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ABSTRACT 

Human exposure estimation to air pollution plays an important role in epidemiological 

studies which are designed to reveal correlations between human exposures to certain air 

pollutants and certain diseases, such as asthma, cardiovascular disease and reproductive 

diseases. Traditionally, when people’s mobile data is hard to get, home location is used to 

estimate people’s exposures assuming that people stay at home all the time. Whereas, people 

move and it is more accurate to estimate people’s exposures including people’s mobility. In our 

study, we showcased two methods to obtain people’s mobile data: Google Maps location 

history (GMLH) data and Call Detailed Record (CDR) data. GMLH data was compared with 

Global Positioning System (GPS) data from four aspects: 1) spatial movement of the subject; 

2) time the subject spent at different microenvironments; 3) time the subject spent on driving; 

4) subject’s time-weighted exposures to ambient particulate matter. The results showed that 

compared with GPS data, GMLH data capture well the subject’s spatial mobility with 

resolution of 200m * 200m or larger and successfully captured the time the subject spent at 

different microenvironments and the time on driving. Also, with GMLH data we were able to 

accurately estimate the subject’s time-weighted exposure to ambient PM pollution. CDR data 

was used to estimate subjects’ mobile exposures for five chosen pollutants (CO, NO2, SO2, O3, 

and PM2.5). And the correlation between difference between static exposures and mobile 

exposures with mobility level is also investigated. My study revealed that there is no substantial 

difference between home based exposure (HBE) and CDR based exposure (CDRE) at 

population level. But at individual level, difference between HBE and CDRE increased with 

mobility increased. 
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It was also found that HBE would likely under-estimate exposure to traffic-related 

pollutants (CO, NO2 and PM2.5) during afternoon rush-hour, but over-estimate exposures to 

ozone during mid-afternoon. As smartphone and Google Maps application are used widely, 

these two methods have huge potential on obtaining people’s mobility data. My study also 

tested the relative accuracy and reliability of two brand commercial sensors (PurpleAir and 

Dylos). Results showed that PurpleAir has good relative accuracy and reliability, while Dylos 

has moderate relative accuracy and reliability.  
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CHAPTER ONE: INTRODUCTION 

Ambient air pollution has adverse human health impacts and nowadays, it is getting 

considerable attention all over the world. Many physical diseases are proved to be associated 

with air pollution exposure, such as respiratory diseases, reducing physical functions and 

cardiovascular illness [1-7]. Pope III et al. reviewed studies focusing on the effects of 

particulate matter (PM) on human health between 1997 and 2006, and concluded that a 

20µg/m3 increase in PM10 exposure is associated with an 0.4% to 1.4% increase in the risk of 

all-cause mortality [6]. Gehring et al. investigated the associations between exposures to NO2, 

NOx and PM2.5 and lung function, and concluded that exposure to these air pollutants may 

result in lung function reduction in schoolchildren [5]. Kurt et al. found that exposures to PM, 

ozone and nitrogen oxides may exacerbate asthma, and increase the risk of lung cancer and 

respiratory infections [7]. Cohen et al. found that exposure to PM2.5 contributed to 4.2 million 

pre-mature deaths, while exposure to ozone caused an additional 254,000 deaths in 2015 

globally [3].  

Not only human’s physical health is impacted by air pollution, but also human’s mental 

health. For instance, according to Zhang et al., exposure to air pollution may hinder people’s 

cognitive performance as they grow older [8]. Newbury et al. found that exposure to nitrogen 

dioxide (NO2) and nitrogen oxides (NOx) together account for 60% of the association between 

urban residency and adolescent psychotic experiences instead of family socioeconomic status 

or family psychiatric history [9]. 

Epidemiological studies in air pollution focus on investigating the associations between 

air pollutant exposures and adverse human health effects. Through these studies, we could 

uncover the linkages between many health endpoints and exposure to air pollutants. For 
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instance, increase PM and ozone were associated with the risk of increased mortality [10] [11]. 

Increased hospital admission due to cardiovascular and respiratory illnesses were linked with 

daily PM2.5 level variations [12]. NO2 was also found to be associated with cardiovascular 

mortality, acute myocardial infarction, and hospital admission for chronic obstructive 

pulmonary disease [13]. Furthermore, 3.4% of cardiovascular and 2% of respiratory deaths 

were found to be attributable to SO2 levels higher than 10 μg/m3 in a city in Iran [14].  

In epidemiological studies, exposure estimation is a critical step. Subsequent statistical 

analysis, aiming at understanding the associations between human exposure and adverse health 

impacts, is based on an accurate exposure estimation. Whereas, imprecise estimations of 

exposure would introduce undesired biases or errors in epidemiological analysis [15-17]. Yu et 

al. found that misclassification errors are likely to be substantial when exposure is not estimated 

correctly (i.e. neglecting people’s mobility) [15]. Chen et al. used mobile-phone locating-

request (MPL) big data to estimate population exposures to PM2.5 and compared them with 

exposures calculated by census data. They concluded that dynamics of population is an 

important factor in the estimation of inhaled PM2.5 mass estimation [18]. Hodgson et al. 

compared pregnant mothers’ exposures at delivery locations, exposures at conception locations 

and exposures at residences. They concluded that researchers should consider errors introduced 

by residential mobility if they want to explore the subtle associations between exposures and 

health outcomes [19]. 

Overall, accurate assessment of human exposure to air pollution is essential for air 

pollution health studies. Previously, many scholars adopted people’ home addresses (or their 

home zip code) to estimate their exposures to ambient air pollutants [20] [11]. In this method, 

subjects were assumed stay at residence place for 24 hours, which is apparently unrealistic. 

Recently, researchers found that accounting for people’s mobility information could lead to 
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significant differences in exposure estimation [17-19, 21-23]. In Dhondt et al.’s study, the 

difference of NO2 exposures between including and not including mobility information could 

be up to 15% for people who live in rural zones [24]. For population exposure, Ma et al. pointed 

out that one of the administrative and commercial districts of Beijing, China has a high 

population ratio (day to night) of 1.35, while a residential district of Beijing has a lower ratio 

of 0.84 [25]. Such population fluctuation in commuter cities would influence population 

exposure estimation. Tang et al. found that exposures calculated when mobility and infiltration 

factors were taken into consideration are approximately 20% lower than ambient exposures 

estimated at residential addresses [22]. Therefore, including subject’s mobility are expected to 

lead to more accurate estimation of exposures.  

However, including mobility in exposure estimation requires subjects’ spatiotemporal 

mobility data. In prospective studies, people’s mobility data is relatively easier to obtain, and 

several methods have been employed in the past studies to capture individual human movement, 

such as detailed activity diaries [26], global positioning system (GPS) devices [27-29] or 

smartphone based location tracking applications [30]. However, activity diaries are laborious, 

and using dedicated tracking devices can be expensive for large sample populations. For 

retrospective studies, historical mobility data are needed, but not all the methods used in 

prospective studies can be used in retrospective studies. Therefore, in much past retrospective 

studies, researchers used subjects’ residential addresses to estimate their exposures, which as 

discussed previously, is problematic since the assumption is that people stay at home for the 

entire study period. Several recent studies have attempted to address this issue by using some 

other methods, including aggregated travel survey data [22], accounting for multiple locations 

of subjects [31-33], or utilizing travel demand models [34-36]. However, these methods either 

lack details at individual level, or are only approximations of a subject’s trajectory. Methods 
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that can retrospectively collect detailed and actual mobility data at individual level remain 

scarce.  

Smartphones are becoming ubiquitous globally, and almost all smartphone has the 

capability to collect and archive users’ location data. Such location data are collected by carriers 

in the form of call detail records [15], by the smartphone’s triangulation location technology 

(cellular positioning), GPS, Wi-Fi, and other means [37]. These smartphone location data have 

already been used extensively in many areas such as criminal investigations, commercial 

advertisements and transportation planning [38-41]. In the field of air pollution, the potentials 

of such data are just started being recognized [18, 23, 42-45]. However, most of these smart 

phone location data are collected at irregular intervals, leading to spatiotemporal sparseness 

[46, 47]. Therefore, whether these data properly characterize an individual’s spatiotemporal 

mobility, and how can they be used in epidemiological studies remain under-investigated. 

Here, we demonstrated the potentials of two methods to account for human mobility 

into exposure estimation for retrospective studies. Both two methods used data originated from 

cell phones. In one approach, mobility data collected from carriers, the call detail record (CDR), 

was used. In the other approach, mobility data collected by the Google Maps application from 

a subject’s smartphone were used. 

For the CDR approach, we investigated how mobility impacted people’s exposure to 

air pollution at both population level and individual level by using a public available CDR 

dataset. We also divided our subjects into 10 groups based on their mobility level to study how 

increased mobility level impact their exposure estimation to air pollutants. Further, we 

compared two different methods for developing concentration fields and investigated how the 

choice of concentration field impacted exposure estimates when mobility is considered. 
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In the second approach, we showed the potential of using Google Maps location history 

data to characterize an individual’s exposure to air pollution. In this study, we compared one 

subject’s Google Maps location history data with GPS logger data to evaluate the accuracy of 

Google Maps location data regarding: 1) spatial movement of the subject; 2) the time the 

subject spent at different microenvironments; 3) the time the subject spent driving during the 

one-week time period; 4) the subject’s time-weighted exposures to PM (using satellite-derived 

aerosol optical depth (AOD) measurements data). 

Finally, we also evaluated the performance of six low-cost air quality sensors 

manufacture by two brands, to investigate their accuracy and precision. Results from this 

evaluation contribute to better understanding the usefulness of low-cost sensors in improving 

exposure estimation.  
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CHAPTER TWO: LITERATURE REVIEW 

Ambient air pollution is drawing substantial attention globally due to its adverse human 

health impacts. A large body of literature has suggested that air pollution exposure is associated 

with a wide range of adverse impact on human’s physical health, such as reducing lung 

functions, causing respiratory cardiovascular diseases and increasing the risk of mortality [1-

7]. In addition to the adverse impact on physical health, air pollution also negatively impacts 

human’s mental health, such as hindering people’s cognitive performance as they get older and 

causing psychiatric experiences [8, 9].  

Epidemiological studies on air pollution focus on investigating the associations 

between air pollutants and adverse human health effects. [10-14]. In epidemiological studies, 

the term ‘exposure’ refers to human’s contact with a certain air pollutant. In epidemiological 

investigations, exposure estimation is a critical step, and an accurate exposure estimation is 

crucial for subsequent statistical analysis aimed to understand the associations between human 

exposure and adverse health impacts. Conversely, inaccurate exposure estimation would 

introduce uncertainty in epidemiological analysis, leading to undesired bias or errors [15-17]. 

Therefore, how to accurately assess human’s exposure is essential for pollution health studies. 

Previously, many researchers uses subjects’ home addresses or zip code as subjects’ only 

location information to estimate their exposures [20] [11]. This method assumes that people 

only stay at home, which is obviously unrealistic. Much recent researches also demonstrate 

that the inclusion of people’s mobility could lead to significant differences in exposure 

estimation [15, 17-19, 21-23, 25]. 

Including mobility in exposure estimation requires subjects’ spatiotemporal mobility 

data. How to obtain mobility data is a challenging issue in epidemiological studies. In this 
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chapter we discussed the six most common six methods and a few other less commonly used 

methods for obtaining mobility data. The strengths and weaknesses are also discussed.  

The methods discussed here including travel survey (diary) data, global positioning 

system (GPS) data, call detail records (CDR) data, smartphone application data, census data 

and others. Some scholars also collect supplemental data to improve location estimates, such 

as GPS data with temperature [48] and GPS data with travel survey [49]. Each method has his 

own strengths and weaknesses in various aspects. Almost all methods can be used for 

prospective studies, but not all can be applied on retrospective studies. Table 2-1 lists studies 

reviewed for this chapter. 

2.1 Travel Survey and Diary Data 

Travel survey and diary data are similar methods, which involves asking subjects to 

reflect when and where they have been and their corresponding activities using a questionnaire 

or diary. Neither travel survey nor diary rely on positioning devices (such as GPS). Even though 

diary data provides more detailed information than survey data [50], they also share some 

similar characteristics. Electronic diaries were often used for subjects to report their times, 

locations, and activities [51]. 

Depends on the purpose of the survey, researchers may need to design their own survey 

questionnaire and conduct the survey by themselves. For instance, from 1992 to 1994 the U.S. 

Environmental Protection Agency (EPA) conducted a survey to collect exposure-related human 

activities in U.S. from 9386 people, which is called National Human Activity Pattern Survey 

(NHAPS). The survey was conducted through telephone interview and the respondents 

answered some personal and exposure-related questions and recalled their 24-h retrospective 

time-activities [26]. In some studies, researchers can choose to perform re-analysis of existing 
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dataset collected from an existing survey. For, instance, Tang et al. used data derived from a 

previous survey, the Travel Characterizes Survey (TCS) 2011 published by the HK Transport 

department. They screened 89385 subjects from 101385 original samples. The survey data 

includes subjects’ age, sex, occupation, trip start location, trip end location, transport mode, 

number of trips made, duration of the trip on a weekday [22].  

The diary method often requires subjects to write down their time-activity diary by 

themselves [51, 52], sometime with a time resolution of 15 minutes [51]. When studying 

children, parents can prepare the diary for their children. For instance, Elgethun et al. asked 31 

children’s mother to write down their children’s time-location records. But after comparing the 

accuracy of diary method with GPS method they found 48% of the children’s time-location 

information was misclassified by their parents using diary method [53]. 

Travel survey is often used for retrospective studies and people’s mobility data can be 

extracted from existing surveys. Travel survey and diary data may contain personal information, 

such as age, sex, occupation et al., which can be utilized in further stratification analysis, such 

as exposure of people in different age. Survey and diary can cover various population 

subgroups, especially those who don’t have access to cellphones, such as adults or children. 

The weakness of travel survey and diary methods are well documented. ‘Respondent 

error’ is often the biggest concern [53]. The action ‘recall’ is suitable for short-term survey, and 

an individual may not accurately remember activities occurred long time ago. Meanwhile, the 

action of ‘take down a diary’ also is suitable for recording short-term behavior, since it’s 

unlikely that an individual could keep a continuous recording of their time, location and activity 

for an extended time period. For travel survey, since subjects are required to recall their time, 

location and activity, recall bias could happen. For travel diary, participants may forget to 

record an entry in the diary or fill in an entry as a ‘best-guess’, which could also contribute to 
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bias [53, 54].  

In addition, survey or diary method is often laborious and expensive. As a results, 

participants often need assistance to complete the questionnaire which add burdens to 

researchers. When subjects need assistance to complete the diary, bias could occur [52]. For 

practical reasons, the time subject spent in one place may be rounded to a larger number (i.e. 

5minute activity can be rounded up to 15 minute) by participants [53], which are expected to 

introduce uncertainty to the study. It has been shown in some studies that the dairy method 

could overestimate or underestimate subjects' time spent in transit when compared with GPS 

data [48, 55]. The survey questionnaires are often created in one language and not all the 

subjects who answer the questionnaires are native speakers [50]. Therefore, bias may be 

introduced when a subject is an nan-native speakers [56]. Low literacy could also impede the 

completion of a diary [53]. Other issues with the survey or diary methods include incomplete 

or missing information, and privacy concerns. 

If travel survey and dairy is the only method to obtain subject’s mobility data, the bias 

discussed above could be unneglectable. Therefore, survey or dairy methods should be used 

with caution. 

2.2 GPS Data 

GPS refers to global positioning system. A GPS device records time, latitude and 

longitude simultaneously according to a pre-set time interval. GPS data is expected to have 

higher spatial and temporal resolution than survey and diary data which are mentioned above. 

It has been shown that survey and dairy method could overestimate or underestimate subjects' 

time spent in transit when compared with GPS data [48, 55]. With GPS data, the subjects’ in-

vehicle travel trips, home location and work location can be extracted. GPS device is worn by 
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subjects, such as in vests or in a backpack carried by subjects [53, 57]. However, this method 

requires subjects to be highly cooperative, willing to carry a GPS device with them all the time, 

and charge the battery regularly. For instance, the participants in Jun Wu’s study were asked to 

carry a portable GPS device when they were awake for 1 week. Since the battery of the GPS 

device only lasts for 17 hours, participants were asked to turn on the device when they woke 

up and turn off the device and charge it at the end of their day [55]. GPS is a passive recording 

method and does not need participants to recall their locations, which eliminate the recall bias 

existed in the survey and diary method. 

In certain locations, such as indoor or underground parking lots, the signal of GPS can 

be weak [54], leading to missing location data during the study period. Additional data cleaning 

procedures would be needed, such as replacing missing data or relocating unrealistic points 

[58]. Incorporating other factors, such as temperature, could help mitigating such issue to some 

extent. For instance, Nethery et al. applied temperature to adjust the subject’s location 

classification. If GPS data indicates the subject’s activity is located outside home, but the 

recorded temperature is shown 21°C, which is not expected outside, then the activity will be 

reclassified as indoor [48]. Carrying a GPS device constantly with subjects may also interfere 

with their behaviors and daily life. If participants are given GPS devices to collect their location 

data, the interference with participants’ daily life should be considered, and should be reduced 

to an acceptable level [56].  

Subjects’ noncompliance would lead to incomplete GPS recordings, such as forget to 

shut down or recharge the device at night. In Jun Wu’s study, GPS data is only valid for half of 

the expected days [55]. Though GPS data does not contain personal information, such as gender, 

age, economic status. Combining GPS with questionnaire, individual information can be 

obtained. In peri-urban South India, Sanchez et al. gave 47 participants (24 women, 23 men) 
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GPS devices and investigated the difference of mobility pattern between men and women. 

Different from women in the city, women in the peri-urban area spent 4 hours more staying at 

home than men, which supported the importance of stratified analysis in exposure estimations 

[59]. The GPS method can only be used in prospective studies where participants are given 

GPS devices before the data collection begins. 

In order to improve the accuracy of spatiotemporal resolution and exposure estimation, 

the GPS method can be combined with daily activity diary method [49] [60]. This combinations 

allows better estimates of the time a subject spent in different microenvironments, especially 

in transportation [49]. Since diary requires relatively high cooperation of the participants, 

involving GPS method will also mitigate the error introduced by the participates [61]. For 

instance, Buonanno et al. investigated 24 couple exposures to UFP (ultra-fine particulate 

matter). Among them, all man had a full-time job while all woman stayed home. The subjects 

were given a GPS device and an UFP monitor, and they were asked to fill a travel diary. 

Combining all these methods, the authors found that the average exposure to UFP for women 

was higher than men during summer and winter. The activity that lead to the highest exposure 

for women was cooking, while for men it was transporting [49]. GPS can also be combines 

with other data such as acceleration. For instance, Dewulf et al. adopted accelerometer to obtain 

subjects’ acceleration which can indicate subjects’ transport mode (such as cycling and driving) 

and physical activity (such as light and heavy physical activity). With these data, subjects’ 

ventilation rate can be assessed, and the inhaled dose of NO2 can be estimated. The authors 

found that, if incorporating ventilation rate, the inhaled dose of NO2 was 12% larger than dose 

that only including subjects’ mobility [62]. 

https://www.sciencedirect.com/topics/social-sciences/transport
https://www.sciencedirect.com/topics/social-sciences/air-conditioning
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2.3 CDR Data 

CDR refers to ‘Call Detail Record’ which is recorded by carriers’ towers when 

cellphones are connected to the tower, such as turning on, turning off, sending messages or 

making a call. In 2016, Dewulf et al.l applied this method in air pollution exposure estimation 

[42], and it has gain much popularity since then. The sample size of existing studies that used 

CDR data ranges from thousand to as large as millions [42, 44]. Apart from using census data, 

the CDR method can also be used to perform population level analysis [63-66] while also 

accounting for individual mobility patterns, which attracted attentions from many researchers. 

Since health policies mainly focus on the health improvements on population, instead at 

individual level, population level exposure estimations are of great interests [63]. In the study 

of Picornell et al., mobility data were extracted for the entire population of Madrid, Spain using 

CDR data, and population exposure to NO2 was assessed [64]. Nyhan et al. used CDR data to 

calculate population-weighted exposures to PM2.5 in New York city while account for mobility 

[44]. In Roma, Italy, the variability of population exposures to NO2 could reached to 50% at 

downtown region where population density exceeds 1000 people/km2 during daytime. Such 

population variation cannot be identified when using census data [63]. 

Compared with exposures calculated using census data or home addresses, exposures 

estimated using CDR data is considered to be more reliable [15, 63, 67]. Nowadays, the vast 

majority of population owns mobile phones, even in rural areas [54], thus CDR data is expected 

to be widely available. Unlike the GPS method, this approach needs no additional devices. 

CDR data is also passively collected and doesn’t intrude participants’ personal life, so subjects’ 

behaviors are not disturbed [42]. CDR data can be applied to long-term study extending for 

years. This approach can be used for both prospective and retrospective epidemiological studies. 

Usually, demographic information (such as gender, age and education level) of the 
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mobile phone owner can’t be obtained through CDR data, since those would be concealed by 

the provider [54]. In Claudio Gariazzo’s study, demographic information are available, but they 

were stored in a separated database and cannot be linked to other database [63]. The two 

databases reduced the risk of leaking personal information. 

However, there are a few weaknesses associated with using CDR data in exposure 

estimation. The spatiotemporal resolution of CDR data is relatively low compared with GPS 

data [42]. Location information as recorded in CDR are the locations of carrier’s towers, but 

not the actual location of subscribers. In rural areas, the coverage of towers is less compared 

with urban region, thus leading to more error in location data. This method may also exclude 

some population subgroups who have no or limited access to mobile phones, such as children 

and certain elderly people. CDR data also contains private information, therefore public 

perception on the use of this approach needs to be carefully considered. Jones et al. studied 

public view on using CDR in health research. Without providing any background information, 

62% of the participants (N=61) were willing to share their anonymous CDR data. After a 

workshop explaining measures for privacy protection, the proportion increased to 80%. The 

author concluded that people are generally willing to share their anonymized CDR data as long 

as they were well informed and safeguarded [68]. 

CDR data have also been used in research fields other than air quality. For instance, 

Thomas et al. used CDR data to assess per capita pharmaceutical use and illicit drugs use. They 

concluded that the results were only possible by using dynamic population (instead of static 

population) [65]. Furletti et al. were able to identify events within an urban area by examining 

the size of population at a particular time and location using CDR data. The identified events 

including religious event, concert performance or special holiday events, which provides useful 

information for urban managers and decision makers [66]. 
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2.4 App Data 

The widespread use of smartphone, smartphone application (herein referred to as App), 

and location-based services, has enabled a promising approach to collect mobility data for a 

large population at individual level [69]. We collectively name this type of data “App” data 

since all location data are collected by one or more smartphone applications. This method has 

been shown to improve exposure estimation considerably compared with the home address 

based approach [18, 69]. Smartphone Apps that have been used in exposure estimation studies 

include Tencent Apps, ExpoApp, CalFit and Google Maps. Among them ExpoApp and CalFit 

are, at least partially, designed for exposure estimation studies. Though not designed 

specifically for research purposes, Tencent Apps and Google Maps do collect location data 

from individuals and these Apps have been installed by a large population. Chen et al. used big 

data derived from Tencent big data platform in China (the data mainly come from two apps 

developed by Tencent, Wechat and QQ) to estimate population exposures to PM2.5 and compare 

them with exposures calculated using census data. And he concluded that if the dynamics of 

population movements were not considered, the bias of exposure assessment would reach over 

100% across different temporal scales [18]. Gonzalez et al. developed an exposure assessment 

application called ExpoApp, which can estimate the time participants spent in various 

microenvironments, the degree of participants’ physical activity, and their exposures to 

pollutants and green space, by integrating various data sources including location, acceleration, 

monitoring and individual information [70]. They have also demonstrated the reliability of this 

approach [70, 71]. Nieuwenhuijsen et al. provided 54 school children a smartphone with CalFit 

software pre-installed to obtain their location information and physical activity level. In 

addition, a personal sampler is also provided to measure their exposures to black carbon (BC) 

[72]. Gonzalez et al. compared CalFit with GPS and found that CalFit worked better on 
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providing the information of which microenvironment the participant stayed [73].  

The App method does not require additional devices, but only requires installing an app 

on the participant’s smartphone. Once the app is developed, it can also be used by other 

researchers [70]. Like CDR method, the data collection process cause minimum interference 

to the subjects’ daily life. The confidentiality of the data collected through App can and should 

be guaranteed, such as using asymmetric encryption [70]. 

However, the smartphone applications will increase the burden on the smartphone’s 

battery. For ExpoApp and Calfit, the subjects need to install the App at the beginning of the 

studies. If they are also required to carry portable devices to measure the pollutant 

concentration in microenvironments, the study may become laborious and costly. 

A very promising method among all the Apps mentioned previously is using the Google 

Maps app. CDR data records the locations of towers, and GPS data often has missing points 

under indoor circumstances. But because Google Maps data is a combination of GPS, Wi-Fi 

and cellular positioning [74], it can still obtain location data in indoor situations . However, 

despite its popularity, Google Maps is not installed on every smartphone, and among those who 

installed Google Maps, not all of them have enabled the ‘Location History’ feature. 

Given its popularity, Google Maps is widely used, and thus large amount of location 

data are being collected from the users. In order to evaluate the accuracy of using Google Maps 

location data to characterize human mobility patterns, Ruktanonchai et al. compared Google 

Maps location history (GMLH) data with GPS tracker data and found that GMLH data is 

equivalent with GPS data within 100 meters [75]. Su et al. estimated one subject’s exposure to 

NOx by using GMLH data as well as indoor-outdoor air exchange ratio. With GMLH data and 

indoor/outdoor ratio considered, exposure estimates was up to 359% higher than the exposure 

estimated using home address alone [76]. 
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GMLH data also has several other strengths. They may be available retrospectively for 

several months or even years, which can be difficult to achieve for other methods, such as 

survey (diary) method or GPS data. GMLH data can also capture more international location 

data during traveling [75]. GMLH data are passively collected and are easy to retrieve. Anyone 

who installed the Google Maps application on their smartphone, signed-in with their Google 

account, and enabled the Location History feature, will be able to easily download his/her own 

location data by using ‘Google takeout’ [74]. GMLH data can also be used in both respective 

and retrospective studies. GMLH records location data at an average interval of one minute 

[75], therefore, temporal resolution is relatively high. 

However, only users have access to their own GMLH data. It is expected to be difficult 

to use this method to evaluate mobility for a large population given the logistic issues, and 

potential sampling biases associated with participants recruitment [75]. In addition, people who 

don’t have Google Maps installed on their smartphone will not have GMLH data available. 

This subpopulation group will include population such as children, elderly, and people with 

low socioeconomic status. 

2.5 Census Data 

Census data has been widely used in past studies for the exposure estimation. Though 

this approach ignores individual mobility, it still has advantages when compared with other 

methods. First, though census data cannot be used to people’s mobility, it can be used to 

determine population changes over time. For instance, in Anna Rosofsky’s study, population in 

urban census blocks increased by 5.3%, while population in rural census blocks decreased by 

4.1% in Massachusetts from 2000 to 2010 [77]. This phenomenon may indicate a general trend 

of population moving from rural to urban areas, and such information is useful for long-term 
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population exposure estimation. Another instance is that Aleksandropoulou V. et al. used census 

data to investigate the trends in population exposure to PM10 and PM2.5 during 10 years in 

Greece [78]. 

Second, census data contains many detailed information, such as urban/rural groups, 

racial/ethnic groups, income status and education levels. With such stratified information, we 

can explore the potential disproportionate distribution of air pollution exposures among 

different groups. While this information can be collected from subjects in the methods 

mentioned above, when it comes to large population of people, census data method would be 

much more easier. For instance, with census data of Massachusetts state, Rosofsky et al. found 

that urban non-Hispanic black populations have the highest annual population weighted PM2.5 

concentrations. And urban Hispanic populations have the highest annual population-weighted 

NO2 concentrations [77].  

Third, though census data do not contain detailed mobility data, population mobility 

can be approximated using census data. For instance, Nathan et al. adopted subjects’ home 

address and work address from the Israeli Central Bureau of Statistics based on 2008 census. 

After simulating subjects’ trajectories, the authors obtained the exposures accounting for 

people’s mobility [23, 43]. Reis et al. used census to obtain workday population distribution in 

UK and calculated population exposures including both residential and workday location. Their 

results showed that exposure to NO2 including work locations could lead to a 2% exposure 

increase when compared with exposure estimates not including work locations [79]. 

2.6 Others 

In addition to above mentioned methods, there are also other methods available for 

estimating the impact of mobility on exposures. The associations between pregnant women’s 
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exposures and infants’ health is of interests for some researchers. Some researchers used 

mothers’ home addresses to estimate exposure during fetal growth [80]. However, studies 

suggested that residential mobility should be considered if we want to explore the subtle 

associations between maternal exposures and birth outcomes [19]. However, in the study of 

Chen et al., the estimated exposures to ozone and PM10 using birth certificates’ address is found 

to be representative of exposures estimated using multiple maternal addresses (due to moving 

of mothers) [31]. Therefore, birth certificate data would still be valuable for mobile exposure 

estimation to some extent. When using birth certificate data, the ‘mother’ is the only subject 

available. 

In a study focusing on the associations between air pollution exposure and psychotic 

outcomes, the participants’ air pollution exposures were calculated by averaging the pollutant 

level of three places, home addresses and 2 commonly visited locations [9]. However, it is still 

unknown whether the average exposures of these three locations can approximate personal 

exposures. 

Salmon et al. utilized wearable camera to estimate their subjects’ exposures to PM2.5 

[81]. The pictures taken by cameras were manually labeled by to indicate different 

microenvironments [82]. This method mainly focused on the effect of various activities on 

exposures, rather than the effect of mobility.  

Dhondt et al. used an activity-based model to simulate 5 million people’s mobility based 

on 8800 persons’ diary survey information. They compared health impacts estimated using 

modeled exposures with health impacts estimated using home addresses and the results showed 

only modest difference [24]. 

Ma et al. used subway smart card data to study diurnal dynamic changes of population 

in the city of Beijing, China. They found that one administrative and commercial districts of 
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Beijing has a high population ratio (day to night) of 1.35, while a residential district of the same 

city has a low ratio of 0.84. This finding could change the population exposure estimation 

considerably [25]. However, this method may only be applicable to cities with existing subway 

infrastructures. 

Escobar et al. used a novel open mobile mapping tool to estimate the mobility of offline 

people in rural Amazon and investigated the impact of human mobility on malaria dynamics, 

without the availability of internet and mobile phone signal [83]. 

Transaction records of credit cards also contain mobility information and individuals’ 

detailed attributes, such as age or gender. Lenormand et al. investigated the mobility pattern of 

different group of people in Barcelona and Madrid using this method [84]. 

Finally, social media nowadays affecting people’s daily life in the society. Social media 

check-in information can be used to retrieve people’s mobility data. For instance, Wu et al. 

used 15 million social media check-in records during one year in Shanghai, China to model 

people’s mobility pattern [85]. Longxu Yan et.al used social media check-in data (Weibo) to 

study the impact of air pollution on people’s activities. They found potential correlations 

between air pollution and change in people’s behavior. Leisure-related activities are also found 

to be more affected by air pollution than work-related activities [86]. 

2.7. Discussion 

Many methods are available to capture the impact of human mobility on their exposure 

to environmental risk factors. Choosing the most suitable method needs careful consideration 

on the strengths and weakness of each method. The CDR-based method is promising, it can be 

applied for retrospective studies. However, CDR data contains the locations of cellphone 

towers, but not the subscribers. The GPS method collects the locations of subjects, but it cannot 
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be used for retrospective studies. GPS signal can be weak indoor or underground, leading to 

inaccurate data. The Google Maps method is available in retrospective studies, recording 

subject’s real location and less weakness when indoor. Though GMLH data is not available for 

the entire population since the Google Maps App is not installed on all smartphones. Hence 

this method is difficult to be applied for population level studies.  

In prospective studies, the subjects’ future location data will be collected. For retrospective 

studies, the subjects’ historical location data are desired, which are generally more difficult to 

collect. Among all the methods discussed above, some of them can be used for both prospective 

and retrospective studies, such as CDR, Google Maps, Census data, mother’s birth certificate 

and social media data. Methods such as travel diary are suitable for retrospective studies, while 

some methods can only be used for prospective studies, such as travel diary, GPS, App and 

sensor. The best method to use depends on research design. 

Indoor environment is another concern when estimating people’s overall exposures to 

air pollutants. People spend most of their time indoor. Ignoring indoor factor would lead to 

misclassification errors. Ouidir et al. has showed that exposures estimated only including 

mobility correlated poorly with exposures estimated including both mobility and indoor factor 

(r ranges between 0.03-0.05) [58]. This is particularly an issue for participants who preferably 

stay indoor.  

Though there are still much need for further research, the brief review presented in this 

paper provides insights for accounting mobility in air pollution exposure estimation, and 

contributes to further understanding on this subject. 

2.8 Sensor Data 

Sensor data is not one of the methods to obtain people’s mobility, but it is worth 
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discussing when accounting for people’s indoor and outdoor factors. Strictly speaking, a 

person’s exposure to air pollution consists of exposure to both indoor and outdoor air pollution, 

and indoor pollutant concentrations can be significantly different from outdoor concentrations 

[61, 87]. It has been shown that ambient ozone concentration alone is not a favorable proxy for 

estimating personal exposures, other factors such as meteorological conditions and window 

opening status should be taken into account [88]. This finding can also be applied for other 

pollutants. Often indoor pollutant concentration alone is not a suitable exposure surrogate, 

though there are exceptions: pregnant women who spend 60% of their time indoor at home 

have personal exposures that correlate well with indoor pollution concentration levels [89].  

Personal sampling method can be used to measure pollutant concentration at the place 

of activity [90], such as in microenvironment and in transit, which may not be accurately 

estimated by using ambient concentrations. In past studies, devices such as personal samplers 

have been carried by subjects to collect pollutant samples around breath zone, and later 

transferred for lab analysis [91-93]. The time difference between sample collection and lab 

analysis could affect concentration measurements [94]. The advancement of sensor technology 

has led to the commercialization of sensors that are able to provide near-real-time pollutant 

concentration measurement, which helps to overcome this issue. Location data collection may 

no-longer necessary in this case for estimating the subject’s total exposure. In Daniela Dias’s 

review, monitoring is used as the most reliable and accurate method to estimate exposures by 

measuring concentrations within subjects’ breathing zone [90]. 

As discussed previously, results from past studies have shown that exposures as 

obtained by sensor data can appropriately account for pollutant concentrations in indoor 

environments, which can be considerably different from outdoor concentrations [87]. Using 

sensor data, one can account for pollutant infiltration, and indoor sources such as cooking, 
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which can greatly impact exposure estimation [90, 95]. When using sensor that is capable of 

providing data in high temporal resolution, short-term or peak exposures can be identified, such 

as cooking and commuting [95]. Such information is expected to be helpful for the studies of 

acute illnesses.  

However, all sensors are required to be calibrated with reference instruments as drifts 

may occur in the process of using them. Often calibration under lab environment is not 

sufficient, and field calibration is necessary[95]. For instance, Juana Maria Delgado-Saborit 

compared BC and NO2 sensors with reference methods under field conditions and estimated 

R2 of 0.89 and 0.63, respectively [95]. And measurement made by sensors of different brands 

may not correlate well with each other.  

There are also many logistic issues associated with using personal sensors. The process 

of participant recruitment may be difficult [87], which will increase study cost. Since subjects 

must carry sensors with them almost everywhere and all the time, considerable attrition loss is 

expected for long-term study. This method also can’t be utilized for population level studies 

due to the cost and time. If subjects only carry sensors with them but don’t carry any positioning 

device, subjects would be asked to keep time activity diary if spatiotemporal activity pattern is 

necessary for the study, which would add burden to researchers since sensor data needs to be 

correlated with diary data [95]. The battery life of sensor is another concern and frequent 

charging may be necessary, which would increase burden for subjects. One way to solve this 

issue is to add an additional battery to the original sensor, which however would increase the 

weight of the sensor [95]. Finally, this method can only be used for prospective studies. 
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CHAPTER THREE: GOOGLE MAPS LOCATION DATA WORK 

3.1 Introduction 

Exposure to ambient air pollution has been linked with numerous adverse health effects 

[6, 96-99]. An appropriate characterization of human exposure is critical for air pollution 

studies [100-103]. One major source of uncertainty in accurately estimating individual air 

pollution exposure is that the location of each individual changes constantly. Since 

concentrations of many pollutants are known to vary substantially spatiotemporally, neglecting 

subject mobility is expected to introduce a considerable amount of uncertainty in exposure 

estimation [31, 104], consequently leading to potential exposure misclassification errors [17, 

105] that can lead to biases in subsequent statistical analyses [106, 107].  

In prospective studies, detailed activity diaries [26], GPS devices [27-29] or 

smartphone-based location tracking applications [30] have be used to record individual human 

movement. Some of the methods can be intractably expensive for large sample populations, 

and not all methods are feasible for retrospective studies in which subject mobility data from 

the past are needed. In past retrospective studies, exposures have typically been estimated only 

at the residential addresses of the subjects. A few studies have attempted to address this issue 

by using a number of methods, including relying on aggregated travel survey data [22], 

accounting for multiple addresses of subjects [31-33], or employing computationally-intensive 

travel demand models to simulate explicit travel paths for subjects [34-36]. However, the 

inferred mobility data from these methods are either lacking details at the individual level, or 

are only approximations. Retrospective studies that utilize detailed and actual mobility data of 

individual subjects remain scarce. 
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Smartphones are now ubiquitous and location data are continuously being collected and 

archived from virtually all smartphones by network carriers [15], and by various smartphone 

applications (herein referred to as apps) [37] such as the popular Google Maps app (Alphabet 

Inc., Mountain View, CA). While these “historical” location data are being used extensively 

for criminal investigations, commercial purposes, and in academic research in fields such as 

transportation analysis and planning [38-41], the potential of smartphone location data is just 

starting to be explored in environmental research related to air pollution [18, 23, 42-45]. 

However, it is commonly recognized that most smartphone location data are spatiotemporally 

sparse since they are usually collected at irregular intervals [46, 47]. Whether these data 

appropriately capture individual mobility and the applicability of such data in air pollution 

health studies remains under-investigated. 

As one of the most downloaded apps, and the most used navigation app on both iOS 

and Android platforms [108], Google Maps is regularly used by billions of smartphone users 

worldwide [109]. The app contains a feature called “Location History”, that when enabled, will 

continuously and passively collect location data from an individual’s smartphone using 

technologies including GPS, Wi-Fi and cellular positioning. In this manuscript, we demonstrate 

the potential of such Google Maps location history (GMLH) data in air pollution exposure 

estimation. We first compared GMLH data from a single smartphone with detailed location 

data recorded using a co-located reference GPS data logger to evaluate the accuracy of GMLH 

data in capturing the 1) spatial movement of the subject; 2) the time the subject spent at different 

microenvironments; and 3) the time the subject spent driving during the one-week time period. 

Using satellite-derived aerosol optical depth (AOD) measurements, we then compared the 

subject’s time-weighted exposures to ambient particulate matter as estimated using GMLH, the 

reference GPS data, and home address alone, to investigate the applicability of GMLH data in 
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exposure estimation for air pollution. Further, we conducted an online survey to assess the 

potential availability of GMLH data among smartphone users in the US. 

3.2 Materials and Methods 

As a proof-of-concept study, a single subject carried an Android smartphone with the 

Google Maps application installed, and a co-located reference GPS data logger for a one-week 

time period between April 26 and May 2, 2018. The GPS logger used here was the QStarz’s 

BT-Q1000XT GPS Travel Recorder (Qstarz International Co., Ltd.), which has been 

successfully applied in several previous health studies to characterize individual mobility [29, 

110-114]. The logger was pre-configured to record GPS coordinates every 10 seconds. The 

vibration sensor was enabled on the logger, which temporarily shuts down the device when no 

vibration is detected for more than 10 minutes and restarts the device when vibration is detected. 

The Android device used was the Google Nexus 6P (circa 2015) running on Android version 

8.1.0 operating system. When the location history feature is enabled, the Google Maps 

application will continuously collect location data from the smartphone at varying frequencies. 

The collected data are stored in the “cloud” and are linked to the Google account that is synced 

with the Google Maps application. The archived location data can be viewed/edited in Google 

Maps Timeline and can be retrieved easily using Google Takeout (a tool that can be found on 

the website) with the user’s Google account. Both Timeline and Takeout are services provided 

by Google (Alphabet Inc. Mountain View, CA).  

During the week of data collection, Android location services, location history, Wi-Fi, 

and cellular data were enabled on the subject’s Android smartphone. The subject did not open 

the Google Maps application. The purpose here was to capture a baseline scenario for data 

collection since more GMLH location data are expected to be collected when the Google Maps 
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application is being used. The subject conducted his routine travel activities during the week. 

To additionally test location data collection during non-routine travel, the subject travelled to 

a nearby tourist destination on day 3, and to a nearby regulatory air monitoring station on day 

7 (45 and 80 miles from the subject’s home address, respectively). At the end of the week, 

location data from the GPS data logger were retrieved using the QStarz proprietary software 

(QTravl, version 1.49). Data points identified as “drift” by the software, which are mostly 

repeated location records collected when the subject stays stationary for an extended time, were 

removed by the software prior to subsequent data analyses. Location data collected by the 

Google Maps application were retrieved using Google Takeout. 

In order to compare the smartphone and GPS logger datasets, we linearly interpolated 

both GPS and Android location data to a uniform 10-second interval spanning the entire week. 

This approach assumes that the subject moves in a straight line with a constant speed between 

each pair of temporally consecutive location points. We do not expect the removed “drift” GPS 

data to impact the results of such interpolation since they are mostly repeated location records 

collected when the subject stays stationary. 

Choosing the GPS data as the ground truth, we evaluated the capability of GMLH data 

in capturing: 1) the spatial mobility of the subject during the one-week time period; 2) the time 

the subject spent at different microenvironments; and 3) the time the subject spent driving. 

Here microenvironment is defined as a fixed-activity location that was not part of the subject’s 

travel route. A total of 10 microenvironments were considered in this study, including the 

subject’s home and work location, two grocery stores, three clinics, one postal office, one 

tourist destination, and an air quality monitoring station. 

To evaluate the capture of spatial mobility, we divided the entire spatial extent of the 

subject’s movement into grid cells of four different sizes: 1 km, 500 m, 200 m and 100 m. The 
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grid networks were overlaid with both sets of interpolated 10-second location data. If an 

interpolated data point was located within a grid cell, the subject was assumed to stay within 

the corresponding grid cell for the entire 10-second time period. The number of interpolated 

data points were counted for each grid cell, and the time (in minutes) the subject spent within 

each grid cell was calculated accordingly. 

To evaluate the capture of time spent at each microenvironment, we first drew 

rectangles over the approximate perimeters of the corresponding microenvironment. We 

choose rectangular areas for this analysis because the perimeters of most microenvironment in 

this study are rectangular. If an interpolated data point was located within a rectangle, the 

subject was assumed to stay at the corresponding microenvironment for the entire 10-second 

time period. The time the subject spent at each microenvironment was then calculated 

accordingly. Further descriptions of the microenvironments are provided in supplemental 

materials. 

To evaluate the capture of time spent driving, we first estimated the traveling speed of 

the subject for each 10-second interval by simply dividing the distance between two 

consecutive interpolated data points. The subject was assumed to be driving during the 10-

second interval if the estimated speed was over 15 km/h. We did not rely on other contextual 

data such as roadway network here in consideration of the spatial accuracy of the location 

history data, and the fact that the subject also walked along roadways during the week. We 

recognize that this method will likely under-estimate actual driving time since the time the 

subject spent waiting at signalized intersections and during severe traffic congestions will not 

be counted toward the total driving time. We estimated the subject’s time-weighted exposure 

to ambient particulate matter (PM) by combining gridded daily mobility data with weekly-

averaged 1-km resolution aerosol optical depth (AOD) data for the corresponding week (re-
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gridded to the same 1 km grid network). We used AOD data estimated by the Multiangle 

Implementation of Atmospheric Correction (MAIAC), an established satellite data product 

based on Moderate Resolution Imaging Spectroradiometer (MODIS) data. MAIAC is capable 

of extracting aerosol information over dark vegetated surfaces and bright desert areas. Further 

information on the operating principles of MAIAC can be found elsewhere [115-117]. For 

comparison to the home-based exposure estimate, AOD data were normalized by the retrievals 

from the grid cells where the subject’s home is located. AOD data were missing for 

approximately 1.8% of the grid cells the subject visited during the week, and these missing 

data were estimated using natural neighborhood spatial interpolation. We applied weekly-

averaged AOD data here due to the considerable amount of missing retrievals at the daily level. 

We did not develop actual PM concentration fields from the AOD data due to the short study 

duration (1-week) and the lack of available ground measurement data within the study domain.  

Finally, we also conducted an online survey to assess the availability of GMLH data 

among smartphone users in the US. Survey participants were recruited using the Amazon 

Mechanical Turk platform. The survey consisted of a series of five questions and typically took 

less than 4 minutes to complete. Each participant received $1 to compensate for their 

participation, and was asked to indicate their age, gender, and whether or not they own a 

smartphone and use the Google Maps app. Those who respond “Yes” to smartphone ownership 

and Google Maps usage were then asked to indicate whether or not they have GMLH data 

available. Graphical instructions were provided to help survey participants locate their GMLH 

data. This survey was approved by the Institutional Review Board at the University of Central 

Florida (IRB ID: STUDY00000281).  Data from the survey were analyzed for demographic 

summary statistics and to determine the percentage of participants with available GMLH data. 
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3.3 Results 

Over the course of 1 week, the subject’s Google Maps application collected 2,224 

location records. The sampling interval ranged from less than 1 second to 69 minutes, with an 

average interval of 4.5 minutes. The GPS data logger recorded 32,314 location records (with 

“drift” data removed). The GPS data logger sometimes recorded data in 1 second intervals 

despite the configuration of 10 s. For consistency, the 10 s interval data were still used for later 

analysis. In addition, due to an error with the built-in vibration sensor, the GPS logger failed to 

record location data for 1 hour 25 minutes during day 6, and for 7 hours 55 minutes during day 

7. Data from both devices collected during these time periods were excluded from our 

comparison analyses. Further discussion of the location data collected are provided in 

supplemental materials. 

The GMLH data captured well the spatial mobility of the subject within the one-week 

study period (Figure 3-1) when the interpolated data points were aggregated to 200 m or larger 

grid cells. For both 1 km and 500 m resolution, the coefficients of determination (R2) between 

aggregated time spent (both daily and weekly totals) in each grid cell from the GPS and GMLH 

data points were all near perfect (rounded to 1.00), with the slope of linear regression of 0.99 

and an intercept below 0.25. The fit decreased for 200 m resolution (R2 = 0.78 and 0.90 for the 

daily and weekly total time, respectively), but performance was still good. However, when both 

GMLH and GPS data were aggregated to 100 m grid cells, the correlation largely disappeared 

(R2 = 0.085 and 0.17), suggesting that the GMLH data cannot capture individual mobility at 

such a fine resolution. Additionally, the performance of GMLH data was less satisfactory, 

though still somewhat promising for 1 km resolution, for grid cells in which the subject spent 

less than 10 minutes based on GPS logger data (see supplemental materials for further 

discussion). These shorter residence grid cells mostly cover roadways that the subject drove 
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through. In this proof-of-concept study, we linearly interpolated the Google Maps location data, 

which contributed to the observed errors. Time estimates in these grid cells can be further 

improved in future studies by including travel route information that can be obtained using 

individual mobility modeling [118-123]. 

 

Figure 3-1. Comparison of the estimated daily total (a-d) and weekly total (e-h) time the 

subject spent in each 1 km (a,e), 500 m (b,f), 200 m (c,g) and 100 m (d,h) resolution grid cell 

based on GPS versus Google Maps location data. 

Using the GPS data logger as the ground truth, we evaluated the time the subject spent 

in each of the 10 microenvironments as estimated using GMLH data (Table 1). During the one-

week time period, Google Maps location data accurately captured the time the subject spent at 

all 10 microenvironments, with errors less than 3% for 8 of the 10 locations, approximately 5% 

for the location where the subject spent most of his time (#10), and only off by 2 minutes for 

microenvironment #4.  
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Table 3-1. The estimated time (in minutes) the subject spent at each of the 10 
microenvironments, as estimated using GPS and Google Maps location data. 

ID 

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Total 
GPS GM GPS GM GPS GM GPS GM GPS GM GPS GM GPS GM GPS GM 

1             13.2 13.0 13.2 13.0 

2     300 300         300 300 

3    0.17   4.33 3.83       4.33 4.00 

4    0.17     29.2 29.0  1.50   29.2 30.7 

5   4.50 4.83           4.50 4.83 

6           34.0 32.5   34.0 32.5 

7         82.0 80.3     82.0 80.3 

8 76.8 76.3        0.17     76.8 76.5 

9 419 421 549 550   446 446 381 382 14.7 6.50 399 400 2208 2205 

10 897 893 836 834 983 977 647 960 902 898 804 803 788 788 5856 6153 

GPS: Time estimated using GPS logger data; GM: Time estimated using Google Maps location 
history data. These times do not include the time the subject spent in travel. Additionally, note 
that 1 hour 25 minutes of data in day 6, and 7 hour 55 minute of data in day 7 were removed 
due to GPS logger malfunction. 

 

Additionally, GMLH data reasonably captured the time the subject spent during driving 

(Table 2), with overall estimation errors of approximately 1.6%. These errors may be due in 

part to the relatively larger spatial inaccuracy of the collected Google Maps location data also 

documented in a recent study [124] (see supplemental materials for further discussion), which 

could impact the speed estimates, as well as the interpolation scheme. We expect the results 

would likely be further improved if individual mobility modeling [118-123] were to be 

performed, from which detailed travel route and driving time information can be obtained. 
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Table 3-2. The estimated time (in minutes) the subject spent driving, and time-weighted daily 
exposure to ambient PM (normalized to subject’s home location), as estimated using GPS and 
GMLH data. 

Time spent driving (minutes) 
 Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Total 
GPS 49 50 114 28 47 91 137 516 

Google Maps 39 41 133 29 39 77 152 508 

Time-weighted exposure (normalized to subject’s home location) 
 Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Average 

Home address 1 1 1 1 1 1 1 1 

GPS 1.09 1.11 1 1.08 1.09 1.06 1.13 1.08 

Google Maps 1.1 1.11 1.01 1.09 1.1 1.08 1.14 1.09 

 

The estimated time-weighted daily exposures to ambient PM using GMLH data were 

similar to the estimates using GPS data logger (Table 2). Based on the GPS data logger, the 

subject’s daily exposure varied between 1.00 (equal to the home-based exposure estimate) to 

1.13 (13% higher than home-based exposure estimate). Exposure estimates using Google Maps 

location data closely approximate those estimated using GPS logger data, with a weekly 

average bias of only 0.053%. 

We received 317 responses from the online survey to assess the availability of GMLH 

data among smartphone users in the US. A total of 33 responses were repeated responses 

recorded from 13 unique IP addresses. These responses were labeled as spam and were not 

included in data analysis. Among the remaining 284 valid responses, GMLH data were 

available for 61% (n = 174) of the sample, not available for 30% (n = 84), 5% (n = 14) were 

not sure whether or not they have GMLH data available, and 4% (n = 12) do not own a 

smartphone or do not use Google Maps on their smartphone. We note that 51% of the sample 

population were between 25-34 years old, which is a larger share for this age range than the 

overall population in the US.   
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3.4 Discussion 

Our results suggest that GMLH data captured well the subject’s spatial movement 

within the week of data collection when data were aggregated to 200m or larger sized grid cells. 

The GMLH data also captured the time the subject spent at different microenvironments, and 

the time the subject spent driving during the week. Utilizing GMLH data, we were also able to 

accurately capture the subject’s time-weighted exposure to ambient PM pollution. Our results 

are consistent with Su et al. [125], who found that a single subject could be accurately identified 

in space-time more than 95% of the time, using GMLH data collected through the WiFi 

network (which is expected to collected less data than when GPS and cellular positioning are 

enabled). Furthermore, results from Ruktanonchai et al. [75], who focused primarily on trip 

mobility, show that GMLH data perform better than traditional travel diary data, particularly 

for capturing long-distance and international trips.  

Additionally, evidence suggests that GMLH data may be available for a considerable 

portion of the population. Results from our online survey using the Amazon Mechanical Turk 

platform showed that 61% of the US survey sample (n = 284) had GMLH data available. This 

percentage is in the range of results obtained by Ruktanonchai at al [75], who surveyed the 

availability of GMLH data among Android smartphone users in five countries (n = 250 per 

country for Japan, Mexico, UK, US and Brazil). They found that the availability of GMLH 

data ranged from 43% to 72%, only 5.6% – 17.5% of users knowingly disabled the service, 

and 24 – 51% of the survey sample were not sure whether they had GMLH data available. For 

a small group of individuals examined further (n = 25), 100% of those who were not sure (n = 

7), were found to have GMLH data available. Therefore, we expect the actual availability of 

GMLH data to be even higher among Android smartphone users that that found here. 

Furthermore, according to market survey data from the Pew Research Center, approximately 
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77% of individuals in the US now own a smartphone. The percentage increases to 94% for 

people between 18-29 years old and 89% for those 30-49 years old [126]. As one of the most 

popular smartphone apps and the most-used navigation app worldwide [108, 109], Google 

Maps is regularly used by billions of people [109]. Therefore, we expect GMLH data to be 

available for a considerable portion of the general population. However, additional studies are 

needed to investigate the availability of GMLH data, particularly among different population 

subgroups. 

In addition to being available for a large portion of the population, limited results 

suggest that GMLH data may be available for an extended time period. In this study, the 

subject’s Google Maps location history dates back to May 2016 when the subject’s smartphone 

was purchased and activated. In two and a half years, the subject’s Google Maps application 

recorded approximately 235,000 location data points, with an average sampling interval of 5.5 

minutes. Ruktanonchai at al [75] also investigated the temporal availability of GMLH data 

among a small group of individuals (n = 25), and found that GMLH data extended back, on 

average, for 556 days. Such an extended temporal data coverage further highlights the 

tremendous potential of GMLH data for improving air pollution exposure estimation in 

retrospective epidemiological studies.  

There are also a few other potential advantages of using GMLH data for exposure 

estimation as compared with traditional approaches in collecting mobility data. First, GMLH 

data are actual mobility data collected from each individual. Traditional data collection 

methods for retrospective health studies (including aggregated travel surveys [22], accounting 

for residential mobility [31-33], or explicit travel simulation [34-36]) provide mobility data 

that either lack detail at the individual level, or are only approximations. Second, collecting 

GMLH data is comparatively easy and low-cost. GMLH data are automatically collected by 
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the Google Maps app when the Location History feature is enabled, which adds minimum 

burden on participants (and thus could potentially increase study participation and compliance). 

There is no need for external devices nor a dedicated app; the former can be costly, and the 

latter would require participants to install additional app(s) on their smartphone that could 

decrease battery life or smartphone performance. The GM app also requires no investigator 

resources for software purchase, usage, maintenance, or server hosting. Third, GMLH data are 

easy to retrieve, and users have full control over their own data. GMLH data can be retrieved 

using Google Takeout with a few mouse clicks and an account log in. Further, users can view 

or partially remove their location data in Google Maps Timeline using an intuitive graphical 

interface. Both Timeline and Takeout are services are provided by Google that have the 

potential to increase participation of subjects who wish to share only a portion of their data. 

For other location data collection methods, such an accommodation would require the in-depth 

involvement of the investigators or would be costly to achieve. Fourth, GMLH data are 

passively collected and are not subject to biases often associated with widely-used location 

data collection approaches, such as the well-recognized recall bias in self-reported activity 

diaries [127]. Finally, GMLH data are collected from devices from which the user’s Google 

Account was used to sign in. Even when the user switches to another device, GMLH data will 

continue to be collected and archived. Overall, this new approach to collect individual mobility 

information should allow us to overcome the current limitations associated with other data 

collection methods, thereby opening a new horizon for better investigation of the health 

impacts of air pollution. 

Despite their promise for retrospective studies, there remain substantial limitations and 

concerns associated with using GMLH data for air pollution exposure and health research. 

Most importantly, location data collected from smartphones contains sensitive information on 
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individual users. Privacy concerns associated with smartphone location data have already 

attracted substantial attention from the media and the general public [128-131]. Therefore, it is 

clear that smartphone location data need to be handled carefully with privacy protection in 

mind. Studies on the public acceptability and legality of using this method are needed before 

launching a full-scale study, and this will aid in to establishing ethical research protocols for 

future research. Research using this data will require appropriate human subjects protections, 

including user consent before accessing or publishing the data. Second, the GMLH data 

presented here are collected from a single individual.  However, there is little evidence to 

suggest that the technologies would not work with other test subjects, though the availability 

and accuracy of location data, and the amount and frequency of data collected by different 

smartphones, is likely to be different depending on user behavior, hardware, and other factors 

including the version of operating system, cellular coverage and signal strength, and Wi-Fi 

availability. Further research studies are also needed to determine whether the conclusions from 

this study can be generalized to a larger population. Third, our results show that the GMLH 

data in this study were not able to capture the subject’s mobility at the highest resolution (100 

m) investigated. However, the accuracy of GMLH data are expected to differ by the hardware 

of the smartphone. Here we used the Nexus 6P, which is an old version Android smartphone 

released in 2015. Further studies are needed to evaluate the spatial accuracy of GMLH data at 

finer resolution before they can be applied to characterize individual mobility at the fine scales 

that can be important for some exposures (e.g. near road exposures).  

Finally, we acknowledge two important limitations to the findings of this study. First, 

due to lack of data, we applied MAIAC retrievals directly in exposure estimation. This is 

appropriate for relative comparisons of exposures, but because AOD is only a proxy of ambient 

PM concentrations, results should not be used as measures of actual exposures. Second, we did 
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not account for indoor/outdoor concentration differences at different microenvironments. 

Although this further limits the interpretation of our results as actual exposures, our purpose 

here was not to obtain accurate exposure estimates for the subject, but rather to demonstrate 

the applicability of GMLH data in exposure estimation. The subject lives in a suburban region 

where ambient concentrations of PM are relatively low, and works in a more urbanized region 

with higher concentration levels of PM. Therefore, the estimated time-weighted exposure is 

generally higher using GMLH and GPS data. Despite these limitations, results from this study 

highlight the tremendous potential of GMLH data to improve exposure estimation for 

retrospective epidemiological studies. Furthermore, understanding individual mobility is not 

only useful for epidemiological studies related to air pollution, but is also useful for many other 

academic research applications such as urban planning [132], transportation modeling [133], 

health intervention [110, 114], the spread of human diseases [134, 135] or computer viruses 

[136], and wireless network optimization [137].  
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CHAPTER FOUR: WORK ON USING CDR DATA FOR EXPOSURE 

ESTIMATION  

4.1 Introduction 

Exposure to air pollution is the second leading cause of non-communicable disease 

worldwide [138]. It is also associated with more than 4 million premature deaths annually [3, 

139] and numerous other negative health consequences [1, 2, 6, 97-99, 140]. An accurate 

estimation of human exposure to air pollution is critical for assessing the potential connections 

between air pollution exposure and certain health outcomes, and for quantifying the health 

impacts of air pollution [100-103]. In many prior air pollution health studies, human exposure 

to air pollution was estimated using concentration data collected or simulated at the location of 

subjects’ home addresses [79, 141], or even at further aggregated zones such as census tract 

[142] or ZIP code level [143]. Detailed spatiotemporal movements of subjects, i.e. human 

mobility, were usually omitted due to lack of data. This home-based exposure (herein referred 

to as HBE), could introduce considerable amount of exposure misclassification errors [15, 17, 

43, 104, 144, 145], which could potentially bias subsequent statistical analyses [106, 107].  

To address this issue, a variety of methods have been adopted, including utilizing travel 

surveys and diaries [26, 104], personal measurements [49, 60], accounting for multiple 

addresses (e.g., residential or work address) or full-day travel data [104, 145] during the 

temporal window of exposure [31, 79, 106, 146], tracking subjects using GPS-enabled surveys 

[72, 144], and employing a variety of modeling tools and techniques to account for mobility 

[17, 22]. Though prior results suggest exposure estimation errors due to the omission of 

mobility could differ among individuals with different mobility patterns [104, 145], the 

direction and magnitude of such errors remains under-investigated. Further, numerous methods 
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have been used in the past to develop pollutant concentration fields for air pollution health 

studies, and the developed fields vary substantially spatially and temporally [147-149]. How 

the choices of method impact exposure estimates when human mobility is considered is still 

largely unknown. 

In this study, by using a publicly available and an anonymized large cell phone location 

dataset [15], we investigated the influence of different levels of human mobility on exposure 

estimates to air pollution. We applied two different methods to investigate how the choices of 

method for developing pollution fields impact exposure estimates when mobility was 

considered. Details on the methods used in this study are presented in the next section, followed 

by the results of the study and a discussion of the potential of the methods and data, as well as 

associated limitations. 

4.2 Materials and Methods 

4.2.1 Data Description and Study Area 

The cell phone location data applied here are Call Detail Record (CDR) data collected 

by mobile network operators. When a network subscriber’s cell phone communicates with a 

nearby cell tower (such as phone call, text messaging, or mobile data request), a suite of 

information is generated and archived for billing purposes [150-152]. The archived information 

contains the identities of cell towers that handle the communication, and the tower locations 

are already known. CDR data contains tremendous amount of digital footprints for virtually all 

subscribers of the network, and it has been extensively used in criminal investigation [153, 

154], the study of human mobility [152, 155, 156], and urban and transportation planning [132, 

157, 158]. 
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In this study, we obtained a publicly available CDR dataset for Shenzhen, China [151]. 

Shenzhen is a major city located in the Guangdong Province (Figure 1). It has an area of 1,991 

km2 and over 12 million residents, making it one of the most populated cities worldwide. The 

original CDR dataset contains over 38 million location records collected from 414,271 

anonymized Subscriber Identification Module (SIM) cards on one typical weekday in October 

2013. We excluded SIM cards with no location data available at night (here defined as after 8 

pm and before 7 am), which is required to infer potential home addresses. The filtered CDR 

dataset applied here has 35.6 million location records for 310,989 unique SIM cards (herein 

referred to as subjects), with an average of approximately 115 records per subject per day. All 

identifiers contained in the original CDR data were removed from this database, leaving only 

a randomized SIM card ID, a time stamp, and latitude and longitude. This information was 

used to construct daily mobility patterns for each subject.  

 

Figure 4-1. The study area of Shenzhen, China. 
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4.2.2 Exposure Estimation 

Five pollutants were selected for this study, including carbon monoxide (CO), nitrogen 

dioxide (NO2), sulfur dioxide (SO2), ground-level ozone (O3), and particulate matter with the 

aerodynamic diameter less than 2.5 µm (PM2.5). All these pollutants are important air pollutants 

regulated in both the United States (National Ambient Air Quality Standards) and China 

(GB3095-2012), and they are considered to pose harmful effects to human health and the 

environment.  

Similar to our previous study [15], we estimated all subjects’ exposures to the five 

chosen pollutants using two methods: a static, home-based exposure (HBE) calculated by 

assuming all subjects stay at their corresponding home locations throughout the entire day; and 

a dynamic, CDR-based exposure (CDRE) calculated by matching detailed CDR location data 

with modeled pollutant concentrations at the corresponding locations. In the static method, 

each subject’s home location was assumed to be their most frequent location at night (between 

8 pm and 7 am), and we used modeled pollutant concentration data at their corresponding home 

location to estimate their exposures. In the dynamic method, the CDRE was estimated by 

arithmetically weighting concentrations at different locations where the subject visited based 

on the time (in hours) the subject spent at each location. If no location data was available for 

one specific hour, we assumed the subject stayed at the same location as in the previous hour. 

If location data was missing for the first hour (12 am – 1 am), the subject was assumed to be at 

their estimated home locations. For hours with multiple location records available, we used 

averaged concentration from all locations in the corresponding hour. We estimated HBE and 

CDRE for each subject separately. 

We applied two approaches to develop spatiotemporal concentration fields of the five 

chosen pollutants: one based on outputs from the Community Multiscale Air Quality (CMAQ) 
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model [159] for the corresponding day, and the other using the inverse distance weighting 

(IDW) method. Detailed information on CMAQ model configurations is available elsewhere 

[160]. To correct for potential model biases and errors, we fused hourly measurement data 

collected from 12 monitoring stations inside the CMAQ modeling domain (Figure 1) into 

CMAQ output by multiplying gridded hourly CMAQ fields with adjustment factors. The 

factors were calculated as the ratio between measured and modeled concentrations at the 

locations of each monitoring station, and then spatially interpolated to the center points of all 

CMAQ grid cells using kriging [147]. For the IDW method, we spatially interpolated hourly 

measurements from all monitoring stations inside the study area using inversed and squared 

distance as the weight. The spatial and temporal resolution of the concentration fields for both 

methods are 3 km and 1-hour, respectively. 

To understand how different degrees of mobility impact exposure estimation, we further 

subdivided all subjects into 10 groups based on the number of unique CMAQ grid cells each 

individual subject visited during the day. The number of grid cells each subject visited in group 

1 through 9 correspond to their respective group number, while all subjects that visited 10 or 

more unique grid cells were collectively assigned into group 10. Subjects in groups with larger 

group numbers are expected to have a high degree of mobility. We estimated HBE and CDRE 

separately for all 10 groups. While metrics, such as distance between home and work location 

[106], have been used in past studies. However, such information is not available in this study. 

In epidemiological studies related to air pollution, subjects are frequently assigned to 

different groups based on their exposure levels (such as quartiles) [31, 161-164]. Statistical 

comparisons are then performed among these groups to investigate whether high exposure 

levels are associated with a higher incidence of certain health outcomes. The statistical analysis 

could be biased or confounded if subjects were misclassified into the wrong exposure group. 
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To explore the impact of including detailed mobility data on exposure misclassification, we 

compared how subjects were assigned to four quartiles based on their CDRE and HBE. We 

define “misclassification” as the assignment of one subject, based on HBE, into a quartile that 

is different from CDRE-based quartile. 

We performed the Wilcoxon rank sum test to examine whether the medians of CDRE 

and HBE exposure estimates are statistically different. We chose this test because the samples 

in this study are not normally distributed. Furthermore, we also calculated the expected bias 

factors to quantify potential biases in relative risk estimates when HBE was used [106, 165]. 

According to the classical error theory, exposure estimated using the home-based method may 

be expressed as: 𝑍 = 𝑋 + 𝐸         (1) 

In equation 1, Z is exposure estimated using HBE; X is the true exposure value; and E 

is the error associated with the corresponding HBE. In this study, we use CDRE to represent X, 

and, based on our previous results, E is correlated with X [15]. Therefore, the following 

equation can be applied to calculate a bias factor [166]: 𝐵 = 𝜎2+𝜑𝜎2+2𝜑+𝜔2         (2) 

In equation 2, B is the calculated bias factor; σ2 is the variance of CDRE of all subjects; 

φ is the covariance between CDRE and errors in exposure estimation (calculated based on 

HBE-CDRE); and ω2 is the variance of the errors in exposure estimation. The factor B 

represents the expected bias in relative risk estimates when the home-based method is applied. 

For example, a B factor of 0.75 suggests that applying the home-based method would lead to 

the relative risk being underestimated by 25%. 
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4.3 Results 

4.3.1 Concentration Fields 

The spatial concentration fields of the five chosen pollutants simulated by the CMAQ 

and IDW methods differ considerably (Figure 4-2), especially for O3, NO2, and PM2.5, where 

the latter two pollutants are known to have substantial primary contributions from 

transportation sectors. The IDW method generally results in smoother fields that lack spatial 

variabilities compared with the CMAQ method. 

 

Figure 4-2. Spatial fields of concentrations of the five chosen pollutants as simulated by the 

CMAQ (a-e) and IDW (f-j) methods. 
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4.3.2 Overall Correlations Between HBE and CDRE 

Mean CMAQ-based HBE and CDRE estimates for all subjects were highly correlated 

with each other (Figure 4-3). The coefficient of determination (R2) ranged from 0.95 (NO2) to 

0.98 (SO2), with the slopes of linear regression close to 1, and intercepts were close to 0 for all 

pollutants. Similar to our previous study [15], we observed many vertically aligned data points, 

suggesting many subjects had identical HBE but their CDRE was considerably different when 

individual mobility was considered. Additionally, a large number of data points were clustered 

near the 1:1 line, suggesting that a substantial portion of the subjects had similar HBE and 

CDRE. 

Similar findings were also observed for IDW-based exposures (Figure 4-3), including 

the clustered data points along the 1:1 line, the high overall correlations between HBE and 

CDRE, and the varying CDRE estimates for many subjects with identical HBE estimates. 

However, the range of estimates for both HBE and CDRE were much smaller for the IDW 

exposures, particularly for NO2, O3 and PM2.5, where the vast majority of data points were 

clustered within small concentration ranges. It’s also worth noting that results of Wilcoxon rank 

sum tests show HBE and CDRE are overall statistically different for all pollutants. 
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Figure 4-3. Linear correlations between HBE and CDRE estimates of the five chosen 

pollutants for all subjects based on CMAQ (a,c,e,g,i) and IDW (b,d,f,h,j) concentration fields. 

Pixels are color coded by sample size. The solid black line shown is the 1:1 line. 

4.3.3 The Impact of Mobility on Exposure Estimates 

We found that the correlations between HBE and CDRE estimates shrink with an 

increased degree of mobility (NO2 presented in Table 4-1, other pollutants in Tables B-1 

through B-4). With increased numbers of grid cells visited (representing greater mobility), 

correlations (R2) between HBE and CDRE showed a generally decreasing trend for all 

pollutants for both CMAQ and IDW fields, with generally increasing root-mean-squared-error 

(RMSE), mean normalized bias (MNB) and mean normalized error (MNE).  

Compared with CMAQ, the decreasing correlations between CDRE and HBE were 
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smaller when IDW fields were used, with considerably smaller RMSE, MNB and MNE. For 

PM2.5 (Table B-4), the RMSE, MNB and MNE for the group with the highest degree of mobility 

(group 10) was only 5.4%, 6.7%, and 4.6%, respectively, of those when CMAQ fields were 

used. The only exception is SO2 (Table B-2), for which the RMSE and MNE changed similarly 

between the CMAQ and IDW methods, though MNB is only 0.9% when the IDW method was 

applied. 

Table 4-1. Comparison between HBE and CDRE estimate of NO2 for all ten groups with 
different mobility. 

  Group number 

  
1 2 3 4 5 6 7 8 9 10 

C
M

A
Q

 

CDRE 

mean 
16.1 16.6 16.7 16.8 16.7 16.3 15.9 15.9 15.6 15.6 

HBE mean 16.1 16.5 16.3 16.2 15.8 15.5 15.2 15.2 15.0 15.1 

aRMSE 0.00 1.16 1.79 2.16 2.50 2.60 2.62 2.74 2.78 3.02 

bMNB 0.0% -0.8% -2.3% -3.8% -5.0% -4.9% -4.3% -4.1% -3.5% -2.8% 

cMNE 0.0% 3.6% 6.2% 8.1% 9.8% 10.5% 10.6% 10.8% 11.2% 11.9% 

dR2 1.00 0.95 0.88 0.83 0.76 0.72 0.70 0.67 0.66 0.64 

ID
W

 

CDRE 

mean 
19.4 19.2 19.3 19.3 19.3 19.2 19.1 19.1 19.0 19.0 

HBE mean 19.4 19.2 19.3 19.3 19.3 19.2 19.1 19.1 19.0 19.0 

aRMSE 0.00 0.23 0.35 0.43 0.49 0.56 0.62 0.62 0.67 0.72 

bMNB 0.0% 0.0% -0.1% -0.1% -0.2% -0.1% 0.0% 0.0% 0.2% 0.4% 

cMNE 0.0% 0.4% 0.8% 1.1% 1.4% 1.7% 1.9% 2.0% 2.3% 2.4% 

dR2 1.00 0.98 0.94 0.92 0.88 0.85 0.81 0.81 0.78 0.75 

Sample size 167570 75313 32177 16350 8354 4617 2700 1562 916 1430 

 

aRMSE: root mean squared error. Calculated as [1𝑁∑ (𝐻𝐵𝐸𝑖 − 𝐶𝐷𝑅𝐸𝑖)2𝑁𝑖=1 ]1/2, where CDRE and 

HBE is the estimated exposures based on CDR and home-based method for the ith subject 

bMNB: mean normalized bias. Calculated as 
1𝑁∑ (𝐻𝐵𝐸𝑖−𝐶𝐷𝑅𝐸𝑖𝐶𝐷𝑅𝐸𝑖 )𝑁𝑖=1  

cMNE: mean normalized error. Calculated as 
1𝑁∑ |𝐻𝐵𝐸𝑖−𝐶𝐷𝑅𝐸𝑖𝐶𝐷𝑅𝐸𝑖 |𝑁𝑖=1  

dR2: coefficient of determination between HBE and CDRE estimates in the corresponding group. 

 

In this dataset, over half (54%) of all subjects stayed in the same 3 km grid cell 
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throughout the entire day, and the majority (94%) of all subjects visited 4 or fewer grid cells 

(Table 4-1). Although subjects that were highly mobile (especially those who visited 6 and 

more grid cells) accounted for a relatively small fraction of the entire population, the sample 

sizes of all groups were still considerable due to the large overall sample population (sample 

size = 916 for the smallest group, group 9). 

With increased mobility, we generally observe more variability in the differences 

between HBE and CDRE estimates at the individual level (Figure 4-4), as indicated by the 

greater spread between the 25th and 75th percentile of exposure difference for groups with more 

grid cells visited. Across all pollutants and the two methods, the 50th percentile of exposure 

differences was consistently close to 0 for all mobility groups.  

 

Figure 4-4. Distributions of differences in exposure estimates between HBE and CDER for 

the five chosen pollutants for both CMAQ and IDW methods. Relative exposure differences 

were calculated as (HBE-CDRE)/CDRE. 

The impacts of mobility on exposure estimates differ by pollutant and by concentration 

fields used. Between CMAQ and IDW methods, the range of variability was considerably 
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smaller when the IDW method was applied, particularly for NO2, O3 and PM2.5. SO2 again was 

the exception where exposure variability was similar between the two methods. Mobility had 

the greatest impact for NO2 and O3. When CMAQ concentration fields were applied, the 

observed differences were more negative (higher CDRE than HBE) for CO, NO2 and PM2.5, 

but were more positive (lower CDRE than HBE) for O3. Such observations are not clearly 

visible when the IDW concentration fields were applied.  

The impacts of mobility on exposures also differed by time of the day (Figure 4-5). The 

differences between CDRE and HBE were overall smaller toward mid-night and during early 

morning for all groups and were generally larger during daytime. The most significant 

differences between HBE and CDRE estimates occurred at different hours for different 

pollutants. When CMAQ concentration fields were applied, CO, NO2 and PM2.5 exhibited the 

largest differences near the afternoon rush hour, though these differences dissipate quickly 

thereafter. For O3, the largest differences occurred around mid-afternoon at 4 pm around when 

the highest ambient O3 concentrations are expected. For SO2, we observed a slight peak in 

differences between HBE and CDRE at around 10 am. Additionally, the observed differences 

were mostly negative during daytime for CO, NO2 and PM2.5, suggesting the home-based 

method resulted in lower exposure estimates, although the differences changed to slightly 

positive toward mid-night. However, the exposure differences are mostly positive for O3, 

indicating higher exposure estimates when the home-based method is used. When CMAQ 

concentration fields were applied, the biggest exposure differences were not observed for the 

group with the highest mobility (group 10), rather it was observed for subjects with moderate 

to high degree of mobility (group 7 for SO2, and group 5 and 6 for other pollutants). 
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Figure 4-5. Temporal variations of exposure differences for all 10 mobility groups between 

HBE and CDRE when CMAQ and IDW concentration field were applied. Exposure 

differences were calculated as HBE-CDRE. 

The temporal variations of exposure differences, however, were mostly not observed 

when IDW concentration fields were applied (Figure 4-5). We still observed generally larger 

differences during daytime (though smaller magnitude), but the consistent patterns of 

fluctuations as seen among CO, NO2 and PM2.5 in Figure 4-5 were not observed when IDW 

fields were applied. The biggest differences were observed at different hours for different 

pollutants and with no consistent directions. Exposure differences generally showed a 

consistent increasing trend with increased mobility.  

We performed Wilcoxon rank sum tests to evaluate the differences between HBE and 

CDRE estimates for each mobility group. The estimated p-value for each mobility group are 

presented in Figure 4-6. When CMAQ concentration fields were applied, most differences in 

HBE and CDRE estimates were statistically significant (p < 0.05) during normal business hours 
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(9 am to 5 pm). The only exception is SO2, for which HBE and CDRE estimates are statistically 

different between 1 pm to 10 pm. When IDW concentration fields were applied, HBE and 

CDRE estimates are still generally statistically different between 10 am to 5 pm, although with 

considerably greater variability. 

  

 

Figure 4-6. Temporal variations of p-values from the Wilcoxon rank sum tests performed for 

9 mobility groups between HBE and CDRE when CMAQ and IDW concentration field were 

applied. Results for group 1 are not shown. Dotted black line is p = 0.05. 

4.3.4 The Impact of Mobility on Exposure Classifications and Effect Estimates 

To investigate potential exposure misclassifications associated with omitting subject 

mobility, we investigated how subjects were assigned to different quartiles based on their HBE 

and CDRE estimates. Results for PM2.5 are presented in Figures 4-7 and 4-8, and results for 

other pollutants are presented in Figures B-1-B-8. 
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We observed that a high percentage of the sample population was potentially 

misclassified into other quartiles, especially for groups with higher degrees of mobility. When 

CMAQ concentration fields were applied for PM2.5 (Figure 4-7), more than half of the sample 

population in the middle quartiles (Q2 and Q3) were classified into different quartiles for 

groups 4 through 10 when individual mobility was omitted. The misclassification is especially 

prominent for the 2nd quartile of group 6 (Figure 4-7), for which 71% of subjects were 

misclassified into other quartiles when the home-based method was used. This finding was also 

observed when IDW fields were used, although the potential misclassifications were less severe, 

but still substantial (Figure 4-8). Similar findings can be observed for both CMAQ and IDW 

concentration fields for all other pollutants (Figures B-1-B-8). For subjects with moderate 

exposure levels (Q2 and Q3), generally more subjects were assigned to quartiles with higher 

exposures when the home-based method was used for CO (Figure B-1, B-5) and NO2 (Figures 

B-2, B-6). This result was less consistent for SO2 (Figures B-3, B-7) and somewhat reversed 

for O3 (Figure B-4, B-8). 

 

Figure 4-7. The directions of potential PM2.5 exposure misclassifications when the home-

based exposure estimation method was used and when CMAQ fields were used. For 

simplification purposes only results for groups 2, 6 and 10 are presented.  
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Figure 4-8. The directions of potential PM2.5 exposure misclassifications when the home-

based exposure estimation method was used and when IDW fields were used. For 

simplification purposes only results for groups 2, 6 and 10 are presented. 

The estimated bias factors for groups with different mobility levels are presented in 

Figure 9. With increased mobility, the estimated bias factors generally decrease regardless of 

concentration fields used. The smaller bias factor, a value of 0.67, is observed for NO2 and for 

group 10.  This value suggests that the estimated relative risk for NO2 will be underestimated 

by 33% when mobility was ignored during exposure estimation. Between CMAQ and IDW, 

the estimated bias factors are considerably different, especially for PM2.5. For group 10, the 

bias is 0.70 when CMAQ fields are used, and 0.94 when IDW fields are used.  
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Figure 4-9. The impact of mobility on bias factors when CMAQ and IDW concentration 

fields were applied. 

4.4 Discussion 

4.4.1 The Impact of Method Choices on Exposure Estimation 

An appropriate characterization of spatial concentration distributions of air pollutants 

is fundamental for air pollution exposure estimation. In this study, we applied two methods to 

develop air pollutant concentration fields: one based on outputs from the CMAQ model, and 

the other based on the IDW interpolation method. Spatial concentration fields developed using 

the two methods were considerably different from each other (Figure 4-2). Consequently, the 

estimated population average exposures (Table 4-1), the distributions of individual exposure 

estimates (Figures 4-3, 4-4), particularly among groups with different degrees of mobility 

(Figures 4-5, 4-6), and the impact of neglecting mobility on exposure estimates (Figures 4-7, 

4-8), was different between the two methods. Such results were expected due to the different 

nature of the two methods. CMAQ is a mechanistic model that calculates ambient 

concentrations of air pollutants based on input emissions and meteorological data. IDW is an 

empirical spatial interpolation method that relies solely on available pollutant concentrations 
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measured at discrete locations [147]. Pollution hotspots that are not captured by monitoring 

networks cannot be captured by the IDW method but may possibly be captured by the CMAQ 

model if appropriate emissions data are supplied. As a result, pollutant concentration fields 

developed using the IDW method were smooth and lacked the spatial concentration 

variabilities as observed in the CMAQ fields.  

When detailed mobility data were included, naturally, the appropriate characterization 

of spatial pollutant variability became even more important. In such applications, purely spatial 

interpolation methods, e.g., IDW, tessellation, or kriging, are also not ideal choices for 

developing pollutant concentration fields for study regions without an extensive monitoring 

network available [147]. These results highlighted the importance of choosing an appropriate 

method for developing pollutant concentration fields for exposure estimation purposes, 

particularly when detailed mobility data were included. Subsequently, we will focus our 

discussion on results as obtained using the CMAQ concentration fields.  

4.4.2 The Impact of Mobility on Exposure Estimation 

At the population level, we did not find substantial differences between HBE and CDRE 

exposures, consistent with our previous study [15] and other studies [42, 44, 63, 165, 167]. The 

results suggested that the home-based method for exposure estimation is still informative when 

only average exposure estimates for a sufficiently large population are of interest [168]. 

We found that the impact of mobility on exposure estimates differed by time of day and 

by pollutants. Generally, the differences between HBE and CDRE were the smallest during 

early morning and midnight, a time when many subjects are expected to be at home. For traffic-

related pollutants including CO, NO2, and PM2.5, we found that the home-based method likely 

underestimated subject exposures during daytime, especially near afternoon rush hour, when 
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CMAQ concentration fields were used (Figure 4-5). Meanwhile, subject exposures to ozone 

may be over-estimated during daytime using HBE, with the highest error observed at around 4 

pm, near the time when the highest ambient ozone concentrations are expected (Figure 4-5). 

The temporal differences in impacts of mobility on exposure have also been noted previously 

[167]. Interestingly, during peak hours, the most significant differences between HBE and 

CDRE were not observed for the group with the highest degree of mobility, rather the largest 

differences were observed on subjects with moderate to high degree of mobility (groups 5-7). 

Our results showed that the impact of mobility on exposure could be substantial at the 

individual level, particularly for subjects that are highly mobile. Applying the home-based 

method yielded similar estimates for those who live close to where they travel throughout the 

day, although their actual exposure could be drastically different when individual mobility is 

considered. With an increased degree of mobility, we found that the correlations between HBE 

and CDRE decreased monotonically (Table 4-2), suggesting that the home-based method 

captured less exposure variability among individuals with increased mobility [31]. Therefore, 

we expect larger exposure misclassification errors for subjects that are highly mobile, which is 

supported by our analysis on the potential exposure misclassifications based on HBE and 

CDRE (Figures 4-7, 4-8). It is also worth mentioning again that 71% of subjects (Figure 4-7) 

in the second quartile of group 6 were misclassified into different quartiles using HBE. These 

results suggest that the impact of traffic-related pollutants on human health may be larger than 

previously documented, and these findings may have significant implications for studies that 

rely on air pollution exposure estimation. 

4.4.3 Limitations 

There are inherent limitations associated with this study. First, as with many CDR 
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databases, the location data used in this study are not the exact location of the corresponding 

cell phone user, rather, they are the locations of the cell phone tower that handled the wireless 

communication, which are most likely the nearest tower to the cell phone user. However, we 

do not expect this limitation to substantially impact the findings for two reasons. 1) The study 

area is one of the most populated cities in the world with a well-known, densely distributed cell 

tower network. The CDR dataset contains over 1,000 locations of cell phone towers spread out 

across the study area. 2) We applied 3-km resolution concentration fields in exposure 

estimation. The retrieved concentration values are identical within one 3-km grid cell, and one 

cell phone user in Shenzhen is highly likely to have at least one cell tower within 3 km (see 

https://www.opencellid.org for more information on cell tower coverage in Shenzhen, China). 

Therefore, we do not expect the findings to change considerably even when the exact locations 

of all cell phone users are applied. 

Second, CDR data comprise an “event-triggered” database. Location data are only 

collected when a cell phone communicates with nearby towers. Hence, CDR are temporally 

sparse in nature [150], and may not accurately capture the full spectrum of individual 

movements, especially for individuals who only use cell phones occasionally. Hence, 

exposures estimated using CDR may deviate from those estimated using a more complete 

location dataset such as those collected using dedicated applications (e.g. Dynamica [169]), or 

other momentarily collected data such as Google Maps Location History data [170]. However, 

in this study, our purpose is to compare the differences between exposure estimates with and 

without detailed mobility data applied. Given the large sample population in all 10 groups with 

different degrees of mobility, we do not expect the results to change even with an ideally 

complete mobility database.  

https://www.opencellid.org/
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Third, despite the relatively large population (N = 310,989) and number of location 

records (35.6 million), the CDR data used here are a randomly sampled subset from all cell 

phone users within the entire city of Shenzhen for one typical workday within a typical week. 

Therefore, the spatiotemporal mobility patterns as represented in this CDR database represent 

the unique characteristics of the study region, such as the spatial distributions of population 

and land use types. However, the ambient concentrations of common air pollutants are expected 

to share similar spatial and temporal distribution patterns across the world for urban areas [171], 

thus we also do not expect our conclusions to change if the same study were to be performed 

in another city.  

4.5 Conclusion 

In this study, we applied a large cell phone location database consisting of over 35 

million location records from 310,989 subjects to investigate the impact of individual mobility 

on estimated ambient exposures for five chosen pollutants (CO, NO2, SO2, O3, and PM2.5). We 

further divided our sample population into ten groups with different degrees of mobility and 

compared exposures estimates for each group. We also applied and compared two methods to 

develop concentration fields for exposure estimation, including one based on output from the 

CMAQ model that was fused with observational data, and the other based on the spatial 

interpolation of observations using the inverse distance weighting method.   

We found no considerable differences between population-averaged exposures as 

estimated with and without detailed mobility data. Thus, the traditional home-based exposure 

estimation method is still informative when only averaged exposures on a large population are 

needed. We observed generally increased variabilities in exposure estimates at the individual 

level with increased mobility. Exposure misclassification errors are also likely to increase with 
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higher degrees of mobility and could be substantial for groups of individuals that are highly 

mobile. We also examined the temporal variability of the differences between exposures as 

estimated with and without mobility data. We found the home-based method will likely under-

estimate exposure to traffic-related pollutants (CO, NO2 and PM2.5) during day-time 

particularly during afternoon rush-hour, but also will likely over-estimate exposures to ground 

level ozone during mid-afternoon near the time when ambient ozone concentrations are 

expected to be the highest. These results suggest that mobility could be important for air 

pollution health studies for which obtaining accurate exposure estimates at individual level are 

critical, such as case-control studies or studies with a small sample size. 

We found that the concentration fields developed using the IDW method failed to 

capture pollution hotspot as can be seen from the CMAQ fields. Therefore, the IDW method is 

not suitable for air pollution exposure estimations when detailed mobility data are considered, 

if a dense measurement network is not available. 

Our findings demonstrated the tremendous potentials of CDR data in air pollution 

exposure estimation for a large population. Despite the privacy concerns associated with using 

CDR data, our results have significant implications for future air pollution health studies in 

which subject mobility is important. 
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CHAPTER FIVE: WORK ON LOW-COST SENSORS 

5.1 Introduction 

Epidemiological studies in air pollution field reveal associations between adverse 

impacts of air pollutants on human health and human exposures to air pollutants [1-3]. Subject’s 

exposures including mobility are calculated by combining two elements: location data of the 

places they visited and ambient concentrations distribution of air pollutants coving those places. 

Accurate ambient concentrations are essential for human exposure estimation. Traditionally, 

Federal Equivalent Method (FEM) and Federal Reference Method (FRM) are used to measure 

ambient concentrations [172], but they are huge, expensive and sparse [173]. In high-traffic 

areas, these kinds of monitors are even more rare. Also, ambient concentration distribution can 

vary considerably at a fine spatial level [172]. Therefore, these heavy instruments (FEM and 

FRM) are no longer able to meet our requirements. Nowadays, advanced technology is bringing 

low-cost sensors to researchers’ attention. Low-cost sensors can be distributed on a large area 

and can highly improve the resolution level of ambient concentration. Low-cost sensors have 

huge potential in air pollution field and there are lots of studies using low-cost sensors to 

monitor air quality [174-176]. The low-cost and portable sensors can also be used to measure 

personal exposures to air pollutants by subjects carrying them for daily activities [57]. This 

approach can take both people’s mobility and indoor/outdoor factor into consideration. 

Obviously, sensors are not as accurate as FRMs and FEMs. Often, manufacturer’s 

specifications of its low-cost sensors do not provide sufficient data for the desired utilization 

[174]. Also, it is difficult to combine outcomes from different studies or apply outcomes on 

another situation that differ from the original test [174]. Therefore, testing sensors for each trail 

becomes necessary.  
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Before deploying sensors or assigning sensors to subjects, we need to know the 

reliability and accuracy of the sensors that we choose. In this paper, we tested the reliability of 

two brands of commercially available sensors, one is ‘PurpleAir’, the other one is ‘Dylos’.  

5.2 Material and Methods 

We bought three PurpleAir ( model: PurpleAir PA-II) sensors and three Dylos (model: 

Dylos DC 1700) sensors. PurpleAir uses two identical Plantower PMS5003 laser particle 

counter and adopts a complex algorithm to calculate mass concentration which is the final 

output. PurpleAir collects both concentration and particle counts and has two channels, while 

Dylos collects particle counts only (larger than 0.5 µm (small bin) and larger than 2.5 µm (large 

bin)) and has one channel. The number of PM2.5 particles from Dylos were calculated by 

subtracting the number in small bin by the number in large bin. Figure 1. is the pictures of 

deployment of the sensors and the shelter. 

 

Figure 5-1. Pictures of sensor deployment (left: internal layout of the shelter; right: external 

appearance of the shelter). 
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The South Coast Air Quality Management District (SCAQMD) publicized a sensor 

evaluation report of Dylos DC1700-PM. The report proved that Dylos DC1700-PM has high 

data recovery (~ 100%) and correlated moderately with two FEMs (beta attenuation monitor, 

GRIMM and BAM) on PM2.5 in the field with 0.66 < R2 < 0.68 and 0.51 < R2 < 0.55, 

respectively [177]. The South Coast Air Quality Management District (SCAQMD) also 

publicized a sensor evaluation report of PurpleAir PA-II and proved that PurpleAir PA-II has a 

high data recovery (~ 95%). PurpleAir PA-II correlated moderately with two FEMs (beta 

attenuation monitor, GRIMM and BAM) on PM2.5 in the field with R2 > 0.93 and R2 > 0.86, 

respectively [177]. Therefore, we didn’t test the performance of the sensors with FRMs or 

FEMs. We only test the accuracy and reliability of the sensors. 

We installed 3 PurpleAir sensors (P1, P2 and P3) and 3 Dylos sensors (D1, D2 and D3), 

at the same place: a monitoring site, Site 3002 (Latitude 27.965556, Longitude -82.230278), 

Sydney in Hillsborough, Florida from February 2018 to April 2018. The location is shown in 

figure.2. PurpleAir sensors were operated for 62 days and recorded one measurement per 20s 

(around 280,000 measurements in total). Dylos sensors were operated for 40 days and recorded 

one measurement per 60s (around 57,600 measurements in total). 

For PurpleAir, we test the correlations between two channels in each sensor and 

correlations between three sensors. For Dylos, we test the correlations between three sensors 

and the correlations between three sensors by averaging measurements based on different 

aggregated time span, from 5 minutes to 24 hours. 
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Figure 5-2. Location of Sydney site which is marked as L057-3002 at upright corner [178]. 

5.3 Results and Discussion 

5.3.1 PurpleAir Sensor 

Figure 1 represents the correlations between two channels in one PurpleAir sensor. The 

time span between two adjacent points is 20 seconds. Figure 1 shows that channel 1 and channel 

2 correlate well with each other in every sensor (P1, P2 and P3). All R squares are above 0.985 

and slopes are around 1 while intercepts are around 0. In these three sensors (P1, P2 and P3), 

each channel is proved to be reliable. The use of an average value of two channels would be 

more accurate than the use of only one value. Two channels also pose the advantage that if one 

channel is out of order, the other channel’s values are still usable. 
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Figure 5-3. Correlations between two channels in each PurpleAir sensor (a: PurpleAir 1; b: 

PurpleAir 2; c: PurpleAir 3). 

For PurpleAir, the average values of two channels of P1, P2 and P3 correlate well with 

each other by time span of 1 minute as shown in figure 2. All R squares are above 0.985 and 

slopes are around 1 while intercepts are around 0. Since we didn’t calibrate them before use, 

the high  R square values proved that P1, P2 and P3 are trustful. When a number of PurpleAir 

sensors will be deployed, it is possible that they don’t need calibration before use, which highly 

reduce the workload of researchers. In the study of Wang et al., they found moderate correlation 

between individual sensors (Plantower PMS 7003) with 0.67<R2<0.92 in outdoor situations 

[179]. In my study, all R squares are higher than theirs, above 0.98 in outdoor situations. The 

reason might be the difference of concentration values. In Kan Wang’s study, average 

concentration is about 30 µg/m3, while in my study average concentration is about 10 µg/m3. 

We installed all our sensors at the monitoring site of Sydney in Hillsborough, Florida 

in order to compare the measurements of our sensor with FEM instrument of Florida 

Department of Environmental Protection. However, due to some unknown reasons, the PM2.5 

values of FEM that we download from their website have very low correlations with either of 

our sensors. As our sensors are commercially trustful, it is hard for us to say whether the FEM 
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instrument output unreliable data or our sensors. Therefore, we didn’t discuss the precision of 

our sensors compared to FEM instrument at the site. 

 

 

Figure 5-4. Correlations between each PurpleAir sensor. 

In all, PurpleAir sensor is proved to be a reliable PM2.5 detector. In the study of Gupta 

et al., PurpleAir sensors overestimate PM2.5 concentrations consistently compared to FEM 

monitor in field situation. The relative difference is almost 0 when concentration is less than 

10 μg/m3 .The average relative bias is 35% when PM2.5 values are between 15 and 50 μg/m3 

[180]. In Kelly et al. study, Plantower sensors (PMS 1003/3003) also overestimate ambient 

concentrations and when ambient concentrations exceed 40 μg/m3, sensors’ response become 

non-linear [173]. Kan Wang tested PMS 7003 and found that the sensor didn’t need to be 

calibrated when relative humidity (RH) is less than 60% [179]. With all RH values less than 

60% in our study, sensors may not need calibration. Even though without calibration the 

absolute accurate measurements cannot be obtained from PurpleAir sensor, the relative 

accurate measurements can be still useful, such as improving the satellite‐derived PM2.5 

estimates [180], or inform the public [181]. PurpleAir sensor does not pose a screen on it, as 

shown in figure 1. The measured number can’t be seen immediately, which limit its usage by 

communities or citizens who would like to use it for personal awareness of PM2.5 levels. 
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5.3.2 Dylos Sensor 

For Dylos, D1 doesn’t correlate well with D2 and D3, but D2 and D3 correlate well as 

shown in figure 3. R square of D1 with D2 and D3 are 0.78 and 0.76, respectively. However, 

R square between D2 and D3 is 0.95. All the slopes are around 1. Intercept of D2 VS D3 is 

5959.7, which is relatively small. Obviously, D1 is out of order, because it doesn’t correlate 

well with neither D2 nor D3. But we can tell that D2 and D3 work well, because they correlate 

well with each other. D1 has many very small values, which leads D1 not correlate well with 

D2 and D3. But the reason keeps unknown. From our test, if some researchers want to use 

Dylos, it is highly possible that there would be some sensors that are not reliable. So that we 

do not recommend using Dylos sensors when attributing a number of sensors into field. Or we 

would highly recommend researchers to test every sensor before deploying them and eliminate 

the unreliable ones. For instance, in the study of Steinle et al., each volunteer carried a backpack 

which had Dylos DC1700 and a GPS device inside to measure personal exposures [57]. Since 

they used 17 Dylos sensors and each sensor was used independently, according to our research 

validation of each sensor is necessary. 

 

 

Figure 5-5. Correlations between each Dylos sensor at time span of 1 minute. 
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As the time span in Dylos is one minute and time setting of three different Dylos sensors 

may be not synchronous, time span of 1 minute might not be meaningful. Instead we aggregate 

time span into 5minute, 10minute, 15minute, 30minute, 60minute (1hour), 6hour, 12hour and 

24hour (1day) and calculate the average value in each time span. And then we investigate the 

correlation between our three sensors. In figure 4, the results show that apart from figures 

aggregating by 24hour, others all have similar R square, ranging from 0.732 to 0.796. Whereas, 

R square of 24hour is 0.488. From 5min to 12h, ME and RMSE are decreasing (table 1). That 

means the bigger the time span is, the aggregated the data is. According to EPA, precision can 

be improved if data are averaged by aggregated time span [182]. But in our study, we didn’t 

see this phenomenon. 

 

 

Figure 5-6. Correlations between D1 and D2 by aggregating time in different time spans 

(a:5minute; b:10minute; c:15minute; d:30minute; e:60minute; f:6hour; g:12hour; h:24hour). 

In figure 5, we test the correlation between D2 and D3 in different aggregated time 

spans and the results show that apart from 24hour, all the R squares are similar, ranging from 
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0.929 to 0.952. Also from 5min to 12h, ME and RMSE are decreasing (see table 1). That means 

the bigger the time span is, the aggregated the data is. Also, for D2 and D2, who correlate well 

with each other, aggregated time span didn’t increase their correlation level. 

Higher resolution (such as 5 minute) shows similar R square with lower resolution (such 

as 12 hour), so we can use 5 min to aggregate time for Dylos. There are some occasions when 

high resolution is strongly needed for use. For instance, a sensor is installed near pollution 

source, such as the chimney of a power plant or beside traffics. Or if a sensor is banded on a 

car to test PM2.5 concentrations along the route, as the car moves very fast high temporal 

resolution is needed. Another application is to bond the sensor to an unmanned aerial vehicles 

(UAV) to detect pollutant concentrations [174]. Or if we want to calculate dynamic exposure 

of a certain group of human beings, such as taxi drivers or truck drivers [183], as they move 

quickly and cover a wide range of area, the high temporal resolution of concentration variation 

is called for. 

 

 

Figure 5-7. Correlations between D2 and D3 by aggregating time in different time span. 
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Table 5-1. Statistical data of correlations between D1, D2 and D3 by aggregating time in 
different time spans. 

 D1 VS D2 D2 VS D3 D1 VS D3 

 R2 MEa RMSEb R2 MEa RMSEb R2 MEa RMSEb 

5min 0.7902 14399 53388 0.9511 11653 24234 0.7962 21032 57473 

10min 0.7919 13961 52632 0.9514 11525 23966 0.7700 20849 56819 

15min 0.7962 13668 51930 0.9520 11437 23744 0.7737 20662 56236 

30min 0.7935 13337 51164 0.9520 11297 23333 0.7707 20379 55456 

1h 0.7950 13052 49466 0.9505 11261 23048 0.7718 20184 53806 

6h 0.7614 12513 43818 0.9291 11302 22801 0.7286 19838 48921 

12h 0.7316 13444 40148 0.9439 10664 17476 0.7203 19978 43687 

24h 0.4880 15676 44796 0.8941 10815 15945 0.4971 22758 48048 
aME: mean error, calculated as 1N∑ |xi − yi|Ni=1 , where N is the number of one dataset (D1, D2 
or D3), xi is one value in one dataset (such as D1), yi is the corresponding value in the other 
dataset (such as D2); 
bRMSE: Root Mean Square Error, calculated as √∑ (xi−yi)2Ni=1 N , where N is the number of one 
dataset (D1, D2 or D3), xi is one value in one dataset (such as D1), yi is the corresponding 
value in the other dataset (such as D2); 

 

Even though we didn’t validate Dylos sensors with FEM instruments, there are a 

number of studies proving that Dylos sensors correlate well with FEM instruments [184-186]. 

It is reasonable to employ our sensors without calibration. After all, in many research or project 

situations researchers are not able to calibrate their sensors. What’s more, each Dylos DC1700 

device weights 1.2lb [187]. The light weight allows it to be carried easily. Such as in the study 

of Steinle et al., volunteers carried a backpack with Dylos sensor in daily activities [57]. Dylos 

DC1700 can also be used to quantify second-hand smoke (SHS) levels at home and Semple et 

al. proved this approach was valid [188]. Even though Dylos sensor has a screen, the data 

cannot be viewed in real time, which would not influence daily behaviors of subjects who are 

supposed to carry them. 
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5.4 Limitations and Future Work 

One of the limitations of my study is lack of calibration with FEM, which is our original 

plan. But due to unknown reasons, the data derived from FEM are not valid. If we could 

compare our sensors’ data with FEM’s data, we could better understand our sensors’ accuracy 

and could obtain an equation to calibrate sensor’s measurements against FEM’s readings. After 

calibration, sensors can be used in other places to measure PM2.5 concentrations in outdoor 

environments. Sensors could also be given to subjects in epidemiological studies to 

continuously measure personal PM2.5 concentrations and then subjects’ exposure could be 

calculated easily. But subjects’ microenvironments are often indoor environments. The 

accuracy of sensors would be different from outdoor environments [179]. It is better to find out 

the factor that made D1 not work, such as RH, because D1 is not supposed to perform poorly. 

After calibration, we could also fasten a sensor on vehicles to determine the air pollutant 

concentrations along the road. 
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CHAPTER SIX: SUMMARY AND CONCLUSION 

My study showcased two approaches to obtain people’s mobile data. One is using 

Google Maps application data, while the other one is using CDR data. My study also explored 

sensors’ relative accuracy and reliability, which laid the foundation for the future usage of low-

cost sensors for exposure estimation. In my first approach, I compared GMLH data with GPS 

data in four aspects: 1) spatial movement of the subject; 2) the time the subject spent at different 

microenvironments; 3) the time the subject spent driving during the one-week time period; 4) 

subject’s time-weighted exposures to ambient particulate matter using AOD measurements. In 

my second approach, I used CDR data to investigate the impact of individual mobility on 

exposures for five chosen pollutants (CO, NO2, SO2, O3, and PM2.5). I divided our sample 

population into ten groups according to their degrees of mobility and compared exposures of 

each groups. I also compared two methods developing concentration fields for exposure 

estimation: CMAQ and IDW.  

In my first approach, GMLH data was proved to capture well the subject’s spatial 

mobility during the study period with resolution of 200m * 200m or larger. Compared with 

GPS logger date, GMLH data also successfully captured the time the subject spent at different 

microenvironments and the time the subject spent on driving. Also, with GMLH data we were 

able to accurately estimate the subject’s time-weighted exposure to ambient PM pollution. 

In my second approach, I found no considerable differences between exposures 

estimated with and without detailed mobility data at population level, which indicated the 

traditional home-based exposure estimation method is still meaningful when population level 

is considered. We also observed that at individual level difference between HBE and CDRE 

increased with mobility increased. It was also found that HBE would likely under-estimate 
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exposure to traffic-related pollutants (CO, NO2 and PM2.5) during afternoon rush-hour, but 

over-estimate exposures to ozone during mid-afternoon when ambient ozone concentrations 

were expected to be the highest. IDW method was found to fail to capture detailed 

concentration variations compared with CMAQ fields. Therefore, the IDW method is not 

suitable for air pollution exposure estimations when detailed mobility data are considered. My 

study demonstrated the tremendous potentials of CDR data in air pollution exposure estimation 

for a large population and significant implications for future air pollution health studies in 

which subject mobility is important. 

In my sensor study, I found that two channels of PurpleAir correlated well with each 

other in each sensor. And the three PurpleAir correlate well with each other. Among three Dylos 

sensors, D1 is proved to be out of order, but D2 and D3 correlate well with each other. After 

comparison, 5  

minute time span works for Dylos sensors. According to our results, we highly 

recommend test each Dylos sensor before use, while no need for PurpleAir sensors. 
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APPENDIX A: ADDITIONAL CONTENTS FOR CHAPTER THREE 
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A.1 Microenvironment 

In this study, microenvironment is defined as a fixed activity location that is not part of 

a travel route where the subject visited during the week. A total of 10 microenvironments were 

considered in this study, including the subject’s home and work location, two grocery stores, 

three clinics, one postal office, one tourist destination, and an air quality monitoring station.  

Figure A-1 provides satellite images with their rectangles for three microenvironments. 

The areas of the 10 rectangles ranged from 0.01 km2 (a grocery store) to 3.15 km2 (the subject’s 

work location).  

 

 

Figure A-1. Satellite images of three microenvironments and corresponding rectangles (a is a 

post office, b and c are grocery stores).  

A.2 Location Data 

Over the course of 1 week, the subject’s Google Maps application collected 2,224 

location records. The sampling interval ranged from less than 1 second to 69 minutes, with an 

average interval of 4.5 minutes. The GPS logger recorded 32,314 location records (with “drift” 

data removed). The collected location data from Google Maps and the GPS logger near a 

roadway intersection inside the study domain are presented in Figure A-2.  
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Figure A-2. The collected location data from Google Maps and the GPS logger near a 

roadway intersection inside the study domain. 

We visually and qualitatively examined the spatial accuracy of both Google Maps and 

GPS logger data by overlaying the location data with reference roadway network data 

published by the Census Bureau. The GPS logger data were found to perform well in outdoor 

environments. The recorded outdoor location coordinates were accurate and had spatial errors 

generally less than 10 meters [189]. In indoor environments, the recorder did not perform as 

well due to poor GPS signal reception, and consequently the recorded location coordinates 

were less accurate, with spatial errors generally less than 100 meters. Since the recorder was 

configured to record every 10 seconds, the recorded location data contained many details. The 

spatial accuracy of Android location data, on the other hand, was less accurate, with spatial 

errors frequently exceeding 100 meters [190, 191]. Two data points were found to have spatial 

errors of over 2 km and 3 km, respectively, and both of the data points were collected while the 

subject was driving on a highway.  
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A.3 Evaluation of Google Maps Data 

Using location data collected from the GPS logger as ground truth, we found that the 

Google Maps location data captured well the spatial mobility of the subject within the one-

week study period, particularly in locations where the subject spent the vast majority of his 

time (the 10 microenvironments). However, Google Maps location data did not perform as well 

in grid cells in which the subject spent 10 minutes or less (as determined by GPS logger data), 

as indicated by the deteriorated R2 values (Figure A-3). The R2 value between the time the 

subject spent at different grid cells every day as estimated using GMLH and GPS data (Figure 

A-3 a-d) decreases from near perfect (as shown in the main manuscript) to 0.27 (1 km) and 

0.16 (500 m) for grid cells where the subject spend 10 minutes or less, with minimum 

correlation between GMLH and GPS data at 200 m and 100 m resolution. These results suggest 

that GMLH data are less useful for characterizing individual mobility at fine scales for 

locations the subject only spent small amount of time.  

 

 

Figure A-3. Comparison of the estimated daily total (a-d) and weekly total (e-h) time the 

subject spent in each grid cell based on GPS versus Google Maps location data, for grid cells 
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in which the subject spent 10 minutes or less during the total time represented (as determined 

by GPS logger data). Resolutions represented are 1 km (a,e), 500 m (b,f), 200 m (c,g) and 

100 m (d,h).  
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APPENDIX B: ADDITIONAL CONTENTS FOR CHAPTER FOUR 
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B.1 Correlations Between HBE and CDRE 

Tables B-1 through B-4 provide correlations between HBE and CDRE estimates for 

CO, SO2, O3 and PM2.5, exposure as estimated for 10 groups of subjects with increased degrees 

of mobility, when both CMAQ and IDW concentration fields were applied. Generally, the R2 

between HBE and CDRE showed a near monotonic decreasing trend for all pollutants for both 

CMAQ and IDW fields, with generally increasing mean absolute differences and standard 

deviations.  

Table B-1. Comparison between HBE and CDRE estimates of CO for all ten groups with 
different mobility. 

  Group number 

  1 2 3 4 5 6 7 8 9 10 

C
M

A
Q

 

CDRE mean 1149 1160 1165 1171 1167 1155 1141 1140 1132 1131 

HBE mean 1149 1156 1153 1150 1139 1127 1117 1115 1111 1112 

aRMSE 0.0 29.8 49.9 61.4 72.5 75.9 76.6 81.3 83.3 89.6 

bMNB 0.0% -0.3% -1.0% -1.7% -2.3% -2.3% -2.0% -2.0% -1.7% -1.6% 

cMNE 0.0% 1.1% 2.2% 3.1% 3.9% 4.2% 4.2% 4.5% 4.5% 4.8% 

dR2 1.00 0.97 0.92 0.88 0.82 0.80 0.78 0.76 0.74 0.73 

ID
W

 

CDRE mean 1079 1063 1067 1076 1076 1069 1061 1058 1051 1048 

HBE mean 1079 1062 1064 1070 1068 1060 1054 1051 1046 1045 

aRMSE 0.0 13.7 23.6 28.9 33.9 37.6 39.8 39.6 43.6 46.1 

bMNB 0.0% -0.1% -0.3% -0.5% -0.7% -0.8% -0.7% -0.7% -0.6% -0.4% 

cMNE 0.0% 0.4% 0.8% 1.2% 1.7% 1.9% 2.1% 2.2% 2.4% 2.5% 

dR2 1.00 0.99 0.97 0.96 0.94 0.92 0.91 0.91 0.89 0.88 

aRMSE: root mean squared error. Calculated as [1𝑁∑ (𝐻𝐵𝐸𝑖 − 𝐶𝐷𝑅𝐸𝑖)2𝑁𝑖=1 ]1/2, where CDRE and HBE is the 

estimated exposures based on CDR and home-based method for the ith subject;  

bMNB: mean normalized bias. Calculated as 
1𝑁∑ (𝐻𝐵𝐸𝑖−𝐶𝐷𝑅𝐸𝑖𝐶𝐷𝑅𝐸𝑖 )𝑁𝑖=1  

cMNE: mean normalized error. Calculated as 
1𝑁∑ |𝐻𝐵𝐸𝑖−𝐶𝐷𝑅𝐸𝑖𝐶𝐷𝑅𝐸𝑖 |𝑁𝑖=1  

dR2: coefficient of determination between HBE and CDRE estimates in the corresponding group. 

 

Table B-2. Comparison between HBE and CDRE estimates of SO2 for all ten groups with 
different mobility. 



80 

 

  Group number 

  1 2 3 4 5 6 7 8 9 10 

C
M

A
Q

 

CDRE 

mean 
5.47 5.64 5.67 5.64 5.65 5.71 5.67 5.74 5.76 5.82 

HBE mean 5.47 5.63 5.63 5.57 5.56 5.61 5.58 5.64 5.66 5.73 

aRMSE 0.00 0.15 0.22 0.25 0.28 0.31 0.34 0.33 0.33 0.37 

bMNB 
0.00

% 

-

0.29% 

-

0.77% 

-

1.33% 

-

1.83% 

-

1.97% 

-

1.93% 

-

1.98% 

-

1.83% 

-

1.93% 

cMNE 
0.00

% 
1.06% 1.98% 2.65% 3.23% 3.54% 3.63% 3.69% 3.66% 4.10% 

dR2 1.00 0.98 0.97 0.96 0.95 0.95 0.93 0.94 0.94 0.94 

ID
W

 

CDRE 

mean 
6.96 7.10 7.07 7.01 7.01 7.07 7.13 7.15 7.21 7.23 

HBE mean 6.96 7.10 7.09 7.04 7.05 7.11 7.16 7.18 7.23 7.23 

aRMSE 0.00 0.10 0.17 0.20 0.24 0.27 0.29 0.28 0.32 0.34 

bMNB 
0.00

% 
0.06% 0.27% 0.44% 0.61% 0.61% 0.43% 0.41% 0.20% 

-

0.02% 

cMNE 
0.00

% 
0.47% 1.02% 1.48% 1.97% 2.28% 2.52% 2.63% 2.92% 3.10% 

dR2 1.00 0.99 0.98 0.96 0.95 0.94 0.92 0.93 0.91 0.90 

aRMSE: root mean squared error. Calculated as [1𝑁∑ (𝐻𝐵𝐸𝑖 − 𝐶𝐷𝑅𝐸𝑖)2𝑁𝑖=1 ]1/2, where CDRE and HBE is the 

estimated exposures based on CDR and home-based method for the ith subject 

bMNB: mean normalized bias. Calculated as 
1𝑁∑ (𝐻𝐵𝐸𝑖−𝐶𝐷𝑅𝐸𝑖𝐶𝐷𝑅𝐸𝑖 )𝑁𝑖=1  

cMNE: mean normalized error. Calculated as 
1𝑁∑ |𝐻𝐵𝐸𝑖−𝐶𝐷𝑅𝐸𝑖𝐶𝐷𝑅𝐸𝑖 |𝑁𝑖=1  

dR2: coefficient of determination between HBE and CDRE estimates in the corresponding group. 

 

Table B-3. Comparison between HBE and CDRE estimates of O3 for all ten groups with 
different mobility. 

  Group number 

  1 2 3 4 5 6 7 8 9 10 

C
M

A
Q

 

CDRE mean 59.8 59.6 58.9 58.2 58.3 59.1 60.2 60.2 60.9 61.0 

HBE mean 59.8 59.9 60.0 60.0 60.8 61.7 62.5 62.3 62.7 62.6 

aRMSE 0.00 2.51 4.40 5.60 6.61 6.93 6.80 7.19 7.14 7.67 

bMNB 0.00% 0.64% 2.20% 3.78% 5.18% 5.31% 4.65% 4.55% 3.93% 3.50% 

cMNE 0.00% 1.71% 4.15% 6.29% 8.16% 8.62% 8.15% 8.63% 8.30% 8.45% 

dR2 1.00 0.96 0.89 0.83 0.76 0.73 0.72 0.70 0.69 0.66 

ID
W

 

CDRE mean 48.3 48.5 48.5 48.4 48.4 48.5 48.7 48.7 48.8 48.9 

HBE mean 48.3 48.5 48.5 48.4 48.5 48.6 48.7 48.7 48.8 48.8 

aRMSE 0.00 0.27 0.44 0.54 0.63 0.72 0.78 0.80 0.85 0.92 

bMNB 0.00% 0.01% 0.07% 0.12% 0.17% 0.14% 0.06% 0.04% -0.06% -0.17% 

cMNE 0.00% 0.19% 0.40% 0.58% 0.76% 0.90% 1.00% 1.06% 1.17% 1.23% 



81 

 

dR2 1.00 0.98 0.95 0.92 0.88 0.85 0.81 0.81 0.77 0.75 

aRMSE: root mean squared error. Calculated as [1𝑁∑ (𝐻𝐵𝐸𝑖 − 𝐶𝐷𝑅𝐸𝑖)2𝑁𝑖=1 ]1/2, where CDRE and HBE is the 

estimated exposures based on CDR and home-based method for the ith subject 

bMNB: mean normalized bias. Calculated as 
1𝑁∑ (𝐻𝐵𝐸𝑖−𝐶𝐷𝑅𝐸𝑖𝐶𝐷𝑅𝐸𝑖 )𝑁𝑖=1  

cMNE: mean normalized error. Calculated as 
1𝑁∑ |𝐻𝐵𝐸𝑖−𝐶𝐷𝑅𝐸𝑖𝐶𝐷𝑅𝐸𝑖 |𝑁𝑖=1  

dR2: coefficient of determination between HBE and CDRE estimates in the corresponding group. 

 

 

Table B-4. Comparison between HBE and CDRE estimates of PM2.5 for all ten groups with 
different mobility. 

  Group number 

  1 2 3 4 5 6 7 8 9 10 

C
M

A
Q

 

CDRE 

mean 
64.9 66.0 66.2 66.2 66.0 65.6 65.1 65.3 65.1 65.3 

HBE mean 64.9 65.9 65.6 65.2 64.7 64.3 63.9 64.0 64.1 64.2 

aRMSE 0.00 1.44 2.35 2.89 3.29 3.35 3.36 3.59 3.53 3.80 

bMNB 
0.00

% 

-

0.28% 

-

0.90% 

-

1.52% 

-

2.03% 

-

2.06% 

-

1.92% 

-

1.94% 

-

1.62% 

-

1.54% 

cMNE 
0.00

% 
0.89% 1.79% 2.49% 3.08% 3.18% 3.10% 3.20% 3.08% 3.23% 

dR2 1.00 0.96 0.89 0.83 0.78 0.75 0.73 0.69 0.70 0.68 

ID
W

 

CDRE 

mean 
72.1 72.1 72.1 72.2 72.2 72.1 72.1 72.1 72.1 72.1 

HBE mean 72.1 72.1 72.1 72.1 72.1 72.0 72.0 72.0 72.0 72.0 

aRMSE 0.00 0.06 0.11 0.13 0.16 0.18 0.20 0.20 0.22 0.21 

bMNB 
0.00

% 

-

0.01% 

-

0.03% 

-

0.06% 

-

0.08% 

-

0.09% 

-

0.10% 

-

0.10% 

-

0.11% 

-

0.10% 

cMNE 
0.00

% 
0.03% 0.06% 0.08% 0.11% 0.13% 0.14% 0.15% 0.15% 0.15% 

dR2 1.00 0.99 0.97 0.96 0.95 0.93 0.91 0.92 0.90 0.92 

aRMSE: root mean squared error. Calculated as [1𝑁∑ (𝐻𝐵𝐸𝑖 − 𝐶𝐷𝑅𝐸𝑖)2𝑁𝑖=1 ]1/2, where CDRE and HBE is the 

estimated exposures based on CDR and home-based method for the ith subject 

bMNB: mean normalized bias. Calculated as 
1𝑁∑ (𝐻𝐵𝐸𝑖−𝐶𝐷𝑅𝐸𝑖𝐶𝐷𝑅𝐸𝑖 )𝑁𝑖=1  

cMNE: mean normalized error. Calculated as 
1𝑁∑ |𝐻𝐵𝐸𝑖−𝐶𝐷𝑅𝐸𝑖𝐶𝐷𝑅𝐸𝑖 |𝑁𝑖=1  

dR2: coefficient of determination between HBE and CDRE estimates in the corresponding group. 

B.2 The Impact of Mobility on Exposure Classifications 

Figures B-1 through B-8 provide differences in exposure classifications (as quartiles) 

when subject mobility was omitted in the exposure estimation (i.e., when the home-based 
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method was used) for the 5 chosen pollutants and when both CMAQ and IDW fields were used. 

For simplification purposes only results for groups 2, 6 and 10 are shown. Here quartile 1 

includes the lowest exposures, and quartile 4 includes the highest exposures. 

 

Figure B-1. The directions of potential CO exposure misclassifications when the home-based 

exposure estimation method was used and when CMAQ fields were used.  

 

 

Figure B-2. The directions of potential NO2 exposure misclassifications when the home-

based exposure estimation method was used and when CMAQ fields were used. 
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Figure B-3. The directions of potential SO2 exposure misclassifications when the home-based 

exposure estimation method was used and when CMAQ fields were used. 

 

Figure B-4. The directions of potential O3 exposure misclassifications when the home-based 

exposure estimation method was used and when CMAQ fields were used. 
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Figure B-5. The directions of potential CO exposure misclassifications when the home-based 

exposure estimation method was used and when IDW fields were used. 

 

Figure B-6. The directions of potential NO2 exposure misclassifications when the home-

based exposure estimation method was used and when IDW fields were used. 
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Figure B-7. The directions of potential SO2 exposure misclassifications when the home-based 

exposure estimation method was used and when IDW fields were used. 

 

Figure B-8. The directions of potential O3 exposure misclassifications when the home-based 

exposure estimation method was used and when IDW fields were used. 

B.3 Temporal Variations of Differences Between HBE and CDRE 

Figures B-9 through B-12 provides diurnal variations of the average relative differences 

and average absolute relative differences between HBE and CDRE for the 5 chosen pollutants 

when CMAQ and IDW fields were applied.  
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Figure B-9. Temporal variations of average relative differences between HBE and CDRE 

when CMAQ concentration field were used. The relative differences were estimated as 

(HBE-CDRE)/CDRE. 
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Figure B-10. Temporal variations of average relative differences between HBE and CDRE 

when IDW concentration field were used. The relative differences were estimated as (HBE-

CDRE)/CDRE. 

 

Figure B-11. Temporal variations of average absolute relative differences between HBE and 

CDRE when IDW concentration field were used. The relative differences were estimated as 

(HBE-CDRE)/CDRE. 
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Figure B-12. Temporal variations of average absolute relative differences between HBE and 

CDRE when IDW concentration field were used. The relative differences were estimated as 

(HBE-CDRE)/CDRE. 

B.4 Potential Exposure Misclassifications When Mobility Were Neglected 

Tables B-5 through B-8 provides summed percentages of sample populations that were 

classified into different quartiles when their subject mobility were neglected, i.e. when the home-based 

exposure estimation method was used, for the 5 chosen pollutants and when both CMAQ and IDW 

fields were used. 

Table B-5. Percentage of sample populations in each quartile that were classified into different quartiles 
when subject mobility was neglected in exposure estimation. Results shown are for CO. 

  Grp 2 Grp 3 Grp 4 Grp 5 Grp 6 Grp 7 Grp 8 Grp 9 Grp 10 

CMAQ 

Q1 (0-25%) 7.0 11 14 13 15 17 27 24 26 

Q2 (25-50%) 23 23 36 40 40 40 53 54 54 

Q3 (50-75%) 7.9 21 32 61 57 47 54 50 56 

Q4 (75-100%) 4.4 10 13 10 15 23 26 28 30 

IDW Q1 (0-25%) 5.7 12 8 15 14 13 15 22 32 
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Q2 (25-50%) 10 19 20 35 32 25 32 40 31 

Q3 (50-75%) 11 15 24 20 46 40 37 34 32 

Q4 (75-100%) 1.6 6.9 6.6 17 8.0 14 17 21 23 

Table B-6. Percentage of sample populations in each quartile that were classified into different 
quartiles when subject mobility was neglected in exposure estimation. Results shown are for NO2. 

  Grp 2 Grp 3 Grp 4 Grp 5 Grp 6 Grp 7 Grp 8 Grp 9 Grp 10 

CMAQ 

Q1 (0-25%) 9.3 17 17 19 30 25 24 28 31 

Q2 (25-50%) 22 37 46 58 50 54 53 52 54 

Q3 (50-75%) 16 29 49 50 61 52 56 59 50 

Q4 (75-100%) 4.7 10 19 27 30 32 35 37 37 

IDW 

Q1 (0-25%) 7.2 7.7 15 20 22 22 20 31 30 

Q2 (25-50%) 10 21 22 38 38 40 43 51 52 

Q3 (50-75%) 12 13 26 23 50 46 42 35 35 

Q4 (75-100%) 2.0 7.5 9.4 21 14 20 25 27 29 

Table B-7. Percentage of sample populations in each quartile that were classified into different 
quartiles when subject mobility was neglected in exposure estimation. Results shown are for SO2. 

  Grp 2 Grp 3 Grp 4 Grp 5 Grp 6 Grp 7 Grp 8 Grp 9 Grp 10 

CMAQ 

Q1 (0-25%) 18 23 40 41 40 41 38 31 34 

Q2 (25-50%) 16 38 41 54 43 55 48 36 45 

Q3 (50-75%) 45 46 42 40 46 40 26 30 28 

Q4 (75-100%) 2.9 5.3 6.3 7.8 5.3 6.8 10 7.9 8.1 

IDW 

Q1 (0-25%) 8.6 18 14 21 26 32 31 32 23 

Q2 (25-50%) 20 19 32 25 38 28 32 28 37 

Q3 (50-75%) 5.5 9.5 16 22 25 29 29 24 27 

Q4 (75-100%) 0.090 4.7 0.9 5.7 5.2 4.7 13 15 21 

Table B-8. Percentage of sample populations in each quartile that were classified into different 
quartiles when subject mobility was neglected in exposure estimation. Results shown are for O3. 

  Grp 2 Grp 3 Grp 4 Grp 5 Grp 6 Grp 7 Grp 8 Grp 9 Grp 10 

CMAQ 

Q1 (0-25%) 4.8 14 18 25 33 38 36 31 36 

Q2 (25-50%) 15 23 40 47 47 37 40 50 47 

Q3 (50-75%) 12 18 26 40 30 34 44 39 43 

Q4 (75-100%) 4.1 6.3 8.3 9.2 14 13 14 17 13 

IDW 

Q1 (0-25%) 9.4 20 16 24 31 36 35 38 28 

Q2 (25-50%) 21 22 34 30 45 35 36 37 46 

Q3 (50-75%) 16 14 23 33 34 39 45 43 45 
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Q4 (75-100%) 0.49 7.4 2.1 6.9 14 14 18 26 32 
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