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ABSTRACT 

Travel and tourism industry is undergoing transformation with the flourishing of online sharing 

economy marketplaces such as Bike Share services, Uber/Lyft (for taxi services), Eatwith (for 

community restaurants), and AirBnB (for accommodation). The current research effort 

contributes to literature on sharing economy service flow analysis by formulating and 

estiamting econometric approaches for analyzing frequency variables. The sharing economy 

alternatives investigated include: (a) accommodation service (AirBnB), (b) bikeshare service 

(Citi bike, NYC) and (c) ride hailing service (UBER/LYFT/Taxi). In the first part of the 

dissertation, we develop a copula based negative binomial count model framework to count 

AirBnB listings at census tract level to capture the snapshot of accommodation supply for 

tourists in NYC. In the second part, considering bike sharing as one of the transportation 

sharing systems, the dissertation identifies two choice dimensions for capturing the bike share 

system demand: (1) station level demand and (2) how bike flows from an origin station are 

distributed across the network. In the third part of the dissertation on ride sharing systems, we 

identify two choice dimensions: a demand component that estimates origin level transportation 

newtwork company (TNC) demand at the taxi zone level and (2) a distribution component that 

analyzes how these trips from an origin are distributed across the region. A linear mixed model 

is considered to estimate station or taxi zone level demand while a multiple discrete continuous 

extreme value (MDCEV) model to analyze flows distribution is employed. In the final part of 

this dissertation, we develop an innovative joint econometric model system to examine two 

components of the rapid ride share market transformation: (a) the increase in ride hailing 

demand and (b) the shift from traditional taxi services to TNC services. The first component is 

analyzed adopting a negative binomial (NB) count model while the second component is 

analyzed using a multinomial fractional split (MNLFS) model.  
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CHAPTER 1: INTRODUCTION 

 

1.1 Sharing Economy System 

The sharing economy is an economic model often defined as a peer-to-peer (P2P) based activity 

of acquiring, providing or sharing access to goods and services that are facilitated by a 

community based on-line platform. Sharing has become a powerful force of market 

participation. By sharing access to extra bedrooms, back seats of cars, special camera or 

cooking equipment, and their own time and skills, urban dwellers have earned extra money and 

joined a community of like-minded sellers and consumers. In effect, websites and mobile phone 

applications have allowed such individuals to start up the tiniest of businesses to leverage the 

value of assets that would otherwise serve only their own personal uses.  

 The basic of sharing economy comes from concept of peer to peer (P2P) system. A 

peer-to-peer (P2P) economy is a decentralized model whereby two individuals interact to buy 

or sell goods and services directly with each other, without an intermediary third-party, or 

without the use of a company of business.  

 

  

Figure 1.1: Fundamental Concept of Sharing Economy System 

Sharing economy system consists of three parties while one party (seeker) requests some 

service that asset can be shared by other party (owner) and the third party make the deal 



 

2 

 

possible via an online platform for service fee (platform) (Botsman & Rogers, 2011).  The 

whole cycle of sharing economy illustrated in Figure 1.2. 

 

 

 Figure 1.2: Working Process of Sharing Economy System 

The concept and practice of a “sharing economy” and “collaborative consumption” suggest 

making use of market intelligence to foster a more collaborative and sustainable society. 

Prominent examples are bike- and carsharing schemes as well as web-based peer-to-peer 

platforms covering a broad range of activities from renting rooms to food business. Online 

peer-to-peer (P2P) marketplaces are growing at a rapid rate, especially in travel and tourism 

services (Pizam, 2014). Early marketplaces of this kind, such as eBay and Craigslist, have been 

associated with the trade of traditional retail items (Sundararajan, 2014). Recently, a new type 

of P2P commerce, mainly associated with the supply of services and commonly known as the 

“sharing economy,” has emerged (Botsman & Rogers, 2011). Sharing economy marketplaces 

have flourished particularly within the field of travel and tourism, in which locals supply 
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services to tourists. Travel and tourism industry is undergoing transformation with the 

flourishing of online sharing economy marketplaces such as Bike Share services, Uber (for taxi 

services), Eatwith (for community restaurants), and AirBnB (for accommodation).  In this 

study, we selected accommodation service (AirBnB), bikeshare service (Citi bike, NYC) and 

rideshare service (UBER/LYFT/Taxi). 

 

1.1.1 Accommodation Services (AirBnB) 

The shared housing market place AirBnB with its large inventory and wide reach across the 

globe is redefining the hospitality sector. AirBnB is unique in its design as it does not own any 

properties but provides a platform for ordinary people (sellers) to rent their residences (entire 

house/apartment or a room) to tourists (consumers) (Botsman & Rogers, 2011). AirBnB 

accommodation system is quite easy to use: a consumer searches for an entire home or private 

(or shared) room based on their travel dates, destination on the AirBnB website 

(www.AirBnB.com). The user is provided with a list of housing alternatives based on the user 

preferences. The success and wide adoption of the system is based on available review 

information and background check procedures for renters and tourists. AirBnB charges a 

service fee for each transaction. Initiated in 2008, popularity of this sharing hospitality platform 

has rapidly grown with over 200 million guests having stayed in about 3 million listings in 

more than 65,000 cities and 191 countries (AirBnB, 2017). In fact, since 2016, over 100 million 

people have enjoyed the accommodation through AirBnB while over 1 million new listings 

worldwide have been added to the market place.  

 

http://www.airbnb.com/
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1.1.2 Transportation Field  

1.1.2.1 Bikeshare 

Transportation field is undergoing a transformative change in response to several technological 

innovations in recent years. A product of these technological transformations is the adoption 

of shared mobility systems such as bikesharing (such as CitiBike in New York City), car 

sharing (such as Zipcar or Car2Go), ridesourcing (such as Uber and Lyft) and ride-splitting 

(such as dynamic carpooling in urban regions). As highlighted in a recent Transit Cooperative 

Research Program report (Feigon & Murphy, 2016), understanding shared mobility adoption 

and usage provides an unprecedented opportunity to address existing mobility shortcomings in 

urban regions. In fact, public transit agencies and transportation planning agencies can enhance 

mobility and accessibility by incorporating these shared mobility alternatives within their 

planning frameworks. Among the shared mobility alternatives, bike sharing offers a sustainable 

transportation alternative in urban core regions and could be an effective solution to the last 

mile problem (Jäppinen, Toivonen, & Salonen, 2013). 

 About 1000 cities around the world have a bikeshare system in operation or in 

consideration for development (Meddin & DeMaio, 2016). As reported by Richter, 2018 

(Anowar, Eluru, & Hatzopoulou, 2017), the number of public use bicycles in the world have 

nearly quadrupled between 2013 and 2016. Further, a recent national association of city 

transportation officials (NACTO) report highlighted that of the 88 million trips made by bike 

share users in US between 2010-2016, 28 million were trips from 2016 only (Dey, Anowar, 

Eluru, & Hatzopoulou, 2018b).  

 

1.1.2.2 Transportation Network Company (TNC) 

Ride hailing services have been available as a mode of transportation since the early 17th 

century in the form of horse-drawn hackney carriages in Europe. With the advent of the 
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automobile, taxis for hire have been the most common ride hailing transportation alternative. 

However, ride hailing has undergone a rapid transformation in the recent few years in response 

to the transformative technological changes including smart mobile availability, ease of hailing 

a ride using mobile applications, integration of seamless payment systems and real-time driver 

and user reviews. In fact, the convenience offered by transport networking companies (TNC) 

such as Uber, Lyft, and Via has allowed for a tremendous growth in ride hailing demand. For 

example, in New York City, the average daily trips by taxi (yellow taxi) was varying between 

400 thousand and 500 thousand for the years 2010 and 2014 (Metcalfe & Warburg, 2012). 

However, since 2014, with the advent TNC services in the city, the total number of trips have 

increased. Specifically in 2018, the daily trips have increased to more than a million trips with 

traditional taxi accounting for nearly 300 thousand trips, and TNC services accounting for 700 

thousand trips. These trends are not specific to New York City. A recent report analyzing 

reimbursed travel in the US has found that the share of Uber and Lyft has increased from 8% 

to 72.5% within 2014-2018 at the cost of taxi and rental car business share (Silver & Fischer-

Baum, 2016). The prevalence of TNC services is also not restricted to US. Uber operates in 

over 60 countries, while Didi Express in China, Ola in India currently capture a large share of 

the ride hailing market in these countries. The immense growth in market share and the spread 

of these services across the world illustrate how the ride hailing market has undergone a rapid 

transformation in a short time frame.   

 

1.2 Empirical Motivation  

1.2.1 Accommodation Services (AirBnB) 

The growth of AirBnB impacts transportation and urban systems along two major directions. 

First, AirBnB provides a unique snapshot of the hospitality industry and can serve as a 

surrogate for the health of tourism industry in the region. The number of available listings on 
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AirBnB can serve as a proxy for tourist interest in the region. AirBnB provides renters with an 

opportunity to immediately respond to tourist demand by allowing for a simple listing process 

(without any substantial capital costs). In the event of a drop in tourist demand, renters on the 

website remove their listing. On the other hand, traditional hospitality industry with hotels 

respond to tourist demand slowly due to the large capital costs involved in increasing capacity. 

In addition, the traditional hospitality sector cannot dismantle their infrastructure as easily in 

response to the reduced tourist demand. Thus, with its ease of adding a listing, the AirBnB 

listings provide a unique snapshot of the health of tourism industry. Second, an analysis of 

AirBnB listings will allow transportation and urban regional professionals examine the demand 

arising from these tourists on transportation and urban infrastructure. Cities such as New York 

that receive significant expenditures from tourists can provide improved services by enhancing 

infrastructure in response to emerging tourist locations.  

The first part of the research effort is focused on meeting these three dimensions. First, 

by developing a model framework to count AirBnB listings at census tract level to capture the 

snapshot of accommodation supply for tourist in NYC. Second, capture the unobserved 

heterogeneity in the model together with correlation between those matrices. Finally, based on 

the estimation results, a policy analysis is also conducted to illustrate how listings count is 

influenced by various exogenous attributes. 

 

1.2.2 Transportation Field 

1.2.2.1 Bikeshare Destination Flows 

As bike sharing is an emerging transportation mode, the current approaches being employed 

for analyzing system usage and performance measure are still in their infancy.  In the 2nd task 

of our research, we focus our attention on developing a research framework to contribute to 
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our understanding of bikeshare origin destination flows. In this study, we propose an enhanced 

framework to estimate usage dimensions of bike sharing at a system level.  

To be sure, several earlier research efforts have explored approaches to model system 

level usage (Faghih-Imani & Eluru, 2015; Faghih-Imani, Eluru, El-Geneidy, Rabbat, & Haq, 

2014; Rixey, 2013; Zhao, Deng, & Song, 2014). These research studies examine the impact of 

bicycling infrastructure, land use and built environment, public transportation infrastructure, 

temporal and meteorological attributes on bikeshare system usage (defined as station level 

arrivals and departures). These models can be viewed as analogous to the trip generation and 

trip attraction models in the traditional trip based modeling approach. While these models 

provide important insights on variables affecting bikeshare usage, they do not provide any 

information on the system level flows between the stations. To elaborate, the approaches 

provide trip end information without the trip distribution relationship. To address this 

shortcoming, recent research has developed destination choice models at an individual trip 

level (El-Assi, Mahmoud, & Habib, 2017; Faghih-Imani & Eluru, 2015, 2017b). In these 

studies, for every individual trip the choice of destination given the origin station is analyzed 

using a random utility based approach. The models developed at an individual trip level can be 

employed to obtain aggregate estimates of trip distribution (analogous to the gravity model). 

However, such an aggregation approach is purely a statistical construct and lacks behavioral 

support.  

 In this second task, we remedy this drawback, by developing a model framework for 

bikeshare system usage as well as origin destination flows. Towards this end, we characterize 

system demand as origin level demand (number of trips) and allocate these trips to various 

destination stations (number of trips from an origin to destination) in the system. For the first 

variable, a linear mixed model is developed while the second variable is analyzed using a 
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multiple discrete continuous model system that implicitly recognizes that the total arrivals 

across stations should add up to the total number of trips leaving the origin.  

 

1.2.2.2 TNC Destination Flows 

The rapid transformation of the ride hailing market coupled with emerging shared mobility 

service expansions (such as Carshare, Bikeshare, and Scooter share) offers an unprecedented 

opportunity to address the existing mobility shortcomings in urban regions (as highlighted in a 

recent TCRP report (Feigon & Murphy, 2016). In fact, public transit and transportation 

planning agencies can enhance mobility and accessibility in a region by incorporating these 

shared transportation alternatives within their planning frameworks to provide holistic mobility 

options in denser urban regions. Specifically, dense urban regions with well-connected public 

transit systems can strategically target reducing the reliance on private automobile ownership 

(and use) by incorporating ride-hailing alternatives in trip planning tools. Further, by 

examining the spatio-temporal ride hailing data, transit agencies and shared mobility platforms 

can identify urban pockets with service needs to provide last mile connectivity. Towards 

understanding these patterns it would be beneficial to understand TNC demand and its spatial 

distribution in the region.  

 The current research effort (3rd task), contributes to this goal by developing quantitative 

models of TNC demand and flow distribution patterns. The study develops (1) a demand 

component that estimates origin level TNC demand at the taxi zone level and (2) a distribution 

component that analyzes how these trips from an origin are distributed across the region. The 

former component is analyzed using linear mixed models and the latter component is analyzed 

using a multiple discrete continuous model system. The model components are developed using 

a comprehensive set of independent variables including aggregate trip attributes, transportation 

infrastructure variables, land use and built environment variables, weather attributes, and 
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temporal attributes. The model estimates are validated using a hold out sample. Further, a 

policy exercise is conducted to illustrate how the proposed model system can be utilized for 

evaluating the impact of changes to independent variables.  

 

1.2.2.3 TNC Transformation 

The TNC service induced transformation can be viewed as constituting two major components. 

The first component is the overall increase in ride-hailing demand possibly drawing from 

population of individuals driving, using public transit and even inducing newer travel. The 

second component of the transformation is the shift in the share of traditional taxi service 

demand toward TNC services (Gerte, Konduri, Ravishanker, Mondal, & Eluru, 2019). In a 

short time frame, in NYC, TNC services have increased their market share from 0 to nearly 

70% by the end of 2018. While preliminary research has begun to explore the reasons for the 

transformation, it is safe to assume economists and social scientists will continue to examine 

the transformation for several years into the future.  

The proposed study contributes to our understanding of this transformation by 

examining the NYC data from a fine spatial and temporal resolution by adopting an innovative 

joint econometric model system. The study examines two components of the transformation 

(a) the increase in ride hailing demand and (b) the shift from traditional taxi services to TNC 

services. The first component – taxi zone ride hailing demand - is analyzed adopting a negative 

binomial count model. The second component - share of traditional and TNC services demand 

- is analyzed using a multinomial fractional split model. The two model components are 

stitched together in a joint framework that allows for the influence of repeated observations as 

well as for the presence of common unobserved factors affecting the two components. The 

study employs trip level data from the NYC Taxi and Limousine Commission from January 

2015 through December 2018 for the analysis. The data is aggregated by taxi zone for every 
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month in the study period and analyzed by ride hailing alternatives: yellow taxi, green taxi and 

TNC services (including Uber, Lyft, Juno and Via).  

 

1.3 Methodological Perspectives 

1.3.1 Count Approach 

While observed variables can be included in the univariate models, the consideration of the 

influence of unobserved factors requires a panel multivariate or joint modeling approach. 

Earlier research efforts on modeling count variables have developed simulation oriented 

multivariate models that stitches together the various dimensions within a maximum simulated 

or Bayesian approach (see (Yasmin & Eluru, 2018)) for an extensive literature review). 

Alternatively, bivariate copula framework that treats the variable dimensions as a joint 

distribution have also been developed (see (Nashad, Yasmin, Eluru, Lee, & Abdel-Aty, 2016)). 

The first approach allows for accommodating unobserved attributes affecting the joint 

distribution as well the individual count components. The copula approach only allows for the 

influence of unobserved factors on the joint distribution within a closed form framework.  

 In our proposed research (1st task), we build on these two model structures to 

accommodate for repeated measures by developing a unified framework that accommodates 

for dependency within a joint copula framework while also allowing for random parameters 

within each count model. To the best of the authors’ knowledge, this is the first attempt to 

employ such a unified framework for examining count events.   

 

1.3.2 Approach for Destination Flows  

Station level demand is a continuous variable and can be easily analyzed using linear regression 

models and their advanced variants. On the other hand, the second choice variable is quite 

different. Specifically, for an origin station with a predefined demand, the choice process 
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involves identifying the flows to all destination stations in the system. There are two major 

challenges associated with it. First, the destinations for bike flows from an origin are likely to 

involve multiple alternatives (as opposed to a single chosen alternative). Second, the potential 

universal alternative set includes all stations in the bikeshare system. The multiple discrete 

continuous approaches that follow Kuhn-Tucker (KT) approaches developed in literature can 

be adapted to address this choice dimension. KT demand systems have been used in outdoor 

recreational demand studies (Phaneuf, Kling, & Herriges, 2000; von Haefen, 2004; von Haefen 

& Phaneuf, 2005), individual activity participation and time-use studies (Bhat, 2005; Nurul 

Habib & Miller, 2009; Pinjari & Bhat, 2010; Pinjari, Bhat, & Hensher, 2009; Rajagopalan, 

Pinjari, & Bhat, 2009), household vehicle ownership and usage forecasting (Ahn, Jeong, & 

Kim, 2008; Bhat, Sen, & Eluru, 2009; Fang, 2008) and household travel expenditure analyses 

(Ferdous, Pinjari, Bhat, & Pendyala, 2010; Rajagopalan & Srinivasan, 2008). Of these 

approaches, for our current choice context, Bhat (Bhat, 2008) offers a flexible alternative that 

can be adapted to our choice dimension. 

 The second task of the analysis focused on examination of bikeshare demand patterns 

and distribution patterns on a weekly basis while 3rd task focused on TNC distribution for daily 

peak hour. The processed data provides station or zonal level origin demand and the 

corresponding flow patterns from the origin to all destinations across the system. The second 

choice dimension has huge number of destination alternatives in our analysis. To the best of 

the authors’ knowledge this is the largest number of alternatives considered in a KT system in 

literature. 

 

1.3.3 Approach for Demand Transformation 

In the final task, the share of traditional and TNC services demand - is analyzed using a 

multinomial fractional split model. As the data for the two components is obtained for the same 
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spatial record, there are several common unobserved factors influencing the two variables. The 

database generated also has multiple data points for each spatial unit. Thus, a joint econometric 

model that accommodates for repeated measures (panel) and common unobserved factors 

across the two dependent variables is developed. Specifically, we build on the cross-sectional 

joint negative binomial and multinomial fractional split model developed in Bhowmik et al. 

(Bhowmik, Yasmin, & Eluru, 2018) for a different empirical context.  

 

1.4 Objectives of the Dissertation 

The first objective is focused on examination of the evolution of AirBnB listings at a census 

tract level by listing type – entire home or private/shared room. The dependent variable is 

defined as the number of listings in the census tract by listing type. Given that each census tract 

has two dependent variables with multiple repeated observations for each CT, observed and 

unobserved factors affect these variables. While observed variables can be included in the 

univariate models, the consideration of the influence of unobserved factors requires a panel 

multivariate or joint modeling approach. Earlier research efforts on modeling count variables 

have developed simulation oriented multivariate models that stitches together the various 

dimensions within a maximum simulated or Bayesian approach (see (Yasmin & Eluru, 2018)) 

for an extensive literature review). Alternatively, bivariate copula framework that treats the 

variable dimensions as a joint distribution have also been developed (see (Nashad et al., 2016)). 

The first approach allows for accommodating unobserved attributes affecting the joint 

distribution as well the individual count components. The copula approach only allows for the 

influence of unobserved factors on the joint distribution within a closed form framework. In 

our proposed research, we build on these two model structures to accommodate for repeated 

measures by developing a unified framework that accommodates for dependency within a joint 

copula framework while also allowing for random parameters within each count model. To the 
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best of the authors’ knowledge, this is the first attempt to employ such a unified framework for 

examining count events.   

 The second objective of our research is to contribute to the research on bikeshare 

systems by examining system level demand and its distribution. To elaborate, our emphasis is 

on understanding bikeshare demand at the stations and the flow of these bikes to their 

corresponding destinations. The framework should provide system operators an estimate of 

system demand at a station level and how these bikes are distributed across the bikeshare 

system. We identify two choice dimensions: (1) station level demand and (2) how bike flows 

from an origin station are distributed across the network. For our analysis, we examine demand 

patterns and distribution patterns on a weekly basis. The processed data provides station level 

weekly origin demand and the corresponding flow patterns from the origin to all destinations 

across the system. The second choice dimension has 573 destination alternatives in our 

analysis. To the best of the authors’ knowledge this is the largest number of alternatives 

considered in a KT system in literature. The model estimation results for the proposed model 

offers intuitive results. The proposed model was also validated using a hold-out sample and 

prediction exercise is undertaken.   

The third objective of our dissertation is to develop TNC demand based planning 

models that can be integrated within existing frameworks or used to augment the outputs from 

existing demand frameworks. With this primary objective, the current study makes the 

following contributions. First, the current study develops a TNC demand model at the Taxi 

zone level for the morning peak hour (represented as pickups in the data). The demand variable 

is continuous in nature and a linear mixed model framework is employed to analyze the data. 

Second, conditional on the origin taxi zone demand, we develop a distribution model to 

determine TNC flows from the origin to all destinations in the study region. There are two 

major challenges associated with modeling the TNC flow distribution. First, the destinations 
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for TNC flows from an origin are likely to involve multiple alternatives (as opposed to a single 

chosen alternative). Second, the potential universal alternative set includes all taxi zones in the 

system. The multiple discrete continuous approaches that follow Kuhn-Tucker (KT) 

approaches developed in literature can be adapted to address this choice dimension. In a recent 

study, Dey et al. (Dey, Anowar, & Eluru, 2019) developed a similar framework for studying 

bicycle sharing system flows. The data for our analysis from January 2018 through December 

2018 is drawn from NYC Taxi & Limousine Commission (NYTLC). The data provides taxi 

zonal level daily origin demand and the corresponding flow patterns from the origin to all 

destinations across the system. The two model components were developed using a host of 

independent variables including trip attribute, transportation infrastructure variables, land use 

and built environment variables, weather attributes, and temporal attributes. The model 

estimation results for the proposed model offers intuitive results. The proposed model was also 

validated using a hold-out sample and prediction exercise is undertaken.  

 In the final objective of the dissertation, the study contributes to our understanding of 

the ongoing transformation of ride hailing market by examining the NYC data from a fine 

spatial and temporal resolution using an innovative joint econometric model. Specifically, as 

opposed to considering the transformation at a regional scale and in a 4 year period, we examine 

taxi zone based demand data from NYC for each month and explore the reasons contributing 

to (a) the increase in ride hailing demand and (b) the shift from traditional taxi services to TNC 

services. The first component – taxi zone ride hailing demand - is analyzed adopting a negative 

binomial count model. The second component - share of traditional and TNC services demand 

- is analyzed using a multinomial fractional split model. As the data for the two components is 

obtained for the same spatial record, there are several common unobserved factors influencing 

the two variables. The database generated also has multiple data points for each spatial unit. 

Thus, a joint econometric model that accommodates for repeated measures (panel) and 
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common unobserved factors across the two dependent variables is developed. Specifically, we 

build on the cross-sectional joint negative binomial and multinomial fractional split model 

developed in Bhowmik et al. (Bhowmik, Yasmin, & Eluru, 2018) for a different empirical 

context.  

 

1.5 Outline of the Dissertation 

The remainder of the research proposal is divided into four chapters that shows how each 

chapter position the current research effort within the larger context of the literature. Within 

chapter three and four, a quick review of the current research effort along the with econometric 

framework adopted in the study are also discussed. 

 Chapter two provides a brief review of previous relevant researches and a detailed 

discussion on different approaches employed for demand modeling in sharing economy 

literature. The chapter is divided into two parts discussing the earlier studies regarding various 

scope for two sharing economy system as AirBnB and Bikeshare. Various dimension such as 

history, new scope, demand, pros and cons of those service systems are discussed in this 

chapter. Information on the study unit, methodological framework, estimation technique, 

dependent variables and the number of dimensions employed in these studies are discussed in 

a systematic format. Further, the limitation of the earlier frameworks used for analysis are also 

identified. 

 Chapter three contributes to objective one by comparing the performance of the 

simulation-based framework with closed form copula-based frameworks. For this study 

purpose, a copula based negative binomial count model system is developed so that implicitly 

recognizes the total AirBnB listings. Given these afore-mentioned implications, the proposed 

research conducts a comprehensive analysis of AirBnB listings in New York City region 

drawing on data from January 2015 to September 2017. We analysis the evolution of AirBnB 



 

16 

 

listings at a census tract level by listing type – entire home or private/shared room. The 

dependent variable is defined as the number of listings in the census tract by listing type. Given 

that each census tract has two dependent variables with multiple repeated observations for each 

CT, observed and unobserved factors affect these variables. Within the copula framework, we 

estimate models for four copula structures: (1) FGM, (2) Frank, (3) Gumbel, (4) Clayton and 

(5) Joe. The model frameworks are compared based on statistical fit and a host of comparison 

metrics for estimation sample and hold-out sample. Finally, the applicability of the model for 

most tourism zone identification is illustrated by generating plots by AirBnB types in the NYC 

region.  

 Chapter four contributes to objective two by proposing a model framework that 

considered a large number of alternatives in a KT system in literature. The data for our analysis 

is drawn from New York City bikeshare system (CitiBike). Six months of bikeshare usage data 

from January 2017 through June 2017 was downloaded from CitiBike website and processed 

to obtain weekly bikeshare usage patterns. For our analysis, we examine demand patterns and 

distribution patterns on a weekly basis. The processed data provides station level weekly origin 

demand and the corresponding flow patterns from the origin to all destinations across the 

system. The second choice dimension has 573 destination alternatives in our analysis. The 

proposed model was also validated using a hold-out sample and prediction exercise is 

undertaken.   

Chapter five contributes to this goal by developing quantitative models of TNC demand 

and flow distribution patterns. Using data from the NYC Taxi and Limousine commission, we 

conduct a comprehensive analysis of morning peak hour ride hailing data from Uber, Lyft, 

Juno and Via from 2018. The study develops (1) a demand component that estimates origin 

level TNC demand at the taxi zone level and (2) a distribution component that analyzes how 

these trips from an origin are distributed across the region. The former component is analyzed 
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using linear mixed models and the latter component is analyzed using a multiple discrete 

continuous model system. The model components are developed using a comprehensive set of 

independent variables including aggregate trip attributes, transportation infrastructure 

variables, land use and built environment variables, weather attributes, and temporal attributes. 

The model estimates are validated using a hold out sample. Further, a policy exercise is 

conducted to illustrate how the proposed model system can be utilized for evaluating the impact 

of changes to independent variables.  

Chapter six contributes to our understanding of this transformation by examining the 

NYC data from a fine spatial and temporal resolution by adopting an innovative joint 

econometric model system. The study examines two components of the transformation (a) the 

increase in ride hailing demand and (b) the shift from traditional taxi services to TNC services. 

The first component – taxi zone ride hailing demand - is analyzed adopting a negative binomial 

count model. The second component - share of traditional and TNC services demand - is 

analyzed using a multinomial fractional split model. The two model components are stitched 

together in a joint framework that allows for the influence of repeated observations as well as 

for the presence of common unobserved factors affecting the two components. The study 

employs trip level data from the NYC Taxi and Limousine Commission from January 2015 

through December 2018 for the analysis. The data is aggregated by taxi zone for every month 

in the study period and analyzed by ride hailing alternatives: yellow taxi, green taxi and TNC 

services (including Uber, Lyft, Juno and Via).  

 Chapter seven concludes the dissertation by summarizing the findings, and identifies 

directions for future research.
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CHAPTER 2: LITERATURE REVIEW 

In this chapter, we provide a review of relevant literature for the various shared market places 

examined in the dissertation. The chapter is organized to match the four research objectives 

described in Chapter 1 as follows. 

1. Sharing accommodation literature:  

2. Literature on Bikeshare Destination Flows: Earlier studies regarding various bikeshare 

demand and destination flows are summarized in this section. 

3. Literature on TNC Destination Flows: Earlier studies regarding TNC demand and 

destination flows are summarized in this section. 

4. Literature on Ride Hailing Transformation: Earlier studies regarding various ride 

hailing services demand are summarized in this section. 

  

2.1 Earlier Research of Sharing Accommodation  

Tourism is a burgeoning global industry contributing to economic activity. A major component 

of the economic activity is accounted by the hospitality industry with accommodations having 

a significant role. While it is not possible to review the entire spectrum of literature covering 

the accommodation industry, we focus our attention on the sharing accommodation literature 

encompassing accommodation websites such as AirBnB Vacation Rentals by Owners (VRBO) 

and HomeAway. Specifically, we review literature on sharing accommodation along three 

main streams: a) studies investigating evaluation of sharing accommodation systems , b) 

studies investigating the various qualitative characteristics of shared accommodation systems 

and c) studies exploring the quantitative aspects of shared accommodation systems and 

examining their relationship with traditional hotel system. Table 1 provides a summary of the 

reviewed studies along the three streams. The table provides information on the study area, 

data source, determinants examined and analysis methodology. Sharing economy listings 



 

19 

 

analyzed in the literature span many urban cities of USA (such as New York, Los Angeles, San 

Francisco, Washington D.C., Boston, Dallas, Houston), Canada (various urban regions), 

Europe (such as Paris, London, Stockholm), Korea (such as Seoul, Busan, and Jeju) and India 

(various urban regions). The reader would note that a majority of the shared accommodation 

research examines AirBnB accommodation underlining the growing relevance of AirBnB in 

the shared accommodation industry. 

The first group of studies focused on evaluation of shared accommodation systems such 

as AirBnB from different perspectives, including the theoretical and practical aspects of 

emergence of AirBnB as sharing economy system (see firs panel of Table 1). Multiple studies 

focused on the definition of shared accommodation systems, how these services have evolved 

over time, investigated the challenges and opportunities presented by real-time services and 

highlighted various opportunities for the future (Proserpio & Tellis, 2017, D. Guttentag, 2015, 

Zervas et al., 2015a, Oskam & Boswijk, 2016, Wang et al., 2018, Adamiak, 2018). Several 

studies analyzed future research scope of shared accommodation on tourism. These studies 

investigated shared economy’s significant impact on tourism and found that policy making 

needs to be adaptive considering new aged sharing economy system (Edelman & Geradin, 

2015, Juul 2015).  

 The second group of studies explored various qualitative characteristics and conducted 

quantitative analysis of shared accommodation systems. While qualitative studies typically rely 

on online reviews, photos, questionnaire surveys (mail, telephone, face-to-face, online, on-site) 

and data from field experiments quantitative studies used web script to download listings data 

for further analysis. According to Ert et al (2016), host’s photo in AirBnB’s website play an 

important role in increasing the probability of gaining guest’s trust towards booking AirBnB. 

Several studies explored AirBnB service quality by conducting text analysis using online 

reviews. Based on these analysis, the authors evaluated how AirBnB experience contrasts with 
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their home (Zhu, Cheng, Wang, Ma, & Jiang, 2019) and the trust issues experienced (Sthapit 

& Björk, 2019). The research regarding guest reviews also offer useful inputs for future guest’s 

decisions to book AirBnB (Brochado, Troilo, & Aditya, 2017).   

 Another set of studies explored the influence of AirBnB on the neighborhood home 

rent/price increases, and income of middle class families (Sperling, 2015, Jiao & Bai, 2020). 

Sperling (2015) investigated the socio-economic conditions of a neighborhood after the 

emergence of AirBnB listings and concluded that income stagnation of middle-class family 

can potentially be overcome by hosting on AirBnB platform. (Jiao & Bai, 2020) explored how 

demographics, socioeconomics and transportation might affect AirBnB listings  and found that 

neighborhoods with good transit service, short distances to the city center and household 

income has the positive association with AirBnB listings. (Jordan & Moore, 2018) investigated 

positive and negative impact of AirBnB in the economic, environmental, and sociocultural 

realms using thematic analysis of interview data of AirBnB, Vacation Rentals by Owner 

(VRBO), and HomeAway users. Several studies investigated the negative issues associated 

with shared accommodation systems (such as AirBnB) including racial discrimination and 

illegal listings (B. Edelman, Luca, & Svirsky, 2017, Fradkin, Grewal, & Holtz, 2018).  

 In recent literature, impact on AirBnB pricing owing to distinct neighborhood and 

listings characteristics is one of the often investigated dimensions (Deboosere, Kerrigan, 

Wachsmuth, & El-Geneidy, 2019; Gibbs, Guttentag, Gretzel, Morton, & Goodwill, 2018; 

Rodríguez-Pérez de Arenaza, Hierro, & Patiño, 2019; Tong & Gunter, 2020; Wyman, 

Mothorpe, & McLeod, 2020; Barron et al., 2018; Lee et al., 2016). AirBnB and VRBO listings 

price rate and revenue was investigated to illustrate the host’s preference to replace long-term 

renters with short-term visitors to generate more revenue considering neighborhood 

characteristics such as transit accessibility to jobs, employment rate, population density, 

median income (Deboosere et al., 2019; Wyman et al., 2020; Rodríguez-Pérez de Arenaza et 
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al., 2019; Barron et al., 2018; Lee et al., 2016) and listings characteristics overall rating, size, 

reviews, host attributes, site and property attributes, amenities and services, rental rules and 

distance from the CBD etc. (Tong & Gunter, 2020; Gibbs et al., 2018, Wang & Nicolau, 2017). 

In recent times, a group of studies examine the AirBnB supply impact on whole hospitality, 

tourism or leisure business considering the revenue and employment opportunity it brings with 

and found the positive correlation (Dogru, Mody, Suess, McGinley, & Line, 2020; Quattrone, 

Proserpio, Quercia, Capra, & Musolesi, 2016; Vinogradov, Leick, & Kivedal, 2020). 

 The third group of studies is comprised of research conducting comparative analysis of 

sharing accommodation system such as AirBnB, VRBO, HomeAway with traditional 

accommodation services (such as hotels and suites). A large portion of these studies using 

AirBnB and hotel listings data (such as listings, price, revenue) provided by or downloaded 

through automated scripts from AirBnB and hotel management. Studies in this group 

investigate the new age AirBnB demand considering relationship between AirBnB services 

with traditional hotel system. (Young, Corsun, & Xie, 2017) investigate travelers’ preferences 

for VRBO relative hotels using an online survey in Denver, Colorado and found that factors 

like price, location, party size, dwelling size and trip length influence travelers to choose VRBO 

over hotel.  

 Few studies investigated location factors such points of interest, transport convenience, 

the surrounding environment impact on AirBnB listings and hotel supply (Sans & Quaglieri, 

2016; Yang & Mao, 2020). Another set of studies consider supply of AirBnB listings impact 

on hotel performance such as revenue, prices and occupancy rates and found negative 

association (Neeser et al., 2015; Zervas et al., 2017; Dogru, Hanks, Mody, Suess, & Sirakaya-

Turk, 2020; Dogru, Mody, Line, et al., 2020) while few literature  discovered quite strange 

result that price have no effect on AirBnB and hotel supply so that AirBnB can be substitutes 

hotel (Gunter, Önder, & Zekan, 2020; Choi et al., 2015). Finally, the most commonly employed  
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. 
Table 2.1: Summary of Existing AirBnB Studies 

Category Study Dimension Country Data Method Determinants 

Evaluation of 

Sharing 

Economy and 

Characteristics 

(Proserpio & Tellis, 

2017) 
Sharing Economy System N/A N/A 

Literature 

Review 
Evaluation 

(D. Guttentag, 2015) Emergence of AirBnB N/A N/A 
Literature 

Review 

Accommodation and 

Tourism 

(Zervas, Proserpio, 

& Byers, 2015) 
Emergence of AirBnB Worldwide 

AirBnB Listings 

and TripAdvisor 

Statistical 

Distributions 
Ratings 

(Oskam & Boswijk, 

2016) 
Emergence of AirBnB N/A N/A 

Literature 

Review 

Economic Benefits and 

Tourism 

(C. Wang, 

Komanduri, 

Viswanathan, Rossi, 

& West, 2018) 

Visitor Demand Los Angeles, USA 

Hotel Occupancy 

and AirBnB Listings 

and Review  

Statistical 

Comparison and 

Text Mining 

Occupancy Rate 

(Juul, 2015) Impact on Tourism Europe N/A 
Literature 

Review 
Impact on Tourism 

(B. G. Edelman & 

Geradin, 2015) 
Policy Making N/A N/A 

Literature 

Review 
Rules and Regulation 

(Quattrone et al., 

2016) 
Impact on Tourism London 

Airbbnb Listings, 

Hotel and Census  

Ordinary Least 

Squares (OLS) 

Number of AirBnB 

and Hotel 

(Adamiak, 2018) AirBnB Mapping Europe 
AirBnB Listings and 

TripAdvisor Hotel  

Frequency and 

Comparison 
Listings Capacity 

Qualitative and 

Quantitative 

Analysis 

(D. Lee, 2016) Impact of AirBnB on Rent Los Angeles, USA AirBnB and Zillow Regression Price/Rent 

(Barron, Kung, & 

Proserpio, 2018) 
Impact on Hotel Revenue USA AirBnB and Zillow Regression Price 
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Category Study Dimension Country Data Method Determinants 

(D. Wang & 

Nicolau, 2017) 
Impact of AirBnB on Rent 

33 Citites in Europe, 

 US, Canada and 

Australia 

AirBnB Listings  

Ordinary least 

squares 

 and Quantile 

regression 

analysis 

Host Attributes, Site 

and Property 

Attributes, Amenities 

and Services, Rental 

Rules and Online 

Review Ratings 

(Sperling, 2015) Economic Impact 

Portland, Los 

Angeles, New York 

City, San Francisco 

and Boston, USA 

Income  
Statistical 

Analysis 
Income 

(Deboosere et al., 

2019) 
Economic Impact 

New York City 

(NYC) 
Listings Price  

Hedonic 

Regression  

Average Price of 

AirBnB per Night and 

Revenue 

(Gibbs et al., 2018) Economic Impact Canada Listings Price 
Hedonic Pricing 

Model 
Price Rate of AirBnB 

(Tong & Gunter, 

2020) 
Economic Impact 

Barcelona, Madrid, 

and Seville 
Listings Price 

Hedonic Pricing 

Model, Weighted 

Least Squares 

Price Rate of AirBnB 
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Category Study Dimension Country Data Method Determinants 

(WLS) and 

Quantile 

Regression 

(Wyman et al., 2020) Economic Impact 
Isle of Palms, SC, 

USA 
Home Sales Regression Price Rate of AirBnB 

(Rodríguez-Pérez de 

Arenaza et al., 2019) 

Impact on Residential 

Rental Price 

Coast of Andalusia, 

Spain 

Listings and 

Residential Rent 

Price 

Regression 
Residential Rental 

Price Rate 

(B. Edelman, Luca, 

& Svirsky, 2017) 
Racial Discrimination 

Baltimore, Dallas, 

Los Angeles, St. 

Louis, and 

Washington, D.C. 

Field Experiment 
Text Mining, 

Regression 
Booking Confirmation 

(Brochado, Troilo, & 

Aditya, 2017) 

Customer Experience and 

Preferences 

India, Portugal and 

USA 
SP Survey Text Analysis 

Stay, Host, Place, 

Location, Apartment, 

Room and City 

(Jordan & Moore, 

2018) 

Impact of AirBnB, 

Vacation Rentals By 

Owner (VRBO), and 

HomeAway 

Oahu, Hawaii, USA Interview 
Thematic 

Analysis 
Perception  
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Category Study Dimension Country Data Method Determinants 

(Jiao & Bai, 2020) Emergence of AirBnB USA AirBnB Listings Regression AirBnB Listings Count 

(Zhu et al., 2019) Emergence of AirBnB 

New York, Los 

Angeles and Chicago 

(USA) 

Online Reviews 
Semantics 

Perspective 
AirBnB Experience 

(Sthapit & Björk, 

2019) 
Trust and Reputation -- Online Reviews 

Grounded Theory 

Research Design 
Customer Service 

(Ert, Fleischer, & 

Magen, 2016) 
Trust and Reputation Stockholm, Sweden Field Experiment 

Hedonic 

Regression, 

Mixed Logit 

Price 

(Fradkin, Grewal, & 

Holtz, 2018) 
Trust and Reputation AirBnB Reviews Field Experiment 

Logistic 

Regression 

Online Review 

Analysis 

(Quattrone et al., 

2016) 
Impact on Tourism London 

AirBnB Listings, 

Hotel and Census  

Ordinary Least 

Squares (OLS) 
AirBnB and Hotel 

(Vinogradov et al., 

2020) 

Impact on Tourism and 

Rental Markets 
Norway AirBnB Listings 

Agent Based 

Model 

AirBnB Listings 

Supply 

(Dogru, Mody, 

Suess, et al., 2020) 
Impact on Tourism USA AirBnB Listings Regression Employment 

Comparison 

with Hotel 

(D. A. Guttentag & 

Smith, 2017) 
Price and Performance  Canada SP Survey T-test Price and preferences 

(Young et al., 2017) VRBO Performance  
Denver, Colorado, 

USA 
Email Survey 

Statistical 

Analysis 
Traveler’s Preferences 
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Category Study Dimension Country Data Method Determinants 

(Sans & Quaglieri, 

2016) 
Impact on Hotel Revenue Barcelona, Spain 

AirBnB and Hotel 

Listings 

Statistical 

Analysis 
Policy Making 

(Yang & Mao, 2020) 
Effects of Location on 

hotel and AirBnB 
Houston, Texas Monthly Revenue 

Hausman-Taylor 

Model 
Revenue 

(Choi, Jung, Ryu, 

Kim, & Yoon, 2015) 
Impact on Hotel Revenue 

Korea (Seoul, Busan, 

and Jeju) 

Hotel Revenue and 

AirBnB Listings  
Panel Regression  Hotel Revenue 

(Dogru, Mody, Line, 

et al., 2020) 

Impact of AirBnB on Hotel 

Performance 
USA 

AirBnB and Hotel 

Listings 
Regression 

Hotel Revenues, Prices 

and Occupancy Rates 

(Dogru, Hanks, et 

al., 2020) 

Impact of AirBnB on Hotel 

Performance 

London, Paris, 

Sydney and Tokyo 

AirBnB and Hotel 

Listings 
Regression 

Hotel Revenues, Prices 

and Occupancy Rates 

(Neeser, Peitz, & 

Stuhler, 2015) 
Impact on Hotel Revenue 

Norway, Finland, 

and Sweden 

AirBnB and Hotel 

Listings 

Logistic 

Regression 

Hotel revenue per 

available room 

(Coyle & Yeung, 

2016) 
Impact on Hotel Revenue 14 Cities in Europe 

Number of Listings, 

Occupancy Rates 

and  

Average Revenue of 

AirBnB Hosts 

Regression 
Revenue and 

Occupancy Rate 

(Zervas, Proserpio, 

& Byers, 2017) 
Impact on Hotel Revenue Texas, USA 

AirBnB and Hotel 

Listings from 

 Smith Travel 

Research (STR), 
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analytical approaches to study AirBnB listings include linear regression, logistic regression, 

ordinary least squares (OLS), t-test and text mining of reviews. 

 

2.2 Earlier Research on Bikeshare Flows 

The recent growth of bikeshare systems around the world has resulted in a number of research 

efforts examining bikeshare. Earlier research efforts can be broadly categorized into two 

groups. The first group of studies is focused on understanding user behavior, reasons for 

adopting bikeshare and user satisfaction from bikeshare systems using online surveys or 

questionnaires (see for example (Bachand-Marleau, Lee, & El-Geneidy, 2012; Buck et al., 

2013; Fishman, Washington, & Haworth, 2014; Fuller et al., 2011; Schoner & Levinson, 

2013)). The second group of studies examine bikeshare systems by conducting a quantitative 

analysis of ridership data. Given the focus of our current study, we restrict ourselves to a 

discussion of the second group of studies. Specifically, we provide a concise summary of the 

major research dimensions explored, urban regions considered for analysis, methodological 

approaches employed and major research findings from earlier research.  

 Several studies have examined bikeshare ridership data provided by bikeshare operator 

websites or downloaded through automated scripts from bikeshare websites. The most common 

dimensions of analysis in these research efforts include (a) system demand characterized as 

arrivals and departures from bike stations (Faghih-Imani & Eluru, 2016a, 2016b, 2017b; 

Faghih-Imani et al., 2014; Gebhart & Noland, 2014; Rixey, 2013; Rudloff & Lackner, 2014; 

Wang, Lindsey, Schoner, & Harrison, 2015; Yufei, Oukhellou, & Come, 2014), (b) factors 

affecting bikeshare operators to move bicycles to avoid excess bikes (or empty slots) at some 

stations (referred to as rebalancing demand) (Bouveyron, Côme, & Jacques, 2015; Faghih-

Imani, Hampshire, Marla, & Eluru, 2017; Forma, Raviv, & Tzur, 2015; Fricker & Gast, 2016; 

Nair, Miller-Hooks, Hampshire, & Bušić, 2013; Pfrommer, Warrington, Schildbach, & Morari, 
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2014; Raviv, Tzur, & Forma, 2013; Vogel & Mattfeld, 2011),  (c) destination station 

preferences for bikeshare users (El-Assi et al., 2017; Faghih-Imani & Eluru, 2015, 2017b) and 

(d) impact of bike share on the urban transportation system including reducing emissions, 

altering transportation mode share and competition across modes (see (Faghih-Imani, Anowar, 

Miller, & Eluru, 2017)). The various bikeshare systems analyzed in the literature include many 

urban regions such as New York (CitiBike), Montreal (BIXI), Paris (Velib), London 

(Santander), Chicago (Divvy), Hangzhou (Hangzhou Public Bicycle), Beijing (Beijing Public 

Bicyle), Melbourne (Melbourne Bike Share), and Brisbane (CityCycle).  

 The most commonly employed analytical approaches to study bikeshare systems 

include linear regression, linear mixed models, panel ordered logit models, negative binomial 

count models, multinomial logit (MNL), mixed multinomial logit, finite mixture multinomial 

logit model, and time series models and their variants (Buck et al., 2013; El-Assi et al., 2017; 

Faghih-Imani & Eluru, 2015; Faghih-Imani et al., 2014; Gebhart & Noland, 2014; Rixey, 2013; 

Rudloff & Lackner, 2014; Wang et al., 2015; Zhao et al., 2014). Major findings from these 

research efforts can be broadly summarized as follows. Bikeshare system usage at a station 

level is influenced by bikeshare infrastructure (such as number of stations and station capacity), 

bicycling infrastructure (such as presence of bike lanes), land use and built environment (such 

as population density, job density and points of interest), public transportation infrastructure 

(presence of bus/metro stops), and temporal and meteorological attributes (such as precipitation 

and temperature) (El-Assi et al., 2017; Faghih-Imani & Eluru, 2015, 2016a, 2016b; Faghih-

Imani et al., 2014; Gebhart & Noland, 2014; Rixey, 2013; Wang et al., 2015). Destination 

choice studies found that bikeshare users prefer shorter trips with all else same (El-Assi et al., 

2017; Faghih-Imani & Eluru, 2015). Bikeshare users trade-off on station distance with other 

conveniences such as access to points of interest and stations with larger capacity. 
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2.3 Earlier Research on TNC Flows 

Ride hailing in its traditional form has received attention from various researchers (for example 

see (Faghih-Imani, Anowar, Miller, & Eluru, 2017) for detailed literature review of traditional 

taxi services). The research on TNC services is an emerging topic of interest in several fields 

including computer science, transportation, economics, and social sciences. In our analysis, we 

restrict ourselves to literature on TNC systems that are directly relevant from a transportation 

perspective.  

Earlier research efforts focused on TNC ride hailing can be grouped into two streams. 

The first stream of studies explored TNC evolution, factors that affected usage, licensing and 

policy formulation, pricing mechanisms, and comparison across ride hailing services (with 

taxis or between various smart phone based ride hailing companies). These studies typically 

rely on questionnaire interviews, and online surveys for data collection. TNC evolution studies 

focused on the definition of ride hailing systems, how ride hailing services have evolved over 

time (Chan & Shaheen, 2012; Furuhata et al., 2013; Sun & Edara, 2015), investigated the 

challenges and opportunities presented by real-time services and highlighted various 

opportunities for future (Agatz, Erera, Savelsbergh, & Wang, 2012; Amey, Attanucci, & 

Mishalani, 2011). A TCRP report (Feigon & Murphy, 2016) examining shared modes of travel 

(such as bikesharing, carsharing, and TNC systems) by conducting surveys and interviews 

across seven urban regions (Austin, Boston, Chicago, Los Angeles, San Francisco, Seattle, and 

Washington, DC). The study concluded that individuals who adopt shared modes for their 

travel needs are more open to public transit alternatives. Further, these shared modes can serve 

as complementary modes to public transit. A set of studies explored the influence of various 

factors affecting TNC usage. For example, Cramer and  Krueger (Cramer & Krueger, 2016) 

analyzed passenger service times for Uber and taxi across five major cities in the US. The 

authors concluded that availability of driver-passenger reviews, Uber’s flexible labor supply 
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model coupled with inefficient taxi regulations for passenger safety contributed to higher Uber 

utilization rates. Rayle et al. (Rayle, Dai, Chan, Cervero, & Shaheen, 2016) conducted a trip 

intercept survey to understand the source of TNC demand and concluded that nearly 50% of 

the demand is transferred from public transit and driving. Multiple studies explored pricing 

strategies employed by various ride hailing companies (L. Chen, Mislove, & Wilson, 2015; M. 

K. Chen & Sheldon, 2015; Guo, Liu, Xu, & Chiu, 2017). Studies examining Uber surge pricing 

strategies, concluded that surge pricing has a negative impact on demand. Smart et al. (Smart, 

Rowe, & Hawken, 2015) compared the performance of Uber and taxi services in terms of 

waiting time and cost using survey of riders in low income neighborhoods in Los Angeles. The 

data analysis found that Uber offered lower waiting times and provided service at a lower cost 

(even under surge pricing).  

 A second stream of studies conducted quantitative analysis using TNC usage data 

exploring trip patterns (a) to identify factors influencing TNC demand, (b) to understand TNC 

demand and its relationship with existing transportation modes. Earlier research has found that 

Uber demand is affected by temporal and weather patterns (Brodeur & Nield, 2016; Gerte, 

Konduri, & Eluru, 2018). Other factors that were found to affect ride hailing demand include 

land use attributes such as lower transit access time (TAT), higher length of roadways, lower 

vehicle ownership, higher income and more job opportunities (Alemi, Circella, Handy, & 

Mokhtarian, 2018; Correa, Xie, & Ozbay, 2017; Davidson, Peters, & Brakewood, 2017). 

Studies comparing the emerging ride hailing services with existing services such as public 

transit and bicycle sharing offer interesting results. Gerte et al. (Gerte, Konduri, Ravishanker, 

Mondal, & Eluru, 2019) found evidence for shifting taxi demand to smart phone based ride 

hailing services in New York City. Further, the study also found evidence of substitution 

relationship between ride hailing and bicycle share systems. Komaduri et al. (Komanduri, 

Wafa, Proussaloglou, & Jacobs, 2018) analyzed data from RideAustin, to examine the trip 
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length and temporal distribution of the trips. A comparison of the adoption of RideAustin 

relative to public transit alternatives illustrated that individuals were choosing RideAustin to 

minimize travel time (highlighting the higher value of time for these travelers). Poulsen et al. 

(Poulsen et al., 2016) examined how the two systems that were introduced in the same time 

performed - Uber and Green taxis - in Manhattan area and found that the growth rate for Uber 

was substantially higher. Babar and Burtch (Babar & Burtch, 2017) compared the utilization 

rate of transit service in the US after the introduction of TNC services and found that utilization 

rate of bus service dropped while long-haul transit services (such as subway and commuter 

rail) experienced increasing utilization. The spectrum of quantitative methodologies employed 

in earlier studies include descriptive analysis, linear regression, logistic regression, difference 

in difference model and panel based random effects multinomial logit model. 

 

2.4 Earlier Research on Ride hailing Transformation 

Literature related to ride hailing vehicles can be categorized into three main streams: a) studies 

investigating various operational and quantitative aspects of taxis, b) studies investigating the 

evolution and various qualitative aspects of TNC based ride hailing and c) studies examining 

the relationship between various ride hailing systems and their interaction with public 

transportation.  

 The first group of studies focused on taxi services from different perspectives, including 

entry regulation (see Schaller (Schaller, 2007) for US and Canada regulation and Çetin and 

Eryigit (Çetin & Eryigit, 2011) for Istanbul regulation), demand and pricing (Chang & Chu, 

2009; Milioti, Karlaftis, & Spyropoulou, 2015; Zhang & Ukkusuri, 2016), and impact of 

emerging technologies such as electric and autonomous vehicles (Burghout, Rigole, & 

Andreasson, 2015; Chrysostomou, Georgakis, Morfoulaki, Kotoula, & Myrovali, 2016; Jung, 

Chow, Jayakrishnan, & Park, 2014). Several studies analyzed different aspects of taxi 
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operations including taxi passenger search schemes and routing of vacant taxis to improve the 

efficiency of taxi services (K. Wong, Wong, Yang, & Wu, 2008; R. Wong, Szeto, & Wong, 

2014, 2015; Yang & Wong, 1998; Zhan & Ukkusuri, 2015; Zhang, Ukkusuri, & Lu, 2017). 

Crash injury severity and safety issues related to taxi services are also examined by several 

researchers (Dalziel & Job, 1997; Lam, 2004; Peltzer & Renner, 2003; Tay & Choi, 2016; 

Tseng, 2013).  

The second group of studies explored TNC evolution, factors that affected usage, 

licensing and policy formulation, pricing mechanisms, and comparison across ride hailing 

services (with taxis or between various smart phone based ride hailing companies). These 

studies typically rely on questionnaire interviews, and online surveys for data collection. TNC 

evolution studies focused on the definition of ride hailing systems, how ride hailing services 

have evolved over time (Chan & Shaheen, 2012; Furuhata et al., 2013; Sun & Edara, 2015), 

investigated the challenges and opportunities presented by real-time services and highlighted 

various opportunities for the future (Agatz, Erera, Savelsbergh, & Wang, 2012; Amey, 

Attanucci, & Mishalani, 2011). A set of studies explored the influence of various factors 

affecting TNC usage. For example, Cramer and  Krueger (Cramer & Krueger, 2016) analyzed 

passenger service times for Uber and taxi across five major cities in the US. The authors 

concluded that availability of driver-passenger reviews, Uber’s flexible labor supply model 

coupled with inefficient taxi regulations for passenger safety contributed to higher Uber 

utilization rates. Multiple studies explored pricing strategies employed by various ride hailing 

companies (L. Chen, Mislove, & Wilson, 2015; M. K. Chen & Sheldon, 2015; Guo, Liu, Xu, 

& Chiu, 2017). Studies examining Uber surge pricing strategies, concluded that surge pricing 

has a negative impact on demand. Smart et al. (Smart, Rowe, & Hawken, 2015) compared the 

performance of Uber and taxi services in terms of waiting time and cost using survey of riders 

in low income neighborhoods in Los Angeles. The data analysis found that Uber offered lower 
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waiting times and provided service at a lower cost. Another subset of studies conducted 

quantitative analysis using TNC usage data exploring trip patterns (a) to identify factors 

influencing TNC demand, (b) to understand TNC demand and its relationship with existing 

transportation modes. Factors that were found to affect ride hailing demand include temporal 

and weather patterns, land use attributes such as lower transit access time, higher length of 

roadways, lower vehicle ownership, higher income and more job opportunities (Alemi, 

Circella, Handy, & Mokhtarian, 2018; Correa, Xie, & Ozbay, 2017; Davidson, Peters, & 

Brakewood, 2017). 

 The third group of studies is comprised of research conducting comparative analysis 

using ride hailing usage data. The research conducted in this paper falls into this third category. 

A group of studies investigate the new age ride hailing demand considering relationship 

between ride hailing services with public transit system (Gerte et al., 2019; Komanduri, Wafa, 

Proussaloglou, & Jacobs, 2018; Murphy, 2016; Rayle, Dai, Chan, Cervero, & Shaheen, 2016). 

Rayle et al. (Rayle et al., 2016) conducted a trip intercept survey to understand the source of 

TNC demand and concluded that nearly 50% of the demand is transferred from public transit 

and driving. Studies comparing the emerging ride hailing services with existing services such 

as public transit and bicycle sharing offer interesting results. Gerte et al. (Gerte et al., 2019) 

found evidence for shifting taxi demand to smart phone based ride hailing services in New 

York City. Further, the study also found evidence of substitution relationship between ride 

hailing and bicycle share systems. Komaduri et al. (Komanduri et al., 2018) analyzed data from 

RideAustin, to examine the trip length and temporal distribution of the trips. A comparison of 

the adoption of RideAustin relative to public transit alternatives illustrated that riders were 

choosing RideAustin to minimize travel time (highlighting the higher value of time for these 

travelers). Poulsen et al. (Poulsen et al., 2016) examined how the two systems that were 

introduced in the same time performed - Uber and Green taxis - in Manhattan area and found 
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that the growth rate for Uber was substantially higher. Babar and Burtch (Babar & Burtch, 

2017) compared the utilization rate of transit service in the US after the introduction of TNC 

services and found that utilization rate of bus service dropped while long-haul transit services 

(such as subway and commuter rail) experienced increasing utilization. 

 

2.5 Summary 

This chapter presented a detailed summary of methodologies employed in earlier studies for 

predicting flows at different spatial unit for different attribute level. The data source along with 

the dependent and exogenous attributes used for analysis is described in detail in the subsequent 

chapter. 
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CHAPTER 3: ANALYSIS OF HOSPITALITY DEMAND IN NEW YORK CITY 

USING AIRBNB DATA: A COPULA BASED COUNT MODEING APPROACH 

 

3.1 Introduction  

Travel and tourism industry is undergoing a transformation with the flourishing of online 

sharing economy marketplaces such as Uber (for taxi services), Eatwith (for community 

restaurants), and AirBnB (for accommodation). The shared housing market place AirBnB with 

its large inventory and wide reach across the globe is redefining the hospitality sector. AirBnB 

is unique in its design as it does not own any properties but provides a platform for ordinary 

people (sellers) to rent their residences (entire house/apartment or a room) to tourists 

(consumers) (Botsman & Rogers, 2011). AirBnB accommodation system is quite easy to use: 

a consumer searches for an entire home or private (or shared) room based on their travel dates 

and destination on the AirBnB website (www.AirBnB.com). The user is provided with a list of 

housing alternatives based on the user preferences. The success and wide adoption of the 

system is based on available review information and background check procedures for renters 

and tourists. AirBnB charges a service fee for each transaction. Initiated in 2008, popularity of 

this sharing hospitality platform has rapidly grown with over 200 million guests having stayed 

in about 3 million listings in more than 65,000 cities and 191 countries (AirBnB, 2017). In fact, 

since 2016, over 100 million people have enjoyed the accommodation through AirBnB while 

over 1 million new listings worldwide have been added to the market place.  

 The growth of AirBnB impacts transportation and urban systems along two major 

directions. First, AirBnB provides a unique snapshot of the hospitality industry and can serve 

as a surrogate for the health of tourism industry in the region. The number of available listings 

on AirBnB can serve as a proxy for tourist interest in the region. AirBnB provides renters with 

an opportunity to immediately respond to tourist demand by allowing for a simple listing 

process (without any substantial capital costs). In the event of a drop in tourist demand, renters 

http://www.airbnb.com/
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on the website remove their listing. On the other hand, traditional hospitality industry with 

hotels respond to tourist demand slowly due to the large capital costs involved in increasing 

capacity. In addition, the traditional hospitality sector cannot dismantle their infrastructure as 

easily in response to the reduced tourist demand. Thus, with its ease of adding a listing, AirBnB 

listings provide a unique snapshot of the health of tourism industry. Second, an analysis of 

AirBnB listings will allow transportation and urban regional professionals examine the demand 

arising from these tourists on transportation and urban infrastructure. Cities such as New York 

that receive significant expenditures from tourists can provide improved services by enhancing 

infrastructure in response to emerging tourist locations.  

 The proposed research develops a framework to understand factors affecting AirBnB 

inventory. Drawing on NYC AirBnB listings data from a fine spatial and temporal resolution, 

the proposed study examines the ongoing transformation of sharing accommodation market 

from January 2015 to September 2017. For our analysis, monthly AirBnB inventory is 

represented at a disaggregate spatial resolution as the number of listing at a census tract level 

by listing type defined as (a) entire home or (b) private/shared room. The study develops an 

advanced econometric model framework relying on copula based model system. Specifically, 

our proposed approach accommodates for the presence of common unobserved factors 

affecting (a) the two dependent variables at the census tract (inventory by entire home and 

private/shared room) and (b) multiple repeated observations from 31 months of data. The 

framework takes the form a bivariate random parameter copula based negative binomial model.  

The proposed model framework is estimated using a host of independent variables including 

socio-demographic variables, transportation infrastructure variables and land use and built 

environment variables. The empirical analysis is augmented with a policy analysis conducted 

to illustrate how listings count is influenced by various exogenous attributes. 
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 The rest of the chapter is organized as follows: The next section presents the 

methodological framework adopted in the analysis while section 3 provides a detailed 

description of the dataset with sample formation technique. Model results are presented in the 

fifth section followed by the policy analysis. Final section comprises with the concluding 

statements. 

 

3.2 Econometric Methodology 

The econometric framework for the joint model is presented in this section. 

 

3.2.1 NB Model 

Let 𝑖 be the index for CT (𝑖 = 1,2,3, … ,𝑁) and 𝑦𝑚𝑖𝑡 be the index for types of accommodation 

in time period 𝑡 (𝑡 = 1,2,3, … , 𝑇) for a CT 𝑖; where m takes the value of 1 for whole 

apartment/home and 2 for private or shared room. The NB probability expression for random 

variable 𝑦𝑚𝑖𝑡 can be written as (Cameron, Li, Trivedi, & Zimmer, 2004): 

𝑃𝑚𝑖𝑡(𝑦𝑚𝑖𝑡) =  Γ(𝑦𝑚𝑖𝑡+𝛼𝑚−1)Γ(𝑦𝑚𝑖𝑡 + 1)Γ(𝛼𝑚−1) ( 11 + 𝛼𝑚𝜇𝑚𝑖𝑡) 1𝛼𝑚 (1 − 11 + 𝛼𝑚𝜇𝑚𝑖𝑡)𝑦𝑚𝑖𝑡     

(3.1) 

where, 𝛤(∙) is the Gamma function, α𝑚 is the NB dispersion parameter specific to room type 

group 𝑚 and 𝜇𝑚𝑖𝑡 is the expected number of accommodations listed in CT 𝑖 for time period 𝑡. 
We can express (𝜇𝑚𝑖𝑡) as a function of explanatory variable (𝑥𝑚𝑖) by using a log-link function   

as: 𝜇𝑚𝑖𝑡 = 𝐸(𝑦𝑚𝑖𝑡|𝒙𝑚𝑖𝑡) = 𝑒𝑥𝑝((𝜷𝑚 + 𝛾𝑚𝑖)𝒙𝑚𝑖𝑡 + 𝜀𝑚𝑖𝑡), where 𝛽𝑚 is a vector of mean 

effects to be estimated specific to room type group m and 𝛾𝑚𝑖 represents a vector of unobserved 

factors affecting count propensity associated with room type 𝑚 for CT 𝑖 and its associated 

zonal characteristics, assumed to be a realization from standard normal distribution: 𝛾𝑚𝑖~𝑁(0, 𝝅𝑚2). 𝜀𝑚𝑖𝑡 is a gamma distributed error term with mean 1 and variance 𝛼𝑚. 
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3.2.2 Multivariate NB Model 

The purpose of multivariate NB model is to examine counts of different types of AirBnB 

listings. We consider two types of AirBnB listings for our study approach: (a) whole 

apartment/home and (b) private/shared room at census tract (CT) level. For the multivariate 

approach, the equation system for modeling listings count across different listings types can be 

written by replacing the subscript 𝑚 with 𝑗 in equation 3.1. Thus, the probability for listings 

count for two different listings type 𝑚 can be represented as 𝑃(𝑐𝑖𝑗𝑡), for which we can express 𝜇𝑚𝑖𝑡 as a function of explanatory variables by using a log-link function as follows: 𝜇𝑚𝑖𝑡 = 𝐸(𝑐𝑖𝑗𝑡|𝒛𝑖𝑗𝑡) = 𝑒𝑥𝑝((𝜹𝒋 + 𝜻𝑖𝑗)𝒛𝑖𝑗𝑡 + 𝜀𝑖𝑗𝑡 + 𝜂𝑖𝑗𝑡) (3.2) 

  

where, 𝒛𝑚𝑖 is a vector of explanatory variables associated with CT 𝑖 and listings type 𝑚 . 𝜹𝑚 

is a vector of coefficients to be estimated. 𝜻𝑚𝑖 is a vector of unobserved factors on listings 

count propensity associated with listings type 𝑚 for CT 𝑖 and its associated zonal 

characteristics, assumed to be a realization from standard normal distribution: 𝜻𝑚𝑖~𝑁(0, 𝝅𝑚2). 𝜀𝑚𝑖 is a gamma distributed error term with mean 1 and variance 𝛼𝑚. 𝜂𝑚𝑖 captures unobserved 

factors that simultaneously impact number of AirBnB listings across two listings types for CT 𝑖. Here, it is important to note that the unobserved heterogeneity between total number of 

crashes across different collision types can vary across CT’s. Therefore, in the current study, 

the correlation parameter 𝜂𝑖 is parameterized as a function of observed attributes as follows: 

 

𝜂𝑚𝑖 = 𝜸𝒎𝒔𝑚𝑖            

(3.3) 

 

where, 𝒔𝑚𝑖 is a vector of exogenous variables, 𝜸𝒎 is a vector of unknown parameters to be 

estimated (including a constant). In the current analysis, the multivariate NB model only allows 

for a positive correlation for total number of crashes across different collision types.  
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In examining the model structure of crash count across different collision types, it is necessary 

to specify the structure for the unobserved vectors 𝜻 and 𝜸 represented by Ω. In this paper, it 

is assumed that these elements are drawn from independent normal distributions: 

Ω~𝑁(0, (𝝅𝒎𝟐, 𝝈𝑚2 )). Thus, conditional on Ω, the likelihood function for the joint probability 

can be expressed as: 

 

𝐿𝑖 = ∫ ∏(𝑃(𝑐𝑚𝑖))𝑚
𝑚=1𝛀 𝑓(𝛀)𝑑𝛀 

           

(3.4) 

 

Finally, the log-likelihood function is:   

   𝐿𝐿 =∑𝐿𝑛(𝐿𝑖)𝑖             

(3.5) 

  

All the parameters in the model are estimated by maximizing the logarithmic function 𝐿𝐿 

presented in equation 5. The parameters to be estimated in the multivariate NB model are: 𝜹𝒎, 𝛼𝑚, 𝝅𝑚, and 𝝈𝒎.  

 

3.2.3 Copula Multivariate NB Model 

The focus of our study is to jointly model counts of AirBnB listings for: (a) whole 

apartment/home and (b) private/shared room at census tract (CT) level by employing a random 

parameters copula based bivariate NB modeling framework.  

 Let’s assume 𝑣𝑖𝑙 is the expected number of listings in CT 𝑖 over a given time period for 

listings type 𝑙. We can express 𝑣𝑖𝑙 as a function of explanatory variable (𝒙𝑖𝑙) by using a log-

link function as: 𝑣𝑖𝑙 = 𝐸(𝑐𝑖𝑙|𝒙𝑖𝑙) = 𝑒𝑥𝑝(𝜷𝑙𝒙𝑖𝑙), where 𝜷𝑙 is a vector of parameters to be 

estimated specific to listings type 𝑙.   
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By using copula based approach, correlation between random variables 𝑦1𝑖  and 𝑦2𝑖 can be 

explored. In constructing the copula dependency, let us assume that 𝛬1(𝑦1𝑖𝑡) and 𝛬2(𝑦2𝑖𝑡) are 

the marginal distribution functions of the random variables 𝑦1𝑖  and 𝑦2𝑖, respectively; and 𝛬12(𝑦1𝑖𝑡𝑦2𝑖𝑡) is the joint distribution which can be generated as a joint cumulative probability 

distribution of uniform [0, 1] marginal variables 𝑈1 and 𝑈2 as below (Bhat & Eluru, 2009):  

 𝛬12(𝑦1𝑖𝑡, 𝑦2𝑖𝑡)  = 𝑃𝑟(𝑈1 ≤ 𝑦1𝑖𝑡,  𝑈2 ≤ 𝑦2𝑖𝑡) = 𝑃𝑟[𝛬1−1(𝑈1) ≤ 𝑦1𝑖𝑡,  𝛬2−1(𝑈2) ≤ 𝑦2𝑖𝑡 ] = 𝑃𝑟[𝑈1 < 𝛬1(𝑦1𝑖𝑡),  𝑈2 < 𝛬2(𝑦2𝑖𝑡) ] (3.6) 

 

The joint distribution (of uniform marginal variable) in equation 6 can be generated by a 

function 𝐶θi (. , . ) (Sklar, 1973), such that: 

 

𝛬12(𝑦1𝑖𝑡, 𝑦2𝑖𝑡) = 𝐶𝜃𝑖(𝑈1 = 𝛬1(𝑦1𝑖𝑡), 𝑈2 = 𝛬2(𝑦2𝑖𝑡)) (3.7) 

 

where, 𝐶θi (. , . ) is a copula function and θ𝑖 is the dependence parameter defining the link 

between 𝑦1𝑖𝑡 and 𝑦2𝑖𝑡. However, in our study, 𝑦1𝑖𝑡 and 𝑦2𝑖𝑡 are nonnegative integer valued 

events. For such count data, the probability mass function (ζθi) is presented by using finite 

differences of the copula representation as follows (Cameron et al., 2004): 

 𝜁𝜃𝑖(𝛬1(𝑦1𝑖𝑡), 𝛬2(𝑦2𝑖𝑡))= 𝐶𝜃𝑖(𝛬1(𝑦1𝑖𝑡), 𝛬2(𝑦2𝑖𝑡); 𝜃𝑖)  − 𝐶𝜃𝑖(𝛬1(𝑦1𝑖𝑡 − 1), 𝛬2(𝑦2𝑖𝑡); 𝜃𝑖)   −𝐶𝜃𝑖(𝛬1(𝑦1𝑖𝑡), 𝛬2(𝑦2𝑖𝑡 − 1); 𝜃𝑖)+ 𝐶𝜃𝑖(𝛬1(𝑦1𝑖𝑡 − 1), 𝛬2(𝑦2𝑖𝑡 − 1); 𝜃𝑖) (3.8) 
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where, 𝛬1(𝑦1𝑖𝑡) and 𝛬2(𝑦2𝑖𝑡) as the cumulative distribution function (CDF) of the NB 

distribution. The CDF of NB probability expression (as presented in equation 1) for 𝑦𝑚𝑖𝑡 can 

be written as for a particular realization of 𝛾𝑚𝑖: 
 

𝛬𝑚(𝑦𝑚𝑖𝑡|𝛾𝑚𝑖) = ∑𝑃𝑚𝑖𝑡(𝑦𝑚𝑖𝑡|𝛾𝑚𝑖)𝑦𝑚𝑖
𝑘=0  (3.9) 

 

The unconditional log-likelihood function (LL) with the joint probability expression in 

equation 4 by integrating over 𝛾𝑚𝑖 for all time periods can be written as: 

 

𝐿𝐿 =∑∏∫𝜁𝜃𝑖(𝛬1(𝑦1𝑖𝑡), 𝛬2(𝑦2𝑖𝑡)) 𝑑𝛾𝑡
𝑁
𝑖=1  (3.10) 

 

In our empirical analysis we select six different copula structures: 1) Gaussian, 2) Farlie-

Gumbel-Morgenstern (FGM), 3) Clayton, 4) Gumbel, 5) Frank and 6) Joe (a detailed 

discussion of these copulas is available in (Bhat & Eluru, 2009)).  

The level of dependence between the random variables can vary across CTs. Therefore, in the 

current study, the dependence parameter θ𝑖 is parameterized as a function of observed attributes 

as follows: 

 𝜃𝑖 = 𝑓𝑛(𝜹𝑚𝒔𝑚𝑖) (3.11) 

 

where, 𝒔𝑚𝑖 is a column vector of exogenous variable, 𝜹𝑚 is a row vector of unknown 

parameters (including a constant) specific to room type group 𝑚 and 𝒇𝑛 represents the 

functional form of parameterization. Based on the dependency parameter permissible ranges, 

alternate parameterization forms for the six copulas are considered in our analysis (Nashad et 
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al., 2016). We will employ the Bayesian Information Criterion to determine the preferred 

copula model. 

 

3.3 Data 

 

3.3.1 Data Source 

The New York city, our study area is associated with 2166 Census tract and 5 boroughs with a 

population of about 8.5 million (Figure 3.1). New York City receives over 60 million foreign 

and American tourists each year. NYC have over 41000 AirBnB listings while around 92% 

situated in Manhattan and Brooklyn borough. Given these afore-mentioned implications, the 

proposed research conducts a comprehensive analysis of AirBnB listing in New York City 

region drawing on data from January 2015 to September 2017 (http://insideAirBnB.com/get-

the-data.html). The listings dataset provides information on zip code, longitude and latitude, 

city and street name, accommodation information such as residence type (full apartment or 

private/shared room), number of bedrooms and bathrooms, price, amenities information and 

review of customers.  The listings data is aggregated at a census tract level (2166 census tracts) 

in the New York City region.  

 In addition to the listing database, the explanatory attributes considered in the empirical 

study will also be generated at the CT level. The selected explanatory variables can be grouped 

into three broad categories: (1) built environment attributes such as number of restaurants and 

park area derived from New York City open data (https://nycopendata.socrata.com); (2) socio-

demographic characteristics at the census tract/zip code level gathered from US 2010 census; 

(3) transportation infrastructure attributes. 

 

https://nycopendata.socrata.com/
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3.3.2 Sample Formation 

The first step in data assembly for analysis is sample formation to generate the dependent 

variables for the analysis (count of availability of home/room) from disaggregate listing data. 

The average density distribution of full apartment/home and private or shared room for 31 

months for each census tract level of NYC was defined into 6 six categories start with no 

AirBnB and then from very low to very high that is shown in Figure 3.2. Of the 2166 census 

tracts, 120 tracts ending up with no AirBnB listings. In terms of the two dependent variables, 

around 17% of the census tracts have zero full apartment/home listings while the corresponding 

number for private/shared room is about 10%.  Further, the figures indicate that major portion 

of the AirBnB listings are observed in Manhattan and Brooklyn boroughs. Given that the NYC 

tourism industry is concentrated in these two boroughs the trend is expected. 

 For the given study period, we aggregated monthly total number of available listings 

data for each month (total 31 months) for each census tract of NYC. To obtain a reasonable 

sample size for model estimation, 5 months listings data for each census tract were randomly 

selected. As a result of the random month selection, we ended up having 10230 samples 

observation finally. A summary of the dependent variable and independent variable data 

compilation procedure is presented in Figure 3.3. 

 



    

 

44 

 

 

Figure 3.1: Census Tract Zone of NYC 
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(a) Density Distribution of Whole Apartment/Home (b) Density Distribution Private or Shared Room 

 

Figure 3.2: Density Distribution of Average Count of AirBnB (Apartment/Room) 
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Figure 3.3: Data Formation Flow Chart
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3.3.3 Independent Variable Generation 

Several independent variables were generated in our study (see Figure 3.3). These can be 

grouped into four categories: 1) Socio-demographic variables, 2) Transportation infrastructure 

variables and 3) Land use and built environment variables. The socio-demographic attributes 

considered are population density, job density and median income. Population information was 

collected from US census 2010 and projected for corresponding year (2015-2017) at the census 

tract level. Job density data was estimated at the census tract level while median income was 

calculated at the census tract level for corresponding year.  

 Transportation infrastructure variables include number of bikeshare station, public 

transit stations in a census tract level. The variables created at the census tract level include 

length of bike routes, length of roads (minor and major roads). Number of subway stations and 

bus stops in the CT were generated to examine the influence of public transit on individual’s 

preference of AirBnB location.  

 Several land use and built environment variables were considered including the number 

of facilities (schools, colleges, hospitals), the number of point of interests (museums, shopping 

malls), and the number of restaurants (including coffee shops and bars), total area of parks and 

commercial space (office, industry, retail) within each census tract. Few trip distance was also 

considered including distance of Times Square, nearest airport and beach from centroid of each 

census tract. While the actual trip might involve a different route, the shortest network distance 

would be an appropriate indicator of the distance traveled. Non-motorized vehicle score 

(average of walk score and bike score) and transit score associated with each AirBnB was 

considered at the census tract level. Total area of various land use profile together with mixed 

land use attribute was also considered to capture the preference land use for AirBnB. Average 

listings price (full apartment and private/shared room) for one night was estimated for each 

census tract level to capture effect of variation of listings price on AirBnB supply. Few safety 
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related attributes such as total number of crimes, number of crashes considering number of 

fatality and injury was also created in a census tract level to get a clear view of AirBnB 

preferences. Finally, Seasonality is the only temporal variable considered. We consider winter 

(December-February), Spring (March-May), Summer (June-August) and Fall (September-

November) as dummy variables. A descriptive summary of the analysis sample is presented in 

Table 3.2.  

 

3.4 Empirical Analysis 

3.4.1 Model Specification and Overall Measures of Fit 

Several models were estimated as part of our empirical exercise. These include: (1) 

Independent NB, (2) Mixed Independent NB, (3) Multivariate mixed NB, (4) Copula 

structures. Five copula structures were used in the empirical analysis; they are: 1) FGM, 2) 

Clayton, 3) Gumbel, 4) Frank and 5) Joe. The copula model estimation involved four 

considerations. First, five different models were estimated by considering the dependency 

parameter in the copula model to be the same across all CTs. Second, best three model 

estimated from first step were also estimated by considering the parameterization for copula 

dependency profile. Third, best copula model from first and second consideration were 

estimated to capture unobserved heterogeneity without considering dependency profile. 

Finally, dependency profile was added with unobserved heterogeneity in the same model from 

third step for analyze.  

 The performance of the estimated models was compared based on two goodness of fit 

measures best suited for comparing non-nested models: (1) Akaike information criterion (AIC) 

and (2) Bayesian Information Criterion (BIC). The AIC for a given empirical model is equal 

to: 
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Table 3.1: Descriptive Summary of Sample Characteristics 

Variable Names Definition 
CT Level 

Minimum Maximum Mean 

Dependent Variables 

 Count of Entire Apartment Total number of entire/whole apartment in CT 0.000 225.000 9.15 

 Count of Private or Shared Room Total number of Private or Shared Room in CT 0.000 165.000 8.41 

Sociodemographic Characteristics 

 Total Population Total number of populations in CT 0.000 30260.000 4121.660 

 Population Density Ln (Number of population in CT/Total area of CT in square miles) 0.0000 12.450 10.472 

Socioeconomic Characteristics 

 Total Employment Total number of jobs in CT 0.000 15675.000 2394.190 

 Employment Density Total number of jobs in CT/Total number of populations in CT 0.000 1.000 0.573 

Built Environment and Land Use Attributes 

 CT area Total area of CT in square miles .0161 3.8177 .128583 

 Facilities Total number of facilities in CT 0.000 135.000 16.931 

 Point of Interests Number of point of interests in CT 0.000 177.000 8.445 

 Park and Recreational Centers Total number of park and recreational centers in CT 0.000 3.000 0.036 

 Restaurants Total number of restaurants in CT 0.000 544.000 11.869 

 Sidewalk Cafe Total number of sidewalk café in CT 0.000 136.000 9.685 

 Theaters Total number of theaters in CT 0.000 23.000 0.057 

 Distance to Airport Distance to the nearest airport from each CT 5.186 10.637 9.144 

 Distance to Beach Distance to the nearest beach from each CT 15.299 15.310 15.304 

 Building Area Ln (Total building footprint area of CT in square meters) 0.000 5.560 2.733 

 Commercial Area Ln (Total commercial area of CT in square meters) 0.000 16.973 12.555 

 Residential Area Ln (Total residential area of CT in square meters) 0.000 16.730 13.975 
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Variable Names Definition 
CT Level 

Minimum Maximum Mean 

 Office Area Ln (Total office area of CT in square meters) 0.000 16.800 10.023 

 Retail Area Ln (Total retail area of CT in square meters) 0.000 15.030 10.429 

 Industrial Area Ln (Total industrial area of CT in square meters) 0.000 15.740 3.870 

 Institutional Area Ln (Total institutional area of CT in square meters) 0.000 16.460 9.907 

 Entertainment Area Ln (Total entertainment area of CT in square meters) 0.000 16.320 2.226 

 Land use mix 

Land use mix = [−∑ (𝑝𝑘(𝑙𝑛𝑝𝑘))𝑘 𝑙𝑛𝑁 ], where 𝑘 is the category of land-use, 𝑝 is the 

proportion of the developed land area devoted to a specific land-use, 𝑁  is 

the number of land-use categories in a CT 

0.000 0.92 0.325 

 Buildings Ln (Total Number of buildings in CT) 0.000 8.085 5.821 

 Floors Ln (Total number of floors in CT) 0.000 8.559 6.526 

 Apartment Listings Price Average whole apartment listings price per night (USD) 0.000 3500.000 99.841 

 
Private or Shared Room Listings 

Price 
Average private or shared room listings price per night (USD) 

0.000 
3408.330 54.821 

 Crime Total number of crimes in CT 0.000 2363.000 220.765 

 Total Fatality Total number of fatalities in CT 0.000 4.000 0.171 

 Pedestrian Fatality Total number of pedestrian fatalities in CT 0.000 4.000 0.111 

 Bike Fatality Total number of bike fatality in CT 0.000 2.000 0.015 

 Motor Vehicle Fatality Total number of motor vehicle fatality in CT 0.000 3.000 0.046 

 Total Injury Total number of injuries in CT 0.000 197.000 20.060 

 Pedestrian Injury Total number of pedestrian injuries in CT 0.000 45.000 4.697 

 Bike Injury Total number of bike injury in CT 0.000 26.000 1.895 

 Motor Vehicle Injury Total number of motor vehicle injury in CT 0.000 169.000 13.483 

 Street Length Ln (Street length of all type in mile per CT) -0.090 4.64 1.451 

 Bike Length Ratio of bike length to street length 0.000 0.58 0.086 

 Walk Score Walk Score in CT 0.000 100.00 87.680 
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Variable Names Definition 
CT Level 

Minimum Maximum Mean 

 Bike Score Bike Score in CT 0.000 95.000 66.500 

 Transit Score Transit Score in CT 0.000 100.000 83.240 

 Distance to Time Square (m)  Ln (Distance to Times Square in mile from  CT) -3.290 4.24 3.022 

Transportation Infrastructure 

 Bike Share Station Total number of bikeshare stations in CT 0.000 7.000 0.162 

 Bus Stops Total number of bus stops in CT 0.000 21.000 1.614 

 Subway Stations Total number of subway stations in CT 0.000 6.000 0.228 

 Taxi Car Station Total number of taxi car stations in CT 0.000 11.000 0.149 

 Variable Names Definition Frequency (%) 

 

Median Income 

Low Median Income (Median income < 50,000) 43.9 

 Moderate Median Income (50,000 <= Median income <= 80,000) 37.2 

 High Median Income (Median income > 80,000) 18.9 

 Historic District Presence of listings on historic district or not 29.8 

 

Season 

Spring (March-May) 26.1 

 Summer (June-August) 25.0 

 Fall (September-November) 25.6 

 Winter (December-February) 23.2 
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𝐴𝐼𝐶 =  2𝑘 −  2𝑙𝑛(𝐿) (3.12) 

where 𝑘 is the estimated number of parameters and 𝐿 denotes the maximized value of likelihood 

function for a given empirical model.  

The empirical equation of BIC is: 𝐵𝐼𝐶 =  − 2𝑙𝑛(𝐿)  +  𝐾 𝑙𝑛(𝑄) (3.13) 

 

where 𝑙𝑛(𝐿) denotes the log likelihood value at convergence, 𝐾 denotes the number of 

parameters, and 𝑄 represents the number of observations. Many of the earlier studies suggested 

that the BIC is the most consistent information criterion (IC) among all other traditionally used 

ICs (AIC, AICc, adjusted BIC) for number of segments selection in latent class models 

(Anowar, Yasmin, Eluru, & Miranda-Moreno, 2014; Bhat, 1997; Collins, Fidler, Wugalter, & 

Long, 1993; Dey, Anowar, Eluru, & Hatzopoulou, 2018a; Eluru, Bagheri, Miranda-Moreno, & 

Fu, 2012; Nashad et al., 2016; Nylund, Asparouhov, & Muthén, 2007; Yasmin, Eluru, & 

Ukkusuri, 2014). The advantage of using BIC is that it imposes substantially higher penalty 

than other ICs on over-fitting. The model with the lowest AIC and BIC value is the preferred 

model. The BIC and AIC values for the final specifications of all the models are presented in 

Table 3.2.  Based on these values, copula models outperformed independent NB and 

multivariate NB model while mixed Gumbel copula with dependency profile parameterization 

model outperformed other copula models. The copula model BIC comparisons confirm the 

importance of accommodating dependence between full apartment and private/shared room 

count events in the macro-level analysis. 

 

3.4.2 Estimation Results 

We provide a discussion of results for the Mixed Gumbel copula model to present the effect of 

exogenous variables that presented in Table 3.3. To discuss the results briefly, 2nd and 3rd 
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column of Table 3.2 represents the full apartment and private/shared room listings counts 

estimates respectively. Reader must note that a positive (negative) sign indicates that potential 

listings count increases (decreases) for the considered variable groups. 

 

Table 3.2: Model Fit Measures  

Model lnL K Q BIC AIC 

Negative Binomial Count Models 

Negative Binomial -45488.207 31 10230 91262.639 91038.414 

Multivariate Negative Binomial -44924.200 32 10230 90143.859 89912.400 

Copula Model without Parameterization 

Copula (FGM) -44725.867 31 10230 89737.959 89513.734 

Copula (Frank) -44284.750 31 10230 88855.725 88631.500 

Copula (Gumbel) -44278.714 31 10230 88843.653 88619.428 

Copula (Clayton) -44498.249 31 10230 89282.723 89058.498 

Copula (Joe) -44451.294 31 10230 89188.813 88964.588 

Copula Model with Parameterization 

Copula Parameterization (Frank) -44185.310 34 10230 88684.545 88438.620 

Copula Parameterization (Gumbel) -43832.890 36 10230 87998.171 87737.780 

Copula Parameterization (Joe) -45104.380 33 10230 90513.452 90274.760 

Copula Mixed Model 

Copula Mixing (Gumbel) -44289.455 32 10230 88874.369 88642.910 

Mixed Copula Parameterization (Gumbel) -43567.729 38 10230 87513.956 87217.458 

 

3.4.2.1 Sociodemographic Characteristics 

In terms of sociodemographic characteristics, the estimates indicate that both full apartment 

and private/shared room listings count are positively associated with higher population density 

at the census tract level. Employment density estimates indicate that CT with high job density 

are likely to experience more listings in both kinds e.g. apartment and private or shared room. 

It is expected that census tract with more job opportunity will attract individuals from other 

city or state to attend a job interview or presentation (see similar results (Deboosere et al., 2019; 

Sperling, 2015)). Also, an increase proportion of moderate income group in a CT increases the 

likelihoods of using their home as an AirBnB listing in count model components for both 
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listings type. Moderate income family try to overcome their economic issues by giving 

permission to AirBnB platform to use their home as accommodation for tourists (Sperling, 

2015). 

Table 3.3: Copula Count Mixed Model Results (Gumbel)  

Variable Names 
Apartment 

Private or Shared 

Room 

Estimate t-stat Estimate t-stat 

Constant -8.886 -58.764 -4.541 -33.862 

Sociodemographic Characteristics 

  Population Density 0.438 11.485 0.595 15.097 

  Employment Density 1.747 20.052 0.878 8.372 

  Moderate Income (Base: Low and High Income) 0.145 6.475 0.081 3.418 

Built Environment and Land Use Attributes 

  Average Listings Price 1.628 68.571 0.984 57.448 

       Standard Deviation -- -- 0.068 11.147 

  Point of Interests, Park and Recreational Centers 0.267 4.481 0.285 5.382 

  Restaurants and Sidewalk Café 0.4678 1.848* - - 

  Historic District 0.364 16.087 0.179 7.281 

  Residential Density 0.352 5.104 0.402 5.609 

  Entertainment Area 0.9416 3.575 -- -- 

  Land Use Mix 0.528 6.390 0.785 8.585 

  
NonMV Score (Average of Walk Score and Bike 
Score) 

1.786 25.956 1.041 12.704 

Transportation Infrastructure 

  Bus Stops and Subway Stations 0.251 4.699 0.232 4.120 

Road Network Characteristics 

  Bike Length Density 1.195 11.547 0.826 7.531 

  Distance to Time Square -0.3652 -22.673 -0.345 -22.026 

       Standard Deviation 0.132 13.464 -- -- 

Seasonal Effect 

 Summer and Fall 0.136 6.565 0.095 4.235 

      Standard Deviation -- -- 0.122 1.796* 

Dispersion parameter 0.558 34.411 0.806 33.200 

Copula Parameter Estimate t-stat 

Constant 0.967 16.054 

Average Listings Price 0.221 36.048 

Historic District 0.904 11.931 

Population Density 0.266 4.326 

Point of Interests Park and recreational centers 0.202 13.227 

Distance to Time Square -0.245 -21.743 

Log-likelihood at convergence -43567.729 

* = attribute insignificant at 90% significance level 
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3.4.2.2 Built Environment and Land Use Attributes 

With respect to built environment characteristics, average listings price in a CT is found to be 

a significant determinant with a positive impact. It is expected that people are more encouraged 

to be a host of AirBnB with higher listings price and to do so it will affect the rent of that 

neighborhood (D. Wang & Nicolau, 2017). As expected with increasing the number of point 

of interests together with various amusement park and recreational centers within a CT will 

increase the likelihood of listings count of that particular CT (Yang & Mao, 2020). Since NYC 

is one of the most tourist visited city, it is expected that people who visit Times Square are 

likely to find accommodation in the vicinity. 

The variables considering built environment characteristics reveals that higher number 

of restaurants and sidewalk cafe are likely to result in increased number of apartment listings 

only. From Table 4, land use attributes play an important role in listings count for NYC. 

AirBnB listings situated in historic district increases the likelihood of apartment listings count. 

With respect to land use attributes, there are several attributes that found to be significant 

determinants for both the listings type. The noteworthy determinants regarding land use 

attributes that positively impact AirBnB listings count in a particular CT are region that used 

as a residential and entertainment zone. Also, mixed land use is positively associated with 

apartment and private/shared room listings count. As expected, tourist’s with personal or 

professional purpose will have more interest on staying region with land use with various 

dimension. Considering transportation effect on land use attributes, there is a clear scenario 

captures that increasing proportion of non-motorize vehicle score has positive association with 

both listings counts at the CT level. 
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3.4.2.3 Transportation Infrastructure 

In terms of transportation facility, public transport system either in bus or subway format will 

increase the likelihood of both AirBnB listings type count. This result can be easily comparable 

with practical scenario that more public transit system will facilitate guest’s stay in AirBnB 

much easier since major portion of tourist come from different city or state to stay in AirBnB. 

This transit facilitation criteria would be one of the major criteria for tourist to choose one 

particular AirBnB listings that may encourage host to establish their home as AirBnB listings.  

 

3.4.2.4 Road Network Characteristics 

An increase in the length of bicycle route within the census tract (CT) results in an increased 

likelihood of the increasement of the AirBnB listings for both types (apartment and 

private/shared room). Visitors choose AirBnB listings of both apartment and private/shared 

room located in a particular CT that bring them closer to Time Square as highlighted by 

negative coefficient of CT centroid distance to Time Square.  

 

3.4.2.5 Temporal Effect 

We tried different seasons along with interaction of seasons in the model. As expected, during 

warm and dry weather of summer and fall season have attracted tourist to travelling on NYC. 

 

3.4.2.6 Random Parameter Effect 

The unobserved heterogeneity of the impact of average listings price is significant for 

private/shared room listings highlighting that the count associated with the private/shared room 

listings varies substantially across average listings price. Similar effect is also found for 

variable distance between Times Square to each CT for full apartment. 
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3.4.2.7 Dependency Effect 

As specified in the result section, the estimated Gumbel copula based mixed bivariate NB 

model provides the best model fit in incorporating the correlation between the full apartment 

and private/shared room listings count events. In the last row panel of Table-4, dependency 

effects across various determinants by two listings types is presented in Copula parameter 

section. The various exogenous variables that contribute to the dependency include Average 

Listings Price, Historic District, Population Density, Point of Interests Park and recreational 

centers and Distance to Time Square. For the Gumbel copula, the first four attributes show the 

positive dependency while Distance to Times Square to listings attribute shows a negative 

dependency across CTs that supporting our hypothesis that the dependency profile varies 

across CTs. This provides support to our hypothesis that the dependency structures are not 

constant across all CTs and also the coefficient sign and magnitude reflects whether a variable 

increase or reduces the dependency and by how much. The proposed framework by permitting 

for such parameterizations allows us to improve model estimation results. 

 

3.5 Policy Analysis 

3.5.1 Elasticity Effects 

From the sample of data not used for estimation, data for 5 months was randomly selected for 

each census tract for policy analysis. The elasticity effects are computed by evaluating the 

percentage change in counts in response to increasing the value of significant exogenous 

variables from best fit model by 10% (Used in safety studies ((J. Lee, Yasmin, Eluru, Abdel-

Aty, & Cai, 2018)). The computed elasticities are presented in Table 3.4 (see (Eluru & Bhat, 

2007)) for details methodology of elasticity calculations). Results presented in the Table-5 

represent the percentage change of AirBnB counts due to 10% change in the independent 

variable. For example, the elasticity estimate for average AirBnB price variable indicates that 
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a 10% increase in price will result in a 127.299% increase in Apartment count and a 56.914% 

increase in private or shared room count. All the other results can be interpreted similarly. 

Based on elasticity effects results in Table 3.4, following observations can be made. 

First, elasticity effect on two dependent variables are different for various exogenous variables. 

Second, rank order of the top five important variable in terms of increasement for the expected 

number of both apartment and private or shared room counts include: average AirBnB price in 

CT, CT lies on historic district or not, median income per CT, effect of season and employment 

density. Third, increasing distance to Times Square from CT is the only variable which have 

negative impact on AirBnB counts for both types as expected. Fourth, private or shared room 

have higher elasticities relative to apartment counts for Point of Interests, park and recreational 

centers, land use mix and distance to Times Square from each CT. Fifth, an interesting finding 

from variation in elasticity effects for various exogenous variables is that with the increasing  

distance from Times Square to each CT have almost nine times more variation in elasticity for 

private or shared room than apartment count. Overall, the elasticity analysis results provide an 

illustration on how the proposed model can be applied to determine the critical factors 

contributing to increase in apartment and private or shared room AirBnB counts. 
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Table 3.4: Elasticity Effects 

Variable Names Apartment 

Private 

or 

 Shared 

Room 

Sociodemographic Characteristics 

Population Density 3.876 3.143 

Employment Density 12.084 5.259 

Moderate Income 15.123 8.202 

Built Environment and Land Use Attributes 

Average Listings Price 127.299 56.914 

Point of Interests, Park and Recreational Centers 5.378 10.788 

Restaurants and Sidewalk Café 0.990 --   

Historic District 25.214 29.645 
Residential Density 8.641 2.545 

Entertainment Area 0.082 --   

Land Use Mix 1.284 1.341 
NonMV Score (Average of Walk Score and Bike Score) 8.714 6.092 

Transportation Infrastructure 

Bus Stops and Subway Stations 1.331 0.359 

Road Network Characteristics 

Bike Length Density 0.629 0.206 

Distance to Time Square (m) -3.220 -27.677 

Temporal Attributes 

Season: Summer and Fall 13.598 9.499 

 

3.5.2 Spatial Distribution of Hotspots 

To illustrate how our model can be used to identify zones with high tourist demand, we conduct 

a hot zone identification exercise. Hot zones are defined as the census tracts within the top 10 

percentile of demand. With this definition, we compare the observed hot zones with the 

predicted hot zones from our model. We present the results for four months of data from the 

four seasons - January from Winter, April from Spring, July from Summer and September from 

Fall. The results are presented in Figure 3.4 for apartment listing type.  
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(a) Observed (January’17) (b) Predicted (January’17) (c) Observed (April’17) (d) Predicted (April’17) 

    

(e) Observed (July’17) (f) Predicted (July’17) (g) Observed 

(September’17) 
(h) Predicted (September 

‘17) 
 Figure 3.4: Spatial Distribution of Most Tourist Zone as Apartment AirBnB Counts of NYC 
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 From the spatial distribution for observed AirBnB count, it is clearly seen that top 

tourist spot are dispersed throughout the Manhattan and few parts of Brooklyn borough for 

apartment. Further, the model predictions are reasonably close to the observed patterns.  

 

3.6 Summary 

In the first part of the dissertation, considering AirBnB as sharing accommodation system, we 

aim to analyze these three dimensions. First, by developing a model framework to count 

AirBnB listings at census tract level to capture the snapshot of accommodation supply for 

tourist in NYC. Second, capture the unobserved heterogeneity in the model together with 

correlation between those matrices. For this study purpose, a copula based negative binomial 

count model system is developed that implicitly recognizes shared common observed and 

unobserved factors for two types of AirBnB listings e.g. Apartment and Private or shared room 

in a census tract level. Given these afore-mentioned implications, the proposed research 

conducts a comprehensive analysis of AirBnB listings in New York City region drawing on 

data from January 2015 to September 2017. We found that mixed Gumbel copula model with 

dependency profile parameterization outperformed other copula models along with 

independent and negative binomial model. Finally, we validate the model by predicting 

AirBnB counts by it’s two types and found that the predicted results are closely aligned for 

high demand destinations. This analysis will allow City planners and operators to better 

evaluate and improve tourism systems. We also conducted elasticity effects based on the best 

fit model results on validation dataset and found the top five important variable in terms of 

influencing the expected number of both apartment and private or shared room as: average 

AirBnB price in CT, CT lies on historic district or not, median income per CT, effect of season 

and employment density.
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CHAPTER 4: FRAMEWORK FOR ESTIMATING BIKESHARE ORIGIN 

DESTINATION FLOWS USING A MULTIPLE DISCRETE CONTINUOUS SYSTEM 

 

4.1 Introduction  

Transportation field is undergoing a transformative change in response to several technological 

innovations in recent years. A product of these technological transformations is the adoption 

of shared mobility systems such as bikesharing (such as CitiBike in New York City), car 

sharing (such as Zipcar or Car2Go), ridesourcing (such as Uber and Lyft) and ride-splitting 

(such as dynamic carpooling in urban regions). As highlighted in a recent Transit Cooperative 

Research Program report (1), understanding shared mobility adoption and usage provides an 

unprecedented opportunity to address existing mobility shortcomings in urban regions. In fact, 

public transit agencies and transportation planning agencies can enhance mobility and 

accessibility by incorporating these shared mobility alternatives within their planning 

frameworks. Among the shared mobility alternatives, bike sharing offers a sustainable 

transportation alternative in urban core regions and could be an effective solution to the last 

mile problem (2). In our research, we focus our attention on developing a research framework 

to contribute to our understanding of bikeshare origin destination flows.  

About 1000 cities around the world have a bikeshare system in operation or in consideration 

for development (3). As reported by Richter, 2018 (4), the number of public use bicycles in the 

world have nearly quadrupled between 2013 and 2016. Further, a recent national association 

of city transportation officials (NACTO) report highlighted that of the 88 million trips made 

by bike share users in US between 2010-2016, 28 million were trips from 2016 only (5). Given 

the burgeoning growth in bikeshare system installations and their growing adoption for trip 

making, it is important to develop modeling frameworks to understand bike share demand 

flows in the system. An important mechanism for enhancing system adoption and usage is the 
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development of current performance metrics (see (6)). As bikesharing is an emerging 

transportation mode, the current approaches being employed for analyzing system usage and 

performance measure are still in their infancy.  In this study, we propose an enhanced 

framework to estimate usage dimensions of bikesharing at a system level.  

 To be sure, several earlier research efforts have explored approaches to model system 

level usage (7-10). These research studies examine the impact of bicycling infrastructure, land 

use and built environment, public transportation infrastructure, temporal and meteorological 

attributes on bikeshare system usage (defined as station level arrivals and departures). These 

models can be viewed as analogous to the trip generation and trip attraction models in the 

traditional trip based modeling approach. While these models provide important insights on 

variables affecting bikeshare usage, they do not provide any information on the system level 

flows between the stations. To elaborate, the approaches provide trip end information without 

the trip distribution relationship. To address this shortcoming, recent research has developed 

destination choice models at an individual trip level (7; 11; 12). In these studies, for every 

individual trip the choice of destination given the origin station is analyzed using a random 

utility based approach. The models developed at an individual trip level can be employed to 

obtain aggregate estimates of trip distribution (analogous to the gravity model). However, such 

an aggregation approach is purely a statistical construct and lacks behavioral support.  

In this study, we remedy this drawback, by developing a model framework for bikeshare 

system usage as well as origin destination flows. Towards this end, we characterize system 

demand as origin level demand (number of trips) and allocate these trips to various destination 

stations (number of trips from an origin to destination) in the system. For the first variable, a 

linear mixed model is developed while the second variable is analyzed using a multiple discrete 

continuous model system that implicitly recognizes that the total arrivals across stations should 

add up to the total number of trips leaving the origin. The proposed framework is implemented 
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for the New York City bikeshare system (CitiBike). The data drawn for the exercise includes 

bikeshare trips from January 2017 through June 2017 for the CitiBike system. 

 The rest of the chapter is organized as follows: The following section presents the 

methodological framework adopted in the analysis while section 3 provides a detailed 

description of the dataset with sample formation technique. Model results are presented in the 

fifth section followed by the policy analysis. Final section comprises with the concluding 

statements. 

 

4.2 Econometric Modeling Framework 

4.2.1 Linear Mixed Model for Station Level Weekly Origin Demand 

The station level weekly origin demand variable is a continuous value and can be analyzed 

using linear regression models. However, the traditional linear regression model is not 

appropriate to study data with multiple repeated observations. In our empirical analysis, we 

observe the weekly demand at the same station for five weeks. Hence to recognize this, we 

employ a linear mixed modeling approach that builds on the linear regression model while 

incorporating the influence of repeated observations from the same station. The linear mixed 

model collapses to a simple linear regression model in the absence of any station specific 

effects. 

Let q = 1, 2, …, Q be an index to represent each station (Q=574), W = 1, 2, …, 5 be an index 

to represent the various weeks of data compiled for each station. The dependent variable 

(weekly demand) is modeled using a linear regression equation which, in its most general form, 

has the following structure: 

yqw = βX + ε 

where yqw is the natural logarithm of weekly demand, X is an L×1 column vector of attributes 

and the model coefficients, β, is an L×1 column vector. The random error term, ε, is assumed 
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to be normally distributed across the dataset. In our analysis, the repetitions over weeks can 

result in common unobserved factors affecting the dependent variable. While a full covariance 

matrix can be estimated for the unobserved correlations, as we are selecting 5 random weeks 

from a sample of 26 weeks for each station, we decided to employ a simpler covariance 

structure. The exact functional form of the covariance structure assumed is shown below: 

𝛀 = ( 
𝝈𝟐 + 𝝈𝟏𝟐 𝝈𝟏 … 𝝈𝟏𝝈𝟏 𝝈𝟐 + 𝝈𝟏𝟐 … 𝝈𝟏⋮ ⋮ ⋱ ⋮𝝈𝟏 𝝈𝟏 … 𝝈𝟐 + 𝝈𝟏𝟐)  

 

The covariance structure restricts the covariance across all five records to be the same. The 

parameters estimated in this correlation structure are 𝜎 and 𝜎1 . The parameter σ represents the 

error variance of ε, 𝜎1 represents the common correlation factor across weekly records. The 

models are estimated in SPSS.  

 

4.2.2 The MDCEV Model Structure for Destination Choice 

According to Bhat and Eluru (Bhat & Eluru, 2010), we consider the following functional form 

for utility in this paper, based on a generalized variant of the translated CES utility function: 

 

𝑉(𝑥) =  ∑𝛾𝛼𝐼
𝑖=1  ψ𝑖 {(𝑥𝑖𝛾 + 1)𝛼 − 1 } (4.1) 

 

where 𝑉(𝑥) is a quasi-concave, increasing, and continuously differentiable function with 

respect to the consumption quantity (Ix1)-vector x (𝑥𝑖 ≥ 0 for all 𝑖), and 𝜓𝑖 associated with 

destination station 𝑖. 𝜓𝑖 represents the baseline marginal utility (𝜓𝑖> 0 for all 𝑖), 𝛾 is a 
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translation parameter (𝛾 should be greater than zero) which enable corner solutions while 

simultaneously influencing satiation and 𝛼 influences satiation (𝛼 ≤ 1).  

 The KT approach employs a direct stochastic specification by assuming the utility 

function 𝑉(𝒙) to be random over the population. A multiplicative random element is introduced 

to the baseline marginal utility of each good as follows: 

 ψ (𝑧𝑖, 𝜖𝑖) = exp (𝛽′𝑧𝑖 + 𝜖𝑖) (4.2) 

 

where 𝑧𝑖 is a set of attributes characterizing destination station 𝑖, 𝛽 corresponds to a column 

vector of coefficients, and 𝜖𝑖 captures idiosyncratic (unobserved) characteristics that impact 

the baseline utility for good.  

The overall random utility function of Equation (1) then takes the following form: 

𝑉(𝑥) =  ∑𝛾𝛼𝐼
𝑖=1  exp (𝛽′𝑧𝑖 + 𝜖𝑖) {(𝑥𝑖𝛾 + 1)𝛼 − 1 }         (4.3) 

 

Following Bhat (Bhat, 2005, 2008), consider an extreme value distribution for 𝜖𝑖 and assume 

that 𝜖𝑖 is independent of 𝑧𝑖 (𝑖 = 1, 2, …, I). The 𝜖𝑖’s are also assumed to be independently 

distributed across alternatives with a scale parameter normalized to 1. Due to the common role 

of 𝛾 and 𝛼, it is very challenging to identify both 𝛾 and 𝛼 in empirical application (see Bhat, 

(Bhat, 2008)). Hence, only 𝛾 or 𝛼 are estimated.  

When the α- profile is used the utility simplifies to: 

 

𝑉(𝑥) =  ∑1𝛼𝐼
𝑖=1  exp (𝛽′𝑧𝑖 + 𝜖𝑖){(𝑥𝑖 + 1)𝛼 − 1 } (4.4) 
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When the 𝛾 - profile is used the utility simplifies to: 

 

𝑉(𝑥) =  ∑𝛾𝐼
𝑖=1 exp(𝛽′𝑧𝑖 + 𝜖𝑖) 𝑙𝑛 (𝑥𝑖𝛾 + 1) (4.5) 

 

In this study, 𝛾 - profile is used.  

The probability that an origin station has flows to the first M destination stations (M ≥ 1) is: 

𝑃(𝑒1∗, 𝑒2∗, 𝑒3∗, … , 𝑒𝑀∗ , 0,0, … ,0) = [∑𝑑𝑛𝑀
𝑛=1 ] [∑ 1𝑑𝑛𝑀

𝑛=1 ] [ ∏ 𝑒𝑉𝑛𝑀𝑛=1(∏ 𝑒𝑉𝑖𝐾𝑚=1 )𝑀] (𝑀 − 1)! (4.6) 

 

where (∑ 𝑑𝑛𝑀𝑛=1 ) (∑ 1𝑑𝑛𝑀𝑛=1 ) is defined as Jacobian form for the case of equal unit prices across 

goods (Bhat, (Bhat, 2008)). 

 

Where, 𝒅𝒏 = ( 𝟏−𝜶𝒆𝒏∗+𝜸) 
 

Unlike the traditional MDCEV model, in our context, the number of alternatives are 

substantially larger. Hence, we resort to estimating a single utility across alternatives 

(analogous to how multinomial logit based location choice models are estimated with a single 

utility equation).   

 

4.3 DATA 

4.3.1 Data Source 

New York’s CitiBike system is one of the major public bikeshare systems around the world 

and the largest in the United States. The CitiBike system was launched in May 2013 with 330 
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stations and 6,000 bicycles in the lower half of Manhattan and some part of northwest 

Brooklyn. In 2017, the system size expanded to 750 stations with 12,000 bicycles. According 

to CitiBike report, the number of annual subscribers were nearly 130,000 on July 2017. The 

trip itinerary dataset (from January 2017 to June 2017) of the CitiBike system is the primary 

data source employed (https://www.citibikenyc.com/system-data). The ridership dataset 

provides information on start and end time of trips, their origin and destination, geographic 

coordinates of stations (latitude and longitude), travel time or trip duration, user types, and age 

and gender for members’ trips. The trip data was augmented with other sources including: (1) 

built environment attributes such as number of restaurants and park area derived from New 

York City open data (https://nycopendata.socrata.com); (2) socio-demographic characteristics 

at the census tract/zip code level gathered from US 2010 census; (3) the weather information 

corresponding to the  Central Park station retrieved from the National Climatic Data Center 

(http://www.ncdc.noaa.gov/data-access). 

 

4.3.2 Sample Formation 

For the given study period, the total number of available stations in CitiBike system was 644. 

Initially, we aggregated weekly trip data for each week (total 26 weeks) from each origin station 

to every possible destination station (643). The processing of large sample of trip data with 

other station level variables is substantially time-consuming and significantly increases the 

model run times (Faghih-Imani & Eluru, 2017a). To obtain a reasonable sample size for model 

estimation, 5 weeks trip data for each origin were randomly selected. As a result of the random 

week selection, we ended up having 70 stations with no trips. So, we eliminated those 70 

stations (about 10% trips) from both origin and destination choice set. Finally, we had 574 

stations for analysis. The location of CitiBike stations (574 stations) considered in this study is 

presented in Figure 4.1. We organized the dataset into two dimensions for our analysis; 1) For 

https://www.citibikenyc.com/system-data
https://nycopendata.socrata.com/
http://www.ncdc.noaa.gov/data-access
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station level demand (aggregating total weekly trip at origin level) and 2) Trip distribution from 

origin to destination (aggregating weekly trip at O-D pair level). A summary of the dependent 

variable and independent variable data compilation procedure is presented in Figure 4.2.  

 

Figure 4.1: NYC’s Bicycle-Sharing System (CitiBike) 

4.3.3 Independent Variable Generation 

Several independent variables were generated in our study (see Figure 4.2). These can be 

grouped into four categories: 1) Trip attribute, 2) Socio-demographic variables, 3) Bicycle and 

transportation infrastructure variables, 4) Weather attributes, 5) Temporal attributes and 6) 

Land use and built environment variables. Trip attribute includes the network distance between 

each origin-destination station pair estimated using the shortest path algorithm. While the 

actual trip might involve a different route, the shortest network distance would be an 
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appropriate indicator of the distance traveled. The socio-demographic attributes considered are 

population density, job density and establishment density. Population information was 

collected from US census 2010 and projected for 2017 at the census tract level. Job density 

data was estimated at the census tract level while establishment density was calculated at the 

zip code level for 2016.  

 Bicycle and transportation infrastructure variables include CitiBike station attributes, 

bike route length, and public transit stations. For these attributes a 250-meter buffer around 

each station was created. The 250-meter buffer seems a reasonable walking distance based on 

the distances between CitiBike stations and the dense urban form of New York City (Kaufman, 

Gordon-Koven, Levenson, & Moss, 2015). The variables created at the buffer level include 

length of bike routes, length of roads (minor and major roads). The number of CitiBike stations 

and total dock’s capacity within 250 meter buffer (excluding the station considered and its 

capacity) were estimated to capture the impact of neighboring stations on cycling trips. Number 

of subway stations and bus stops in the 250 meter buffer were generated to examine the 

influence of public transit on cyclist’s preference of destination station. Weather variables 

include average temperature, relative humidity and precipitation over the week. Several 

interaction variables were also created. Seasonality is the only temporal variable considered. 

We consider winter (January-March) and Spring (April-June) as dummy variables. 

 Finally, several land use and built environment variables were considered including the 

number of facilities (schools, colleges, hospitals), the number of point of interests (museums, 

shopping malls), and the number of restaurants (including coffee shops and bars), total area of 

parks and commercial space (office, industry, retail) within 250 meter buffer, station elevation, 

and distance of destination from Times Square. Non-motorized vehicle score (average of walk 

score and bike score) and transit score associated with each CitiBike station was considered at 

the census tract level.
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 1 

Figure 4.2: Data Formation Flow Chart2 
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(a) Trip generation at origin stations. (b) Trip attraction at destination stations. 

 

Figure 4.3: Bike Sharing Trips in NYC’s CitiBike System
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4.3.4 Descriptive Analysis  

A descriptive summary of the analysis sample is presented in Table 4.1. The number of weekly 

trips generated and attracted at each station is presented in Figure 4.3. In Figure 4.3, the number 

of trips generated (3a) and attracted (3b) to each station is categorized in five classes: Very 

Low (number of trips less than 500), Low (500-1000), Medium (1000-2000), High (2000-5000) 

and Very High (more than 5000). Overall, the visualization provides a brief overview of bicycle 

flows in NYC using the CitiBike system.  

 

Table 4.1: Descriptive Summary of Sample Characteristics 

Continuous Variables Min Max Mean 
Std. 

Deviation 

Dependent Variable 

Trip Demand 

Total Trip (Weekly per Origin) 1.00 3726.00 402.17 390.06 

Destination Choice 

Alternative Destination Chosen 1.00 354.00 111.69 65.79 

Total Trip (Weekly O-D Pair) 1.00 175.00 3.60 5.15 

Independent Variables 

Trip Characteristics 

Network Distance (km) (x 10^-2) 0.05 0.41 0.14 0.08 

Socio-demographic  

Population Density (People per m2 x 10^-4) 0.00 0.87 0.26 0.17 

Job Density (Jobs per Person) 0.00 0.90 0.66 0.17 

Number of Establishment (per m2x 10^-4) 0.00 1.20 0.09 0.14 

Bicycle and Transportation Infrastructure  

Length of Bicycle Facility in 250m Buffer (m x 10^-4) 0.00 0.91 0.24 0.17 

Length of Street in 250m Buffer (m x 10^-4) 0.14 0.84 0.38 0.10 

Station Capacity (x 10^-2) 0.07 0.67 0.32 0.10 

Number of Neighboring Station in 250m Buffer (x10^-1) 0.00 0.50 0.11 0.10 

Capacity of Neighboring Station in 250m Buffer (x10^-3) 0.00 0.27 0.04 0.04 

Number of Subway Stations in 250m Buffer (x10^-1) 0.00 0.70 0.06 0.09 

Number of Bus Stops in 250m Buffer (x10^-1) 0.00 1.10 0.22 0.22 

Weather  

Temperature (°F) 19 84 50.06 13.56 

Precipitation (in) 0 3.02 0.16 0.44 
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Continuous Variables Min Max Mean 
Std. 

Deviation 

Humidity (%) 26 98 61.44 17.5 

Land Use and Built Environment 

Walk Score (x10^-2) 0.69 1.00 0.97 0.05 

Transit Score (x10^-2) 0.61 1.00 0.96 0.07 

Bike Score (x10^-2) 0.45 0.95 0.85 0.09 

Number of Facilities in 250m Buffer (x10^-3) 0.00 0.16 0.03 0.02 

Recreational Facilities in 250m Buffer 0.00 2.00 0.08 0.30 

Number of Restaurants in 250m Buffer (x 10^-3) 0.00 0.55 0.04 0.08 

Number of Sidewalk café in 250m Buffer (x10^-3) 0.00 0.14 0.02 0.02 

Area of Parks in 250m Buffer (m2 x 10^-6) 0.00 0.18 0.09 0.05 

Commercial Area in 250m Buffer (m2 x 10^-6) 0.00 0.55 0.26 0.14 

Elevation (m x10^-3) 0.00 0.16 0.04 0.03 

Distance to Time Square (m x 10^-5) 0.58 1.32 0.52 0.28 

Categorical Variables 

Temporal Percentage 

Winter 48.90 

Spring 51.10 

 

4.4 Estimation Results 

In this section, estimation results from the two models are discussed. First, the results of the 

bikeshare demand model is discussed. Second, the trip distribution model results at destination 

level are discussed. The reader must note that we used same scaled parameter as presented in 

Table 1. 

 

4.4.1 Trip Demand Model  

4.4.1.1 Model Fit Measures 

To evaluate weekly bikeshare demand at the origin station, a linear mixed model was estimated. 

The mixed model data fit was compared to the simple linear regression model data fit. The 

Log-likelihood ratio (LR) test statistic comparing these models was found to be 2015.0 which 

was higher than any corresponding chi-square value for 2 degrees of freedom (σ and σ1). Based 
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on the LR test statistic, we can conclude that the linear mixed model offers the satisfactory fit 

for station level demand. 

4.4.1.2 Results 

The linear mixed model estimation results are presented in Table 3.2.  

Table 4.2: Linear Mixed Model Results 

Parameter Estimates t-stats 

Intercept 1.253 3.273 

Socio-demographic Attributes 

Job Density 0.683 4.372 

Bicycle Infrastructure and Transportation Attributes   

Station's Capacity  2.468 8.407 

Number of Subway Stations in 250m Buffer 0.383 2.491 

Bike Length in 250m Buffer  0.871 5.524 

Temporal Attributes 

Season: Winter -0.784 -53.378 

Land Use and Built Environment Attributes 

Non-motorized vehicle score 4.466 11.139 

Number of Facilities and Recreational Point in 250m Buffer 3.256 4.158 

Distance to Time Square (m) -18.116 -16.599 

Correlation Parameters 𝜎 0.128 33.875 𝜎1 0.305 15.507 

Restricted Log-Likelihood  -1863.186 

 

4.4.1.2.1 Socio-demographic Attributes   

Individuals are likely to make more trips using bikeshare in a location clustered with more job 

opportunities (see (Rixey, 2013; Wang et al., 2015) for similar results).  

  

4.4.1.2.2 Bicycle Infrastructure Variables   

People are more inclined to make trips from higher capacity (total number of bicycles) stations 

than lower capacity stations. Riders are more willing to make more trips from stations well 
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served by bicycle facilities such as bicycle lanes (see (Buck et al., 2013) for similar results). 

As expected, number of subway stations positively impacts origin bike demand. This is 

plausible since bikeshare potentially serves as a last mile connection for some public transit 

users (similar results in (Nair et al., 2013)). 

 

4.4.1.2.3 Temporal variables   

There is a negative relationship between winter season and total weekly bicycle departures 

from a particular station compared to spring season. The result is expected as New York winter 

bikeshare usage is expected to be lower than spring bikeshare usage.  

 

4.4.1.2.4 Land Use and Built Environment Attributes   

This section highlights results regarding land use and built environment variables. Stations 

located in neighborhoods with high walkable and bikable facilities also increase bikeshare 

demand. Citibike stations near different facilities (schools, colleges, hospitals, office) and 

recreational locations (point of interests such as Times Square, museums, amusement parks, 

shopping malls.) increase demand. As expected, increasing distance from Time Square reduces 

bikeshare flows.  

 

4.4.1.2.5 Correlation Parameters 

The correlation parameters are statistically significant highlighting the role of common 

unobserved factors influencing the origin stations. 
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4.4.2 Destination Choice Model 

4.4.2.1 Model Fit Measures 

The final log-likelihood values for destination choice MDCEV model and equal probability 

MDCEV model are -534386813.50 and -597736907.30 respectively. The log-likelihood ratio 

(LR) test-statistic of comparison between the final model and the equal probability model is 

126700187.60. The LR test-statistic value is significantly higher than the corresponding chi-

square value for 20 additional degrees of freedom. Based on these values, we can see that the 

MDCEV destination choice model offers a reasonable fit.  

 
4.4.2.2 Results 

The best fit model results of destination choice are presented in Table 4.3. 
 

Table 4.3: MDCEV Model Results 

Parameter Estimates t-stats 

Trip Attributes 

Network Distance (m) -13.204 -16014.381 
Network Distance x Winter -0.847 -867.060 

Socio-demographic Attributes 

Population Density  2.165 307.835 

Job Density 0.607 696.644 

Establishment Density 0.188 265.628 

Bicycle Infrastructure and Transportation Attributes 

Station's Capacity 1.397 852.412 

Bike Length in 250m Buffer  0.588 1205.945 

Street Length in 250m Buffer 0.003 3.150 
Number of Neighboring Stations in 250m Buffer -0.467 -151.695 
Capacity of Neighboring Stations in 250m Buffer -0.448 -52.984 

Number of Subway Stations and Bus Stops in 250m Buffer 0.042 88.215 

Land Use and Built Environment Attributes 

Transit Score 1.604 824.049 
Non-motorized vehicle score 5.259 2769.230 
Number of Restaurants and sidewalk cafe in 250m Buffer 0.260 228.857 
Park Area in 250m Buffer 0.093 34.682 
Number of Facilities in 250m Buffer 3.256 648.628 
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Parameter Estimates t-stats 

Number of Recreational Points in 250m Buffer 2.016 419.675 
Distance to Time Square (m) -16.493 -4801.280 
Elevation -4.503 -1182.673 
Commercia Area 0.223 216.311 

Satiation Parameters 

γ 7.875 2350.980 

Log-Likelihood at Convergence -534386813.520 

 

4.4.2.2.1 Trip Attributes   

In the current research context, a negative coefficient was obtained for network distance of O-

D pair. Intuitively, destinations further away are less appealing for cyclists. We also tried 

interaction of winter season with distance in the model. As expected, during cold weather the 

influence of distance is more burdensome for bikeshare users. 

 

4.4.2.2.2 Socio-demographic Attributes   

Stations located in Census tract with higher population density or heterogeneous land use mix 

are more likely to be chosen as destination stations (see (Faghih-Imani & Eluru, 2015, 2017b; 

Rixey, 2013; X. Wang, Lindsey, Schoner, & Harrison, 2015) for similar results). Similarly, job 

and establishment density also impacts station choice positively. The result probably highlights 

that bicycle-sharing systems are likely to be used for daily commute trips (see (Faghih-Imani, 

Eluru, & Paleti, 2017) for similar result). 

 

4.4.2.2.3 Bicycle Infrastructure Attributes   

Stations with increased dock capacity are more likely to be chosen (similar results in (El-Assi 

et al., 2017; Faghih-Imani & Eluru, 2015, 2017b)). An increase in the length of bicycle route 

within the 250-meter buffer of a destination station results in an increased likelihood of the 

station being chosen as destination (similar to findings of (El-Assi et al., 2017; Faghih-Imani 
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& Eluru, 2015, 2016, 2017b)). A similar result (albeit with lower magnitude) is obtained for 

street length variable. 

 Literature suggests that in addition to their own attributes, neighboring station attributes 

also affect destination choice behavior. In our study, we tested the impact of total number of 

stations and total dock capacity of neighboring stations in a 250m buffer. The number of 

stations and capacity in the station buffer offer surprising results. The two coefficients are 

negative highlighting that there is competition between bikeshare infrastructure. The result is 

quite different to what has been reported in earlier single discrete model approaches and 

warrants more investigation (see 7, 12 for different results). As the number of subway stations 

in the buffer increases, we observe that preference for that destination also increases. 

 

4.4.2.2.4 Land Use and Built Environment Attributes   

Intuitively, increased transit accessibility within the station buffer also increases the station’s 

likelihood of being chosen as destination. As expected, stations located in neighborhoods with 

high walk and bike accessibility are preferred by cyclists. Cyclists prefer amenities around 

stations as indicated by the positive impact of number of restaurants and cafes in the vicinity 

of destination station. The CitiBike stations in the vicinity of parks are also more likely to be 

chosen. Individuals are likely to choose destination stations in a location with more facilities 

(such as museums, schools, colleges, university, hospitals). Visitors choose stations that bring 

them closer to Time Square as highlighted by negative coefficient of destination station 

distance to Time Square. Another important land use attributes that plays a significant role in 

choosing destination station is elevation of that station. People are less inclined to choose 

stations with steep slope for their trip. The presence of commercial area in the vicinity of 

destination station also increases the proclivity for the destination.  
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4.4.2.2.5 Satiation Parameter   

As discussed earlier in the methodology section, the translation parameters γ capture the extent 

of decrease in marginal utility across different destination stations. The translation parameter γ 

is statistically significant at 95% level of significance, thereby implying that there are clear 

satiation effects in destination choice as distance of destination from Time Square increases. 

To elaborate, as the destination moves further away from Times Square, the satiation impacts 

are higher indicating fewer trips will be made to the destination. 

 
4.5 Validation 

For validation purpose, a hold-out sample was prepared in a similar fashion by randomly 

choosing 5 weeks from the rest of 21 weeks (5 weeks of total 26 weeks was used for sample). 

The same approach of choice set generation for estimation sample is exercised for validation 

sample (574 origins x 5 weeks x 573 destinations). The difference in the log-likelihood for the 

predicted and equal probability model is 48118 units clearly highlighting the enhanced fit of 

proposed model.  

 To further highlight the applicability of estimated model for predicting destination 

choice conditional on the origin, we categorize destination choices into four quartiles based on 

number of trips destined for both observed and predicted model. These four quartiles are 

defined as 1st quartile stations (trips destined are less than 25% of total originating trips), 2nd 

quartile stations (trips destined are 25-50% of total originating trips), 3rd quartile (trips destined 

are 50-75% of total originating trips) and 4th quartile stations (trips destined are more than 75% 

of total originating trips). We compute percentage of correctly classified predicted stations in 

each. The results of the evaluation are presented in Figure 4.4. The reader would note that the 

probability of correct classification varies across the four quartiles ranging from 18.88% though 

51.8%. The result indicates that predicted model performs better in case of destination stations 
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with higher demand. The proposed framework presents an innovative approach for examining 

bikeshare system usage and will allow bike sharing system planners and operators to better 

plan and manage their system. 

 

4.6 Summary 

In this chapter, considering bike sharing as one of the transportation sharing systems, this 

current study identifies two choice dimensions for capturing the bike share system demand: (1) 

station level demand and (2) how bike flows from an origin station are distributed across the 

network. A linear mixed model is considered to estimate station level demand while a multiple 

discrete continuous extreme value (MDCEV) model to analyze flows distribution is employed. 

The data for our analysis is drawn from New York City bikeshare system (CitiBike) for six 

months from January through June, 2017. For our analysis, we examine demand and 

distribution patterns on a weekly basis. A host of exogenous variables including trip attributes, 

socio-demographic attributes, bicycle infrastructure attributes, land use and built environment, 

temporal and weather attributes are considered. The model estimation results offer very 

intuitive results for origin demand and multiple discrete destination choice models. We 

validated the model by predicting trips to destined stations and found that predicted model 

performs well for high demand destinations. This analysis will allow bike sharing system 

planners and operators to better evaluate and improve bikeshare systems. 
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CHAPTER 5: TRANSPORT NETWORKING COMPANIES DEMAND AND FLOW 

ESTIMATION: A CASE STUDY OF NEW YORK CITY 

 

5.1 Introduction 

Ride hailing services have been available as a mode of transportation since the early 17th 

century in the form of horse-drawn hackney carriages in Europe. With the advent of the 

automobile, taxis for hire have been the most common ride hailing transportation alternative. 

However, ride hailing has undergone a rapid transformation in the recent few years in response 

to the transformative technological changes including smart mobile availability, ease of hailing 

a ride using mobile applications, integration of seamless payment systems and real-time driver 

and user reviews. In fact, the convenience offered by transport networking companies (TNC) 

such as Uber, Lyft, and Via has allowed for a tremendous growth in ride hailing demand. For 

example, in New York City, the average daily trips by taxi (yellow taxi) was varying between 

400 thousand and 500 thousand for the years 2010 and 2014 (Metcalfe & Warburg, 2012). 

However, since 2014, with the advent TNC services in the city, the total number of trips have 

increased. Specifically in 2018, the daily trips have increased to more than a million trips with 

traditional taxi accounting for nearly 300 thousand trips, and TNC services accounting for 700 

thousand trips. These trends are not specific to New York City. A recent report analyzing 

reimbursed travel in the US has found that the share of Uber and Lyft has increased from 8% 

to 72.5% within 2014-2018 at the cost of taxi and rental car business share (Silver & Fischer-

Baum, 2016). The prevalence of TNC services is also not restricted to US. Uber operates in 

over 60 countries, while Didi Express in China, Ola in India currently capture a large share of 

the ride hailing market in these countries. The immense growth in market share and the spread 

of these services across the world illustrate how the ride hailing market has undergone a rapid 

transformation in a short time frame.   
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The rapid transformation of the ride hailing market coupled with emerging shared 

mobility service expansions (such as Carshare, Bikeshare, and Scooter share) offers an 

unprecedented opportunity to address the existing mobility shortcomings in urban regions (as 

highlighted in a recent TCRP report (Feigon & Murphy, 2016). In fact, public transit and 

transportation planning agencies can enhance mobility and accessibility in a region by 

incorporating these shared transportation alternatives within their planning frameworks to 

provide holistic mobility options in denser urban regions. Specifically, dense urban regions 

with well-connected public transit systems can strategically target reducing the reliance on 

private automobile ownership (and use) by incorporating ride-hailing alternatives in trip 

planning tools. Further, by examining the spatio-temporal ride hailing data, transit agencies 

and shared mobility platforms can identify urban pockets with service needs to provide last 

mile connectivity. Towards understanding these patterns it would be beneficial to understand 

TNC demand and its spatial distribution in the region.  

The current research effort contributes to this goal by developing quantitative models 

of TNC demand and flow distribution patterns. Using data from the NYC Taxi and Limousine 

commission, we conduct a comprehensive analysis of morning peak hour ride hailing data from 

Uber, Lyft, Juno and Via from 2018. The study develops (1) a demand component that 

estimates origin level TNC demand at the taxi zone level and (2) a distribution component that 

analyzes how these trips from an origin are distributed across the region. The former 

component is analyzed using linear mixed models and the latter component is analyzed using 

a multiple discrete continuous model system. The model components are developed using a 

comprehensive set of independent variables including aggregate trip attributes, transportation 

infrastructure variables, land use and built environment variables, weather attributes, and 

temporal attributes. The model estimates are validated using a hold out sample. Further, a 
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policy exercise is conducted to illustrate how the proposed model system can be utilized for 

evaluating the impact of changes to independent variables.  

The rest of the chapter is organized as follows: The following section presents the 

detailed description of the dataset with sample formation technique adopted in the analysis 

while section 3 provides methodological framework. Model results are presented in the fifth 

section followed by the policy analysis. Final section comprises with the concluding 

statements. 

 

5.2 Data  

5.2.1 Data Source 

New York City with high residential density and large tourist population is an ideal market for 

ride hailing systems. The NYC Taxi and Limousine Commission (TLC) provides spatially 

aggregated trip data from all ride hailing companies (taxi, Uber, Lyft, Juno and Via) for public 

use (https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page). The trip itinerary dataset 

for 2018 for Uber, Lyft, Juno and Via was processed to obtain daily morning peak hour TNC 

usage patterns.. The dataset provides information on start and end time of trips, origin and 

destination defined as taxi zone ID, trip distance and vehicle license number. The trip data was 

augmented with other sources including: (1) built environment attributes derived from New 

York City open data (https://nycopendata.socrata.com); (2) socio-demographic characteristics 

at the census tract/zip code level gathered from US 2010 census data; (3) the weather 

information corresponding to the Central Park station retrieved from the National Climatic 

Data Center (http://www.ncdc.noaa.gov/data-access). 
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5.2.2 Sample Formation  

A series of data cleaning and compilation exercises were undertaken for generating the sample 

data for estimation purposes. First, trips with missing or inconsistent information were 

removed. Second, trips longer than 500 minutes in duration (around 0.5% of all trips) were 

deleted considering that these trips are not typical ride-sharing trips. These trips could also be 

a result of two possibilities; either destination of those trips could be outside NYC or due to 

technical issues the trip information was recorded incorrectly. Third, trips that had the origin 

and destination outside of NYC taxi zone were also eliminated. Therefore, we focus on trips 

that originated and were destined within NYC taxi zone region only.  

 For the given study period (January 2018 to December 2018), the total number of 

available taxi zones in NYC was 260. Initially, we aggregated morning peak (6.30 am-9.30am) 

trip data for each day for each week (total 52 weeks) from each origin taxi zone ID to every 

possible destination taxi zone ID (260). The average number of daily trips generated and 

attracted at each taxi zone is presented in Figure 5.1. In Figure 5.1, the number of trips 

generated (Figure 5.1a) and attracted (Figure 5.1b) to each taxi zone is categorized into multiple 

classes from very low to very high. The figures clearly highlight the high TNC usage in 

Manhattan and airport locations (LaGuardia, John F. Kennedy International Airport and 

Newark airport).  

 For our analysis, to ensure that holiday weekends that are likely to have a different user 

patterns do not influence our analysis, we selected morning peak period trip data for 43 weeks 

without any holidays. The processing of the large sample of trip data is substantially time-

consuming and significantly increases the model run times. To obtain a reasonable sample size 

for model estimation, we sampled following two steps; 1) 150 taxi zones were selected 

randomly from the total 260 taxi zones and 2) for each taxi zone one weekday was randomly 

selected for each week. 
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 Thus, the data sampled had 150 taxi zone with 43 weekday morning peak trip data 

during 2018. We organized the dataset into two components for our analysis; 1) For zonal level 

origin demand (aggregating total daily morning peak trip at the origin level) and 2) Trip 

distribution from origin to destination (aggregating daily morning peak trip at the O-D pair 

level). Figure 5.2 provides a detailed flow chart of the independent and dependent variable data 

compilation procedure. 

 

5.2.3 Independent Variable Generation 

Several independent variables were generated in our study (see Figure 5.2). These can be 

grouped into five categories: 1) Trip attribute, 2) Transportation infrastructure variables, 3) 

Land use and built environment variables, 4) Weather attributes, and 5) Temporal attributes.  

 Trip attribute includes the network distance between each origin-destination taxi zone 

pair estimated using the shortest path algorithm tool of ArcGIS software. While the actual trip 

might involve a different route, the shortest network distance would be an appropriate indicator 

of the distance traveled. The variable will serve as a surrogate for travel time. As all the data is 

for morning peak, the impact of congestion is likely to be affecting all records similarly.  

 Transportation infrastructure attributes created at the taxi zone level include bike route 

length density (capturing the effect of availability of bicycle facilities on system usage), 

number of bikeshare stations, length of streets (minor and major streets). Number of subway 

stations and bus stops in the taxi zone were generated to examine the influence of public transit 

on rider’s preference of destination station.  
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(a) Trip generation at taxi zones (b) Trip attracted at destined taxi zones 
Figure 5.1:  Ride Hailing Trips in NYC’s Taxi Zone Level 
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Figure 5.2: Data Formation Flow Chart
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Several land use and built environment variables were considered including population density, 

job density and establishment density, the number of institutional facilities (schools, colleges, 

hospitals), the number of point of interests (museums, shopping malls), and the number of 

restaurants (including coffee shops and bars), total area of parks and commercial space (office, 

industry, retail) within each taxi zones. Distance of destination from Times Square and airport 

were estimated by using the shortest path algorithm tool of ArcGIS software. Airport indicator 

variable for the taxi zone was generated to examine the additional impact of airport destination. 

Population, job density and median income information was collected from US Census for 

2014-2017 and extrapolated for 2018 at the census tract level considering average yearly 

population change from 2014-2017. Household car ownership information for 2018 was used 

to generate proportion of zero car ownership at taxi zone level to examine the impact of car 

ownership on riders’ destination preferences. Non-motorized vehicle score (average of walk 

score and bike score) and transit score associated with each taxi zone was considered at the 

census tract level. Further, crime density and accident density were also generated at taxi zone 

level. Total number of crimes of all types for previous year (2017) was aggregated at census 

tract level and crime density was estimated by dividing with the corresponding year’s 

population. In a similar manner, total number of accidents of all kind for each day of 2018 was 

considered to generate accident density. 

 Weather variables include average temperature, precipitation, and snow for that 

particular day. Several interaction variables were also created. Seasonality is the only temporal 

variable considered. We consider winter (December-February), Spring (March-May), Summer 

(June-August) and Fall (September-November) as dummy variables. 
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5.2.4 Descriptive Analysis 

The data at an aggregate system level in the form of average number of trips by taxi zone for 

each week is presented in Figure 5.3. The various weeks with lower demand correspond to the 

weeks with holidays supporting our hypothesis that these weeks have a different demand 

pattern. The dependent variable distribution is generated to understand origin level demand and 

distribution of these flows across the study region. On average, 384 trips depart from each 

origin taxi zone in the morning peak hour and are destined to about 67 alternative taxi zones. 

The sample characteristics of the independent variables generated were suppressed due to space 

considerations. 

 

 

Figure 5.3: Trip Rates of TNC demand by week 

 

5.3 Econometric Frameworks 

5.3.1 Linear Mixed Model for Station Level Weekly Origin Demand 

The taxi zonal level daily pick up demand variable is a continuous value and can be analyzed 

using linear regression models. However, the traditional linear regression model is not 
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appropriate for data with multiple repeated observations. In our empirical analysis, we observe 

the daily peak hour demand at the same taxi zone for fourty-three weeks. Hence, we employ a 

linear mixed modeling approach that builds on the linear regression model while incorporating 

the influence of repeated observations for the same station. The linear mixed model collapses 

to a simple linear regression model in the absence of any station specific effects. 

Let 𝑤 =  1, 2, … ,𝑊 be an index to represent each taxi zone (𝑊 = 150), 𝑀 = 1, 2, … , 43  be an index to represent the various day of weeks of data compiled for each pick 

up taxi zone. The dependent variable (daily peak hour demand) is modeled using a linear 

regression equation which, in its most general form, has the following structure: 

𝑦𝑚𝑤  =  𝛽𝑋𝑚𝑤  +  𝜀𝑚𝑤 (5.1) 

where 𝑦𝑚𝑤 is the natural logarithm of weekly demand, 𝑋 is an 𝐾 × 1 column vector of 

attributes and the model coefficients, 𝛽, is an 𝐾 × 1 column vector. The random error term, 𝜀𝑚𝑤, is assumed to be normally distributed across the dataset. In our analysis, the repetitions 

over days can result in common unobserved factors affecting the dependent variable. While a 

full covariance matrix can be estimated for the unobserved correlations, as we are selecting 43 

random days from a sample of 43 weeks for each tax zone, we decided to employ a simpler 

covariance structure. The exact functional form of the covariance structure assumed is shown 

below: 

𝛺 = (𝛺2 +𝛺12 𝛺1 … 𝛺1𝛺1 𝛺2 + 𝛺12 … 𝛺1⋮ ⋮ ⋱ ⋮𝛺1 𝛺1 … 𝛺2 + 𝛺12) 
(5.2) 

  The covariance structure restricts the covariance across all fourty-three records to be 

the same. The parameters estimated in this correlation structure are Ω and Ω1 . The parameter Ω represents the error variance of 𝜀, Ω1 represents the common correlation factor across daily 
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records. The models are estimated in SPSS using the Restricted Maximum Likelihood 

Approach (REML). The REML approach estimates the parameters by computing the likelihood 

function on a transformed dataset. The approach is commonly used for linear mixed models 

(Harville, 1977). 

 

5.3.2 MDCEV Model for Destination Choice 

According to Bhat and Eluru (Bhat, Sen, & Eluru, 2009), we consider the following functional 

form for utility in this paper, based on a generalized variant of the translated Constant Elasticity 

of Substitution (CES) utility function: 

 

𝑈(𝑥) =  ∑𝛾𝛼𝐼
𝑖=1  λ𝑖 {(𝑥𝑖𝛾 + 1)𝛼 − 1 } (5.3) 

where 𝑈(𝑥) is a quasi-concave, increasing, and continuously differentiable function with 

respect to the consumption quantity (𝐼x1)-vector (𝑥𝑖 ≥ 0 for all 𝑖), and 𝜆𝑖 associated with drop 

off taxi zone 𝑖. 𝜆 represents the baseline marginal utility (𝜆𝑖> 0 for all 𝑖), 𝛾 is a translation 

parameter (𝛾 should be greater than zero) which enables corner solutions while simultaneously 

influencing satiation and 𝛼 influences satiation (𝛼 ≤ 1).  

The KT approach employs a direct stochastic specification by assuming the utility 

function 𝑈(𝑥) to be random over the population. A multiplicative random element is 

introduced to the baseline marginal utility for each good (in our case destination) as follows: 

λ (𝑦𝑖𝑤, 𝜌𝑖𝑤) = exp (𝛿𝑦𝑖𝑤 + 𝜌𝑖𝑤) (5.4) 

where 𝑦𝑖𝑤𝑞 is a set of attributes characterizing drop off taxi zone 𝑖 during day w, 𝛿 corresponds 

to a column vector of coefficients, and 𝜌𝑖𝑤 captures idiosyncratic (unobserved) characteristics 
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that impact the baseline utility for destination stations. The overall random utility function of 

Equation (3) then takes the following form: 

𝑈(𝑥) =  ∑𝛾𝛼𝐼
𝑖=1  exp (𝛿𝑦𝑖𝑤 + 𝜌𝑖𝑤) {(𝑥𝑖𝛾 + 1)𝛼 − 1 } (5.5) 

Following (Bhat, 2005, 2008), consider a generalized extreme value distribution for 𝜌𝑖 
and assume that 𝜌𝑖𝑤 is independent of 𝑦𝑖𝑤 (𝑖 = 1,2, … , 𝐼). The 𝜌𝑖𝑤’s are also assumed to be 

independently distributed across alternatives with a scale parameter normalized to 1. Due to 

the common role of 𝛾 and 𝛼, it is very challenging to identify both 𝛾 and 𝛼 in empirical 

application (see (Bhat, 2008) for detailed discussion). Hence, either 𝛾 or 𝛼 parameter is 

estimated. When the 𝛼 - profile is used, the utility simplifies to: 

𝑈(𝑥) =  ∑1𝛼𝐼
𝑖=1  exp (𝛿𝑦𝑖 + 𝜌𝑖){(𝑥𝑖 + 1)𝛼 − 1 } (5.6) 

When the 𝛾 - profile is used, the utility simplifies to: 

𝑈(𝑥) =  ∑𝛾𝐼
𝑖=1 exp(𝛿𝑦𝑖 + 𝜌𝑖) 𝑙𝑛 (𝑥𝑖𝛾 + 1) (5.7) 

In this study, 𝛾 - profile is used. Finally, the probability that an pick up taxi zone has flows to 

the first 𝐷 drop-off taxi zones 𝐷 ≥ 1 is: 

𝑃(𝑒1∗, 𝑒2∗, 𝑒3∗, … , 𝑒𝐷∗ , 0,0, … ,0) = [∑𝑑𝑛𝐷
𝑛=1 ] [∑ 1𝑑𝑛𝐷

𝑛=1 ] [ ∏ 𝑒𝑈𝑛𝐷𝑛=1(∏ 𝑒𝑈𝑖𝐾𝑑=1 )𝐷] (𝐷 − 1)! (5.8) 

where (∑ 𝑚𝑛𝐷𝑛=1 )(∑ 1 𝑚𝑛⁄𝐷𝑛=1 ) is defined as Jacobian form for the case of equal unit prices 

across goods (Bhat, 2008) where, 𝑚𝑛 = ( 1−𝛼𝑒𝑛∗+𝛾).  
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Unlike the traditional MDCEV model, in our context, the number of alternatives is 

substantially larger. Hence, we resort to estimating a generic parameter for each exogenous 

variable across alternatives (analogous to how multinomial logit based location choice models 

are estimated with a single utility equation).  

 

5.4 Estimation Results 

 

The mathematical details of the linear mixed model and multiple discrete continuous extreme 

value model are suppressed to save on space. The model estimation results from the two models 

are discussed – TNC demand model followed by the trip distribution model results.  

 

5.4.1 Trip Demand Model 

 

5.4.1.1 Model Fit Measures 

A linear regression model was estimated at first as benchmark for evaluating the linear mixed 

model. To compare these two models, a Log-likelihood ratio (LR) test was computed. The LR 

value was found to be 1915 which was higher than any corresponding chi-square value for 2 

degrees of freedom. Based on the LR test statistic, we can conclude that the linear mixed model 

outperforms the simple linear regression model and offers satisfactory fit for the station level 

demand.  

 

5.4.1.2 Linear Mixed Model Results 

The linear mixed model estimation results for morning peak hour TNC origin demand are 

presented in Table 5.1. The model estimation results offer intuitive findings. TNC demand, as 

expected is positively associated with population density. Increased median income of 
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households within the taxi zones is found to increase demand for TNC trips (see (Correa et al., 

2017; Smart et al., 2015) for similar results). The presence of airport in the taxi zone also 

contributes to increased TNC demand. Higher number of trips are likely to be generated from 

taxi zones with higher population than lower populated zones.  The presence of different 

institutional facilities (such as schools, colleges, hospitals, and office) in the taxi zones 

increases the zonal demand. The presence of discretionary opportunities such as a higher 

presence of restaurants and sidewalk café also drives TNC demand. Taxi zones with higher 

proportion of residential area is positively associated with Peak hour morning TNC flows. The 

result illustrates the adoption of TNC service for morning commute activities from these zones. 

The results for precipitation variables highlight that in the presence of precipitation individuals 

are likely to make a trip via TNC services (see (Brodeur & Nield, 2016) for similar result). The 

results also indicate a positive influence of summer and fall season compared to winter and 

spring season. The finding is in line with earlier research (Brodeur & Nield, 2016). The result 

is also possibly reflecting the increased tourist activity during these seasons. 

 

5.4.1.3 Correlation Parameters 

In the linear mixed model we estimate a parameter that recognizes the repeated measures of 

data for each taxi zone. The correlation parameter is statistically significant highlighting the 

role of common unobserved factors influencing the demand from taxi zones. 
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Table 5.1: Linear Mixed Model Results for TNC Origin Demand 

Parameter Estimates t-stats 

Intercept -1.679 -3.903 

Land Use and Built Environment Attributes 

Population Density 1.261 8.869 

Median Income (x10-3) 8.035 4.079 

Airport as an Indicator 0.804 4.079 

Number of Institutional Facilities in a Taxi Zone (x10-3) 0.195 1.655 

Number of Restaurants and Side cafe in a Taxi Zone (x10-3) 0.316 2.803 

Residential Area (m2 x10-6) 0.316 2.803 

Temporal Attributes 

Precipitation (cm) 3.740 26.106 

Season: Summer and Fall (Base: Winter and Spring) 1.548 8.574 

Correlation Parameters Ω 5.253 56.116 Ω1  3.776 8.429 

Restricted Log-Likelihood  37161.892 

Sample Size 6450 

 

5.4.2 TNC Distribution Model 

 

5.4.2.1 Model Fit Measures 

The final log-likelihood values for the estimated MDCEV model and equal probability 

MDCEV model are -1531122.801 and -1712633.216 respectively. The log-likelihood ratio 

(LR) test-statistic of comparison between the final model and the equal probability model is 

363020.830. The LR test-statistic value is significantly higher than the corresponding chi-
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square value for 22 additional degrees of freedom highlighting that the MDCEV distribution 

model offers a reasonable fit.  

 

5.4.2.2 MDCEV Model Results 

The model results of TNC morning peak hour distribution model are presented in Table 5.2. 

The presentation of results is organized by the various variable categories. The reader would 

note that a single utility equation is estimated for all the destination zones (analogous to 

location choice model estimation for large number of alternatives). A positive (negative) 

coefficient indicates an increase (decrease) in the variable results in increasing the utility of the 

alternative destination. 

 

Table 5.2: MDCEV Model Results 

Parameter Estimates t-stats 

Land Use and Built Environment Attributes 

Population Density  0.462 22.824 

Job Density 1.122 45.023 

Median Income (x10-3) 5.445 67.210 

Proportion of Zero Car HH  1.376 78.465 

Transit Score (x10-2) 0.958 30.103 

Non-motorized vehicle score (x10-2) -1.807 -51.698 

Number of Restaurants and sidewalk café in Taxi Zone (x10-3) 0.438 42.622 

Number of Institutional Facilities in Taxi Zone (x10-3) 0.194 8.528 

Number of Point of Interests and Recreational Points in Taxi Zone (x10-3) 1.401 41.801 

Commercial Area (m2 x10-6) 1.641 87.265 

LU Mix 0.723 35.999 

Airport Indicator 3.702 335.179 

Times Square Distance (m x 10-3) -0.378 -66.091 
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Parameter Estimates t-stats 

Trip Attributes 

Network Distance (m x 10-3) -2.547 -174.790 

Transportation Infrastructure and Attributes 

Bike Lane Density in Taxi Zone -0.730 -22.787 

Number of Bikeshare Stations in Taxi Zone (x10-2) -0.108 -26.258 

Street Length in Taxi Zone (m x 10-3) 0.106 3.348 

Number of Bus Stops and subway stations in Taxi Zone (x10-3) 1.174 62.354 

Temporal and Weather Attributes 

Network Distance (m x 10-3) x Winter -0.577 -5.659 

Network Distance (m x 10-3) x Temperature (°F x 10-2) 2.460 10.983 

Times Square Distance (m x 10-3) x Precipitation (cm) -0.031 -7.267 

Network Distance (m x 10-3) x Precipitation (cm) -0.721 -13.517 

Satiation Parameters 

Times Square Distance (m x 10-3) 0.087 42.497 

Log-Likelihood at Convergence -1531122.801 

Sample Size 1677000 

 

5.4.2.2.1 Land Use and Built Environment Attributes  

Zones located in census tracts with higher population density are more likely to be chosen as 

destination locations. Similarly, job density also impacts destination preference positively. The 

results together point towards the adoption of TNC services for daily commute trips (see  

Correa et al., 2017 for similar result). Taxi zones with high income are preferred destination 

zones for TNC services. The model parameter for taxi zone level zero car household proportion 

highlights the increased adoption of TNC services among these zones Correa et al., 2017 found 

similar association with lower vehicle ownership households).  
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As expected, increased transit accessibility within a taxi zone increases the likelihood 

of the zone being chosen as a destination. On the other hand, the results indicate that zones 

with higher non-motorized score are less preferred destinations. While the result seems 

counterintuitive, it might be alluding to potential competition between TNC ride hailing and 

bicycle sharing systems in these zones. The presence of activity opportunities in the forms of 

restaurants and cafes, institutional facilities, and recreational centers and point of interests 

(POI) are positively associated with the destination zone preference. Taxi zone with higher 

commercial area serves as an attraction for TNC demand. The increase in land use mix value 

(range between 0 and 1) has a positive impact on destination zone preference.  

The presence of airport in the destination taxi zone, as expected, increases the 

preference for the zone. The model also considers the influence of another major landmark in 

the region - Times Square. The parameter indicates that as the taxi zone is further from Times 

Square the preference of the zone as a destination reduces. The result illustrates how Times 

Square and its proximal zones serve as attraction centers for regular and tourist travel.  

 

5.4.2.2.2 Trip Attributes  

In the current research context, a negative coefficient was obtained for network distance of O-

D pair. With the increasing distance to the destination, TNC demand distribution propensity 

reduces.  

 

5.4.2.2.3 Transportation Infrastructure and Attributes  

Several transportation infrastructure variables were considered in the demand distribution 

models. Of these variables, bike lane density, bikeshare stations, street length, bus stops and 

subway stations presented significant impacts on destination preferences. Taxi zones with 

higher bike length density (defined as ratio of bike length to overall roadway length) reduce 
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the preference for the destination zone. The negative association with number of bikeshare 

stations within a taxi zone highlights that TNC demand is likely to be lower for a destination 

zone with more bikeshare stations. An increase in the street length within the destination zones 

results in an increased likelihood of the zone being chosen as destination (similar to findings 

of Correa et al., 2017). As the number of bus stops and subway stations in the taxi zone 

increases, we observe increased preference for that destination. 

 

5.4.2.2.4 Temporal and Weather Attributes 

The reader would note that temporal and weather attributes cannot be considered directly in 

destination distribution model. Hence, we interacted these variables with destination specific 

variables such as network distance and distance to Times Square. The results offer interesting 

results. In Winter, the negative influence of network distance increases further indicating that 

shorter trips are preferred (relative to other moths). The temperature variable interacted with 

network distance indicates that the influence of network distance is moderated by higher 

temperature i.e. as temperature increases the negative impact of network distance reduces. The 

precipitation variable interacted with network distance and distance to Times Square highlights 

the increase in sensitivity to travel time under precipitation conditions. The weather variables 

as a whole highlight how TNC distance impact is lower in good weather relative to poor 

weather.   

 

5.4.2.2.5 Satiation Parameter  

We used distance to Times Square from taxi zones as a satiation parameter. In MDCEV model, 

the satiation parameter captures the extent of decrease in marginal utility across different 

destination zones. The satiation parameter is statistically significant at 95% level of 

significance, thereby implying that there are clear satiation effects in destination choice as 
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distance of destination from Times Square increases. To elaborate, as the zone is further away 

from Times Square, the satiation impacts are higher indicating fewer trips will be made to the 

zone. 

 

5.5 Validation Analysis Results 

For validation purpose, a hold-out sample was prepared following the same procedure used to 

extract the estimation sample. After extracting 150 taxi zones for our base dataset, the 

remaining 110 taxi pick up zones were set aside for validation. Then we randomly chose 43 

days from 43 corresponding weeks throughout the year for these 110 zones. The same approach 

of data preparation employed for estimation sample is exercised for validation sample (110 

origins x 43 days x 260 destinations). Using the validation data, the model results from the 

estimation sample were used to generate a prediction measure in the form of predictive log-

likelihood. The difference in the log-likelihood for the predicted and equal probability model 

is 3626720.830 units clearly highlighting the enhanced fit of the proposed model.  

 To further highlight the applicability of estimated model for predicting destination 

choice conditional on the origin, we estimated destined trips from each origin for each day at 

disaggregate level. Note that, zero trips to any destination for a week was also considered. To 

identify the preferred destination zones, top 10 percentile of preferred destination zones was 

captured for each pickup zone and validated with the top 10 percentile predicted destination 

zones. For the performance evaluation, we compute the correctly classified predicted trips for 

top 10 percentile destined zones for each taxi zone considering the total trips throughout the 

year. The reader would note that about 71% of the top destination zones were correctly 

classified. To provide a visual representation, we selected 5 random taxi zones from 5 NYC 

boroughs and predicted the top 10 percentile destination zones for them considering average 

daily morning peak hour trips throughout the year and compared them with observed top 
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(a) Manhattan (b) Brooklyn 

  

(c) Bronx (d) Queens 
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(e) Staten Island 

Figure 5.4: Top 10 Percentile Destined Zones for Randomly Selected Pickup Zones from 5 NYC Borough 
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destination zones for that particular zone (See Figure 5.4). Across the five boroughs, based on 

the observed and predicted measures from the Figure, taxi zones situated in Brooklyn offered 

the best prediction performance while taxi zone from Staten Island has inferior prediction 

performance. Overall, the two validation exercises, highlight the applicability of the proposed 

approach for TNC demand and distribution prediction.  

 

5.6 Policy Illustration 

The model results from Table 5.2 provide an indication of how the exogenous variables affect 

the network flows considering destination choice. However, they cannot provide the exact 

magnitude of the effect of these exogenous variables. Hence, elasticity effects computation 

considering changes of baseline marginal utility was used to evaluate the impact of exogenous 

variables on destination choice. The elasticity effects are computed by evaluating the 

percentage change in marginal utility of an alternative in response to increasing the value of 

exogenous variables from best fit model by 10%, 25% and 50% respectively. We selected five 

independent variables for presentation including job density, median income, network distance, 

institutional facilities and bus stops and subway stations. The computed elasticities are 

presented in Figure 5.5. Based on elasticity effects results in Figure 5.5, following observations 

can be made. First, the elasticity estimate for job density variable indicates that about 6.5, 17 

and 37% increase in utility happens due to 10, 25 and 50% change in the independent variable. 

All the other results can be interpreted similarly. Second, rank order of the top three significant 

variable in terms of changes for the utility without considering positive or negative impact 

include network distance, job density and median income. Third, network distance between O-

D can be considered as a proxy for travel time. The increasing value of this variable provides 

a snapshot of the impact of additional travel time due to traffic congestion or other safety 

incidents. Overall, the elasticity analysis results provide an illustration on how the proposed 
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model can be applied to determine the critical factors contributing to increase in utility to 

choose a taxi zone as destination. 

 

 

Figure 5.5: Elasticity Effects Considering Utility Changes 

 

5.7 Summary 

Given the burgeoning growth in transportation networking companies (TNC) based ride hailing 

systems and their growing adoption for trip making, it is important to develop modeling 

frameworks to understand TNC ride hailing demand flows at the system level. In the third part 

of the dissertation, we identify two choice dimensions: a demand component that estimates 

origin level TNC demand at the taxi zone level and (2) a distribution component that analyzes 

how these trips from an origin are distributed across the region. The origin level demand is 

analyzed using linear mixed models while flows from origin to multiple destinations is 

analyzed using a multiple discrete continuous model system (MDCEV). The data for our 

analysis is drawn from New York City Taxi & Limousine Commission (NYTLC) for twelve 
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months from January through December 2018. For our analysis, we examine weekday morning 

peak hour demand and distribution patterns. The model components are developed using a 

comprehensive set of independent variables. The model estimation results offer very intuitive 

results for origin demand and distribution of flows across destinations. We validated the model 

by predicting trips to destination taxi zones and found that predicted model performs well in 

identifying high preference destination zones. In addition, elasticity effects are computed by 

evaluating the percentage change in baseline marginal utility in response to increasing the value 

of exogenous variables by 10%, 25% and 50% respectively.  
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CHAPTER 6:  TRANSFORMATION OF RIDE HAILING IN NEW YORK CITY: A 

QUANTITATIVE ASSESSMENT 

 

6.1 Introduction 

In most urban regions, individuals, who do not have access to or do not prefer to use personal 

vehicles, have the option of either using public transit, shared bicycling systems (for short 

distance trips) or a ride hailing service (such as taxi or Uber). While public transit systems are 

constrained by predefined routes and fixed schedules, bicycle sharing systems are limited by 

small distance range, ride hailing services at a cost provide individuals with convenient door-

to-door car trips without the additional challenges associated with driving/bicycling (such as 

having to find a parking spot, concentrating on driving and physical effort of bicycling). In 

recent years, ride hailing has undergone a rapid transformation in response to the 

transformative technological changes including smart mobile availability, ease of hailing a ride 

using mobile applications, integration of seamless payment systems and real-time driver and 

user reviews. The convenience offered by transport networking companies (TNC) such as 

Uber, Lyft, and Via has allowed for tremendous growth in ride hailing demand. For example, 

in New York City, the average daily trips by taxi (yellow taxi) was varying between 400 

thousand and 500 thousand for the years 2010 and 2014 (Silver & Fischer-Baum, 2016). 

However, since 2014, with the advent of TNC services in the city, the total number of trips 

have increased. Based on NYC TLC report (Silver & Fischer-Baum, 2016), from 2015 to 2018, 

TNC daily trips increased from 60,000 to 700,000 while traditional taxi (Yellow and Green 

together) daily trips declined from 450,000 to 285,000. The trend observed in NYC is not an 

exception. A recent report analyzing reimbursed travel in the US has found that the share of 

Uber and Lyft has increased from 8% to 72.5% from 2014-2018 at the cost of taxi and rental 

car business share (Rajagopalan & Srinivasan, 2008).  
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The TNC service induced transformation can be viewed as constituting two major 

components. The first component is the overall increase in ride-hailing demand possibly 

drawing from population of individuals driving, using public transit and even inducing newer 

travel. The second component of the transformation is the shift in the share of traditional taxi 

service demand toward TNC services (Gerte, Konduri, Ravishanker, Mondal, & Eluru, 2019). 

In a short time frame, in NYC, TNC services have increased their market share from 0 to nearly 

70% by the end of 2018. While preliminary research has begun to explore the reasons for the 

transformation, it is safe to assume economists and social scientists will continue to examine 

the transformation for several years into the future.  

The proposed study contributes to our understanding of this transformation by 

examining the NYC data from a fine spatial and temporal resolution by adopting an innovative 

joint econometric model system. The study examines two components of the transformation 

(a) the increase in ride hailing demand and (b) the shift from traditional taxi services to TNC 

services. The first component – taxi zone ride hailing demand - is analyzed adopting a negative 

binomial count model. The second component - share of traditional and TNC services demand 

- is analyzed using a multinomial fractional split model. The two model components are 

stitched together in a joint framework that allows for the influence of repeated observations as 

well as for the presence of common unobserved factors affecting the two components. The 

study employs trip level data from the NYC Taxi and Limousine Commission from January 

2015 through December 2018 for the analysis. The data is aggregated by taxi zone for every 

month in the study period and analyzed by ride hailing alternatives: yellow taxi, green taxi and 

TNC services (including Uber, Lyft, Juno and Via).  

The rest of the chapter is organized as follows: The following section presents the 

detailed description of the dataset with sample formation technique adopted in the analysis 

while section 3 provides methodological framework. Model results are presented in the fifth 
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section followed by the policy analysis. Final section comprises with the concluding 

statements. 

 

6.2 Data  

 

6.2.1 Data Source 

The NYC Taxi and Limousine Commission (TLC) provides spatially aggregated trip data from 

all transportation networking companies (taxi, Uber, Lyft, Juno and Via) for public use 

(https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page). Yellow taxis are traditional 

and iconic ride hailing service in NYC while green taxis known as boro taxis and street-hail 

liveries started operation in August 2013. TNCs became operation at around a similar time 

frame. Thus, it is informative to examine how the share of green taxi and TNCs has evolved 

with time. The trip itinerary dataset was collected from 2015-2018 for yellow taxi, green taxi 

and TNC (Uber, Lyft, Juno and Via) for our analysis. The dataset provides information on start 

and end time of trips, origin and destination defined as taxi zone ID, trip distance and vehicle 

license number. The trip data was augmented with other sources including: (1) built 

environment attributes derived from New York City open data 

(https://nycopendata.socrata.com); (2) socio-demographic characteristics at the census tract/zip 

code level gathered from US 2010 census data; (3) the weather information corresponding to 

the Central Park station retrieved from the National Climatic Data Center 

(http://www.ncdc.noaa.gov/data-access). 

 

6.2.2 Sample Formation and Dependent Variable  

A series of data cleaning and compilation exercises were undertaken for generating the sample 

data for estimation purposes. First, trips with missing or inconsistent information were 

https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://nycopendata.socrata.com/
http://www.ncdc.noaa.gov/data-access
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removed. Second, trips longer than 500 minutes in duration (around 0.5% of all trips) were 

deleted considering that these trips are not typical ride-sharing trips. These trips could also be 

a result of two possibilities; either destination of those trips could be outside NYC or due to 

technical issues the trip information was recorded incorrectly. Third, trips that had the origin 

and destination outside of NYC taxi zone were also eliminated. Therefore, we focus on trips 

that originated and were destined within NYC taxi zone region only.  

 For the given study period (January 2015 to December 2018), the total number of 

available taxi zones in NYC was 259. Initially, we aggregated pickup data for each month from 

January 2015 to December 2018 for each origin taxi zone ID. Figure 6.1(a) represents the total 

trips generated in each month from January 2015 to December 2018 by each ride hailing 

alternatives while Figure 6.1(b) represents the proportion of total trips shared by yellow taxi, 

green taxi and TNC services. The evolving number of trips by ride hailing type offers clear 

depiction of how demand has increased as well as how TNC demand has surpassed traditional 

taxi demand. TNC service share crossed the share of yellow taxi in February 2017. Figure 

6.1(b) represents the trips proportion shared by the three ride hailing alternatives from 2015 to 

2018. The Figure highlights TNC’s trip share increased from 13% to 70% from 2015-2018 

while yellow taxis share declined from 77% to 27%. It is important to note that the share of 

green taxi dropped consistently to become almost negligible in 2018. The main reason we still 

retained green taxi as a separate alternative is to contrast two services (green taxi and TNCs) 

that started operation in the same time frame. For our analysis, we aggregated trip data for 48 

months from January 2015 to December 2018. To obtain a reasonable sample size for model 

estimation, 24 months were randomly selected for each taxi zone for analysis.  
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(a) Total Monthly Trips of All Ride Hailing Alternatives. 

 

 

(b) Monthly Trips Share Between Three Ride Hailing Alternatives. 

 

Figure 6.1: Dependent Variable Distribution 

 

6.2.3 Exogenous Variables 

Several independent variables generated in our study are described below:  
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 Transportation infrastructure attributes created at the taxi zone level include bike route 

length density (capturing the effect of availability of bicycle facilities on system usage), 

number of bikeshare stations, length of streets (minor and major streets). Number of subway 

stations and bus stops in the taxi zone were generated to examine the influence of public transit 

on rider’s preference of mode choice. 

 Several land use and built environment variables were considered including population 

density, job density and establishment density, the number of institutional facilities (schools, 

colleges, hospitals), the number of point of interests (museums, shopping malls), and the 

number of restaurants (including coffee shops and bars), total area of parks and commercial 

space (office, industry, retail) within each taxi zones. Distance of destination from Times 

Square and airport were estimated by using the shortest path algorithm tool of ArcGIS software. 

Airport indicator variable for the taxi zone was generated to examine the additional impact of 

airport destination. Population, job density and median income information was collected from 

US Census for 2015-2017 and extrapolated for 2018. Household car ownership information for 

2018 was used to generate proportion of zero car ownership at taxi zone level to examine the 

impact of car ownership on riders’ trip count and mode choice preferences. Non-motorized 

vehicle score (average of walk score and bike score) and transit score associated with each taxi 

zone was considered at the census tract level. Further, crime density and accident density were 

also generated at taxi zone level. Total number of crimes of all types for previous year was 

aggregated at census tract level and crime density was estimated by dividing corresponding 

year’s population. In a similar manner, total number of accidents for each month was 

considered to generate accident density.  

 Weather variables include average temperature, precipitation, and snow for that 

particular month of the year. Several interaction variables were also created. Seasonality is the 

one of the temporal variables considered. We consider winter (December-February), Spring 
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(March-May), Summer (June-August) and Fall (September-November) as dummy variables. 

Finally, we recognize that technology adoption cannot be explained by simply considering the 

variables described. To quantify the impact of time, we explicitly consider time elapsed since 

the beginning of TNC data collection (and other functional forms of the variable) as a temporal 

variable.  

 

6.3 Methodology 

The proposed joint econometric system jointly models “total number of trips” and “proportion 

of trips by type of ride hailing”. The first variable is modeled using a Negative Binomial (NB) 

model and the second variable is analyzed using the multinomial logit fractional split (MNLFS) 

model. The mathematical details of the Joint NB-MNLFS model follows. 

  

6.3.1 NB Component 

Let 𝑖 be the index for taxi zone (𝑖 = 1,2,3, … ,𝑁) and 𝑦𝑖𝑡 be the ride hailing demand for a taxi 

zone 𝑖 in time period  (𝑡 = 1,2,3, … , 𝑇). The NB probability expression for random variable 𝑦𝑖𝑡 can be written as (Cameron, Li, Trivedi, & Zimmer, 2004): 

𝑃𝑖𝑡(𝑦𝑖𝑡) =  Γ(𝑦𝑖𝑡 + 𝛼−1)Γ(𝑦𝑖𝑡 + 1)Γ(𝛼−1) ( 11 + 𝛼𝜇𝑖𝑡)1𝛼 (1 − 11 + 𝛼𝜇𝑖𝑡)𝑦𝑖𝑡     

(6.1) 

where, 𝑃𝑖𝑡 is the probability that taxi zone 𝑖  has 𝑦𝑖𝑡 number of trips over time period of 𝑡.  𝛤(∙) 
is the Gamma function, 𝛼 is the NB dispersion parameter and 𝜇𝑖𝑡 is the expected number of 

trips listed in taxi zone 𝑖 for time period 𝑡 and can be expressed using a log-link function as:  

𝜇𝑖𝑡 = 𝐸(𝑦𝑖𝑡|𝒙𝑖𝑡) = 𝑒𝑥𝑝 ((𝝏 + ℵ𝑖)𝒙𝑖𝑡 + 𝛿𝑖𝑡𝑗 + 𝜑𝑖𝑡) (6.2) 
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where, 𝒙𝑖𝑡 is a vector of explanatory variables associated with taxi zone 𝑖 for time period 𝑡. 𝝏 

is a vector of coefficients to be estimated. ℵ𝑖 is a vector of unobserved factors on ride hailing 

demand propensity and its associated zonal characteristics assumed to be a realization from 

standard normal distribution: ℵ𝑖~𝑁(0, 𝝇2). 𝛿𝑖𝑡𝑗 captures unobserved factors that 

simultaneously impact total number of trips and proportion of trips by ride hailing type 𝑗 (𝑗 =1, 2,3; J = 3) for taxi zone 𝑖 and time period 𝑡.  𝜑𝑖𝑡 is a gamma distributed error term with mean 

1 and variance 𝛼.  

 

6.3.2 MNLFS Component 

Let 𝑧𝑖𝑡𝑗 be the fraction of trips by ride hailing type 𝑗  in taxi zone 𝑖 and time period 𝑡. 
0 ≤ 𝑧𝑖𝑡𝑗 ≤ 1, ∑ 𝑧𝑖𝑡𝑗 = 1𝐽𝑗=1  

(6.3) 

 

Let the fraction 𝑧𝑖𝑡𝑗 be a function of a vector 𝑤𝑖𝑡𝑗 of relevant explanatory variables 

associated with attributes of taxi zone 𝑖 and time period 𝑗. 
𝐸[𝑧𝑖𝑡𝑗|𝑤𝑖𝑡𝑗] =  𝑄𝑖𝑡𝑗(∙) 

0 < 𝑄𝑖𝑡𝑗(∙) < 1,   ∑ 𝑄𝑖𝑡𝑗(∙) = 1𝐽𝑗=1  

(6.4) 

 

where 𝑄𝑖𝑡𝑗(∙) is a predetermined function. The properties specified in equation (4) for 𝑄𝑖𝑡𝑗(∙) 
warrant that the predicted fractional ride hailing types will range between 0 and 1 and will add 

up to 1 for each zone. In this study, a MNL functional form for 𝑄𝑖𝑡𝑗 in the fractional split model 

of equation (4). Then equation (4) is rewritten as: 
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𝐸(𝑧𝑖𝑡𝑗|𝑤𝑖𝑡𝑗) = 𝑄𝑖𝑡𝑗(∙) = exp( (𝜷′𝒋 + 𝝈𝒊𝒋)𝑤𝑖𝑡𝑗 ± 𝛿𝑖𝑡𝑗 + 𝜉𝑖𝑡𝑗)∑ exp( (𝜷′𝒋 + 𝝈𝒊𝒋)𝑤𝑖𝑗 ± 𝛿𝑖𝑡𝑗 + 𝜉𝑖𝑡𝑗)𝐽𝑗=1 , 𝑗 
= 1,2,3, … ., 

(6.5) 

 

where, 𝒘𝑖𝑡𝑗 is a vector of attributes, 𝜷′𝑗 is the corresponding vector of coefficients to be 

estimated for ride hailing type 𝑗. 𝝈𝑖𝑗 is a vector of unobserved factors assumed to be a 

realization from standard normal distribution: 𝝈~𝑁(0, 𝝂𝑗2). 𝜉𝑖𝑡𝑗 is the random component 

assumed to follow a Gumbel type 1 distribution. 𝛿𝑖𝑡𝑗 term generates the correlation between 

equations for total number of trips and trip proportions by ride hailing types. The ± sign in 

front of 𝛿𝑖𝑡𝑗 in equation (5) indicates that the correlation in unobserved zonal factors between 

total trips and trip proportions by ride hailing type may be positive or negative. A positive sign 

implies that taxi zones with higher number of trips are intrinsically more likely to incur higher 

proportions for the corresponding ride hailing types. On the other hand, negative sign implies 

that taxi zones with higher number of trips intrinsically incur lower proportions for different 

ride hailing types. To determine the appropriate sign, we empirically test the models with both ′ + ′ and ′ − ′ signs independently. The model structure that offers the superior data fit is 

considered as the final model. 

It is important to note here that the unobserved heterogeneity between total number of 

trips and trip proportions by ride hailing types can vary across taxi zones. Therefore, in the 

current study, the correlation parameter 𝜃𝑖𝑗 is parameterized as a function of observed attributes 

as follows: 

𝛿𝑖𝑡𝑗 = 𝝅𝒋𝝉𝑖𝑡𝑗 (6.6) 
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where, 𝝉𝑖𝑡𝑗 is a vector of exogenous variables, 𝝅𝒋 is a vector of unknown parameters to be 

estimated (including a constant). 

In examining the model structure of total trip count and proportion of trips by ride 

hailing types, it is necessary to specify the structure for the unobserved vectors 𝝇, 𝝈 and 𝝅 

represented by Ω. In this paper, it is assumed that these elements are drawn from independent 

realization from normal population:Ω~𝑁(0, (𝝇𝟐, 𝝂𝑗2, ℶ𝑗2)). Thus, conditional on Ω, the 

likelihood function for the joint probability can be expressed as: 

ℒ𝑖 = ∫ 𝑃(𝑦𝑖𝑡) ×∏∏(𝐸(𝑧𝑖𝑡𝑗|𝑤𝑖𝑡𝑗))𝑧𝑖𝑡𝑗𝐽
𝑗=1

𝑇
𝑡=1 Ω 𝑓(Ω)𝑑Ω 

(6.7) 

 

 𝑧𝑖𝑡𝑗 is the proportion of trips in ride hailing category 𝑗. Finally, the log-likelihood function is:    

ℒℒ =∑𝐿𝑛(𝐿𝑖)𝑖  
(6.8) 

 

All the parameters in the model are estimated by maximizing the logarithmic function ℒℒ presented in equation (8). The parameters to be estimated in the joint model are: 𝝏, 𝜶, 𝜷′𝒋, 𝝂𝑗 
and ℶ𝒋. To estimate the proposed joint model, we apply Quasi-Monte Carlo simulation 

techniques based on the scrambled Halton sequence to approximate this integral in the 

likelihood function and maximize the logarithm of the resulting simulated likelihood function 

across individuals (see (Bhat, 2001; Eluru, Bhat, & Hensher, 2008; Yasmin & Eluru, 2013) for 

examples of Quasi-Monte Carlo approaches in literature).  
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6.4 Estimation Results 

 

6.4.1 NB-MNL Fractional Split Joint Model 

Table 6.1 presents the model estimation results of the joint NB-MNL fractional split model. 

The second column provides the results of the NB component while columns 3 through 5 

present the results of the MNL fractional split model. The model results are discussed 

separately for total ridership demand and proportion by ride hailing alternatives. 

 

6.4.1.1 Total Ridership Demand (NB Component) 

A positive (negative) sign for a variable in the ride hailing demand component of Table 6.1 

indicates that an increase in the variable is likely to result in more (less) ride hailing trips. 

 

6.4.1.1.1 Land Use and Built Environment Attributes  

As expected, zones located in census tracts with higher population density are more likely to 

be associated with higher number of trips. Similarly, increased job density and median income 

of in taxi zones is found to increase demand for ride hailing trips (see Correa et al. (Correa et 

al., 2017), Smart et al. (Smart et al., 2015) for similar results). The increased proportion of zero 

car households in urban areas increases demand for ride hailing (Correa et al. (Correa et al., 

2017) found similar association with lower vehicle ownership households). As expected, 

increased transit accessibility within a taxi zone increases the propensity for higher ride hailing 

demand while taxi zones with higher non-motorized score reduce the appeal towards use ride 

hailing. It is possible that the presence of bicycle sharing serves as a competitive alternative for 

shorter trips.  

 The presence of activity opportunities in the form of restaurants and cafes, recreational 

centers and point of interests (POI) is positively associated with demand. Taxi zones with 
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Table 6.1: Joint NB-MNLFS Model Estimation Results 1 

Joint Component 

NB Model 

(Counts) 

MNLFS Model (Proportions) 

Ride hailing Type Total Trips Yellow Taxi Green Taxi TNC 

Variable Name Estimate  t-stat Estimate t-stat Estimate t-stat Estimate t-stat 

Constant -1.426 -10.40 2.688 9.44 0.639 1.42 --- --- 

Land Use and Built Environment Attributes 

Population Density  0.245 2.12 2.069 4.35 -3.813 -3.55  --- ---  

Job Density 2.553 19.02      --- ---  1.968 4.07 

Median Income (x10-3) 0.651 17.08 1.366 7.33  --- ---   --- ---  

Proportion of Zero Car HH  1.003 9.70  --- ---  3.508 5.28 0.830 1.85 

Transit Score (x10-2) 1.478 8.51  --- ---   --- ---   --- ---  

Non-motorized vehicle score (x10-2) -1.189 -6.34  --- ---   --- ---   --- ---  

Number of Restaurants and sidewalk café in Taxi Zone (x10-3) 0.655 10.66  --- ---   --- ---  -2.975 -4.84 

Number of Point of Interests and Recreational Points in Taxi Zone (x10-3) 0.194 8.52 4.459 5.04  --- ---   --- ---  

Residential Area (m2 x 10-6) 1.5698 8.94  --- ---   --- ---   --- ---  

Park Area (m2 x 10-6) 1.484 10.22 16.665 4.89 -5.302 -2.43  --- ---  
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Joint Component 

NB Model 

(Counts) 

MNLFS Model (Proportions) 

Airport Indicator 0.723 35.99 3.511 9.47  --- ---   --- ---  

Airport Distance (m x 10-3) 4.089 60.66  --- ---   --- ---  0.313 2.63 

Times Square Distance (m x 10-3) -1.047 -35.77 -2.384 -14.33 -0.511 -2.65  --- ---  

Accident Density (x10-3)  --- ---   --- ---  -1.684 -2.53  --- ---  

Transportation Infrastructure and Attributes 

Bike Lane Density in Taxi Zone -1.522 -8.97 -2.111 -2.22  --- ---   --- ---  

Number of Bikeshare Stations in Taxi Zone (x10-2) -0.059 -2.65  --- ---  -0.322 -1.97  --- ---  

Street Length in Taxi Zone (m x 10-3) 0.401 2.30 -10.183 -4.15  --- ---   --- ---  

Number of Bus Stops and Subway Stations in Taxi Zone (x10-3) 1.174 62.35 -3.815 -4.84  --- ---   --- ---  

Temporal and Weather Attributes 

Times Square Distance (m x 10-3) x Summer (Season) -0.577 -5.65  --- ---   --- ---   --- ---  

Time Elapsed as Month Sequel 2.194 33.96 -0.054 -14.35 -0.083 -18.84  --- ---  

Snow Depth (cm) -0.031 -7.26 0.281 2.97  --- ---   --- ---  

Dispersion Parameters 0.160 27.45  --- ---   --- ---   --- ---  

Correlation   --- ---  0.785 10.20  --- ---  0.785 10.20 

1 
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higher residential area are positively associated with ride hailing demand. The result potentially 

alludes to the adoption of ride hail service for commute activities from residential zones. As 

expected, availability of airport in taxi zones increases demand for ride hailing. The presence 

of park area in the taxi zone has a positive influence on ride hailing demand.  

The study also considered the impact of landmarks such as Airports and Times Square 

on ride hailing demand. The presence of an airport in the taxi zone, as expected, contributes to 

higher ride hailing demand. Interestingly, as the distance of taxi zone from airports increases, 

the model indicates an increase in ride hailing demand. On the other hand, as the distance from 

Times Square increases, ride hailing demand is expected to reduce. The result is intuitive as 

Times Square and the proximal zones serve as attraction centers for regular and tourist travel.  

 

6.4.1.1.2 Transportation Infrastructure and Attributes  

Several transportation infrastructure variables such as bike lane density, bikeshare stations, 

street length, bus stops and subway stations were considered in the demand model. The 

parameter estimates for bike length indicate that probability of ride hailing trips decreases with 

increasing bike length density in the taxi zone. The negative association with number of 

bikeshare stations within a taxi zone highlights that ride hail trip demand is likely in 

competition with bikeshare demand (for shorter distance share). An increase in the street length 

within a taxi zone has a positive impact on demand. (similar to findings of Correa et al. (Correa 

et al., 2017)). The number of bus stops and subway stations in the taxi zone has a positive 

coefficient indicating an increment in ride hail demand. This result highlights the 

complementarity between ride hail and public transit alternatives. 
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6.4.1.1.3 Temporal and Weather Attributes 

An interaction variable of summer season with Times Square distance from each taxi zone was 

used and the results highlight an interesting result. The results indicate that the ride hail demand 

in summer reduces faster than rest of the year as we move away from Times Square. The result 

clearly highlights the attraction of Times Square during summer months for visitors and their 

plausible adoption of ride hailing. Time elapsed variable that counts the month from January 

2015 to December 2018 was used to find the impact of temporal trend attribute on ride hailing 

trip count. The result highlights the positive association with ride hailing representing how with 

time overall demand has increased. Finally, as the depth of snow in the taxi zone increases, 

ride hailing demand reduces. This is expected as trip generation across all modes is likely to 

reduce under snowy conditions.  

 

6.4.1.2 Trip Proportion (MNL Fractional Split Component Model) 

In the MNL fractional split model, a positive (negative) sign for a variable indicates that an 

increase in the variable is likely to result in higher proportion of trips for the corresponding 

alternative relative to the base alternative for that variable. 

 

6.4.1.2.1 Constant parameters  

The constant parameters have no substantive interpretation after introducing independent 

variables. 

 

6.4.1.2.2 Land Use and Built Environment Attributes  

In the context of land use and built environment attributes, population density in a census tract 

has significant impact on trip proportions. Increasing population has a positive impact on 

yellow taxi proportion and negative impact on green taxi proportion. The result seems 
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reasonable since green taxi has regulations restricting on-street pickup. In a similar vein, with 

higher job density, the proportion of TNC proportion increases. The result potentially indicates 

preference among employed individuals for TNC. Taxi zones with high median income have 

positive association with yellow taxis proportion. The result probably reflects the indifference 

to typically higher fares of yellow taxi relative to TNCs. With increasing zero car ownership 

households, the likelihood of green taxi and TNC services trips proportion increases. Zero car 

household are inclined to adopting TNC services that are usually less expensive compared to 

taxis.  

 A negative association is observed for the presence of restaurants and cafes with TNC 

trip proportions while recreational centers and point of interests (POI) have an increased 

likelihood for the yellow taxi proportions. In terms of land use type, only proportion of park 

area variable has significant impact on trip proportions. The likelihood of yellow taxi trips 

increases for a high percentage of park area in a taxi zone while green taxi trip proportion 

reduces. As expected, availability of airport in taxi zones increases the inclination of choosing 

yellow taxis(See similar results for yellow taxi share for airport originated trips (Metcalfe & 

Warburg, 2012)). As the distance between taxi zone and airport increases, the share of TNC 

alternative increases. It is possible that TNC services are more readily available in these 

locations. As the taxi zones are further from Times Square, trip proportions for both taxis 

reduce reflecting their low accessibility as we move further away from Times Square. The 

results for accident density from the previous year reveal that taxi zones with higher accident 

density is likely to reduce green taxi proportion. 

 

6.4.1.2.3 Transportation Infrastructure and Attributes  

Several transportation infrastructure characteristics considered are found to be significant 

determinants of trip proportions by various ride hailing alternatives. Yellow taxi trip 
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proportions are negatively associated with higher bike length density. Among transportation 

attributes, trip proportion of green taxi trips is found to be lower for taxi zones with higher bike 

sharing stations in vicinity while yellow taxi trip proportions are negatively associated with 

higher number of bus stops in taxi zones. An increase in the street length within a taxi zone 

results in a decreased of yellow taxi proportions. 

 

6.4.1.2.4 Temporal and Weather Attributes 

Elapsed time considering month is negatively associated with Yellow and green taxi trips 

proportions. The result suggests that yellow and green taxi trips number reduces with the time 

elapsed from January 2015 (as expected). The estimated snow depth variable implies a positive 

effect on yellow taxi trip proportions. It is possible that, under snowy conditions, the inventory 

of yellow taxi fleet is unchanged while the number of TNC services reduce.  

 

6.4.1.2.5Common Unobserved Parameters 

Several unobserved parameters were tested including: (1) correlation between demand 

component and ride hailing proportion components, (2) correlation across ride hailing 

proportion components and (3) random parameters in demand and proportion components. Of 

these tested parameters only common correlation between trip proportions of yellow taxi and 

TNC services was significant. The correlation between the two components could be either 

positive or negative. In our analysis, we found the positive sign to offer better fit. The results 

indicate that unobserved factors that increase the proportion of yellow taxi also increase the 

proportion of TNC services. 
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6.5 Performance Evaluation 

The estimated models were used to predict the expected ridership at the taxi zone level and the 

proportion of the three ride hailing alternatives. These generated values were used to estimate 

the predicted number of trips by each ride hailing alternative. These estimated values are 

compared to the observed values to evaluate model performance.  Three different measures: 

mean percentage error (MPE), mean absolute percentage error (MAPE) and root mean square 

error (RMSE) were computed based on the estimates from the joint model. A description of 

the measures follows: 

  

MPE measures the prediction accuracy and is defined as: 

MPE = 𝑚𝑒𝑎𝑛(�̂�𝑖 − 𝑦𝑖𝑦𝑖 ) (6.9) 

The smaller the MPE, the better the model predicts observed data.  

 

MAPE measure the error in terms of percentage and is defined as: 

MAPE = 𝑚𝑒𝑎𝑛 |�̂�𝑖 − 𝑦𝑖𝑦𝑖 | (6.10) 

The smaller the MAPE, the better the model predicts observed data. These measures of fit are 

generated at disaggregate level: across all crash types and across all observations. 

 Root Mean Square Error (RMSE) is basically the standard deviation of the residuals 

(prediction errors). It highlights how much data is concentrated around the best fit line. 

RMSE =  √∑ (�̂�𝑖 − 𝑦𝑖)2𝑛𝑖=1 𝑛   
 

(6.11) 
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The measures were generated for the estimation sample as well as for the hold out sample. The 

hold-out sample was prepared following the same procedure used to extract the estimation 

sample. We used a sample of 20 months per taxi zone for validation. Fig. 2 presents the values 

of these measures for joint NB-MNLFS model for estimation and validation datasets. The 

results highlight that the joint NB-MNLFS model gives quite intuitive result across the various 

measures computed. The results also highlight the relatively small range of errors for 

estimation and validation datasets. The model performance does not worsen for validation 

dataset highlighting the appropriateness of the developed model for analyzing the data.  

 

6.6 Policy Analysis 

To illustrate how the proposed model can be adopted for future demand prediction, we conduct 

a hypothetical policy analysis. We consider the independent variables from 2018 to remain 

constant for the first 6 months of 2019 and examine the number of trips by ride hailing 

alternative. The model prediction values, thus generated are compared with the observed trips 

by ride alternative for the corresponding time period. The comparison of the observed and 

predicted trips by ride alternative are presented in Figure 6.3. The predicted TNC trips 

increased from 20 million to 25 million from December 2018 through June 2019 while yellow 

taxi trip reduced from 7.4 million to 6.4 million. Overall, the results clearly indicate a good 

match between observed and predicted trips by ride alternative. For Yellow taxi, the results 

compare favorably with slightly larger error in March 2019. From the figures, the reader would 

note that trips by green taxi have the largest deviation. However, this is an artifact of the small 

share of green taxi magnifying any shifts in number of trips. For TNC, the observed and 

predicted trips follow closely except for March 2019. To evaluate the exact mis-match in trip 

number by ride hailing alternative, we computed percentage error in prediction normalized to 

total number of trips. The estimated average percentage error for the three ride hailing  
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Figure 6.2: Sample Predictive Performance Measure 
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Figure 6.3: Predicted Trip Comparison 
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alternatives (yellow taxi, green taxi and TNC) is 1.29, 0.59 and 1.80% respectively with the 

range of these errors varying from a minimum of 0.53% through a maximum of 2.11% for 

yellow taxi, 0.42 through 1.13% for green taxi and 0.02 through 6.90% for TNC. These results 

also indicate that the maximum error for yellow taxi and TNC was for the month of March. We 

observed an anomaly in the data for the total number of ride hailing trips in March and this 

could be the reason for the slightly larger error. In spite of this discrepancy, the proposed model 

performs adequately. The comparison presented only documents the overall system level 

performance. The model outputs are provided at a fine spatial resolution that can be employed 

by city planners and ride hailing operators to effectively plan and manage for changing ride 

hailing patterns. 

 

6.7 Summary 

In this chapter, we develop an innovative joint econometric model system to examine two 

components of the transformation; (a) the increase in ride hailing demand and (b) the shift from 

traditional taxi services to TNC services. The first component is analyzed adopting a negative 

binomial (NB) count model while the second component is analyzed using a multinomial 

fractional split (MNLFS) model. The two model components are stitched together in a joint 

framework that allows for the influence of repeated observations as well as for the presence of 

common unobserved factors affecting the two components. The data for our analysis is drawn 

from New York City Taxi & Limousine Commission (NYTLC) for four years from January 

2015 through December 2018. The data is aggregated by taxi zone for every month in the study 

period and analyzed by ride hailing alternatives: yellow taxi, green taxi and TNC. The model 

estimation considered a comprehensive set of independent variables including transportation 

infrastructure variables, land use and built environment variables, weather attributes, and 

temporal attributes. Several performance measures were generated using the joint NB-MNLFS 
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model for estimation and validation datasets. The results illustrate the excellent performance 

of the proposed model. Further, to quantify the impact of time, we explicitly consider time 

elapsed since the beginning of TNC data collection in NYC as a surrogate variable and 

predicted trips by ride hailing alternative for future time periods. 
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CHAPTER 7: CONCLUSIONS AND FUTURE RESEARCH SCOPE 

 

7.1 Introduction 

The objective of the dissertation is to develop advanced econometric frameworks to address 

methodological gaps in flow analysis of shared economy literature. Specifically, the primary 

focus of the current research is on advancing the state of the art in modeling flow or frequency 

variables for shared economy systems. In this study, we selected accommodation service 

(AirBnB), bikeshare service (Citi bike, NYC) and rideshare service (UBER/LYFT/Taxi). The 

proposed research endeavours to identify the various factors that affect the demand to assist 

policy makers in developing comprehensive planning solutions. 

 The current dissertation contributes substantially towards empirical and methodological 

perspectives for shared economy system demand analysis along six directions: (1) appropriate 

model framework, (2) investigate AirBnB supply as snapshot of AirBnB demand, (3) 

unobserved heterogeneity within count approach, (4) origin level shared mobility demand, (5) 

allocate shared mobility demand to the infinite number of alternatives and (6) shift from 

traditional taxi services to TNC services. In this chapter major conclusions from the earlier 

chapters are summarized. The rest of the chapter is organized as follows. Sections 7.2 through 

7.5 discuss the findings of each chapter briefly alongside the methodological and empirical 

contributions of the dissertation. Section 7.6 concludes the dissertation by presenting the 

directions for future research scope. 

 

7.2 Analysis of Hospitality Demand  

In Chapter three, the current study proposes a copula based model framework together with 

simulation based multivariate frameworks to address correlation across various exogenous 

variables in sharing accommodation demand literature. To the best of the authors’ knowledge, 
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this is the first attempt to employ such copula based bivariate count models for AirBnB count 

literature to capture the unobserved heterogeneity with dependency profile. The data for our 

analysis is drawn from AirBnB listings (Inside AirBnB) for New York City for 31 months from 

January 2015 through June 2017. A host of exogenous variables including socio-demographic 

attributes, bicycle infrastructure attributes, land use and built environment, traffic attributes and 

roadway network attributes are considered. For our analysis, we examine five copula 

structures: (1) FGM, (2) Frank, (3) Gumbel, (4) Clayton and (5) Joe. Among all negative 

binomial model and copula framework, mixed Gumbel with parametrization for dependency 

fit the most suitable model. The model estimation results provide intuitive findings for 

significance of dependence profile on both listings count in the macro-level analysis. Several 

attributes like average listings price, number of point of interests and recreational points, transit 

accessibility, bike length in vicinity, and census tract level variables (such as population 

density, job density, and income) increase the likelihood of listings count while distance to 

Times Square decrease the likelihood of the likelihood of listings count. 

The model estimates were also augmented by conducting policy analysis including 

elasticity analysis for both apartment and private or shared room separately and a spatial 

representation of hotspots for Apartment listings type only. Elasticity effects on two dependent 

variables are different for various exogenous variables. Rank order of the top five important 

variables in terms of increasement for the expected number for both apartment and private or 

shared room counts include: average AirBnB price in CT, historic district, median income per 

CT, effect of season and employment density. In addition to elasticity effects, a spatial 

distribution for observed and predicted count of top 10 percent was conducted. The spatial 

distribution of most tourism prone zone indicated that higher apartment prone zones were 

clustered around Manhattan borough of NYC. Overall, the policy analysis conducted provided 
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an illustration on how the proposed model can be applied to determine the critical factors 

contributing to increase in tourism demand as AirBnB counts.  

 

7.3 Bikeshare Demand and Origin Destination Flows 

In Chapter four, the current study proposes a model framework for bikeshare system usage as 

well as origin destination flows. We identify two choice dimensions: (1) station level demand 

and (2) how bike flows from an origin station are distributed across the network. A linear mixed 

model is considered for modeling weekly origin station demand while a multiple discrete 

continuous extreme value model (MDCEV) is employed to analyze flows from origin to 

multiple destinations.  

 The data for our analysis is drawn from New York City bikeshare system (CitiBike) for 

six months from January through June, 2017. For our analysis, we examine demand and 

distribution patterns on a weekly basis. A host of exogenous variables including trip attributes, 

socio-demographic attributes, bicycle infrastructure attributes, land use and built environment, 

temporal and weather attributes are considered. The model estimation results provide intuitive 

findings for both station level demand and destination choice behavior. Several attributes like 

job density, number of facilities and recreational points, transit and bike accessibility, dock 

capacity, bike length in vicinity, and census tract level variables (such as population density, 

job density, and establishment density) increase the preferences for a destination while distance 

to Time Square, and winter season decrease the likelihood of choosing a destination. In addition 

to model estimation, a model validation effort was conducted using a hold out sample. The data 

fit relative to the equal probability MDCEV model highlighted the significant improvement in 

data fit for the estimated model. Finally, we employed our MDCEV model for prediction to 

compute the demand for destination stations across the system. We categorized the stations 

into four quartiles based on observed number of trips and computed the number of correctly 
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classified stations based on our predictions. The result indicates that predicted model performs 

better in case of high demand destined stations.  

 

7.4 Transport Networking Companies (TNC) Demand and Flow  

Given the burgeoning growth in ride hailing systems and their growing adoption for trip 

making, it is important to develop modeling frameworks to understand ride hailing demand 

flows at the zonal level. Dense urban regions like NYC with well-connected public transit 

systems can strategically target reducing the reliance on private automobile ownership (and 

use) by incorporating ride-hailing alternatives in trip planning tools. However, current state-

of-practice and travel demand models are not equipped to accurately examine the effects of 

these services. The research effort of Chapter five contributes to this goal by developing 

quantitative models of TNC demand and flow distribution patterns. We identify two choice 

dimensions: (1) a demand component that estimates origin level TNC demand at the taxi zone 

level and (2) a distribution component that analyzes how these trips from an origin are 

distributed across the region. The origin level demand is analyzed using linear mixed models 

while flows from origin to multiple destinations is analyzed using a multiple discrete 

continuous model system (MDCEV).  

The data for our analysis is drawn from New York City Taxi & Limousine Commission 

(NYTLC) for twelve months from January through December 2018. For our analysis, we 

examine weekday morning peak hour demand and distribution patterns. The model 

components are developed using comprehensive set of independent variables including 

aggregate trip attributes, transportation infrastructure variables, land use and built environment 

variables, weather attributes, and temporal attributes. The model estimation results provide 

intuitive findings for both zonal level demand and flow distribution behavior. The model 

estimates are validated using a hold out sample set aside. The data fit relative to the equal 
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probability MDCEV model highlighted the significant improvement in data fit for the 

estimated model. Several prediction exercises were also conducted to illustrate the value of the 

proposed model framework including identifying the top 10 percentile destinations and 

elasticity effect of changes to independent variables. The policy analysis results offer intuitive 

results and provide a mechanism for transportation planners to evaluate the impact of various 

changes on TNC demand and distribution.  

 

7.5 Transformation of Ride Hailing  

In Chapter six, the current study examines two components of the transportation networking 

companies induced transformation of ride hailing demand (a) the increase in ride hailing 

demand and (b) the shift from traditional taxi services to TNC services. The first component is 

analyzed adopting a negative binomial count model while the second component is analyzed 

using a multinomial fractional split model. The two model components are stitched together in 

a joint framework that allows for the influence of repeated observations as well as for the 

presence of common unobserved factors affecting the two components. 

 The data for our analysis is drawn from New York City Taxi & Limousine Commission 

(NYTLC) for four years from January 2015 through December 2018. The model estimation 

considered a comprehensive set of independent variables including transportation 

infrastructure variables, land use and built environment variables, weather attributes, and 

temporal attributes. Several performance measures were generated for the joint NB-MNLFS 

model for the estimation and validation datasets. The results clearly illustrate how the proposed 

model provides excellent match with estimation and validation datasets. Finally, a policy 

illustration is undertaken using independent variables from 2018 to estimate the trips by ride 

hailing alternatives and their proportions for the first 6 months of 2019. The results indicate 

that the predicted model tracks the evolving trends by ride hailing alternatives very closely. 
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7.6 Limitations and Future Research Scope 

The summary of findings and the contributions of the dissertation in examining shared economy 

flow analysis are discussed in the preceding sections of this chapter. In this section, the limitations 

of the research efforts are discussed while offering potential research extensions for the future. 

 In Chapter three, we employ copula based bivariate count models for AirBnB count 

literature to capture the unobserved heterogeneity with dependency profile. While the study 

considers the effect of spatial unobserved heterogeneity in between exogenous variables, it 

would be more effective to incorporate temporal panel effect on this copula framework to 

enhance the model in our future work.  

 In Chapters four and five, we identified two choice dimensions for capturing the shared 

mobility system origin level demand and investigated how these trips flows from an origin 

level are distributed across the network. Unlike the traditional MDCEV model, in our context, 

the number of alternatives are substantially larger. Hence, we resort to estimating a single utility 

across alternatives (analogous to how multinomial logit based location choice models are estimated 

with a single utility equation). In our research context, bikeshare and TNC trips need to be allocated 

within 573 destination stations and 261 destination taxi zone respectively. Given the large number 

of alternatives, the model run times were substantially long affecting number of specifications 

we can test. In our analysis, unobserved effects arising from repetitions in the MDCEV model 

were not captured. Another potential avenue for future research is the consideration of 

sampling for MDCEV models (similar to sampling in MNL models).  

Finally, in Chapter six, we examine shared mobility system demand transformation over 

the time period and the shift from traditional taxi services to TNC services by developing an 

innovative joint econometric model system. It might be interesting to enhance the study 

methodology by accounting for unobserved temporal effects (heteroscedasticity) across the 

multiple years of data. In future efforts, it might also be useful to include monthly economic 
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indicators (such as employment and wages) in the model to control for macroeconomic 

condition.
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