive and a 

negative prediction is assigned as false negative.  

Table 4.2 Confusion Matrix 

  Predicted Label 

  Negative (0) Positive (1) 
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(0
) True Negative  

(TN) 

False Positive  

(FP) 
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(1

) False Negative  

(FN) 

True Positive  

(TP) 

 

4.4.5 Disruption Location Extraction 

The objective of this step is to extract the location of the disruptions that are identified by the 

previous step. Geo-tagged tweets provide location information either as a point type (exact 

latitude-longitude) or as a polygon type (bounding box). We use this location to indicate the 

location of a disruption either at a point resolution or a city/county resolution. However, geo-

tagged tweets are only a few percentages (1% to 4%) of the total number of tweets. To address 

this limitation, we implement a location extraction method from tweet texts. This approach has 

several steps within it. Given a tweet text, the first step is to label each word (e.g., person’s name, 

location, organization etc.), which is known as Named Entity Recognition (NER). We implement 

our NER model using the Natural Language Toolkit (NLTK),  developed by [225]. The second 

step is to extract the location entity, words that are tagged as location, from the labeled words. In 

the third step, we match the extracted location with the county/city names of the affected regions. 
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Finally, if the extracted locations are matched, we collect the coordinates using the geo-coding 

API provided by Google Maps. The process of location extraction is shown in Figure 4.2. 

 

4.4.6 Dynamic Disruption Mapping 

This part of the methodology enables the visualization of the locations of disruptions with 

disruption types in a dynamic way. We visualize the exact disruption location, only if the location 

has the exact co-ordinate (location type: point or latitude-longitude). We choose a time interval (𝑡) to count the number of disruptions within a geographical boundary (e.g., county) and then 

visualize the disruption intensity as a geographical heat map. We did not consider disruption 

severity in this study. But severity can be assumed to be correlated with the frequency of 

disruption related tweets from a given area; the higher the frequency of disruption related tweets 

the higher will be the severity level of disruptions. Hence, a dynamic disruption map can provide 

insights about the severity of infrastructure disruptions of an area based on the frequency of a 

specific or all disruption related posts generated from that area.  

 

4.5 Results 

 

Using Twitter data from real-world hurricanes, we present our results to identify 

infrastructure disruptions and visualize those disruptions in a dynamic map. To identify disruptions 

types and sentiment from text data, we use Binary Relevance, Label Powerset, and ensemble based 

multi-label classification approaches. We compare the performance of these approaches using 

eight existing models namely: Multinomial Naïve Bayes (MNB), Logistic Regression (LR), K-

Nearest Neighborhood (KNN), Support Vector Machine (SVC), Random Forest (RF), Decision 
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Tree (DT), Multilayer Perceptron (MLP), and Deep Neural Network (DNN) methods. The details 

of these well-known methods can be found in these studies  [226, 227]. We convert the annotated 

tweet text as TF-IDF and annotated label as binary matrix (multi-label format) by following the  

Table 4.3 Keywords for Identifying Disruption Related Tweets 

Disruption Types Keywords 

Power/Electricity 

Disruption 
power, electricity, outage, (power, outage), (without, power) 

Communication 

Disruption 
internet, wi-fi, cell, (no, internet), (no, network) 

Transportation Disruption 
road, roads, traffic, transportation, turnpike, i-4, i-95, jam, closed, 

(traffic, signal), (road, closed) 

Drinking Water 

Disruption 

drinkingwater, drinking_water, bottledwater, bottled_water, 

(drinking, water), (bottled, water) 

Wastewater Related 

Disruption 

wastewater, waste_water, drainage, drainagewater, (waste, water), 

(drainage, water) 

steps described in the data processing section. We use the TF-IDF as input and the binary matrix 

as output. For each model, we use 70% (788 tweets) of the annotated samples as training and the 

rest 30% (339 tweets) as test samples. We further validate our best model over 338 tweets from 

hurricane Michael to test model performance on the data from an unseen hurricane (i.e., for 

hurricane data which were never used for training the model). 

We implement all the models in a personal computer using Python programming language and 

model parameters are selected using a grid search approach [228]. Moreover, we implement a 

baseline method that uses keyword matching and sentiment analysis to identify disruptions and 
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sentiment characteristics, respectively. Currently no benchmark method exists that can identify 

the co-occurrence of multiple types of disruptions from social media posts. Since a keyword based 

approach has been used in similar studies [31, 52], we choose to use this as a baseline method. 

The keywords used are listed in Table 4.3.  

For sentiment identification, we use a pre-trained model adopted from this study [229]; this 

model has been trained on social media texts. We consider this combined (keyword matching and 

sentiment identification) approach as a baseline method to evaluate if the trained models perform 

better than this baseline method. Table 4.4 presents the performance of each model on hurricane 

Irma test dataset with respect to the selected performance metrics: subset accuracy, micro F1 

measure, and hamming loss. 

From the results, we can see that Logistic Regression classifier (LP method) has the best subset 

accuracy and micro F1 scores and Support Vector classifier (RAKEL method) has the best 

hamming loss score. The models (LR, KNN, SVC, MLP, and Deep DNN) perform better than the 

baseline method in all approaches (BR, LP, and Ensemble) (see Table 4.4). Among the three 

multi-label approaches, LP has the best performance; RAKEL is second; and BR method is the 

last in terms of the considered performance metrics. The reasons for this result are the following: 

(i) BR method considers the labels as mutually exclusive or the correlation between the 

disruptions is ignored; (ii) LP method considers the correlations between the labels/disruptions 

by considering all label combination; and (iii) RAKEL method falls between the BR and LP 

methods with respect to label correlations as it considers a random small subset of labels.  

To select the best model, we further check the confusion matrix and choose Logistic Regression 

(LP method) classifier. Figure 4.3 shows the confusion matrix for the LR (LP) on the test samples 

from hurricane Irma. The selected best model (LR-LP) shows 74.93% increase (0.351 to 0.614) 
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in subset accuracy, 30.73% increase (0.550 to 0.719) in micro F1 measure, and 44.65% decrease 

(0.159 to 0.088) in hamming loss compared to the baseline method. 

 

Table 4.4 Model Performance Values (Accuracy, Micro F1-measure, Hamming-loss) (A 

higher score of subset accuracy or micro F1 measure indicates better performance and a lower 

score of hamming loss indicates better performance) 

Model Name 

Binary 

Relevance (BR) 

Label 

Power set (LP) 

Ensemble 

(RAKEL) 

Baseline (keyword search + 

sentiment) 
0.351, 0.55, 0.159 

Multinomial Naïve Bayes 

(MNB) 

0.218, 0.519, 

0.145 

0.472, 0.615, 0.14 0.268, 0.527, 0.151 

Logistic Regression (LR) 
0.463, 0.709, 

0.090 

0.614, 0.719, 

0.092 

0.525, 0.702, 0.094 

K-nearest Neighborhood 

(KNN) 

0.490, 0.613, 

0.130 

0.525, 0.612, 

0.125 
0.510, 0.598, 0.126 

Support Vector Classifier 

(SVC) 

0.472, 0.707, 

0.089 

0.608, 0.699, 

0.096 
0.519, 0.709, 0.088 

Random Forest (RF) 
0.124, 0.471, 

0.170 

0.54, 0.635, 0.116 0.357, 0.588, 0.109 

Decision Tree (DT) 
0.292, 0.628, 

0.129 

0.522, 0.634, 

0.119 
0.366, 0.617, 0.124 
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Multilayer Perceptron (MLP) 
0.440, 0.662, 

0.099 

0.540, 0.615, 

0.119 
0.507, 0.635, 0.11 

Deep Neural Network (DNN) 
0.466, 0.342, 

0.138 

0.569, 0.684, 

0.103 
- 

We also check the performance of our best model (LR-LP) for disruption and sentiment 

identification separately. We validate for hurricanes Irma and Michael, using 339 test data from 

hurricane Irma and 338 test data from hurricane Michael. Table 4.5 shows the performance on 

disruption identification.  

 

Figure 4.3 Confusion Matrix (In each panel, the x axis represents the predicted label and the y 

axis represents the actual label in the test set of hurricane Irma. For a particular label, the value 1 

means the presence of this label whereas 0 means the absence of the label. The value within a 

cell represents the number of times a predicted label matched or mismatched with the actual 

label) 
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 Except hamming loss for hurricane Michael, our model performed better for both hurricanes 

with respect to accuracy, micro F1, and hamming loss. The baseline method performed better in  

Table 4.5 Performance Comparison of disruption identification 

 Baseline Model (LR-LP) 

Hurricane Accuracy, Micro F1-measure, Hamming-loss 

Irma 0.351, 0.55, 0.159 0.614, 0.719, 

0.092 

Michael  0.476, 0.656,  0.115 0.515, 0.658, 

0.119 

hurricane Michael test set than the Irma test data set. On the other hand, LR-LP model 

performed better in Irma data than the Michael data since the model is trained on Irma dataset.  

 

Table 4.6 Performance comparison of sentiment model 

 Baseline Model (LR-LP) 

Hurricane Accuracy, Micro F1-measure, Hamming-loss 

Irma 0.383, 0.368 0.311 
0.673, 0.596, 

0.165 

Michael 0.571, 0.501, 0.226 
0.609, 0.656, 0.

175 

 

Table 4.6 shows the performance of LR-LP model against the baseline sentiment model 

(adopted from [229]). The (LR-LP) model performed better than the baseline for both Irma and 

Michael datasets. The baseline method also performed better for Michael data than Irma data for 
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sentiment classification. In summary, our developed model (LR-LP) performed better than the 

baseline for both hurricanes Irma (hurricane data used to train the model) and Michael (unseen 

hurricane data representing a future hurricane).  

To understand the features that help to correctly identify a disruption, we analyze the training 

samples that our model correctly predicted (i.e., true positive samples in Table 4.2). For each 

disruption type, we rank the words based on their average TF-IDF score. A higher score represents 

more importance of a word for a disruption type. Figure 4.4 shows the TF-IDF scores of the top 

ten words of each disruption type (shown as horizontal bars) and the TF-IDF scores of the same 

words calculated over all disruption types in the training set (shown as color intensity). We can 

see that overall words such as ‘power’, ‘water’, ‘wifi’, ‘internet’, ‘traffic’, ‘drainage’ etc. have 

higher TF-IDF scores (see the color intensity of the corresponding bars in Figure 4.4). It means 

that these words are highly important in the overall classification performance. On the other hand, 

‘power’, ‘cell’, ‘stop’, ‘water’, ‘drainage’, ‘close’ are the highest ranked words for 

power/electricity disruption, communication disruption, road/transportation disruption, drinking 

water disruption, waste water related disruption, and other disruption, respectively. Some words 

(e.g., ‘power’, ‘water’, ‘cell’) are present in multiple disruption types, indicating that these words 

would help identify the co-occurrence of multiple disruption types. For example, the presence of 

‘cell’ and ‘signal’ in the top 3 words of power/electricity and communication disruptions indicates 

the co-occurrence of these two types of disruptions.  Regarding sentiment features, the word 

‘power’ is common in all the three sentiments. The differences among the words present in these 

three sentiment classes are:  (i) the negative (actual disruption) contains the words that are mostly 

present in the disruption types, (ii) the positive sentiment contains slang words such as ‘hell yeah’, 
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‘yeah’, ‘ac loll’, (iii) neutral sentiment contains situation and forecast related words such as 

‘update’, ‘best update’, ‘situation’, ‘chance wont’, ‘good chance’ (see Figure 4.4).  

 

Figure 4.4 Important features for different disruption types. The X axis shows the mean TF-

IDF score (calculated over individual disruption type) and the Y axis shows the words/features. 

The color of the bar indicates the mean TF-IDF score (calculated over all disruption types). The 

calculated scores and important features are based on the training dataset.   

 

4.6 Case Studies: Hurricanes Irma and Michael 

In this section, we present two case studies of our proposed approach, one for hurricane Irma 

and another for hurricane Michael. Our best model (LR-LP) predicts the disruption types and 
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status over the input data described in Table 4.1. As shown in Figure 4.2, for a geotagged tweet, 

we obtain the disruption location from the tweet geo-location information. Otherwise, we extract 

the location from the tweet texts using the geocoding module. We match the extracted location 

with the city/county of a state and then obtain the coordinate using Google Maps API. 

Finally, we plot the disruption types and status in a disruption map. To understand the hurricane 

context, we also present the hurricane track and wind speed data collected from the National  

  

a.1 a.2 

(a) Hurricane Irma 
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b.1 b.2 

(b) Hurricane Michael 

Figure 4.5 Dynamic Disruption Map for Power/Electricity Disruption. (a) Hurricane Irma, 

(b) Hurricane Michael. 

 

Hurricane Center [230]. Two snapshots of the power/electricity disruption map from each 

hurricane are shown in Figure 4.5 (5a.1 and 5a.2 for hurricane Irma, 5b.1 and 5b.2 for hurricane 

Michael). We use a 3-hour time-interval for aggregating the tweets to create the county-level 

disruption heat map. The inset plot shows the locations of power/electricity disruptions. We show 

the location of hurricane center (shown as a circle at the beginning of the hurricane track line), 

wind speed (through the color of the circle), and disruption related tweets (geographic heat map) 

which will be updated dynamically as we receive data from Twitter stream. Figure 4.5a.1 shows 

a snapshot of Irma at around 7 PM on Sept. 10, 2017. It shows that majority of the 

power/electricity related posts were generated from Miami-Dade, Broward, Palm-Beach counties 

when Irma’s center was near Collier county with a wind speed of around 120 mph. However, not 
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all the posts are about the actual power outage incident (disruptions are represented by black 

circles in the inset plot of Figure 4.5a.1), and a substantial number of these posts are expressing 

concerns about power outage or expressing that they still have power. The second snapshot 

(Figure 4.5a.2) shows that when the center of Irma was near Tampa, most of the disruption related 

tweets were posted from Orlando, Tampa, and Miami-Dade counties. A dynamic disruption map 

of Michael shows similar results. On October 10, 2018 around 6 PM (Figure 5b.1), when Michael 

was about to make its landfall near Tallahassee, most of the power/electricity disruption related 

tweets were coming from Tallahassee area. Figure 4.5b.2 shows the second snapshot of Michael 

around midnight of October 12, 2018 when the center of Michael was over North Carolina. It 

shows that most of power/electricity related disruptions were coming from Wake, Johnston, 

Durham and Orange counties of North Carolina.  

Finally, we visualize the co-occurrence of multiple disruption types in an interactive map.  

  

(a) Hurricane Irma 

(Time 2017-09-11 05:00:00) 

(b) Hurricane Michael 

(Time 2018-10-12 06:00:00) 

Figure 4.6 Disruption Co-occurrence Map (a) Hurricane Irma (b) Hurricane Michael 



107 

 

Figure 4.6 shows a snapshot of the co-occurrence map for hurricane Irma (Figure 4.6a) and 

Michael (Figure 4.6b). We plot this map using only the actual disruption samples (negative 

sentiment) aggregated over a 1-hour interval. This interactive map allows to explore the 

disruptions type separately as well as a combination of them. The co-occurrence heat map shows 

a relative intensity of the disruptions based on the co-occurrences of all the disruption types. For 

Irma, mostly co-occurred disruptions are power, communication, and transportation disruptions. 

On the other hand, for hurricane Michael (see Figure 4.6b) the most co-occurred disruptions are 

power and transportation disruptions.  

In summary, we find that during hurricanes Irma and Michael affected people posted 

infrastructure related tweets. Those posts may represent actual infrastructure disruptions. A multi-

label classification approach (a logistic regression model adopted over a label powerset) has been 

developed to predict both the disruption types and disruption status from such data. After locating 

the disruptions using a geocoding approach, a map can visualize the disruptions spatially and 

temporally. The training time of the model is about 7 sec, and it takes about 1 sec to process, 

predict, and visualize the data collected over one hour. Thus, this approach can be easily applied 

in a real-time setting.  

 

4.7 Limitations and Future Research Directions  

 

Our study has some limitations. For instance, the annotated dataset is small in comparison to 

the entire dataset. More annotated samples are likely to increase the accuracy of the model. 

Although the co-occurrence of multiple disruptions is considered, the approach cannot infer if a 

disruption is caused by another disruption. Incorporating causality as an input to the model may 
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improve its performance. Another limitation of our approach is that we have checked the accuracy 

of the method based on human-annotated tweets, which may not represent the total number of 

disruptions observed in the ground. To check the extent to which the reported disruptions match 

actual ones, ground truth data on disruptions occurring in different infrastructure systems are 

required. These datasets, often collected by infrastructure service providers including private 

companies and public agencies, may contain sensitive information. Collecting ground truth data 

on infrastructure disruptions from a variety of sources covering multiple states will be a very 

challenging task. Further studies are needed to verify what percentage of actual disruptions is 

reported in social media and to what extent these disruptions can be identified using the method 

developed in this study. In addition, our data cover hurricanes only. Future studies can transfer 

and validate our approach across other disasters such as wildfire, earthquake, snowfall, and 

thunderstorms.  

In this study, we assume that a post with a negative sentiment is associated with an actual 

disruption, and a post with a neutral or positive sentiment is associated with no disruption. 

However, there could be a post with a positive sentiment, but associated with an actual disruption. 

These tweets are likely to be a small portion of the entire dataset. In our annotated dataset, we did 

not find such tweets. Future studies, based on natural language processing, can develop more 

advanced methods to capture the situations where even a positive tweet could be associated with 

a disruption. 

When the communication network is disrupted, affected people may not have access to social 

media platforms. In such situations, our model cannot detect disruptions. In the geo-parsing 

method, we use exact matching process between the extracted location and county/city of the 

affected regions. Since our approach finds city/county names only, it cannot extract location if 
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street or any finer level location is mentioned in the text. In future studies, text-based location 

matching can be developed with finer resolution (e.g., street name), which may help in locating 

disruptions with more specific location information.  

For training our models, we adopt a batch learning approach which requires retraining the model 

to incorporate new data from the data stream. Future studies can explore an incremental learning 

approach [231, 232] to dynamically train models on newly available data from the ongoing/future 

disasters [233]. Such an incremental learning approach is likely to increase the accuracy of the 

model as it utilizes data from an ongoing disaster.  

To achieve a better classification accuracy, more complex classification methods such as 

probabilistic neural networks [234], dynamic neural networks [235], and hierarchy-based models 

[236, 237] can be considered. A probabilistic neural network is a fast, efficient, and flexible model 

to add/remove new training data and hence may be more suitable for real-time disruption 

prediction for an unseen disaster. Since textual data have a large feature space, a dynamic neural 

network might be useful in finding an optimal number of features to achieve better performance. 

Moreover, hierarchy-based models might be more suitable when there exists more hierarchy in 

the disruption types, especially considering disruptions from multiple disasters (hurricane, 

wildfire, snowstorm etc.). A hierarchy-based model can have classes for disaster type, disruption 

type, and disruption status. A hierarchical relationship can be created from disaster type to 

disruption type to disruption status (e.g., if a post is not disaster related it has no disruption type 

and disruption status).      

 

4.8 Conclusions 
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This chapter presents an approach to identify infrastructure disruptions and a dynamic 

disruption mapping framework using social media data. While previous research focused mainly 

on identifying hurricane or damage related social media posts, we consider five types 

(power/electricity, communication, drinking water, and wastewater) of infrastructure disruptions, 

their co-occurrence, and their status (whether a post is reporting an actual disruption, disruption 

in general, or not affected by a disruption). The result shows that our multi-label classification 

approach (logistic regression adopted in a label powerset approach) performs better than a 

baseline method (based on keyword search and sentiment analysis). Moreover, we present a 

method, to visualize disruptions in a dynamic map. Identifying disruption types and disruption 

locations is vital for disaster recovery, response and relief operations. The developed approach of 

identifying the co-occurrence of multiple disruptions may help coordinate among infrastructure 

service providers and disaster management organizations.   
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CHAPTER 5: MODELING THE INFLUENCE OF MULTIPLE INFORMATION 

SOURCES ON RISK PERCEPTION DYNAMICS AND EVACUATION DECISION 

DURING HURRICANES: AN AGENT-BASED MODELING APPROACH 

5.1 Introduction 

In this study, we develop an agent-based model that combines hydrologic characteristics, socio-

demographic characteristics, and multiple information sources to understand the risk perception 

and evacuation behavior of the households of an area. Previous studies suggested that people from 

Miami-Dade are more concerned about inland flooding from heavy rainfall than storm surge 

despite leaving nearby coastal area [238]. We use simulated run-off depth forecast considering the 

hydrological aspect of a region. Then we use the forecasted run-off depth to generate the initial 

risk perception of a household, which solves the requirement of initial seed generation. The novelty 

of our study is that we integrate detailed flood depth information, actual neighborhood (with the 

spatial distribution of households), and social network to model risk perception and evacuation 

decision of a household. We also model how these multiple information sources (flood forecast, 

neighbor observation, and opinion in social network) and household’s trust on these information 

sources are linked to evacuation compliance and shadow evacuation. This study contributes to the 

literature by answering the following research questions:  

• How does a household perceive the forecasted flood risk and makes evacuation decisions, 

and how does a households’ trust on forecasts affect evacuation participation? We use a 

high resolution (500 𝑚𝑒𝑡𝑒𝑟 × 500 𝑚𝑒𝑡𝑒𝑟) rainfall-induced flood forecast data to model 

the flood risk and corresponding evacuation decision of a household.  

• What is the effect of social networks on a household’s evacuation decision, and how does 

a households’ trust on opinion dynamics of social networks affect the overall evacuation 
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participation? We construct social networks between the households and model the 

influence of the opinion dynamics (circulating over the social networks) on the household’s 

evacuation decision. 

• How does observing neighbor activities affect a household’s evacuation decision in an 

actual neighborhood setting, and how a household’s trust on neighbors’ observation affect 

the overall evacuation dynamics? Past studies have created agents’ synthetic space or on 

aggregated space (census tract, blocks, etc.)  that limits the understanding of actual spatial 

effect between the neighbors. We capture the actual neighborhood influence on evacuation 

decision by assigning agents at a building footprint level. 

5.2 Literature Review 

Studies on evacuation behavior can be divided into two main categories: (i) statistical 

models [130, 239, 240] that use empirical data collected by a survey to understand contributing 

factors of evacuation behavior; (ii) computational models [38–40] that use behavioral theories to 

simulate evacuation behavior. The statistical modeling approach includes different types of logit 

models, most frequently a binary logit model where evacuation decision is modeled a binary 

decision process (evacuate or not) [60, 108]. These studies have found that socioeconomic, 

demographic factors, social ties, etc., play an important role in evacuation decisions [60, 240]. The 

statistical modeling approach, however, cannot capture the dynamics of the collective evacuation 

behavior that evolves from the social interactions among households; because it is very challenging 

to collect such empirical data [41, 42]. A computational model such as an agent-based model 

allows incorporating the findings from the statistical models and other phenomena (risk 

propagation, dynamic forecast, social interaction) where a heterogeneous agent (household) 

interact with other agents (households) and take decisions, and hereby affect the collective 
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evacuation behavior [241]. Studies have found that the households reliability on weather forecast 

increases the likelihood to evacuate [55]; but the forecast might be less reliable and overblown for 

some households depending on the conveyed message [186, 238], and they might look for other 

information sources/channels such as community, peers, internet, etc. [242, 243].  

Many studies have used agent-based models to understand evacuation behavior under the 

influence of social networks [38, 39, 244, 245]. Widener et al. found that social influence increases 

the evacuation participation using a random subset of population on a case study of Bay County, 

Florida [245]. Yang et al. [38] proposed a home-workspace based social network for Florida-key 

regions to simulate the effect of social networks on evacuation decisions. This study has the 

following limitations: it considered neighbors as a part of social networks and did not consider that 

households can observe their spatially close neighbors' activity (evacuating or not) without having 

a social link between them; Florida Key is a unique geographic location that might not be 

representative to other location. Moreover, all of these above mentioned ABM did not consider 

the credibility/trust on this peer pressure (or information from their connections). 

Du et al. [56] have used an agent-based model to simulate the effect of online social 

networks and neighbor observations separately on flood evacuation behavior considering the trust 

or weight on multiple information sources. However, this study is based on a hypothetical space 

and hazards; thus, representativeness of the results on actual social and neighbor effect is unknown. 

In our study, we develop an agent-based model by incorporating flood risk and household’s 

trust on multiple sources of influence (forecast, social networks, and neighbors' influence) to 

understand the dynamics of risk perception and evacuation behavior. We generate realistic run-off 

data of Miami-Dade County and create realistic households using the most recent census data. We 
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present our results on a case study created for the households located in a zip code of Miami-Dade 

County.  

5.3 Data Description 

To simulate the evacuation behavior in a real geographical area, we collect data from 

multiple sources such as flood forecast data, socio-demographic, building footprint, and property 

data. We generate synthetic runoff data using a process-based hydrologic model with 

(500 𝑚 × 500 𝑚) resolution. Please find the detailed procedures of the run-off depth forecast in 

the supporting information. We collect building footprint and property type from Miami-Dade 

county website [246]. The building or property data provide the geographical location of a building 

and type of uses (e.g. residential, commercial, unit count, floor count, etc.). We collect the 2018 

5-year American Community Survey (ACS 5) [247] data for each block group of Miami-Dade 

county containing the following five variables: sex, age, income, race, and education.  

 

(a) (b) 
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Figure 5.1 Study Area. (a) Run-off depth distribution on Zip codes over Miami-Dade County 

(b) Residential and non-residential property/building distribution over the block-group of Zip 

33147. 

Study Area 

We choose zip code 33147 of Miami-Dade County as the area of interest for our simulation (see 

Figure 5.1). We choose this zip code because the runoff depth varies over the regions (block-

groups) and it has socio-demographic diversity. Hence, this study area will capture the evacuation 

behavior on different level of flood risk and heterogeneity in risk perception over households. 

Figure 5.1(a) shows the run-off depth over Miami-Dade County – the run-off depth of zip code 

33147 ranges from 13 to 26 inches.  Figure 5.1(b) shows the spatial distribution of the 

building/property of zip 33147. It has 40 block groups where 32 are completely inside and 8 are 

partially inside the boundary of the zip code. Some block groups have a high density of residential 

building and some have a low density of residential buildings or households among these 40 block 

groups. Hence, the selected study area is well suited to capture the effects of flood risk and socio-

demographic and neighborhood density on evacuation behavior.    

5.4 Methodology 

Our study has three main methodological parts: (i) creating synthetic households, (ii) creating 

social network among households, and (iii) modeling risk perception dynamics and evacuation 

behavior.  

5.4.1 Creating synthetic households 

We create 15,291 synthetic households in our study area. We assign the household characteristics 

(gender, employment, education, income, and race) according to block group level distribution of 

2018 5-year American Community Survey data. We assign a single household to each unit of a 
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building according to the residential property data. Figure 5.2 shows the joint and marginal 

distributions of the characteristic of the synthetic households.  

 

Figure 5.2 Joint and Marginal Distribution of the Synthetic Households. Here the variables 

are gender (0 = male, 1 = female); Education (1 = some college or higher, 0 = less than college), 

Employed (0 = unemployed, 1 = employed), Income (1= less than 25k, 2 = between 25k to 50k, 

3 = 50k to 100k, 4 = greater than 100k), Race (0 = white, 1 = other). 

Previous studies suggested that a household’s evacuation tendency or willingness depends 

on its demographic and socio-economic variables. We estimate a household’s evacuation 

tendency/willingness based on the household characteristics (as shown in Figure 5.2) using the 

binary logit model adopted from this study [248].  The binary logit model is given in equation 5.1. 

𝐸𝑣𝑎𝑐𝑢𝑎𝑡𝑖𝑜𝑛 𝑡𝑒𝑛𝑑𝑒𝑛𝑐𝑦, 𝜋𝑖 = 𝑒𝛽𝑥𝑖1+𝑒𝛽𝑥𝑖  (5.1) 
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where, 𝜋𝑖 is the evacuation tendency of household 𝑖, 𝑥𝑖 are the characteristics variables of 

household 𝑖, 𝛽 are the coefficients of the binary logit model adopted from [248]. 

5.4.2 Creating Social Network and Neighborhood 

The evacuation decision of a household does not only depend on its characteristics but also on the 

surrounding neighborhood and social network [249]. Studies suggest that the connections among 

households are most likely to work as a small world network [38], proposed by Watts and Strogatz  

[250]. We create small world network between the synthetic households generated in the previous 

step. A household is more likely to connect with its nearby connections during an emergency. As 

our study area is a zip code with diagonal distance around 6.4 kilometers, all households are 

equally likely to be connected with each other. For each household, we create a small world 

undirected (i.e., communication can happen both ways) network with average degree, 𝑘𝑎 of 𝑛. 

Where value of 𝑛 can be 2 to 15 based on previous studies [38, 245]. We assign neighbors based 

on spatial proximity of the households ranging from 300 meters to 1 kilometer. 

5.4.3 Risk Perception Dynamics and Evacuation Behavior 

We develop a threshold-based model to simulate evacuation decision of the households, where 

each household (agent), 𝑗 has a set of attributes: risk tolerance threshold, sensitivity towards 

landfall time, trust on different information sources, information search behavior, and learning 

attitude. The risk tolerance threshold of a household is assigned based on the evacuation tendency 

computed from the socio-economic characteristics of a household (see creating synthetic 

household section). We assign the risk tolerance based on the assumption that a household with 

low evacuation tendency has a high threshold of risk tolerance and vice versa [38]. Table 5.1 shows 

the assignment procedure of risk tolerance threshold. 
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Table 5.1 Assignment of Risk Tolerance Thresholds based on Evacuation 

Willingness/Tendency 

Evacuation 

Tendency, (𝜋) 

Risk Tolerance 

Threshold (𝜏) 

Percentage of 

Households 

0 – 0.1 1.0 - 

0.1 – 0.2 0.9 44.11 

0.2 – 0.3 0.8 23.76 

0.3 - 0.4 0.7 18.80 

0.4 – 0.5 0.6 8.91 

0.5 – 0.6 0.5 3.52 

0.6 – 0.7 0.4 0.83 

0.7 – 0.8 0.3 0.065 

0.8 – 0.9 0.2 - 

0.9 – 1.0 0.1 - 

 

Following previous studies [56, 251], we model the risk perception of a household as a 

continuous variable. Each household will update its risk perception over time and will decide 

whether to evacuate or not.  A household will evacuate if the risk perception is greater than the 

risk tolerance threshold. Let, 𝑅𝑗,𝑡, 𝜏𝑗 are the risk perception of a household and risk tolerance of 

household 𝑗 at time 𝑡, respectively. If 𝑅𝑗,𝑡 > 𝜏𝑗  household 𝑗 will evacuate (𝐸𝑡 = 1), otherwise the 

household will stay (𝐸𝑡 = 0) at time 𝑡.  



119 

 

𝐸𝑡 =  {0                        𝑖𝑓 𝑅𝑗,𝑡 > 𝜏𝑗  1  𝑖𝑓 𝑅𝑗,𝑡 ≤ 𝜏𝑗 𝑜𝑟 𝐸𝑡−1 = 1 (5.2) 

At any given time 𝑡, a household forms its risk perception based on the influence 𝐼𝑡  

received from multiple sources of information and the perceived time difference from landfall (see 

Equation 5.3). Hurricane landfall time plays a crucial role in shaping household risk perception 

and each household perceives the risk differently with respect to the time difference from landfall 

[42] as follows:  

𝑅𝑗,𝑡 = 𝐼𝑗,𝑡 × 𝑒−(𝑡−𝐶)22𝜎2  
  (5.3) 

where, 𝐶 is the mean and 𝜎 is the standard deviation of the time difference from landfall 

when the risk perception is maximum. A household may not collect new information at every time 

step; thus, we model the risk perception dynamics as a stochastic process where the parameter 𝑝𝑗,𝑡 (𝑢𝑝𝑑𝑎𝑡𝑒 = 1) determines whether a household 𝑗 will search for new information or not.  If a 

household chooses not to collect any new information, then 𝐼𝑗,𝑡 = 𝐼𝑗,𝑡−1. At time 𝑡, if a household 𝑗 choose to collect new information it will look for 3 information sources: 1) hazard risk forecast, 𝐼𝑗,𝑡𝐻   2) social network/media, 𝐼𝑗,𝑡𝑆  3) neighborhood activity, 𝐼𝑗,𝑡𝑁 .  𝐼𝑗,𝑡𝑁𝑒𝑤 = 𝛼𝑗𝐼𝑗,𝑡𝐻 + 𝛽𝑗𝐼𝑗,𝑡𝑆 +   𝛾𝑗𝐼𝑗,𝑡𝑁  (5.4) 

 

where, 𝛼𝑗 , 𝛽𝑗, 𝑎𝑛𝑑 𝛾𝑗 are the trust (or weight) parameters on building household 𝑗′𝑠 

influence on new information and 𝛼𝑗 +  𝛽𝑗 +  𝛾𝑗 = 1. Because of the opinion adherence tendency, 

households do not completely abandon their past information influence [56, 252]. The parameter 𝜃𝑗  dictates what percentage of newly formed influence will be added to form the latest information 

influence 𝐼𝑡. Here,  𝜃𝑗  also serves as the learning rate of a household 𝑗 in a Widrow-Hoff learning 

rule [56, 253].  
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𝐼𝑗,𝑡 = 𝐼𝑗,𝑡−1 + 𝜃𝑗Δ𝐼𝑗,𝑡 = 𝐼𝑗,𝑡−1 + 𝜃𝑗(𝐼𝑗,𝑡𝑁𝑒𝑤 − 𝐼𝑗,𝑡−1) =  (1 − 𝜃𝑗)𝐼𝑗,𝑡−1 +𝜃𝑗𝐼𝑗,𝑡𝑁𝑒𝑤  

(5.5) 

 

In our study, we represent the hazard risk in terms of flood risk due to heavy rainfall during 

a hurricane. Since our study area is less likely to face storm surge (not within the storm surge zone) 

and wind gust variation (because of small geographical area), we assume that a household will 

consider only the inland flooding to form its hazard related influence on risk perception. Here we 

introduce a threshold run-off depth 𝜏𝑟𝑑 that will dictate whether emergency officials will declare 

evacuation or not. At time 𝑡, a household will form a hazard related risk by the amount of the ratio 

of the forecasted runoff depth at the home location at household 𝑗 and 𝜏𝑟𝑑.  

𝐼𝑗,𝑡𝐻 = 𝑟𝑢𝑛𝑜𝑓𝑓 𝑑𝑒𝑝𝑡ℎ 𝑎𝑡 𝑗′𝑠 ℎ𝑜𝑚𝑒 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑝𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑏𝑙𝑒 𝑟𝑢𝑛𝑜𝑓𝑓 𝑑𝑒𝑝𝑡ℎ (𝜏𝑟𝑑) (5.6) 

 

A household will also collect information from its social network. At time 𝑡, the collected 

information is modeled as a linear combination of the information obtained from its connected 

households following the setting of previous studies [56, 254]. A household may not collect 

information from all the connected households of its social network. Here we assume that a 

household is more likely to collect information from the connected households who live closer to 

that household. 

𝐼𝑗,𝑡𝑆 = ∑ 𝑤𝑖,𝑗𝐼𝑖,𝑡−1𝑛
𝑖=1 = ∑ 𝑎𝑖𝑗,𝑡∑ 𝑎𝑖𝑗,𝑡𝑛𝑖=1 𝐼𝑖,𝑡−1𝑛

𝑖=1  (5.7) 
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where 𝑎𝑖𝑗,𝑡 represents whether household 𝑗 has read or collected 𝑗′𝑠 opinion (𝑎𝑖𝑗,𝑡 = 1) or 

not (𝑎𝑖𝑗,𝑡 = 0) and probability of 𝑎𝑖𝑗,𝑡 = 1  depends on the distance, 𝑑𝑖𝑗 between 𝑖 𝑎𝑛𝑑 𝑗 and 

maximum considerable distance 𝑑𝑚𝑎𝑥. 

𝑝(𝑎𝑖𝑗,𝑡 = 1) = 1 − 𝑑𝑖𝑗𝑑𝑚𝑎𝑥 + 1 (5.8) 

 

We simulate the information obtained from the neighbors as the observed action (whether 

a neighbor has evacuated or not) of the neighbors [56, 255]. We assume that the households living 

in proximity may not know each other – thus cannot share opinion – but, the households can 

observe their neighborhood whether they have evacuated or not. The obtained information of a 

household is the weighted average of the observed action of the neighborhoods (see Equation 5.9).  

𝐼𝑗,𝑡𝑁 =  ∑ 𝑏𝑖𝑗,𝑡∑ 𝑏𝑖𝑗,𝑡𝑛𝑖=1
𝑛

𝑖=1  𝐸𝑖,𝑡−1 (5.9) 

where, 𝑏𝑖𝑗,𝑡 represents if household 𝑖 is a neighbor (𝑏𝑖𝑗,𝑡 = 1) or not (𝑏𝑖𝑗,𝑡 = 0) based on 

the threshold distance 𝜏𝑁.   

𝑏𝑖𝑗,𝑡 =  {0  𝑖𝑓 𝑑𝑖𝑗 > 𝜏𝑁 1 𝑖𝑓 𝑑𝑖𝑗 ≤ 𝜏𝑁  (5.10) 

 

 

5.5 Results 

In our experiment of risk perception dynamics and evacuation behavior, we run the 

simulation for 120 hours. The time is discrete in nature; at each simulation step we increase the 

time by 1 hour. In our simulation, we create an agent’s (household’s) risk tolerance threshold based 

on the socio-economic and demographic heterogeneity. We assign the other characteristics 
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(learning rate, trust on information source, information search behavior, etc.) of the households 

sampled from a distribution to represent the heterogeneity of the behavior.  We present the 

influence of information sources as three separate scenarios as presented in Table 5.1.  

Table 5.2 Parameters of the ABM. Here 𝑁(𝜇, 𝜎) represents that the corresponding value of the 

parameter is drawn from a normal distribution with mean 𝜇 and standard deviation 𝜎. 

Parameters Scenario 1 Scenario 2 Scenario 3 

Hazard Risk 

𝜏𝑟𝑑  (inch) 22 𝛼𝑗 1 𝑁(0.5, 0.1) 𝑁(0.5, 0.1) 

Social Network 

𝛽𝑗 0 𝑁(0.5, 0.1) 0 𝑑𝑚𝑎𝑥(kilometer) 3 𝐾𝑎𝑣𝑔 6 

Neighbor 

𝛾𝑗 0 0 𝑁(0.5, 0.1) 𝜏𝑁 (meter) 300 

Landfall Time 

𝐶𝑗 𝑁(45, 10) 𝜎𝑗 𝑁(20, 10) 

Update 𝑝𝑗   𝑁(0.3, 0.1) 

Learning Rate 𝜃𝑗 𝑁(0.5, 0.1) 

 

In scenario 1, we assume that only hazard risk information is available for the households 

without any influence from social network and neighbor observation (𝛼 = 1, 𝛽 = 0, 𝛾 = 0). In 

scenario 2, households will have access to hazard risk forecast, 𝛼 ∈ 𝑁(0.5, 0.1), and social 

network information, 𝛽 ∈ 𝑁(0.5, 0.1), without any neighbor observation, 𝛾 = 0. Similarly, in 

scenario 3, households will consider hazard forecast, 𝛼 ∈ 𝑁(0.5, 0.1), and neighbor observation, 𝛾 ∈ 𝑁(0.5, 0.1) without considering any information from social network, 𝛽 = 0.    
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Figures 5.3(a), 3(b) and 3(c) show the results of the scenarios in terms of spatial distribution 

of evacuation compliance and shadow evacuation. Figure 5.3(d) shows the temporal variation of 

evacuation participation in the simulated scenarios. The temporal dynamics shows that the 

evacuation started early, and the participation rate is higher for scenario 1 followed by scenario 2. 

In scenario 3, evacuation participation is significantly low and evacuation started late compare to 

scenarios 1 and 2. In all three scenarios, we find that more households have evacuated from the 

mandatory evacuation zones which is consistent with previous studies [55, 60]. Among the three 

scenarios, scenario 1 has the highest evacuation participation rate (40.29%) including evacuation 

compliances and shadow evacuation (see Figure 5.3(a)). This result is consistent with previous 

studies that reliance on weather/forecast related information increases the likelihood of evacuation 

[55]. However, the reliance on this hazard information also increases the shadow evacuation which 

is less desirable in terms of managing evacuation traffic [61]. In our model setting, the households 

having less risk tolerance (or high evacuation tendency) are evacuating despite residing in the low 

risk zone. In that case, neighbor observation (who lives in proximity), may lower their overall risk 

perception, as we find from scenario 3 that trust (50% in this case) on neighbor observation 

significantly lowers the evacuation participation (see Figure 5.3(c)). We have found a decreased 

(compare to scenarios 1 and 2) evacuation participation for all threshold distances, 𝜏𝑁 between 

300 meters to 1000 meters. This effect has also been observed in a previous study [56]. The 

influence of social network information decreases the overall evacuation participation (both 

compliance and shadow evacuation) compared to scenario 1 (see Figure 5.3(b)).  

The scenarios shown in Figure 5.3 are the combinations of influences from two information 

sources at a time where the trust is equally divided between the two information sources. Next, we 

run  
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Figure 5.3 Effect of Information Sources on Evacuation Participation on Different Regions. 

(a) indicates the results of scenario 1, (b) indicates the results of scenario 2, (c) indicates the 

results of scenario 3, (d) shows the evacuation participation over time. 

the simulation for different combinations of trust values of the three information sources and the 

results are shown in Figure 5.4. We find similar trend of the effects of the information sources on 

overall evacuation participation, evacuation compliance, and shadow evacuation (see figure 5.4b, 

5.4c, 5.4d). The result implies that evacuation participation is likely to be higher when the 

   

 
(a) Scenario 1 

Compliance 86.97 % 
Shadow Evacuation 19.59 % 
Overall Evacuation 40.29 % 

(b) Scenario 2 
Compliance 73.89 % 

Shadow Evacuation 16.35 % 
Overall Evacuation 34.03 % 

(c) Scenario 3 
Compliance 16.21 % 

Shadow Evacuation 0.78 % 
Overall Evacuation 5.52 % 

 
(d) Evacuation Participation over Time 
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households trust is higher on the hazard forecast. This finding is in line with the findings of a real-

world survey conducted in this study [186].  

  
(a) Interpretation of the influence of the 

information sources 
(b) Overall Evacuation 

 
 

(c) Evacuation Compliance (d) Shadow Evacuation 
Figure 5.4 Combined Effect of Three Information Sources on Evacuation Participations. 
(a) interpretation of the axes, (b) overall evacuation (c) evacuation compliance or percentage of 
evacuee from mandatory evacuation zone (d) shadow evacuation, percentage of evacuee from 

w/o mandatory evacuation zone. 

However, our study shows that when evacuation participation increases, it increases in both 

evacuation compliance and shadow evacuation (see Figure 5.4c and 5.4d). Evacuation 

participation is almost zero when households have very low (≤ 0.1) trust on hazard forecast. In 

our simulation we find that the influence of neighbor observation and social network depend on 
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other sources. For example, for a given trust value of hazard forecast, as the influence of neighbor 

observation (𝛾) increases the overall evacuation, compliance, and shadow evacuation decreases 

(zone A to B to C in figure 5.4). Similarly, for a given trust value of social network as the influence 

of neighbor observation (𝛾) increases the overall evacuation, compliance, and shadow evacuation 

decreases. A very high trust in neighbor’s observation is likely to generate a very low evacuation 

rate/participation (e.g. for  𝛾 ≥ .4 see zone C in figure 5.4). On the other hand, for a given trust 

value of hazard forecast, as the influence of social network (𝛽) increases the overall evacuation, 

compliance, and shadow evacuation increases (see figure 5.4 from right to left). However, for a 

given trust value of neighbor’s observation, evacuation rate is not same for all zones (zone A, B, 

and C in figure 5.4). For example, at zone A and above for a given trust value of neighbor’s 

observation the trust value of social network has no effect (or same) in the evacuation 

rate/participation. But, around zone B, for a given trust value of neighbor’s observation, increasing 

trust in social network increases the evacuation participation up to a certain trust value (𝛽 ≤ 0.5), 

after that increasing social network trust decreases the evacuation participation.  

The influence of social network also depends on the network size of a household [55, 245]. 

From the sensitivity analysis of network size (see Figure 5.5(b)) we find that evacuation 

participation rate increases with the increase in network size of a household up to a certain size 

(34% to 37.2 % for an increase in average degree from 6 to 10); after that, increase in network size 

does not affect  evacuation participation (almost same result for network size 10 and 15, see Figure 

5.5(b)).  

Another effect of network size is that the increase in overall evacuation rate (with increase 

in network size) mainly happens for shadow evacuation (16.35% to 21.86% for an increase in 

network size from 6 to 10). Evacuation participation also depends on how a household updates its  



127 

 

risk perception when they get new information (see Figure 5.5a). The quicker a household updates 

its belief based on new information, the higher the evacuation participation is.   

  

(a) Learning Rate (b) Average Degree 

Figure 5.5 Evacuation Participation Rate for different Parameters. (a) shows the cumulative 

number of evacuees over time for different distribution of learning rate (b) shows the cumulative 

evacuation participation for different values of average degree of the social networks. The values 

within the braces shows the evacuation compliance, shadow evacuation, and overall evacuation 

participation rates, respectively. 

In summary, our study on the households living in the zip code 33147 with a hypothetical 

hazard risk- implies that information sources greatly affect household evacuation participation. 

Provided hazard risk is forecasted accurately (higher trust on the forecast), the most desirable 

evacuation scenario is expected if households make their decisions based on the forecasted risk 

only. If households make their evacuation decisions using information from social networks, 

overall evacuation and shadow evacuation are likely to increase if they collect information from a 

big network (e.g. online social networks/social media). On the other hand, if households take 

evacuation decisions by observing their neighbors, evacuation participations will decrease 

significantly. 
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5.6 Limitations and Future Research Directions 

Our study has some limitations. We have not considered the other aspects of hazard 

scenarios such as wind speed, storm surge, etc. The study area is comparatively small. Although 

we create the households with socio-demographic heterogeneity, some characteristics such as 

information search behavior, learning rate are randomly assigned. Future studies can collect survey 

data focusing on these aspects that will allow to assign information search and perception update 

behavior in a more realistic manner. We use the model parameters that was developed from a 

previous survey data, which may not be representative for our study area.  

We use a simulated static run-off depth to represent the hazard risk of a household. But the 

hazard forecasts are dynamic and sometimes uncertain. Future studies may consider the dynamics 

of hazard forecast with the associated uncertainty to model the reliability/trust of the information 

sources. 

We simulate the information collection from social networks based on small-world type 

random graphs. But the communication pattern in social networks, especially in an online social 

network, is still not well understood. Designing appropriate survey to collect this information from 

the affected regions might help find realistic network structure and properties. We considered that 

more neighbors evacuating will always add to the information favoring an evacuation decision. 

But some studies have shown that the fear of looting can decrease the evacuation intension after a 

certain threshold [249]. We have not considered the effect of the possibility of infrastructure 

disruption in our study. Studies suggest that after landfall evacuation is likely to happen if the 

critical infrastructure is damaged due to hurricane. Future studies can simulate these effects in a 

more complicated agent-based systems.  
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5.7 Conclusions 

In this study, we simulate the influence of multiple information sources on households’ 

risk perception dynamics and evacuation behavior. We create realistic households using the 

findings from existing literature and census data.  

Our study shows that reliability on hazard forecast increases evacuation compliance. We 

also find that increasing trust on social network and neighborhood observation (or decreasing trust 

on hazard forecast) decreases the overall evacuation participation. The influence of social networks 

however depends on the network size of the households. While a bigger network increases the 

overall evacuation, it might increase shadow evacuation. 

This study has implications for emergency management practices. Although past studies 

suggested that effect of social network increases the likelihood to evacuate, our study finds that 

the increase may happen in shadow evacuation. Thus, it is important to increase the flow of 

accurate forecast information available to a large extent. Now a days online social media play an 

important role in propagating information. Emergency organizations should increase their 

presence in social media with accurate or reliable information on hazard risk. 

 

5.8 Supporting Information 

Huq and Abdul-Aziz [256] has developed a process-based hydrologic model for the Florida 

Southeast Coasts Basin (encompassing Miami through Port St. Lucie) by utilizing the Stormwater 

Management Model (SWMM) of U.S. Environmental Protection Agency. The SWMM linked 

climate, land use, and surface and subsurface hydrologic processes in a watershed [257]. We 

modeled drainage networks as a series of nodes (typically representing large changes in hydraulic 

head) connected by links (e.g., open channels, pipes). The large basin (7117 km2) was divided into 
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small subcatchments based on topography, land uses, hydrography, and urban developments. The 

land surface hydrologic features (e.g., watershed area, width, slope, imperviousness) were 

analyzed on an ArcGIS platform using digital elevation models (DEM), hydrography (e.g., 

National Hydrography Dataset), and land cover (e.g., National Land Cover Database). Operating 

rules of the existing water control structures in the drainage channels and rivers were also be 

incorporated into the model. The model ingested water table data as initial conditions and 

simulated groundwater level in each subbasin. We also incorporated data for basin rainfall and 

evapotranspiration as inputs, and sea level data as downstream boundary conditions (i.e., water 

level at the outfalls into bay). The model was successfully calibrated and validated with historical 

streamflow observations at 6 major rivers and canals during 2004-2013 (R2 = 0.74-0.92). We ran 

the model 10, 20, 30, and 40 inch uniform (in time and space) rainfall scenarios over 24 hours to 

predict the corresponding spatially explicit scenarios of runoff depths in the basin, and extracted 

the runoff depth information for the Miami-Dade County. Our assumption was that the spatial 

explicit scenario of runoff depth would closely represent the associated inundation risk. 

  



131 

 

CHAPTER 6: CONCLUSIONS 

In recent times, hurricanes Harvey, Irma, Maria, Michael are some of the costliest hurricanes that 

have disrupted the lives of millions of people across multiple states in the United States. 

Emergency evacuation is one of the most effective strategies for decades to reduce risk during 

natural disasters like hurricane, flooding, wildfire. But individual evacuation decision-making is a 

complex dynamic process, often studied using post-hurricane survey data. Alternatively, 

ubiquitous use of social media generates a massive amount of data that can be used to predict 

evacuation behavior in real time. In addition, real-time social media data can be used to monitor 

disaster-induced infrastructure disruptions that may reduce response and recovery time. In this 

dissertation, we present four studies developing methods to make disaster management more 

dynamic and responsive. These studies also allow us to better understand the socio-infrastructure 

systems during disasters using social media data and building behavioral models based on agent-

based modeling approach. The objectives of this dissertation are as follows: 

 The first objective of this dissertation is to develop a model using social media data that 

can capture the dynamics of hurricane evacuation by answering what, when and how users 

participate in different activities during evacuation. The second objective of this dissertation is to 

develop a model that can predict evacuation traffic for a longer time horizon (> 1 hour) utilizing 

real-time data from traffic sensors and social media. The third objective of this dissertation is to 

develop a method to identify and monitor the co-occurrence of multiple types of infrastructure 

disruption during disaster from social media data. The final objective of this dissertation is to 

develop an agent-based model to understand the effect of multiple information sources (social 

network, neighborhood, weather forecasts, etc.) and its credibility in risk perception dynamics and 

evacuation decisions. 
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6.1 Summary of Major Results 

This dissertation has shown significant potential of using social media data in improving disaster 

management especially by contributing to making disaster preparedness, response, and recovery 

phases of disaster management cycle more dynamic and responsive. 

• In the second chapter of this dissertation, we present a method to infer individual 

evacuation behaviors (e.g., evacuation decision, timing, destination) from social media 

data. We develop an input output hidden Markov model (IO-HMM) to infer evacuation 

decisions from user tweets. Using input variables such as evacuation context, time to 

landfall, type of evacuation order, and the distance from home, the proposed model infers 

what activities are made by individuals, when they evacuate, and where they evacuate to. 

Our findings show that the proposed IO-HMM method can be useful for inferring 

evacuation behavior in real time from social media data. Since traditional surveys are 

infrequent, costly, and often performed at a post-hurricane period, the proposed approach 

can be very useful for predicting evacuation demand as a hurricane unfolds in real time. 

• In chapter three, we use traffic sensor and Twitter data during hurricanes Matthew and Irma 

to predict traffic demand during evacuation for a longer forecasting horizon (greater than 

1 hour). We present a machine learning approach using Long-Short Term Memory Neural 

Networks (LSTM-NN), trained over real-world traffic data during hurricane evacuation 

(hurricanes Irma and Matthew) using different combinations of input features and forecast 

horizons. Results show that the proposed model can predict traffic demand during 

evacuation well up to 24 hours ahead. Under hurricane evacuation, efficient traffic 

operations can maximize the use of transportation infrastructure, reducing evacuation time 

and stress due to massive congestion. Accurately predicting evacuation traffic is critical to 
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plan for effective traffic management strategies. Thus, the proposed LSTM-NN model can 

significantly benefit future evacuation traffic management.    

• In chapter four, we present a multi-label classification approach to identify the co-

occurrence of multiple types of infrastructure disruptions considering the sentiment 

towards a disruption—whether a post is reporting an actual disruption (negative), or a 

disruption in general (neutral), or not affected by a disruption (positive). In addition, we 

propose a dynamic mapping framework for visualizing infrastructure disruptions. We use 

a geo-parsing method that extracts location from the texts of a social media post. The 

proposed multi-label classification approach performs better than a baseline method (using 

simple keyword search and sentiment analysis). We also find that disruption related tweets, 

based on specific keywords, do not necessarily indicate an actual disruption. Many tweets 

represent general conversations, concerns about a potential disruption, and positive 

emotion for not being affected by any disruption. In addition, a dynamic disruption map 

has a potential in showing county and point/coordinate level disruptions. Identifying 

disruption types and their locations are vital for disaster recovery, response, and relief 

actions. By inferring the co-occurrence of multiple disruptions, the proposed approach may 

help coordinate among infrastructure service providers and disaster management 

organizations. 

• In chapter five, we develop an agent-based model that integrates flood-related hazard risk, 

household socio-demographic factors, social network characteristics and decisions, and 

neighbors’ decisions to understand how all these factors interplay in forming risk 

perception and evacuation decision. We simulate the effect of multiple information sources 

and their perceived credibility on the evacuation participation by separately exploring the 
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evacuation compliance and shadow evacuation. Our study indicates that an accurate 

forecast (higher credibility) of the hazard risk leads to higher evacuation compliance. The 

effect of a social network is highly dependent on the number of connections. While social 

networks might increase overall evacuation participation it might also increase shadow 

evacuation. Putting more trust in neighbor actions induces significantly lower evacuation 

rates. This study will guide emergency managers to design appropriate strategies for 

providing hazard forecasts or communicating overall risk during natural disasters like 

hurricanes and flooding.  

6.2 Limitations and Future Research Directions 

This dissertation is not without limitations. Some of the limitations are associated with the social 

media data in general such as difference in penetration rate in different areas, inequal distribution 

across different age groups, inadequate location precision of the social media data, etc. We 

summed up the traffic volume of only two highways to estimate the evacuation demand from our 

study area due to unavailability of enough traffic sensors in all the roads/highways. We do not 

consider individual’s socio-demographic variables in our data-driven models since such data is not 

present in social media data. Future studies may combine both survey-based and social media data 

to study evacuation behavior. 

In the agent-based model, we do not consider some hazard sources such as wind speed, and 

storm surges assuming that the study area is not nearby coastal area and small enough to ignore 

the difference in wind speed perceived by the households. Moreover, in the agent-based simulation 

we did not consider the effect of infrastructure disruption, post-landfall evacuation, and 

households’ perception to fear of looting. In future studies a more extensive agent-based model 

can be developed that considers a wide varieties of socio-infrastructure attributes to understand 
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community resilience where risk perception and evacuation compliance is one of the aspect of 

resilience. 

Despite some limitations, this dissertation adds to the growing literature on understanding 

our socio-infrastructure systems during a disaster and presents modeling approaches and 

framework to understand and manage disasters more dynamically and pro-actively. 
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