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ABSTRACT 

Econometric crash frequency models are a major analytical tool employed for examining the 

critical factors influencing crash occurrence. However, there are several methodological 

challenges associated with existing models suggesting a continual need to develop advanced 

econometric framework to address these gaps. The current dissertation contributes towards 

addressing the methodological challenges in crash frequency analysis for analyzing multiple crash 

frequency variables for the same study unit by proposing advanced econometric approaches. The 

first part of the dissertation contributes to safety literature by conducting a comparison exercise 

between the two major streams of multivariate approaches - (1) simulation-based approach and (2) 

analytical closed form approach - for analyzing the crash counts considering different crash types. 

In the second part of the dissertation, we propose an alternative and mathematically simpler 

approach for analyzing multiple crash frequency variables for the same study unit by recasting a 

multivariate distributional problem as a repeated measures univariate problem. The recasting 

allows us to estimate parsimonious model systems thus improving parameter estimation efficiency. 

The third part of the dissertation contributes to burgeoning econometric and safety literature by 

developing a joint modeling approach that can accommodate for several dependent variables 

within a parsimonious structure. By recasting the analysis levels for dependent variables, the 

proposed approach allows for flexible consideration of crashes by type and severity within a single 

framework. The final part of the dissertation contributes to literature on crash frequency analysis 

by accommodating population heterogeneity in the impact of exogenous variables. The empirical 

analysis in this dissertation is based on traffic analysis zone (TAZ) level crash count data for both 

motorized and non-motorized crashes from Central Florida for the year 2016. 
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CHAPTER 1: INTRODUCTION 

1.1 Background 

The negative consequences of road traffic crashes have a significant impact on the emotional and 

financial well-being of the society. In the United States, annually motor vehicle crashes are 

responsible for more than 33,000 deaths and cost approximately $230 billion to the economy 

(GHSA, 2009; National Highway Traffic Safety Administration (NHTSA), 2013). According to 

the Global Status Report on Road Safety (World Health Organization, 2015) traffic crashes are 

likely to become the seventh leading cause of death in 2030 if adequate countermeasures are not 

adopted. In addition to the alarmingly high number of fatalities, there are multiple worrying trends 

within these numbers. The increase in the number of fatalities year over year for 2015 and 2016 

represent the two largest year over year increases over last three decades. Further, in 2016, the 

percentage of non-motorized road user fatalities as a proportion of total fatalities have increased. 

Given the impact of road traffic crashes on the society, it is not surprising that safety researchers 

are continually investigating approaches for crash occurrence reduction and crash consequence 

mitigation. In this research, we limit ourselves to approaches dealing with crash occurrence 

reduction. Econometric crash prediction models are typically employed for examining crash 

counts either at the micro (intersection or segment) or the macro-level (county or traffic analysis 

zone). The micro-level analysis aims to suggest specific geometric design and/or engineering 

solutions to reduce the number of crashes for the examined road entities while the macro-level 

studies are useful from a transportation planning perspective providing regional hotspot 

identification and remedial solutions. The various crash frequency dimensions explored in existing 

literature include total crashes, crashes by severity, crashes by collision type and crashes by vehicle 
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type for a spatial unit over a given time period (Abdel-Aty et al., 2005; Lee et al., 2015; Wang et 

al., 2017).  

In recent decades, substantial progress in analysing crash frequency models has been made. 

Earlier research efforts typically adopted a univariate framework to study a single crash frequency 

variable (such as total crashes) or multiple crash frequency variables (such as crash frequency by 

injury severity). Univariate approaches are not appropriate for modeling multiple dependent 

variables for the same observational unit as these approaches do not account for common 

unobserved heterogeneity affecting the various dependent variables (see (Mannering et al., 2016) 

for a detailed review). Recognizing this drawback, several research efforts in recent years have 

been conducted to accommodate for the potential dependency across multiple dependent variables 

for each observational unit (Anastasopoulos, 2016; Mannering et al., 2016; Nashad et al., 2016). 

In these multivariate approaches, propensity equations for multiple dependent variables are 

developed to accommodate for the impact of observed factors. These propensity equations 

traditionally take the form of a negative binomial or log-normal formulation. However, there are 

still several methodological challenges associated with such existing models suggesting continual 

needs to develop advanced econometric framework to address these gaps. 

 

1.2 Motivation for The Study 

The multivariate approaches can broadly be classified along two major streams: (1) simulation-

based approaches and (2) analytically closed-form based approaches. The main difference between 

these two streams lies in how the dependency across dimensions is captured. In simulation-based 

approaches, the different propensities are correlated by generating a common error term across 

dimensions. For each realization of the common error term, the likelihood function (or posterior 

probability in Bayesian regime) is computed. However, given the inherently unobserved nature of 
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the error term, an appropriate distributional assumption is necessary to generate a population 

function. For this reason, multiple error term draws are generated, and the likelihood function 

values are averaged across these repetitions. The accuracy of the approach is affected by number 

of dimensions as well as number of draws considered for the function evaluation. Further, the 

stability of the variance-covariance matrix is often sensitive to model specification and number of 

simulation draws (see (Bhat, 2011) for a discussion). In closed-form based approaches, the 

propensity equations for frequency dimensions are tied together by analytical multivariate 

distributional assumptions. For example, the different propensity error terms are assumed to follow 

a multivariate distribution or a more general copula distribution. Thus, whenever permissible, such 

model formulation yields an analytical formula for the probability computation  (Bhat and Eluru, 

2009; Nashad et al., 2016). These models can be estimated using traditional maximum likelihood 

approaches. In some cases, where such formulas are of very high dimensions they might not be 

analytically tractable. In this case, an alternative approach that approximates the analytical 

probability is adopted. A commonly used such approximation approach involves composite 

maximum likelihood frameworks (Bhat, 2014, 2011; Narayanamoorthy et al., 2013).  The first 

task of the research effort is focused on comparing the performance of these two streams of 

multivariate approaches (simulation and analytical). In our analysis, the comparison is undertaken 

with the univariate models following negative binomial model structure. 

Despite the prevalence of multivariate approaches in safety literature, there are several 

challenges and gaps associated with such frameworks. In multivariate approaches (both simulation 

and closed-form streams), a separate crash propensity equation is adopted for each crash type. 

Thus, if there are D dependent variables and K independent variables, the order of observed 

parameters estimated in the model structure is D*K. With increasing dimension of D, the number 
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of parameters to be estimated increases rapidly. Thus, in models with D >3, the number of 

parameters to be estimated are prohibitively high. For example, consider a case of crash frequency 

for four crash types at an intersection (rear-end, side-swipe, angle and non-motorized). In the 

univariate models, for each of the crash types, Annual Average Daily Traffic (AADT) is likely to 

have a statistically significant impact. So, the typical multivariate model estimates 4 parameters 

for AADT. However, it is possible that the impact of AADT on side-swipe and angle crashes is 

not statistically different. Testing this is not straightforward in the multivariate model structure. 

The analyst will need to modify the model estimation code to restrict the parameters across the 

side-swipe and angle univariate models to be the same. Subsequently, the restricted model version 

data fit must be compared with the data fit of the unrestricted version using log-likelihood ratio 

(LR) test. Based on the result, the analyst can conclude if AADT does offer different impacts for 

side-swipe and angle crash profiles. Given the additional burden of these steps, the models 

employed in safety literature typically ignore if the variable impacts are really different across 

crash type propensities. The result is an ill-specified model structure with too many parameters. 

To be sure, the model estimates thus obtained are not incorrect. However, the estimation process 

could become inefficient particularly when sample sizes for crash frequency are small (<1000). 

The sample sizes for micro-level analysis can typically vary from 200-500 and the number of total 

parameters estimated has an impact of model estimation efficiency. Further, in simulation-based 

multivariate approaches, the influence of unobserved factors is typically accommodated as random 

effects and correlations across dimensions. The random effects accommodate for the influence of 

unobserved factors affecting crash propensity within the dimension. The correlations account for 

the influence of unobserved factors affecting multiple dependent variables. These effects require 

simulation for parameter estimation. The complexity of the model estimation is dependent on the 
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number of unobserved parameters estimated. With higher dimensions, the model estimation 

infrastructure can get computationally demanding (while not unmanageable with latest computing 

power).  In our research, we propose to address these challenges by recasting the multivariate crash 

frequency modeling problem as a pooled univariate crash frequency (with unobserved 

heterogeneity accommodated) analysis problem.  

Further, in multivariate count regression approaches described above, the impact of 

exogenous variables is quantified through the propensity component of count models. While 

several research efforts have developed multivariate crash frequency models for a small number 

of dimensions (such as 5); there is limited adoption of multivariate approaches for count variables 

in the presence of larger number of dependent variables (say greater than 15).  As a result, there is 

limited adoption of research modeling crash severity frequency considering different crash types 

For example, consider the development of crash frequency models by crash type (say 𝑁 types) and 

severity level (say 𝐾 levels). In the currently employed approaches, the number of crash propensity 

equations to be estimated will be N*K. While the estimation of 𝑁 ∗ 𝐾 univariate model systems is 

repetitive, it is still feasible. However, accommodating for unobserved heterogeneity with a large 

number of dependent variables is substantially challenging. The probability evaluation with high 

dimensional integrals is potentially affected by several challenges including - requirements of 

generating high dimensionality of random numbers, empirical identification issues due to 

relatively flat objective functions in larger dimensions and longer computational run times. 

Furthermore, the stability of the variance-covariance matrix is often sensitive to model 

specification and number of simulation draws. In this context, the current dissertation contributes 

to burgeoning econometric and safety literature by developing a joint modeling approach that can 

accommodate for several dependent variables within a parsimonious structure.  
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1.3 Objective of the Dissertation 

The current dissertation contributes towards addressing the methodological challenges in crash 

frequency analysis for analyzing multiple crash frequency variables for the same study unit by 

proposing advanced econometric approaches. The empirical analysis is based on traffic analysis 

zone (TAZ) level crash count data for both motorized and non-motorized crashes from Central 

Florida for the year 2016. A comprehensive set of exogenous variables including roadway, built 

environment, land-use, traffic, socio-demographic and spatial spillover characteristics are 

considered for the analysis. The proposed contributions are organized along four objectives that 

discussed in detail in subsequent paragraphs. 

The first objective of the dissertation is focused on addressing the following question: 

which framework performs better in capturing potential correlation across multiple dependent 

variables in the current study context? Hence, we conduct a comparison exercise between the two 

major streams of multivariate approaches for analyzing the crash counts considering different 

crash types in the fast task of the dissertation. In safety literature, there are two ways to incorporate 

the potential correlation between multiple crash frequency variables: (1) simulation-based 

approach and (2) analytical closed form approach. The main difference between these two streams 

lies in how the dependency across dimensions is captured. However, so far there has not been a 

comprehensive comparison exercise between these two regimes. To that extent, the research effort 

proposed a comparison between the simulation-based multivariate model and copula based closed-

form approach to analyze zonal level crash counts for different crash types. Further, the research 

builds on earlier copula based models by incorporating random parameters thus proposing a 

combination approach to incorporating unobserved heterogeneity. Within the proposed 

combination copula model, the empirical analysis involves estimation of count models using four 
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different copula structures which cover a wide range of dependency structures, including radial 

symmetry and asymmetry, and asymptotic tail independence and dependence.  

The second objective of the dissertation is focused on addressing the following question: 

do we really need multivariate approaches for modelling multiple dependent variables? In this 

context, we propose an alternative and mathematically simpler approach for analyzing multiple 

crash frequency variables for the same study unit. Prior to presenting our alternative approach, 

challenges with the current simulation-based multivariate approaches in estimating observed and 

unobserved variable effects are discussed. Traditionally, simulation-based approaches are 

employed in crash frequency analysis for multiple crash frequency variables. However, in 

simulation-based models, the model estimation infrastructure can get computationally demanding 

with higher dimensions (while not unmanageable with latest computing power).  Towards 

addressing these challenges, the proposed research presents an alternative formulation to analyze 

multiple crash frequency variables by recasting a multivariate distributional problem as a repeated 

measures univariate problem. To elaborate, instead of considering the crash frequency by crash 

type as a multivariate distribution, we represent it as repeated measures of crash frequency while 

recognizing that each repetition represents a different crash type. Thus, in this process we cast a 

multivariate distribution as a univariate distribution with repeated measures. The recasting allows 

us to estimate parsimonious model systems thus improving parameter estimation efficiency. 

Specifically, we employed a simpler panel random parameter based univariate model framework 

to analyze zonal level crash counts for different crash types. The performance of the proposed 

framework is then compared with the performance of the random parameter multivariate negative 

binomial model (RPMNB) using a host of metrics for estimation and hold-out sample.  
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The third objective of the dissertation is focused on addressing the following concern: can 

we develop a single framework for modelling zonal level crash severity counts across different 

crash types? In this context, the current objective contributes to burgeoning econometric and safety 

literature by developing a joint modeling approach that can accommodate for several dependent 

variables within a parsimonious structure. By recasting the analysis levels for dependent variables, 

the proposed approach allows for flexible consideration of crashes by type and severity within a 

single framework. Despite the recognition of distinct injury severity profiles across different crash 

types, there is limited adoption of research modeling severity frequency by crash types. The main 

challenge is with the number of dependent variables as accommodating unobserved heterogeneity 

for such large number of dimensions is substantially burdensome. In this context, we employ a 

Panel mixed Negative Binomial- Generalized Ordered Probit Fractional Spilt (PMNB-GOPFS) 

model where the first component (NB) accommodates for crash frequency by crash type and the 

later component (GOPFS) studies the fraction of severity outcome for different crash types. The 

dimension of the dependent variables analyzed is 24 [(6 ∗ 4) from 6 crash types and 4 severity 

levels). Further, a number of correlation terms are tested in the current research effort including: 

1) common unobserved factors simultaneously affecting crash counts of different crash types ; 2) 

common unobserved factors simultaneously affecting crash severity proportions of different crash 

types ;  and 3) common unobserved factors that simultaneously impact crash counts and severity 

proportions by different crash types. The analysis is further augmented by undertaking a prediction 

exercise using the final model parameter estimates for estimation and hold-out samples.  

The final objective (fourth) of the dissertation focused on addressing the following issue: 

does the effect of observed and unobserved variables vary across the population or not? In this 

context, the current objective contributes to literature on crash frequency analysis by 
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accommodating population heterogeneity in the impact of exogenous variables. In conventional 

count models, the impact of exogenous factors is restricted to be the same across the entire region. 

However, it is possible that the influence of exogenous factors might vary across different TAZs. 

Ignoring such heterogeneous impact of variables might result in incorrect coefficient estimates. To 

that extent, the research effort proposes a latent segmentation based count model to capture the 

potential variation in the impact of exogenous variables. Specifically, we will formulate and 

estimate a latent segmentation based Negative Binomial (NB) to study the zonal level crash counts 

across different crash types.  

 

1.4 Outline of the Dissertation 

The remainder of the research proposal is divided into seven chapters which shows how each 

chapter position the current research effort within the larger context of the safety literature. From 

chapter three to six, the problem in context, an exhaustive literature review, limitation of earlier 

research, econometric framework adopted in the study and estimation results are discussed in detail 

to illustrate how each objective contributes in safety literature.  

Chapter two discusses a detailed summary of the study area, data source, dependent and 

exogenous variables considered for the analysis. The research considers the Central Florida region 

which includes 4,747 traffic analysis zones (TAZs). The study is focused on crashes involving 

both motor vehicles and non-motorists at a zonal level for the year 2016. The data are compiled 

from Florida Department of Transportation (FDOT), Crash Analysis Reporting Systems (CARS) 

and Signal Four Analytics (S4A) databases. A host of exogenous variables including roadway, 

built environment, land-use, traffic and sociodemographic characteristics are considered for the 

current research effort. Information about the variables are gathered from FDOT Transportation 
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Statistics Division, US Census Bureau, American Community Survey and Florida Geographic 

Data Library databases. 

Chapter three contributes to objective one by comparing the performance of the simulation-

based framework with closed form copula-based frameworks. The empirical analysis is based on 

the traffic analysis zone (TAZ) level crash count data for both motorized and non-motorized 

crashes from Central Florida for the year 2016. The crash data for 4,747 TAZs were sorted into 

the following four categories: (1) motorized intersection crashes, (2) motorized road segment 

crashes, (3) motorized off-road crashes and (4) non-motorized crashes. Using the four crash 

categories defined, we compare the performance of the random parameter multivariate negative 

binomial model with copula based negative parameter model. Within the copula framework, we 

estimate models for four copula structures: (1) Frank, (2) Gumbel, (3) Clayton and (4) Joe to cover 

a wide range of dependency structures, including radial symmetry and asymmetry, and asymptotic 

tail independence and dependence. The model frameworks are compared based on statistical fit 

and a host of comparison metrics for estimation sample and hold-out sample. Finally, the 

applicability of the model for hot zone identification is illustrated by generating plots identifying 

hot and cold zones by crash type in the Central Florida region.  

Chapter four contributes to objective two by suggesting an alternative and mathematically 

simpler approach for analyzing multiple crash frequency variables for the same study unit. 

Basically, the proposed model attempts to contribute to simulation-based multivariate approaches 

by altering how the multiple dependent variables are analyzed. The proposed recasts a multivariate 

distributional problem as a repeated measure univariate problem. Prior to presenting our alternative 

approach, challenges with the current simulation-based multivariate approaches in estimating 

observed and unobserved variable effects are discussed. Specifically, we employed a simpler panel 
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random parameter based univariate model framework to analyze zonal level crash counts for 

different crash types as well as incorporating the presence of unobserved heterogeneity across 

crash types. The analysis is conducted using the zonal level crash records from Central Florida for 

the year 2016 considering a comprehensive set of exogenous variables. Further, the study evaluates 

the performance of the proposed approach by undertaking a comparison exercise with the 

traditional random parameter multivariate negative binomial model. 

Chapter five contributes to objective three by developing a joint modeling approach that 

can accommodate for several dependent variables within a parsimonious structure. Specifically, 

we employ a Panel Mixed Negative Binomial- Generalized Ordered Probit Fractional Spilt (PM-

NB-GOPFS) model where the first component (NB) accommodates for crash frequency by crash 

type and the later component (GOPFS) studies the fraction of severity outcome for different crash 

types. A number of correlation terms are tested in the current research effort including: 1) common 

unobserved factors simultaneously affecting crash counts of different crash types ; 2) common 

unobserved factors simultaneously affecting crash severity proportions of different crash types ;  

and 3) common unobserved factors that simultaneously impact crash counts and severity 

proportions by different crash types. The empirical analysis was conducted using the zonal level 

crash count data for the year 2016 from Central Florida while considering a comprehensive set of 

exogenous variables. The analysis is further augmented by undertaking a prediction exercise using 

the final model parameter estimates for estimation and hold-out samples.   

Chapter six contributes to objective four analysis by accommodating population 

heterogeneity in the impact of exogenous variables. In conventional count models, the impact of 

exogenous factors is restricted to be the same across the entire region. However, it is possible that 

the influence of exogenous factors might vary across different TAZs. Ignoring such heterogeneous 
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impact of variables might result in incorrect coefficient estimates. To that extent, the research 

effort proposes a latent segmentation based count model to capture the potential variation in the 

impact of exogenous variables. Specifically, we will formulate and estimate a latent segmentation 

based Negative Binomial (NB) to study the zonal level crash counts across different crash types.  

Chapter seven finally presents the summary of model findings and concluding thoughts 

followed by the contribution of the dissertation in the larger context of safety literature. The chapter 

also identifies limitations of the current dissertation and future directions of research. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

13 

CHAPTER 2: DATA PREPARATION 

The previous chapter presented a summary of the objectives of the current dissertation. In this 

chapter, we briefly provide the details of the study area along with the information regarding the 

data source, dependent variables and exogenous attributes.  

 

2.1 Study Area 

Our study areas include the Central Florida region. Specifically, the research considers the region 

defined for Central Florida Regional Planning Model version 6.0 (CFRPM 6.0). The study area 

includes 4,747 traffic analysis zones (TAZs). Boundary of the study area encompasses nine 

counties (Brevard, Flagler, Lake, Marion, Orange, Osceola, Seminole, Sumter and Volusia) within 

District 5, Polk county within District 1 and part of Indian River county in District 4 of Florida 

Department of Transportation (FDOT). The location study area along with the zonal boundaries 

are shown in Figure 2.1.  

 

2.2 Data Source 

The study is focused on crashes involving both motor vehicles and non-motorists at a zonal level 

for the year 2016. The data are compiled from Florida Department of Transportation (FDOT), 

Crash Analysis Reporting Systems (CARS) and Signal Four Analytics (S4A) databases. CAR and 

S4A are long and short forms of crash reports in the State of Florida, respectively. The Long Form 

crash report is used mostly to give focus on injurious accident or crash concerning felonious 

activities (such as hit-and-run or driving under influence) whereas Short Form depicts the reports 
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based on all other traffic crashes. Both forms of reports are integrated to get a complete view on 

road crashes and having the objective to use it for the better understanding of current analysis.  

 

2.3 Dependent Variable  

2.3.1 Exploration of Analytical, Simulation and Combined Model Structures 

At first, the crash data were sorted into two classes based on the road user group: motorist and 

non-motorist; further, within the motorized group, the records are classified into three categories 

based on the location of the crash: intersection, road segment and off-road. All the crash records 

are aggregated at a TAZ level using the Geographic Information System (GIS). A total of 112,376 

motorized and 3,413 non-motorized crashes were reported in the Central Florida for the year 2016. 

Figure 2.2 describes the overall summary of all crash types in Central Florida for the year 2016 in 

terms of percentage For the motorists, road segment was found to be most unsafe place (48.5%) 

followed by intersection (38.9%). Table 2.1 presents the summary statistics of crash type variables. 

Further, we have partitioned the zonal level records into two datasets: 1) 3,800 TAZs for model 

estimation and 2) 947 TAZs for validation analysis. 

 

2.3.2 Panel Mixed Approach to Modeling Crash Frequency by Crash Types 

The study is focused on crashes involving both motor vehicles and non-motorists at a zonal level 

for the year 2016. At first, the crash data were sorted into two classes based on the road user group: 

motorist and non-motorist; within the motorized group, the records are further classified into five 

categories based on the manner of crash: rear-end, angular, sideswipe, all single vehicle and other 

multiple vehicle crashes. Based on the crash records, crash of different types are combined together 

as one category: left-turn, right-turn and angular crashes within angular class; off-road, rollover 

and other single vehicle in the all single vehicle category; and head-on and other multiple vehicle 
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crashes are in the other multiple vehicle crash types. All the crash records are aggregated at a TAZ 

level using the Geographic Information System (GIS). A total of 114,458 motorized and 3,413 

non-motorized crashes were reported in the Central Florida for the year 2016. Figure 2.3 describes 

the overall summary of all crash types in Central Florida for the year 2016 in terms of percentage. 

Within the motorized crashes, rear-end is found to be the most prevalent one (44.09%) while 

sideswipe is less frequent with 10.82% among all other motorized crash types. Crash statistics at 

a zonal level for different types of crash are summarized in Table 2.2. From the total record, for 

the validation analysis, we set aside records from 932 TAZs and the remaining 3,815 TAZs are 

used for the estimation analysis. 

 

2.3.3 Econometric Approach for Modeling Crash Counts by Crash Type and Severity 

At first, the crash data were sorted into two classes based on the road user group: motorist and 

non-motorist; within the motorized group, the records are further classified into five categories 

based on the manner of crash: rear-end, angular, sideswipe, head-on and single vehicle crashes.  

Then for each crash types, crashes are further classified by injury severity levels such as fatal (K), 

incapacitating (A), non-incapacitating (B), possible injury (C), and property damage only (O) 

crashes. Based on crash records, fatal and incapacitating injuries are combined as one category 

and defined as severe injury. Finally, the crash records are aggregated at a zonal level and the 

corresponding severity proportions by crash type are as follows: (1) proportion of no injury 

(property damage only) crashes, (2) proportion of minor injury crashes, (3) proportion of non-

incapacitating injury crashes, and (4) proportion of severe injury crashes.  

The crash counts and severity outcome proportions for each crash type are presented in 

Figure 2.4. From the Figure 2.4, we can observe that number of no injury crashes has the highest 

proportion followed by proportion of minor injury crashes. Further, in terms of crash types, the 
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figure 2.4 shows that non-motorists are more prone to severe crashes whereas the injury outcomes 

are higher for motorists involved in head-on crashes. On the other hand, in approximately 84% 

and 72% sideswipe and rear-end crashes, respectively, the outcomes were no injury. The most 

commonly used approach of modeling severity frequency or proportion without considering crash 

type would result in an inaccurate aggregation. From the figure (2.4), it is evident that severity 

proportions by crash type vary significantly across crash types. 

 

2.3.4 Accommodating Population Heterogeneity Within A Panel Model Framework  

We used the zonal level crash counts of same six crash types as described in section 2.3.3.  

 

2.4 Exogenous Variable Considered 

A host of exogenous variables including roadway, built environment, land-use, traffic and 

sociodemographic characteristics are considered for the current research effort. Information about 

the variables are gathered from FDOT Transportation Statistics Division, US Census Bureau, 

American Community Survey and Florida Geographic Data Library databases. In addition to crash 

records, explanatory attributes are also aggregated at a zonal level using the GIS. Roadway 

attributes included are road lengths for different functional class, proportion of rural and urban 

road, proportion of road with different number of lanes (1, 2, and 3 or more), number of 

intersections and signals, mean and variance of speed limit, length of road with different speed 

limit (≤40mph, 41-54mph and ≥55mph), average width of inside and outside shoulder, average 

width of bike lane and sidewalk. Land use attributes mainly provide the land use category 

information including area of urban, residential, industrial, institutional, recreational, office and 

land use mix while information about the number of business centers, commercial centers, schools, 

hospitals, recreational centers, restaurants and shopping centers are considered in the built 
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environment characteristics. Land use mix is defined as: [− ∑ (𝑝𝑘(𝑙𝑛𝑝𝑘))𝑘 𝑙𝑛𝑁 ], where k is the category 

of land-use, 𝑝𝑘 is the proportion of the developed land area devoted to a specific land-use k, N is 

the number of land-use categories in a STAZ. In our study, six land use types were considered 

including residential, park facilities, industrial, institutional, agricultural and office areas. 

Institutional land use refers to land uses that cater to community’s social and educational needs 

(schools, town hall, police station) while park facilities refer to land used for recreational or 

entertainment purposes. The value of this index ranges from zero to one - zero (no mix) 

corresponds to a homogenous area characterized by single land use type and one to a perfectly 

heterogeneous mix).Further, for traffic characteristics, average annual daily traffic (AADT), 

average annual daily truck traffic (truck AADT), vehicle miles traveled (VMT), truck vehicle miles 

traveled (truck VMT) and proportion of heavy traffic are considered. In sociodemographic 

attributes, population and household density, proportion of means of transportation used by 

commuter for their work trips (car, transit, bike and walk) and proportion of household by vehicle 

ownership level (0, 1, 2, 3 and 4 or more) are included.  

In case of aggregate level models, for any spatial unit, there is a possibility that crashes are 

more affected by the neighbouring units rather than the actual unit, specially for those crashes 

which occurred in the boundary region. Several research efforts have acknowledged the 

importance of spatial spillover effects (see (Aguero-Valverde and Jovanis, 2006; Cai et al., 2016; 

Quddus, 2008)). In safety literature, there are two ways to incorporate the effect of spatial effect: 

1) Spatial error correlation and 2) Spatial spillover effect (see (Cai et al., 2016) for details). The 

current research effort follows the second method in which the dependency is captured through 

the observed attributes (Cai et al., 2016; Narayanamoorthy et al., 2013). For every zone, 

neighbouring zones are identified and based on the neighbouring zone, exogenous variables are 
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estimated (similar to the actual TAZ). For example, proportion of urban road in the actual TAZ is 

computed by taking the ratio of the length of urban road to the total road in that specific TAZ. In 

terms of spillover effect, for every TAZs, we have the neighbouring TAZs and based on that we 

take the sum of the urban and total road and estimate the proportion of urban road by taking the 

ratio of it. The reader would note that, targeted TAZs are not considered in the neighbouring TAZs. 

Across the dataset, the number of surrounding zones range from 1 to 21 with an average value of 

6.43.  

Table 2.3 summarizes sample characteristics of the explanatory variables with the 

appropriate definition considered for final model estimation along with the minimum, maximum 

and mean values at a zonal level. While we estimated spatial spill-over variables for all variables, 

we only present the variables that offered significant effects in the model. In estimating the model, 

several functional forms, combination of variables and interaction terms are considered and those 

that provides the best fit are retained in the final specification. The final specification of the model 

was based on removing the statistically insignificant variables in a systematic process based on 

90% confidence level. 

 

2.5 Summary 

In this chapter, data source employed along with the data preparation procedure are discussed in 

detail. Moreover, descriptive statistics for both dependent and exogenous variables are provided. 

The next four chapters describe the four objectives of the current research effort and shows how it 

contributes to the safety literature on crash frequency analysis. 
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Figure 2.1 Location of Study Region 
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Figure 2.2 2016 Crashes by types (%) in Central Florida (Crash Location Wise) 

 

 

Figure 2.3 2016 Crashes (%) in Central Florida (Crash Type Wise) 
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Figure 2.4 Crash Frequency and Severity Proportions (mean) by Crash Types 
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Table 2.1 Descriptive Statistics of Dependent Variables (Copula Approach) 

Variable 

Names 
Definition 

Zones (N=4,747) 

Minimum Maximum Mean 
Standard 

Deviation 

Motorized 
Intersection 
Crash 

Total number of crashes occurred 
at or within the influence area of 
intersection in a TAZ 

0.000 171.000 9.480 13.490 

Motorized 
road segment 
Crash 

Total number of crashes occurred 
on roadway segments and outside 
the influence area of intersection in 
a TAZ 

0.000 283.000 11.826 20.700 

Motorized 
Off-road 
Crash 

Total number of crashes occurred 
outside the influence area of 
roadway in a TAZ 

0.000 51.000 2.367 3.573 

Non-
motorized 
Crash 

Total number of non-motorized 
(pedestrian and bicyclist) crash in a 
TAZ 

0.000 12.000 0.719 1.318 

 

Table 2.2 Descriptive Statistics of Dependent Variables (Panel Approach) 

Variable 

Names 
Definition 

Zones (N=4,747) 

Minimum Maximum Mean 
Standard 

Deviation 

Rear-end Crash 
(motorized) 

Total number of rear-end crash 
(motorized) occurred in a TAZ 

0.000 243.000 10.948 18.517 

Angular Crash 
(motorized) 

Total number of left turn, right 
turn and angular crash (motorized) 
occurred in a TAZ 

0.000 104.000 4.216 6.817 

Sideswipe Crash 
(motorized) 

Total number of sideswipe crash 
(motorized) occurred in a TAZ 

0.000 66.000 2.686 5.228 

All Single 
Vehicle Crash 
(motorized) 

Total number of off-road, rollover 
and other-single vehicle crash 
(motorized) occurred in a TAZ 

0.000 62.000 3.317 4.480 

Other-multiple 
Vehicle Crash 
(motorized) 

Total number of head-on and 
other-multiple vehicle crash 
(motorized) occurred in a TAZ 

0.000 112.000 2.945 4.549 

Non-motorized 
Crash 

Total number of non-motorized 
(pedestrian and bicycle) crash in a 
TAZ 

0.000 12.000 0.719 1.318 
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Table 2.3 Summary Statistics of Exogenous Variables (Zonal Level) 

Variables Definition 
Zonal (N=4,747) 

Minimum Maximum Mean Std. Deviation 

Roadway Characteristic 

Proportion of rural road (Rural road length/total road length)  0.000 1.000 0.121 0.309 

Proportion of urban road (Urban road length/total road length)  0.000 1.000 0.806 0.381 

Proportion of arterial road (Arterial road length/total road length)  0.000 1.000 00377 0.393 

Number of Intersection Ln (no of intersection) 0.000 4.682 1.921 1.053 

Signal intensity Total number of traffic signal per 
intersection 

0.000 1.000 0.038 0.096 

Average speed limit Ln (mean speed limit in mph) 0.000 4.248 3.228 1.279 

Variance of speed limit Ln (variance of speed limit in mph) 0.000 6.686 2.325 2.041 

Average bike lane length Ln (average length of bike lane in feet) 0.000 1.662 0.044 0.147 

Average inside shoulder 
width 

Ln (average inside shoulder width in feet) 0.000 2.650 0.288 0.445 

Average outside shoulder 
width 

Ln (average outside shoulder width in feet) 0.000 2.977 0.964 0.579 

Average sidewalk width Ln (average sidewalk width in feet) 0.000 2.977 0.964 0.579 

Divided road length Ln of (divided road length in meter)  0.000 1.547 0.037 0.096 

Road ≥55mph Proportion of road length greater than 
55mph 

0.000 1.000 0.088 0.174 

Land-use Attributes 

Urban area Ln (urban area+1) in acre 0.000 9.440 4.921 1.970 

Recreational area Ln (recreational area+1) in acre 0.000 9.814 0.470 1.408 

Office area Ln (office area+1) in acre 0.000 6.440 0.877 1.383 

Residential area Ln (residential area+1) in acre 0.000 8.131 3.811 2.075 

Industrial area Ln (industrial area+1) in acre 0.000 7.067 1.118 1.306 

Institutional area Ln (institutional area+1) in acre 0.000 6.617 1.946 1.589 

Land use mix 

Land use mix = [− ∑ (𝑝𝑘(𝑙𝑛𝑝𝑘))𝑘 𝑙𝑛𝑁 ], where 𝑘 is 

the category of land-use, 𝑝 is the proportion 
of the developed land area for specific land-
use, 𝑁  is the number of land-use categories   

0.000 
 

 
0.946 0.369 0.221 
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Built Environment Characteristics 

No of business center Z score1:  No of business center -0.138 19.664 0.000 1.000 

No of commercial center Z score:  No of commercial center -0.270 9.521 0.000 1.000 

No of educational center Z score:  No of educational center -0.487 11.610 0.000 1.000 

No of recreational center Z score:  No of park and recreational center -0.475 16.678 0.000 1.000 

No of restaurant Z score:  No of restaurant -0.464 11.021 0.000 1.000 

No of shop Z score:  No of shopping center -0.442 19.728 0.000 1.000 

Traffic Characteristics 

VMT Vehicle miles travelled 0.000 15.026 7.914 3.368 

Truck VMT Tuck vehicle miles traveled 0.000 13.049 3.474 2.864 

Proportion of heavy 
vehicles 

Total truck AADT/ Total AADT 0.000 0.369 0.068 0.046 

Sociodemographic Characteristics 

Population density Total population/Total area of TAZ in acre 0.000 21.293 2.364 2.233 

household density  Total number of household/Total area of 
TAZ in acre 

0.000 8.556 0.902 0.878 

Average TAZ income Ln (Average TAZ income+1) 0.000 12.534 11.065 0.386 

Proportion of commuter  Total number of commuter/total population 0.000 0.778 0.408 0.085 

Non-motorist commuter Ln (NMT means to work for a TAZ) 0.000 5.261 1.278 1.098 

Proportion of senior people 
Total number of people over 65 years/total 
population in TAZ 

0.000 0.821 0.206 0.114 

Proportion of African-
American people 

Total number of African-American people 
/total population in TAZ 

0.000 0.969 0.142 0.159 

Proportion of household 
with no vehicle 

Number of household with no vehicle/total 
household 

0.000 0.471 0.069 0.065 

Spatial Spillover Effect 

Office area Ln (∑office area+1) in acre in surrounding 
zones 

0.000 7.670 2.849 1.869 

Signal intensity  ∑signal/∑intersection in neighbour’s zone 0.000 1.000 0.042 0.050 

Proportion of major road  
(∑Major road length/∑total road length) in 
surrounding zones 0.000 1.000 0.619 0.249 

 

1 Z-score represents the standardized form of the actual variable. 
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Proportion of HH with no 
vehicle  

∑household with 0 vehicle/∑household of 
neighbouring zones 

0.000 0.347 0.067 0.054 

Non-motorist commuter 
(∑commuter by walk and 
cycle/∑population) of neighbouring zones 

0.000 6.703 3.174 1.257 

Average sidewalk width  
Ln (average sidewalk width in feet) in 
surrounding zones 

0.000 2.127 1.089 0.334 
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CHAPTER 3: EXPLORATION OF ANALYTICAL, SIMULATION AND 

COMBINED (ANALYTICAL+SIMULATION) MODEL STRUCTURES 

The negative consequences of road traffic crashes have a significant impact on the emotional and 

financial well-being of the society. In the United States, annually motor vehicle crashes are 

responsible for more than 33,000 deaths and cost approximately $230 billion to the economy 

(GHSA, 2009; NHTSA, 2015). According to the Global Status Report on Road Safety (WHO, 

2018) traffic crashes are likely to become the seventh leading cause of death in 2030 if adequate 

countermeasures are not adopted. Given the impact of road traffic crashes on the society, it is not 

surprising that safety researchers are continually investigating approaches for crash occurrence 

reduction and crash consequence mitigation. In this research, we limit ourselves to approaches 

dealing with crash occurrence reduction. Econometric crash prediction models are typically 

employed for examining crash counts either at the micro (intersection or segment) or the macro-

level (county or traffic analysis zone). The micro-level analysis aims to suggest specific geometric 

design and/or engineering solutions to reduce the number of crashes for the examined road entities 

while the macro-level studies are useful from a transportation planning perspective providing 

regional hotspot identification and remedial solutions. The various crash frequency dimensions 

explored in existing literature include total crashes, crashes by severity, crashes by collision type 

and crashes by vehicle type for a spatial unit over a given time period (Abdel-Aty et al., 2005; Lee 

et al., 2015; Wang et al., 2017). 

In recent decades, substantial progress in analysing crash frequency models has been made. 

Earlier research efforts typically adopted a univariate framework to study a single crash frequency 

variable (such as total crashes) or multiple crash frequency variables (such as crash frequency by 
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injury severity). Univariate approaches are not appropriate for modeling multiple dependent 

variables for the same observational unit as these approaches do not account for common 

unobserved heterogeneity affecting the various dependent variables (see (Mannering et al., 2016) 

for a detailed review). Recognizing this drawback, several research efforts in recent years have 

been conducted to accommodate for the potential dependency across multiple dependent variables 

for each observational unit (Anastasopoulos, 2016; Mannering et al., 2016; Nashad et al., 2016). 

In these multivariate approaches, propensity equations for multiple dependent variables are 

developed to accommodate for the impact of observed factors. These propensity equations 

traditionally take the form of a negative binomial or log-normal formulation. These multivariate 

approaches can broadly be classified along two major streams: (1) simulation-based approaches 

and (2) analytically closed-form based approaches.  

The main difference between these two streams lies in how the dependency across 

dimensions is captured. In simulation-based approaches, the different propensities are correlated 

by generating a common error term across dimensions. For each realization of the common error 

term, the likelihood function (or posterior probability in Bayesian regime) is computed. However, 

given the inherently unobserved nature of the error term, an appropriate distributional assumption 

is necessary to generate a population function. For this reason, multiple error term draws are 

generated, and the likelihood function values are averaged across these repetitions. The accuracy 

of the approach is affected by number of dimensions as well as number of draws considered for 

the function evaluation. Further, the stability of the variance-covariance matrix is often sensitive 

to model specification and number of simulation draws (see (Bhat, 2011) for a discussion). In 

closed-form based approaches, the propensity equations for frequency dimensions are tied together 

by analytical multivariate distributional assumptions. For example, the different propensity error 
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terms are assumed to follow a multivariate distribution or a more general copula distribution. Thus, 

whenever permissible, such model formulation yields an analytical formula for the probability 

computation  (Bhat and Eluru, 2009; Nashad et al., 2016; Soulez et al., 2007). These models can 

be estimated using traditional maximum likelihood approaches. In some cases, where such 

formulas are of very high dimensions they might not be analytically tractable. In this case, an 

alternative approach that approximates the analytical probability is adopted. A commonly used 

such approximation approach involves composite maximum likelihood frameworks (Bhat, 2014, 

2011; Narayanamoorthy et al., 2013).  

 

3.1 Earlier Research 

A summary of research efforts from the two streams described above are presented in Table 3.1 

with information on the study unit, methodological framework, estimation technique, dependent 

variables and the number of dimensions employed. From the table, several observations can be 

made. First, simulation approaches employ maximum simulated likelihood approach (MSL) in the 

classical framework and Markov Chain Monte Carlo (MCMC) approach in the Bayesian realm for 

model estimation. Second, within the simulated framework, various model structures developed 

include multivariate Poisson regression model, multivariate Poisson lognormal model, 

multinomial-generalized Poisson model, multivariate Poisson gamma mixture count model, 

multivariate Poisson lognormal spatial and/or temporal model, grouped random parameter 

multivariate spatial model, Integrated Nested Laplace Approximation Multivariate Poisson 

Lognormal model,  Bayesian latent class flexible mixture multivariate model,  flexible Bayesian 

semiparametric approach and multivariate random-parameters zero-inflated negative binomial 

model. Third, an alternative framework that builds on the fractional split model has also been 

identified as a credible alternative to the traditional multivariate approaches. Instead of using 
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propensity per dimension, exogenous variable affects all dependent variables through a unified 

mechanism thus offering a more parsimonious specification. Fourth, only a small number of 

studies – 3 studies to be precise - have employed the closed-form approach for developing 

multivariate models in crash frequency analysis. Fifth, it is important to recognize that the 

analytical approach based systems are geared toward accommodating for the influence of 

unobserved factors across multiple dependent variables. However, in these approaches, the 

influence of unobserved factors on the individual dependent variables in the form of random 

parameters are rarely considered. Finally, the various independent variables examined include 

roadway, traffic, land-use, sociodemographic and socioeconomic characteristics.  

 

3.2 Current Study 

From the literature review, it is evident that simulation-based approaches are more commonly 

employed in crash frequency analysis. The preponderance of simulation-based approaches can be 

attributed to advancements in simulation approaches and enhanced access to computing power. 

These simulation-based approaches accommodate for (1) common unobserved factors affecting 

each dependent variable by allowing for random parameters and (2) common unobserved factors 

affecting multiple dependent variables by allowing for correlations across dependent variables. 

More recently, closed-form copula-based approaches are suggested as a viable alternative to 

modeling crash frequency. The likelihood function, while analytically closed-form, is complicated 

in the copula regime. Given the analytical formulation these frameworks rely on maximum 

likelihood (as opposed to maximum simulated likelihood) and are less prone to error. However, in 

these approaches, unobserved heterogeneity in the form of random parameters is rarely considered 

as it will introduce simulation within a complex analytical formulation. To elaborate, current 

copula model systems assume that all the exogenous variables have the same influence on crash 
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count propensity across the entire population. However, in some cases, this assumption might be 

erroneous. For example, let us consider the effect of average sidewalk width on non-motorized 

crash counts. Increased sidewalk width is associated with higher pedestrian activity (exposure) and 

as a result possibly more crashes. However, at the same time, the presence of sidewalk provides 

additional safety to the non-motorists from colliding with a motorized vehicle. Also, the higher 

number of pedestrian and bicyclist on the road might make the drivers more familiar with 

pedestrian activity and thus more cautious in their driving behavior that potentially could result in 

a reduced number of non-motorized crashes. Therefore, the effect of sidewalk width could be 

different across the TAZs and it is useful to allow for the effect of sidewalk width on non-

motorized crash counts to vary across TAZs by considering a distributional assumption across the 

TAZs. The proposed effort develops a random parameter copula model structure that builds an 

approach for employing an analytical multivariate model embedded within a simulation 

framework for crash frequency analysis. . Subsequently, we compare the performance of the 

proposed model (random parameter copula models) with the most commonly employed 

simulation-based approach and analytical closed-form copula models. To the best of authors’ 

knowledge, this study is the first of its kind to incorporate attribute variability (random effect) 

effect within the copula framework. For the comparison exercise, a negative binomial kernel is 

employed across all model structures. The reader would note that the comparison exercise could 

be extended to other model structures in a straightforward fashion.  

The empirical analysis is based on the traffic analysis zone (TAZ) level crash count data 

for both motorized and non-motorized crashes from Central Florida for the year 2016. The crash 

data for 4,747 TAZs were sorted into the following four categories: (1) motorized intersection 

crashes, (2) motorized road segment crashes, (3) motorized off-road crashes and (4) non-motorized 
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crashes. Using the four crash categories defined, we compare the performance of the random 

parameter multivariate negative binomial model with random parameter copula-based multivariate 

negative binomial model. Within the copula framework, we estimate models for four copula 

structures: (1) Frank, (2) Gumbel, (3) Clayton and (4) Joe. We examine the performance of these 

two frameworks in terms of model fit and prediction power for two datasets 1) estimation sample 

(records that are used for analysis - 3,800 TAZs) and 2) validation sample (set aside for validation 

analysis - 947 TAZs). In our models, we consider exogenous variables from roadway 

characteristics, land-use attributes, built environment characteristics, traffic characteristics, 

sociodemographic characteristics, and spatial spillover effects. The model comparison exercise is 

augmented with spatial representation of hot and cold zones by crash type for policy implications 

and prioritizations.   

The rest of the chapter is organized as follows: The next section presents the 

methodological framework adopted in the analysis while the model findings are presented in 

section 3.4. The comparison exercise are offered in the section 3.5 followed by the spatial 

distribution in section 3.6. Finally, a summary of model findings and conclusions are presented in 

Section 3.7. 

 

3.3 Econometric Framework 

In this section, we briefly provide details of the model frameworks employed in our study. The 

model structure description order is as follows: (a) independent negative binomial model, (b) 

Simulation-Based Random Parameter Multivariate NB (RPMNB) Model, (c) Copula-Based 

Multivariate NB Model and (d) Copula-Based Random Parameter Multivariate NB Model. The 

mathematical frameworks build on simpler approaches whenever appropriate.  
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3.3.1 Independent Negative Binomial (NB) Model 

Let us assume that 𝑖 (𝑖 = 1,2,3, … , 𝑁, 𝑁 = 3,800) be the index for TAZ. Let 𝑗 be the index 

representing different crash type, where (𝑗 = 1,2, … , 𝐽, 𝐽 = 4 ), the index 𝑗 may take the values of 

motorized intersection (𝑗 =1), motorized road segment (𝑗 =2), motorized off-road (𝐽 =3) and 

non-motorized (𝑗 =4) crashes. Using these notations, the equation system for modeling crash 

count across different crash type 𝑗 in the usual negative binomial (NB) formulation can be written 

as: 

𝑃(𝑐𝑖𝑗|𝜇𝑖𝑗 , 𝛼𝑗) =  Γ (𝑐𝑖𝑗 + 1𝛼𝑗)Γ(𝑐𝑖𝑗 + 1)Γ ( 1𝛼𝑗) ( 11 + 𝛼𝑗𝜇𝑖𝑗) 1𝛼𝑗 (1 − 11 + 𝛼𝜇𝑖𝑗)𝑐𝑖𝑗
 (1)  

where, 𝑐𝑖𝑗 be the index for crash counts specific to crash type 𝑗 occurring over a period of 

time in TAZ 𝑖. 𝑃(𝑐𝑖𝑗) is the probability that TAZ 𝑖 has 𝑐𝑖𝑗 number of crashes for crash type 𝑗. Γ(∙) 

is the gamma function, 𝛼𝑗 is NB over dispersion parameter and 𝜇𝑖𝑗 is the expected number of 

crashes occurring in TAZ 𝑖 over a given time period for crash type 𝑗. Given this set up, the 

mathematical formulations of the econometric frameworks considered in the current study context 

is presented in this section. 

With the NB probability expression as presented in equation 1, we can express 𝜇𝑖𝑗 as a 

function of explanatory variables by using a log-link function as follows: 𝜇𝑖𝑗 = 𝐸(𝑐𝑖𝑗|𝒛𝑖𝑗) = 𝑒𝑥𝑝((𝜹𝑗)𝒛𝑖𝑗 + 𝜀𝑖𝑗) 
(2)  

where, 𝒛𝑖𝑗 is a vector of explanatory variables associated with TAZ 𝑖 and collision type 𝑗. 𝜹𝑗 is a vector of coefficients to be estimated. 𝜀𝑖𝑗 is a gamma distributed error term with mean 1 

and variance 𝛼𝑗.  

Thus, the likelihood function for the probability can be expressed as: 
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𝐿𝑖,𝑗 = 𝑃(𝑐𝑖𝑗) 
(3)  

Finally, the log-likelihood function is:       

𝐿𝐿𝑗 = ∑ 𝐿𝑛(𝐿𝑖)𝑖  
(4)  

All the parameters in the model are estimated by maximizing the logarithmic function 𝐿𝐿 

presented in equation 4. 

 

3.3.2 Simulation-Based Random Parameter Multivariate NB (RPMNB) Model 

The focus of RPMNB (referred as multivariate NB model in the following sections for simplicity) 

model is to examine number of crashes across different collision types jointly. As we consider four 

different crash types in the current analysis, in estimating RPMNB model, we examine four 

different NB models for four different collision types simultaneously. The expected crash counts 

TAZ 𝑖 over a given time period for crash type 𝑗 presented in equation 2 is updated in the RPMNB 

model as following: 𝜇𝑖𝑗 = 𝐸(𝑐𝑖𝑗|𝒛𝑖𝑗) = 𝑒𝑥𝑝((𝜹𝑗  + 𝜻𝑖𝑗)𝒛𝑖𝑗 + 𝜀𝑖𝑗 + 𝜂𝑖𝑗) 
(5)  

where, 𝜻𝑖𝑗 is a vector of unobserved factors on crash count propensity associated with crash 

type 𝑗 for TAZ 𝑖 and its associated zonal characteristics, assumed to be a realization from standard 

normal distribution: 𝜻𝑖𝑗~𝑁(0, 𝝅𝑗2). 𝜂𝑖𝑗 captures unobserved factors that simultaneously impact 

number of crashes across different crash types for TAZ 𝑖. Here it is important to note that the 

unobserved heterogeneity between total number of crashes across different crash types can vary 

across TAZs. Therefore, in the current study, the correlation parameter 𝜂𝑖𝑗 is parameterized as a 

function of observed attributes as follows: 𝜂𝑖𝑗 = 𝜸𝒋𝒔𝑖𝑗  
(6)  
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where, 𝒔𝑖𝑗 is a vector of exogenous variables, 𝜸𝒋 is a vector of unknown parameters to be 

estimated (including a constant). In the current analysis, the RPMNB model only allows for a 

positive correlation for total number of crashes across different crash types.  

In examining the model structure of crash count across different crash types, it is necessary 

to specify the structure for the unobserved vectors 𝜻 and 𝜸 represented by Ω. In this framework, 

it is assumed that these elements are drawn from independent normal distributions: 

Ω~𝑁(0, (𝝅𝑗𝟐, 𝝈𝑗2)). Thus, conditional on Ω, the likelihood function for the joint probability can 

be expressed as: 

𝐿𝑖 = ∫ ∏ (𝑃(𝑐𝑖𝑗))𝐽
𝑗=1𝛀 𝑓(𝛀)𝑑𝛀 (7)  

Finally, the log-likelihood function is:       

𝐿𝐿 = ∑ 𝐿𝑛(𝐿𝑖)𝑖  
(8)  

All the parameters in the model are estimated by maximizing the logarithmic function 𝐿𝐿 

presented in equation 8. The parameters to be estimated in the RPMNB model are: 𝜹𝑗, 𝛼𝑗, 𝝅𝑗, and 𝝈𝒋. 
 

3.3.3 Copula-Based Multivariate NB Model 

The focus of our study is to estimate a copula-based multivariate NB modeling framework (see 

(Bhat and Eluru, 2009; Bhowmik et al., 2018; Yasmin et al., 2014) for a detailed description). The 

econometric framework for the copula-based model is presented in this section. Let’s assume 𝑣𝑖𝑗 

is the expected number of crashes occurring in TAZ 𝑖 over a given time period for crash type 𝑗. 

We can express 𝑣𝑖𝑗 as a function of explanatory variable (𝒙𝑖𝑗) by using a log-link function as: 
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𝑣𝑖𝑗 = 𝐸(𝑐𝑖𝑗|𝒙𝑖𝑗) = 𝑒𝑥𝑝(𝜷𝑗𝒙𝑖𝑗), where 𝜷𝑗 is a vector of parameters to be estimated specific to 

crash type 𝑗.   

The correlation or joint behavior of random variables 𝑐𝑖1, 𝑐𝑖2,…𝑐𝑖𝑀 are explored in the 

current study by using a copula-based approach. A copula is a mathematical device that identifies 

dependency among random variables with pre-specified marginal distribution (Bhat and Eluru, 

2009) provide a detailed description of the copula approach). In constructing the copula 

dependency, let us assume that 𝛬1(𝑐𝑖1), 𝛬2(𝑐𝑖2) … 𝛬𝐽(𝑐𝑖𝐽) are the marginal distribution functions 

of the random variables 𝑐𝑖1, 𝑐𝑖2,…𝑐𝑖𝑀, respectively; and 𝛬12…𝑀(𝑐𝑖1, 𝑐𝑖2, … 𝑐𝑖𝐽) is the M variate 

joint distribution with corresponding marginal distributions. Subsequently, the M variate 

distribution 𝛬12…𝑀(𝑐𝑖1, 𝑐𝑖2, … 𝑐𝑖𝐽) can be generated as a joint cumulative probability distribution 

of uniform [0, 1] marginal variables 𝑈1, 𝑈2 ... 𝑈𝐽 as below: 𝛬12…𝑀(𝑐𝑖1, 𝑐𝑖2, … 𝑐𝑖𝐽) = 𝑃𝑟( 𝑈1 ≤ 𝑐𝑖1,  𝑈2 ≤ 𝑐𝑖2 …  , 𝑈𝑀 ≤ 𝑐𝑖𝐽) = 𝑃𝑟[𝛬1−1(𝑈1) ≤ 𝑐𝑖1,  𝛬2−1(𝑈2) ≤ 𝑐𝑖2 …  , 𝛬𝑀−1(𝑈𝑀) ≤ 𝑐𝑖𝐽 ]  = 𝑃𝑟[𝑈1 < 𝛬1(𝑐𝑖1),  𝑈2 < 𝛬2(𝑐𝑖2) … ,  𝑈𝑀 < 𝛬𝑀(𝑐𝑖𝐽) ] 

(9)  

The joint distribution (of uniform marginal variable) in equation 9 can be generated by a 

function 𝐶𝜃𝑖(. , . ) such that: 𝛬12…𝑀(𝑐𝑖1, 𝑐𝑖2, … 𝑐𝑖𝐽) = 𝐶𝜃𝑖(𝑈1 = 𝛬1(𝑐𝑖1), 𝑈2 = 𝛬2(𝑐𝑖2) … ,  𝑈𝐽 = 𝛬𝑀(𝑐𝑖𝐽) ) 
(10)  

where, 𝐶𝑖𝜃(. , . ) is a copula function and 𝜃𝑖 is the dependence parameter defining the link 

between 𝑐𝑖1, 𝑐𝑖2, … 𝑐𝑖𝐽. In the case of continuous random variables, the joint density can be derived 

from partial derivatives. However, in our study, 𝑐𝑖𝑗 are nonnegative integer valued events. For 

such count data, following (Cameron et al., 2004), the probability mass function (𝜚𝑖𝜃) is presented 

(instead of continuous derivatives) by using finite differences of the copula representation as 

follows: 
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𝜚𝑖𝜃 (𝛬1(𝑐𝑖1), 𝛬2(𝑐𝑖2) … 𝛬𝑀(𝑐𝑖𝐽)) 

= ∑ ∑ … ∑ (−1)𝑎1+𝑎2+...  𝑎𝐽2𝑎𝐽=12𝑎2=12𝑎1=1 [𝐶𝑖𝜃(𝛬1(𝑐𝑖1 + 𝑎1 − 2), 𝛬2(𝑐𝑖2 + 𝑎2
− 2) … 𝛬𝑀(𝑐𝑖𝐽 + 𝑎𝐽 − 2) ;  𝜃𝑖)] 

(11)  

The reader would note the probability in Equation 11 is written in terms of 2𝐽 copula 

evaluations (see (Eluru et al., 2010; Sener et al., 2010) for a similar derivation). The number of 

computations increases rapidly with the number of dependent variables (𝐽), but this is not much 

of a problem when the dependent variable number 𝐽 is 6 or less because of the closed-form 

structures of the copula function evaluation. Given the above setup, we specify 𝛬1(𝑐i1), 𝛬2(𝑐i2) 

… 𝛬𝑀(𝑐𝑖𝑀) as the cumulative distribution function (cdf) of the NB formulation. The cdf of NB 

probability expression (as presented in Equation 1) for 𝑐𝑖𝑗 can be written as: 

𝛬𝑗(𝑐𝑖𝑗|𝑣𝑖𝑗 , 𝛼𝑗) = ∑ 𝑃𝑖𝑗(𝑐𝑖𝑗|𝑣𝑖𝑗 , 𝛼𝑗)𝑐𝑖𝑗
𝑘=0  (12)  

Thus, the log-likelihood function (𝐿𝐿) with the joint probability expression in Equation 12 

can be written as: 

𝐿𝐿 = ∑ ln (𝜚𝑖𝜃 (𝛬1(𝑐𝑖1), 𝛬2(𝑐𝑖2) … 𝛬𝑀(𝑐𝑖𝐽)))𝑁
𝑖=1  (13)  

In the current empirical study, we employ Archimedean copulas that span the spectrum of 

different kinds of dependency structures including Frank, Gumbel, Clayton and Joe copulas (see 

(Bhat and Eluru, 2009)  for graphical descriptions of the implied dependency structures). 

Archimedean copulas, in their multivariate forms, allow only positive associations and equal 

dependencies among pairs of random variables. It is important to note here that, the study allow 

the dependency structure to vary across TAZs. Therefore, in the current study, the dependence 

parameter 𝜃𝑖 is parameterized as a function of observed attributes as follows: 
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𝜃𝑖 = 𝑓𝑛(𝝆 𝒘𝑖) (14)  

where, 𝒘𝑖 is a vector of exogenous variables, 𝝆  is a vector of unknown parameters to be 

estimated (including a constant). Based on the dependency parameter permissible ranges, alternate 

parameterization forms for the four Archimedean copulas are considered in our analysis. The 

parameters are estimated using maximum likelihood approaches. The model estimation routine is 

coded in GAUSS Matrix Programming software. 

 

3.3.4 Copula-Based Random Parameter Multivariate NB Model 

Building on the model structure in 3.3.3, we consider the parameters to vary across the population. 

For this purpose, 𝑣𝑖𝑗 (expected number of crashes occurring in TAZ 𝑖 over a given time period for 

crash type 𝑗 ) equation from 3.3.3 is updated as follows:  𝑣𝑖𝑗 = 𝐸(𝑐𝑖𝑗|𝒙𝑖𝑗) = 𝑒𝑥𝑝((𝜷𝑗 + 𝛷𝑖)𝒙𝑖𝑗) (15)  

 

where 𝛷𝑖 is a vector of unobserved factors moderating the influence of attributes in 𝑥𝑖𝑗 on 

the crash count propensity for analysis unit 𝑖 and crash type 𝑗.  

In examining the model structure of crash count across different crash types, it is necessary 

to specify the structure for the unobserved vectors 𝛷  represented by Ψ. In this framework, it is 

assumed that these elements are drawn from independent normal distributions: Ψ~𝑁(0, 𝜈𝑗2). Thus, 

conditional on Ψ, the likelihood function for the joint probability can be expressed as: 

𝐿 = ∫ ln (𝜚𝑖𝜃 (𝛬1(𝑐𝑖1), 𝛬2(𝑐𝑖2) … 𝛬𝑀(𝑐𝑖𝐽)))Ψ 𝑓(Ψ)𝑑Ψ (16)  

Finally, the log-likelihood function is:       

𝐿𝐿 = ∑ 𝐿𝑛(𝐿𝑖)𝑁
𝑖=1  (17)  
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3.4 Empirical Analysis 

3.4.1 Model Specification and Overall Measure of Fit 

The empirical analysis involved a series of model estimations. At first, four separate independent 

NB models are estimated for four different crash types to establish a benchmark for comparison. 

Second, a simulation based RPMNB (Random parameter multivariate NB model) is estimated to 

examine number of crashes across four different collision types jointly. Third, for the closed-form 

approach, the empirical analysis involves estimation of count models using four different copula 

structures (Frank, Clayton, Gumbel and Joe) that restricts the variable effect to be same across the 

entire TAZs. Fourth, all the copula models (all four) are re-estimated with random parameters 

across each count dependent variable.  Finally, a comparison exercise was undertaken to determine 

the most suitable model.  

The results from the various model systems – convergence log-likelihood, number of 

parameters and Bayesian Information Criterion (BIC) metric are presented in Table 3.2. The reader 

would note that for the copula models with and without random parameters four alternative model 

structures were estimated. From the table, several observations can be mde. First, it is evident that 

all models perform better than the independent model which illustrates the importance of 

incorporating for the influence of unobserved factors in examining crash count by different crash 

types. Second, across copula models, Clayton copula model provides the superior fit compared to 

other copula models in both classes (without random effect and with random effect). Third, within 

copula system, models considering random parameters outperform their counterparts that do not 

consider random parameters. Fourth, comparing the copula model system with the RPMNB model, 

we observe that in general copula based model systems (both classes with and without random 

effect) provide improved data fit compared to the RPMNB model (except Joe copula without 

random effect). Fifth, Random Parameter Clayton Copula (RPCC) provides the best model fit 
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(lowest BIC value) in accommodating the dependency among crash counts for four crash types. 

The results illustrate the value of accommodating for unobserved heterogeneity through analytical 

formulations whenever possible.  

 

3.4.2 Model Estimation Results 

This section offers a detailed discussion of the effects of exogenous variables on the crash count 

component for different crash types. To conserve on space, we will restrict ourselves to the 

discussion of RPCC model results (however, the estimation results of the RPMNB model are 

presented in Table 3.4). Table 3.3 summarizes the estimation results for the RPCC where the 2nd, 

3rd, 4th and 5th column represents the count component for motorized intersection, motorized road 

segment, motorized off-road and non-motorized crashes, respectively. The copula parameters are 

presented in the last row panel of Table 3.3. A positive (negative) sign for a variable in the crash 

count component of Table 3.3 indicates that an increase in the variable is likely to result in more 

(less) crashes. For the sake of brevity, model results are discussed for all crash types 

simultaneously by different variable groups. 

 

3.4.2.1 Roadway Characteristics 

Proportion of arterial roads is associated with increased incidence of crash in all crash types except 

motorized off-road category. The result is expected because off-road crashes are likely to be related 

with high vehicular speed whereas in arterial roads, speeds are likely to be lower due to higher 

vehicular volume. The coefficient associated with number of intersections reveals a positive 

impact on motorized intersection and non-motorized crashes while a negative effect is observed 

for motorized off-road crashes. This is intuitive as intersections are one of the most hazardous 

location for both motorists and non-motorists due to complex turning movements (see (Abdel-Aty 
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et al., 2005; Cai et al., 2016) for similar results). Signal intensity offers a negative sign on off-road 

crashes indicating a lower likelihood of motorized off-road crash in a TAZ with increased number 

of signals. As expected, vehicles are likely to drive at a lower speed in the location with higher 

number of signals and as a result, the risk of motorized off-road crashes might go down. Further, 

the estimated results show that a TAZ with higher variance in speed limit is likely to experience 

increased number of motorized intersection, road segment and off-road crashes. On the other hand, 

the likelihood of these three crash types are lower for zones with higher width of outside shoulder 

which is perhaps indicating greater safety margins for vehicular maneuvers. With respect to 

sidewalk width, the variable is found to be significant in non-motorized crash component with a 

negative impact indicating a lower risk for non-motorists with increased sidewalk width.  

 

3.4.2.2 Land-use Attributes 

With regards to land-use attributes, several factors are found to be significant determinants of crash 

counts for different crash type components. The model estimation results reveal that there are 

higher likelihoods of motorized intersection, motorized road segment and non-motorized crashes 

in a TAZ with higher urbanized and office areas. Institutional area is positively associated with 

motorized intersection and non-motorized crashes. As evident from Table 3.3, we can see that the 

variable indicating residential area is found to have a negative impact on motorized intersection 

crashes while a positive association is observed for non-motorized crashes.  

 

3.4.2.3 Built Environment Characteristics 

The variable corresponding to built environment characteristics reveals that higher number of 

restaurants and shopping centers are likely to result in increased number of intersection and road 
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segment crashes for motorists. With respect to non-motorized crashes, number of restaurants is 

found to be a significant determinant with a positive impact (see (Yasmin et al., 2018a) for similar 

result). However, none of the built environment attributes are found to have significant impacts on 

motorized road segment crashes. 

 

3.4.2.4 Traffic Characteristics 

The parameters associated with traffic characteristics offer expected results. With higher VMT, a 

TAZ is likely to have higher crash incidence for all crash types. Further, we found a significant 

variability of VMT specific to motorized on-road crashes as indicated by the standard deviation 

parameter. The distributional parameter indicates that the overall impact of VMT on motorized 

on-road crashes is always positive (99.99%). Additionally, proportion of heavy vehicles is found 

to be positively associated with motorized road segment crashes.  

 

3.4.2.5 Sociodemographic Characteristics 

With respect to sociodemographic characteristics, the estimates indicate that TAZs with high share 

of walk and bike commuters are likely to experience more motorized intersection crashes. On the 

other hand, the parameter for proportion of household with no vehicle reveals a positive association 

with non-motorized crashes. This is expected because people from households without access to 

vehicles are more exposed to the traffic as they are restricted to using public transport, walk or 

bike as their primary mode for their trips. In terms of sociodemographic characteristics, no other 

variables are found to have significant impacts on motorized road segment and off-road crashes. 
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3.4.2.6 Spatial Spillover Effect 

In terms of spatial spillover effects, office area of the surrounding zones is found to be positively 

associated with motorized intersection and road segment crashes of the targeted zones.  As 

expected, signal intensity in the neighbouring zones has a positive impact on motorized 

intersection crash. TAZs surrounded by zones with higher proportion of major road are likely to 

experience more motorized road segment crashes. Number of commuters by walking and bicycling 

and proportion of household with zero vehicle in the neighbouring zones have a positive influence 

on non-motorized crashes. Moreover, we accommodate the variation of the influence of this 

variable (indicated by the standard deviation in table 3) on non-motorized crashes and found that 

the overall impact is not always to be positive (61.79% positive). On the other hand, average 

sidewalk width in the surrounding zones has a negative coefficient indicating a reduction in non-

motorized crashes of the targeted zone. However, in terms of motorized off-road crashes, none of 

the spatial spillover variables are found to have a significant impact. 

 

3.4.2.7 Dependency Effect 

The copula parameter representing the dependency effects across different count components by 

crash types is presented in the last row panel of Table 3.3. As highlighted earlier, in the current 

analysis, Clayton copula (with random effect) has provided the best model fit in accommodating 

the dependency among crash counts for four crash types. For the Clayton copula, the dependency 

is entirely positive, and the coefficient sign and magnitude reflect whether a variable increase or 

reduces the dependency across dimensions and by how much. The Clayton copula is best suited 

for strong left tail dependence and weak right tail dependence (see (Eluru et al., 2010) for detail); 

that is, it is suitable for the case when, after controlling for observed covariates, all four crash types 
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tend to have a simultaneously high propensity for low crash counts, but not a simultaneously high 

propensity for high crash counts. Further, as indicated earlier, the dependency is expressed as a 

function of observed attributes. Several variables are explored and number of intersections is found 

to have a significant impact on the correlation profile supporting our hypothesis that the 

dependency profile varies across TAZs. The proposed framework by incorporating for such 

parameterizations allows us to improve the model estimation results. 

 

3.5 Predictive Performance Evaluation 

In order to demonstrate the comparison between RPMNB and random parameter Copula-based 

frameworks,  we evaluate the predictive performance by employing goodness of fit measures 

including MPB (Mean prediction bias), MAD (mean absolute deviation), MAPE (mean absolute 

percentage error), RMSE (Root mean square error) and predictive log-likelihood (please see 

(Bhowmik et al., 2018) for a discussion on estimating these measures). Two types of prediction 

exercise are undertaken: 1) In-sample prediction for the zones used in model estimation (3,800) 

and 2) holdout sample prediction for the zones that have been set aside for validation analysis 

(947). The reader would note that these fit measures quantify the error associated with model 

predictions and the model with lower value of predictive measures and higher value of predictive 

log-likelihood will provide better prediction of the observed data. Table 3.5 summarizes the value 

of these measures for both RPMNB and RPCC models at a disaggregate level. As evident form 

Table 3.5, we can observe that RPCC outperforms the RPMNB model across most of the (38 out 

of 42) measures computed.  The result clearly highlights the superiority of the proposed approach 

over the traditional RPMNB framework. 

In an effort to further assess the predictive performance of the estimated models, an in-

depth comparison for different count events across different crash types are carried out. 
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Specifically, we predict the crash frequencies across different count alternatives for different crash 

types estimated from the two models RPMNB  and RPCC and compare their performance based 

on that. For this purpose, 20 data samples with 250 records (TAZs) each are randomly generated 

from the holdout validation sample consisting of 947 records (TAZs).  For these samples, we 

predict the number of TAZs for different count events (total 5 count categories are considered for 

each crash types based on the crash count distribution. For example: for intersection crashes, five 

classes are considered - TAZs with 0, 1-5, 6-20, 21-40 and >40crashes) across different crash types 

from both models (RPMNB and RPCC) and using these counts, we generate the ratio of predicted 

to observed counts specific to each level (count events and crash types). For instance, if there are 

100 TAZs (out of 250) from data sample 1 experiencing ”0” single non-motorized crash and we 

predict 70 and 80 TAZs from RPMNB and  RPCC model, then the estimated ratio of these models 

will be 0.7 (70/100) and 0.8 (80/100) respectively. The reader would note that, the estimated ratio 

corresponds to the value of 1 would imply a perfect prediction. For the ease of presentation, we 

generate two box plots using all the data samples (total 20 points for every count alternative) 

specific to each model (RPMNB and RPCC) by each count events across the four crash types. 

Figure 3.2 represent the ratio statistics for different crash types while in figure 3.3, we present the 

overall ratio statistics incorporating all the crashes together (total 80 points for each count 

alternatives). In terms of the crash types, it is very clear (from figure 3.2) that the RPCC offers 

better prediction relative to the RPMNB especially for the motorized crashes in the current study 

context. However, for the non-motorized crashes, the RPMNB model performs marginally better. 

On the other hand, based on the overall crash perspective, the resulting predictive measures 

estimated for different count alternative further confirm the superiority of the copula approach 

over the RPMNB model.  
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The comparison exercise between these two frameworks was further augmented by 

undertaking a correct classification analysis. Based on observed crash counts for each crash type, 

we divided all the zones (4,747) into 4 groups based on the quartile for number of crashes.  Again, 

based on the predicted counts from both RPMNB and RPCC model, we create 4 groups of zones 

similarly and compute the percentage of correctly classified TAZs within each group. Figure 3.1 

represents the classification accuracy for both RPMNB and RPCC model by each quartile across 

different crash type. From Figure 3.1, the reader would note that for motorized intersection crashes, 

the classification percentage for the RPCC model is 17.4% in the 1st quartile which denotes that 

out of 1,187 TAZs, around 772 are correctly classified for the 1st quartile. This means, within the 

first quartile, the RPCC framework is able to classify around 70% (17.4*4) TAZs correctly for 

intersection crashes. Similarly, we can observe that for almost every crash type, the accuracy rate 

is higher for the RPCC model (except non-motorized crashes: RPMNB model has slightly better 

prediction rate in the higher quartiles) relative to RPMNB within each quartile which further 

reinforces the superiority of the copula model in the current study context. 

 

3.6 Spatial Distribution 

To illustrate the applicability of the estimated copula model, we also identify the hot and cold 

zones by using prediction of the estimated RPCC model. Specifically, we generate the predicted 

number of crashes by crash type and identify the cold (bottom ten percentile zones with respect to 

number of crashes) and hot zones (top ten percentile zones with respect to number of crashes). The 

predicted results for Central Florida for the year 2016 are presented in Figure 3.4. Figure 3.4a to 

3.4d represents the hot and cold zone locations for all crash types considered while Figure 3.4e 

represents the hot and cold zone locations for all crashes (identified based on common hot/cold 

zones across all crash types). From figure 3.4a to 3.4d, we can observe that Orange and Seminole 
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county are under more risk for intersection, non-motorized and on-road crashes while the risk of 

getting involved in off-road crashes is higher in Polk, Osceola and Lake county. On the other hand, 

Volusia and Brevard county are found to be relatively safe across crash types. For hot and cold 

zones by all crashes, the results indicate that TAZs with greater risk are dispersed throughout the 

Central Florida region with visible clustering. This spatial illustration can easily be used to 

prioritize TAZs based on crash risk across different crash types to enhance road safety.  

  

3.7 Summary 

In our research, we compare the performance of the simulation-based framework with closed-form 

copula-based frameworks. In addition, we build on the closed-form copula based frameworks to 

incorporate unobserved heterogeneity associated with variable impacts on crash types (random 

parameters). The proposed model system is compared with the simulation based and analytical 

multivariate models. The comparison exercise is undertaken with the univariate models following 

negative binomial model structure. Within the copula framework, we estimate models for four 

copula structures: (1) Frank, (2) Gumbel, (3) Clayton and (4) Joe which cover a wide range of 

dependency structures, including radial symmetry and asymmetry, and asymptotic tail 

independence and dependence. The empirical analysis is based on the traffic analysis zone (TAZ) 

level crash count data for both motorized and non-motorized crashes from Central Florida for the 

year 2016. The models were estimated employing a comprehensive set exogenous variable 

including roadway, built environment, land-use, traffic, socio-demographic characteristics and 

spatial spillover effects. The model fit measures clearly highlight that the RPCC (random 

parameter Clayton copula)  model outperforms simulation-based RPMNB model. The comparison 

exercise was further augmented by generating a host of comparison metrics for both estimation 

sample and hold-out sample. In an effort to further assess the predictive performance of the 
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estimated models, an in-depth comparison for different count events across different crash types 

and correct classification analysis are carried out. The estimated results further reinforce the 

superiority of the RPCC-based multivariate approach. The RPCC based copula model is also 

employed to generate hot and cold zone categorization of TAZs in the Central Florida region to 

identify potential vulnerable zones by crash type.  

The proposed model results offer insights on important variables affecting crash frequency 

by crash types (road user and location for the current study context). The macro-level model 

outcomes can be used to devise safety-conscious decision support tools to facilitate a proactive 

approach in assessing medium and long-term policy-based countermeasures. Moreover, with the 

spatial illustration, high risk zones for every crash type can be easily identified and thus help the 

planners in enhancing safety for these high crash risk zones. 

The objective is not without limitations. While the study considers the effect of observed 

spatial attributes, it would be beneficial to capture the spatial unobserved heterogeneity as well. 

Moreover, it might be interesting to explore the transferability of models developed for crash type 

simultaneously by estimating similar models for multiple spatial units across several years. 
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Figure 3.1 Prediction Accuracy for Two Frameworks by Crash type Quartile  

Note: *RPMNB=Random parameter multivariate negative binomial model, RPCC =Random Parameter Clayton 
Copula model 
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Figure 3.2 Predicted to Observed Ratio for Different Crash Types 

Note: *RPMNB=Random parameter multivariate negative binomial model, RPCC =Random Parameter Clayton 
Copula model 
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Figure 3.3 Predicted to Observed Ratio for Overall Crashes 

Note: *RPMNB=Random parameter multivariate negative binomial model, RPCC =Random Parameter Clayton 
Copula model 
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Figure 3.4 Spatial Distribution for Every Crash Types 
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Table 3.1 Summary of Existing Crash Frequency Studies  

Studies 
Study 

Unit 
Methodology 

Estimation 

Technique 
Dependent Variables Analyzed 

Number 

of 

Dimension 

Simulation-Based Approach 

Count Framework 

(Anastasopoulos et 
al., 2012) 

Micro Multivariate tobit regression MSL* 
Rates of crashes by severity levels - no-injury, 
possible injury and injury crashes 

3 

(Aguero-Valverde, 
2013) 

Macro Multivariate Spatial Model MSL 
by severity level - property damage only, 
possible injury, and injury/fatality 

3 

(Bhat et al., 2014) Micro Random parameters count models MACML 
by intersection control type – No control. Yield 
sign, stop sign, flashing light, regular signal 
light 

5 

(Chiou and Fu, 2013) Micro 

Multinomial-Generalized Poisson (MGP) 
Withatu1/without Error-Components 
(EMGP) and Nested Generalized Poisson 
Models (NGP) 

MSL 
by severity level - property damage only, 
possible injury, and injury/fatality by segment 
length 

3 

(Li et al., 2013) Macro 
Geographically Weighted Poisson 
Regression (GWPR) 

MSL Fatal crash only 1 

(Wang and 
Kockelman, 2013) 

Macro 
Poisson-based multivariate conditional 
auto-regressive (CAR) framework 

MCMC 
Pedestrian Crash Counts by walk miles 
travelled (WMT) 

1 

(Ye et al., 2013) Micro Joint Poisson regression model MSL 
by severity level - property damage only, 
possible 
injury, and injury/fatality 

3 

(Yu and Abdel-Aty, 
2013) 

Micro 
Bayesian bivariate Poisson-lognormal 
model and a Bayesian hierarchical 
Poisson model 

MCMC by multi-vehicle and single vehicle crash 2 

(Zou et al., 2014) Micro 
Finite-mixture/latent-class and Markov 
switching models 

MSL by segment length  11 

(Barua et al., 2014) Micro Multivariate Poisson lognormal model MCMC 
by crash severity – no injury and injury/fatal 
crashes 

2 

(Dong et al., 2014) Micro 
Multivariate random-parameters zero-
inflated negative binomial model 

MCMC 
by vehicles involved – car only crash, car-truck 
crash and truck only crash 

3 

(Chiou et al., 2014) Micro 

Multinomial-Generalized Poisson With 
Error-Components (EMGP) - spatial 
error-EMGP and spatial exogenous-
EMGP 

MSL 
by severity level - property damage only, 
possible injury, and injury/fatality by segment 
length 

3 
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(Chiou and Fu, 2015) Micro 
Multinomial generalized Poisson model 
with error components and 
spatiotemporal dependence (ST-EMGP) 

MSL 
by severity level - property damage only, 
possible injury, and injury/fatality 

3 

(Lee et al., 2015) Macro 
Multivariate Poisson Lognormal 
Conditional Autoregressive Model 

MSL 
by modes - motor vehicle, bicycle, and 
pedestrian 

3 

(Zhan et al., 2015) Macro Multivariate Poisson-lognormal model MCMC 

by severity levels – fatal and severe injury 
crashes 
Crash frequency by crash severity – no injury, 
possible injury and evident injury 

2, 3 

(Aguero-Valverde et 
al. 2016) 

Micro 
Multivariate Poisson log-normal spatial 
model 

MCMC 
by crash types – same direction, opposite 
direction, angle and hit-fixed object crashes 

4 

(Anastasopoulos, 
2016) 

Micro 
Random parameter multivariate tobit 
model, Multivariate zero-inflated 
negative binomial model 

MSL by severity type – PDO, injury and fatality 3 

(Barua et al., 2016) Micro 
Bayesian multivariate random parameters 
spatial model 

MCMC 
by severity levels – no injury and injury/fatal 
crashes 

2 

(Dong et al., 2016) Micro 
Random parameter bivariate zero-inflated 
negative binomial model 

MCMC 
by severity – disabling injury and non-
disabling injury 

2 

(Mothafer et al., 
2016) 

Micro 
Multivariate Poisson Gamma Mixture 
Count Model (MVPGM) 

MSL 
by crash types – rear end, sideswipe, fixed 
object and other crash types on freeway section 

4 

(Serhiyenko et al., 
2016) 

Micro Multivariate Poisson Lognormal model MCMC 
by crash type – single vehicle, same direction 
and opposite direction crashes 

3 

(Zeng et al., 2016) Macro Neural Networks Model MCMC 
by severity level on road segments - fatality or 
serious injury and slight injury 

2 

(Chen et al., 2017) Micro 
Multivariate Random Parameters 
Negative Binomial Approach 

MSL 

by severity level - property damage only, 
possible injury, and injury/fatality by pavement 
conditions – Excellent, Good, Good-Fair, Fair 
and Poor. 

3, 5 

(Cheng et al., 2017) Micro 
Multivariate Poisson lognormal temporal 
and spatial models 

MCMC 
by crash type - Rear-end, Head-on, Side-swipe, 
Broad-side, Hit object, and Other crashes 

6 

(Heydari et al., 2017) Micro 
Bayesian latent class flexible mixture 
multivariate model 

MCMC by crash type – pedestrian and bicycle crashes 2 

(Huang et al., 2017) Micro 
Multivariate Poisson log-normal 
regression model 

MCMC 
by transportation Modes (motor vehicle, 
bicycle and pedestrian crashes) at urban 
intersections. 

3 

(Wang et al., 2017) Micro 
Integrated Nested Laplace 
Approximation Multivariate Poisson 
Lognormal model 

MCMC 
by crash types –same-direction, intersection-
direction, opposite direction and single vehicle 
crashes and by severity outcomes – no injury, 

4, 3 
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possible/non-incapacitating injury and 
fatal/incapacitating injury crashes 

(Zeng et al., 2017) Micro 
Multivariate random parameter tobit 
model 

MCMC 
by severity levels – slight injury crash and 
killed/seriously injured crashes 

2 

(Cheng et al., 2018) Macro 
Multivariate Space-Time Models with 
Different Temporal Trends and 
Spatiotemporal Interactions 

MCMC 
by collisions modes - motor vehicle, 
pedestrian, bicycle, and motorcycle 

4 

Fractional Split Framework (proportion of crashes) 

(Bhowmik et al., 
2018) 

Macro 
Joint Negative Binomial-Multinomial 
Logit Fractional Split (NB-MNLFS) 
Model 

QMCSL 
by collision type - rear-end, head-on, angular, 
left-turn, right-turn, off-road, rollover, 
sideswipe, other collision type 

10 

(Lee et al., 2018) Macro 
Mixed Fractional Split Multinomial Logit 
Modeling Approach 

QMCSL by vehicle type 8 

(Bhowmik et al., 
2018) 

Macro 
Joint Negative Binomial-Ordered Logit 
Fractional Split (NB-OLFS) Model 

QMCSL 

by crash severity - (1) proportion of no injury 
crashes, (2) proportion of minor injury crashes, 
(3) proportion of incapacitating injury crashes 
and (4) proportion of fatal crashes 

4 

Closed-Form Approach (count) 

      

(Narayanamoorthy et 
al., 2013) 

Macro Spatial Multivariate Count Model CML 
by severity level – Possible injury, non-
incapacitating injury, incapacitating injury and 
fatal injury 

4 

(Nashad et al., 2016) Macro 
Copula based bivariate negative binomial 
model 

ML by crash type – pedestrian and bicycle crashes 2 

(Yasmin et al., 
2018b) 

Macro Copula based multivariate approach ML 
By road user group – car, light truck, other 
motorized (truck, bus and other vehicles) and 
non-motorized (pedestrian and bicyclist) 

4 

Note: *MSL= Maximum simulated likelihood approach, MCMC= Markov Chain Monte Carlo approach, MACML=maximum approximate composite marginal 
likelihood, QMCSL= Qausi monte carlo simulated likelihood approach, ML= Maximum likelihood approach, CMT=Composite marginal likelihood approach. 
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Table 3.2 Summary of Statistical Data Fit from Different Model Systems 

Model (Sample Size = 3,800) 
Log-

Likelihood 

No. of 

Parameter 
AIC BIC 

Independent Model -33108.777 51.000 66319.554 66637.934 

RPMNB -32541.376 54.000 65190.752 65527.861 

Copula Without 
random effect 

Frank -32330.666 53.000 64767.332 65098.198 

Clayton -32285.560 53.000 64677.120 65007.986 

Gumbel -32477.992 52.000 65059.984 65384.607 

Joe -32609.282 52.000 65322.564 65647.187 

Copula With 
random effect 

Frank -32324.966 54.000 64757.932 65095.041 

Clayton -32269.296 55.000 64648.592 64991.944 

Gumbel -32437.408 53.000 64980.816 65311.682 

Joe -32345.828 54.000 64799.656 65136.765 
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Table 3.3 Random Parameter Clayton Copula (RPCC) Model Estimation Results  

Variables (N=3800) 
Motorized 

Intersection Crashes 

Motorized 

On-Road Crashes 

Motorized 

Off-Road Crashes 
Non-motorized Crashes 

Estimate T-stat Estimate T-stat Estimate T-stat Estimate T-stat 

Constant -0.403 -8.614 -0.986 -18.434 -0.795 -17.644 -2.823 -35.121 

Roadway Characteristics 

Proportion of arterial roads 0.134 5.268 0.118 4.306 -0.309 -7.366 0.224 5.608 

Number of intersections 0.302 13.873 -- -- -0.070 -6.363 0.249 10.132 

Signal Intensity -- -- -- -- -0.842 -5.635 -- -- 

Variance of speed limit 0.030 4.338 0.065 7.219 0.056 7.554 -- -- 

Average width of outside shoulder -0.256 -9.248 -0.330 -10.574 -0.122 -5.684 -- -- 

Average sidewalk width       -0.140 -4.854 

Land-use Attributes 

Urban rea  0.142 16.194 0.107 13.656 -- -- 0.140 11.697 

Office area  0.158 13.206 0.107 10.725 -- -- 0.101 8.925 

Institutional area  0.052 5.808 -- -- -- -- 0.066 5.325 

Residential area  -0.076 -12.069 -- -- -- -- 0.025 5.933 

Built Environment Characteristics 

Number of restaurants 0.230 13.599 0.255 12.551 -- -- 0.245 13.638 

Number of shopping centers -- -- 0.049 6.623 -- -- -- -- 

Traffic Characteristics 

VMT 0.057 8.281 0.161 23.760 0.198 29.882 0.031 5.887 

Standard Deviation   0.018 4.304     

Proportion of heavy vehicles -- -- -- -- 2.023 6.955 -- -- 

Socio-demographic Characteristics 

Non-motorist commuter 0.036 4.701 -- -- -- -- -- -- 

Proportion of HH with no vehicles -- -- -- -- -- -- 2.060 6.811 

Spatial Effects 

Office area 0.100 8.771 0.176 14.987 -- -- -- -- 
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Signal intensity  1.868 6.761 --  -- -- -- -- 

proportion of major road  -- -- 0.450 8.625 -- -- -- -- 

Proportion of HH with no vehicle  -- -- -- -- -- -- 2.253 7.579 

Non-motorist commuter -- -- -- -- -- -- 0.034 10.025 

Standard Deviation       0.148 17.317 

Average sidewalk width  -- -- -- -- -- -- -0.133 -4.820 

Over-dispersion 0.755 34.710 0.841 31.889 0.724 25.168 0.059 5.671 

Copula Parameter Estimate T-stat 

Constant 0.824 31.432 

Number of intersections -0.015 -6.632 

Log-Likelihood (No. of parameters): -32,269.30 (55); AIC: 64,648.59; BIC: 64,991.94 
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Table 3.4 Random Parameter Multivariate NB (RPMNB) Model Estimation Results 

Variables (N=3800) 
Motorized 

Intersection Crashes 

Motorized 

On-Road Crashes 

Motorized 

Off-Road Crashes 
Non-motorized Crashes 

Estimate T-stat Estimate T-stat Estimate T-stat Estimate T-stat 

Constant -1.086 -12.170 -1.541 -14.687 -1.488 -25.072 -3.477 -20.121 

Roadway Characteristics 

Proportion of arterial roads 0.151 2.666 0.113 1.843 -0.307 -5.102 0.216 2.872 

Number of intersections 0.319 11.358 -- -- -- -- 0.335 7.628 

Signal Intensity -- -- -- -- -0.996 -3.951 -- -- 

Standard Deviation -- -- -- -- 0.848 2.034 -- -- 

Variance of speed limit 0.033 2.762 0.061 4.667 0.052 4.041 -- -- 

Average width of outside shoulder -0.262 -6.013 -0.395 -8.520 -0.159 -3.749 -- -- 

Average sidewalk width -- -- -- -- -- -- -0.198 -3.071 

Land-use Attributes 

Urban rea  0.151 12.720 0.105 9.080 -- -- 0.153 7.542 

Office area  0.173 10.445 0.088 5.108 -- -- 0.146 7.048 

Institutional area  0.075 5.248 -- -- -- -- 0.089 4.544 

Residential area  -0.072 -7.290 -- -- -- -- 0.027 1.680 

Built Environment Characteristics 

Number of restaurants 0.260 11.101 0.257 7.986 -- -- 0.268 11.636 

Standard Deviation -- -- 0.096 2.211 -- -- -- -- 

Number of shopping centers -- -- 0.063 2.933 -- -- -- -- 

Traffic Characteristics 

VMT 0.071 6.478 0.213 21.065 0.232 24.954 0.038 2.395 

Proportion of heavy vehicles -- -- -- -- 2.545 5.604 -- -- 

Socio-demographic Characteristics 

Non-motorist commuter 0.074 4.644 -- -- -- -- -- -- 

Proportion of HH with no vehicles -- -- -- -- -- -- 1.730 3.245 

Spatial Effects 
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Office area 0.120 7.459 0.164 9.678 -- -- -- -- 

Signal intensity  1.696 5.039 -- -- -- -- -- -- 

proportion of major road  -- -- 0.479 6.393 -- -- -- -- 

Proportion of HH with no vehicle  -- -- -- -- -- -- 1.016 1.409 

Non-motorist commuter -- -- -- -- -- -- 0.142 6.184 

Average sidewalk width  -- -- -- -- -- -- -0.243 -2.660 

Over-dispersion 0.304 11.647 0.427 16.618 0.254 8.706 0.035 1.990 

Correlation 

Correlation 1 0.686 30.723 -- -- -- -- 0.686 30.723 

Correlation 2 -- -- 0.735 39.370 0.735 39.370 -- -- 

Log-Likelihood (No. of parameters): -32,541.38 (54); AIC: 65,190.75; BIC: 65,527.86 
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Table 3.5 Prediction Performance Evaluation for Two Frameworks 

Data Crash Type 
MPB MAD MAPE RMSE Predicted BIC 

RPMNB* RPCC RPMNB RPCC RPMNB RPCC RPMNB RPCC RPMNB RPCC 

In-Sample 
Data 

Motorized Intersection 1.648 0.756 8.558 6.272 1.380 1.185 21.817 12.867 

65,527.86 64,991.94 

Motorized On-road 2.445 1.104 12.049 9.022 1.334 1.558 55.214 24.249 

Motorized Off-road 0.032 -0.079 2.257 1.859 0.216 0.050 3.708 2.977 

Non-Motorized 0.046 -0.004 0.804 0.756 0.178 0.219 1.632 1.266 

Across observation 4.170 1.777 23.668 17.910 3.108 3.012 59.506 27.642 

Validation 
Data 

Motorized Intersection 2.026 0.587 10.042 6.977 2.655 1.250 35.937 16.989 

20,904.03 16,864.40 

Motorized On-road 1.155 0.839 12.219 9.077 1.882 1.299 36.179 24.494 

Motorized Off-road -0.073 -0.139 2.286 1.930 0.322 0.026 3.945 3.332 

Non-Motorized 0.071 0.033 0.852 0.818 0.056 0.230 1.987 1.560 

Across observation 3.179 1.320 25.400 18.801 4.915 2.805 51.185 30.035 

Note: *RPMNB=Random parameter multivariate negative binomial model, RPCC =Random Parameter Clayton copula model 
              *Model with underline gives better measure 
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Table 3.6 Independent NB Model Results 

Variables (N=3800) 
Motorized 

Intersection Crashes 

Motorized 

On-Road Crashes 

Motorized 

Off-Road Crashes 
Non-motorized Crashes 

Estimate T-stat Estimate T-stat Estimate T-stat Estimate T-stat 

Constant -0.699 -7.782 -1.468 -13.634 -1.116 -9.995 -3.237 -21.637 

Roadway Characteristics 

Proportion of arterial roads 0.153 3.069 0.106 1.904 -0.356 -6.286 0.209 2.925 

Number of intersections 0.288 9.613 -- -- -0.064 -2.116 0.270 5.934 

Signal Intensity -- -- -- -- -0.660 -2.601 -- -- 

Variance of speed limit 0.030 2.731 0.060 5.180 0.052 4.360 -- -- 

Average width of outside shoulder -0.231 -6.080 -0.352 -8.390 -0.144 -3.158 -- -- 

Average sidewalk width -- -- -- -- -- -- -0.146 -2.473 

Land-use Attributes 

Urban rea  0.147 14.254 0.123 11.101 -- -- 0.151 8.355 

Office area  0.164 10.688 0.118 6.886 -- -- 0.121 5.976 

Institutional area  0.068 4.666 -- -- -- -- 0.083 4.182 

Residential area  -0.074 -7.067 -- -- -- -- 0.037 2.143 

Built Environment Characteristics 

Number of restaurants 0.265 11.844 0.268 9.446 -- -- 0.249 10.799 

Number of shopping centers  -- -- 0.057 1.903 -- -- -- -- 

Traffic Characteristics 

VMT 0.064 5.677 0.179 17.401 0.237 14.564 0.039 2.446 

Proportion of heavy vehicles -- -- -- -- 1.772 3.679 -- -- 

Socio-demographic Characteristics 

Non-motorist commuter 0.075 4.730 -- -- -- -- -- -- 

Proportion of HH with no vehicles -- -- -- -- -- -- 1.860 3.287 

Spatial Effects 

Office area 0.113 5.933 0.206 10.926 -- -- -- -- 

Signal intensity  2.017 4.291 -- -- -- -- -- -- 
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proportion of major road  -- -- 0.594 6.968 -- -- -- -- 

Proportion of HH with no vehicle  -- -- -- -- -- -- 2.105 2.910 

Non-motorist commuter -- -- -- -- -- -- 0.164 7.268 

Average sidewalk width  -- -- -- -- -- -- -0.287 -3.221 

Over-dispersion 0.757 31.611 0.921 33.970 0.766 18.113 0.452 9.788 

Log-Likelihood (No. of parameters) -10909.91 (15) -11367.74 (12) -7103.68 (9) -3727.44 (15) 

Log-Likelihood (No. of parameters): -33,108.79 (51); AIC: 66,319.58; BIC: 66,637.96 
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CHAPTER 4: PANEL MIXED APPROACH TO MODELING CRASH 

FREQUENCY BY CRASH TYPES 

2In the United States, road traffic crashes have resulted in nearly 40,000 fatalities in 2016 (NHTSA, 

2017). In addition to the alarmingly high number of fatalities, there are multiple worrying trends 

within these numbers. The increase in the number of fatalities year over year for 2015 and 2016 

represent the two largest year over year increases over the last three decades. Further, in 2016, the 

percentage of non-motorized road user fatalities as a proportion of total fatalities have increased.  

These trends clearly highlight the challenges associated with addressing the enormous 

consequences of road traffic crashes. Thus, it is not surprising that safety researchers are working 

toward devising appropriate remedial solutions for reducing the number and consequence of traffic 

crashes. A major tool employed in the literature to develop counter measures is the application of 

econometric models for crash frequency and crash severity. Crash frequency models explore the 

relationship between various attributes and crash occurrences (Yan et al., 2009; Geedipally et al., 

2010; Jonathan et al., 2016) while crash severity models, conditional on crash occurrence, examine 

attributes affecting crash consequences (Abdelwahab and Abdel-Aty, 2002; Milton et al., 2008; 

Wang and Abdel-Aty, 2008; Eluru et al., 2010). The current research effort contributes to literature 

on crash frequency analysis by suggesting an alternative and mathematically simpler approach for 

analyzing multiple crash frequency variables for the same study unit.  

 

2 Bhowmik, T., Yasmin, S., & Eluru, N. (2019). Do we need multivariate modeling approaches to model crash 

frequency by crash types? A panel mixed approach to modeling crash frequency by crash types. Analytic Methods in 

Accident Research, 24, 100107. 
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4.1 Earlier Research 

Several research efforts have developed crash frequency models in safety literature. The various 

crash frequency dimensions explored in existing literature include total crashes, crashes by 

severity, crashes by crash type and crashes by vehicle type for a spatial unit over a given time 

period (Ye et al., 2009, 2013; Lee et al., 2015; Wang et al., 2017; Yasmin et al., 2018). Earlier 

research efforts typically adopted a univariate framework to study a single crash frequency variable 

(such as total crashes) or multiple crash frequency variables (such as crash frequency by injury 

severity). While univariate approaches are adequate to accommodate for the influence of observed 

factors, they are not appropriate to account for the common unobserved factors affecting the 

multiple dependent variables for the same observational unit (see (Mannering et al., 2016) for a 

detailed review). Toward addressing this limitation, several research efforts have developed 

frameworks that accommodate for the influence of these common unobserved factors 

(Anastasopoulos, 2016; Mannering et al., 2016; Nashad et al., 2016). These approaches typically 

estimate the univariate models for crash frequency and bundle these univariate models into a 

multivariate version. The univariate models could take the form of a negative binomial or a log-

normal formulation (or other variants). The bundling process can be achieved through simulation-

based approaches within the classical regime using maximum simulated likelihood approaches or 

in the Bayesian regime using Markov Chain Monte Carlo (MCMC) methods (Anastasopoulos et 

al., 2012; Aguero-Valverde, 2013; Wang and Kockelman, 2013; Barua et al., 2014; Dong et al., 

2014). In safety literature, a number of model structures have been adopted within the simulation-

based multivariate framework including multivariate Poisson regression model, multivariate 

Poisson lognormal model, multinomial-generalized Poisson model, multivariate Poisson 

lognormal spatial and/or temporal model, flexible Bayesian semiparametric approach and 

multivariate random-parameters zero-inflated negative binomial model. 
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For some specific cases, analytically closed form bundling approaches have also been 

proposed. These approaches rely on developing multivariate distributions (or approximations of 

multivariate distributions) with analytical closed form probability expressions that obviate the need 

for simulation. These model frameworks are estimated employing maximum likelihood or 

composite maximum likelihood approaches (Wang et al., 2015; Nashad et al., 2016; Yasmin et al., 

2018). In safety literature the analytical frameworks adopted include copula-based bivariate 

negative binomial (NB) model, copula-based multivariate NB model, copula-based ordered logit 

model and composite maximum likelihood based crash frequency and severity models. 

 

4.2 Current Study 

Our proposed research attempts to contribute to simulation-based multivariate approaches by 

altering how the multiple dependent variables are analyzed. Prior to presenting our alternative 

approach, challenges with the current simulation-based multivariate approaches in estimating 

observed and unobserved variable effects are discussed. In multivariate approaches, a separate 

crash propensity equation is adopted for each crash type. Thus, if there are D dependent variables 

and K independent variables, the order of observed parameters estimated in the model structure is 

of the order of D*K. With increasing number of dimensions (D), the number of parameters to be 

estimated increase rapidly. Thus, in models with D >3, the number of parameters to be estimated 

are prohibitively high. For example, consider a case of crash frequency for four crash types at an 

intersection (rear-end, side-swipe, angle and non-motorized). In the univariate models, for each of 

the crash types, Annual Average Daily Traffic (AADT) is likely to have a statistically significant 

impact. So, the typical multivariate model estimates 4 parameters for AADT. However, it is 

possible that the impact of AADT on side-swipe and angle crashes is not statistically different. 

Testing this is not straightforward in the multivariate model structure. The analyst will need to 
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modify the model estimation code to restrict the parameters across the side-swipe and angle 

univariate models to be the same. Subsequently, the restricted model version data fit must be 

compared with the data fit of the unrestricted version using log-likelihood ratio (LR) test. Based 

on the result, the analyst can conclude if AADT does offer different impacts for side-swipe and 

angle crash profiles. Given the additional burden of these steps, the models employed in safety 

literature typically ignore if the variable impacts are really different across crash type propensities. 

The result is an ill-specified model structure with too many parameters. To be sure, the model 

estimates thus obtained are not incorrect. However, the estimation process could become 

inefficient particularly when sample sizes for crash frequency are small (<1000). The sample sizes 

for micro-level analysis can typically vary from 200-500 and the number of total parameters 

estimated has an impact of model estimation efficiency.  

In simulation-based multivariate approaches, the influence of unobserved factors is 

typically accommodated as random effects and correlation parameters across dimensions. The 

random effects accommodate for the influence of unobserved factors affecting crash propensity 

within the dimension. The correlation parameters account for the influence of unobserved factors 

affecting multiple dependent variables. These effects require simulation for parameter estimation. 

The complexity of the model estimation is dependent on the number of unobserved parameters 

estimated. With higher dimensions, the model estimation infrastructure can get computationally 

demanding (while not unmanageable with latest computing power).   

In our research, we propose to address these challenges by recasting the multivariate crash 

frequency modeling problem as a pooled univariate crash frequency (with unobserved 

heterogeneity accommodated) analysis problem. To elaborate, instead of considering the crash 

frequency by crash type as a multivariate distribution, we represent it as repeated measures of crash 
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frequency while recognizing that each repetition represents a different crash type. Thus, in this 

process we cast a multivariate distribution as a univariate distribution with repeated measures. The 

recasting will offer multiple advantages. First, the recasting allows us to employ a simple panel 

random parameter based univariate model code for model estimation. The panel model is 

substantially easier to program and estimate compared to the multivariate version. Second, instead 

of estimating crash propensity equations by crash type, a single crash propensity equation that 

completely generalizes the separate crash propensity equations can be estimated. The 

consideration of a single crash propensity equation allows the analyst to estimate a base effect for 

each independent variable and then estimate deviations for different crash types. If the deviation 

variable for a crash type is statistically insignificant based on the t-statistic the parameter does not 

exhibit differential sensitivity for the base crash type and crash type for which the deviation was 

computed. Thus, through this recasting, we are able to replace the parameter by parameter LR test 

based analysis (discussed earlier) to a simple t-statistic evaluation. Through this approach, the 

analyst can estimate a parsimonious model without substantial effort and with less computational 

burden. The reader would note that the multivariate model and the recasted panel univariate model 

will provide identical data fit with the same number of parameters but with different representation 

of the parameter effects. Third, the estimation process can use the same infrastructure to estimate 

random effects and correlation parameters in the proposed pooled model. The only additional 

burden is associated with creating appropriate variables during data preparation to represent 

correlation structures. The reader would note that the proposed approach provides exactly the same 

mathematical formulation by leveraging the panel model structure of the pooled data (with as many 

records per observation unit as crash types). Such a recasting is only possible in our context 

because all the univariate dependent variables are assumed to follow the same mathematical 
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structure. If the simulation-based multivariate model has multiple model structures, then our 

approach can be customized but will become cumbersome. However, the adoption of different 

mathematical structures is not common for crash frequency analysis multivariate model contexts.  

In summary, the proposed research presents an alternative formulation to analyze multiple 

crash frequency variables by recasting a multivariate distributional problem as a repeated measure 

univariate problem. Methodologically, the study presents a first of its kind approach in safety 

literature to simplify current modeling infrastructure for multivariate analysis. The recasting 

allows us to estimate parsimonious model systems thus improving parameter estimation efficiency. 

Further, by simplifying the specification process, it is likely to reduce computational time for 

estimating parameters associated with unobserved factors. Empirically, the research contributes to 

our understanding of analyzing zonal level crashes for both motorized and non-motorized road 

user group while considering different crash types within the motorized category including rear-

end, angular, sideswipe, all single vehicle and other multiple vehicle crashes. We employ a panel 

mixed negative binomial model (PMNB) for examining crash count by different crash types as 

well as incorporating the presence of unobserved heterogeneity across crash types. The analysis is 

conducted using the zonal level crash records from Central Florida for the year 2016 considering 

a comprehensive set of exogenous variables. Further, the study evaluates the performance of the 

proposed approach by undertaking a comparison exercise with the traditional random parameter 

multivariate negative binomial model. 

The rest of the chapter is organized as follows: The next section presents the 

methodological framework adopted in the analysis while the 4.4 section provides a detailed 

description of the model findings. Comparison exercise are discussed in section 4.5 followed by 

the summary in the last section. 
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4.3 Econometric Framework 

In this section, we briefly provide the details of the model frameworks employed in our study. 

 

4.3.1 Random Parameter Multivariate NB Model 

The focus of random parameter multivariate NB (referred as multivariate NB model in the 

following sections for simplicity) model is to examine number of crashes across different crash 

types jointly. In our current study context, we consider six different crash types (Five within 

motorized category: rear-end, angular, sideswipe, all single vehicle and other multiple vehicle 

crashes; and non-motorized crashes). Thus, in estimating multivariate NB model, we examine six 

different NB models for six different crash types simultaneously. Let us assume that 𝑖 (𝑖 =1,2,3, … , 𝑁, 𝑁 = 3,815) be the index for TAZ. Let 𝑗 be the index representing different crash type, 

where (𝑗 = 1,2, … , 𝐽, 𝐽 = 6 ), the index 𝑗 may take the values of rear-end (𝑗 =1), angular (𝑗 =2), 

sideswipe (𝑗 =3), all single vehicle (𝑗 =4) crashes, other multiple vehicle (𝑗 =5) , and non-

motorized (𝑗 =6) crashes. Using these notations, the equation system for modeling crash count 

across different crash type 𝑗 in the usual negative binomial (NB) formulation can be written as: 

𝑃(𝑐𝑖𝑗|𝜇𝑖𝑗 , 𝛼𝑗) =  Γ (𝑐𝑖𝑗 + 1𝛼𝑗)Γ(𝑐𝑖𝑗 + 1)Γ ( 1𝛼𝑗) ( 11 + 𝛼𝑗𝜇𝑖𝑗) 1𝛼𝑗 (1 − 11 + 𝛼𝜇𝑖𝑗)𝑐𝑖𝑗
 (18)  

where, 𝑐𝑖𝑗 be the index for crash counts specific to crash type 𝑗 occurring over a period of 

time in TAZ 𝑖. 𝑃(𝑐𝑖𝑗) is the probability that TAZ 𝑖 has 𝑐𝑖𝑗 number of crashes for crash type 𝑗. Γ(∙) 

is the gamma function, 𝛼𝑗 is NB over dispersion parameter and 𝜇𝑖𝑗 is the expected number of 

crashes occurring in TAZ 𝑖 over a given time period for crash type 𝑗. Further, we can express 𝜇𝑖𝑗 

as a function of explanatory variables by using a log-link function as follows: 
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𝜇𝑖𝑗 = 𝐸(𝑐𝑖𝑗|𝒛𝑖𝑗) = 𝑒𝑥𝑝((𝜹𝑗  + 𝜻𝑖𝑗)𝒛𝑖𝑗 + 𝜀𝑖𝑗 + 𝜂𝑖𝑗) 
(19)  

where, 𝒛𝑖𝑗 is a vector of explanatory variables associated with TAZ 𝑖 and crash type 𝑗. 𝜹𝑗 
is a vector of coefficients to be estimated. 𝜻𝑖𝑗 is a vector of unobserved factors on crash count 

propensity associated with crash type 𝑗 for TAZ 𝑖 and its associated zonal characteristics, assumed 

to be a realization from standard normal distribution: 𝜻𝑖𝑗~𝑁(0, 𝝅𝑗2). 𝜀𝑖𝑗 is a gamma distributed 

error term with mean 1 and variance 𝛼𝑗. 𝜂𝑖𝑗 captures unobserved factors that simultaneously impact 

number of crashes across different crash types for TAZ 𝑖. Here it is important to note that the 

unobserved heterogeneity between total number of crashes across different crash types can vary 

across TAZs. Therefore, in the current study, the correlation parameter 𝜂𝑖𝑗 is parameterized as a 

function of observed attributes as follows: 𝜂𝑖𝑗 = 𝜸𝒋𝒔𝑖𝑗  
(20)  

where, 𝒔𝑖𝑗 is a vector of exogenous variables, 𝜸𝒋 is a vector of unknown parameters to be 

estimated (including a constant). In the current analysis, the multivariate NB model only allows 

for a positive correlation for total number of crashes across different crash types.  

In examining the model structure of crash count across different crash types, it is necessary 

to specify the structure for the unobserved vectors 𝜻 and 𝜸 represented by Ω. In this framework, 

it is assumed that these elements are drawn from independent normal distributions: 

Ω~𝑁(0, (𝝅𝑗𝟐, 𝝈𝑗2)). Thus, conditional on Ω, the likelihood function for the joint probability can 

be expressed as: 

𝐿𝑖 = ∫ ∏ (𝑃(𝑐𝑖𝑗))𝐽
𝑗=1𝛀 𝑓(𝛀)𝑑𝛀 (21)  

Finally, the log-likelihood function is:       
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𝐿𝐿 = ∑ 𝐿𝑛(𝐿𝑖)𝑖  
(22)  

All the parameters in the model are estimated by maximizing the logarithmic function 𝐿𝐿 

presented in equation 22. The parameters to be estimated in the multivariate NB model are: 𝜹𝑗, 𝛼𝑗, 𝝅𝑗, and 𝝈𝒋. 
 

4.3.2 Panel Mixed NB Model 

The focus of our study is to estimate a panel mixed univariate NB modeling framework. As 

highlighted earlier, we alter the dataset by taking all six types of crashes as repeated measures 

(same TAZ is repeated 6 times) of crash frequency in a univariate NB formulation while 

recognizing that each repetition represents a different crash type. The econometric framework of 

the proposed approach is presented in this section. Let’s assume 𝑖 (𝑖 = 1,2,3, … , 𝑁, 𝑁 = 3,815) be 

an index to represent observation unit and 𝑟(𝑟 = 1,2, … , 𝑅, 𝑅 = 6) be an index for different crash 

type at observation unit 𝑖. Then the probability equation of the NB formulation can be rewritten as 

follow: 

𝑃(𝑦𝑖𝑟|𝑣𝑖𝑟 , 𝜆′) =  Γ (𝑦𝑖𝑟 + 1𝜆′)Γ(𝑦𝑖𝑟 + 1)Γ (1𝜆′) ( 11 + 𝜆′𝑣𝑖𝑟) 1𝜆′ (1 − 11 + 𝜆′𝑣𝑖𝑟)𝑦𝑖𝑟
 

(23)  

where, 𝑦𝑖𝑟 be the index for crash counts occurring over a period of time in observation unit 

i and crash type r. 𝑃(𝑦𝑖𝑟) is the probability that unit 𝑖 has 𝑦𝑖𝑟 number of crashes for crash type r. 𝜆′ is NB over dispersion parameter and 𝑣𝑖𝑟 is the expected number of crashes occurring in 𝑖 over 

a given time period for crash type r. Similar to the multivariate structure, 𝑣𝑖𝑟 an be expressed as a 

function of explanatory variables using a log-link function as follows: 𝑣𝑖𝑟 = 𝐸(𝑦𝑖𝑟|𝒙𝑖𝑟) = 𝑒𝑥𝑝((𝜷 + 𝜽𝑖 + 𝝔𝑖𝑟)𝒙𝑖𝑟 + 𝜀𝑖𝑟) (24)  
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where, 𝒙𝑖𝑟 is a vector of explanatory variables associated with observations 𝑖 for crash type 

r. 𝜷 is a vector of coefficients to be estimated.  𝜽𝑖 is a vector of unobserved factors moderating the 

influence of attributes in 𝒙𝑖𝑟 on the crash count propensity for analysis unit i, 𝝔𝑖𝑟 is a vector of 

unobserved effects specific to crash type 𝑟. 𝜀𝑖𝑟 is a gamma distributed error term with mean 1 and 

variance 𝜆′. In estimating the model, it is necessary to specify the structure for the unobserved 

vectors 𝜽, 𝝔 represented by Ψ. In this framework, it is assumed that these elements are drawn from 

independent normal distribution: Ψ~𝑁(0, (𝝅′𝟐, 𝜱𝟐 )).  

This 𝝔𝑖𝑟 will be same across crash types in our case and thus the unobserved heterogeneity 

across crash types will be captured (same as 𝜂𝑖𝑗 in the multivariate NB structure). Moreover, 𝜽𝑖 
term will capture the random effect across observations (same as 𝜹𝑗 in the multivariate structure). 

The reader would note that, in the multivariate NB model, we can accommodate correlation and 

attribute variability across different crash type. In the proposed approach, we can do the same by 

introducing variables specific to crash types (interaction term between crash types and variables). 

Thus, conditional on Ψ, the likelihood function across TAZ can be expressed as 

𝐿𝑖 =  (∫ ∏(𝑃(𝑦𝑖𝑟))𝑅
𝑟=1Ψ 𝑓(Ψ)𝑑Ψ (25)  

Finally, the log-likelihood function is:       

𝐿𝐿 = ∑ 𝐿𝑛(𝐿𝑖)𝑖  
(26)  

All the parameters in the model are estimated by maximizing the logarithmic function 𝐿𝐿 

presented in equation 26.  
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4.4 Empirical Analysis 

4.4.1 Estimation process 

To assist the reader with the model estimation process, we provide a discussion of the various 

intermediate steps in the estimation process. First, we estimate the traditional multivariate NB 

model with separate propensity equations for all crash types (Model 1; Table 4.1). Subsequently, 

we estimate an equivalent panel model with the exact same specification (Model 2; Table 4.2). 

Then, this specification was employed to drop deviation effects that were insignificant (Model 3; 

Table 4.3). Finally, we present the net effect of each exogenous variable in the crash propensity 

equation for representing the model in a similar fashion as model 1 (Model 4; Table 4.4). To 

facilitate the comparison, let us focus on the variance of speed variable in Models 1, 2, 3 and 4. In 

model 1, the variable variance of speed has 5 distinct parameters. In Model 2, the same variable 

has 1 base effect (rear-end serve as the base) and 4 deviation terms. In Model 3, the insignificant 

deviation terms were dropped to arrive at 2 distinct parameters: 1 base effect (here rear-end, 

angular, all single vehicle and other multiple vehicle serve as the base) and 1 deviation term for 

sideswipe crashes. The estimated base effect is 0.032 and the deviations across crash types are: 

rear-end 0.000, angular 0.000, Sideswipe 0.044, all single vehicle 0.000 and other multiple vehicle 

0.000. Finally, in Model 4, we compute the net effect of the variable for each crash type by taking 

the summation of base effect and deviation corresponds to specific crash types. So, the effect of 

variance of speed variable for rear-end, angular, all single vehicle and other multiple vehicle would 

be: 0.032+0.000 = 0.032; and for sideswipe crash, the effect would be 0.032+0.044=0.076.  

The reader would note, for simplicity in comparison, we do not add unobserved parameters 

in the models provided in 5.1 to 5.3. 
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4.4.2 Model Specification and Overall Measure of Fit 

The empirical analysis involves estimation of count models from two approaches: 1) traditional 

approach - we estimated two models including Independent NB model (separate NB models for 6 

different crash types) and Random Parameter Multivariate NB model (RPMNB); and 2) proposed 

approach - two models are estimated including Independent Panel NB model (counterpart of 

Independent NB model in the traditional approach) and Panel Mixed NB (PMNB) model 

(counterpart of RPMNB in the traditional approach).The reader would note that the model 

estimation in the proposed approach is informed from the traditional approach models (particularly 

for the independent models). To elaborate, observing the model specifications in the independent 

models, we identify potential parameters that can be restricted to be the same across various crash 

types and test that restriction in our proposed model system. Subsequently, we estimate a base 

effect for each exogenous variable that is common across crash types and then, we estimate the 

deviation for each crash type relative to the base effect. Given we have 6 total crash types, we 

typically can estimate 5 deviations from the base effect. The t-statistic of the estimated parameters 

will provide evidence if the deviation term offers a statistically significant difference from the base 

effect. If the deviation variable for a crash type is statistically insignificant based on the t-statistic, 

the parameter does not exhibit differential sensitivity for the base crash type and crash type for 

which the deviation was computed. The reader would note that for some exogenous variables, the 

overall parameters estimated for an exogenous variable could vary from 0 (i.e. the variable has no 

impact across crash types) to 6 (i.e. the variable has a statistically distinct effect for every crash 

type). Typically, models estimated within the panel formulation have fewer parameters. To 

facilitate the reader’s understanding of the overall model estimation, Appendix A provides details 

of the intermediate steps in the estimation process.   
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The log-likelihood values at convergence for the final estimated models are: For traditional 

approach, (a) Independent NB model (89 parameters) is -44,791.54, and (b) RPMNB model (92 

parameters) is -43,597.82; and for proposed approach, (a) Independent Panel NB model (58 

parameters) is –44,808.32, and (b) PMNB model (61 parameters) is -43,622.57. We also compute 

the Bayesian Information Criterion (BIC) (lower is better) for these four models. For the traditional 

models, the corresponding BIC values are 90,317.02 (Independent NB) and 87,954.34 (RPMNB) 

respectively. On the other hand, for the proposed frameworks, the BIC values are as follows: 

90,094.95 (Independent Panel NB), and 87,748.19 (PMNB model). Based on the BIC values, two 

observations can be made. First, models accommodating unobserved effects perform better than 

their corresponding independent models (in both traditional and proposed regimes) highlighting 

the importance of accommodating for unobserved heterogeneity in examining crash count by 

different crash types. Second, our proposed approach provides superior fit compared to its’ 

counterparts in the traditional frameworks (Independent Panel NB vs Independent NB and PMNB 

vs RPMNB) when accounting for penalty for additional parameters. Thus, our proposed approach 

allows us to estimate parsimonious model systems with more efficient parameter estimation. 

 

4.5 Model Estimation Result 

This section presents a detailed discussion of the factors affecting crash count components across 

different crash types. Table 4.4 presents the model estimation results for the proposed panel mixed 

NB model. The estimation results of the multivariate NB model are presented in Table 4.5 for 

comparison. For the sake of brevity, we do not discuss these parameter estimates.  

As discussed before, in presenting our model results, we have selected a representation that 

provides results similar to the traditional model approach i.e. present the net effect of each 

exogenous variable in the crash propensity equation. For example, consider the constants estimated 
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in the various crash type propensity equations. The proposed estimated the base effect as -1.074 

and the deviations across crash type as – rear-end 0.000, angular -0.716, Sideswipe -0.907, All 

single vehicle 2.137, Other multiple vehicle  -1.172, and Non-motorized -2.109. The reader 

would note that the “rear-end” crash type served as the base. The model results presented compute 

the net effect for each crash type. For non-motorized crash type this would be computed as -1.704 

(base) + -2.109 (non-motorized deviation) = -3.841. The consolidation of parameters in this 

manner allows an easy comparison with the traditional approach.  The consolidation of parameters 

in this manner allows an easy comparison with the traditional approach. At the same time, to 

highlight the gains in parameters if any, we identify the number of parameters estimated across the 

crash types (range between 1 and 6). In cases where the deviation for a crash type was insignificant, 

the reader would notice a common coefficient across 2 or more crash types. The number of distinct 

parameters estimated provides a guide to the improvement in model estimation attained by the 

proposed model structure. For instance, the variable length of divided roads offers an important 

comparison across the two models (see Table 4.4 and 4.5). In our proposed model, we estimated a 

single parameter across 5 crash types while the same variable results in five distinct parameters 

across 5 crash types in the traditional multivariate model. The variable impact illustrates how our 

proposed approach allows for parsimonious specification while not compromising on model 

explanatory power. Finally, the reader would note that for some exogenous variables, a common 

base effect might not be statistically significant. In such cases, the exogenous variable is 

considered by crash type to test for the variable impact.  

A positive (negative) sign for a variable in the crash count component of Table 4.4 indicates 

that an increase in the variable is likely to result in more (less) crashes. 
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4.5.1.1 Crash Specific Constants 

The crash specific constants represent the intercept of crash propensity after adding the various 

exogenous variables and do not have any substantive interpretation.   

 

4.5.1.2 Roadway Attributes 

The parameter associated with proportion of arterial roads offers a positive impact (with same 

magnitude) on crash count propensity for rear-end, angular, sideswipe and non-motorized crashes 

indicating a higher likelihood of crashes with increased proportion of arterial roads in a TAZ. On 

the other hand, with respect to all single vehicle crashes, the impact is negative revealing a reduced 

incidence of all single vehicle crashes with higher proportion of arterial roads. This is intuitive as 

off-road and rollover crashes (these are combined in all single vehicle crashes) are likely to be 

associated with high vehicular speed and on arterial roads drivers are likely to drive at lower 

operating speeds. Number of intersections are found to positively influence angular, other multiple 

vehicle and non-motorized crashes indicating a higher likelihood of crash occurrence for these 

three crash types in a zone with increased number of intersections.  It is also found that the impact 

is not statistically different for angular and non-motorized crashes. The results are in line with 

earlier research specific to angular and non-motorized crashes (Abdel-Aty and Wang, 2006; 

Reynolds et al., 2009). In terms of variance of speed, the estimated result shows that a TAZ with 

higher variance in speed limit is likely to result in higher crash risk across all crash types except 

non-motorized crashes. Among these effects, the magnitude of impact is larger for sideswipe 

crashes and remains the same across other four crash types  

In terms of length of divided roads, the variable is found to have the same positive effect 

on all crash types except non-motorized crashes. Signal intensity in the zone reveals a negative 



 

78 

association with sideswipe and all single vehicle specific crashes indicating a reduced occurrence 

of sideswipe and all single vehicle crashes in a zone with higher number of signals. This is expected 

because, vehicles are likely to drive at a lower speed in the location with higher number of signals 

and as a result, the risk of motorized off-road crashes reduces. Average outside shoulder width has 

a negative influence on crash risk propensity for rear-end, angular, sideswipe and other multiple 

vehicle crashes which is perhaps indicating greater safety margins for vehicular maneuverability.  

The estimated results show that a TAZ with higher proportion of roads over 55mph speed 

limit is likely to experience increased number of rear-end, sideswipe and all single vehicle crashes 

while a negative effect is observed for angular and non-motorized crashes.  Further, we found that 

proportion of road over 55mph has significant variability specific to angular crashes as indicated 

by the standard deviation parameter. The reader would note that the distributional parameter 

indicates that the overall impact of the variable on angular crashes is likely to be negative (80%). 

With respect to sidewalk width, the variable is found to be significant in rear-end crash component 

with a positive impact while a negative association is observed for the non-motorized crashes. The 

results are contrary to some of the earlier studies (Aguero-Valverde and Jovanis, 2006; Cai et al., 

2016; Dong et al., 2014). However, there is a reasonable explanation for the effects identified. 

Increasing sidewalk width is a surrogate for non-motorized activity in the zone. The presence of 

non-motorists can potentially increase rear-end crashes at as vehicles might stop abruptly to allow 

for non-motorist movement increasing rear-end crash risk. Also, the presence of a wider side walk 

provides additional margin of safety for non-motorists from colliding with a motorized vehicle and 

thus results in reduced risk for non-motorized users in the zone. 
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4.5.1.3 Traffic Characteristics 

As expected, the coefficient associated with VMT offers a positive impact on the crash risk 

component of angular, sideswipe, other multiple vehicle and non-motorized crashes while the 

likelihood of all single vehicle crashes will go down with higher VMT. VMT mainly reflects the 

exposure measure for traffic volume and therefore, with increased VMT, the probability of getting 

involved in a crash is likely to be higher. However, with increased traffic volume, the likelihood 

of speeding is lower which eventually results in reduced number of all single vehicle crashes. 

Truck VMT is found to positively influence the rear-end and all single vehicle crash propensity 

indicating a higher risk of getting involved in rear-end and all single vehicle specific crashes with 

increased proportion of trucks on the road.  

 

4.5.1.4 Land-use Attributes 

From Table 4.4, we can observe that TAZs with higher urbanized and office areas are likely to 

experience more crashes specific to all crash types. This is expected as urban area serves as an 

additional surrogate for exposure for traffic. Moreover, the impact of urban area specific to rear-

end crash is of higher magnitude relative to other crash types signifying that rear-end crash is a 

prominent safety issue in urban areas. Institutional areas are associated with increased crash risks 

for rear-end, angular, other multiple vehicle and non-motorized crash. The variable also illustrated 

the advantages of our proposed approach. Specifically, in our proposed framework, we estimate a 

total of two parameters for the variable. However, in the traditional multivariate structure, four 

distinct parameters were estimated.  Residential area has a significant negative impact for rear-

end, angular and sideswipe crashes.  
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4.5.1.5 Built Environment Characteristics 

In terms of built environment attributes, we considered a number of variables, among which only 

number of restaurants and number of shopping centers have significant impact on zonal level crash 

risks. The coefficient associated with number of restaurants reveals the higher likelihood of crash 

propensity of all crash types with increased number of restaurants in a TAZ. On the other hand, a 

zone with higher number of shopping centers is likely to experience an increased number of rear-

end and angular crashes relative to other zones.  

 

4.5.1.6 Sociodemographic Characteristics 

With respect to sociodemographic characteristics, population density – another surrogate for 

exposure – is positively associated with increased likelihood of crash risk for all crash types. We 

can also observe that the parameter associated with the number of non-motorist commuters in the 

TAZ reveals a higher probability of crash risk for rear-end, sideswipe and non-motorized crashes 

in the TAZ. In fact, the reader would note that the magnitude of these impacts is same across the 

three crash types in the current study context.  Further, the coefficient specific to proportion of 

households without vehicle indicates that the variable is negatively associated with rear-end and 

sideswipe (motorized) crashes but has a positive impact on non-motorist road user group. The 

result is expected as people from households without access to personal vehicles experience higher 

exposure for non-motorized crashes as they are restricted to using public transport, walk or bike 

as their primary mode of transportation. 
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4.5.1.7 Unobserved Heterogeneity 

The final set of variables in Table 4.4 correspond to the unobserved heterogeneity across zones. 

The reader would not that, in estimating the model, we found two common unobserved 

components3 including (1) common unobserved factors affecting rear-end and non-motorized 

crashes and (2) common unobserved factors affecting angular, sideswipe and all single vehicle 

crashes. These parameter estimates lend support to the presence of unobserved heterogeneity 

across different crash type.  

  

4.6 Model Comparison Exercise 

4.6.1 Predictive Performance 

In an effort to assess the predictive performance of the estimated models, we compute several 

goodness fit of measures at disaggregate level including MPB (Mean prediction bias), MAD (mean 

absolute deviation), MAPE (mean absolute percentage error), RMSE (Root mean square error) 

and predictive BIC (please see (Bhowmik et al., 2018) for a discussion on estimating these 

measures). Specifically, we employ these measure on two datasets: 1) in-sample dataset: for the 

records used in the model estimation (sample size = 3,815 TAZs) and 2) holdout sample: records 

that are set aside for validation analysis (sample size = 932 TAZs). The reader would note that 

model with lower value of predictive measures and BIC will reflect better performance in terms 

of prediction and statistical fit relative to the observed data. Table 4.6 presents the values of these 

measures for Random parameter multivariate NB and Panel mixed NB models for both in-sample 

and holdout-sample measures. From Table 4.6, we can observe that the performance of the two 

 

3The same correlation structure was revealed from the traditional multivariate model structure (as shown in Table 4.5). 
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models across various prediction measures are quite similar even though there is a large difference 

in the number of parameters between the two specifications (92 vs 61). Further, RPMNB model 

performs marginally better than the proposed framework for the deviation measures with respect 

to angular, sideswipe, other multiple vehicle and non-motorized crashes while in terms of rear-end 

and all single vehicle crashes, the proposed approach offers better performance (for both in-sample 

and holdout samples). These deviation measures do not consider the difference in number of 

parameters across the two models. The BIC measure that penalizes additional parameters clearly 

shows that the proposed panel model structure offers improved statistical fit.  In summary, the 

resulting goodness of fit measures clearly highlight the comparable performance offered by the 

proposed framework compared to the commonly used RPMNB model even with substantially 

fewer parameters. 

To further evaluate the predictive performance of the estimated models, we carried out a 

comparison exercise between the random parameter negative binomial model and panel mixed NB 

model by predicting the crash frequencies across different count events for different crash types. 

For this purpose, 20 data samples with 250 records (TAZs) each, are randomly generated from the 

holdout validation sample consisting of 932 records (TAZs). For these samples, we predict the 

number of TAZs from both models (RPMNB and PMNB) for different count events across 

different crash types. These counts are employed to generate the ratio of predicted and observed 

counts specific to each level (count groups and crash types). A value of 1 for the ratio would imply 

a prefect prediction. For example, if there are 100 TAZs with 0 rear end crashes in data sample 1 

and we predict 60 and 50 TAZs from RPMNB and PMNB model respectively, then the estimated 

ratio of these models will be 0.6 (60/100) and 0.5 (50/100) respectively. For both models, two box 

plots are generated using all the data samples (for every count event, there are 20 points) by each 
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count group and crash type. Figure 4.1 to 4.3 represents the ratio statistics for different crash types. 

From Figure 4.1, we can see that while the models might under-predict or over-predict crash 

counts, the performance of the two models are quite similar. Thus, one can conclude that the 

proposed approach has offered equivalent predictions relative to the multivariate NB model despite 

with substantially fewer model parameters (31 less parameters to be precise). 

 

4.6.2 Elasticity Effect 

The parameters of the exogenous variables in Table 4.4 and 4.5 do not directly provide the exact 

magnitude of the effects of variables on the zonal level crash counts across different crash types. 

However, it might be possible that the effects (exact magnitude) of some attributes could differ 

considerably across the two frameworks. To evaluate this, we compute aggregate level elasticity 

effects for both PMNB and RPMNB models. For this purpose, we identify a subset of exogenous 

variables including proportion of arterial roads, length of divided roads, proportion of roads over 

55mph, institutional areas and number of non-motorist commuters. In our study, we investigate 

the effect as percentage change in the expected zonal level crash counts in response to the increase 

of the explanatory variable by 10% (see Eluru and Bhat, 2007 for a discussion on the methodology 

for computing elasticities). The numbers in Figure 4.4 can be interpreted as the percentage change 

in the expected crash counts (increase for positive sign and decrease for negative sign) due to the 

change in the exogenous variable for different crash types. For instance, the elasticity estimates 

generated from the proposed PMNB (RPMNB) model for proportion of arterial roads variable in 

rear-end crashes indicates that the expected mean rear-end crash will increase by 0.656% (1.038%) 

for an 10% increase in the proportion of arterial roads.  

Several observations can be made based on the elasticity effects presented in Figure 4.4. 

First, in general, we do not observe any large differences in the elasticity effects of the two models 
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across different crash types. From the five variables considered for our elasticity exercise, a 

substantial number of the effects (14 out of 22) offer very little differences. Second, the PMNB 

model with fewer parameters is able to represent the substantial differences in the elasticity effects 

for the same variable across different crash types. For instance, the elasticity effect for length of 

divided roads variable is different across the five crash types despite estimating a single parameter 

(same impact in magnitude) for the variable across the five crash types. Third, for some variables, 

we found substantial differences in the elasticity effects across the two frameworks for different 

crash types. For example, in case of rear-end crashes, the proposed PMNB model predicts an 

0.65% increase in the expected mean for 10% increase in the proportion of roads over 55mph while 

we found an increase of 0.92% from the RPMNB model. Such differences could be attributed to 

the non-linearity embedded within the two model structures estimated with similar data fit. In 

summary, the proposed framework allows for a parsimonious specification without compromising 

the model explanatory power and provides similar performance (most of the times) as the most 

traditional multivariate NB model. 

 

4.7 Summary 

In our current research effort, a simple random parameter based univariate model code was 

employed to analyze zonal level crash counts for different crash types including rear-end, angular, 

sideswipe, all single vehicle, other multiple vehicle and non-motorized crashes. The empirical 

analysis was based on the traffic analysis zone (TAZ) level crash count data from Central Florida 

for the year 2016. A host of exogenous variables including roadway, built environment, land-use, 

traffic and sociodemographic characteristics were considered in the current research effort. A 

comprehensive comparison of the proposed model with the most commonly used multivariate 

negative binomial (NB) model was conducted. The comparison exercise based on the BIC value 
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clearly highlighted the superiority of the proposed approach over the traditional multivariate 

formulation in terms of data fit. The comparison exercise was further augmented by generating 

several predictive measures for both estimation and holdout samples.  Based on the resulting fit 

measures, the study concludes that the proposed formulation has offered equivalent predictions 

relative to the most traditional multivariate NB model even though there is a significant difference 

in the number of parameters within these two frameworks (61 vs 92). Further, we compute 

aggregate level elasticity effects for both PMNB and RPMNB models to quantify whether the 

effect of variables significantly differs across the two frameworks. For this purpose, we identify a 

subset of exogenous variable including proportion of arterial roads, length of divided roads, 

proportion of roads over 55mph, institutional areas and number of non-motorist commuters. The 

elasticity results clearly indicate that for most of the variables, the effects are quite similar for both 

models across different crash types. However, for some variables, we found some significant and 

substantial differences in the elasticity effects across the two frameworks for some crash types. 

Such differences could be attributed to the non-linearity embedded within the two model structures 

estimated with similar data fit.  

The current research effort contributes to literature on crash frequency analysis by 

suggesting an alternative and mathematically simpler approach for analyzing multiple crash 

frequency variables for the same study unit. Specifically, the proposed framework while 

simplifying the model estimation process, allows for parsimonious specification without 

compromising the model explanatory power and provides similar performance (predictions) as the 

currently employed multivariate NB model. In conclusion, the aim of the proposed scheme is to 

augment the inventory of crash frequency models with an alternative formulation and serves as a 
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viable approach to reduce the parameter explosion that is common within a multivariate NB model 

with large number of dependent variable dimensions. 
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     Figure 4.1 Predicted to Observed Ratio for Rear-end and Angular Crashes. 
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Figure 4.2 Predicted to Observed Ratio for Sideswipe and All Single Vehicle Crashes. 
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Figure 4.3 Predicted to Observed Ratio for Other Multiple Vehicle and Non-motorized Crashes. 
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Figure 4.4 Elasticity Effects Across Two Models (PMNB and RPMNB) for Six Crash Types 
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Table 4.1 Model 1: Traditional Multivariate Model with Distinct Propensity Equations 

Variables4 
Rear End Angular Sideswipe 

All single  

vehicle 

Other multiple 

vehicle 
Non-motorized 

Estimate t-stat Estimate t-stat Estimate t-stat Estimate t-stat Estimate t-stat Estimate t-stat 

Constant -0.770 -10.181 -1.301 -14.573 -2.161 -16.951 -0.612 -7.364 -1.261 -14.781 -3.391 -25.776 

Roadway Characteristics 

Proportion of 
arterial roads 

0.232 5.769 0.114 2.082 0.123 1.770 -0.232 -4.805 -- -- 0.265 3.757 

Number of 
intersections 

-- -- 0.235 7.037 -- -- -- -- 0.087 3.147 0.243 5.239 

Variance of speed 0.037 3.560 0.040 3.263 0.075 5.153 0.021 1.971 0.032 2.830 -- -- 

Length of divided 
road 

0.478 2.427 0.357 1.978 0.361 1.668 0.512 3.590 0.458 2.528 -- -- 

Signal intensity -- -- -- -- -0.753 -3.330 -0.632 -2.704  -- -- -- 

Average outside 
shoulder width 

-0.420 -7.493 -0.135 -3.078 -0.321 -5.840 -- -- -0.072 -1.891 -- -- 

Road length over 
55mph 

0.900 7.911 -0.424 -2.509 1.165 6.711 1.245 10.174 -- -- -0.469 -1.923 

Sidewalk width 0.104 3.859 -- -- -- -- -- -- -- -- -0.071 -2.874 

Traffic Characteristic 

VMT -- -- 0.060 4.504 0.187 12.395 -0.111 -4.127 0.094 7.979 0.061 3.300 

Truck VMT 0.183 20.085 -- -- -- -- 0.325 11.169 -- -- -- -- 

Land-use attributes 

Urban area 0.169 17.080 0.117 8.812 0.132 7.968 0.063 6.286 0.082 6.304 0.158 7.629 

Office area 0.201 15.566 0.226 14.091 0.221 10.625 0.087 6.602 0.157 9.691 0.158 7.414 

Institutional area 0.046 3.342 0.079 4.996 -- -- -- -- 0.054 3.892 0.113 5.683 

Residential area -0.064 -7.251 -0.025 -2.128 -0.103 -6.621 -- --     

Built environment characteristic 

No. of restaurant 0.226 8.275 0.222 8.124 0.318 11.882 0.102 6.062 0.292 11.228 0.212 9.009 

 

4 Please see Table 2.3 for variable definitions and units 
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No. of shopping 
center 

0.074 2.842 0.067 1.721 -- -- -- -- -- -- -- -- 

Socio-demographic characteristics 

Population density 0.148 15.432 0.127 16.045 0.129 11.311 0.027 3.675 0.105 14.110 0.126 11.010 

Non-motorist 
commuter 

0.037 2.096 -- -- 0.055 2.381 -- -- -- -- 0.041 1.770 

Proportion of 
household without 
vehicle 

-0.463 -1.683 -- -- -0.646 -1.871 -- -- -- -- 2.508 6.609 

Over dispersion 0.943 36.926 0.729 23.693 0.946 20.026 0.491 20.471 0.557 18.801 0.427 9.019 

Total number of parameters = 89, Log-likelihood: -44,791.53;    AIC: 89,761.07;    BIC:90,317.02 
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Table 4.2 Model 2: Panel Model with Same Specification as Model 1 

Variables 

(Base in Overall Crash 

Risk Component) 

Overall 

 Crash Risk 

Deviation 

Rear End 

(1) 

Angular 

(2) 

Sideswipe 

(3) 

All single 

 Vehicle 

(4) 

Other 

Multiple 

Vehicle  

(5)  

Non-motorized 

(6) 

Estimate  
(t-stat) 

Estimate  
(t-stat) 

Estimate  
(t-stat) 

Estimate  
(t-stat) 

Estimate  
(t-stat) 

Estimate  
(t-stat) 

Estimate  
(t-stat) 

Constant 
-3.390  

(-22.411) 
2.617 

(13.917) 
2.091 

(11.546) 
1.229 

(6.025) 
2.778 

(15.951) 
2.129 

(11.989) 
-- 

Roadway Characteristics 

Proportion of  
arterial roads (1) 

0.232 
(3.969) 

--* 
-0.118 

(-1.287) 
-0.110 

(-0.927) 
-0.464 

(-5.913) 
N/I** 

0.033 
(0.336) 

Number of intersections 
(6) 

0.243 
(5.228) 

N/I 
-0.008 

(-0.126) 
N/I N/I 

-0.156 
(-2.541) 

-- 

Variance of speed (1) 
0.037 

(2.633) 
-- 

0.003 
(0.159) 

0.038 
(1.639) 

-0.016 
(-0.890) 

0.005 
(0.260) 

N/I 

Length of divided roads 
(1) 

0.476 
(1.723) 

-- 
-0.117 

(-0.278) 
-0.112 

(-0.235) 
0.034 

(0.093) 
-0.016 

(-0.046) 
N/I 

Signal intensity (3) 
-0.752 

(-2.821) 
N/I N/I -- 

0.122 
(0.368) 

N/I N/I 

Average outside 
shoulder width (1) 

-0.421 
(-6.389) 

-- 
0.286 

(3.513) 
0.100 

(1.040) 
N/I 

0.349 
(4.038) 

N/I 

Roads length over 
55mph (1) 

0.903 
(5.407) 

-- 
-1.328 

(-5.063) 
0.261 

(0.862) 
0.343 

(1.179) 
N/I 

-1.367 
(-4.487) 

Sidewalk width (1) 
0.105 

(3.629) 
-- N/I N/I N/I N/I 

-0.176 
(-6.962) 

Traffic Characteristic 

VMT (2) 
0.060 

(5.128) 
N/I -- 

0.128 
(6.975) 

-0.170 
(-6.620) 

0.035 
(1.911) 

-0.002 
(-0.071) 

Truck VMT (1) 
0.183 

(15.736) 
-- N/I N/I 

0.142 
(4.699) 

N/I N/I 

Land-use Attributes 

Urban area (1) 
0.170 

(13.060) 
-- 

-0.053 
(-2.620) 

-0.038 
(-1.746) 

-0.106 
(-5.839) 

-0.087 
(-5.139) 

-0.012 
(-0.418) 

Office area (1) 
0.201 

(10.952) 
-- 

0.025 
(1.327) 

0.020 
(0.833) 

-0.114 
(-4.775) 

-0.044 
(-1.811) 

-0.044 
(-1.612) 
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Institutional area  
(1) 

0.046 
(2.675) 

-- 
0.034 

(1.156) 
N/I N/I 

0.008 
(0.330) 

0.068 
(2.318) 

Residential area (1) 
-0.063 

(-5.321) 
-- 

0.038 
(2.098) 

-0.040 
(-1.212) 

N/I N/I N/I 

Built Environment Characteristic 

No. of restaurant (1) 
0.226 

(5.106) 
-- 

0.003 
(0.044) 

0.092 
(1.651) 

-0.124 
(-2.424) 

0.067 
(1.758) 

-0.014 
(-0.279) 

No of shopping center 
(1) 

0.074 
(1.802) 

-- 
-0.007 

(-0.105) 
N/I N/I N/I N/I 

Socio-demographic Characteristics 

Population density (1) 
0.148 

(10.789) 
-- 

-0.021 
(-1.107) 

-0.019 
(-0.750) 

-0.121 
(-7.447) 

-0.043 
(-2.534) 

-0.022 
(-1.121) 

Non-motorist 
commuters (1) 

0.036 
(2.494) 

-- N/I 
0.019 

(0.401) 
N/I N/I 

0.005 
(0.145) 

Proportion of household 
without vehicle (1) 

-0.437 
(-1.730) 

-- N/I 
-0.213 

(-0.267) 
N/I N/I 

2.935 
(4.606) 

Over dispersion -- 
0.943 

(32.137) 
0.729 

(24.060) 
0.946 

(21.171) 
0.491 

(23.583) 
0.557 

(21.641) 
0.427 

(9.987) 

Total number of parameters = 89, Log-likelihood: -44,791.53;    AIC: 89,761.07;    BIC:90,317.02 
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Table 4.3 Model 3: Parsimonious Model Specification Dropping Insignificant Variables from Model 2 

Variables 

(Base in Overall Crash 

Risk Component) 

Overall 

 Crash Risk 

Deviation 

Rear End 

(1) 

Angular 

(2) 

Sideswipe 

(3) 

All single 

 Vehicle 

(4) 

Other 

Multiple 

Vehicle  

(5)  

Non-motorized 

(6) 

Estimate  
(t-stat) 

Estimate  
(t-stat) 

Estimate  
(t-stat) 

Estimate  
(t-stat) 

Estimate  
(t-stat) 

Estimate  
(t-stat) 

Estimate  
(t-stat) 

Constant 
-3.448  

(-33.249) 
2.699 

(24.465) 
2.113 

(16.499) 
1.245 

(8.111) 
2.867 

(22.165) 
2.187 

(15.938) 
-- 

Roadway Characteristics 

Proportion of  
arterial roads (1-3,6) 

0.179 
(9.674) 

--* -- -- 
-0.403 

(-7.413) 
N/I** -- 

Number of intersections 
(2,6) 

0.242 
(9.471) 

N/I -- N/I N/I 
-0.159 

(-3.273) 
-- 

Variance of speed 
(1,2,4,5) 

0.032 
(7.566) 

-- -- 
0.044 

(2.389) 
-- -- N/I 

Length of divided roads 
(1-5) 

0.451 
(9.257) 

-- -- -- -- -- N/I 

Signal intensity (3-4) 
-0.685 

(-6.538) 
N/I N/I -- -- N/I N/I 

Average outside 
shoulder width (1,3) 

-0.351 
(10.229) 

-- 
0.223 

(3.895) 
-- N/I 

0.278 
(4.712) 

N/I 

Roads length over 
55mph (1,3,4) 

1.109 
(21.579) 

-- 
-1.489 

(-9.475) 
-- -- N/I 

-1.494 
(-4.487) 

Sidewalk width (1) 
0.076 

(3.088) 
-- N/I N/I N/I N/I 

-0.151 
(-6.958) 

Traffic Characteristic 

VMT (2,6) 
0.060 

(7.079) 
N/I -- 

0.126 
(8.932) 

-0.175 
(-7.508) 

0.035 
(2.332) 

-- 

Truck VMT (1) 
0.186 

(18.694) 
-- N/I N/I 

0.141 
(5.173) 

N/I N/I 

Land-use Attributes 

Urban area (1,6) 
0.174 

(17.160) 
-- 

-0.056 
(-3.283) 

-0.049 
(-2.531) 

-0.113 
(-8.161) 

-0.092 
(-6.200) 

-- 

Office area (1-3) 
0.216 

(31.945) 
-- -- -- 

-0.132 
(-8.670) 

-0.061 
(-3.337) 

-0.061 
(-2.784) 
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Institutional area  
(1,2,5) 

0.063 
(9.772) 

-- -- N/I N/I -- 
0.068 

(2.318) 

Residential area (1,3) 
-0.079 

(-13.480) 
-- 

0.059 
(4.234) 

-- N/I N/I N/I 

Built Environment Characteristic 

No. of restaurant (1,2,6) 
0.219 

(14.863) 
-- -- 

0.099 
(2.336) 

-0.117 
(-4.296) 

0.074 
(2.498) 

-- 

No of shopping center 
(1,2) 

0.076 
(6.523) 

-- -- N/I N/I N/I N/I 

Socio-demographic Characteristics 

Population density 
(1,2,3,6) 

0.134 
(34.649) 

-- -- -- 
-0.109 

(-11.870) 
-0.029 

(-2.412) 
-- 

Non-motorist 
commuters (1,3,6) 

0.043 
(5.163) 

-- N/I -- N/I N/I -- 

Proportion of household 
without vehicle (1,3) 

-0.476 
(-2.444) 

-- N/I -- N/I N/I 
3.044 

(6.321) 

Over dispersion -- 
0.948 

(32.462) 
0.731 

(24.381) 
0.951 

(21.434) 
0.490 

(23.749) 
0.557 

(21.905) 
0.433 

(10.217) 

Total number of parameters = 58, Log-likelihood: -44,808.32;    AIC: 89,732.64;    BIC:90,094.95 
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Table 4.4 Panel Mixed NB Model (PMNB) Estimation Results 

Variables 
No. of 

Param* 

Rear End Angular Sideswipe 
All single 

vehicle 

Other 

multiple vehicle 
Non-motorized 

Estimate (t-stat) Estimate (t-stat) Estimate (t-stat) Estimate (t-stat) Estimate (t-stat) Estimate (t-stat) 

Constant 6 -1.074 (-12.165) -1.790 (-22.389) -2.697 (-25.745) -0.560 (-8.412) -1.732 (-21.046) -3.841 (-34.651) 

Roadway Characteristics 

Proportion of  
arterial roads 

2 0.134 (5.545) 0.134 (5.545) 0.134 (5.545) -0.230 (-5.266) -- 0.134 (5.545) 

Number of 
intersections 

2 --5 0.305 (13.006) -- -- 0.173 (6.503) 0.305 (13.006) 

Variance of speed 2 0.031 (6.845) 0.031 (6.845) 0.072 (6.379) 0.031 (6.845) 0.031 (6.845) -- 

Length of  
divided roads 

1 0.456 (6.346) 0.456 (6.346) 0.456 (6.346) 0.456 (6.346) 0.456 (6.346) -- 

Signal intensity 1 -- -- -0.585 (-5.613) -0.585 (-5.613) -- -- 

Average outside 
shoulder width 

3 -0.386 (-11.366) -0.166 (-4.576) -0.386 (-11.366) -- -0.099 (-2.633) -- 

Road length  
over 55mph 

3 1.039 (21.596) -0.516 (-4.090) 1.039 (21.596) 1.039 (21.596) -- -0.139 (-1.717) 

Standard deviation 1 -- 0.622 (3.040) -- -- -- -- 

Sidewalk width 2 0.089 (3.401) -- -- -- -- -0.085 (-4.136) 

Traffic Characteristic 

VMT 4 -- 0.065 (7.910) 0.211 (21.727) -0.118 (-5.491) 0.087 (9.454) 0.065 (7.910) 

Truck VMT 2 0.209 (18.563) -- -- 0.332 (13.182) -- -- 

Land-use attributes 

Urban area 5 0.173 (13.355) 0.125 (9.322) 0.134 (8.675) 0.060 (7.964) 0.092 (7.916) 0.173 (13.345) 

Office area 4 0.234 (30.359) 0.234 (30.359) 0.234 (30.359) 0.083 (6.931) 0.169 (13.301) 0.161 (8.505) 

Institutional area 2 0.063 (7.291) 0.063 (7.291) -- -- 0.063 (7.291) 0.109 (5.942) 

Residential area 2 -0.085 (-14.223) -0.023 (-2.668) -0.085 (-14.223) -- -- -- 

Built environment characteristic 

 

5 -- = attribute insignificant at 90% significance level 
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No. of restaurants 4 0.241 (19.756) 0.241 (19.756) 0.301 (17.306) 0.101 (5.017) 0.265 (19.626) 0.241 (19.756) 
No of shopping 
center 

1 0.022 (1.932) 0.022 (1.932) -- -- -- -- 

Socio-demographic characteristics 

Population density 3 0.142 (32.333) 0.142 (32.333) 0.142 (32.333) 0.023 (2.944) 0.118 (16.551) 0.142 (32.333) 
Non-motorist 
commuter 

1 0.042 (4.013) -- 0.042 (4.013) -- -- 0.042 (4.013) 

Proportion of 
households without 
vehicle 

2 -0.760 (-3.938) -- -0.760 (-3.938) -- -- 2.447 (6.409) 

Over dispersion 6 0.523 (25.262) 0.184 (10.107) 0.291 (11.621) 0.490 (23.805) 0.098 (6.059) 0.055 (1.837) 

Unobserved Heterogeneity 

Correlation 1 1 0.672 (27.686) -- -- -- -- 0.672 (27.686) 

Correlation 2 1 -- 0.771 (50.059) 0.771 (50.059) 0.771 (50.059) -- -- 

Total number of parameters = 61, Log-likelihood: -43,622.58;    AIC: 87,367.14;    BIC:87,748.19 

Note: *No. of Parm = Number of parameters estimated for the corresponding variable. So, 6 means, the effect of that specific variable is estimated for all six crash 
types 
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Table 4.5 Random Parameter Multivariate NB (RPMNB) Model Estimation Results 

Variables 
No. of 

Parm* 

Rear End Angular Sideswipe 
All single 

 vehicle 

Other 

multiple vehicle 
Non-motorized 

Estimate (t-stat) Estimate (t-stat) Estimate (t-stat) Estimate (t-stat) Estimate (t-stat) Estimate (t-stat) 

Constant 6 -1.069 (-9.246) -1.763 (-18.966) -2.663 (-21.251) -0.612 (8.595) -1.738 (-19.770) -3.722 (-23.811) 

Roadway Characteristics 

Proportion of  
arterial roads 

5 0.206 (3.332) 0.070 (1.777) 0.085 (1.998) -0.232 (-5.503) -- 0.248 (3.205) 

Number of 
intersections 

3 -- 0.291 (9.732) -- -- 0.176 (5.906) 0.318 (7.114) 

Variance of speed 5 0.031 (2.127) 0.040 (2.932) 0.075 (4.630) 0.021 (2.016) 0.034 (2.532) -- 

Length of divided 
road 

5 0.454 (1.757) 0.332 (1.942) 0.320 (1.707) 0.512 (2.688) 0.376 (1.725) -- 

Signal intensity 2 -- -- -0.489 (-2.324) -0.632 (-4.721) -- -- 

Average outside 
shoulder width 

4 -0.489 (-6.398) -0.167 (-3.720) -0.341 (-6.050) -- -0.087 (-1.927) -- 

Road length over 
55mph 

5 0.814 (5.138) -0.608 (-4.131) 1.038 (6.416) 1.245 (12.224) -- -0.366 (-1.752) 

Standard deviation 1 -- 0.681 (3.459) -- -- -- -- 

Sidewalk width 2 0.135 (4.174) -- -- -- -- -0.072 (-2.798) 

Traffic Characteristic 

VMT 5 -- 0.070 (6.053) 0.209 (16.874) -0.111 (-4.974) 0.086 (7.450) 0.053 (3.111) 

Truck VMT 2 0.202 (14.464) -- -- 0.325 (12.257) -- -- 

Land-use attributes 

Urban area 6 0.168 (11.399) 0.124 (8.870) 0.136 (8.079) 0.063 (8.193) 0.094 (7.674) 0.160 (7.631) 

Office area 6 0.212 (10.241) 0.243 (13.821) 0.244 (11.481) 0.087 (7.031) 0.177 (10.097) 0.168 (7.715) 

Institutional area 4 0.062 (3.580) 0.074 (4.853) -- -- 0.044 (3.060) 0.111 (5.566) 

Residential area 3 -0.074 (-5.909) -0.031 (-3.196) -0.101 (-8.061) -- -- -- 

Built environment characteristic 

No. of restaurant 6 0.246 (6.002) 0.254 (8.792) 0.299 (10.372) 0.102 (4.703) 0.265 (11.693) 0.219 (8.116) 

No of shopping center 2 0.041 (1.859) 0.021 (1.721) -- -- -- -- 

Socio-demographic characteristics 
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Population density 6 0.246 (10.682) 0.133 (12.254) 0.144 (10.490) 0.027 (3.243) 0.114 (10.808) 0.128 (10.153) 
Non-motorist 
commuter 

3 0.034 (1.883) -- 0.044 (2.152) -- -- 0.042 (1.752) 

Proportion of 
household without 
vehicle 

3 -0.674 (1-.748) -- -1.143 (-3.077) -- -- 2.491 (6.084) 

Over dispersion 6 0.522 (24.872) 0.179 (9.849) 0.291 (11.565) 0.491 (23.614) 0.098 (5.921) 0.033 (2.152) 

Unobserved Heterogeneity 

Correlation 1 1 0.669 (27.067) -- -- -- -- 0.669 (27.067) 

Correlation 2 1 -- 0.772 (48.990) 0.772 (48.990) 0.772 (48.990) -- -- 

Total number of parameters= 92, Log-likelihood: -43,597.82;    AIC: 87,379.64;    BIC:87,954.34 

Note: *No. of Parm = Number of parameters estimated for the corresponding variable. So, 6 means, the effect of that specific variable is estimated for all six crash 
types 
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Table 4.6 Predictive Performance Measure of Two Models 

Dataset Crash Type 
MPB MAD MAPE RMSE Predictive BIC 

RPMNB* PMNB RPMNB* PMNB RPMNB PMNB RPMNB PMNB RPMNB PMNB 

In-Sample 
Measures 

(3,815 
TAZs) 

Rear-end 3.340 2.787 9.395 8.884 2.676 2.584 53.823 35.848 

 87,954.34 87,748.19  

Angular 0.878 0.942 3.321 3.386 0.882 1.205 10.627 13.044 

Sideswipe 0.661 0.654 2.555 2.553 0.764 0.753 10.612 10.852 

All single 
vehicle 

0.025 0.007 2.197 2.189 0.228 0.217 3.508 3.502 

Other multiple 
vehicle 

0.486 0.492 2.253 2.258 0.579 0.502 6.120 6.190 

Non-Motorized 0.063 0.076 0.699 0.712 0.056 0.107 1.388 1.607 

Total 5.454 4.956 20.421 19.983 5.185 5.367 56.339 40.325 

Hold-out 
sample 

Measures 
(932 TAZs) 

Rear-end 5.546 4.691 10.927 10.102 2.583 2.932 71.879 56.098 

 21,868.31 21,66173 

Angular 1.402 1.449 3.623 3.669 0.723 0.774 13.666 14.955 

Sideswipe 1.352 1.353 3.056 3.063 0.915 1.029 17.978 18.597 

All single 
vehicle 

0.098 0.080 2.138 2.119 0.200 0.219 3.452 3.415 

Other multiple 
vehicle 

0.659 0.682 2.575 2.603 0.777 0.282 9.351 9.860 

Non-Motorized 0.136 0.158 0.748 0.768 0.124 0.069 1.552 1.896 

Total 9.193 8.414 23.066 22.325 5.323 5.306 76.015 61.879 

Note: *RPMNB=Random parameter multivariate negative binomial model, PMNB= Panel mixed negative binomial model 
          *Model with underline gives better measure 
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CHAPTER 5: ECONOMETRIC APPROACH FOR MODELING CRASH 

COUNTS BY CRASH TYPE AND SEVERITY 

The traditional modeling framework for crash frequency analysis is the univariate frequency model 

such as Poisson, Negative binomial or the Poisson-Lognormal model (see (Bhowmik et al., 2018; 

Lord and Mannering, 2010) for a detailed review of these studies). In these studies, for an 

observation unit, the modeling variable of interest is typically the total number of crashes. The 

approach of aggregating all crashes into a single dependent variable can result in aggregation bias 

and a loss of information available in the dataset. For instance, consider two zones with 5 observed 

crashes in the analysis period. For zone 1, the 5 crashes include 5 head-on crashes while for zone 

2, the 5 crashes include 4 rear-end crashes and 1 vehicle pedestrian crash. While the crash 

distribution by crash type across the two zones is quite distinct, an approach focusing on total 

crashes will consider both zones as having identical dependent variables. The aggregation would 

make it quite cumbersome to accurately estimate the impact of independent variables on total 

crashes. For example, in zone 1, geometric design inadequacies might be the reason for head-on 

crashes while in zone 2, the presence of a significant number of signalized urban intersections 

might be the reason for rear-end and pedestrian crashes. A single total crash model will not be 

able to parse these distinctions accurately. Hence, it is not surprising that in recent years, safety 

researchers have focused on disaggregating the data by various attributes such as crash typology 

(such as head-on or rear-end), injury severity (such as crashes by no injury or crashes by severe 

injury) and crash location (such as intersection versus non-intersection).  

The proposed disaggregation of the crash frequency variable increases the complexity of 

the modeling effort and presents many additional challenges. The number of dependent variables 
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of interest increase based on the attribute levels of interest. For analyzing these multiple dependent 

variables, multiple univariate models with frequency by attribute levels (such as crashes by crash 

type) will need to be estimated. While developing multiple univariate crash frequency models will 

account for the influence of independent variables, these models ignore that the multiple crash 

frequency variables for a traffic analysis zone (TAZ) are potentially correlated. For example, for 

zonal level crash frequency analysis, it is possible that several characteristics specific to the zone 

such as driver behavior, geometric design and build quality (possibly of higher or lower quality 

relative to the other zones) and traffic signal design objectives might influence different crash 

counts by crash type (such as head-on, rear-end). Thus, any modeling approach to analyze the 

multiple crash frequency variables need to explicitly account for the presence of these common 

factors that are most often unobserved. Ignoring for the presence of such unobserved heterogeneity 

in model development will result in inaccurate and biased model estimates (see Liu and Sharma, 

2018; Mannering et al., 2016; Zeng et al., 2018 for an extensive discussion). The most common 

approach employed to address the potential unobserved heterogeneity in safety literature is the 

development of multivariate crash frequency models.  

 

5.1 Earlier Research 

A summary of earlier research efforts investigating crash frequencies by crash type and severity 

level are presented in Table 5.1 with information on the spatial unit (aggregation level), the region 

(covered area, for example state or city), crash unit (type of crash considered), number of 

dimensions examined (of the dependent variable), methodological framework employed, and 

different categories of exogenous variables considered in the analysis. The following observations 

can be made from Table 5.1. First, the most prevalent mechanism to analyze crash count by 

different levels are multivariate count regression approaches. Second, several spatial units are 
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considered both at macro and micro level for analyzing the crash counts by type and injury severity 

including segments and intersections (for micro level); and census block and traffic analysis zone 

(for macro level). Third, the methodological frameworks adopted in these studies include Negative 

binomial, Poisson regression, Multivariate Poisson-lognormal, Multivariate Negative Binomial, 

Multinomial Generalized Poisson and Integrated Nested Laplace Approximation. Fourth, with 

respect to exogenous variables, the overall findings from earlier research effort are consistent. The 

various factors identified that influence crash severities include - (1) roadway characteristics such 

as shoulder width, arterial road length; (2) land-use characteristics such as urban land use and land 

use mix; (3) built environment characteristics such as number of access points (number of 

restaurant, entertainment center); (4) traffic characteristics such as Average Annual Daily Traffic 

(AADT) and  truck volume; (5) socio-demographic characteristics such as population density and 

people by different age group; and (6) weather variables such as precipitation rate. Fifth, the 

highest number of dependent variables considered in multivariate models is 8. Finally, none of the 

studies6 examined the crash counts of different crash types and their corresponding severity 

outcomes in an integrated framework at the planning level.  

 

5.2 Current Study 

In multivariate count regression approaches described above, the impact of exogenous variables is 

quantified through the propensity component of count models. In accommodating the influence of 

unobserved effects, in general, these approaches partition the error components as a common term 

 

6 One study (Yasmin et al., 2016) investigated the crash severity proportions considering different crash types, while 

developing separate models for different crash types. However, the study did not model the crash frequencies by crash 

type in the joint modeling approach.  
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and an independent term across dependent variables (see (Mannering et al., 2016) for a detailed 

discussion of various methodologies). The approaches rely either on Maximum Simulated 

Likelihood (MSL) or Markov Chain Monte Carlo (MCMC) approach in the Bayesian realm for 

model estimation. MSL and MCMC methods provide substantial flexibility in accommodating for 

unobserved heterogeneity.  

While several research efforts have developed multivariate crash frequency models for a 

small number of dimensions (such as 5); there is limited adoption of multivariate approaches for 

count variables in the presence of larger number of dependent variables (say greater than 15).  For 

example, consider the development of crash frequency models by crash type (say 𝑁 types) and 

severity level (say 𝐾 levels). In the currently employed approaches, the number of crash propensity 

equations to be estimated will be N*K. While the estimation of 𝑁 ∗ 𝐾 univariate model systems is 

repetitive, it is still feasible. However, accommodating for unobserved heterogeneity with a large 

number of dependent variables is substantially challenging. The probability evaluation with high 

dimensional integrals is potentially affected by several challenges including - requirements of 

generating high dimensionality of random numbers, empirical identification issues due to 

relatively flat objective functions in larger dimensions and longer computational run times. 

Furthermore, the stability of the variance-covariance matrix is often sensitive to model 

specification and number of simulation draws.  

The proposed research is geared toward addressing the dimensionality challenge in the 

traditional multivariate crash frequency models. In doing so, the proposed research builds on recent 

developments in crash frequency analysis along multiple directions. First, we draw on our recent 

work employing fractional split modeling approach for crash frequency analysis. In a fractional 

split approach, as opposed to modeling the count events, count proportions by different attributes 
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(such as injury severity, crash type or vehicle type) for a study unit are examined. Yasmin et al. 

(Bhowmik et al., 2018) employed a joint Negative Binomial-Ordered Logit Fractional Split (NB-

OLFS) model using zonal level crash records to tie the total crash count and severity in a single 

joint system. The authors concluded that the proposed approach is more appealing relative to the 

traditional multivariate models for multiple reasons: 1) it is computationally less burdensome as it 

requires the estimation of only two equations irrespective of the number of crash severity levels; 

2) the fractional split approach directly relates a single exogenous variable to count proportions of 

all attribute levels simultaneously. On the contrary, in the traditional multivariate models, the 

observed variables in different count propensity equations do not interact across different 

dimensions; and 3) the ordered fractional split framework recognize the inherent ordering for the 

severity levels which is ignored in the traditional multivariate models. Building on this fractional 

split approach, the proposed research develops a joint system for analysing crash frequency by 

crash type (𝑁) and severity level (𝐾) with (𝑁 ∗ 𝐾)dependent variables per observation as follows: 

The NB count model is employed to incorporate the frequency by the crash type dimension and 

the fractional model is employed to analyze crash severity within each crash type dimension. Thus, 

instead of modeling 𝑁 ∗ 𝐾 dependent variables with 𝑁 ∗ 𝐾propensity equations (and integration 

of unobserved factors of the same order), we reduce the dimensionality to 𝑁 ∗ 2. At this stage, if 

the analyst is considering 𝐿1 observed variables and 𝐿2 unobserved parameters, the model 

estimation complexity has reduced to 𝑁 ∗ 2 ∗ (𝐿1 + 𝐿2) from 𝑁 ∗ 𝐾 ∗ (𝐿1 + 𝐿2).  

Second, we draw on another recent work that recasts the multivariate distributional 

problem (for multiple crash frequency dependent variables) as a repeated measure univariate 

problem (see (Bhowmik et al., 2019b) for detail). For example, crash frequency by crash type is 

represented as a repeated measure of crash frequency variable recognizing that each repetition 
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represents a different crash type instead of considering it as a multivariate distribution. The 

recasting process allows for the estimation of a parsimonious model system by allowing for an 

improved specification testing of variable impacts across different crash types (see Bhowmik et 

al., 2019a for detail). Using this consideration, the proposed model system enhances the efficiency 

of estimation through a single crash frequency model  and a single crash proportion model, while 

also allowing for parameter effects to vary across different crash types through crash type specific 

deviation terms. Building on this study design, the 𝑁 ∗ 2 ∗ (𝐿1 + 𝐿2) could potentially be reduced 

to 2 ∗ (𝐿1 + 𝐿2). Of course, we envision that the exact number of parameters to be estimated will 

lie somewhere in the range between 2 ∗ (𝐿1 + 𝐿2) and 𝑁 ∗ 2 ∗ (𝐿1 + 𝐿2). The reduction in 

parameters especially for unobserved factors will contribute to substantial improvements in model 

efficiency and computational times.  

Finally, in earlier fractional split modeling efforts, the severity variable is analyzed using the 

traditional ordered outcome structure. However, as illustrated in existing literature  (see Eluru and 

Yasmin, 2015; Fountas and Anastasopoulos, 2017; Xin et al., 2017; Bhowmik et al., 2019b for 

detail), adopting a generalized ordered framework that relaxes the restrictive assumptions of the 

ordered outcome model (also referred to as parallel lines assumption) by allowing the threshold 

parameters to vary in response to observational attributes would be more representative.  

In summary, the current study contributes to safety literature both methodologically and 

empirically by proposing a joint econometric approach for examining the count events as well as 

the severity outcome for different crash types. Methodologically, we employ a Joint Panel mixed 

Negative Binomial- Generalized Ordered Probit Fractional Spilt (PM-NB-GOPFS) model where 

the first component (NB) will accommodate for crash frequency by crash type and the second 

component (GOPFS) will study the fraction of severity outcome for different crash types. The 
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model is estimated using zonal level crash count, crash type and severity data for both motorized 

and non-motorized crashes. The crash data is extracted for the year 2016 from Central Florida 

region of the USA. The dimension of the dependent variables analysed is 24 [(6 ∗ 4) from 6 crash 

types (rear-end, angular, sideswipe, head-on, single vehicle and non-motorist crash) and 4 severity 

levels (severe (fatal and incapacitating as one category), non-incapacitating, possible injury and 

property damage). Empirically, the proposed approach allows for flexible consideration of crashes 

by crash types and severity levels within a single framework. Further, the proposed model results 

offer insights on important variables affecting crash frequency and severity for different crash 

types. Moreover, the macro-level model outcomes can be used to devise safety-conscious decision 

support tools to facilitate proactive consideration in assessing medium and long-term policy-based 

countermeasures. 

The rest of the chapter is organized as follows: the next section presents the methodological 

framework adopted in the analysis while the section 5.4 provides a detailed description of the 

model findings. Finally, the predictive performance evaluation of the proposed framework is 

discussed in section 5.5 followed by the concluding remarks in the last section. 

 

5.3 Econometric Framework 

In this section, we provide details of the Panel mixed Negative Binomial - Generalized Ordered 

Probit Fractional Spilt (PM-NB-GOPFS) model employed in our study. 

 

5.3.1 Count Model Structure 

The focus of our study is to recast the multivariate NB count model as a panel mixed univariate 

NB modeling framework. For this purpose, we consider the six types of crashes as repeated 

measures (same TAZ is repeated 6 times) of crash frequency in a univariate NB formulation while 
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recognizing that each repetition represents a different crash type. The econometric framework of 

the proposed approach is presented in this section. Let’s assume 𝑖 (𝑖 = 1,2,3, … , 𝑁;  𝑁 = 3,815) 

be an index to represent observation unit (TAZs) and 𝑟 (𝑟 = 1,2, … , 𝑅;  𝑅 = 6) be an index for 

different crash type and 𝑘 (𝑘 = 1,2,3, … , 𝐾; 𝐾 = 4) be the index to represent injury severity 

categories at observation unit 𝑖. Then the probability equation of the NB formulation can be 

rewritten as follow: 

𝑃(𝑐𝑖𝑟|𝑣𝑖𝑟 , 𝜆′) =  Γ (𝑐𝑖𝑟 + 1𝜆′)Γ(𝑐𝑖𝑟 + 1)Γ (1𝜆′) ( 11 + 𝜆′𝑣𝑖𝑟) 1𝜆′ (1 − 11 + 𝜆′𝑣𝑖𝑟)𝑐𝑖𝑟
 (27)  

where, 𝑐𝑖𝑟 be the index for crash counts occurring over a period of time in observation unit  𝑖 and crash type 𝑟. 𝑃(𝑐𝑖𝑟) is the probability that unit 𝑖 has 𝑐𝑖𝑟 number of crashes for crash type 𝑟. 𝜆′ is NB over dispersion parameter and 𝑣𝑖𝑟 is the expected number of crashes occurring in 𝑖 over 

a given time period for crash type 𝑟. In equation 27, we can express 𝑣𝑖𝑟 as a function of explanatory 

variables using a log-link function as follows:  𝑣𝑖𝑟 = 𝐸(𝑐𝑖𝑟|𝒙𝑖𝑟) = 𝑒𝑥𝑝((τ + 𝛷𝑖 + 𝜚𝑖𝑟 + 𝜂𝑖𝑟𝑘)𝑥𝑖𝑟 + 𝜀𝑖𝑟) (28)  

where, 𝑥𝑖𝑟 is a vector of explanatory variables associated with observations 𝑖 for crash type 𝑟. 𝝉 is a vector of coefficients to be estimated. 𝛷𝑖 is a vector of unobserved factors moderating the 

influence of attributes in 𝑥𝑖𝑟 on the crash count propensity for analysis unit 𝑖, 𝜚𝑖𝑟 is a vector of 

unobserved effects specific to crash type 𝑟. This 𝝔𝑖𝑟 will be same across crash types in our case 

and thus the unobserved heterogeneity across crash types will be captured. 𝜀𝑖𝑟 is a gamma 

distributed error term with mean 1 and variance 𝜆′. 𝜂𝑖𝑟𝑘 captures unobserved factors that 

simultaneously impact number of crashes by crash type and proportion of crashes by severity for 

different crash types for unit 𝑖. 
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5.3.2 Severity Model Structure 

In the joint model framework, the modeling of crash proportions by severity levels across different 

crash types is undertaken using the Generalized Ordered Probit Fractional Split (GOPFS) model. 

In the ordered outcome framework, the actual injury severity proportions (𝑦𝑖𝑟𝑘) are assumed to be 

associated with an underlying continuous latent variable (𝑦𝑖𝑟∗ ). The latent propensity equation is 

typically specified as the following linear function: 𝑦𝑖𝑟∗ = (𝛼𝑟 + 𝛾𝑖𝑟 + 𝛿𝑖𝑟 ± 𝜂𝑖𝑟𝑘)𝑧𝑖𝑟 +  𝜉𝑖𝑟𝑘   (29)  

This latent propensity 𝑦𝑖𝑟∗  is mapped to the actual severity proportion categories 𝑦𝑖𝑘  by the 𝜓𝑟 thresholds (𝜓𝑟0 =-∞ and 𝜓𝑟𝑘= ∞). 𝑧𝑖𝑟 is a vector of attributes that influences the propensity 

associated with crash severities. 𝛼𝑟 is a corresponding vector of mean effects specific to 𝑟, and 𝛾𝑖𝑟 

is a vector of unobserved factors on severity proportion propensity for TAZ 𝑖 and its associated 

zonal characteristics assumed to be a realization from standard normal distribution: 𝝆~𝑁(0, 𝝈2). 𝛿𝑖𝑟 is a vector of unobserved effects specific to crash type 𝑟. This 𝛿𝑖𝑟 will be same across severity 

proportions in any TAZ and thus the unobserved heterogeneity across the severity proportions will 

be captured. 𝜉𝑖𝑟𝑘 is an idiosyncratic random error term assumed to be identically and independently 

standard normal distributed across TAZ 𝑖. 𝜂𝑖𝑟𝑘 term generates the correlation between equations 

for total number of crashes and crash proportions by severity levels for different crash type. 

The GOPFS model relaxes the constant threshold across observation to provide a flexible 

form of the OPFS model. The basic idea of the GOPFS is to represent the threshold parameters as 

a linear function of exogenous variables. Thus, the thresholds are expressed as: 𝜓𝑟𝑘 = 𝑓𝑛(𝑠𝑖𝑟𝑘) (30) 

where, 𝑠𝑖𝑟𝑘 is a set of exogenous variables (including a constant) associated with 𝑘 th 

threshold. Further, to ensure the accepted ordering of observed crash severity proportion 
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(−∞ < 𝜓r1 < 𝜓r2 <  … … … < 𝜓rK−1 < +∞), we employ the following parametric form as 

employed by Eluru et al.(Eluru et al., 2008): 𝜓𝑟𝑘 = 𝜓𝑟,𝑘−1 + 𝑒𝑥𝑝((𝛽𝑟𝑘 + 𝜃𝑖𝑟𝑘 + 𝜍𝑖𝑟 ± 𝜂𝑖𝑟𝑘)𝑠𝑖𝑟𝑘) (31)  

where, 𝛽𝑟𝑘 is a vector of parameters to be estimated. 𝜃𝑖𝑟𝑘 is another vector of unobserved 

factors moderating the influence of attributes in 𝑠𝑖𝑟𝑘 on the severity proportions for analysis unit 𝑖 
, crash type r and injury severity category 𝑘. 𝜍𝑖𝑟 is a vector of unobserved effects specific to crash 

type 𝑟. This 𝜍𝑖𝑟 will be same across the threshold parameters (upper severity categories) in any 

TAZ and thus the unobserved heterogeneity across the threshold parameters will be captured. 

To estimate the model presented in equation 29, we assume that:    𝐸(𝑦𝑖𝑟𝑘|𝑍𝑖𝑟𝑘) = 𝐻𝑖𝑟𝑘(𝛼𝑟, 𝜓𝑟𝑘 , 𝛿𝑖𝑟 , 𝜃𝑖𝑟𝑘), 0 ≤ 𝐻𝑖𝑟𝑘 ≤ 1, ∑ 𝐻𝑖𝑟𝑘 = 1𝑟𝐾𝑟𝑘=1  (32)  

where 𝐻𝑖𝑟𝑘 in our model takes the generalized ordered probit probability form for the 

severity category 𝑘 specific to crash type 𝑟. Given these relationships across different parameters, 

the resulting probability for the GOPFS model takes the following form:  𝑃𝑖𝑟𝑘 = 𝐺 [(𝜓𝑟𝑘 − {(𝛼 + 𝛾𝑖 + 𝛿𝑖𝑟𝑘 ± 𝜂𝑖𝑟𝑘)𝑧𝑖𝑟} ] − 𝐺 [(𝜓𝑟,𝑘−1 − {(𝛼 + 𝛾𝑖 + 𝛿𝑖𝑟𝑘 ±𝜂𝑖𝑟𝑘)𝑧𝑖𝑟}] (33) 

where, G(∙) is the standard normal cumulative distribution function (Eluru et al., 2013; 

Papke, 1996). The proposed model ensures that the proportion for each severity category is 

between 0 and 1 (including the limits). The ± sign in front of 𝜂𝑖𝑟𝑘 in equation 33 indicates that the 

correlation in unobserved individual factors between total crashes and crash proportions by 

severity levels for different crash types may be positive or negative.  
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5.3.3 Correlation Structure 

In the current research effort, several unobserved factors are considered. At the observation level 

(TAZ), we consider influence of common unobserved factors across crash frequency (𝛷𝑖) and 

crash severity (𝛾𝑖𝑟, 𝜃𝑖𝑟𝑘). In addition to this, a number of correlation terms are tested including: 1) 

common unobserved factors simultaneously affecting crash counts of different crash types (𝝔𝑖𝑟); 

2) common unobserved factors simultaneously affecting crash severity proportions of different 

crash types (𝛿𝑖𝑟 , 𝜍𝑖𝑟 );  and 3) common unobserved factors that simultaneously impact crash counts 

and severity proportions by different crash types (𝜂𝑖𝑟𝑘). A discussion of these correlation structures 

are presented below:  

   

(34)  

Equation 34 provides the overall structure of the correlation matrix. The order of the 

correlation matrix is provided by the total number of crash type and crash severity levels (N+K). 

To better elaborate on the structure, we discuss the three main components of the matrix. The top 

left part represents the correlation matrix for the crash type only: 
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(35)  

As described in Equation 35, these terms represent the correlation between crash types. For 

example, the correlation parameter я12  in equation 35 captures the common unobserved factors 

affecting the crash counts of crash type 1 and crash type 2 (which is rear-end and angular for the 

current study context) simultaneously while я2J represents the potential correlation between crash 

type 2 and crash type J.  

Equation 36 represents the lower right part of the correlation matrix in equation 34 that 

accommodates for the common unobserved heterogeneity across the crash severity proportions. 

 

(36)  

To elaborate, the correlation parameter џ1𝐾" captures the presence of common unobserved 

factors between the crash proportion of severity category 1 and K (which is no and severe injury 

for the current analysis).  

Equation 37, representing the bottom left or top right parts in the correlation matrix from 

equation 34 captures the potential correlation between a crash type and its’ corresponding severity 

proportion.  
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(37)  

Specifically, the correlation parameter ѓ11 captures the presence of potential correlation 

between the crash counts of crash type 1 and crash proportion of severity category 1 It is important 

to note that the correlation structure presented is applicable to each independent variable examined 

in the model (including constants). This indicates that potentially (N+K)* (N+K)/2 elements can 

be estimated for each variable. While theoretically this is possible, it is important to conduct the 

estimation judiciously to avoid identification issues.  

It is also useful to note that the correlation parameters in the Ѧ3 matrix can be positive or 

negative. For instance, let us consider the correlation parameters in the last row from equation 37. 

Here, a positive sign implies that TAZs with higher number of crashes are intrinsically more likely 

to incur higher proportions for severe crashes specific to any crash types. On the other hand, 

negative sign implies that for any types of crash, TAZs with higher number of crashes intrinsically 

incur lower proportions for severe crashes. To determine the appropriate sign one can empirically 

test the models with both ′ + ′ and ′ − ′ signs independently. The model structure that offers the 

superior data fit is considered as the final model. 
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5.3.4 Joint (NB-GOPFS) Model Estimation  

In estimating the model, it is necessary to specify the structure for the unobserved vectors 𝛷, 𝜚, 𝛾 𝑎𝑛𝑑 𝛿 represented by Ω. In this study, it is assumed that these elements are drawn from 

independent normal distribution: Ω~𝑁(0, (𝜋2, 𝜎2 𝜈2)). Thus, conditional on Ω, the likelihood 

function for the joint probability can be expressed as: 

𝐿𝑖 = ∫ ∏ [(𝑃(𝑐𝑖𝑟)) × ∏(𝑃𝑖𝑟𝑘)𝜛𝑖𝑟𝑑𝑖𝑟𝑘𝐾
𝑘=1 ]𝑅

𝑟=1Ω 𝑑Ω (38)  

where, 𝜛𝑖𝑟 is a dummy with 𝜛𝑖𝑟 = 1 if TAZ 𝑖 has at least one crash specific to crash type 𝑟 over the study period and 0 otherwise. 𝑑𝑖𝑟𝑘 is the proportion of crashes in severity category 𝑘 

for each crash types. Finally, the log-likelihood function is:       

𝐿𝐿 = ∑ 𝐿𝑛(𝐿𝑖)𝑖  (39)  

All the parameters in the model are estimated by maximizing the logarithmic function 𝐿𝐿 

presented in equation 39. The parameters to be estimated in the model are: 𝛷, 𝜚, 𝛾  𝛿, 𝛼, τ, 𝛽, 𝜓, 𝜋, 𝜎 and 𝜈. To estimate the proposed model, we apply Quasi-Monte Carlo simulation techniques 

based on the scrambled Halton sequence to approximate this integral in the likelihood function 

and maximize the logarithm of the resulting simulated likelihood function across individuals (see 

(Bhat, 2001; Eluru et al., 2008) for examples of Quasi-Monte Carlo approaches in literature).The 

model estimation routine is coded in GAUSS Matrix Programming software (Aptech, 2015)  

 

5.4 Empirical Analysis 

5.4.1 Model Specification and Overall Measure of Fit 

The number of TAZs in the study area is 4,747. Among these zones, 3,815 TAZs are randomly 

selected for model estimation and the records from other 932 TAZs are set aside for validation 
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purposes. Thus, the estimation sample has 22,890 (3,815*6) records and the validation sample has 

5,592 (932*6) data records. The empirical analysis involved a series of model estimations. First, 

we estimated separate independent models (NB and GOPFS models) to establish a benchmark for 

comparison. Second, we proposed a parsimonious model structure using the same independent 

model system (NB and GOPFS) while restricting the parameters across different crash types 

considered. To elaborate, observing the model specifications in the independent models (NB and 

GOPFS), we identify potential parameters that can be restricted to be the same across various crash 

types and test that restriction (both NB and GOPFS dimension) in our proposed model system (see 

(Bhowmik et al., 2019b) for more details). Third, within our proposed system, we consider the 

unobserved heterogeneity in the joint model estimation. In summary, we estimated three different 

models in the current research effort including: 1) Independent NB-GOPFS model; 2) Panel NB-

GOPFS model without unobserved component parameters and 3) Joint Panel NB-GOPFS model 

with unobserved heterogeneity. The log-likelihood values at convergence for these estimated 

models are: a) Independent NB-GOPFS (with 131 parameters) is -51,904.45 (b) Panel NB-GOPFS 

model without unobserved component (with 100 parameters) is -51,912.92.11 and (c) Joint Panel 

NB-GOPFS model with unobserved heterogeneity (with 105 parameters) is -50,945.82. We also 

compute the Bayesian Information Criterion (BIC) (lower is better) for these three frameworks to 

determine the best model. The corresponding BIC values for the three models are as follows: 

105,123.93 (independent NB-GOPFS model), 104,650.50 (panel NB-GOPFS model) and 

102,757.53 (joint panel NB-GOPFS model). Based on the BIC values, two observations can be 

made. First, the proposed framework that accounts for penalty for additional parameters provide 

improved data fit compared to the traditional model (independent NB-GOPFS model). This 

supports our hypothesis that the impact of some variables may not differ across the crash types 
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and through the proposed structure (recasting), we can have a parsimonious model system with 

improved parameter efficiency. Second, models considering unobserved heterogeneity 

outperforms the respective independent models which underscores the importance of 

accommodating for such unobserved effects in examining crash frequencies and severities at the 

planning level for different crash types.  

 

5.4.2 Model Estimation Results 

This section offers a detailed discussion of exogenous variable effects on the crash count as well 

as the severity outcome for different crash types. In discussing the model results, for the sake of 

brevity, we will restrict ourselves to the discussion of the joint panel model (NB-GOPFS) only 

(see table 5.4 and 5.5 for the results of independent NB-GOPFS model). For the ease of 

presentation, we first present an intuitive discussion of crash count component (Table 5.2) 

followed by the discussion of the severity component (Table 5.3) for different crash types.  

 

5.4.2.1 Count Component 

The coefficients in Table 5.2 represent the effect of exogenous variables on the frequency 

component of each crash type. The reader would note that, the variables in the crash count 

component of Table 5.2 with positive (negative) sign indicates that an increase in the variable is 

likely to result in more (less) crashes. In the subsequent sections, we provide a discussion of model 

results for different crash types by variable groups. The reader would note that Table 5.2 identifies 

the number of parameters estimated for each variable from a possible set of six (one effect for each 

crash type).  
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5.4.2.1.1Roadway Characteristics  

The results regarding the impact of proportion of arterial roads reveal that a TAZ with higher 

proportion of arterial road is more likely to experience increased incidence of rear-end, angular 

and non-motorized crashes while the number of single vehicle crashes reduces. Single vehicle 

crashes (rollover and off-road) usually occur on high speed roads. On arterial roads, there is likely 

to be higher traffic interactions reducing operating speed and thus contributing to fewer single 

vehicle crashes. At the same time, the increased traffic interactions result in higher number of rear-

end and angular crashes. It is also important to note that the influence of arterial roads is not 

different for rear-end, angular and non-motorized crashes i.e. a single parameter is adequate to 

accommodate for the impact of the variable. Traditional approaches in frequency modeling would 

have estimated three separate parameters while in our model, we estimate a single parameter. This 

is an example of how the proposed framework allows us to obtain a parsimonious specification 

(see (Bhowmik et al., 2019b) for similar results). Consistent with earlier research, the current 

analysis also found that the intersection variable is positively associated with angular and non-

motorized crashes (Reynolds et al., 2009; Xuesong et al., 2006). Interestingly, the number of 

intersections variable has a positive coefficient for head-on crashes. While the result might seem 

counter-intuitive, a possible reason could be that vehicles turning left at an intersection stop at the 

outside lane that is closest to the oncoming traffic and as a consequence, the possibility of getting 

hit by the opposing traffic is likely to increase (see (Hosseinpour et al., 2014) for similar effect). 

The variable corresponding to signal intensity offers interesting insights. While an increase in the 

variable is positively associated with rear-end and non-motorized crashes, a negative relation is 

observed for sideswipe and single vehicle crashes. The trend is intuitive as the density of traffic 

intersections increases the potential conflicts between vehicles to vehicles and vehicles to non-
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motorists. At the same time, these conflicts result in lower operating speed thus reducing single 

vehicle crashes.  

The parameter associated with proportion of road over or equal to 55 mph speed limit 

exhibits contrasting impact on crash occurrence across crash types. The estimated results show 

that TAZs having higher percentage of roads over 55mph speed limit results in increased incidence 

of rear-end, sideswipe and single vehicle crashes while the likelihood of angular, head-on and non-

motorized crash reduces. Within the positive effects, the parameter for single vehicle crashes has 

a higher magnitude (Yu and Abdel-Aty, 2013). Moreover, we found that the impact of the 

proportion of road over 55mph has significant variability on angular crashes (indicated by the 

standard deviation parameter) which implies that the overall impact is most likely to be negative 

(96%). Further, variance of speed is also found to be significant in rear-end, angular and sideswipe 

crash count component with a positive impact. In terms of proportion of road with separate median, 

the variable is found to have the same positive effect on rear-end, angular and sideswipe crashes 

whereas a negative coefficient is observed for head-on crashes. Roads with separated median, such 

as with guardrail, restricts a vehicle from entering the opposing direction. On the other hand, 

vehicles hitting the guardrail have a higher likelihood of colliding with the vehicles in the same 

direction. Hence, the result is expected. As found in previous studies (Bhowmik et al., 2018; 

Geedipally et al., 2010), average outside shoulder width reveals a negative association with all 

motorized crash types. Outside shoulder width in a road reflects the extra margin of safety for 

vehicular maneuvers and thus reduce the potential of all kinds of motorized crashes. With respect 

to sidewalk width, a number of earlier research concluded that increased sidewalk width is 

associated with higher pedestrian activity and as a result, they are more exposed to crashes. In our 

current study, we found an opposing (negative) effect of average sidewalk width for non-motorized 
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crashes. However, there is a reasonable explanation for the effect identified. First, the reader would 

note that we consider the non-motorist activity separately in the model framework (will be 

discussed in the following sections) and second, increased sidewalk width will provide additional 

safety to the non-motorist from colliding with a motorized vehicle.  

 

5.4.2.1.2 Traffic Characteristics  

The parameters associated with traffic characteristics highlight intuitive trends. Positive coefficient 

of VMT clearly underscores the higher propensity of angular, sideswipe, head-on and non-

motorized crashes with increased VMT. VMT variable serves as a surrogate for exposure for traffic 

volume and therefore, with higher exposure, the likelihood of getting involved in a crash increases. 

On the other hand, zones with increased exposure to truck volume are likely to have a higher risk 

of getting involved in rear-end and single vehicle crashes, consistent with earlier research findings 

(Geedipally et al., 2010).  

 

5.4.2.1.3 Land-use Attributes  

With respect to land-use attributes, several factors exert significant impact on crash count 

components across crash types. The coefficient corresponding to urban area indicates that zones 

with higher urbanized area are likely to have increased crash risk for five of the six crash types 

(except single vehicle crashes). Similarly, office area in a zone is also found to be positively 

associated with rear-end, sideswipe and non-motorized crashes. These two variables basically 

reflect presence of higher vehicular and non-motorist interactions and in turn, higher exposure for 

both road user groups. Further, the result in Table 5.2 reveals a reduced propensity for sideswipe 

and single vehicle crashes with higher residential area.   
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5.4.2.1.4 Built Environment Attributes  

In terms of built environment attributes, several variables have been explored out of which only 

number of restaurants and shopping centers are found to be related with zonal level crash risks. As 

is evident from Table 5.2, we can observe that both number of restaurants and shopping centers 

have positive influence on rear-end and sideswipe crashes, perhaps indicating a higher density of 

traffic volume for these areas. With respect to non-motorized crashes, number of restaurants is 

found to be a significant determinant with a positive impact (see (Yasmin et al., 2018a) for similar 

result). 

 

5.4.2.1.5 Socio-demographic Characteristics  

For socio-demographic attributes, we consider the number of non-motorists (walk/bike) and transit 

commuters in a zone serving as additional exposure measures for the crash risk model. The 

estimated result shows that higher number of pedestrians, bike and transit commuters, intuitively, 

increases the crash risk for rear-end and non-motorized crashes. Moreover, the coefficient specific 

to non-motorist commuters indicates that the variable is positively associated with angular and 

sideswipe crashes.  

 

5.4.2.2 Severity Component 

The coefficients in Table 5.3 represent the effect of exogenous variables on the injury severity 

proportion across different crash types.  In the propensity, a positive (negative) coefficient 

corresponds to increased (decreased) proportion for severe injury categories specific to each crash 

type. When the threshold parameter is positive (negative), the result implies that the threshold is 

bound to increase (decrease). The estimation results are discussed by variable groups in the 
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following sections. The reader would note that Table 5.3 identifies the number of parameters 

estimated for each variable from a possible set of six (one effect for each crash type).  

 

5.4.2.2.1 Roadway Characteristics  

The variable specific to arterial road indicates that the likelihood of more severe crashes 

(proportions) increases with increasing share (length) of arterial road in a zone, particularly for 

rear-end, angular and single vehicle crashes.  Further, we found an effect of arterial road on 

threshold value for rear-end crashes which provide a sense of how the probability of injury in 

specific injury categories is affected relative to the case of fixed thresholds. The negative 

coefficient of the variable on the threshold value highlights the higher proportions of serious injury 

(non-incapacitating or severe) crashes for rear-end crashes with increased length of arterial roads. 

Moreover, it can be seen from Table 5.3 that crashes on local road tends to be less severe for head-

on and non-motorized crash types. The reduced likelihood of severe crashes for these two crash 

types perhaps can be attributed to reduced driving speed on local roads.  

With increased number of intersections in a zone, the possibility of being involved in a 

severe crash decreases, particularly for head-on and single vehicle crashes. Similarly, we find that 

higher number of traffic signals in a zone reduce the possibility of higher injury risks for angular, 

sideswipe and head-on crashes. The results associated with both of these variables (intersection 

and signal) is potentially an indication that denser and signalized zones have a lower vehicle 

operating speed reducing crash consequences. Similar to the crash count components, the impacts 

of intersection and traffic signal do not differ across crash types; thus, we only estimate two 

parameters across the entire 4 dimensions (4 crash types) in the fractional split component.  

Wider shoulder in a road provides additional safety margin for vehicular maneuverability 

and as expected, variables associated with it are found to have a negative influence on crash 
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severity outcome. While an increase in average insider shoulder width decreases the possibility of 

severe crashes for head-on crash, the likelihood of higher injury risk for rear-end crashes reduces 

with wider outside shoulder width. In terms of roadway attributes, one of the most important 

variables is speed and consistent with previous research, we also find speed to be an important 

contributing factor for severe crashes for different crash types. Specifically, zones with higher 

proportion of road over 55mph speed limit are more likely to experience higher proportion of 

severe crashes for five of the six crash types (except sideswipe crashes). Further the negative sign 

of threshold demarcating the non-incapacitating and severe injury proportion indicates higher 

likelihood of severe crash proportion for rear-end and non-motorized crashes with increased share 

of high speed (>55mph) road in a zone. Finally, the parameter associated with proportion of road 

with poor pavement condition reflects the higher injury risk propensity for sideswipe crashes.  

 

5.4.2.2.2 Traffic Characteristics  

Traffic congestion and truck VMT are found to have significant impact on crash proportions by 

severity levels for different crash types. As is evident from Table 5.3, we can observe that roads 

are typically safer in a congested traffic environment. In particular, the likelihood of severe crash 

proportion for rear-end and angular crashes are lower in a congested traffic environment (>85th 

percentile traffic) compared to the uncongested condition (<=85th percentile traffic).  

Further, the impact of the variable on the threshold value for angular crashes implies a 

lower propensity of severe crash proportions in a gridlock situation. Moreover, the estimated result 

reveals a positive association between the truck VMT and the crash severity proportion, 

specifically for sideswipe and head-on crashes.  
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5.4.2.2.3 Land-use Attributes 

With respect to land use attributes, urban area in a zone contributes negatively to injury severity 

propensity for sideswipe, head-on and single vehicle crashes, presumably because of the slower 

traffic on roadways in an urbanized environment. Further, the estimated results show that crash 

severity proportions are negatively associated with higher land use mix in a zone, particularly for 

rear-end and angular crashes. 

 

5.4.2.2.4 Built Environment Attributes 

In terms of built environment attributes, several factors are considered including number of 

commercial, recreation, restaurants and shopping centers. Interestingly, all of these reveal negative 

associations with the crash severity proportions across different crash types, perhaps indicating 

that with higher traffic density vehicle operating speed is likely to be lower and thus crash 

consequences are possibly less severe. For instance, consistent with previous findings (Yasmin et 

al., 2018a), number of commercial centers reduce the higher injury risk propensity for non-

motorized crashes. Similarly, in the presence of higher number of recreational centers in a zone, a 

lower proportion of severe crash outcomes for single vehicle crashes is observed. Further, the 

GOPFS model results reveals that higher number of restaurants are associated with lower 

likelihood of severe crash proportions for single vehicle crashes, as indicated by the negative 

coefficient. The positive coefficient of the variable on the threshold value further reflects the lower 

probability of severe crash proportions. Finally, the variable corresponding to shopping centers 

results in lower likelihood of severity outcome, particularly for angular, sideswipe and head-on 

crashes (same impact). We also found a positive effect of the variable on the threshold which 
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further implies the lower possibility of higher injury risk for sideswipe crashes with increased 

number of shopping centers in a zone. 

 

5.4.2.2.5 Socio-demographic Characteristics 

The results for the effect of socio-demographic characteristics indicate that non-motorists are less 

prone to high injury risk with increased number of commuters in a zone (see (Yasmin et al., 2018a) 

for similar results). The likelihood of being involved in a severe crash is higher for increasing share 

of motor vehicle commuters, particularly for angular crashes. Previous studies (Pai and Saleh, 

2008) also confirm the findings. Further, as found in previous studies (Quddus, 2008), the 

estimated results suggests that zones with more older people are associated with fewer severe crash 

proportion for non-motorized crashes. The coefficient specific to proportion of households without 

vehicle indicates a positive influence on severity outcome for non-motorized crashes indicating a 

higher propensity of more severe crash proportion for non-motorized crashes (for similar results, 

see (Quddus, 2008)).   

 

5.4.2.3 Unobserved Effects 

The final set of variables in both Tables (4 and 5) correspond to the correlation matrix (unobserved 

heterogeneity) in the joint model. As discussed earlier, in the current research effort, a number of 

correlation effects are tested including: 1) common unobserved factors affecting crash counts of 

different crash types simultaneously; 2) common unobserved factors affecting crash severity 

proportions of different crash types simultaneously and 3) common unobserved factors that 

simultaneously impact crash counts and severity proportions by different crash types. Within the 

crash count component, we found two common unobserved components including (1) common 
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unobserved factors affecting rear-end and non-motorized crashes and (2) common unobserved 

factors affecting other multi vehicular crashes (angular, sideswipe and head-on).  

On the other hand, with respect to common factors between two components (count and 

proportions), the correlation could be either positive or negative as shown in Equation 33 of 

methodology section. In fact, the positive or negative sign can change by unobserved factor. In our 

analysis, we found the negative sign offers better fit for common correlation between total crash 

counts and threshold between proportion of no and possible injuries for non-motorized crashes. 

This indicates that a zone with higher number of non-motorized crashes are more likely to incur 

lower proportions of no injury crashes. On the other hand, a positive common correlation is found 

between the total number of head-on crashes and the corresponding threshold between proportion 

of non-incapacitating and severe crashes which implies that zones with higher number of head-on 

crashes intrinsically are more likely to incur higher proportions for serious crashes. Overall, the 

results clearly support our hypothesis that common unobserved factors influence the two 

components (crash counts and severity proportion). 

 

5.5 Predictive Performance Evaluation  

In order to demonstrate the applicability of the proposed joint (count and severity by crash type) 

model, a prediction exercise was undertaken using the final model parameter estimates. In doing 

so, we employ mean absolute deviation (MAD) and mean absolute percentage error (MAPE) 

which quantifies the error associated with model prediction and the measure is computed on two 

datasets including: 1) model estimation sample with 3,815 TAZs and 2) hold out sample 

(validation sample) with 932 TAZs to ensure that the statistical results obtained above are not a 

manifestation of over fitting to data. 
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One of the major advantage of the proposed framework is that in a single econometric 

framework, we can predict a number of dimensions including total crash counts, total crash counts 

by crash types, crash proportions for each severity level, crash counts for each severity level and 

finally, proportions and counts of crashes for each crash type by severity. In evaluating the 

predictive performance, we compute the errors (MAD and MAPE) across all the aforementioned 

dimensions. Specifically, we compute MAD at a disaggregate level by generating measures at the 

study unit level (TAZ) and compute the average measures across all units (total crash, crash type 

and severity). Other than total crash counts and crash count by crash type, we generate crash counts 

by severity levels for different crash types using the following equation:  𝐸(𝑷𝑖𝑟𝑘) = 𝜇𝑖𝑟 ∗ Λ(𝑦𝑖𝑟𝑘 = 𝑘) (40)  

where, 𝜇𝑖𝑟 is the expected number of crashes for crash type r in TAZ 𝑖;  Λ(𝑦𝑖𝑟𝑘 = 𝑘) is the 

predicted proportion of severity corresponding to crash type r and TAZ 𝑖; and  𝐸(𝑷𝑖𝑟𝑘) is the 

expected number of crashes by injury severity 𝑘  for crash type r in TAZ 𝑖. Finally, we compute 

MAD as: MAD =   𝑚𝑒𝑎𝑛 |�̂�𝑖 − 𝑦𝑖|  (41) 

where, �̂�𝑖 and 𝑦𝑖 are the predicted and observed, number of crashes occurring over a period 

of time in a TAZ 𝑖 (corresponds to different dimension: total crash, crash type, severity etc). Figure 

5.1 and 5.2 presents the value of MAD for estimation and validation sample, respectively.  

On the other hand, we employ MAPE measures at an aggregate level where we estimate 

the number and proportion of crashes for corresponding dimension and predict the TAZ shares for 

different count and proportion alternatives and compared it with the observed shares. For example, 

let us consider the crash counts by crash type where we predict the number of crashes for each 
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crash type at an individual level (observation) and then we estimate how many TAZs have 

0,1….250 crashes. Finally, we compute the MAPE as: MAPE = 1𝑛 ∑ |�̂�𝑛−𝑦𝑛𝑦𝑛 |𝑁𝑛=1        (42) 

where, �̂�𝑛 and 𝑦𝑛 are the predicted and observed, number of TAZs (corresponds to different 

dimension) for different count alternative n. Figure 5.3 and 5.4 presents the value of MAPE for 

estimation and validation sample, respectively.  

In terms of MAD, we found that both datasets (from figure 5.1 and 5.2) offer similar 

predictive performance which highlights the applicability of the proposed joint framework by 

eliminating the overfitting issue. Further, out of all crash alternatives, the prediction accuracy is 

quite poor for no injury crashes followed by rear-end crashes relative to other crash types, crash 

severities and total crash counts. With respect to MAPE measures, the following observations can 

be made from the values presented in Figures 5.3 and 5.4. First, the predictive performance of the 

two datasets (estimation and validation sample) are quite similar. Second, in terms of the total 

crash counts, the predicted share of TAZs for different count alternatives are reasonably close to 

the observed share for both dataset with an error of 0.9% (both dataset) respectively. The reader 

would note we converted the numbers in the figures to percentage for discussion. Third, with 

respect to different severity levels, the model performs better for the lower categories (up to 

possible injury) while a slightly higher error rate (about 3%) is observed in the upper classes 

(category 3 and 4). Fourth, the MAPE values corresponds to crash types offer interesting insights. 

While we observe a lower accuracy for rear-end crashes in both datasets (12.4 % and 11.4 % 

respectively), the model performs adequately for other crash types with a maximum of 6.4% error 

rate for angular crash in the estimation sample. Finally, within each crash type, the MAPE values 
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for each severity fractions are quite reasonable without any significant trend highlighting the 

appropriateness of the proposed model.  

In summary, the prediction results clearly indicate that the joint model for crash counts and 

severity proportions by crash type performs adequately for both datasets (in-sample and validation 

sample) under consideration. 

 

5.6 Summary 

In our current research effort, we employed a Panel mixed Negative Binomial- Generalized 

Ordered Probit Fractional Spilt (PM-NB-GOPFS) model where the first component (NB) 

accommodated for crash frequency by crash type and the later component (GOPFS) studied the 

fraction of severity outcome for different crash types. The empirical analysis was conducted using 

the zonal level crash count data for the year 2016 from Central Florida while considering a 

comprehensive set of exogenous variables including roadway, built environment, land-use, traffic 

and sociodemographic characteristics. The empirical analysis involved a series of model 

estimations including: 1) Independent NB-GOPFS model; 2) Panel NB-GOPFS model without 

unobserved component parameters; and 3) Joint Panel NB-GOPFS model with unobserved 

heterogeneity. The comparison exercise, based on the Bayesian Information Criterion (BIC )value 

highlighted the superiority of the proposed framework that accounts for penalty for additional 

parameters (model 2 and 3) and within the proposed approach, the model considering unobserved 

heterogeneity (model 3) outperformed its’ counterpart (model 2).  

The analysis was further augmented by undertaking a prediction exercise using the final 

model parameter estimates. One of the major advantage of the proposed framework is that in a 

single econometric framework, we can predict several dimensions including total crash counts, 

total crash counts by crash types, crash proportions for each severity level, crash counts for each 
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severity level and finally, proportions and counts of crashes for each crash type by severity. In 

evaluating the predictive performance, we compute the errors (MAD and MAPE) across all the 

aforementioned dimensions. Specifically, we compute MAD at a disaggregate level by generating 

measures at the study unit level (TAZ).  On the other hand, MAPE measures are generated at an 

aggregate level where we estimate the number and proportion of crashes for corresponding 

dimension (crash types, severities) and predict the TAZ shares for different count and proportion 

alternatives and compared it with the observed shares. The prediction results clearly indicated that 

the joint model for crash counts and severity proportions by crash type performed adequately (for 

both in-sample and validation samples) under consideration. 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 
Figure 5.1 MAD Tree for Estimation Sample (3,815 TAZs) 

*Cat 1 = proportion of no injury; **Cat 2= proportion of possible injury; ***Cat 3= proportion of non-incapacitating injury, ****Cat 4= proportion of severe injury 
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Figure 5.2 MAD Tree for Validation Sample (932 TAZs) 

*Cat 1 = proportion of no injury; **Cat 2= proportion of possible injury; ***Cat 3= proportion of non-incapacitating injury, ****Cat 4= proportion of severe injury 
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Figure 5.3 MAPE Tree for Estimation Sample (3,815 TAZs) 

*Cat 1 = proportion of no injury; **Cat 2= proportion of possible injury; ***Cat 3= proportion of non-incapacitating injury, ****Cat 4= proportion of severe injury 
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Figure 5.4 MAPE Tree for Validation Sample (932 TAZs) 

*Cat 1 = proportion of no injury; **Cat 2= proportion of possible injury; ***Cat 3= proportion of non-incapacitating injury, ****Cat 4= proportion of severe injury 
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Table 5.1 Summary of Existing Aggregate Level Multivariate Crash Type and Severity Studies 

Studies 
Spatial 

Unit 
Region 

Crash 

unit 

Number of  

Levels Explored 

Methodological  

Approach 

Independent  

Variables Considered 
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w
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ra
p

h
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W
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Crash Type Studies 

(Ye et al., 2009) 
Intersections 

(micro) 
County 

(Georgia) 
Any  

Crash 

7 (angle, head-on, 
rear-end, sideswipe: 
same and opposite 
direction, pedestrian) 

Multivariate Poisson 
regression model 

√ -- -- √ -- -- 

(El-Basyouny et 
al., 2014) 

Citywide 
(Macro) 

City 
(Edmonton) 

Motorized 
crash 

7 (FTC*, FOTS**, 
SSV***, left turn, 
ILC****, parked 
vehicle and off-road) 

Multivariate Poisson-
lognormal model 

-- -- -- -- -- √ 

(Mothafer et al., 
2016)  

Highway 
segments 
(Micro) 

State 
(Washington) 

Motorized 
crash 

4 (rear-end, sideswipe, 
fixed object and 
others) 

Multivariate Poisson 
gamma mixture count 
model 

√ -- -- √ -- -- 

(Jonathan et al., 
2016) 

Road 
segments 
(Micro) 

County 
(Pennsylvania) 

Any  
Crash 

4 (same direction, 
opposite direction, 
angular, fixed object) 

Multivariate Poisson-
lognormal spatial 
model 

√ -- -- √ -- -- 

(Serhiyenko et al., 
2016) 

Highway 
segments 
(Micro) 

State 
(Connecticut) 

Motorized 
crash 

3 (same direction, 
opposite direction, 
single vehicle crash) 

Multivariate Poisson-
lognormal model 

√ √ -- √ -- -- 

(Cheng et al., 
2017) 

Intersections 
(micro) 

City 
(California) 

Motorized 
crash 

6 (rear-end, head-on, 
sideswipe, broad side, 
hit object crash, 
others) 

Multivariate Poisson-
lognormal model 

√ -- -- √ -- -- 

(Wang et al., 
2017) 

Road 
segments, 

intersections 
(Micro) 

State 
(Minnesota, 
Washington) 

Any  
Crash 

4 (same direction, 
intersecting direction, 
opposite direction, 
single vehicle crashes) 

Multivariate Poisson-
lognormal model 

√ -- -- √ -- -- 

(Bhowmik et al., 
2018) 

STAZ 
(Macro) 

State 
(Florida) 

Motorized 
crash 

8 (rear-end, angular, 
sideswipe, head-on, 
single vehicle, off-

Multivariate negative 
binomial model, 

√ √ √ √ -- -- 
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road, rollover and 
others) 

multinomial 
fractional split model 

(Alarifi et al., 
2018) 

Road 
segments, 

intersections 
(Micro) 

County 
(Florida) 

Any  
Crash 

6 (same direction, 
angular, opposite 
direction, non-
motorized, single 
vehicle and others)  

Bayesian multivariate 
hierarchical spatial 
joint model 

√ -- -- √ -- -- 

Crash Severity Studies 

(Narayanamoorthy 
et al., 2013) 

Census tract 
(Macro) 

Region 
(Manhattan) 

Non-
motorized 

Crash 

4 (possible injury, 
non-incapacitating 
injury, incapacitating 
injury and fatal injury) 

Generalized ordered-
response model with 
Composite Maximum 
Likelihood 

√ √ √ -- √ -- 

(Li et al., 2013) 
County 
(Macro) 

State 
(California) 

Any 
 Crash 

1 (fatal crash) 
Geographically 
Weighted Poisson 
Regression (GWPR) 

√ -- -- √ √ -- 

(Ye et al., 2013) 
Freeway 
segment 
(Micro) 

State 
(Washington) 

Any  
Crash 

3 (PDO, possible 
injury, injury/ fatality) 

Joint Poisson 
regression model 

√ -- -- √ -- √ 

(Barua et al., 
2014) 

Road 
segment 
(Micro) 

City 
(Richmond, 
Vancouver) 

Any  
Crash 

2 (no injury and 
injury/fatal crashes) 

Multivariate Poisson 
lognormal model 

√ √ √ √ -- -- 

(Chiou et al., 
2014) 

Freeway 
segment 
(Micro) 

State (Taiwan) 
Motorized 

Crash 
3 (PDO, possible 
injury, injury/ fatality) 

Multinomial 
Generalized Poisson 
with error 
components 

√ -- √ √ -- √ 

(Chiou and Fu, 
2015) 

Freeway 
segment 
(Micro) 

State (Taiwan) 
Motorized 

Crash 
3 (PDO, possible 
injury, injury/ fatality) 

Multinomial 
generalized Poisson 
with spatiotemporal 
error components 

√ -- √ √ -- √ 

(Zhan et al., 2015) 

Census tract 
(Macro) 

Roadway 
segment 
(Micro) 

City, State 
(New York, 
Washington) 

Pedestrian 
and 

Motorized 
Crash 

3 (no injury, possible 
injury and evident 
injury) 

Multivariate Poisson-
lognormal model 

√ √ √ √ √ √ 

(Anastasopoulos, 
2016) 

Highway 
segments 
(Micro) 

State 
(Indiana) 

Motorized 
crash 

3 (PDO, injury and 
fatality) 

Random parameter 
multivariate tobit 
model, Multivariate 
zero-inflated negative 
binomial model 

√ √ -- -- -- -- 
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(Barua et al., 
2016) 

Road 
segment 
(Micro) 

City 
(Vancouver) 

Any  
Crash 

2 (no injury and 
injury/fatal crashes) 

Bayesian multivariate 
random parameters 
spatial model 

√ √ √ √ -- -- 

(Dong et al., 
2016) 

Intersection 
(Micro) 

State 
(Tennessee) 

Any  
Crash 

2 (disabling injury and 
non-disabling injury) 

Random parameter 
bivariate zero-inflated 
negative binomial 
model 

√ -- -- √ -- -- 

(Bhat et al., 2017) 
Census tract 

(Macro) 
Region 

(Manhattan) 
Pedestrian 

Crash 

4 (possible injury, 
non-incapacitating 
injury, incapacitating 
injury and fatal injury) 

Random coefficients 
multivariate count 
model 

√ √ √ -- √ -- 

(Boulieri et al., 
2017) 

Ward 
(macro) 

England 
Any  

Crash 
2 (slight accidents, 
fatal accidents 

Multivariate Bayesian 
Model 

√ -- -- √ -- -- 

(Chen et al., 2017) 
Highway 
segment 
(Micro) 

State 
(Indiana) 

Motorized 
Crash 

3 (PDO, possible 
injury, and 
injury/fatality) 

Multivariate Random 
Parameters Negative 
Binomial Approach 

√ -- -- √ -- -- 

(Ma et al., 2017) 
Highway 
segment 
(Micro) 

Interstate I70 
(Colorado) 

Motorized 
Crash 

2 (injury, no injury) 

Multivariate Poisson 
lognormal (normal, 
spatial and spatio-
temporal) 

√ -- -- √ -- √ 

(Wang et al., 
2017) 

Road 
segments, 

intersections 
(Micro) 

State 
(Minnesota, 
Washington) 

Any  
Crash 

3 (no injury, 
possible/non-
incapacitating injury 
and 
fatal/incapacitating 
injury crashes) 

Multivariate Poisson 
Lognormal model 

√ -- -- √ -- -- 

(Zeng et al., 2017) 

Census tract 
(Macro) 

Roadway 
segment 
(Micro) 

City 
(Hong Kong) 

Any  
Crash 

2 (slight injury crash 
and killed/seriously 
injured crashes) 

Multivariate Poisson-
lognormal model 

√ -- -- √ -- √ 

(Liu and Sharma, 
2018) 

County 
(macro) 

State 
(Iowa) 

Any  
Crash 

3 (Fatal crashes, major 
injury crashes, and 
minor injury crashes) 

Multivariate spatio-
temporal Bayesian 
model 

√ -- -- √ √ √ 

(Rahman Shaon et 
al., 2019) 

Highway 
segment 
(Micro) 

State 
(Wisconsin) 

Any  
Crash 

4 (No injury, minor 
injury, serious injury 
and total injury) 

Multivariate multiple 
risk source regression 
model 

√ -- -- √ -- -- 

*FTC = Follow too close; **FOTS= Failed to observe traffic signal; ***SSV= Stop sign violation, ****ILC= Improper lane change

https://www.sciencedirect.com/topics/social-sciences/regression-model
https://www.sciencedirect.com/topics/social-sciences/regression-model
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Table 5.2 Joint Panel Mixed NB-GOPFS Model Results (Count Component)  

Variables (np) 
Rear-End Angular Sideswipe Head-on Single vehicle Non-motorized 

Estimate t-stat Estimate t-stat Estimate t-stat Estimate t-stat Estimate t-stat Estimate t-stat 

Constant (6) -0.626 -7.73 -1.684 -15.407 -2.687 -21.582 -3.557 -18.081 -0.744 -9.932 -2.580 -23.487 

Roadway Characteristics 

Proportion of 
arterial roads (2) 

0.166 4.034 0.166 4.034 --1 -- -- -- -0.284 -5.105 0.166 4.034 

Number of 
intersections (1) 

-- -- 0.347 11.804 -- -- 0.347 11.804 -- -- 0.347 11.804 

Signal intensity (3) 0.416 2.422 -- -- -0.630 -3.277 -- -- -0.447 -1.746 0.416 2.422 

Road length over 
55mph (5) 

0.468 3.679 -1.573 -7.679 0.468 3.679 -1.022 -2.877 0.892 7.676 -1.172 -4.591 

Standard 
deviation 

-- -- 0.903 3.288 -- -- -- -- -- -- -- -- 

Variance of Speed 
(2) 

0.040 3.697 0.040 3.697 0.069 4.451 -- -- -- -- -- -- 

Roads with 
separated median 
(2) 

0.172 3.798 0.172 3.798 0.172 3.798 -0.156 -1.411 -- -- -- -- 

Average outside 
shoulder width (4) 

-0.308 -7.120 -0.439 -8.323 -0.563 -9.800 -0.308 -7.120 -0.115 -2.621 -- -- 

Average sidewalk 
width (1) 

-- -- -- -- -- -- -- -- -- -- -0.215 -3.693 

Traffic Characteristic 

VMT (4) -- -- 0.131 8.496 0.259 16.909 0.185 8.852 -- -- 0.021 1.678 

Truck VMT (2) 0.179 15.852 -- -- -- -- -- -- 0.270 26.819 -- -- 

Land-use attributes 

Urban area (4) 0.164 15.359 0.164 15.359 0.149 9.530 0.111 4.094 -- -- 0.114 6.279 

Office area (2) 0.148 10.384 -- -- 0.148 10.384   -- -- 0.127 7.389 

Residential area (1) -- -- -- -- -0.077 -6.915 -0.077 -6.915 -- -- -- -- 

Built environment characteristic 
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No. of restaurants 
(3) 

0.273 10.432 -- -- 0.084 3.394 -- -- -- -- 0.175 7.958 

No. of shopping 
centers (1) 

0.030 1.712 -- -- 0.030 1.712 -- -- -- -- -- -- 

Socio-demographic characteristics 

Non-motorists (3) 0.052 2.892 0.148 7.166 0.168 7.581 -- -- -- -- 0.052 2.892 

Transit users (1) 0.222 13.287 -- -- -- -- -- -- -- -- 0.222 13.287 

Over dispersion (6) 0.671 16.130 0.251 6.515 0.284 8.270 1.002 6.245 0.713 19.270 0.235 4.459 

Unobserved Effects 

Correlation 1 (1) 0.585 21.818 -- -- -- -- -- -- -- -- 0.585 21.818 

Correlation 2 (1) -- -- 0.957 43.658 0.957 43.658 0.957 43.658 -- -- -- -- 

*np= number of parameters estimated for each variable from a possible set of six (six crash types) 
1 --= attribute insignificant at 90% confidence level
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Table 5.3 Joint Panel Mixed NB-GOPFS Model Results (Severity Component)  

Variables (np) 
Rear End Angular Sideswipe Head-on Single vehicle Non-motorized 

Estimate t-stat Estimate t-stat Estimate t-stat Estimate t-stat Estimate t-stat Estimate t-stat 

Threshold 1 0.564 14.380 0.221 6.466 0.948 9.171 -0.038 -0.331 0.264 5.198 -0.671 -8.045 

Threshold 2 -0.395 -12.342 -0.492 -19.890 -0.678 -13.290 -0.688 -9.478 -0.808 -23.022 -0.463 -10.780 

Threshold 3 -0.262 -6.067 -0.373 -10.523 -0.440 -6.093 -0.506 -6.480 -0.469 -12.780 -0.062 -1.599 

Roadway Characteristics 

Arterial roads (2) 0.085 3.647 0.183 4.797 --1 -- -- -- 0.085 3.647 -- -- 
Possible and non-
incapacitating 
injury (1) 

-0.082 -1.719 -- -- -- -- -- -- -- -- -- -- 

Local roads (1) -- -- -- -- -- -- -0.335 -2.132 -- -- -0.335 -2.132 

Number of 
intersections (1) 

-- -- -- -- -- -- -0.051 -3.549 -0.051 -3.549 -- -- 

Traffic signals (1) -- -- -0.040 -4.198 -0.040 -4.198 -0.040 -4.198 -- -- -- -- 

Average inside 
shoulder width (1) 

-- -- -- -- -0.171 -3.469 -- -- -- -- -- -- 

Average outside 
shoulder width (1) 

-0.046 -1.697 -- -- -- -- -- -- -- -- -- -- 

Proportion of roads 
over 55mph speed 
(2) 

0.331 5.112 0.331 5.112 -- -- 0.878 3.029 0.331 5.112 0.331 5.112 

Non-
incapacitating and 
severe injury (1) 

-0.667 -2.959 -- -- -- -- -- -- -- -- -1.335 -3.723 

Poor pavement 
condition (1) 

-- -- -- -- 0.208 2.822 -- -- -- -- -- -- 

Traffic Characteristic 

Traffic Intensity 
(Congested) (1) 

-0.074 -3.308 -0.074 -3.308 -- -- -- -- -- -- -- -- 

Non-
incapacitating and 
severe injury (1) 

-- -- 0.123 1.980 -- -- -- -- -- -- -- -- 

Truck VMT (1) -- -- -- -- 0.046 4.591 0.046 4.591 -- -- -- -- 
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Land Use Characteristic 

Urban area (2) -- -- -- -- -0.402 -5.839 -0.402 -5.839 -0.057 -1.022 -- -- 

Land use mix (1) -0.117 -2.241 -0.117 -2.241 -- -- -- -- -- -- -- -- 

Built environment characteristic 

No. of commercial 
centers (1) 

-- -- -- -- -- -- -- -- -- -- -0.048 -2.101 

No. of recreational 
centers (1) 

-0.028 -2.265 -- -- -- -- -- -- -- -- -- -- 

No. of restaurants 
(1) 

-- -- -- -- -- -- -- -- -0.046 -3.011 -- -- 

Non-
incapacitating and 
severe injury (1) 

-- -- -- -- -- -- -- -- 0.049 1.650 -- -- 

No. of shopping 
centers (1) 

-- -- -0.047 -4.863 -0.047 -4.863 -0.047 -4.863 -- -- -- -- 

Possible and non-
incapacitating 
injury (1) 

-- -- -- -- 0.051 1.916 -- -- -- -- -- -- 

Socio-demographic characteristics 

Employee (1) -- -- -- -- -- -- -- -- -- -- -0.084 -2.380 

Motorcycle users 
(1) 

-- -- 0.134 2.354 -- -- -- -- -- -- -- -- 

Proportion of older 
people (65+) (1) 

-- -- -- -- -- -- -- -- -- -- -0.460 -2.045 

Household with no 
cars (1) 

-- -- -- -- -- -- -- -- -- -- 0.060 2.368 

Unobserved Effects 

Between no injury 
and possible injury 
(1) 

-- -- -- -- -- -- -- -- -- -- 0.072 2.831 

Between non-
incapacitating 
injury and severe 
injury (1) 

-- -- -- -- -- -- 0.479 4.516 -- -- -- -- 

*np= number of parameters estimated for each variable from a possible set of six (six crash types) 
1 --= attribute insignificant at 90% confidence level 
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Table 5.4 Independent Panel NB Model Results (Count Component)  

Variables (np) 
Rear End Angular Sideswipe Head-on Single vehicle Non-motorized 

Estimate t-stat Estimate t-stat Estimate t-stat Estimate t-stat Estimate t-stat Estimate t-stat 

Constant (6) -0.611 -8.094 -0.990 -9.461 -1.826 -16.869 -3.080 -16.270 -0.744 -9.933 -2.523 -23.787 

Roadway Characteristics 

Proportion of 
arterial road (2) 

0.205 4.418 0.205 4.418 -- -- -- -- -0.284 -5.103 0.205 4.418 

Number of 
intersections (1) 

-- -- 0.284 9.008 -- -- 0.284 9.008 -- -- 0.284 9.008 

Signal intensity (3) 0.456 2.578 -- -- -0.577 -2.725 -- -- -0.447 -1.746 0.456 2.578 

Road length over 
55mph (5) 

0.568 4.554 -1.451 -7.764 0.568 4.554 -1.346 -3.784 0.892 7.675 -1.298 -5.172 

Variance of Speed 
(2) 

0.039 3.499 0.039 3.499 0.067 4.564 -- -- -- -- -- -- 

Road with 
separated median 
(2) 

0.164 3.770 0.164 3.770 0.164 3.770 -0.201 -1.741 -- -- -- -- 

Average outside 
shoulder width (4) 

-0.269 -6.450 -0.381 -7.637 -0.410 -7.666 -0.269 -6.450 -0.115 -2.622 -- -- 

Average sidewalk 
width (1) 

-- -- -- -- -- -- -- -- -- -- -0.201 -3.583 

Traffic Characteristic 

VMT (4) -- -- 0.102 6.738 0.191 13.228 0.197 8.470 -- -- 0.048 3.180 

Truck VMT (2) 0.174 15.400 -- -- -- -- -- -- 0.270 26.825 -- -- 

Land-use attributes 

Urban area (4) 0.158 14.896 0.158 14.896 0.127 8.396 0.086 3.347 -- -- 0.099 5.712 

Office area (2) 0.190 11.928 -- -- 0.190 11.928   -- -- 0.148 7.389 

Residential area (1) -- -- -- -- -0.093 -7.387 -0.093 -7.387 -- -- -- -- 

Built environment characteristic 

No. of restaurant (3) 0.254 8.912 -- -- 0.310 9.759 -- -- -- -- 0.198 8.803 
No. of shopping 
center (1) 

0.066 2.040 -- -- 0.066 2.040 -- -- -- -- -- -- 
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Socio-demographic characteristics 

Non-motorists (3) 0.067 3.996 0.145 7.109 0.144 6.858 -- -- -- -- 0.067 3.996 

Transit user (1) 0.222 14.898 -- -- -- -- -- -- -- -- 0.222 14.898 

Over dispersion (6) 0.992 30.183 1.176 25.054 1.024 21.268 1.995 8.123 0.713 19.272 0.455 8.840 

Log-Likelihood (np) -39954.27 (53) 

*np= number of parameters estimated for each variable from a possible set of six (six crash types) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

144 

 

Table 5.5 Independent GOPFS Model Results (Severity Component)  

Variables (np) 
Rear End Angular Sideswipe Head-on Single vehicle Non-motorized 

Estimate t-stat Estimate t-stat Estimate t-stat Estimate t-stat Estimate t-stat Estimate t-stat 

Threshold 1 0.564 14.394 0.221 6.458 0.948 9.321 -0.039 -0.344 0.264 5.202 -0.665 -7.978 

Threshold 2 -0.395 -12.332 -0.492 -19.891 -0.678 -13.289 -0.688 -9.480 -0.808 -23.019 -0.445 -10.656 

Threshold 3 -0.262 -6.063 -0.373 -10.521 -0.439 -6.093 -0.505 -6.480 -0.469 -12.778 -0.062 -1.610 

Roadway Characteristics 

Arterial road 0.085 3.644 0.183 4.804 -- -- -- -- 0.085 3.644 -- -- 
Possible and non-
incapacitating 
injury 

-0.081 -1.710 -- -- -- -- -- -- -- -- -- -- 

Local road -- -- -- -- -- -- -0.334 -2.128 -- -- -0.334 -2.128 

Number of 
intersections 

-- -- -- -- -- -- -0.051 -3.564 -0.051 -3.564 -- -- 

Traffic signal -- -- -0.040 -4.192 -0.040 -4.192 -0.040 -4.192 -- -- -- -- 

Average inside 
shoulder width 

-- -- -- -- -0.171 -3.479 -- -- -- -- -- -- 

Average outside 
shoulder width 

-0.046 -1.702 -- -- -- -- -- -- -- -- -- -- 

Proportion of road 
over 55mph speed 

0.330 5.101 0.330 5.101 -- -- 0.876 3.026 0.330 5.101 0.330 5.101 

Non-
incapacitating and 
severe injury 

-0.669 -2.965 -- -- -- -- -- -- -- -- -1.338 -3.725 

Poor pavement 
condition 

-- -- -- -- 0.208 2.821 -- -- -- -- -- -- 

Traffic Characteristic 

Traffic Intensity 
(Congested) 

-0.074 -3.311 -0.074 -3.311 -- -- -- -- -- -- -- -- 

Non-
incapacitating and 
severe injury 

-- -- 0.122 1.965 -- -- -- -- -- -- -- -- 

Truck VMT -- -- -- -- 0.046 4.640 0.046 4.640 -- -- -- -- 
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Land Use Characteristic 

Urban area -- -- -- -- -0.402 -5.912 -0.402 -5.912 -0.058 -1.027 -- -- 

Land use mix -0.117 -2.245 -0.117 -2.245 -- -- -- -- -- -- -- -- 

Built environment characteristic 

No. of commercial 
centers 

-- -- -- -- -- -- -- -- -- -- -0.049 -2.140 

No. of recreational 
centers 

-0.028 -2.270 -- -- -- -- -- -- -- -- -- -- 

No. of restaurants -- -- -- -- -- -- -- -- -0.046 -3.011 -- -- 

Non-
incapacitating and 
severe injury 

-- -- -- -- -- -- -- -- 0.049 1.660 -- -- 

No. of shopping 
centers 

-- -- -0.047 -4.862 -0.047 -4.862 -0.047 -4.862 -- -- -- -- 

Possible and non-
incapacitating 
injury 

-- -- -- -- 0.051 1.918 -- -- -- -- -- -- 

Socio-demographic characteristics 

Employee -- -- -- -- -- -- -- -- -- -- -0.083 -2.381 

Motorcycle user -- -- 0.134 2.351 -- -- -- -- -- -- -- -- 

Proportion of older 
people (65+) 

-- -- -- -- -- -- -- -- -- -- -0.443 -1.968 

Household with no 
cars 

-- -- -- -- -- -- -- -- -- -- 0.060 2.384 

Sample Size 2992 2585 2116 806 2510 1417 

*np= number of parameters estimated for each variable from a possible set of six (six crash types) 
 

 

 

 

 

 

 



 

 

146 

CHAPTER 6: ACCOMMODATING POPULATION HETEROGENEITY 

WITHIN A PANEL MODEL FRAMEWORK 

Road traffic crashes and their consequences (property damage, injuries and fatalities) remain a 

global health concern given the extent of societal, emotional and economic impacts of these 

unfortunate events. According to recent report by NHTSA 2018, road traffic crashes, responsible 

for 36,750 fatalities in the US, ranked as the third deadliest in the decade and a leading cause of 

death among people aged between 17 and 21 years old. The numbers are declining relative to 2016 

and 2017 but still it is 12.2% higher than 2014 (all time low, 32,544) (NHTSA, 2018) which 

warrants devising appropriate solutions for reducing the number and consequence of such 

unfortunate events. A major tool employed in the literature to develop counter measures is the 

application of econometric models for crash frequency analysis. Econometric approaches for 

developing crash prediction models in safety literature are dominated by traditional count 

regression frameworks (Poisson and negative binomial (NB)) in a univariate modeling setting. 

These approaches identify a single count variable (typically the total number of crashes) for a 

spatial unit and study the impact of exogenous variables. However, studies show that a single total 

crash model will not be able to parse the distinct crash distribution by different attributes (such as 

type, injury severity, modes) and such aggregation can result in aggregation bias and loss of 

information available in the dataset. For example, consider the exogenous variable - presence of 

left guardrail on the roadway. In the presence of a left guardrail, vehicles are prevented from 

entering the opposite direction thus reducing head-on crashes. On the other hand, vehicles on 

hitting the guardrail might collide with other vehicles travelling in the same direction which in turn 

resulting in an increase in rear-end, sideswipe, angular crashes. So, the overall impact of the 
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guardrail on total number of crashes would yield a positive sign despite having distinct impact on 

different crash types. 

Hence, it is not surprising that in recent years, safety researchers have focused on 

disaggregating the data by various attributes such as crash typology (such as head-on or rear-end), 

injury severity (such as crashes by no injury or crashes by severe injury) and crash location (such 

as intersection versus non-intersection). In this case, an extension of univariate approach would be 

to develop multiple univariate models considering counts by different attribute levels as multiple 

dependent variables (please see (Lord and Mannering, 2010; Yasmin and Eluru, 2018) for a 

literature review). The separate models allow us to capture distinct and realistic impacts of 

exogenous variables on different count dimensions. However, these approaches only 

accommodate for observed factors and inherently neglects the unobserved heterogeneity. In recent 

years, there is growing recognition that crash counts across different attributes are correlated and 

hence multivariate in nature. For instance, higher number of blind spots at intersections along a 

corridor (usually unobserved to analysts) are likely to result in higher number of vehicular conflicts 

as well as possibly higher number of pedestrian/bicyclists involved crashes. Ignoring such 

correlation, if present, may lead to biased and inefficient parameter estimates resulting in erroneous 

policy implications (see Mannering et al., 2016 for an extensive discussion). Recognizing this 

drawback, several research efforts have developed frameworks that accommodate for the influence 

of these common unobserved factors employing multivariate modeling approaches. However, 

there are still several methodological challenges associated with these models in accommodating 

unobserved heterogeneity. In this context, the current research contributes towards addressing the 

methodological challenges in crash frequency models by employing an alternative econometric 
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approach for analyzing multiple crash frequency variables while capturing unobserved 

heterogeneity. 

 

6.1 Earlier Research 

The most common approach employed to address the potential unobserved heterogeneity in safety 

literature is the development of multivariate crash frequency models (please see (Bhowmik et al., 

2019a, 2018; Yasmin and Eluru, 2018) for detailed review on multivariate approach).. Based on 

the process of capturing correlations, the multivariate approaches can broadly be classified along 

two major streams: (1) simulation-based approaches and (2) analytically closed-form based 

approaches. The main difference between these two streams lies in how the dependency across 

dimensions is captured. In simulation based multivariate approaches, the different propensities are 

correlated by generating a common error term across dimensions. Further, probability computation 

requires integrating the probability function over the error term distribution due to the unobserved 

nature of the error term (see (Bhowmik et al., 2019a)). The exact computation is dependent on the 

distributional assumption and does not usually have a closed form expression. These approaches 

rely either on Maximum Simulated Likelihood (MSL) in the classical realm or Markov Chain 

Monte Carlo (MCMC) approach in the Bayesian realm for model estimation (Anastasopoulos et 

al., 2012; Aguero-Valverde, 2013; Wang and Kockelman, 2013; Barua et al., 2014; Dong et al., 

2014). However, the complexity of the model estimation is dependent on the number of 

unobserved parameters estimated. Further,  applying simulation for such joint processes is likely 

to be error-prone and the stability of the variance-covariance matrix is often sensitive to model 

specification and number of simulation draws (see (Bhat, 2011) for a discussion).  
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On the other hand, the closed form based approach referred to as the copula framework 

relies on developing multivariate distributions (or approximations of multivariate distributions) 

with analytical closed form probability expressions that obviate the need for simulation. These 

model frameworks are estimated employing maximum likelihood or composite maximum 

likelihood approaches (Wang et al., 2015; Nashad et al., 2016; Yasmin et al., 2018). One of the 

limitations of the simulation approaches is its accuracy that is strongly tied to the dimensionality 

of integration (number of unobserved parameters estimated) as well as number of draws considered 

for the probability function evaluation. On the other hand, in the closed-form regime, the 

propensity equations for frequency dimensions are tied together by analytical multivariate 

distributional assumptions. The likelihood function is quite complicated, but once programmed, 

these closed-form frameworks are less prone to error7. Further, the copula framework allows for 

flexible correlation structures (radial symmetry and asymmetry, and asymptotic tail independence 

and dependence) across joint dimensions thus enhancing the flexibility of the multivariate 

approach which results in more stable inference conclusion.  

The literature clearly highlights the prevalence of multivariate model frameworks in safety 

literature. However, there are two major challenges associated with the existing multivariate 

approach in estimating observed and unobserved effects (see chapter 4 for detail). First, in 

multivariate approaches, a separate crash propensity equation is adopted for each crash type. 

Within each propensity equation, we estimate a number of observed parameters in the model 

 

7In some cases, where such formulas are of very high dimensions they might not be analytically tractable. In this case, 

an composite maximum likelihood approach is adopted (Bhat, 2014, 2011; Narayanamoorthy et al., 2013).  
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structures. For instance, let us consider two crash types: rear-end and sideswipe and we developed 

a crash prediction model at a zonal level. Now, it is possible that zonal AADT has similar effect 

on zonal level rear-end and sideswipe crashes. To test this, researchers need to perform a log-

likelihood ratio test and with increased number of dependent and independent variables, this 

process will be burdensome. Due to the additional burden, it is often cumbersome to check whether 

the variable effects are really different across the propensities. As a result, with higher number of 

dependent and independent variables, the number of parameters estimated are likely to be very 

high. Second, the complexity of the model estimation is dependent on the number of unobserved 

parameters estimated. In traditional multivariate models, the influence of unobserved factors is 

typically accommodated as random effects and error correlations across dimensions. The random 

effect referred to the unobserved factors affecting crash propensity within the dimension while the 

error correlation parameters account for the influence of unobserved factors affecting multiple 

dependent variables. These effects require simulation8 for parameter estimation and with higher 

dimensions (number of dependent variable and unobserved factors to be estimated), the model 

infrastructure can get computationally demanding.  

 

6.2 Current Study 

The work presented in chapter 4 address these challenges by recasting the multivariate crash 

frequency modeling problem as a pooled univariate crash frequency (with unobserved 

heterogeneity accommodated) analysis problem. To elaborate, instead of considering the crash 

 

8 For the closed form approaches, we don’t need simulation for correlation but for estimating random effects, we need 

to rely on simulation.  
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frequency by crash type as a multivariate distribution, the authors represent it as repeated measures 

of crash frequency while recognizing that each repetition represents a different crash type. The 

recasting process allows for the estimation of a parsimonious model system by allowing for an 

improved specification testing of variable impacts across different crash types (see chapter 4 for 

detail). Using this consideration, the proposed model system enhances the efficiency of estimation 

through a single crash frequency model while also allowing for parameter effects to vary across 

different crash types through crash type specific deviation terms. Further, as only one propensity 

equation is to be estimated, it allows for reduction in parameters especially for unobserved factors 

resulting in substantial improvements in model efficiency and computational times. The study 

presented in chapter 4 accommodate population heterogeneity through unobserved effects. 

However, it is possible that the influence of observed exogenous factors also might vary across 

different TAZs and ignoring such heterogeneity might be erroneous.  

To illustrate the importance of varying impact of exogenous variables, let us consider the 

number of non-motorized crashes in two zones (Z1 and Z2) with identical attributes except average 

sidewalk width. Z1 has lower average sidewalk width while the sidewalk is much wider in Z2. 

Now, let us consider the effect of non-motorist activity in these zones. Higher non-motorist activity 

is associated with higher number of non-motorized crashes. Therefore, Z1 with narrow sidewalk 

will experience increased number of non-motorized crashes with higher pedestrian activity. On the 

other hand, Z2 has wider sidewalk which will provide additional safety to the non-motorists from 

colliding with a motorized vehicle and as a result, the impact of non-motorists on non-motorized 

crashes will be less relative to Z1 and even in some cases, it could be negative. This is an example 

of the effect of non-motorist activity exhibiting differential impact on the number of non-motorized 

crashes based on the width of sidewalk. The illustration provided is a case of one variable (average 
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sidewalk width) moderating the influence of another variable (number of non-motorists). 

However, in the context of crash frequency analysis by different crash types, it is possible that 

multiple variables might serve as a moderating influence on a reasonably large set of exogenous 

variables. Hence, evaluating crash counts employing a traditional model (population homogeneity 

assumption) might possibly lead to incorrect coefficient estimates. 

There are a number of approaches employed in safety literature to account for such 

systematic heterogeneity including market segmentation, clustering technique, and random effect 

models (see (Eluru et al., 2012; Yasmin and Eluru, 2016) for detail). However, market 

segmentation or clustering approaches allocates data records exclusively to a particular cluster or 

segment based on the attributes and do not consider the possible effects of unobserved factors that 

may moderate the impact of observed exogenous variables. Another problem is these techniques 

might result in reduced sample size in some segments/clusters which in turn result in loss of model 

estimation efficiency. Random effects model is another alternative approach to capture population 

heterogeneity. These approaches, though attractive, are focussed on the error component of the 

model and usually require extensive simulation for model estimation while also not considering 

observed heterogeneity. To that extent, latent segmentation model offers an approach to 

incorporate population heterogeneity within the systematic component. In a latent segmentation 

model, TAZs are allocated probabilistically to different segments and a segment specific model is 

estimated for each segment. Such an endogenous segmentation scheme is appealing for multiple 

reasons including: (1) it ensures that the parameters are estimated employing the full sample for 

each segment while employing all data points for model estimation; (2) provides valuable insights 

on how the exogenous variables affect segmentation; and (3) the probabilistic assignment 

explicitly acknowledges the role played by unobserved factors in moderating the impact of 
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observed exogenous variables. To be sure, using latent segmentation approach in crash count 

literature is not new (micro level: (Park et al., 2010; Park and Lord, 2009; Zou et al., 2014); macro 

level: (Yasmin and Eluru, 2016)). However, earlier research on latent class models have been 

restricted to considering only one count dependent variable. To the best of authors knowledge, this 

study is the first of its kind to develop a latent class count model considering different crash types 

while accommodating potential correlations across the count dimensions. 

To summarize, our current objective contributes to crash frequency literature both 

methodologically and empirically by estimating a latent segmentation-based Panel Negative 

Binomial (LPNB) to study the zonal level crash counts across different crash types. The current 

research effort extends the previous work presented in chapter 4 by introducing the latent class 

version of the panel negative binomial (PNB) model to capture the potential variation in the impact 

of exogenous variables while also explicitly accommodating for unobserved heterogeneity through 

random parameters and error correlations. The newly formulated model will allow us to partition 

the TAZs into segments based on their attributes and estimate the influence of exogenous variables 

on crash counts of different crash types. From methodological perspective, the current research 

makes a threefold contribution to literature on crash frequency analysis: First, the recasting allows 

us to estimate a parsimonious model system and also reduce the computational time for estimating 

parameters associated with unobserved factors. Second, by introducing the latent class version of 

the PNB model, we allow for both observed and unobserved heterogeneity thus relaxing the 

homogeneity assumption of the traditional count models. Third, we allow for a flexible segment 

membership function and test for the presence of multiple segments in the model estimation. 

Empirically, the research contributes to our understanding of analyzing zonal level crashes for both 

motorized and non-motorized road user group while considering different crash types within the 
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motorized category including rear-end, angular, sideswipe, single vehicle and head-on crashes. 

The analysis is conducted using the zonal level crash records from Central Florida for the year 

2016 considering a comprehensive set of exogenous variables. Further, we undertake a comparison 

exercise of the proposed LPNB model with its’ traditional counterpart proposed in chapter 4 . 

The rest of the chapter is organized as follows: the next section presents the methodological 

framework adopted in the analysis while the section 6.4 provides a detailed description of the 

model findings. The comparison results are discussed in section 6.5 followed by concluding 

thoughts in the last section (6.7). 

 

6.3 Econometric Framework 

The focus of our current objective is to estimate a latent segmentation based panel mixed NB 

modeling framework and compare its performance with previously proposed panel mixed NB 

model. The empirical analysis involves estimation of two different frameworks including: Panel 

mix NB model with and without the latent segmentation. For the sake of brevity, we will restrict 

ourselves to the discussion of the latent class model only (please see chapter 4 for the detailed 

methodology on the Panel Mixed NB model).  

As highlighted earlier, we alter the dataset by taking all six types of crashes as repeated 

measures (same TAZ is repeated 6 times) of crash frequency in a univariate NB formulation while 

recognizing that each repetition represents a different crash type. In the latent segmentation based 

approach, crash count records by different crash types for TAZs are probabilistically assigned to 𝑠 relatively homogenous (but latent to the analyst) segments based on various explanatory 

variables. Within each segment, the effects of exogenous variables on the number of crashes by 

different crash types occurring across the TAZ over a given period of time are fixed in the segment. 
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Hence, the latent segmentation based model consists of two components: (1) assignment 

component and (2) segment specific count model component. The general structure for all latent 

segmentation based count models involves specifying these two components. For the ease of 

presentation, we describe modeling framework by the components.  

 

6.3.1 Assignment Component 

Let us assume that 𝑠 be the index for segments (𝑠 = 1, 2,3, … , 𝑆), 𝑖 be the index for TAZ (𝑖 =1,2,3, … , 𝑁 = 3,815) and 𝑟(𝑟 = 1,2, … , 𝑅, 𝑅 = 6) be an index for different crash type at TAZ 𝑖. 𝑦𝑖𝑟 be the index for crash counts occurring over a period of time in TAZ i and crash type r. The 

assignments of TAZ to different segments are modeled as a function of a column vector of 

exogenous variable by using the random utility based multinomial logit model (see (Dey et al., 

2018; Eluru et al., 2012; Wedel et al., 1993; Yasmin and Eluru, 2016) for similar formulation) as: 

𝑃𝑖𝑠 = 𝑒𝑥𝑝[𝜶𝑠𝒛𝑠]∑ 𝑒𝑥𝑝[𝜶𝑠𝒛𝑠]𝑆𝑠=1  
(43) 

where, 𝑃𝑖𝑠 is the probability of TAZ 𝑖 to be assigned to segment 𝑠, 𝒛𝑠 is a vector of attributes 

and 𝜶𝑠 is a conformable parameter vector to be estimated. The assignment process is the same for 

all latent class models. 

Within any latent segmentation approach, the unconditional probability of 𝑦𝑖𝑟 can be given 

as: 

𝑃𝑖(𝑦𝑖𝑟) = ∑(𝑃𝑖(𝑦𝑖𝑟|𝑠)) × (𝑃𝑖𝑠)𝑆
𝑠=1  (44) 

where 𝑃𝑖(𝑦𝑖𝑟|𝑠) corresponds to the probability of count 𝑦𝑖𝑟 in segment s.  
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6.3.2 Segment Specific Count Component 

As mentioned earlier, we estimated a panel mixed univariate NB modeling framework within each 

segment. Then the probability equation of the NB formulation can be rewritten as follow: 

𝑃𝑖𝑠(𝑦𝑖𝑟|𝑠) =  Γ (𝑦𝑖𝑟 + 1𝜆′)Γ(𝑦𝑖𝑟 + 1)Γ (1𝜆′) ( 11 + 𝜆′𝑣𝑖𝑟)1𝜆′ (1 − 11 + 𝜆′𝑣𝑖𝑟)𝑦𝑖𝑟
 

(45)  

where, 𝑃(𝑦𝑖𝑟) is the probability that TAZ 𝑖 has 𝑦𝑖𝑟 number of crashes for crash type r. 𝜆′ 
is NB over dispersion parameter and 𝑣𝑖𝑟 is the expected number of crashes occurring in 𝑖 over a 

given time period for crash type r. 𝑣𝑖𝑟 an be expressed as a function of explanatory variables using 

a log-link function as follows: 𝑣𝑖𝑟 = 𝐸(𝑦𝑖𝑟|𝒙𝑖𝑟) = 𝑒𝑥𝑝((𝜷 + 𝜽𝑖 + 𝝔𝑖𝑟)𝒙𝑖𝑟 + 𝜀𝑖𝑟) (46)  

where, 𝒙𝑖𝑟 is a vector of explanatory variables associated with observations 𝑖 for crash type 

r. 𝜷 is a vector of coefficients to be estimated.  𝜽𝑖 is a vector of unobserved factors moderating the 

influence of attributes in 𝒙𝑖𝑟 on the crash count propensity for TAZ i, 𝝔𝑖𝑟 is a vector of unobserved 

effects specific to crash type 𝑟. 𝜀𝑖𝑟 is a gamma distributed error term with mean 1 and variance 𝜆′. 
In estimating the model, it is necessary to specify the structure for the unobserved vectors 𝜽, 𝝔 

represented by Ψ. In this framework, it is assumed that these elements are drawn from independent 

normal distribution: Ψ~𝑁(0, (𝝅′𝟐, 𝜱𝟐 )). This 𝝔𝑖𝑟 will be same across crash types in our case and 

thus the unobserved heterogeneity across crash types will be captured. Moreover, 𝜽𝑖 term will 

capture the random effect across observations.  
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6.3.3 Model Estimation 

Thus, conditional on Ψ, the likelihood function for the latent segmentation based count model 

across TAZ can be expressed as 

𝐿𝑖 =  (∫ ∏ (∑ (𝑃𝑖(𝑦𝑖𝑟|𝑠)) × (𝑃𝑖𝑠)𝑆
𝑠=1 )𝑅

𝑟=1Ψ 𝑓(Ψ)𝑑Ψ (47)  

Finally, the log-likelihood function is:       

𝐿𝐿 = ∑ 𝐿𝑛(𝐿𝑖)𝑖  
(48)  

All the parameters in the model are estimated by maximizing the logarithmic function 𝐿𝐿 

presented in equation 48. The parameters to be estimated in the model are: 𝜽, 𝜚, 𝛷  𝑎𝑛𝑑  𝜋. To 

estimate the proposed model, we apply Quasi-Monte Carlo simulation techniques based on the 

scrambled Halton sequence to approximate this integral in the likelihood function and maximize 

the logarithm of the resulting simulated likelihood function across individuals (see (Bhat, 2001; 

Eluru et al., 2008) for examples of Quasi-Monte Carlo approaches in literature).The model 

estimation routine is coded in GAUSS Matrix Programming software (Aptech). 

 

6.4 Model Specification and Overall Measure of Fit 

As discussed earlier, out of 4,747 TAZs, 3,815 TAZs are randomly selected for model estimation 

and the remaining TAZs (932) are set aside for validation purpose. The number of count dependent 

variables (crash types) to be analyzed in the current study is six and so every TAZ is repeated six 

times recognizing that each repetition represents a different crash type (see chapter 4 for detail). 

Thus, the estimation sample has 22,890 (3,815*6) records and the validation sample has 5,592 

(932*6) data records. The empirical analysis involved a series of model estimations. First, we 
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estimated six separate independent NB model for six crash types to establish a benchmark for 

comparison. Second, we estimated a parsimonious model structure (Panel independent NB model) 

using the same independent model system while restricting the parameters across different crash 

types considered. To elaborate, we estimate a base effect for each exogenous variable that is 

common across the crash types and estimate deviations for each crash types relative to the base 

effect. If a deviation is insignificant, it concludes that there is no significant difference in effect for 

that particular variable between the base crash type and crash type for which the deviation was 

computed ((see chapter 4 for more details). Thus, the model estimated in such panel formulation 

results in fewer parameters. Third, we estimated a latent class version of the panel negative 

binomial (LPNB) model to capture the potential variation in the impact of exogenous variables. 

Fourth, within the Panel NB model and Latent panel NB model, we consider unobserved 

heterogeneity in terms of correlation (across the crash count dimensions) and random effect (within 

the crash count propensity). 

 

6.4.1 Determining Appropriate Number of Segments for Latent Models 

In case of the latent models, determining the appropriate number of segments is a critical issue 

with respect to interpretation and inferences. The estimation process for such latent class model 

begins with the independent model considering two segments. Then we continued adding 

additional segments until further addition does not enhance intuitive interpretation and data fit 

((Eluru et al., 2012). The decision regarding the optimal number of segments is taken considering 

criteria like Bayesian Information Criterion (BIC) as well as the interpretability and model 

parsimony. Specifically, we estimated independent latent NB model with different number of 

segments (2, 3…) and select the model with the lowest BIC value. Once, the independent latent 
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model is finalized with appropriate number of segments, we estimated the mixed version of the 

corresponding independent model. 

Within the latent independent Panel NB frameworks, we estimated two models including 

i) LPNB model with two segments and ii) LPNB model with three segments. The BIC values for 

these estimated models are: i) LPNB model with two segments is 80, 250.87 (log-likelihood is -

39,890.40 with 57 parameters) and ii) LPNB model with three segments is 80, 157.94 (log-

likelihood is -39,197.98 with 58 parameters). Based on the BIC value, we can observe that the 

three segments model provide improved data fit. However, the sample share of one of the segments 

for the three segments model represents only 5% of the TAZs and thus does not yield any 

interpretable segment characteristics. As a result, we did not proceed further in adding segments 

and select the model with two segments as the preferred model for the current analysis. From here 

on, we restrict ourselves to the discussion of only the LPNB model with two segments. 

 

6.4.2 Comparison Between Models 

In summary, we estimated total five models in two regimes: a) unsegmented models including: 1) 

Independent NB model; 2) Panel independent NB model (PNB); 3) Panel Mixed NB model 

(PMNB); and b) segmented model including: 4) Latent Panel Independent NB model with two 

segments (LPNB II) and 5) Latent Panel Mixed NB model with two segments (LPMNB II). 

Finally, we compare the unsegmented models with the latent segmentation based count models in 

order to assess the importance of accounting for population heterogeneity in estimating zonal level 

crash frequency models. The reader would note that all the models mentioned above are non-nested 

in nature and so, we employ the BIC measure for the comparison exercise.  
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The log-likelihood values at convergence for these estimated models are: 1) Independent 

NB model (68 parameters) is -39,954.90; 2) PNB (52 parameters) is -39,961.82; 3) PMNB (53 

parameters) is -39,235.75; and b) segmented model including: 4) LPNB II (57 parameters) is -

39,890.40 and 5) LPMNB II (57 parameters) is -39,352.26. The corresponding BIC values for 

these models are: 1) Independent NB model is 80,592.41; 2) PNB is 80,352.47; 3) PMNB is 

78,908.57; and b) segmented model including: 4) LPNB II is 80,250.87 and 5) LPMNB II is 

79,174.58. Based on the BIC values, several observations can be made. First, the PNB model that 

accounts for penalty for additional parameters provide improved data fit compared to the 

independent NB model. This supports our hypothesis that the impact of some variables may not 

differ across the crash types and through the recasting, we can have a parsimonious model system 

with improved parameter efficiency. Second, the segmented independent LPNB II model performs 

better relative to the PNB model. This result provides strong evidence in favour of our hypothesis 

that crash counts by different crash types can be investigated in a more efficient way through the 

segmentation of the TAZs. Third, models accommodating unobserved effects perform better than 

their corresponding independent models in both unsegmented (PMNB vs PNB) and segmented 

regimes (LPMNB II vs LPNB II) highlighting the importance of accommodating for unobserved 

heterogeneity in examining crash count by different crash types. Fourth, within the mixed models, 

the unsegmented model (PMNB) provides improved data fit relative to the segmented model 

(LPMNB II). Based on the results provide above, we can conclude that the segmented model is a 

preferred choice as long as the framework is estimated in a closed form structure (independent 

models that do not account for unobserved heterogeneity; no need for simulation). However, when 

we rely on simulation for capturing the unobserved effects, the unsegmented model outperforms 

its segmented counterparts.  
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6.5 Estimation Results 

This section offers a detailed discussion of exogenous variable effects on the crash count outcome 

for different crash types. Table 6.2 presents the model estimation results for the proposed Latent 

Panel Mixed NB model (LPMNB II). The estimation results of the PMNB model are presented in 

Table 6.3 for comparison. In discussing the model results, for the sake of brevity, we will restrict 

ourselves to the discussion of the LPMNB II model only. As discussed earlier, the latent models 

are comprised of two parts including segmentation component and segment specific count 

component. For the ease of presentation, we first present an intuitive discussion of the 

segmentation component followed by the segment specific count component by different variable 

groups.  

 

6.5.1 Segmentation Component 

6.5.1.1  Descriptive Characteristics of the Segments 

To delve into the segmentation characteristics, the model estimates are used to generate 

information on two criterion including: 1) percentage TAZ share across the two segments, and 2) 

expected mean of crash count events of different crash types within each segment (see (Eluru et 

al., 2012) for detail). Table 6.1 provides these estimates. From the estimates, it is clear that the 

likelihood of a TAZ being assigned to segment 1 is substantially higher than the likelihood of 

being assigned to segment 2 (0.74 vs 0.26). Further, the expected number of crash counts by 

different crash types conditional on their belonging to a particular segment offer contrasting results 

indicating that the two segments exhibit distinct crash risk profiles for different crash types in the 

current study. As evident form table 6.1, we can observe that relative to observed sample mean, 

the expected mean crash counts by different crash types is higher in segment 1 (except head -on) 
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while in segment 2, the expected mean is lower for every crash types except head-on crashes. 

Interestingly, we find that, segment 2 has higher risk for head-on crashes relative to segment 1. 

Based on overall results, it is clear that a TAZ, if allocated to segment 1 is likely to experience 

higher number of crashes by most of the crash types than if allocated to segment 2. Thus, we may 

label segment 1 as the “high risk segment” and segment 2 as the “low risk segment”.  

 

6.5.1.2  Segment Membership Component 

The latent segmentation component determines the relative prevalence of each segments, as well 

as the likelihood of a TAZ being allocated to one of the two segments based on some zonal level 

exogenous variables. In our analysis, we find that segment share is influenced by zonal level 

roadway and land use attributes. In particular, number of intersections, average outside should 

width, urban area and residential area in a zone affect the assignment of a TAZ to a segment. The 

first row panel of Table 6.2 represent the effect of these control variables. In the segmentation 

component, one of the segment must be the base for every variable for the sake of identification. 

In our current analysis, the high risk segment (segment 1) chosen to be the base and the coefficients 

presented in the table correspond to the propensity for being a part of the low risk segment 

(Segment 2). Thus, a positive (negative) sign for a variable in the segmentation component 

indicates that TAZs with the variable characteristics are more (less) likely to be assigned to the 

low risk segment relative to the high risk segment.  

The positive sign on the constant does not have any substantive interpretation and simple 

indicates the larger size of the low risk segment relative to the high risk segments.  From the 

estimated results, we can observe that higher number of intersections in a zone increase the 

likelihood of assigning the TAZ to the high risk segment while TAZ with wider shoulder width 
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have a higher probability to be allocated to the low-risk segment. TAZ with more urbanized area 

are more likely to be assigned to the high-risk segment. On the other hand, with increase in 

residential area, the likelihood of assigning the TAZ to low risk segment increases. Based on these 

results, we can argue that high risk segment consists of urbanized zone having higher number of 

intersection with narrow average outside shoulder and less residential area. On the other hand, 

zones within segment 2 are more likely to be characterized by rural area with less number of 

intersections, wider average outside should width and more residential area.  

 

6.5.2 Segment Specific Count Component 

The coefficients in Table 6.2 represent the effect of exogenous variables on the frequency 

component of each crash type within each segment. The reader would note that, within each 

segment, the variables in the crash count component of Table 6.2 with positive (negative) sign 

indicates that an increase in the variable is likely to result in more (less) crashes. In the subsequent 

sections, we provide a discussion of model results for different crash types by segment groups.  

 

6.5.2.1  High Risk Segments (Segment 1) 

The crash risk component for different crash types within the high risk segment (segment 1) is 

discussed in this section by variable groups. Within the high-risk segment, the impact of 

explanatory attributes within different groups are along expected lines.  

 

6.5.2.1.1 Crash Specific Constants:  

The crash specific constants represent the intercept of crash propensity after adding the various 

exogenous variables and do not have any substantive interpretation.   
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6.5.2.1.2 Roadway Characteristics:  

The results regarding the impact of proportion of arterial roads reveal that a TAZ with higher 

proportion of arterial roads is more likely to experience increased incidence of rear-end, angular 

and non-motorized crashes while the number of single vehicle crashes reduces. This is expected 

as single vehicle crashes usually occur on high speed roads while on arterial roads, drivers are 

restricted to operate at lower operating speed due to higher vehicular interactions. At the same 

time, the increased traffic interactions result in higher number of rear-end, angular crashes and non 

motorized crash ((Bhowmik et al., 2019b). Further, the estimated results show that TAZ with 

higher variance in speed limit results in higher number of rear-end, sideswipe and non-motorized 

crashes within the high risk segment. Interesting thing to note is that the influence of variance of 

speed limit is not different for the three crash types which support our hypothesis that the impact 

of some variables may not differ across the crash types. Traditional approaches in frequency 

modeling would have estimated three separate parameters for the three crash types while in our 

approach, a single parameter is adequate to accommodate for the impact of the variable (variance 

of speed limit).  

In terms of proportion of roads over or equal 55mph speed limits, we find contrasting results 

across different crash types within the high risk segment. For instance, the positive coefficient 

offered by the variable on rear-end , sideswipe and single vehicle crashes (same effect) indicates 

an increased likelihood of these crash types in a TAZ having higher percentage of roads over 

55mph speed limit. On the other hand, the estimated results show that TAZ with more high-speed 

roads (≥55mph) results in reduced incidence of angular, head-on and non-motorized crashes. The 

result is expected since high speed roads are usually straight (less curvature) with a divider or 



 

 

165 

median which eventually reduce the risk of angular and head-on crashes. Further, we found that 

the impact of the proportion of road over 55mph has significant variability on angular crashes 

(indicated by the standard deviation parameter) which implies that the overall impact is most likely 

to be negative (98%).  

 

6.5.2.1.3 Land-use Characteristics:  

Within the high risk segment, the only land use characteristic influencing crash risk by different 

crash types is the amount of office area in a zone. As evident from Table 6.2, we can see that office 

area is positively associated with rear-end, sideswipe and non-motorized crashes indicating a 

higher likelihood of these crash types in a TAZ with increased office areas. This variable basically 

reflects the presence of higher vehicular and non-motorist interactions and in turn, higher exposure 

for both road user groups. 

 

6.5.2.1.4 Built Environment Characteristics:  

In terms of built environment attributes, we considered a number of variables, among which only 

number of restaurants and shopping centers have significant impact on zonal level crash risks 

within the high risk segment. In particular, higher number of restaurant and shopping centers in a 

TAZ results in higher incidence of rear-end and sideswipe crashes perhaps due to the higher 

density of traffic volume for these zones.  With respect to non-motorized crashes, number of 

restaurants is found to be a significant determinant with a positive impact (see (Yasmin et al., 

2018a) for similar result). 
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6.5.2.1.5 Traffic Characteristics:  

The parameters associated with traffic characteristics offer expected results. The parameter 

associated with VMT proxies for traffic volume reveals a positive impact on angular, sideswipe, 

head-on and non-motorized crashes indicating a higher risk of such crashes in a TAZ with 

increased VMT. Interestingly, the study found no significant impact of the truck volume on any of 

the crash types within the high risk segment.  

 

6.5.2.1.6 Socio-demographic Characteristics:  

For socio-demographic attributes, we consider the number of non-motorists (walk/bike) and transit 

commuters in a zone serving as additional exposure measures for the crash risk model. As evident 

from table 6.2, our analysis shows that TAZ with increased number of non-motorist commuters is 

likely to experience increased number of rear-end, sideswipe, non-motorized and angular crashes. 

In fact, the reader would note that the magnitude of these impacts is same across the three crash 

types (rear-end, sideswipe and non-motorized) while a more profound impact is observed for the 

angular crashes. On the other hand, the likelihood of being involved in a rear-end and non-

motorized crashes increases with increasing share of transit commuters in a zone.  

 

6.5.2.1.7 Unobserved Common Factors:  

The final set of variables in Table 6.2 correspond to the potential correlation affecting zonal level 

crash counts by different crash types simultaneously. The reader would note that, in estimating the 

model, we found significant impact of two common unobserved components  including (1) 

common unobserved factors affecting rear-end and non-motorized crashes and (2) common 

unobserved factors affecting angular, sideswipe and all single vehicle crashes. Overall, the results 
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clearly indicates the presences of common unobserved heterogeneity across different crash types 

within the high risk segment.   

 

6.5.2.2 Low Risk Segments (Segment 2) 

The crash risk component for different crash types within the low risk segment (segment 2) is 

discussed in this section by variable groups. Similar to the high-risk segment, the effect observed 

for different attributes on different crash types are also intuitive in the low risk segment.  As evident 

form table 6.2, we can see that the crash count propensity for different crash types for the “low 

risk” segment provides variable impacts that are significantly different, in magnitude (for a few 

variables), from the impacts offered by the exogenous variables in “high risk” segment. 

Additionally, the number of variables influencing the zonal level crash frequency by different 

crash types are significantly lower in the low risk segment relative to the high risk segment which 

further highlights the difference between the two segments.  

 

6.5.2.2.1 Crash Specific Constants:  

Similar to the high risk segment, the crash specific constants in the low risk segments also represent 

the intercept of crash propensity after adding the various exogenous variables and do not have any 

substantive interpretation.  As expected, we can observe   

 

6.5.2.2.2 Roadway Characteristics:  

As in the high risk segment, proportion of arterial roads offers a negative influence on single 

vehicle crashes in the low risk segment also (same reasoning as segment 1) though the magnitude 

is much higher in the low risk segment. One possible explanation can be attributed to the fact that 
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segment 2 consists of zone with wider outside average shoulder width. Outside shoulder width in 

a road reflects the extra margin of safety for vehicular maneuvers and thus reduce the potential for 

single vehicle crashes. Further, the parameter associated with signal intensity offers contrasting 

effects on different crash types. While an increase in the variable positively influence the rear-end, 

sideswipe and non-motorized crashes, a negative associated is observed for single vehicle crashes. 

This is intuitive as with more signals on the road, the traffic density increases thus results in 

increased conflicts between vehicles to vehicles and vehicles to non-motorists. At the same time, 

these conflicts result in lower operating speed which in turn reduce the potential for single vehicle 

crashes. Interesting thing to note is that the influence of signal intensity is not different for the 

three crash types (rear-end, sideswipe and non-motorized) which again lends support to our 

hypothesis that the impact of some variables may not differ across the crash types.  

Similar to the segment 1, variance of speed limit reflects a same positive impact on rear-

end, sideswipe and non motorized crashes in segment 2, but the impact is more profound in the 

second segment. Further our analysis shows that TAZ with higher proportion of high-speed roads 

(≥55mph) is more likely to experience increased number of single vehicle crashes relative to other 

zones in the low risk segment. Relative to segment 1, the effect (magnitude) is less in the low risk 

segment. In addition, we found that proportion of road over 55mph has significant variability 

specific to single vehicle crashes as indicated by the standard deviation parameter. The reader 

would note that the distributional parameter indicates that the overall impact of the variable on 

single vehicle crashes is likely to be positive (84%). In terms of proportion of road with separate 

median, the variable is found to have the same positive effect on rear-end, angular and sideswipe 

crashes while a negative coefficient is observed for head-on crashes. Separated median such as 

guardrail on a road provide additional safety margin to a vehicle from colliding with the opposite 
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direction traffic thus reduce the risk for head-on crashes. At the same time, vehicle hitting the 

guardrail have a higher likelihood of colliding with same direction traffic and hence the positive 

impact is also intuitive.  

 

6.5.2.2.3 Land-use Characteristics:  

For low risk segment, none of the variables within land use characteristics are found to significantly 

influence zonal level crash counts of any crash types in the current study context. 

 

6.5.2.2.4 Built Environment Characteristics:  

Similar to the land use attributes, we did not find any variable specific to build environment 

characteristics to significantly affect the zonal level crash counts of different crash types in the low 

risk segment.  

 

6.5.2.2.5 Traffic Characteristics:  

Unlike the high risk segment, we did not find any significant impact of VMT on any crash types. 

In terms of traffic characteristics, the only variable influencing the crash counts of different crash 

types in the low risk segment is the truck VMT. Truck VMT serves as a surrogate for exposure for 

truck volume. As expected, truck VMT is found to positively influence the rear-end and all single 

vehicle crash propensity indicating a higher risk of getting involved in rear-end and all single 

vehicle specific crashes with increased exposure to truck volume.  
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6.5.2.2.6 Socio-demographic Characteristics:  

With respect to socio-demographic characteristics, we find that increased presence of transit 

commuters are associated with higher risk of rear-end and non-motorized crashes in the low risk 

segment (same as high risk segment). However, the magnitude of the impact of the variable is 

more pronounced in the low risk segment.  

 

6.5.2.2.7 Unobserved Common Factors: 

Within the low risk segments, we found the presence of common unobserved factors affecting 

angular, sideswipe and all single vehicle crashes simultaneously. Unlike high risk segments, we 

did not find any other common factors between rear-end and non motorized crashes.  

 

6.6 COMPARISON EXERCISE 

6.6.1 Predictive Performance 

In an effort to assess the predictive performance of the estimated models, we compute several 

goodness fit of measures at disaggregate level including MPB (Mean prediction bias), MAD (mean 

absolute deviation), MAPE (mean absolute percentage error), RMSE (Root mean square error) 

and predictive log-likelihood (see chapter 4 for a discussion on estimating these measures). 

Specifically, we employ these measure on two datasets: 1) in-sample dataset: for the records used 

in the model estimation (sample size = 3,815 TAZs) and 2) holdout sample: records that are set 

aside for validation analysis (sample size = 932 TAZs). The reader would note that model with 

lower value of predictive measures and higher value of predictive log-likelihood will reflect better 

performance in terms of prediction and statistical fit relative to the observed data. Table 6.4 
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presents the values of these measures for PMNB and LPMNB models for both in-sample and 

holdout-sample measures.  

Several observations can be made based on the measures presented in Table 6.4. First, a 

total of 70 prediction measures are estimated considering six crash types and total crash counts in 

both estimation and validation sample. Out of these 70 measures, LPMNB model provide 

improved predictive performance for most of the measures (52). Second, whenever PMNB model 

performs better, the differences are very marginal. For example, the RMSE value estimated for 

sideswipe crashes form PMNB model is 4.171 (for estimation sample) while LPMNB model 

provides a RMSE value of 4.216. On the other hand, for rear-end, the RMSE value found from 

PMNB is 38.098 (for estimation sample) whereas for LPMNB, it is only 18.682. This clearly 

highlights the improved predictive power of the segmented model over its’ unsegmented 

counterpart. Third, with respect to predictive log-likelihood, again LPMNB model performs better 

in most of the crash types (10 out of 14). The reader would note that, there is a difference between 

estimated and predicted log-likelihood. When we estimate our model considering correlation and 

unobserved effects, for every observation unit (TAZ), we get a joint probability and hence estimate 

the log-likelihood. However, in terms of prediction, our objective is to compare performance 

across crash types and not across the overall joint likelihood. Though PMNB model provides 

improved data fit in terms of model estimation (estimated log-likelihood, discussed in section 

4.1.2), it falls short in prediction (based on predictive log-likelihood). In summary, the resulting 

goodness of fit measures and predictive log-likelihood offer by the LPMNB model clearly 

highlight its improved performance over the PMNB model.  
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6.6.2 Elasticity Effects 

The parameters of the exogenous variables in Table 6.2 do not directly provide the exact magnitude 

of the effects of variables on the zonal level crash counts across different crash types. However, it 

might be possible that the effects (exact magnitude) of some attributes could differ considerably 

across the two frameworks. To evaluate this, we compute aggregate level elasticity effects for both 

PMNB and LPMNB models. In particular, we estimate the percentage change in the expected 

zonal level crash counts for every crash types in response to the increase of the explanatory variable 

by 10% (see Eluru and Bhat, 2007 for a discussion on the methodology for computing elasticities). 

For this purpose, we identify a subset of exogenous variables including proportion of arterial roads, 

variance of speed limit, proportion of roads over 55mph, proportion of roads with separated 

median and number of transit commuters in a zone. Further, for the LPMNB model, we estimate 

the aggregate level elasticities for the overall sample as well as for each segment separately to 

emphasize policy repercussions based on most critical contributory factors. For the overall sample, 

we took the segmentation probabilities into consideration. Table 6.5 provides a detailed 

documentation of the elasticities effect across the crash types for both PMNB and LPMNB models. 

Several observations can be made based on the elasticity effects presented in Table 6.5. 

First, from the elasticity effects presented in table 6.5, we can clearly see some significant 

differences across two segments for some variables which highlights the importance of allowing 

for population heterogeneity in examining aggregate level crash counts across different crash 

types. For instance, due to the 10% increase in proportion of arterial roads, the expected mean of 

single vehicle crashes will reduce by 0.97% in the high risk segment whereas the effect is more 

significant in low risk segment with a reduction rate of 1.66%. Such differences can also be 

observed for other variables including variance of speed limit on rear-end, angular and sideswipe 
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crash counts; proportion of roads over 55mph on single vehicle crashes; and number of transit 

commuters on rear-end and non-motorized crashes. Second, interestingly, with respect to the 

variables present in both segments, TAZs assigned to low risk segment have higher elasticities 

relative to the high risk segment.  Third, in terms of comparison across the two models adopted in 

the study, we found substantial differences in elasticities.  For example, for the transit commuter 

variable, the PMNB model predicts an increase of 6.45% in expected mean for rear end crashes 

while LPMNB model predicts 4.39%. Similarly, with 10% increase in the proportion of road over 

55mph speed, PMNB model predicts an 0.88% increase in expected mean for single vehicle 

crashes whereas we found an increase of about 1.16% from LPMNB model. This, it is evident that 

allowing for the population heterogeneity in both observed and unobserved factors provides more 

accurate representation of the variable impacts. 

 

6.7 Summary 

The current chapter extends the previous work of presented in chapter 4 by introducing the latent 

class version of the panel negative binomial (PNB) model to capture the potential variation in the 

impact of exogenous variables while also explicitly accommodating for unobserved heterogeneity 

through random parameters and error correlations. Further, we undertake a comparison exercise 

of the proposed LPNB model with its’ traditional counterpart PMNB model proposed in chapter 4 

in order to assess the importance of accounting for population heterogeneity in estimating zonal 

level crash frequency models. 

Based on the statistical data fit, we can conclude that the segmented model is a preferred 

choice as long as the framework is estimated in a closed form structure (independent models that 

do not account for unobserved heterogeneity; no need for simulation). However, when we rely on 
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simulation for capturing the unobserved effects, the unsegmented model outperforms its’ 

segmented counterparts. In an effort to assess the predictive performance of the estimated models, 

we compute several goodness fit of measures at disaggregate level including MPB, MAPE, RMSE 

and predictive log-likelihood for a discussion on estimating these measures). The resulting 

goodness of fit measures and predictive log-likelihood offer by the LPMNB model clearly 

highlight its improved performance over the PMNB model. Further, we compute aggregate level 

elasticity effects for both PMNB and LPMNB models to quantify whether the effect of variables 

significantly differs across the two frameworks. From the elasticity effects, we can clearly see 

substantial differences in elasticities which proves our hypothesis that allowing for the population 

heterogeneity in both observed and unobserved factors provides more accurate representation of 

the variable impacts.  
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Table 6.1 Segment Characteristics for LPMNB model 

Crash Type Observed 
Segment 1 

(0.74) 

Segment 2 

(0.26) 
Overall  

Rear-end 10.934 13.183 5.899 11.757 
Angular 4.176 4.820 1.770 4.216 
Sideswipe 2.687 2.791 1.799 2.616 
Single Vehicle 2.390 2.489 1.986 2.361 
Head-on 0.334 0.301 0.466 0.338 
Non-motorized 0.712 0.869 0.239 0.755 
Overall 3.539 4.075 2.027 3.674 
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Table 6.2 LPMNB Model Results 

Segment Component 

Variables Segment 1 Segment 2 

Constant -- -- 1.532 11.898 
Number of intersections -- -- -0.660 -14.394 
Average outside shoulder width -- -- -0.534 -21.139 
Urban Area (acre) -- -- 0.897 13.163 
Residential area -- -- 0.056 2.932 

Crash Count Component 

Crash Specific Characteristic 

Rear-end -0.171 -3.372 -3.298 -13.797 
Angular -1.654 -27.320 -4.363 -13.680 
Sideswipe -0.325 -6.400 -4.225 -11.594 
Single Vehicle -0.345 -8.048 -3.185 -14.410 
Head-on -2.882 -18.544 -4.227 -12.654 
Non-motorized -2.040 -15.908 -5.338 -14.331 

Roadway Characteristic 

Proportion of arterial roads     
Rear-end+angular+NMT 0.166 4.933 -- -- 
All single vehicle -0.260 -4.087 -0.472 -3.312 

Signal Intensity     
Rear-end+sideswipe+NMT -- -- 2.350 3.479 
Single vehicle -- -- -1.760 -1.686 

Variance of speed limit     
Rear-end+sideswipe+NMT 0.036 5.167 0.133 5.244 

Road length over 55mph     
Rear-end+sideswipe 0.846 12.212 -- -- 
Angular -2.058 -11.470 -- -- 

Standard Deviation 0.452 1.904 -- -- 
Single vehicle 0.846 12.212 0.753 2.921 

Standard Deviation -- -- 0.930 3.149 
Head-on -2.103 -4.559 -- -- 
Non-motorized -1.900 -6.312   

Roads with separated median     
Rear-end+angular+sideswipe -- -- 0.925 6.286 
Head-on -- -- -0.276 -1.138 

Land Use Characteristic 

Office area (acre)     
Rear-end+sideswipe 0.195 20.947 -- -- 
Non-motorized 0.169 6.687 -- -- 

Built Environment Characteristic 



 

 

177 

Number of restaurants     
Rear-end+sideswipe 0.192 13.919 -- -- 
Non-motorized 0.190 6.635   

Number of shopping centers     
Rear-end+sideswipe 0.034 2.676 -- -- 

Traffic Characteristic 
VMT     

Angular+sideswipe 0.147 45.205 -- -- 
Head-on 0.171 10.550 -- -- 
Non-motorized 0.102 8.365   

Truck VMT     
Rear-end -- -- 0.418 14.386 
Single vehicle -- -- 0.554 21.272 

Socio-economic Characteristic 
Non-motorist commuter     

Rear-end+sideswipe+NMT 0.076 3.924 -- -- 
Angular 0.170 8.790   

Transit commuter -- -- -- -- 
Rear-end+ Non-motorized 0.217 11.883 0.576 8.584 

Over Dispersion Parameter 
Rear-end 0.279 9.521 0.965 11.865 
Angular 0.190 7.825 1.512 3.064 
Sideswipe 0.284 8.294 0.965 11.865 
Single Vehicle 0.726 17.746 0.115 1.554 
Head-on 0.190 7.825 1.512 3.064 
Non-motorized 0.279 9.521 0.965 11.865 

Correlations 
Rear-end+NMT 0.679 23.659 -- -- 
Angular+sideswipe+single vehicle 0.840 34.284 1.245 7.913 
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Table 6.3 PMNB Model Results   

Variables (np) 
Rear-End Angular Sideswipe Head-on Single vehicle Non-motorized 

Estimate t-stat Estimate t-stat Estimate t-stat Estimate t-stat Estimate t-stat Estimate t-stat 

Constant (6) -0.930 -13.685 -1.623 -20.072 -2.590 -22.568 -3.499 -23.345 -0.747 -15.927 -3.016 -19.626 

Roadway Characteristics 

Proportion of 
arterial roads (2) 

0.158 4.732 0.158 4.732 -- -- -- -- -0.287 -5.422 0.158 4.732 

Number of 
intersections (1) 

-- -- 0.359 14.033 -- -- 0.359 14.033 -- -- 0.359 14.033 

Signal intensity (3) 0.716 3.347 -- -- -0.494 -1.828 -- -- -0.443 -2.693 0.716 3.347 

Road length over 
55mph (5) 

0.422 5.047 -1.599 -8.872 0.422 5.047 0.866 6.410 -1.098 -4.575 -1.135 -4.580 

Standard 
deviation 

-- -- 0.703 2.171 -- -- -- -- -0.509 -2.253 -- -- 

Variance of Speed 
(2) 

0.038 5.079 0.038 5.079 0.070 5.021 -- -- -- -- -- -- 

Roads with 
separated median 
(2) 

0.204 7.758 0.204 7.758 0.204 7.758 -0.108 -1.516 -- -- -- -- 

Average outside 
shoulder width (4) 

-0.252 -7.489 -0.428 -9.693 -0.530 -10.186 -0.252 -7.489 -0.118 -3.221 -- -- 

Traffic Characteristic 

VMT (4) -- -- 0.1219 11.19 0.2392 18.689 0.1546 9.292 -- -- 0.0182 1.800 

Truck VMT (2) 0.1909 19.089 -- -- -- -- -- -- 0.2708 34.334 -- -- 

Land-use attributes 

Urban area (4) 0.156 20.876 0.156 20.876 0.142 9.762 0.106 4.882 -- -- 0.115 5.284 

Office area (2) 0.163 18.620 -- -- 0.163 18.620   -- -- 0.164 6.635 

Residential area (1) -- -- -- -- -0.077 -7.218 -0.077 -7.218 -- -- -- -- 

Built environment characteristic 

No. of restaurants 
(3) 

0.3082 13.34 -- -- 0.1091 4.297 -- -- -- -- 0.2568 9.068 

No. of shopping 
centers (1) 

0.029 2.029 -- -- 0.029 2.029 -- -- -- -- -- -- 
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Socio-demographic characteristics 

Non-motorists (3) 0.070 3.408 0.148 6.956 0.164 6.505 -- -- -- -- 0.070 3.408 

Transit users (1) 0.239 13.596 -- -- -- -- -- -- -- -- 0.239 13.596 

Over dispersion (6) 0.396 31.904 0.384 14.952 0.396 31.904 0.384 14.952 0.700 22.059 0.396 31.904 

Unobserved Effects 

Correlation 1 (1) 0.741 33.753 -- -- -- -- -- -- -- -- 0.741 33.753 

Correlation 2 (1) -- -- 0.936 40.216 0.936 40.216 0.936 40.216 -- -- -- -- 

*np= number of parameters estimated for each variable from a possible set of six (six crash types) 
--= attribute insignificant at 90% confidence level 
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Table 6.4 Predictive Performance Measure of Two Models (PMNB and LPMNB) 

Dataset Crash Type 
MPB MAD MAPE RMSE 

Predicted  

Log-likelihood 

PMNB* LPMNB PMNB LPMNB PMNB LPMNB PMNB LPMNB PMNB LPMNB 

In-Sample 
Measures 

(3,815 
TAZs) 

Rear-end -0.312 -0.823 8.519 7.741 3.077 2.980 38.098 18.682 -11113.5 -11087.6 
Angular 1.148 -0.040 3.126 3.445 1.892 1.010 5.834 5.769 -8645.03 -8635.75 
Sideswipe 0.868 0.071 2.028 2.210 0.861 0.697 4.171 4.216 -6744.93 -6747.99 
Single Vehicle 0.062 0.029 1.809 1.866 1.547 0.333 2.903 3.070 -7098.68 -7074.95 
Head-on 0.107 -0.004 0.429 0.494 0.089 0.153 0.990 1.001 -2584.61 -2596.1 
Non-motorized 0.077 -0.043 0.680 0.699 0.067 0.133 1.360 1.203 -3761.8 -3756.02 
Overall 1.950 -0.809 16.590 16.454 7.533 5.306 38.912 20.296 -39948.5 -39898.4 

Hold-out 
sample 

Measures 
(932 

TAZs) 

Rear-end -0.615 1.833 19.694 14.999 2.144 4.161 74.047 34.174 -3783.87 -3758.93 
Angular 4.660 3.311 6.046 5.856 3.274 0.925 10.048 9.627 -3086.49 -3072.68 
Sideswipe 3.287 2.167 4.173 4.079 2.241 0.616 7.292 7.214 -2628.16 -2662.63 
Single Vehicle 1.195 1.261 2.513 2.594 1.661 0.747 3.979 4.156 -2271.89 -2259.24 
Head-on 0.151 0.053 0.515 0.555 0.038 0.101 0.769 0.768 -828.111 -833.142 
Non-motorized 0.177 -0.010 1.186 1.172 0.402 0.085 2.308 1.949 -1405.31 -1402.91 
Overall 8.855 8.615 34.129 29.254 9.760 6.635 75.225 36.527 -14003.8 -13989.5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

181 

Table 6.5 Elasticity Effects Across Two Models (PMNB and LPMNB) 

Variables Models 
Crash Types 

Rear-end Angular Sideswipe Single Vehicle Head-on Non-motorized 

Arterial 
Roads 

LPMNB 

Segment 1 0.800 0.735 0.000 -0.974 0.000 0.787 

Segment 2 0.000 0.000 0.000 -1.655 0.000 0.000 

Overall 0.736 0.704 0.000 -1.110 0.000 0.752 

PMNB 0.859 0.753 0.000 -1.093 0.000 0.816 

Variance 
LPMNB 

Segment 1 1.178 1.061 1.171 0.000 0.000 0.000 

Segment 2 5.036 5.056 5.032 0.000 0.000 0.000 

Overall 1.556 1.315 1.539 0.000 0.000 0.000 

PMNB 1.343 1.331 1.409 0.000 0.000 0.000 

Speed 
≥55mph 

LPMNB 

Segment 1 0.824 -1.137 0.886 1.115 -1.184 -0.906 

Segment 2 0.000 0.000 0.000 1.349 0.000 0.000 

Overall 0.640 -0.954 0.684 1.163 -0.826 -0.782 

PMNB 0.246 -0.769 0.322 0.887 -0.615 -0.465 

Road with 
Median 

LPMNB 

Segment 1 0.000 0.000 0.000 0.000 0.000 0.000 

Segment 2 7.754 7.776 7.793 0.000 -1.703 0.000 

Overall 0.741 0.443 0.716 0.000 -0.342 0.000 

PMNB 1.623 1.469 1.590 0.000 -0.723 0.000 

Transit 
Commuter 

LPMNB 

Segment 1 3.404 0.000 0.000 0.000 0.000 3.352 

Segment 2 14.668 0.000 0.000 0.000 0.000 14.586 

Overall 4.387 0.000 0.000 0.000 0.000 4.021 

PMNB 6.450 0.000 0.000 0.000 0.000 6.310 
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CHAPTER 7: CONCLUSIONS 

Road traffic crash related morbidity and mortality is acknowledged to be a global challenge. In 

reducing the burden of such unavoidable incidents, safety researchers are investigating approaches 

for crash occurrence reduction and crash consequence mitigation. A major analytical tool 

employed for examining the critical factors influencing crash occurrence include the econometric 

crash frequency models. The traditional modeling framework for crash frequency analysis is the 

univariate frequency model such as Poisson and Negative binomial model. However, these 

approaches do not account for the common unobserved factors affecting the multiple dependent 

variables for the same observational unit. Recognizing this drawback, several research efforts have 

developed frameworks that accommodate for the influence of these common unobserved factors 

referred to as multivariate modeling approaches. However, there are still several methodological 

challenges associated with such existing models suggesting continual needs to develop advanced 

econometric framework to address these gaps.  

In this context, the current dissertation contributes towards addressing the methodological 

challenges in crash frequency analysis for analyzing multiple crash frequency variables for the 

same study unit by proposing advanced econometric approaches. The first objective of the 

dissertation contributes to safety literature by conducting a comparison exercise between the two 

major streams of multivariate approaches - (1) simulation-based approach and (2) analytical closed 

form approach - for analyzing the crash counts considering different crash types. In the second 

objective of the dissertation, we propose an alternative and mathematically simpler approach for 

analyzing multiple crash frequency variables for the same study unit by recasting a multivariate 

distributional problem as a repeated measures univariate problem. The recasting allows us to 
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estimate parsimonious model systems thus improving parameter estimation efficiency. The third 

objective of the dissertation contributes to burgeoning econometric and safety literature by 

developing a joint modeling approach that can accommodate for several dependent variables 

within a parsimonious structure. By recasting the analysis levels for dependent variables, the 

proposed approach allows for flexible consideration of crashes by type and severity within a single 

framework. The final objective of the dissertation contributes to literature on crash frequency 

analysis by accommodating population heterogeneity in the impact of exogenous variables. The 

empirical analysis is based on traffic analysis zone (TAZ) level crash count data for both motorized 

and non-motorized crashes from Central Florida for the year 2016. A comprehensive set of 

exogenous variables including roadway, built environment, land-use, traffic, socio-demographic 

and spatial spillover characteristics are considered for the analysis.  

The proposed contributions are organized along four parts. The rest of the chapter is 

organized as follows. Section 7.1 through 7.4 discusses the substantive and methodological 

contributions of the dissertation for each objective examined in the dissertation. Section 7.6 

concludes the dissertation by discussing the limitations of the dissertation and offering directions 

for future research. 

 

7.1 Exploration of Analytical, Simulation and Combined Model Structures 

The most common approach employed to address the correlation across multiple frequency 

dependent variables in existing safety literature is the development of multivariate frameworks. 

These multivariate approaches can broadly be classified along two major streams: (1) simulation-

based approaches and (2) analytically closed-form based approaches. The main difference between 

these two streams lies in how the dependency across dimensions is captured. In the simulation-
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based models, probability computation requires integrating the probability function over the error 

term distribution and the exact computation is dependent on the distributional assumption due to 

the inherently unobserved nature of the error term. Thus, the accuracy of the simulation-based 

approach is affected by number of dimensions as well as number of draws considered for the 

function evaluation. On the other hand, in the closed-form regime, the propensity equations for 

frequency dimensions are tied together by analytical multivariate distributional assumptions. 

Though the likelihood function is complicated in the closed-form approach, but once programmed, 

these frameworks are less prone to error. 

In our research, we compare the performance of the simulation-based framework with 

closed-form copula-based frameworks. In addition, we build on the closed-form copula based 

frameworks to incorporate unobserved heterogeneity associated with variable impacts on crash 

types (random parameters). The proposed model system is compared with the simulation based 

and analytical multivariate models. The comparison exercise is undertaken with the univariate 

models following negative binomial model structure. Within the copula framework, we estimate 

models for four copula structures: (1) Frank, (2) Gumbel, (3) Clayton and (4) Joe which cover a 

wide range of dependency structures, including radial symmetry and asymmetry, and asymptotic 

tail independence and dependence. The empirical analysis is based on the traffic analysis zone 

(TAZ) level crash count data for both motorized and non-motorized crashes from Central Florida 

for the year 2016. The models were estimated employing a comprehensive set exogenous variable 

including roadway, built environment, land-use, traffic, socio-demographic characteristics and 

spatial spillover effects. The model fit measures clearly highlight that the RPCC (random 

parameter Clayton copula)  model outperforms simulation-based RPMNB model. The comparison 

exercise was further augmented by generating a host of comparison metrics for both estimation 
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sample and hold-out sample. In an effort to further assess the predictive performance of the 

estimated models, an in-depth comparison for different count events across different crash types 

and correct classification analysis are carried out. The estimated results further reinforce the 

superiority of the RPCC-based multivariate approach. The RPCC based copula model is also 

employed to generate hot and cold zone categorization of TAZs in the Central Florida region to 

identify potential vulnerable zones by crash type.  

The proposed model results offer insights on important variables affecting crash frequency 

by crash types (road user and location for the current study context). The macro-level model 

outcomes can be used to devise safety-conscious decision support tools to facilitate a proactive 

approach in assessing medium and long-term policy-based countermeasures. Moreover, with the 

spatial illustration, high risk zones for every crash type can be easily identified and thus help the 

planners in enhancing safety for these high crash risk zones. 

 

7.2 Panel Mixed Approach to Modeling Crash Frequency by Crash Types 

The most common approach employed to address correlation across multiple crash frequency 

dependent variables in safety literature is the development of simulation-based multivariate 

frameworks. However, with higher dimensions, the multivariate model estimation infrastructure 

can get computationally demanding in terms of the number of observed and unobserved parameters 

to estimate. In this context, our proposed research attempts to contribute to simulation-based 

multivariate approaches by altering how the multiple dependent variables are analyzed. 

Specifically, instead of considering the crash frequency by crash type as a multivariate distribution, 

we represent it as a repeated measures of crash frequency while recognizing that each repetition 

represents a crash type specific to a zone. Thus, in this process we cast a multivariate distribution 
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as a univariate distribution with repeated measures. The recasting allows us to estimate 

parsimonious model systems as well as simplify the specification process. This simplification 

leading to parsimonious specification can reduce the computational time for estimating parameters 

associated with unobserved factors. To the best of authors’ knowledge, this study is the first of its 

kind to simplify current modeling infrastructure for multivariate analysis in safety literature. 

In our current research effort, a simple random parameter based univariate model code was 

employed to analyze zonal level crash counts for different crash types including rear-end, angular, 

sideswipe, all single vehicle, other multiple vehicle and non-motorized crashes. The empirical 

analysis was based on the traffic analysis zone (TAZ) level crash count data from Central Florida 

for the year 2016. A host of exogenous variables including roadway, built environment, land-use, 

traffic and sociodemographic characteristics were considered in the current research effort. A 

comprehensive comparison of the proposed model with the most commonly used multivariate 

negative binomial (NB) model was conducted. The comparison exercise based on the BIC value 

clearly highlighted the superiority of the proposed approach over the traditional multivariate 

formulation in terms of data fit. The comparison exercise was further augmented by generating 

several predictive measures for both estimation and holdout samples.  Based on the resulting fit 

measures, the study concludes that the proposed formulation has offered equivalent predictions 

relative to the most traditional multivariate NB model even though there is a significant difference 

in the number of parameters within these two frameworks (61 vs 92). Further, we compute 

aggregate level elasticity effects for both PMNB and RPMNB models to quantify whether the 

effect of variables significantly differs across the two frameworks. For this purpose, we identify a 

subset of exogenous variable including proportion of arterial roads, length of divided roads, 

proportion of roads over 55mph, institutional areas and number of non-motorist commuters. The 
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elasticity results clearly indicate that for most of the variables, the effects are quite similar for both 

models across different crash types. However, for some variables, we found some significant and 

substantial differences in the elasticity effects across the two frameworks for some crash types. 

Such differences could be attributed to the non-linearity embedded within the two model structures 

estimated with similar data fit.  

The current research effort contributes to literature on crash frequency analysis by 

suggesting an alternative and mathematically simpler approach for analyzing multiple crash 

frequency variables for the same study unit. Specifically, the proposed framework while 

simplifying the model estimation process, allows for parsimonious specification without 

compromising the model explanatory power and provides similar performance (predictions) as the 

currently employed multivariate NB model. In conclusion, the aim of the proposed scheme is to 

augment the inventory of crash frequency models with an alternative formulation and serves as a 

viable approach to reduce the parameter explosion that is common within a multivariate NB model 

with large number of dependent variable dimensions. 

 

7.3 Econometric Approach for Modeling Crash Counts by Crash Type and Severity 

Despite the distinct injury severity profile, there is limited adoption of research modeling severity 

frequency or proportion considering different crash types. The main challenge is with the number 

of dependent variables as accommodating unobserved heterogeneity for such large number of 

dimensions is substantially burdensome. The probability evaluation with high dimensional 

integrals is potentially affected by several challenges including - requirements of generating high 

dimensionality of random numbers, empirical identification issues due to relatively flat objective 

functions in larger dimensions and longer computational run times.  In this context, the proposed 
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research contributes to burgeoning econometric and safety literature by developing a joint 

modeling approach that can accommodate for a large number of dependent variables (considering 

crash types and severities) within a parsimonious structure. With respect to crash type specific 

component, instead of considering the crash frequency by crash type as a traditional multivariate 

distribution, we recasted it as a repeated measures of crash frequency while recognizing that each 

repetition represents a crash type specific to a zone. At the same time, for the severity component, 

as opposed to modeling the count events, count proportions by different severity level for a study 

unit were examined. Finally, we developed a joint model to tie the two components in a single 

integrated framework while accommodating unobserved heterogeneity across and within the two 

components (crash frequency and crash severity proportions by types).  

In our current research effort, we employed a Panel mixed Negative Binomial- Generalized 

Ordered Probit Fractional Spilt (PM-NB-GOPFS) model where the first component (NB) 

accommodated for crash frequency by crash type and the later component (GOPFS) studied the 

fraction of severity outcome for different crash types. The empirical analysis was conducted using 

the zonal level crash count data for the year 2016 from Central Florida while considering a 

comprehensive set of exogenous variables including roadway, built environment, land-use, traffic 

and sociodemographic characteristics. The empirical analysis involved a series of model 

estimations including: 1) Independent NB-GOPFS model; 2) Panel NB-GOPFS model without 

unobserved component parameters; and 3) Joint Panel NB-GOPFS model with unobserved 

heterogeneity. The comparison exercise, based on the Bayesian Information Criterion (BIC )value 

highlighted the superiority of the proposed framework that accounts for penalty for additional 

parameters (model 2 and 3) and within the proposed approach, the model considering unobserved 

heterogeneity (model 3) outperformed its’ counterpart (model 2).  
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The analysis was further augmented by undertaking a prediction exercise using the final 

model parameter estimates. One of the major advantage of the proposed framework is that in a 

single econometric framework, we can predict severaldimensions including total crash counts, 

total crash counts by crash types, crash proportions for each severity level, crash counts for each 

severity level and finally, proportions and counts of crashes for each crash type by severity. In 

evaluating the predictive performance, we compute the errors (MAD and MAPE) across all the 

aforementioned dimensions. Specifically, we compute MAD at a disaggregate level by generating 

measures at the study unit level (TAZ).  On the other hand, MAPE measures are generated at an 

aggregate level where we estimate the number and proportion of crashes for corresponding 

dimension (crash types, severities) and predict the TAZ shares for different count and proportion 

alternatives and compared it with the observed shares. The prediction results clearly indicated that 

the joint model for crash counts and severity proportions by crash type performed adequately (for 

both in-sample and validation samples) under consideration. 

In summary, the current study contributes to safety literature both methodologically and 

empirically. Methodologically, we developed a joint framework analysing 24 dependent variables 

(6*4 from 6 crash types and 4 severities).  Empirically, by increasing the dimensionality of the 

dependent variable, the proposed approach allows for flexible consideration of crashes by type and 

severity within a single framework. Further, the proposed model results offer insights on important 

variables affecting crash frequency and severity for different crash types. Such macro-level model 

outcomes can be used to devise safety-conscious decision support tools to facilitate proactive 

approach in assessing medium and long-term policy-based countermeasures. 
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7.4 Accommodating Population Heterogeneity Within A Panel Model Framework  

The literature clearly highlights the prevalence of multivariate model frameworks in safety 

literature. However, there are some major challenges associated with the existing multivariate 

approach in estimating observed and unobserved effects. To that extent, our current study 

contributes to crash frequency literature both methodologically and empirically by estimating a 

latent segmentation-based Panel Negative Binomial (LPNB) to study the zonal level crash counts 

across different crash types. The fourth objective of the dissertation extends the previous work 

presented in objective two by introducing the latent class version of the panel negative binomial 

(PNB) model to capture the potential variation in the impact of exogenous variables while also 

explicitly accommodating for unobserved heterogeneity through random parameters and error 

correlations. The latent segmentation scheme is appealing for multiple reasons including: (1) it 

ensures that the parameters are estimated employing the full sample for each segment while 

employing all data points for model estimation; (2) provides valuable insights on how the 

exogenous variables affect segmentation; and (3) the probabilistic assignment explicitly 

acknowledges the role played by unobserved factors in moderating the impact of observed 

exogenous variables. Further, we undertake a comparison exercise of the proposed LPNB model 

with its’ traditional counterpart PMNB model proposed in chapter 4 (objective two) in order to 

assess the importance of accounting for population heterogeneity in estimating zonal level crash 

frequency models. 

Based on the statistical data fit, we can conclude that the segmented model is a preferred 

choice as long as the framework is estimated in a closed form structure (independent models that 

do not account for unobserved heterogeneity; no need for simulation). However, when we rely on 

simulation for capturing the unobserved effects, the unsegmented model outperforms its’ 
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segmented counterparts. In an effort to assess the predictive performance of the estimated models, 

we compute several goodness fit of measures at disaggregate level including MPB (Mean 

prediction bias), MAD (mean absolute deviation), MAPE (mean absolute percentage error), RMSE 

(Root mean square error) and predictive log-likelihood for a discussion on estimating these 

measures). Specifically, we employ these measure on two datasets: 1) in-sample dataset: for the 

records used in the model estimation (sample size = 3,815 TAZs) and 2) holdout sample: records 

that are set aside for validation analysis (sample size = 932 TAZs). The resulting goodness of fit 

measures and predictive log-likelihood offer by the LPMNB model clearly highlight its improved 

performance over the PMNB model. Further, we compute aggregate level elasticity effects for 

both PMNB and LPMNB models to quantify whether the effect of variables significantly differs 

across the two frameworks. For this purpose, we identify a subset of exogenous variables including 

proportion of arterial roads, variance of speed limit, proportion of roads over 55mph, proportion 

of roads with separated median and number of transit commuters in a zone. Further, for the 

LPMNB model, we estimate the aggregate level elasticities for the overall sample as well as for 

each segment separately to emphasize policy repercussions based on most critical contributory 

factors. From the elasticity effects, we can clearly see some significant differences across two 

segments for some variables which highlights the importance of allowing for population 

heterogeneity in examining aggregate level crash counts across different crash types. In terms of 

comparison across the two models adopted in the study, we found substantial differences in 

elasticities which proves our hypothesis that allowing for the population heterogeneity in both 

observed and unobserved factors provides more accurate representation of the variable impacts.  

In summary, the newly formulated model will allow us to partition the TAZs into segments 

based on their attributes and estimate the influence of exogenous variables on crash counts of 
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different crash types. From methodological perspective, the current research makes a threefold 

contribution to literature on crash frequency analysis: First, the recasting allows us to estimate a 

parsimonious model system and also reduce the computational time for estimating parameters 

associated with unobserved factors. Second, by introducing the latent class version of the PNB 

model, we allow for both observed and unobserved heterogeneity thus relaxing the homogeneity 

assumption of the traditional count models. Third, we allow for a flexible segment membership 

function and test for the presence of multiple segments in the model estimation. Empirically, the 

research contributes to our understanding of analyzing zonal level crashes for both motorized and 

non-motorized road user group while considering different crash types within the motorized 

category including rear-end, angular, sideswipe, single vehicle and head-on crashes. 

 

7.5 Contribution of The Dissertation 

The current dissertation contributes substantially towards methodological gaps in the state of art 

for analyzing multiple crash frequency variables along six directions: (1)  considering crashes from 

both road user groups (motorists and non-motorists) (2) consider different crash types within the 

motorized crashes; (3) undertake a comparison exercise between the analytical and simulation 

based multivariate model for capturing unobserved heterogeneity; (4) propose a new alternative 

simpler model for analyzing multiple dependent variables; (5) propose a new econometric 

approach for analyzing a large number of dependent count variables and by increasing the 

dimensionality of the dependent variable, the proposed approach allows for flexible consideration 

of crashes by type and severity within a single framework; and (6) a latent segmentation framework 

to capture the potential variation in the impact of explanatory variables at the zonal level crash 

counts by crash type. In addition to making the aforementioned methodological contributions, the 
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dissertation also makes a substantial empirical contribution to the existing safety literature. All the 

models developed at zonal level can be used to devise safety-conscious decision support tools to 

facilitate proactive approach in assessing medium and long-term policy-based countermeasures.  

 

7.6 Limitations and Future Research 

To be sure, the dissertation is not without limitations. In our study, left-turn and right-turn crashes 

were considered in the same category due to sample size restrictions despite differences in crash 

mechanisms of these two categories. In future research efforts, it might be useful to consider them 

separately given that the crash mechanisms for these crash types could be potentially different. 

Moreover, given the inherent aggregation of the dataset, it would be beneficial to accommodate 

for the presence of spatial unobserved effects as well.  Further, it might be interesting to explore 

the transferability of models developed for crash count by estimating similar models for multiple 

spatial units and several years. Finally, it would be an interesting research exercise to evaluate if 

the findings are confirmed for other count model kernels (such a log-normal frameworks).  
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