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ABSTRACT 

As one of the most important Active Traffic Management strategies, Adaptive Traffic 

Signal Control (ATSC) helps improve traffic operation of signalized arterials and urban roads by 

adjusting the signal timing to accommodate real-time traffic conditions. Recently, with the rapid 

development of artificial intelligence, many researchers have employed deep reinforcement 

learning (DRL) algorithms to develop ATSCs. However, most of them are not practice-ready. 

The reasons are two-fold: first, they are not developed based on real-world traffic dynamics and 

most of them require the complete information of the entire traffic system. Second, their impact 

on traffic safety is always a concern by researchers and practitioners but remains unclear. 

Aiming at making the DRL-based ATSC more implementable, existing traffic detection systems 

on arterials were reviewed and investigated to provide high-quality data feeds to ATSCs. 

Specifically, a machine-learning frameworks were developed to improve the quality of and 

pedestrian and bicyclist’s count data. Then, to evaluate the effectiveness of DRL-based ATSC on 

the real-world traffic dynamics, a decentralized network-level ATSC using multi-agent DRL was 

developed and evaluated in a simulated real-world network. The evaluation results confirmed 

that the proposed ATSC outperforms the actuated traffic signals in the field in terms of travel 

time reduction. To address the potential safety issue of DRL based ATSC, an ATSC algorithm 

optimizing simultaneously both traffic efficiency and safety was proposed based on multi-

objective DRL. The developed ATSC was tested in a simulated real-world intersection and it 

successfully improved traffic safety without deteriorating efficiency. In conclusion, the proposed 

ATSCs are capable of effectively controlling real-world traffic and benefiting both traffic 

efficiency and safety. 
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CHAPTER 1: INTRODUCTION 

1.1 Background 

Growing economy and population result in increasing travel demand that often goes 

beyond the capacity of the current traffic system. This leads to inevitable traffic congestion. 

Rather than building more roadways that might incur even more demand, a cost-effective 

approach to address this issue is improving the efficiency of traffic management, such as traffic 

signal control. Even frequently re-timed, the traditional pre-timed signal controllers, whose 

timing are determined by historical traffic information, might not be able to handle the dynamic 

traffic demand. To overcome these limitations, many adaptive traffic signal control systems 

(ATSC) were developed, such as Split Cycle Offset Optimization Technique (SCOOT), Sydney 

Coordinated Adaptive Traffic System (SCATS) and Real-time Hierarchical Optimizing 

Distributed Effective System (RHODES). Those ATSCs use traffic detectors to acquire current 

traffic flow information, especially the turning movement counts, then feed them into models to 

forecast near-future traffic flow profiles and finally adjust the signal timing according to the 

prediction. These systems were seen as successful in multiple deployments around the world 

over the years. 

The aforementioned ATSCs are fully based on “human-crafted” traffic flow features such 

as traffic volume, queue length, delay or travel time; “human-crafted” traffic flow models; and 

“human-crafted” signal control elements such as cycle length, offset, splits, and etc. Admittedly, 

all those “human-crafted” features are valuable human knowledge. Yet the complex, discrete and 

heterogeneous demand and behavior of the vehicles might be overlooked by the model-based 
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decision making and aggregated input data. Especially with the rapid development of connected 

vehicle (CV) technology, vehicles could provide their real-time information to signal controllers 

via vehicle-to-infrastructure (V2I) communication. Therefore, the vehicle-based data will be 

largely available in the foreseeable future. To fully utilize the high-dimensional-high-complexity 

information, many researchers proposed ATSCs based on one of the artificial intelligence (AI) 

algorithms, reinforcement learning (RL), to let the “machines” learn how to control traffic 

signals ((Samah El-Tantawy et al., 2014). Although, most of the traffic flow models and most of 

the signal control parameters are no longer needed in such ATSCs, unfortunately, due to the 

limited computational power of conventional RL algorithms, most of the studies still need to 

aggregate the discrete traffic information in some degree to generate the input of the RL 

algorithms.  

Recently, due to the rapid development of deep learning, the so-called deep 

reinforcement learning (DRL) algorithms incorporated with deep neural networks (DNNs) shows 

its ability to handle high-dimensional-high-complexity-disaggregated input data. Hence, ATSCs 

based on DRL are able to get rid of “human-crafted” traffic information and high-resolution 

traffic data such as the position, speed or even the origin and destination of individual vehicles 

could directly be used. Nevertheless, with the help of better hardware and the improved 

computational power of DRL, ATSCs based on DRL have the ability to achieve the centralized 

control of the roadway network that conventional-RL-based ATSCs have never accomplished. 

The flexibility of the objective definition in DRL algorithm also enlightens the possibility to 

develop a multi-objective ATSCs, which could pro-actively improve the traffic operation and 

safety at the same time.  
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Several exploratory studies in the last three years (L. Li et al., 2016a; Lin et al., 2018; 

Van Der Pol & Oliehoek, 2016) shows the bright future of ATSCs based on DRL. However, 

most of the existing DRL-based ATSCs are not practice-ready. The reasons are two-fold. First, 

most of them did not prove their capability in controlling real-world traffic. They were 

developed and evaluated in simplified traffic networks with hypothetical traffic demands. 

Moreover, most of them require the complete information of the entire traffic system, such as the 

location, and/or the speed, and/or even the origin-destinations of all the vehicles within the 

network. This is not feasible in practice. Therefore, a DRL-based ATSC that is developed based 

on real-world traffic dynamics is desired. As the ATSC should use data from traffic detection 

systems and/or connected and automated vehicles (CAV) as input rather than assuming the 

complete information is known, necessary knowledge about traffic data is also desired. 

Second, the impact of DRL-based ATSCs on traffic safety is a concern by  researchers 

and practitioners but remains unclear (Wei et al., 2019). As the DRL algorithms provide a 

flexible definition of its objectives, an ideal solution might be developing an ATSC that is able to 

simultaneously optimize traffic safety and efficiency. 

1.2 Research Objectives 

In order to fill the research gap mentioned in the previous section, the primary research 

objective of this dissertation is making DRL-based ATSC more implementable. The detailed 

objectives are listed as follows: 
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• Understanding the types of traffic data on arterials that can be utilized as the data feeds of 

DRL-based ATSC  

• Developing algorithms to improve existing traffic data collection systems that could be 

used as the data feed of ATSC 

• Developing a network-level ATSC algorithm based on decentralized Multi-Agent 

Reinforcement Learning (MARL) based on limited traffic information and real-world 

traffic dynamics 

• Conducting an exploratory study on a multi-objective ATSC aiming at optimizing traffic 

safety and efficiency simultaneously in real-time 

The first objective has been achieved in Chapter 3 by the following sub-tasks: 

a) Reviewing traffic data collection systems used by the state-of-the-practice ATSCs or 

other types of traffic control systems 

b) Identifying other data collection systems that could serve as the potential data feeds of 

ATSCs 

The seconds objective has been achieved in Chapter 4 by the following sub-tasks: 

c) Assessing the feasibility of using Bluetooth Low Energy (BLE) to obtain traffic counts 

in terms of the detection rate and range of BLE scanners.  

d) Developing an algorithm based on BLE for estimating the counts of pedestrians and 

bicyclists  

The third objective has been achieved in Chapter 5 by the following sub-tasks: 
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e) Formulating the traffic control problem into a multi-agent deep reinforcement learning 

setting 

f) Developing the microscopic traffic simulation environment based on real-world traffic 

data 

g) Training the DRL-based ATSC algorithm in the simulation and evaluate its 

performance by the emulated field traffic control system 

The fourth objective has been achieved in Chapter 6 by the following sub-tasks: 

h) Formulating the traffic control problem into a multi-objective deep reinforcement 

learning setting 

i) Estimate the real-time crash model based on the historical traffic and crash data 

j) Developing the microscopic traffic simulation environment based on real-world traffic 

data 

k) Training the Multi-objective-reinforcement-learning-based ATSC algorithm in the 

simulation and evaluate its performance by the emulated field traffic control system 

and DRL-based ATSC developed in Chapter 5 

l) Analyzing the control policies of the developed safety-oriented ATSC 

1.3 Dissertation Structure 

The rest of the thesis is organized as follow: Chapter 2 provides a comprehensive review 

of state-of-art RL algorithms and early studies developing ATSCs based on DRL; Chapter 3 

reviews and evaluates traffic data collection systems that can serve as the data feeds of ATSCs; 
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Chapter 4 elaborates two machine learning frameworks that aim at improving vehicular and non-

motorized traffic data; Chapter 5 presents an exploratory study of a network-level signal control 

algorithm using deep reinforcement learning in a decentralized approach; Chapter 6 introduces a 

multi-objective ATSC that is able to improve traffic efficiency and safety simultaneously. 

Finally, Chapter 7 summarizes the overall dissertation and presents the implications of the work. 
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CHAPTER 2: LITERATURE REVIEW 

2.1 Deep Reinforcement Learning 

Deep Reinforcement Learning is a family of Reinforcement learning (RL) algorithms 

incorporated with Deep Neural Networks (DNNs).  RL (Sutton & Barto, 2018) is a goal-oriented 

machine learning algorithm. It learns to achieve a complex goal over many discrete steps by 

interacting with the environment.   

In the context of a control problem, in every discrete control step, an RL control agent 

(e.g. signal controller) iteratively observes the state s of the environment (e.g. roadway network), 

takes an action a (e.g. directly change the signal phase or set the green duration of the signal 

phase) accordingly based on its underlying behavior policy π, receives a feedback reinforce 

reward r (e.g. waiting time, delay or travel time) for the action taken, which will be accumulated 

to its long-run goal (minimizing delay, decreasing travel time or minimizing stops), from the 

environment, and transits to the next state 𝑠′  according to the environment dynamics and state 

transition probability P. The RL agent optimizes the policy, which is the mapping from the set of 

the all possible states S to the set of all possible actions A, by learning from the accumulated 

discounted long-term reward, with a discount factor γ, of applying different action sequences. 

During the learning process, it keeps adjusting its policy by maximizing the expectation of the 

long-term reward until it converges to the optimal policy 𝜋∗. Figure 1 gives an illustration of the 

setting of the reinforcement learning problem.  
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Figure 1 The Illustration of the Reinforcement Learning Problem Setting (Sutton & Barto, 2018) 

 

The value function of the RL problem is the estimation of the long-term reward of each 

state or state-action pair. The state value is the expected long term discounted reward for 

following policy π from state s, which is defined as: 

𝑽𝝅(𝒔) = 𝑬[𝑹𝒕|𝒔𝒕 = 𝒔]                                          (1) 

and it decomposes into the Bellman equation: 

𝑽𝝅(𝒔) = ∑ 𝝅(𝒂|𝒔) ∑ 𝑷(𝒔′, 𝒓|𝒔, 𝒂)[𝒓 + 𝜸𝑽𝝅(𝒔′)]𝒔′,𝒓𝒂                             (2) 

The Q value, or action value, refers to the expected long-term discounted reward for 

selecting action a and in state s and then following the policy π, which is defined as: 

𝑸𝝅(𝒔, 𝒂) = 𝑬[𝑹𝒕|𝒔𝒕 = 𝒔, 𝒂𝒕 = 𝒂]                                           (3) 
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and it also decomposes into the Bellman equation: 

𝑸𝝅(𝒔, 𝒂) = ∑ 𝑷(𝒔′, 𝒓|𝒔, 𝒂)[𝒓 + 𝜸 ∑ 𝝅(𝒂′|𝒔′)𝑸𝝅(𝒔′, 𝒂′)𝒂′ ]𝒔′,𝒓                          (4) 

If there are multiple objectives needs to be optimized, multi-objective reinforcement 

learning (MORL) should be used. In the context of MORL, multiple goals are optimized 

simultaneously. In MORL, each objective has its associated reward and value function. Thus, Q-

values are expressed as Q vector 𝑴𝑸𝝅(𝒔, 𝒂): 

𝑴𝑸𝝅(𝒔, 𝒂) = [𝑸𝝅𝟏 (𝒔, 𝐚), 𝑸𝝅𝟐 (𝒔, 𝐚), … , 𝑸𝝅𝒏(𝒔, 𝐚) ]𝑻                               (5) 

 Intuitively, the optimal Q vector is defined as 

𝑴𝑸∗(𝒔, 𝒂) = 𝐦𝐚𝐱𝒑 𝑴𝑸𝝅(𝒔, 𝐚)                                            (6) 

The “maximum operation” of a vector could have different definitions. Generally, there 

are two ways for MORLs handling the “maximum operation”: single-policy MORL approach 

and multi-policy MORL approach (C. Liu et al., 2015). Single policy approaches aim to find the 

best single policy representing the preferences or the trade-off among the objectives. Several 

different algorithms are developed to determine and express the preferences or trade-off, such as 

linear/non-linear weighted sum approach, W-learning, AHP approach, ranking approach, and 

geometric approach, etc. Multi-policy MORL aims at approximating the Pareto front by a set of 

policies. The Pareto front is a set of Pareto non-dominated solutions. If any objective of solution 

could not be improved without sacrificing at least one other objective, the solution is a Pareto 

non-dominated solution. 
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The most well-known algorithm family to learn the value functions is temporal difference 

(TD) learning. TD-learning and its extension TD(λ)-Learning (Sutton, 1988) learn the state value 

function 𝑉𝜋(𝑠), while SARSA (Singh & Sutton, 1996) and Q-Learning (Watkins & Dayan, 1992) 

learn the action value, or Q value. Among those algorithms, Q-Learning is the most common RL 

algorithm utilized in Adaptive Signal Control. 

Q-learning is an off-policy algorithm, which means its policy being followed (the 

actioned chosen) is independent with its learning process. In Q-learning, the agent chooses the 

action 𝑎 ∈ 𝐴 with the highest Q-value (greedy action) based on a matrix called Q-table. The Q-

table is a mapping table of all discrete state value 𝑠 ∈ 𝑆 to all discrete action value 𝑎 ∈ 𝐴. At 

every discrete step, Q-learning improves its policy greedily. The adjusted Q-value is learned by 

𝑸𝝅(𝒔, 𝒂) = ∑ 𝑷(𝒔′, 𝒓|𝒔, 𝒂)[𝒓 + 𝜸 ∑ 𝝅(𝒂′|𝒔′)𝑸𝝅(𝒔′, 𝒂′)𝒂′ ]𝒔′,𝒓                        (7) 

where  𝑄𝑘 is the new Q-value after the adjustment at learning step k; 𝑄𝑘−1 is the current Q-value 

stored in the Q-table; s, a, r are current state, action, and reward at step k; s’, a’ are the next state 

and action; α is the learning rate controlling the adjusting size.  

Conventional tabular form Q-learning requires a Q-table to store Q-values for all (s, a) 

pairs. However, when state set S (e.g. detailed representation of traffic states) is growing, the Q-

table becomes extremely large, which makes the learning process intractable (the curse of 

dimensionality). As a consequence, function approximation 𝑄(𝑠, 𝑎;  𝜃) (where 𝜃 is the hyper- 

parameters of the approximator) of the Q-table was introduced. Function approximation aims to 

generalize a “function” from examples to estimate the mapping. It is usually a concept of 

supervised learning. Linear function approximation is a popular choice before the age of deep 
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learning. However, the neural network was utilized dated back a long time ago (Bertsekas & 

Tsitsiklis, 1996). 

Since the Q-values are estimated by a function, the learning process is no longer directly 

updating Q-value but updating the hype-parameters 𝜃. However, diverge and instability might 

occur when the neural network approximators are applied, especially for high-dimensional 

continuous state-action spaces (Tsitsiklis & Roy, 1997). It is because of the highly correlated 

consecutive states inputs and frequently changing policy due to slight changes in Q values.   

Recently, Deep Q Network (DQN), one of the earliest DRL algorithm using deep neural 

networks (DNNs) as the functional approximator, shows its capability to deal with the large 

state-action space in RL problems (Mnih et al., 2015; Mousavi et al., 2018). Besides, it tackles 

the aforementioned instability and diverging issue by experience replay (LIN, 1993) and target 

network. Experience replay breaks the temporal correlation of states in the consecutive learning 

process. In every training step, the agent stores its ‘experience’ (𝑠, 𝑎, 𝑟, 𝑠′) into the experience 

replay memory 𝜃 and then randomly samples a minibatch from it to update the 𝜃. In this way, the 

strong correlation between consecutive states is eliminated. 

The target network also helps to mitigate the correlation issue. A target network is a DNN 

which has the same structure with the primary network (or value network) yet updates less 

frequently. It is used to generate target-Q-value to update the hype-parameters 𝜃 of the primary 

network: 

𝑱 = ∑ 𝑷(𝒔)(𝑸𝒕𝒂𝒓𝒈𝒆𝒕(𝒔, 𝒂;  𝜽−) − 𝑸(𝒔, 𝒂;  𝜽))𝒔                                    (8) 
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where 𝑃(𝑠) denotes the probability of the state s in the minibatch; 𝑄 and 𝑄𝑡𝑎𝑟𝑔𝑒𝑡  are Q-values 

estimated by primary network and target network respectively. 𝐽 is used as a loss function to 

update 𝜃 in backpropagation optimization. Every certain steps, the hyper-parameters of target 

network 𝜃− is updated by the hyper-parameters of primary network 𝜃. As a result, the loss 

function of the current training step is evaluated by an earlier snapshot, decorrelate the target and 

primary Q-values/state and increase the stability of the learning algorithm. 

Double DQN (van Hasselt et al., 2015) is an improved version of DQN. In standard 

DQN, the selection of the greedy action and the evaluation of the Q-value are using the same 

action value (Q-value), which might lead to overoptimistic value estimates. van Hasselt et al. 

(van Hasselt et al., 2015) proposed to evaluate the greedy action by the online network but to 

estimate its value by the target network. This is achieved by modifying the calculation of the 

target Q value: 

𝑸𝒕𝒂𝒓𝒈𝒆𝒕(𝒔, 𝒂) = 𝒓 + 𝛄𝑸 (𝒔′, 𝐚𝐫𝐠𝐦𝐚𝐱𝒂′ (𝑸( 𝒔′, 𝒂′; 𝜽)); 𝜽−)                                   (9) 

Double DQN is proved to be able to find better policies than standard DQN. 

To get a faster converge, Wang et al. (Z. Wang et al., 2015) proposed the dueling DQN. 

The dueling DQN estimate the state value function and associated advantage function and then 

confine them to get the Q-value: 

𝑸(𝒔, 𝒂) = 𝑽(𝒔;  𝜶) + [𝑨(𝒔, 𝒂;  𝜷) − 𝟏|𝑨| ∑ 𝑨(𝒔, 𝒂′; 𝜷)𝒂′ ]                                   (10) 
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where 𝑉(𝑠;  𝛼) is value function which indicates the expected overall rewards of a specific state 

s; 𝐴(, 𝑎;  𝛽)is the state-dependent advantage of a specific action 𝑎 over other actions and it is 

then normalized by the average value of all actions 𝑎′ ∈ 𝐴. The performance of dueling DQN is 

shown better than the standard DQN especially when there exist several similar-valued actions.  

However, one of the most serious problems of DQN algorithms is that it is hard for them 

to handle the case when the action set A (e.g. centralized network signal control) is extremely 

large or even continues. Since in continuous action spaces, finding the greedy policy requires 

optimization of a at each discrete timestamp. The optimization is too slow with large and 

unconstrained approximators like DNN (Lillicrap et al., 2015). There is another family of RL 

algorithms called policy-based methods is able to tackle this issue. Different from the value-

based TD learning, policy-based methods optimized the function approximation of policy 𝜋(𝑎|𝑠; 𝜃) directly. The hyper-parameter 𝜃 of the approximation function is updated by gradient 

ascent on the expected long-term reward. REINFORCE (Williams, 1992) is a popular policy-

based algorithm using policy gradient. However, the conventional policy gradient is relatively 

more stable than Q-learning but less efficient. Thus, the actor-critic algorithm (Sutton & Barto, 

2018) takes advantage of both policy-based and value-based algorithm. The “critic” learns the 

hyper-parameters of action-value function while the “actor” learns the hyper-parameters of 

policy function. Asynchronous advantage actor-critic (Mnih et al., 2016) is a recently developed 

popular actor-critic algorithm based on DNN.  

Another popular DRL based on actor-critic is Deep Deterministic Policy Gradient (DDPG) 

(Lillicrap et al., 2015). For the continuous action space, the so-called Deterministic Policy 

Gradient comes up with a deterministic policy rather than a stochastic policy as conventional 
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actor-critic algorithms, which is more efficient. Besides, with the help actor-critic structure, the 

DDPG avoids the optimization of a at each discrete timestamp. In addition, similar to DQN, 

DDPQ employs the experience reply and a “soft” updating target similar to the target network in 

DQN. The tests of the DDPG algorithm on some benchmark environments showed that DDPG 

can solve problems 20 times faster than DQN. 

However, DDPG is still not the perfect solution to a continuous action space problem. 

There is a potential issue of all actor-critic-like algorithms is that learning rate of the actor and 

critic needs to be tuned very carefully to avoid inconsistent learning process. There are a few 

studies aiming at improving of DQN to make it suitable for continuous action space (Gu et al., 

2016). 

Deep reinforcement learning is a still active research domain. In terms of its application in 

the ATSC and ramp control, the DQN-like algorithms are suitable for ATSC of an isolated 

intersection and it could be applied decentralized network control. Whereas, actor-critic-like 

algorithms could be applied to adaptive ramp metering which might require a continuous ramp 

metering rate. 

2.2 ATSC Based on Conventional Reinforcement Learning 

The research use of RL as the back algorithm of ATSC dates back to the mid-1990s. As 

the best of the authors’ knowledge, Thorpe and Anderson (Thorpe & Anderson, 1996) firstly 

developed a traffic signal control algorithm using SARSA. Although its state, action and reward 

formulation are still crude, the evaluation shows that it outperforms the fixed timing plan by 29% 
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when it is implemented in a simulate 4×4 grid network. During the past two decades, a lot of 

researchers developed ATSCs based on different kinds of RL algorithms without the help of 

DNNs, which is classified as ATSC based on “conventional” reinforcement learning. A review 

of previous studies is given below. 

2.2.1 Problem Formulation 

Although, there are several studies developed and tested their ATSCs on an isolated 

intersection (Abdulhai et al., 2003; Arel et al., 2010; S El-Tantawy & Abdulhai, 2010; Shoufeng 

et al., 2008), surprisingly, the majority of the previous works developed ATSC for a roadway 

network. In addition, all the proposed ATSCs for network control are formulated as distributed 

multi-agent systems, which means each agent (signal controller) is autonomous and responsible 

for controlling only a signal intersection.  The centralized system, which one signal controller 

controls the whole roadway network, is not preferred as it is computational extremely expensive 

to deal with such a large state-action space. Therefore, the Multi-agent Reinforcement Learning 

(MARL), which consists of a number of RL agents, is employed. In the context of MARL, each 

agent observes a partial state, makes independent actions to maximum its local rewards but 

learns and acts in the same environment. 

However, the coordination between the autonomous agents is always a problem 

especially sometimes the coordination between signal controllers is needed. Some studies tried to 

coordinate the neighboring agents by sharing information such as observed state (Balaji et al., 

2010; S El-Tantawy & Abdulhai, 2010; Houli et al., 2010; Wiering, 2000; Wu et al., 2012) and 

reward or Q-value (Salkham et al., 2008; Vidhate & Kulkarni, 2017). Others (Monireh Abdoos et 
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al., 2014; Tianshu Chu et al., 2016; Jin & Ma, 2018; Kuyer et al., 2008; Xu et al., 2013) define a 

hierarchical learning structure that the lower level is the MARL and the upper level governs the 

communications between agents.  

2.2.2 State Representation 

The definition of state s will highly influence how the traffic control agent observes the 

environment. Traffic flow parameters are widely used in ATSCs by Conventional RL, such as: 

flow or vehicle counts (Balaji et al., 2010; Camponogara & Kraus, 2003; de Oliveira et al., 2006; 

Salkham et al., 2008; Thorpe & Anderson, 1996; Wiering, 2000), occupancy (de Oliveira et al., 

2006; Jin & Ma, 2015; Salkham et al., 2008; Thorpe & Anderson, 1996), and speed (Kuyer et al., 

2008). Current traffic signal status like current phase and/or the elapsed green time are also 

considered by some research (Aslani et al., 2017; S El-Tantawy & Abdulhai, 2012; Jin & Ma, 

2015; LA & Bhatnagar, 2011; Lemos et al., 2018; Richter et al., 2007). Some measures of 

effectiveness (MOEs) are also employed such as queue length (M Abdoos et al., 2011; Abdulhai 

et al., 2003; Balaji et al., 2010; S El-Tantawy & Abdulhai, 2012, 2010; LA & Bhatnagar, 2011; 

Lemos et al., 2018; Vidhate & Kulkarni, 2017), the number of queued (waiting) vehicles and/or 

its waiting time (Aslani et al., 2017; Bazzan et al., 2010; Heinen et al., 2011; Vidhate & 

Kulkarni, 2017) and delay (Arel et al., 2010; S El-Tantawy & Abdulhai, 2010; Shoufeng et al., 

2008). Interestingly, the early works tend to depend more on traffic flow parameters while 

relatively recent works tend to utilize more MOE related parameters which directly influence the 

long-run goal or are even part of it. This implies the change from less to more model-based. It is 

expected the performance of the model should be better since in extreme cases, learning from 
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scratch is definitely more difficult than learning a deterministic function. However, the benefits 

of the model-free system will highly possibly decrease. 

2.2.3 Action Definition 

Action defines how the agent controls the signal. There are three major kinds of action 

definitions: directly change a specific (group of) signal indication (Abdulhai et al., 2003; Arel et 

al., 2010; Camponogara & Kraus, 2003; S El-Tantawy & Abdulhai, 2012, 2010; Houli et al., 

2010; Khamis & Gomaa, 2014; Kuyer et al., 2008; LA & Bhatnagar, 2011; Lemos et al., 2018; 

Richter et al., 2007; Shoufeng et al., 2008; Thorpe & Anderson, 1996; Vidhate & Kulkarni, 

2017; Wiering, 2000), find out the splits of phases for next (few) cycles (Monireh Abdoos et al., 

2014; Aslani et al., 2017; Balaji et al., 2010; Salkham et al., 2008) and select a particular pre-

defined signal timing plan from several candidates (Bazzan et al., 2010; de Oliveira et al., 2006; 

Heinen et al., 2011).  

Directly changing the indication is the most flexible among all three. It makes the agent 

be able to respond to the traffic dynamic instantly (the decision step lasts typically one second). 

However, since it is acyclic, sometimes traffic of one specific direction might wait for the green 

light for a relatively long time. In addition, the acyclic phase structure will make the coordination 

between adjacent intersections difficult. 

Setting the splits is less flexible since the phase sequence typically is fixed to form a 

cycle and the decision step lasts at least the length of the cycle. It is similar to forecast the traffic 

dynamics of the next cycle; therefore it might be more challenging due to the stochastic nature of 
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traffic. However, it makes the coordination relatively easier as long as the coordinated signals 

have similar cycle lengths and appropriate offsets. 

Selecting a particular signal timing plan is the strictest one, and in certain cases, it could 

not adapt to the traffic dynamics. 

2.2.4 Reward Definition 

The long-run goal of a signal controller is either to minimize the delay and/or the number 

of stops or maximize the throughput (Actually they are MOEs of signalized intersections). (Note 

that the “goal” will be used to evaluate the performance of the control algorithms). Therefore, the 

reward is typically the discretized goal which is the total delay or the waiting time of the queued 

vehicles during a certain time period (actually it is the penalty) (Abdulhai et al., 2003; Arel et al., 

2010; Balaji et al., 2010; Camponogara & Kraus, 2003; S El-Tantawy & Abdulhai, 2012, 2010; 

Jin & Ma, 2015; Salkham et al., 2008; Shoufeng et al., 2008; Thorpe & Anderson, 1996; 

Wiering, 2000), stopped vehicles (Bazzan et al., 2010) or the discharged vehicles (Richter et al., 

2007). And Khamis and Gomaa used all three MOEs to form a multi-objective reinforcement 

learning framework (Khamis & Gomaa, 2014). Some studies use queue length directly (Monireh 

Abdoos et al., 2014; de Oliveira et al., 2006; Heinen et al., 2011; Houli et al., 2010; LA & 

Bhatnagar, 2011; Vidhate & Kulkarni, 2017). While the number of vehicles discharged from the 

queue within a short time period is a good approximation of the delay, whether the queue could 

be to accumulate to a clear long-run goal is questionable.  
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2.2.5 Backend RL Algorithms 

The majority of the previous research employed value-based RL algorithms such as Q-

Learning (M Abdoos et al., 2011; Monireh Abdoos et al., 2014; Abdulhai et al., 2003; Arel et al., 

2010; Balaji et al., 2010; Bazzan et al., 2010; Camponogara & Kraus, 2003; Tianshu Chu et al., 

2016; de Oliveira et al., 2006; S El-Tantawy & Abdulhai, 2010; Samah El-Tantawy et al., 2014; 

Heinen et al., 2011; Jin & Ma, 2015, 2018; Khamis & Gomaa, 2014; Kuyer et al., 2008; LA & 

Bhatnagar, 2011; Lemos et al., 2018; Salkham et al., 2008; Shoufeng et al., 2008; Vidhate & 

Kulkarni, 2017; Wiering, 2000) and SARSA (Jin & Ma, 2015; Thorpe & Anderson, 1996), while 

only a few research used Actor-Critic (Aslani et al., 2017; Richter et al., 2007) which is the 

combination of value-based and policy-based RLs. A possible reason is that Actor-Critic requires 

a lot more computational resources than only value-based RLs. Therefore, as long as Q-Learning 

or SARSA have promising performance over the benchmarks, it is not necessary for researchers 

to use complicated actor-critic algorithms. 

Since some studies use a large or even continuous state representation, for example, 

queue length, there might exists the curse of dimensionality. Some of those studies tackle the 

issue by function approximation like simple linear function (T Chu et al., 2016; LA & Bhatnagar, 

2011; Vidhate & Kulkarni, 2017), tile coding (Monireh Abdoos et al., 2014; Aslani et al., 2017), 

K nearest neighbors (KNN) (Jin & Ma, 2018) and neural networks (Heinen et al., 2011). Some of 

those utilize model-based RL (Houli et al., 2010; Kuyer et al., 2008; Wiering, 2000) that Q-value 

is a pre-determined model of state and action based on human knowledge that is similar to RL 

with function approximation in some aspects. Others shrink the state space by fuzzy logic, for 

instance, categorize the continuous values into some levels (M Abdoos et al., 2011; Monireh 
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Abdoos et al., 2014; Arel et al., 2010; Balaji et al., 2010; Bazzan et al., 2010; S El-Tantawy & 

Abdulhai, 2010; Khamis & Gomaa, 2014). Admittedly, both function approximation and fuzzy 

logic lead to information loss. In order to reduce the loss as much as possible, fuzzy logic should 

be avoided and function approximation should be as complicated as possible. 

2.2.6 Simulation 

RL agents need training before the implementation like all other ML agents. None of the 

proposed RL-based ATSCs were trained in the real-world. It is obvious that no one could afford 

the cost of a non-mature signal control system. As a result, different kinds of simulation testbed 

are used by researchers, ranging from simple traffic simulators developed by the researchers 

themselves (Abdulhai et al., 2003; Camponogara & Kraus, 2003; Richter et al., 2007; Thorpe & 

Anderson, 1996; Wiering, 2000), open-source traffic simulators (Bazzan et al., 2010; de Oliveira 

et al., 2006; Heinen et al., 2011; Jin & Ma, 2015, 2018; Kuyer et al., 2008; LA & Bhatnagar, 

2011; Lemos et al., 2018; Vidhate & Kulkarni, 2017), such as GLD (Camurri et al., 2006), 

ITSUMO (da Silva et al., 2006) and SUMO (Krajzewicz et al., 2012),   to commercial traffic 

simulators (S El-Tantawy & Abdulhai, 2012, 2010; Xu et al., 2013) such as PARAMICS (Smith 

et al., 1995) and AIMSUN (Barcelo, 2018). Although open-source traffic simulators provide 

more flexibility for researchers to customize, the validity of the trained algorithms depends 

highly on how well the simulator could replicate the vehicle’s behavior in the real world.  
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2.2.7 Benchmark 

Early exploratory studies might use random signals (Camponogara & Kraus, 2003). 

Almost all other previous studies use fix-timing signal control either hypothetical ones or those 

implemented in the real world as one of the benchmarks. Some study imitates commercial ATSC 

systems such as SCATS (Richter et al., 2007; Salkham et al., 2008), GLIDE (Balaji et al., 2010) 

SCOOT (S El-Tantawy & Abdulhai, 2012) as the benchmark since the technical details of 

aforementioned systems are prosperity.  All the studies conclude that their proposed RL-based 

ATSCs outperform their different benchmarks. 

2.2.8 Summary 

Over the past twenty years, a number of researchers developed ATSCs based on 

conventional RL. The evaluation results show that the proposed ATSCs outperform the fix-

timing signal control in terms of various MOEs.  

However, the ATSCs based on conventional RL could be improved in several aspects. 

First of all, as mentioned in the previous sections, due to the curse of dimensionality, simple 

linear function approximation or fuzzy logic are employed to deduce the dimension of state 

space even though the information collected is very limited. Take a very simple isolated 

intersection as an example. Assume an RL signal control agent controls a large intersection with 

four approaches. Each approach has three through lanes, one left-turning pocket lane and one 

right turning pocket lane. Two detectors are placed at the beginning and the end of each lane and 

only the actuation of the detector was collected as the state, which means there are no continuous 

states. The states of the intersection and its adjacent two intersections are collected to ensure the 
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coordination. Thus, the binary state values of a total of 120 detectors are used as the states. 

Therefore, there are totally 2120 ≈ 1.3 × 1036 different states. A Q-table is definitely impossible 

in this case. Take another example. If four levels of queue length (High, Medium, Low, No 

Queue) of all lanes are used, the state space (45×4×3 ≈ 1.3 × 1036) is also as large as the 

previous case. At the end of the day, the functional approximation is proved to be necessary for 

any realistic representation of the intersection. Furthermore, as the rapid development of 

connected vehicle technology, vehicle-based data will be largely available. Thus, the 

complicated traffic states could be represented in a more detailed but nonlinear way. In the era of 

CAV, a linear function might not be suitable. A non-linear function like neural network make 

more sense but it is extremely hard to train (Tsitsiklis & Roy, 1997). As a result, both new 

function form and new training algorithms should be investigated. 

Secondly, while there are several centralized successful model-based ATSC, for example, 

SCOOT (Bretherton, 1990), centralized model-free RL-based ATSC was seldom developed. 

Despite the benefits of the distributed multiple-agent system, intuitively, the coordination 

between intersections is never a problem a centralized system as the goal is naturally enhancing 

the performance of a roadway network as a whole. However, the curse of dimensionality would 

be even serious. On the one hand, the state space will increase exponentially. On the other hand, 

since the number of intersections controlled by the controller might be relatively large, the action 

space will also increase exponentially. While the large state space issue could be tackled by 

appropriate function approximation, dealing with large discrete action space in the context of 

signal control still need more research effort. 
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Thirdly, as discussed in the “Reward Definition” section, most of the previous works 

only focus on improving the efficiency of the traffic network. However, other important aspects 

such as safety and emission are overlooked. As a consequence, such factors should be considered 

as one of the multiple objectives. In order to implement such multi-objective system, the safety 

and environmental objectives should be carefully discretized into discrete rewards. 

2.3 ATSC Based on Deep Reinforcement Learning 

As discussed in section 2.2, the ATSCs based on Conventional RL need to be improved 

to response more complicated traffic dynamics, benefit the network performance by enhancing 

the coordination between the intersections, consider more factors as the goal of the control agent 

and adapt to the new era of connected and autonomous vehicles. The first step is developing a 

better approximator to account for high-dimensional state space. Recently, thanks to the rapid 

development of DRL which is able to handle the high-dimensional state space, several 

researchers started to investigate how the DRL could improve the performance of ATSC. 

Li, Lv and Wang (L. Li et al., 2016b) firstly conducted an exploratory study on ATSC 

Based on DRL for an isolated intersection. A four-layer deep stacked autoencoders was 

employed as its function approximation. Although the state representation used in the proposed 

DRL control agent is still the queue length rather than more detailed representation of traffic 

dynamics, the evaluation results show that the proposed control algorithm could reduce the 

average delay of a simulated intersection by 14% than that with a conventional RL algorithm 

incorporating with a shallow neural network. Despite their great contribution as the pioneer, their 
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algorithms were trained and evaluated on a simplified simulated intersection. The intersection 

only has two phases and only allows through movements, which means the agent only needs to 

conduct a simple binary decision.  And the signal might not be realistic enough since it does not 

configure the yellow and all-red clearance time. 

Genders and Razavi (Genders & Razavi, 2016) firstly proposed a new state structure to 

represent the detailed complex traffic dynamics in replace of aggregated traffic flow parameters. 

Each lane approaching the intersection is segmented into several small cells and the present and 

the average speed of vehicles on the cell are used to represent the traffic dynamics. This 

approach is similar to the “virtual loop detectors” widely used in the computer-vision-based 

vehicle detectors. Several other studies (der Pol & Oliehoek, 2016; Gao et al., 2017; Liang et al., 

2018; Mousavi et al., 2017; Muresan et al., 2018) also utilized. 

Although most of the recent studies (Gao et al., 2017; Genders & Razavi, 2016; L. Li et 

al., 2016b; Liang et al., 2018; Mousavi et al., 2017; Muresan et al., 2018) focus on controlling 

the isolated intersections, van der Pol and Oliehoek (Van Der Pol & Oliehoek, 2016) firstly 

implements the distributed MARL using DRL signal control agent on very small grid networks 

with two to four intersections. The coordination between the DRL agents is achieved by max-

plus coordination and transfer planning. The evaluation shows the proposed algorithm is superior 

to those with a shallow neural network. However, the contribution of the study is limited by its 

unrealistic traffic simulation. The proposed algorithm only trained and evaluated in an 

oversimplified network with only one lane per approach and no turning movement.  
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With the help of DNN, Tan (Tan, n.d.) firstly tried to develop a centralized signal control 

algorithm for a 3×3 grid network. Unfortunately, the algorithm is not evaluated by any MOEs, 

therefore, its validity is questionable. Lin et al. also proposed a centralized ATSC (Lin et al., 

2018) based on DRL also for a 3×3 grid network. To tackle the possible large action space issue, 

the authors predefined a four-phase signal structure with a fixed sequence and the agent is only 

able to choose to either maintain the current phase or change to the next one. Thus, the action 

space collapse to only 512 actions which is manageable with scarifying the flexibility to skip the 

phases without any demand. As a result, it is expected that the evaluation results clearly show 

that the proposed algorithm outperforms the simple actuated signal control only for the saturated 

condition.  

In terms of DRL algorithms employed, the majority of the previous studies utilized DQN 

like algorithms (Gao et al., 2017; Genders & Razavi, 2016; L. Li et al., 2016b; Liang et al., 2018; 

Mousavi et al., 2017; Muresan et al., 2018; Van Der Pol & Oliehoek, 2016) and others used 

actor-critic-like algorithms such as DDPG (Casas, 2017; Tan, n.d.) and Advantage Actor-Critic 

(A2C) (Lin et al., 2018). The possible reason for the popularity of DQL is that it is 

computationally less expensive than actor-critic-like algorithms. However, it is not able to deal 

with large or continuous action space for centralized systems. Therefore, for all the studies 

aiming at developing a centralized system, actor-critic-like algorithms and necessary hardware 

are required. 

It is great to see the computational power and bright future of ATSC based on DRLs, the 

current studies also show several limitations. 
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Firstly, ATSCs based on DRL are intensively validated to be effective for isolated 

intersections, its effectiveness of network-wide signal control, especially for arterial networks, is 

not proven. Van der Pol and Oliehoek’s work (Van Der Pol & Oliehoek, 2016) is merely 

effective for up to four intersections allowing only through movements. Casas (Casas, 2017) 

tested a DRL algorithm for a network-level signal control for a real roadway network in 

Barcelona. But unfortunately, his/her algorithm does not converge. 

Secondly, the centralized DRL controller still needs to be further investigated. As 

discussed in previous contexts, there is still no effective systems even for an urban gird network. 

The headache large action space is a potential issue. More advanced DRL algorithms and more 

reasonable agent design are expected. 

Thirdly, as the simulation is inevitable and crucial, the traffic simulation scenarios used 

by the previous studies are unsatisfactory. Some of them used in early studies are far away from 

any real-world applications. The intersection geometric design is not considered. The urban grid 

network is designed with a constant number of lanes or even with a constant length. Some of 

them do not have turning lanes or even prohibit the turning movement. Others with turning lane 

do not consider the length of the turning storage bays. The traffic demand is hypothetical, and the 

route choice behavior is simplified. The only exception is Casas’s work (Casas, 2017) using a 

real-work network, but again his/her algorithm does not converge. The benchmark signal control 

system is an arbitrary fixed-timing signal, signal controlled by a conventional RL algorithm 

incorporating with a shallow neural network which is never be applied in the field, or even 

random signals. (The only exception is the study conducted by Muresan et al. (Muresan et al., 

2018) which used a calibrated timing by Synchro based on hypothetical traffic demand.) No real-
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world signal timing plans were used as the benchmark like the study of El-Tantawy and 

Abdulhai (S El-Tantawy & Abdulhai, 2012). As a consequence, the effectiveness of those 

algorithm on the real-world application is hard to evaluate. 

Last but not the least, the ATSCs have to be acceptably safe to be implemented in the 

field. Existing studies neither evaluated the safety effects of their proposed ATSCs nor 

developed ATSCs that consider safety effects explicitly. Therefore, the impact of DRL-based 

ATSCs on traffic safety is still concerned yet unclear. 

2.4 RL-based ATSC with multiple objectives 

Some studies have proposed RL-based ATSC with multiple optimization objectives. 

Based on the way to achieve the multi-objective optimization, they could be classified into three 

different types. 

The first type is an ATSC which is able to switch its objective dynamically.  Houli et al. 

(2010) developed an ATSC with three different backend single-objective RL algorithms with 

different goals. But only one algorithm is activated according to the traffic condition. When the 

current traffic condition is free flow, the goal of the activated algorithm is minimizing the 

number of stops. When it is under medium traffic condition, the goal turns to minimize the 

overall waiting time. When there exists congestion, the goal is switched to minimize queue 

length to avoid queue spillover. This type of ATSC could be regarded as an ensemble of rule-

based AI and RL. However, it might be not suitable if the objectives are required to be optimized 

simultaneously. 
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The second type of algorithms creates a synthetic reward to represent multiple objectives 

simultaneously. The most straightforward approach is using the simple/weighted average of 

multiple rewards. Each reward is associated with a goal. Khamis and Gomaa (2014) proposed an 

ATSC with 7 different objectives. Five of them indicate different aspects of traffic efficiency, 

one represents the fuel consumption and the last one is claimed to be “safety reward”. The so-

called safety reward is not any safety measure but essentially the average speed of the vehicles. 

The potential issue of this type of algorithm is that its convergence is not thematically proved 

since the synthesizing reward is no longer the decomposition of any policy goals. It should be 

noted that the reward of several single-objective ATSCs (Muresan et al., 2018; Van Der Pol & 

Oliehoek, 2016; Vidhate & Kulkarni, 2017) could also be the average of several components.  

The third type of algorithm is multi-objective RL (MORL). Although similar to the 

second type, MORL manipulates the value function (e.g. Q functions) rather than the rewards. In 

such algorithms, different value functions are learned independently using different rewards, 

while the second type of algorithms learns a signal value function by the single synthetic reward. 

This is beneficial to the convergence of the algorithm especially when the objectives are 

irrelevant. For a multi-objective ATSC using the aforementioned algorithm, the control agent 

could either choose the action based on the weighted average of multiple value functions or use 

one or more of them as the thresholds. The study conducted by Jin and Ma (2015) utilized the 

later method to assign priority to arterials. 
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2.5 ATSC Considering Traffic Safety 

Improving traffic safety is one of the most important objectives for transportation 

agencies (Lee et al., 2019; P. Li et al., 2020; M. H. Rahman et al., 2019; M. S. Rahman et al., 

2019a, 2019b; Yue et al., 2018, 2019, 2020; Zhang et al., 2020). There have been several studies 

on optimizing signal timing considering traffic safety (Stevanovic et al., 2013, 2015; Zhu et al., 

2019). Almost all of them employed surrogate safety measures as the safety indicator and all 

these studies focused on fixed-timing controllers. The burden of extending such fixed-timing 

controllers to safety-oriented ATSC is that the most modern ATSCs are designed to be pro-

active/predictive. In other words, the ATSC needs to know how the signal timings affect the 

future safety condition. Therefore, to use the surrogate safety measures (e.g. traffic conflicts) as 

the safety indicator, a prediction model of the future surrogate safety measures needs to be 

developed.  

To the best of the authors’ knowledge, only one published study (Sabra et al., 2013) 

developed a non-parametrical traffic conflict prediction model and proposed a safety-oriented 

ATSC accordingly. The study developed a four-stage algorithm tuning the cycle length, splits, 

offsets, and left-turn phase sequence sequentially. At each stage, the “predicted” number of 

traffic conflicts is used to evaluate the signal timing tuned by the control algorithm. If the 

“predicted” traffic conflict of new signal timing is greater than that of the current one, the 

controller keeps using the current signal timing. Otherwise, the new signal timing is applied. The 

proposed algorithm is tested in a simulated real-life arterial corridor and a simulated real-life grid 

network. For the arterial case, although the proposed algorithm reduces the number of traffic 

conflicts compared with a coordinated actuated signal optimized by the authors, it does increase 
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the number of traffic conflicts compared with the existing field controllers. For the grid network, 

the algorithm increases the number of traffic conflicts compared with a coordinated actuated 

signal optimized by the authors, and no testing results of the existing field operation are 

provided. Therefore, the ability of the proposed algorithms in improving traffic safety is not 

conclusive. 

2.6 Summary 

During the past two decades, substantial studies have developed RL-based ATSCs. Most 

of them perform better than the fixed-timing signals. Due to the curse of dimensionality, 

conventional RL-base ones utilize fuzzy logic to simplify the control problem. It might lead to its 

failure for complicated traffic conditions. And they might not be able to directly employ the 

heterogeneous data from CAVs as their input data. DRL-based ATSCs successfully resolve the 

issues by employing non-linear neural networks as its functional approximator.  However, the 

existing DRL-based ATSCs did not prove their capability in controlling the real-world traffic at 

the network level. Besides, their impact on traffic safety remain unclear. 
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CHAPTER 3: TRAFFIC DATA COLLECTION SYSTEMS ON 

ARTERIALS 

3.1 Introduction 

The capability of a traffic signal control system in handling dynamic traffic demands 

depends on how well it perceives the traffic demands. The fixed-timed signal does not capture 

the traffic dynamics and the actuated signal control only captures the presence of the traffic. 

Therefore, they could not well respond to dynamic traffic demands. Although knowing the real-

time traffic condition is crucial, most of the existing DRL-based ATSCs go to another extreme as 

they assume the traffic information of every individual vehicle is known. This unrealistic 

assumption prevents the implantation of DRL-based ATSCs in the field. Thus, to make the DRL-

based ATSCs more implementable, they should utilize traffic data collection systems to perceive 

the real-time traffic condition. Therefore, existing traffic data collection systems and those will 

be available in the near future that are also to serve as the data feed of ATSCs should be 

understood. 

3.2 Counts Data from Infrastructure-based Detectors  

Traditional actuated traffic signal control systems require traffic detectors to inform the 

controller that there is a user requests service. Inductive loop detectors are widely used to detect 

the vehicles’ presence, and it could also be replaced by video detectors or microwave detectors 

(Arroyo et al., 2015). Inductive loop detectors detect the magnetic presence of a vehicle while 

video-based and microwave detectors are able to create “virtual loops” to detect the presence of a 
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vehicle. If the vehicles’ presence is recorded and aggregated, vehicular traffic counts data are 

available from those detectors designed for the signal actuation.  

One of the most famous data systems utilizing the actuation data is Automated Traffic 

Signal Performance Measures (ATSPM). ATSPM is employed to measure the actual 

performance of the traffic signal control systems and provide information for re-timing. In fact, 

ATSPM data consist of high-resolution monitoring logs of traffic signals which is not limited to 

the vehicle’s actuation. The logs have a simple data structure with only three attributes: 

timestamp, event type and event parameter (for signifying detector numbers and phases). The 

events recorded in the log include active phase event (phase on, phase green, etc.), active 

pedestrian event, detector event (detector on/off), barrier/ring events, phase control events, 

overlap events, preemption events, coordination events, and cabinet/system events. ATSPM 

event log data provide rich information about the traffic condition and traffic signal performance 

on arterials. The actual signal phase sequence and phase timing are able to be estimated from the 

active phase events, the volume per lane per phase is able to be estimated from the detector 

events, and other signal performance measures such as queue length, v/c ratio and etc. The 

ATSPM could provide high-quality data inputs for ATSC, however, the deployment of such 

systems is really limited across the nation. 

State-of-the-practice ATSCs use a combination of detection layouts to estimate the 

current traffic states, which is later used to adjust traffic control in a network (Board & National 

Academies of Sciences  and Medicine, 2010). Most of the ATSCs require additional detectors 

beyond those used in the conventional actuated signal control systems to provide good traffic 
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measures for its adaptive control logic. For example, they employ advance detectors to estimate 

queue length.  

In term of the detection technology, most of the state-of-the-practice ATSCs do not 

require using a specific detection technology as long as they could provide the required data. 

According to an international survey (Board & National Academies of Sciences  and Medicine, 

2010), more than 90% of implemented ATSCs utilize inductive loop detectors and no more than 

half of the implemented ATSCs use video detection systems. In fact, the majority of the state-of-

the-practice ATSCs assume the conventional loop detectors as the defect detection technology. 

The major reason is to fully utilize the detectors of existing conventional actuated signal 

controllers to reduce the deployment cost. However, there does exist one ATSC, which are 

implemented widely across the nation, use video detection as its default detection technology. It 

fully utilizes the flexibility of the video detection system to acquire the lane-based traffic counts, 

the maximum waiting time and the queue length of each phase.  

3.3 Bluetooth Detection System (BDS) 

In recent years, traffic agencies have begun to implement Bluetooth detection systems 

(BDS) to collect travel time and origin-destination data on arterials in real time (Chung et al., 

2020). BDS employed Bluetooth technology to detect the vehicles carried with a Bluetooth 

device (e.g. smartphones and hand-free devices). The advantages of BDS are its relatively low-

installation and maintenance cost (Singer et al., 2013) and acceptable data quality (Bhaskar & 

Chung, 2013; Haghani et al., 2010).  
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BDS estimates origin-destination on urban arterials and freeways(Friesen & McLeod, 

2015) by tracking the trajectory of detected devices. A number of studies have also investigated 

the feasibility of BDS to estimate the number of travelers. However, the most critical issue is that 

BDS tends to either underestimate or overestimate the number of travelers. First, as pointed out 

by several studies (Abedi et al., 2015; Bullock et al., 2010; Malinovskiy et al., 2012), the 

detection rate of such systems is relatively low. Because the Bluetooth MAC address scanner 

(BMS) using ordinary Bluetooth protocol could only detect the “discoverable” devices. 

Typically, newer Bluetooth devices are in the discoverable mode only for the initial connection 

to enhance security and protect privacy. Thus, although we could assume that the penetration rate 

of the Bluetooth device is high enough because of the popularity of smartphones, most of them 

are not always discoverable, which reduces the number of travelers that could be detected by 

BMS. Second, the number of detected MAC addresses might be greater than the number of 

detected travelers. The duplicate detection issue occurs when a traveler carries two or more 

devices. It might lead to overestimating the actual counts.  The issue would be more severe for 

estimating vehicular counts, as there could be multiple passengers in a vehicle, especially when 

there exist many transit buses. In addition, in order to save budget, ensure the power supply and 

increase the detection rate, for arterials, Bluetooth detectors are installed within or close to the 

signal cabinet near the intersection. And the detectors are configured to be able to detect all the 

“discoverable” vehicles within the intersection. Thus, a single vehicle could be detected by a 

specific detector more than once within a short period of time due to the large detection range 

(typically 300 to 400 feet). This leads to a location ambiguity and increases the error of travel 

time estimation (Araghi et al., 2013; José et al., 2015). Moreover, in an extreme case, when the 
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detection ranges of two detectors overlap, a single Bluetooth device could be seen 

simultaneously by both detectors. The “ping-pong” effect might lead to detecting a traveler at the 

adjacent intersections, especially in the urban area where intersections are spaced closely. Third, 

as pointed out earlier, theoretically, it takes up to 10.24s for a Bluetooth device to be 

“discovered” by the Bluetooth detectors (Kasten & Langheinrich, 2001).  If the speed of a 

vehicle is high enough, it might not be detected.  

3.4 Vehicle-Based Traffic Data 

Probe vehicles are one of the most effective methods for collecting traffic data. State-of-

the-practice probe-vehicle based data collection systems use the position and speed reported by 

the global positioning system (GPS)-equipped probe vehicles.  Private sector traffic service 

companies such as INRIX, HERE and TomTom take advantage of probe vehicle tracking 

technologies to provide speed and travel time data of the road network including most of the 

arterials. The major advantage of the vehicle-based data from the private sectors is that the 

vendors are able to provide more extensive geographic data coverage than any kind of 

infrastructure-based traffic data. To benefit from this, one recent study (Sharma et al., 2019) 

employs the vehicle-based travel time (speed) data from the private sectors to develop a rule-

based ATSC. The proposed ATSC first forecast the near-future speed using a single exponential 

smoothing technique. Then a multivariable linear regression model is developed by utilizing 

forecasted link-level speed, signal control variables, and link length as predictors to estimate 

traffic flow parameters. A simple signal timing algorithm uses the forecasted traffic flow 

parameters to generate an optimized signal timing. The study indicates that the widely available 
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travel time data could be used as a valuable input of ATSCs. However, there is often a concern 

that the exact data source and processing algorithms are always proprietary (Elefteriadou et al., 

2014). 

Connected vehicles (CV) are another source of vehicle-based data. Several studies (Feng 

et al., 2018; Goodall et al., 2013; Joyoung et al., 2013) have employed CV’s trajectory data as 

the ATSC’s input. However, the proposed ATSCs requires a relatively high market penetration 

rate. The least market penetration rate of CV required by these ATSCs is around 10% (Feng et 

al., 2018). Until March 2020, there is no ATSC based on the CV is implemented in the field. 

3.5 Summary 

Existing traffic data collection systems in the field include traffic counts from inductive 

loop detectors installed for signal actuation, travel time and origin-destination data from BDS 

and segment-based speed data from the private sectors. However, the infrastructure-based 

systems, either the inductive loop detectors or BDS, is limited in terms of geographical coverage. 

Thus, the widely available segment-based speed data from the private sectors could be served as 

valuable data feeds of ATSCs.  

Most of state-of-the-practice ATSCs requires customized detection layout for their own 

control logic. Especially some vendors depend on the video detection systems. The rapid 

development of CV brings the opportunity for ATSCs to use the vehicle’s trajectory as its input 

data. However, there is still no ATSC based on the CV is implemented in the field until March 

2020. 
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CHAPTER 4: ESTIMATING NON-MOTORIZED TRAFFIC COUNTS 

FROM BDS USING BLUETOOTH LOW ENERGY 

4.1 Introduction  

Quantifying the traffic counts is important for the ATSCs. Some Recent studies have 

looked at Media Access Control (MAC) address scanning sensors such as Bluetooth and Wi-Fi 

scanners. Such kinds of sensors detect and track travelers indirectly by communicating with the 

Bluetooth/Wi-Fi devices carried by them through radio waves. However, as mentioned in the 

previous chapters, the biggest challenge of using Bluetooth/Wi-Fi sensors for estimating counts 

is that they are only able to detect a portion of the travelers. The detection rate of the Bluetooth 

sensors is only 0.6%-6.8% (Abedi et al., 2015; Bullock et al., 2010; Malinovskiy et al., 2012), 

while that of the Wi-Fi sensors varies from 9% to 97% for different environments (Abedi et al., 

2015; Du et al., 2017; Kurkcu & Ozbay, 2017; Ohlms et al., 2019; Schauer et al., 2014). Thus, in 

order to estimate the accurate counts, extrapolation of the raw data based on empirical detection 

rate is inevitable, which might introduce errors.  

To resolve the limitations of the current MAC scanning based counting systems, recently 

available Bluetooth Low Energy (BLE) scanners are advocated. This chapter developed a system 

estimating the count of pedestrians and bicyclists of the intersection.  BLE is an upgraded 

version of Bluetooth, which is able to detect more devices than the ordinary one (Gomez et al., 

2012). Since to the best of the authors’ knowledge, there is no published study evaluating the 

applications of BLE technology in transportation. This study starts with the feasibility 

assessment of BLE to obtain pedestrians and bicyclists counts in terms of detection rate, 
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detection range, and data quality. Then, a travel mode classification algorithm based on machine 

learning is proposed to help to estimate accurate counts. The system is implemented in a test site 

to evaluate the performance and prove the viability of the approach.  

4.2 Assessing the Feasibility of BLE to Obtain Pedestrians and Bicyclists’ Counts 

As mentioned in the last section, compared with ordinary Bluetooth MAC address 

scanner (BMS-O), BLE based Bluetooth MAC address scanner (BMS-BLE) has a higher 

detection rate, which might be preferable for estimating counts of pedestrians and bicyclists. As 

there is no published study assessing the BMS-BLE used in BDS, the author conducted several 

pre-experiments to assess its feasibility. The first pre-experiment aims to assess the detection rate 

of BMS-BLE. The objective of the second pre-experiment is to verify whether the detection 

range is large enough to cover the intersection while avoiding the “ping-pong” effect.  

Eight BMS-BLEs of a commercialized BDS were used. They were installed at eight 

signalized intersections within and near the campus of the University of Central Florida (UCF), 

U.S. Three of them were deployed along a major arterial at the western edge of campus where 

there are existing BMS-Os. These detectors were employed to compare the characteristics 

between BMS-BLE and BMS-O. Five of them were deployed along the major ring road of the 

campus. These detectors were used to detect the non-motorized travelers as there are a lot of 

pedestrians and bicyclists crossing those intersections. 

First, the detection rate, in terms of the number of detected unique devices of BMS-BLE 

was compared with that of BMS-O were conducted. One-week data (from 07/01/2019 to 
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07/07/2019) were used for the comparison. Figure 2 illustrates the comparison results. It clearly 

shows that all three BMS-BLEs detect more devices than BMS-Os. The results confirm that the 

detection rate of BMS-BLE is higher than that of BMS-O.  

 

Figure 2 Comparison of unique devices detected from 07/01/2019 to 07/07/2019 

Then, to verify the actual detection rate of BMS-BLE, one intersection of the ring road 

with heavy volumes of both vehicles and pedestrians/bicyclists was selected as the study site. 

Around 3-h videos were recorded by an action camera on two weekdays. The camera was 

mounted high enough to cover the whole intersection. The number of pedestrians/bicyclists and 

vehicles were counted manually. The corresponding BMS-BLE records were also collected and 

the counts extracted from the video footage serve as the benchmark data. 

Table 1 shows the number of unique devices captured by BMS-BLE and the 

benchmarking traffic counts. The number of detected unique devices by BMS-BLE is greater 

than the benchmark counts. Although such a high detection rate (over 100%) was never seen in 
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any published studies assessing the detection rate of BMS-O, it is reasonable because there might 

be duplicate detections of a single traveler. Moreover, the benchmark count of motorized traffic 

is the number of vehicles rather than the number of travelers. Since there were several university 

shuttles passing at the intersection during the time the video recorded, it is expected that the 

number of motorized travelers is greater than the number of vehicles. In addition, some fixed 

devices might also be included as the data had not been pre-processed. Although it is not 

possible to find out the actual detection rate of travelers, it is reasonable to conclude that BMS-

BLE is able to provide sufficient detections to estimate the counts of pedestrians/bicyclists. 

However, the raw data from the BME-BLE is subject to cleaning. 

Table 1 Detection Rate Assessment (Raw Data) 

Source 
Benchmark 

BMS-BLE Detection Rate 
Vehicle Pedestrian/Bicyclist Total 

Counts 3930 2060 5990 9685 161.69% 
 

In the second pre-experiment, volunteers were asked to drive along the roadways with 

Bluetooth devices, and then the locations where they were detected by the BMS-BLE were 

investigated. A preliminary test was conducted to investigate what kinds of Bluetooth devices 

could be detected by the BMS-BLE. Several different kinds of devices were tested at the 

intersection where both BMS-O and BMS-BLE are installed. Bluetooth headphones could be 

only detected by BMS-BLE. However, BMS-BLE is able to detect both devices compatible with 

only Bluetooth ordinary and devices compatible with BLE, such as smartphones and laptops. A 

possible reason is that the vendor of the BDS would like to ensure the detection rate.  
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The ring road in the campus is selected as the study site since the BMSs are closely 

located. And two kinds of devices were carried by the volunteers: “discoverable” smartphones 

representing the Bluetooth ordinary devices, and Bluetooth wireless headphones representing the 

BLE devices. The trajectories of the volunteers were recorded using smartphone GPS tracking 

applications. These applications provide detailed trajectory points in one-second granularity. 

After GPS trajectory points were collected, they were matched with Bluetooth detections from 

five BMS-BLEs by MAC addresses of the devices and recorded timestamps.  

 

Figure 3 Comparison of unique devices detected from 07/01/2019 to 07/07/2019 

Figure 3 is the plot of the volunteers’ trajectory points and those matched with the 

Bluetooth data. At first glance, the detection range of BMS-BLE is large enough to cause the 
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“ping-pong” effect. For example, the Bluetooth Ordinary Devices were almost continuously 

detected when the volunteers passed E Plaza Dr and N Orion Blvd (Red rectangle in Figure 5). 

However, as BMS-BLE could detect both BLE and Bluetooth Ordinary devices, if we assume that 

the BMS-BLE consists of two “virtual” modules: the BLE module detecting only BLE devices 

while the Bluetooth Ordinary Module detects only Bluetooth Ordinary devices. The detection 

range of the “virtual” BLE module is much less than the “virtual” Bluetooth Ordinary module and 

it is small enough to avoid the “ping-pong” effect while covering the whole intersection. Moreover, 

as the previous studies have found the detection rate of BMS-O does not exceed 10% (see Table 

3), according to the high detection rate showed in pre-experiment one, most of the devices should 

have been detected by “virtual” BLE module. Therefore, compared to the BMS-O, the BMS-BLE 

is able to reduce the error caused by the “ping-pong” effect while still ensuring the coverage of the 

intersection.  

4.3 Methodology 

Data from BMS provides the number of devices detected during a specific period time. 

However, it never identifies whether a specific device is carried by a pedestrian, a driver or a 

police officer directing the traffic at the intersection. In order to estimate the counts of 

pedestrians and bicyclists, devices carried by them have to be identified. The identification 

process consists of two stages. First, stationary devices are filtered out from the moving devices. 

Then, the devices carried by the motorized travelers are filtered out. The leftovers are the non-

motorized ones. This process is accomplished with the help of a machine-learning algorithm: 

one-class support vector machine.  
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The raw data from BMS typically consists of only three parameters: the MAC address of 

the detected device (usually only last six digit is kept due to privacy), the timestamp when the 

device was detected, and the Received Signal Strength Indicator (RSSI) of the detected device. 

Given the same device and similar environment, the RSSI is related to the distance between 

BMS and device. However, none of these three parameters can be directly used for classification 

algorithms. Fortunately, because of the large detection range of BMS, a device can be detected 

multiple times as long as it stays in the detection range. Therefore, there might be several records 

in raw data from BMS of a single “visit” by a specific device to an intersection. As RSSI could 

serve as a relative location indicator, these records could provide valuable information to infer 

the behavior of devices, such as the travel time, time mean speed, etc.  

In this study, we use the term “RSSI-trajectory” estimated from the multiple detection 

records of a device to infer its behaviors. The trajectory of a traveler is its spatial location as a 

function of time. Similar to the actual trajectory, the “RSSI-trajectory” is the RSSI of a device as 

a function of time (Figure 4).  The black line shows the theoretical “RSSI-trajectory”. The five 

red dots are the detection records obtained from the BMS, which is a discrete sample of the 

“RSSI-trajectory”. The parameter duration 𝐷, which is defined as the elapsed time between a 

device entering and exiting the detection range of a specific BMS, is used to classify whether a 

device is moving or not. The value of 𝐷 of a permanent stationary device, such as a device 

installed at the intersection is theoretically close to positive infinity. The value of 𝐷 of a 

“relative” stationary device, such as the device carried by a police officer directing the traffic is 

sufficiently large. On the contrary, 𝐷 value of a moving device, even if it is stopped by a red 

light, should be smaller than a threshold value 𝐷𝑡ℎ. Therefore, the classification is done as such: 
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𝑑𝑒𝑣𝑖𝑐𝑒 𝑖𝑠 { 𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑟𝑦   𝑤ℎ𝑒𝑛 𝐷 > 𝐷𝑡ℎ 𝑚𝑜𝑣𝑖𝑛𝑔         𝑤ℎ𝑒𝑛 𝐷 ≤ 𝐷𝑡ℎ )                                    (11) 

 

Figure 4 Plot of the Trajectories and the Matched Trajectory Points 𝑫𝒕𝒉 is defined as the longest time a traveler could spend at the intersection: 

𝐷𝑡ℎ = 𝑑𝑚𝑎𝑥𝑣𝑚𝑖𝑛 + 𝑡𝑚𝑎𝑥𝑤𝑎𝑖𝑡                                              (12) 

where  𝒅𝒎𝒂𝒙 is the longest distance a road user could travel at the intersection. If only motorized 

travelers are considered, the 𝒅𝒎𝒂𝒙 is the detection range; but if pedestrians and bicyclists are also 

considered, the 𝒅𝒎𝒂𝒙 should be the maximum value between detection range and longest 
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possible route of the pedestrian or bicyclist. The length of the route needs to be determined based 

on the geometry of the specific intersection.  𝒗𝒎𝒊𝒏 is the minimum speed of the travelers. 𝒕𝒎𝒂𝒙𝒘𝒂𝒊𝒕 is the maximum waiting time of the travelers. 

However, in practice, it is infeasible to obtain 𝐷 as the discrete data from BMS do not 

always capture the exact timestamps when the device entered and exited the detection range. 

Thus, in this study, 𝐷 is approximated by �̂�: 

�̂� = 𝑇𝑛 − 𝑇1                                                                  (13) 

The multiple detections recording a single visit of a device were identified and grouped. 𝑻𝟏 is the timestamp when the device was first seen by the BMS, which is the first record in the 

group. 𝑻𝒏 is the timestamp when the device was last seen, which is the last record in the group. 

Thus, the classification process becomes: 

 𝑑𝑒𝑣𝑖𝑐𝑒 𝑖𝑠 { 𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑟𝑦   𝑤ℎ𝑒𝑛 �̂� > 𝐷𝑡ℎ 𝑚𝑜𝑣𝑖𝑛𝑔         𝑤ℎ𝑒𝑛 �̂� ≤ 𝐷𝑡ℎ                                           (14) 

To accurately estimate the counts of pedestrians and bicyclists   from mixed traffic, 

algorithms are needed to classify the travel mode. The naïve approach to classify the travel mode 

is using its speed: 

𝑑𝑒𝑣𝑖𝑐𝑒 𝑖𝑠 𝑐𝑎𝑟𝑟𝑖𝑒𝑑 𝑏𝑦 { 𝑣𝑒ℎ𝑖𝑐𝑙𝑒                                      𝑤ℎ𝑒𝑛 𝑠𝑜 ≥ 𝑠𝑣 𝑏𝑖𝑐𝑦𝑐𝑙𝑖𝑠𝑡/𝑝𝑒𝑑𝑒𝑠𝑡𝑟𝑎𝑖𝑛         𝑤ℎ𝑒𝑛 𝑠𝑜 < 𝑠𝑣                            (15) 

where 𝑠𝑜 is the operating speed of the device and 𝑠𝑣 is the preset threshold representing the 

minimal speed of the vehicle. Determining the value of 𝑠𝑣 is not trivial as the speed of vehicles 
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are comparable to the speed of the bicycles when the roadway is congested (see the red area of 

Figure 5). Therefore, the performance of the naïve approach is often not satisfactory.  

 

Figure 5 Illustration of the speed-readings that are hard to be classified 

Most of the existing studies depend on the speed/travel time (Araghi et al., 2016; Bathaee 

et al., 2018; S. Liu et al., 2014; Yang & Wu, 2018). However, MAC scanning based systems 

could only obtain the travel time of those who are tracked by at least two sensors. For urban 

areas with a higher number of pedestrians and bicyclists, some of them detected by a sensor at 

the intersection are “lost” since they have reached their trip destination. Thus, the speed of those 

“lost” ones cannot be obtained from the BDS. Therefore, the aforementioned classification 

method, which requires knowing the speed of every device, could not be used in this study. 



47 
 

Fortunately, there is plenty of information that could be extracted from the “RSSI-

trajectory”. If it is possible to obtain a pre-labeled sample of the travelers and their “RSSI-

trajectory”, a model could be estimated to classify the travel mode of other travelers.  

The time of a device traveling from a BMS to another BMS and space mean speed could 

be calculated by matching the MAC address: 

𝑠(𝑑,𝑎𝑏) = 𝑇𝑏−𝑇𝑎𝐿𝑎𝑏                                                                   (16) 

where 𝑻𝒂 is the timestamp when a device is seen at the BMS a; 𝑇𝑏 is the timestamp when a 

device is seen at the another BMS b; 𝑳𝒂𝒃 is the length of the roadway segment connecting a and 

b; and  𝑠(𝑑,𝑎𝑏) is the space mean speed of the device d traveling from a to b. It should be noted 

that in practice, the BMS is often installed close to the intersection. Thus, the travel time 

sometimes includes the waiting time and starting lost time of a traveler at one or both 

intersections, which eventually leads to the estimated space mean speed to be lower than the 

operating speed.   

 Then the naïve classification approach could be applied to filter out the non-motorized 

travelers if  𝑠𝑣 is set appropriately. There is a trade-off in selecting the 𝑠𝑣.  The higher the 𝑠𝑣 is, 

the higher the probability the motorized travelers are labeled correctly. But if the 𝑠𝑣 is set to be 

too high, the identified sample could not capture the vehicles that stopped at the intersection 

waiting for the green light. Careful selection of 𝑠𝑣 should be conducted. Similarly, a sample of 

non-motorized travelers could also be obtained if the 𝑠𝑣 is set low enough. 
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 It should be noted that the naïve classification is only for obtaining a sample of vehicles 

or pedestrians/bicyclists. Because first of all, 𝑠𝑣 is set to a value that could allow the travelers 

whose speed could not serve as a reliable classifier (red area of Figure 7) to be excluded. 

Secondly, the speed of some travelers is not available as stated earlier. Furthermore, as pointed 

out by the pre-experiment three, in this particular study, it is only feasible to get the sample of 

vehicles but not the sample of pedestrians and bicyclists.  

Traditional classification models, no matter whether it is the straightforward logistic 

regression or the sophisticated deep neural network, are trained by the data labeled with all 

classes. While in this study, only data from one class, motorized travelers, are available. 

Therefore, the model should be trained purely by the one-class data and be able to determine 

whether a specific data point belongs to the class or not. As a result, one of the machine-learning 

algorithms, one-class support vector machine (SVM) is used. 

The objective of one-class SVM (Bernhard Schölkopf et al., 2001) is approximating the 

distribution of data belonging to the specific class. It aims to find a function such that most of the 

data points live in the “small” region where the function is one, and minus one elsewhere. 

Although the labeled sample of motorized travelers is used in this study to train the one-class 

SVM, it could also be trained by the labeled sample of pedestrians/bicyclists as long as it is 

available. The performance of the model is evaluated by a mixed sample of motorized and non-

motorized travelers. 

As mentioned earlier, the information provided by BMS indicating the behavior of a 

detected device is summarized as its “RSSI-trajectory”. Since RSSI is a location indicator, 
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variables describing the “RSSI-trajectory” might indicate the speed, acceleration, waiting time at 

the intersection, etc. As the continuous “RSSI-trajectory” is not available from BMS data (see 

Figure 6), discrete detections of a single device serve as the approximation and all the variables 

are calculated using the detections. Table 2 shows the definitions of the variables. Figure 6 also 

shows the graphical illustration of the variables. Among all six parameters, 𝐶 and �̂� serve as the 

indicator of the travel time within the detection range. 𝑅𝑠𝑑 and �̅� are statistics of RSSI. 𝑅𝐶 

approximates the derivative of RSSI value by time, which is an indicator of point speed. Thus,  𝑅𝐶̅̅ ̅̅  indicates the time-mean speed. Theoretically, the detection with maximum RSSI represents 

the closest point of a device to the detector. Thus, 𝑡𝑚 is an indicator of the waiting time, 

especially for vehicles. 

Table 2 Variables describing the RSSI-trajectory 

Variable Description 𝐶 Number of detections (trajectory points) of the devices �̂� Time difference between the last and first detection 𝑅𝑠𝑑 Standard deviation of RSSI value among the detections �̅� Mean RSSI value among the detections 𝑅𝐶̅̅̅̅  The mean change rate of RSSI. The change rate of the RSSI is approximated by the difference 
of RSSI value between two consecutive detections.  𝑡𝑚 Time difference between the first detection and the detection with Maximum RSSI 

4.4 Validation 

The proposed model is validated by the same video footage used in the pre-experiment 

one. Because of the setting of the camera, the 3-h video was segmented to 30 video clips. The 

average length of the clips is around 6 minutes. The detection data from BMS-BLE at the same 

time period were also collected. Then the stationary data filter was applied to the raw data. In 

this case study, the 𝐷𝑡ℎ is set to be 180 seconds. The first-stage filtering results show that there 
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were 9,685 unique devices that were detected by 118,061 times. Out of the 9,685 devices, 8,332 

(86.03%) were identified as moving objects, which results in the actual detection rate lower to 

139.10%.  A possible reason for such a high number of stationary objects might due to an event 

at the arena close to the intersection when the data were collected. The video clips showed that 

many people are queued to obtain the tickets for the event within the detection range of the 

BMS-BLE. 

In this case study, due to the limited sample size, a ten-fold cross-validation is used to 

evaluate the performance of the one-class SVM. The filtered BMS-BLE detection data were also 

divided into 30 slices corresponding to the 30 video clips (Figure 6). Then they were grouped 

into ten folds where each fold contains three consecutive slices. For every one-class SVM model, 

nine folds are used to obtain the training data and the last fold is used to test the model. 

 

Figure 6 Illustration of the ten-fold cross-validation used in this study  
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To obtain the sample of motorized travelers, data from the upstream and downstream 

BMS-BLEs of the same time period were collected. Records with the same MAC address were 

matched and space mean speeds were calculated by formula (6). 𝑠𝑣 was set to be 13 mph, which 

is the average operating speed of the bicycle measured in study by the Federal Highway 

Administration, U.S (Hummer et al., 2006).  As stated in the previous section, space mean speed 

is typically lower than the operating speed, such setting is able to ensure that most of the 

identified devices are carried by motorized travelers. 

The one-class SVM is deployed using scikit-learn (Pedregosa et al., 2012) package in 

Python 3 environment. The implementation of one-class SVM in scikit-learn requires the choice 

of a kernel and a scalar parameter to define the frontier. In this case study, the KBF function is 

chosen as the kernel because it is the default in the scikit-learn implementation. In addition, the 

regulation parameter ν was set as 0.05 in order to capture the characteristics of most training data 

while preventing the over-fitting. 

Table 3 shows the results of the cross-validation. There are several evaluation metrics 

presented. The accuracy in estimating the number of pedestrians and bicyclists is used as the 

major performance metric. It is defined as the number of predicted non-motorized travelers 

divided by the ground truth from the video. The miss-identifying rate is defined as the false 

negatives divided by the number of labeled motorized travelers. The definition of the confusion 

matrix in table 3 is slightly different from the two-class classification problem. Because in the 

test datasets, only a portion of motorized travelers was correctly identified. The travel mode of 

the remaining portion is unknown and there are no labeled pedestrians and bicyclists. Therefore, 

the true positive (TP) means that a known motorized traveler is classified as a motorized traveler. 
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The false negative (FN) means that a known motorized traveler is misclassified as a non-

motorized traveler. The true negative (TN) means that an unknown mode traveler is classified as 

a non-motorized traveler; and the false positive (FP) means that an unknown mode traveler is 

classified as a non-motorized traveler.  

Table 3 Ten-fold validation results. 

Model 
Ground Truth Confusion Matrix Performance Metrics 

Motor Non-Motor TP FP FN TN Miss Rate Accuracy 
1 448 355 315 705 6 70 7.9% 90.4% 
2 235 89 85 249 0 44 0.0% 95.5% 
3 261 123 125 275 9 68 11.7% 108.9% 
4 268 131 115 320 6 65 8.5% 92.4% 
5 317 190 172 468 4 50 7.4% 92.6% 
6 418 195 197 528 3 70 4.1% 102.6% 
7 556 195 208 656 4 73 5.2% 108.7% 
8 608 296 271 836 2 68 2.9% 92.2% 
9 491 254 255 826 2 70 2.8% 101.2% 

10 328 232 215 836 5 56 8.2% 94.8% 

Average Miss Rate 
Absolute 

Percentage Error 
Accuracy 

Non-Motor Motor Total 
10-fold 5.9% 6.35% 97.9% 160.1% 138.2% 

 

On average, the accuracy of the model in estimating pedestrians and bicyclists counts is 

97.9% while the miss rate is 5.9%. The average absolute percentage error in estimating 

pedestrians and bicyclists counts is 6.35% and the absolute percentage error does not exceed 

10% for every validation fold. Moreover, the number of pedestrians and bicyclists counts per 

fold varies from 89 to 296, which confirms that the model works well for different traffic 

conditions. Thus, the proposed model is able to estimate the counts of pedestrians and bicyclists 

with relatively low error. 

The cross-validation results show that the predicted counts are close to the actual 

observed counts. However, as the proposed model is a classification model, one might still 
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question whether the model successfully identifies a pedestrian/bicyclist or just coincidently 

generates plausible counts. Although there are no labeled pedestrians/bicyclists for verification, 

statistics of variables describing the RSSI trajectories by class might provide some insights of the 

travel behavior that they exhibit.  

Table 4 shows the mean and standard deviation of the variables. First, the predicted 

pedestrians/bicyclists exhibit significantly larger 𝐶 and �̂� than that predicted for the motorized 

travelers. It is reasonable since the pedestrian/bicyclist should have longer travel time. Second, 

the variation of �̂� and 𝑡𝑚 is greater than that for motorized travelers (in terms of coefficient of 

variation). Such high variation might be due to the bi-modal vehicular traffic flow pattern (Gong, 

Abdel-Aty, & Park, 2019) at signalized intersections. The travel time of a vehicle forced to stop 

and waiting for the green phase is longer than that traveling through the intersection without 

stopping. Third, given that the mean RSSIs are similar for both classes, the variation of RSSI of 

the predicted motorized traveler is higher. It might be due to the sharp change of RSSI caused by 

the acceleration of stopped vehicles waiting for the green signal. A similar phenomenon is also 

found for 𝑅𝐶̅̅ ̅̅ . The variation of 𝑅𝐶̅̅ ̅̅  is higher for motorized travelers. Therefore, according to the 

statistics of the variables, the predicted pedestrian/bicyclist exhibits known characteristics of 

pedestrian/bicyclist while those predicted as motorized travelers do have similar behavior of 

motorized travelers.  
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Table 4 Statistics of variables describing the RSSI trajectories by class 

Variable Statistics Predicted Pedestrian/Bicyclist  Predicted Motorized Travelers 𝐶 Mean 14.35 4.39 
S.D. 19.38 5.74 �̂� 

 
Mean 89.91 15.55 
S.D. 54.25 22.11 𝑅𝑠𝑑 

 
Mean 4.12 2.63 
S.D. 3.48 3.17 �̅� 

 
Mean -72.83 -73.42 
S.D. 8.85 6.64 𝑅𝐶̅̅̅̅  

 
Mean 1.13 0.96 
S.D. 1.15 1.37 𝑡𝑚 

 
Mean 43.97 7.99 
S.D. 44.52 16.30 

 

Another interesting finding is that the predicted number of motorized travelers is 1.61 

times the average number of vehicles. According to the 2017 National Household Travel Survey 

(Federal Highway Administration, 2017), the average vehicle occupancy is 1.67. Although this 

study does not focus on estimating the counts of vehicular traffic as the extrapolation using 

occupancy is inevitable, such finding supports the validity of the model. 

Admittedly, this work has several limitations. First, the fundamental assumption of this 

work is that on average each person carries one BLE/Bluetooth Ordinary detectable device. It is 

valid for university campuses used as the case study and most of the urban environment of 

developed countries because of the popularity of smartphones and wearable devices1. However, 

for the area where the penetration rate of smartphones and/or wearable devices is not sufficiently 

high, the counts estimated by the proposed model should be adjusted by the penetration rate. 

 
1 The penetration rate of smartphones in the United States in 2019 is projected to be 79.1% according to a global mobile market survey (Newzoo, 

2019).  



55 
 

Second, Similar to other machine-learning-based models, the accuracy of simply transferring the 

model developed to another site is not guaranteed. 

4.5 Summary and Conclusion 

This Chapter developed a system estimating counts of pedestrians and bicyclists at 

intersections based upon a commercialized Bluetooth Low Energy traffic detection system. Since 

there are not any published studies assessing the performance of BLE based traffic detection 

systems, as part of the contributions, two evaluation experiments were conducted. The 

experiments confirmed that the detection rate of BLE based traffic detection system is 

sufficiently high for traffic counts studies and its detection zone is able to cover the whole 

intersection while reducing overestimation caused by the large detection range in comparison 

with other MAC address scanning sensors.  Thus, in general, it is feasible to employ BLE based 

traffic detection systems for traffic counts’ studies. 

A two-step framework is then proposed for identifying the pedestrians and bicyclists 

from stationary objects and motorized travellers. First of all, the stationary objects are filtered out 

depending on the length of time observed by the detectors. Then, a one-class support vector 

machine algorithm is employed to classify the pedestrians and bicyclists from the motorized 

travellers. The algorithm is trained by a local sample of historical labelled motorized travelers or 

pedestrians/bicyclists. This ensures the ability of the proposed framework to be applied in real-

time. 

The system was implemented at an intersection on the university campus to validate the 

accuracy. Manual count from the three-hour video was used as the ground truth. The one-class 
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support vector machine algorithm was trained by a sample of motorized travellers. The results of 

a ten-fold validation showed a promising performance. The average absolute percentage error in 

estimating counts of pedestrians and bicyclists is 6.35%. Thus, the proposed system could 

reasonably identify the pedestrians and bicyclists from the mixed-traffic environment. 

This study also concluded that compared to the traditional Bluetooth and Wi-Fi, BLE is 

more suitable for estimating the counts of pedestrians and bicyclists. It avoided the error incurred 

by the extrapolation of the raw detections due to its high detection rate.  

The proposed system is compatible with any other BLE based traffic detection systems as 

long as they provide RSSI values. However, practitioners should be cautious to apply this system 

to an environment with low BLE device penetration rate or directly transfer the model developed 

for another area. For the future work, the labelled bicyclists or pedestrian’s data would be 

collected, and the proposed system would be extended to have the ability to classify bicyclists 

versus pedestrians.  
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CHAPTER 5: A DECENTRAILIZED NETWORK LEVEL ADAPTIVE 

SIGANL CONTROL ALGORITHM BY DEEP REINFORCEMENT 

LEARNING 

5.1 Introduction 

As discussed in the previous chapter, the current studies of ATSCs based on DRLs have 

several potential issues such as 1) the effectiveness of network-wide signal control, especially for 

arterial networks, is not proven; 2) the traffic simulation scenarios and the benchmark used by 

the previous studies are unsatisfactory for the evaluation of the effectiveness in real-world 

application; 3) most of the existing DRL-based ATSCs assumes the complete information of 

traffic network is known which is not realistic in the field. To fill the gap, this study proposes a 

network-level decentralized adaptive signal control algorithm with limited known traffic 

information using one of the famous DRL methods, double dueling deep Q network (3DQN), in 

a MARL framework. It allows the coordination among adjacent intersections by sharing the 

information. The proposed algorithm was trained in a simulated suburban traffic corridor with 

the real-world roadway design. An AM peak traffic scenario is calibrated by the real-world 

demand and traffic data. Finally, it was evaluated by real-world coordinated actuated signal 

system whose configuration is provided by the local jurisdiction. 

5.2 Decentralized Adaptive Signal Control Algorithm Based on 3DQN 

In this study, a decentralized signal control problem is formulated into the standard 

MARL setting: each individual signal controller acts as an RL agent; the agent observes the 
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condition of the intersections as the state; the agent directly selects the appropriate phase every 

step as its action and the discrete signal performance metrics act as the reward (actually is the 

penalty) of the state-action pair; the long-run goal of the system is reducing the cumulative delay. 

The signal control agent coordinate with agents controlling its upstream and downstream 

intersections by sharing their state vectors with each other. A convolutional neural network 

(CNN) was used to build the 3DQN of the algorithm. The details of the algorithm are elaborated 

in this section. 

5.2.1 State Representation 

The state matrices are collected at every control step. In order for the controller to 

coordinate with other controllers, not only the condition of the intersection it controlled but also 

those of the upstream and downstream intersections are considered (3 intersections in total). Two 

aspects of the intersection condition are collected as the state: the current traffic state which the 

controller should “adaptive to” and the current signal phase. 

The proposed algorithm uses the detailed location of every vehicle occupying the roadway 

within a certain distance from the stop line to represent the traffic state. It is important not to use 

the locations of ALL vehicles within the network. Since in the field, traffic cameras used in 

many ATSCs are only able to capture vehicles close to the intersection. The widely used “virtual 

loop” (see Figure 7) concept in video detection is applied as well. The length of the virtual loop 

detectors in this study is 15 feet and the maximum number of loop detectors for each lane is 20 

(due to the length of turning storage bays, the number of “virtual loop” could be less than 20). 
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Then the algorithm converts the “virtual loop” actuations to a traffic state matrix. The traffic 

state matrices of all three intersections are stacked into one big matrix as an input of 3DQN. 

 

Figure 7 Traffic State Representation 

The current activated signal phase is also recorded as a part of the state. The signal phase 

is defined as the combination of two or more non-conflicting vehicular movements. Figure 8 

shows a typical eight-phase schema of a four-way intersection. An “interphase” refers to the 

clearance time including yellow time and all-red clearance. The current signal phase is coded as 

a vector with a length of n+1, where n is the number of phases of the signal. The last digit 

indicates whether the phase is interphase or not. Interphases are added between two phases as the 

clearance time including yellow time and all-red clearance. Note that the behavior of vehicles 

under yellow time has two phases depending on the “red percentage” defined.  It indicates the 
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percentage of yellow time the vehicles will consider as red light (Figure 9). Therefore, the 

representation of the current signal phase is coded as a vector with a length of n+1, where n is the 

number of phases of the signal. For example, when phase 1 is activated as green or the signal is 

not at the “red percentage” of the yellow time behind phase 1, the first element of the vector is 

set to 1 and all others are set to 0; when all-red phase was activated or the signal is at the “red 

percentage” of the yellow time, the last element is set to 1 and all others are set to 0. The traffic 

state matrices of all three intersections are also stacked into one big vector. 

 

Figure 8 Eight phases for four-way intersections 

 

Figure 9 “Red Percentage” of the Yellow Time 

5.2.2 Action Definition 

The action set of the algorithm is all legal phases of the particular signal. When the signal 

is not in the “interphase”, the algorithm selects an appropriate phase and send the phase to the 

controller. If a phase changing occurs, the controller will activate the “interphase” to clear the 
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intersection. In addition, a 3-second minimum duration of each phase is enforced in 

consideration of the reaction time. Note that the sequence of the phases would be flexible, and it 

is not likely for the phases to form a traditional signal “cycle”. 

5.2.3 Reward Definition 

For an RL problem, the reward should accumulate to the ultimate goal of the agent with a 

temporal discount. As for the adaptive signal controller, the goals could be minimizing the travel 

time of a vehicle, or the total delay, which theoretically is defined as the difference between the 

actual and expected travel times. However, it is unfeasible to get the travel time or total delay 

every discrete control step (e.g. every one second) since those measures are only available when 

the vehicle reaches its destination (e.g. every several minutes). Therefore, the cumulative waiting 

time of the vehicles in the queue (the dominant part of total delay), which could be monitored 

every control step, rather than the total delay was utilized as the goal indicator. And the reward is 

defined as the difference between the current and previous waiting times of all vehicles: 

𝑟𝑡  = −(𝑊𝑡+1 −  𝑊𝑡)                                                   (17) 

where  𝑊𝑡+1, 𝑊𝑡 are the waiting time of step 𝑡 + 1 and 𝑡. When the vehicle is queued, the agent 

will be penalized; when the vehicle waiting in the queue is discharged, the agent will be 

rewarded. 

However, getting the cumulative waiting time of every vehicle within a relatively large 

road network is computationally expensive. Hence, the reward is estimated for each step directly: 
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𝑟𝑡  = 𝑤𝑛𝑡𝑑 − 𝑛𝑡𝑞𝑡𝑠                                                   (18) 

where  𝑛𝑡𝑞 is the number of the queued vehicles at step t; 𝑡𝑠 is the step length; 𝑛𝑡𝑑 is the number 

of the vehicles discharged during step t; 𝑤 is an average waiting time of discharged vehicles. 

5.2.4 Deep Q Network Structure 

As mentioned in the last section, DQN uses DNNs as the functional approximator. The 

input of the DNN is the state and the output of it is the action. To extract valuable information 

from the big traffic state matrix, convolutional neural network (CNN), which is widely used in 

many pattern recognition problems such as image-processing, is used in this algorithm.  

CNN is a deep neural network composed by a sequence of three kind of layers: 

convolutional layer, pooling layer and fully-connected layer. Convolutional layer acts a 

“window” “scanning” across the big input matrix and extracts information of a local region; 

pooling layer performs a down sampling operation and fully-connected layer is a regular neural 

network layer which is typically one of the last few layers. Compared to the regular neural 

network, the CNN takes advantage of local spatial coherence in the input which allows it to have 

much fewer parameters, and therefore overcomes the overfitting issue and saves computational 

resources. 

The structure of CNN used in the proposed algorithm is shown in Figure 10. The traffic 

state matrix is filtered into a vector by two convolutional layers and two pooling layers. Then it 

is combined with the signal phase state vector as the input of the fully-connected layer.  The 

output vector of the fully connected layer is used to estimate state value and the advantage of all 
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actions. Finally, they are added up to get the Q-value. The Leaky Rectifier Nonlinearity Units 

(Leaky ReLU) (Maas et al., 2013) was applied as the activation function. Noticed that the size of 

layers varies for different intersections due to the different input sizes. 

Figure 10 Structure of the CNN used in the Algorithm 

5.2.5 Supervised Pre-Training 

In order to speed up the training process, the parameters of DNN θ are initialized by a 

supervised learning process instead of random initialization and exploration. During the pre-

training, the algorithm is forced to record the policy of a reasonable fixed-timing traffic signal, 

then updates θ based on learned policy. The main difference between the pre-training and 

training are: (1) the agent observes the action taken by the fixed-timing traffic signal rather than 

execute its own; (2) the reward is set to a constant value in order to update the θ. 

5.2.6 Overall Algorithm 

The pseudocode of the proposed algorithm is summarized in Algorithm 1. Note that 

during training, the number of steps to update the target network (frozen period) is increasing by 
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episodes to ensure the convergence. The algorithm is coded by Python programming language 

using deep learning modules Tensorflow (Abadi et al., 2016) 

 

Algorithm 1 3DQN for Decentralized Adaptive Signal Control 
  1:  Input: discount factor γ, greedy 𝜖𝑒, replay memory size M, minibatch size B,  
       number of episodes N, number of the steps in an episode T, starting number of steps to 
       update target network 𝑁𝑢𝑠; target network updating increment  𝑁𝑢𝑖 
  2:  Initialize primary network with pre-trained weights θ; 
  3:  Initialize target network with weights 𝜃− = 𝜃; 
  4:  for episode = 1 to N do : 
  5:      Initialize state 𝑠 as with the starting scenario at the intersection; 
  6:      Initialize state 𝑎; 
  7:      Initialize the reply memory m as empty; 
  8:      Initialize number of steps to update target network 𝑁𝑢: 𝑁𝑢 ← 𝑁𝑢𝑠;; 
  9:      for step = 1 to T do 
10:          The agent choose an action 𝑎 based on ϵ greedy; 
11:          The agent observe the current signal phase p; 
12:          if p is an interphase then 
13:              Assign action 𝑎′ of a lastest step with non-interphase to 𝑎: 𝑎 ←  𝑎′; 
14:          else if  𝑎 == 𝑝 then  
15:              Keep signal unchanged; 
16:          else 
17:              Determine and activate the appropriate interphase; 
18:          end if      
19:          The agent observes the reward 𝑟 and current state 𝑠′; 
20:          Store the experience (𝑠, 𝑎, 𝑟, 𝑠′ ) into m; 
21:          Assign 𝑠′ to 𝑠: 𝑠 ←  𝑠′; 
22:          if |𝑚| > 𝐵 then 
23:              Randomly sample 𝐵 experiences from m; 
24:              Calculate the loss 𝐽 by formula (3) (4); 
25:              Update θ by ∇𝐽 using Adam (Kingma & Ba, 2014) back propagation algorithm; 
26:              if step % 𝑁𝑢 == 0 then 
27:                  𝜃− = 𝜃; 
28:              end if 
29:          end if 
30:      end for 

31:      Update the number of steps to update target network 𝑁𝑢: 𝑁𝑢 = 𝑁𝑢 + 𝑁𝑢𝑖; 
32:  end for 
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5.3. Experiment and Evaluation 

The proposed algorithm was implemented in a simulated traffic network using a 

commercial traffic simulator Aimsun Next 8.2.3. The simulator provides a Python application 

programming interface (API) to get access to the coded ATSC algorithm. The algorithm gets the 

information from the simulated traffic and implements its control command to the simulated 

signal controllers. The simulated RL signal control agents were trained for certain episodes. 

After the training, its performance is evaluated by the real-world signal timings. 

5.3.1 Simulation Set Up 

To better examine the performance of the algorithm, the simulation scenario was built 

based on a real-world suburban traffic corridor in Seminole County, Florida. There is one 

limited-access freeway (SR 417) and several parallel or connected arterials (SR 426, Red Bug 

Lake Road, Slavia Road, West Chapman Road, and Dean Road) within the corridor. Figure 11 

shows the location of the corridor and Figure 12 illustrates the high-level abstract of the corridor 

including nodes IDs (signalized intersections, Origin/Destination centroids and ramp 

connections), connectivity between nodes and the length in miles of the links. The authors did 

their best effort to match the geometric design of simulation corridor with that in the real-world, 

although some inevitable minor modifications were done to fit in the available demand and 

traffic data. 

Along with the corridor, there are eight signals in total under control of the proposed 

algorithm. The detailed information about the number of lanes of each approach, whether there 
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are dedicated left-turning or right-turning lanes and the phase configuration is provided in Table 

5. Note that there are four signals among them which are connected with the on/off-ramp of the 

freeway, and therefore interact with the freeway traffic flow. All eight intersections are using 

coordinated actuated signal controllers and their timings are provided by Seminole County. 

These actuated signal controllers are used as the benchmark to evaluate the performance of the 

proposed algorithm. In addition, the length of the “interphases” used in the algorithm for each 

signal was the same as the summation of yellow and red clearance time of the real-world signal 

timing. 

Table 5 Information Regarding Signals under Control of the Algorithm 

Intersection 
ID 

Connected 
with Ramp 

Lanes of Approaches 
Number 

of Phases 
Legal Movement 

of Phases 
Aberrations 

1 Yes 
SB: 1*LR+1*R 
WB: 1*L+2*T 
EB: 3*T 

3 
ST (SL+SR) 
WL+WT 
ET+WT 

Approaches: 
NB: Northbound 
SB: Southbound 
WB: Westbound 
EB: Eastbound 
Movement of a 
lane: 
T: Trough 
L: Left turning 
R: Right turning 
LR: Shared left-
right turning 
Legal Movement of 
a Phase: 
First digit: 
Approach 
Second digit: 
Turning Movement 

2 Yes 
NB: 2*L+2*R 
WB: 3*T 
EB: 1*L+2*T 

3 
NT (NL+NR) 
ET+WT 
EL+ET 

3 No 
NB: 2*L+1*R 
WB: 2*L+2*T 
EB: 2*T+1*R 

3 
NT (NL+NR) 
WL+WT 
ET+WT 

4 No 
NB: 2*T+1*R 
SB: 2*L+2*T 
WB:  2*L+1*R 

3 
NT+ST 
SL+ST 
WT(WL+WR) 

5 No 
NB: 1*L+2*T 
SB: 2*T 
EB: 1*L+1*R 

3 
NL+NT 
ST+SL 
ET(EL+ER) 

6  No 

NB: 2*L+2*T+1*R 
SB: 2*L+2*T+1*R 
WB: 2*L+2*T+1*R 
EB: 2*L+2*T+1*R 

4 

NL+NT 
SL+ST 
WL+WT 
EL+ET 

7 Yes 
NB: 2*L+1*R 
WB: 3*T 
EB: 1*L+3*T 

3 
NT (NL+NR) 
WT+WL 
WT+ET 

8 Yes 
SB: 2*L+1*R 
WB: 3*T 
EB: 3*T 

2 
ST (SL+SR) 
WT+ET 

 



67 
 

 

Figure 11 Location of the Simulation Test Site 
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Figure 12 High-Level Abstract of the Test Corridor 
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In this study, the demand data of the AM peak hours (7:00-9:00) were used as the input to 

simulate the recurrent congestion situation. The daily Origin-Destination (O/D) matrices were 

extracted from Orlando Urban Area Transportation Study (OUATS) with the base year 2009, 

which is the most recent regional planning model available when the authors conducted the 

study. The 15-minute aggregated real traffic count data of January 18th, 2018 were utilized to 

estimate peak-hour O/D matrix from the raw daily O/D matrices. The real dataset was extracted 

from Microwave Vehicle Detection System where (MVDS) and Automated Traffic Signal 

Performance Measures (ATSPM) for the freeway and arterials, respectively. The two-hour 

aggregated matrix is provided in Table 7 for the readers’ reference. Static origin-destination and 

departure adjustment were applied to convert the two-hour O/D matrix to eight 15-minutes time-

dependent matrices based on the aforementioned real dataset. The simulation scenario is further 

calibrated by the traffic counts from the real dataset. One of the most important calibration 

metrics, the root mean square error between simulated counts and the real counts, is 4.7 vehicles 

per hour, which means the scenario is well calibrated. 

5.3.2 Training 

The algorithm is trained in episodes. One episode is one simulation replication with the 

aforementioned two-hour AM congested traffic. The goal of the algorithm is to minimize the 

total delay of the episode. The length of training and control step is one second. Therefore, there 

are 7200 training steps in one episode. The simulation replications were warmed up by 15-min 

real-world demand (6:45-7:00). To reduce the overfitting issue, even though the traffic demand 

of every episode is the same, its random state was set differently.  
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The signal timing used in the pre-training was generated by the maximum green time of the 

real-world actuated signal timing.  The initial and fined-tuned input hyper-parameters of the 

algorithm are shown in Table 7 

Table 6 Two-hour Aggregated O/D Matrix 

 

Table 7 Parameters Used in Algorithm 

Parameter Initial Value Fine-tuned Value 
Discount factor γ 0.99 0.999 
Ending greedy 𝜖𝑒 0.1 0.01 
Greedy decrement ϵ’ (if applicable) 0.001 0.0001 
Replay memory size M 2000 20000 
Minibatch size B 64 64 
Number of episodes N 20 20 
Number of the steps in an episode T 7200 7200 
Starting number of steps to update target network  𝑁𝑢𝑠 200 200 
Target network updating increment  𝑁𝑢𝑖 0 200 
Learning rate 𝛼 0.001 0.0001 
Leaky ReLU 𝛽 0.01 0.01 

 

Figure 13 visualizes the average waiting time per vehicle per mile for each training 

episode. The training episode 0 indicates the value of the pre-training. The curve shows that the 

average waiting time dropped dramatically after the first training episode and it was continuously 

O\D 101 102 103 104 105 106 107 108 109 110 111 201 202 Total 

101 0.00 0.00 0.00 149.98 157.33 226.87 0.00 84.43 90.20 45.75 23.93 839.48 297.32 1915.28 

102 0.00 0.00 4.18 2.19 4.25 15.01 0.00 22.63 1.87 1.49 1.32 0.00 24.27 77.21 

103 0.00 1.94 0.00 1.05 2.11 0.00 0.00 11.75 0.00 0.00 0.00 0.00 0.00 16.84 

104 121.92 1.01 9.91 0.00 0.72 5.81 16.21 6.26 12.12 24.46 0.00 122.68 11.10 332.21 

105 131.80 2.07 2.19 0.76 0.00 0.00 101.12 14.41 0.00 23.25 0.00 239.74 92.57 607.91 

106 241.04 20.30 10.48 7.42 0.00 0.00 219.88 0.00 0.00 8.75 0.00 0.00 129.16 637.03 

107 0.00 0.00 0.00 16.07 64.06 127.57 0.00 133.32 0.00 0.00 0.00 0.00 0.00 341.01 

108 139.11 3.09 4.33 1.79 3.93 0.00 53.76 0.00 0.00 6.11 0.00 324.96 39.59 576.67 

109 184.33 82.21 58.60 24.22 0.00 0.00 0.00 0.00 0.00 20.96 658.66 468.06 444.42 1941.45 

110 38.31 37.93 43.73 34.32 30.96 7.77 0.00 20.77 47.63 0.00 97.76 104.18 81.88 545.26 

111 15.76 0.00 0.00 0.00 0.00 0.00 0.00 0.00 193.43 68.33 0.00 71.30 238.01 586.83 

201 516.35 42.32 0.00 37.07 53.08 0.00 0.00 141.52 146.68 112.16 101.13 0.00 1782.95 2933.27 

202 291.61 0.00 0.00 29.38 71.51 91.16 0.00 115.26 188.36 68.13 274.68 1534.16 0.00 2664.24 

Total 1680.23 190.87 133.43 304.25 387.95 474.20 390.97 550.34 680.27 379.39 1157.47 3704.56 3141.26 13175.20 
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dropping until the 9th episode. During the last 10 episodes, the average waiting time fluctuates in 

a very small range which indicates the optimal policy was learned. 

 

Figure 13 Location of the Simulation Test Site 

5.3.3 Training Evaluation Results and Discussion 

To evaluate the performance of the proposed ATSC algorithm, both the well-trained 

algorithm and the real-world benchmark signal control were implemented in a simulation 

replication with the same random state. Three kinds of performance measures were observed in 

5-min aggregation intervals: average travel time per vehicle of all the vehicles traveling in the 

road network; average total delay (the difference between the actual and expected travel times) 

per vehicle per mile of the whole network. Figure 16 shows the performance measures by 

simulation time. 
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Figure 14 Performance of Proposed ATSC algorithm and Benchmark 

 During the whole simulation episode, the average travel time and average delay of the 

simulated network controlled by the proposed algorithm are less than those of the network 

controlled by the benchmark signal. On average, the proposed algorithm reduced 10.27% (4.26 

minutes versus 4.75 minutes) of travel time and 46.46% (11.27 second/mile versus 21.06 

second/mile) of the total delay. According to Figure 14, at the beginning of the simulation, there 

is no significant difference of performance between the two signal controls. However, as the time 

goes by, on the one hand, the performance of the benchmark is getting worse than that of the 

proposed algorithm. On the other hand, the performance of the benchmark fluctuates a lot while 
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that of the proposed algorithm remains stable. One possible reason is that at the beginning of the 

AM peak period the traffic volume remains at a low level and then it fluctuates a lot (see flow 

rate in Figure 14). This confirms that the algorithm well adapts to the changing traffic demand. 

However, given that the number of the stops remains at a low level, the proposed ATSC 

algorithm tends to increase the number of stops by 11.29% on average (0.31 versus 0.28). 

Interestingly, compared with the benchmark, the number of the stops remains at a relatively 

stable level when the network is controlled by the proposed algorithm. In previous studies, only 

Li et al. (L. Li et al., 2016b) evaluated the specific performance metrics but it was compared with 

the signal control based on conventional RL algorithm incorporating with a shallow neural 

network. Thus, it is not appropriate to use the result as the guidance of the field application. 

According to the careful examination of the algorithm during the simulation process, the length 

of the phases allowing through movement of major approaches are typically shorter than the 

benchmark. This ensures the fair travelling rights between major and minor approaches as well 

as through and turning movements by reducing the waiting time of vehicles queueing the minor 

approaches or left-turning bay. However, the side effect is that the vehicles travelling through the 

major approaches are forced to stop to yield the right of way. Although the result is always 

reasonable since reducing the number of stops is never the goal the algorithm. This trade-off 

should be taken into account by practitioners. 
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5.4. Conclusion 

This chapter proposes a decentralized adaptive signal control algorithm, in the context of 

network-level control, using one of the famous deep reinforcement learning methods, double 

dueling deep Q network. In the algorithm, for every individual intersection, a reinforcement 

learning agent controls the signals based on high-resolution real-time traffic data. It captures 

detailed locations of vehicles as the input, extracts relevant information by convolutional neural 

networks, and selects appropriate signal phases every second to reduce vehicles’ waiting time. 

To achieve better network performance, control agents are coordinated with each other by 

sharing the information regarding the traffic and signal state. 

The proposed algorithm was trained and evaluated in a simulated real-world suburban 

traffic corridor with eight signalized intersections in Seminole County, Florida. Travel demand 

of AM peak period was used in the simulation for the algorithm to reduce the recurrent 

congestion. The performance of the well-trained algorithm was compared with the real-world 

coordinated actuated signals of the corridor provided by the local jurisdiction. The evaluation 

results showed that the algorithm adapts well to the changing traffic demand. And it reduces 

10.27% of network travel time and 46.46% of network delay compared with the real-world 

benchmark.  
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CHAPTER 6: SATETY-ORIENTED ADAPTIVE TRAFFIC SIGNAL 

CONTROL WITH MULTI-OBJECTIVE REINFORCEMENT LEARNING 

6.1 Introduction 

As one of the most important Active Traffic Management (ATM) strategies, Adaptive 

Traffic Signal Control (ATSC) helps improve traffic efficiency of signalized arterials and urban 

roads by adjusting the signal timing in response to the dynamic traffic demand. However, the 

safety effects of state-of-practice ATSCs are not consistent. Some studies show that the 

installation of ATSCs reduces the number of crashes (Jiaqi et al., 2016; Khattak et al., 2018). 

While another study concludes that the crash frequency before and after the implementation of 

ATSCs is not significantly different (Fink et al., 2016). A study on traffic conflicts, which is one 

of the surrogate safety measures, even found that there is a considerable increase in both 

frequency and severity of conflicts following the installation of the ATSC (Tageldin et al., 2014). 

The mixed evidence raises the concern of ATSC’s safety impact.   

This study advocates designing an ATSC that is able to ensure or improve traffic safety, 

i.e., a safety-oriented ATSC. Several recent studies have found that signal timing is related to the 

crash occurrence at signalized arterials and intersections (Yuan et al., 2018, 2019b; Yuan & 

Abdel-Aty, 2018). By applying the models developed by the aforementioned studies, the safety-

oriented ATSC is able to reduce the crash occurrence by dynamically optimizing its signal 

timing in response to different traffic conditions. Moreover, the proposed safety-oriented ATSC 

could also serve as a strategy of pro-active traffic safety management to improve traffic safety of 
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arterials and urban roads like other ATM strategies (e.g. Ramp Metering and Variable Speed 

Limits) do for freeways (Abdel-Aty et al., 2006; L. Wang et al., 2017; Yu & Abdel-Aty, 2014). 

Although the safety-oriented ATSC aims at optimizing traffic safety, it should not be 

detriment to efficiency. Therefore, we proposed an ATSC system that utilizes a multi-objective 

framework to simultaneously optimize traffic efficiency and safety. A real-time crash risk model 

(Abdel-Aty et al., 2004) is applied to generate the indicator of near-future crash likelihood. The 

multi-objective reinforcement learning algorithm is used for optimization. The proposed 

algorithm was tested in a simulated real-world isolated intersection. Its performance in terms of 

delay and crash risk reduction was compared with a replicated field controller and an ordinary 

ATSC optimizing only traffic efficiency. A discussion about the control policy of the proposed 

safety-oriented ATSC and the potential impact of different signal configuration is also provided. 

6.2 Background: Real-Time Crash Risk Models 

The first step of optimizing the signal timing for traffic safety is understanding how they 

are correlated. In the pro-active perspective, the impact of a specific signal timing on the future 

crash potential needs to be quantified. Recently, researchers (Yuan et al., 2018, 2019b; Yuan & 

Abdel-Aty, 2018) have proposed real-time crash risk models to examine the relationships 

between future crash potential and traffic conditions including signal timing. The basic 

assumption underlying real-time crash risk models is that there exist certain conditions that are 

relatively more “crash-prone” than the others, which could be called “crash precursors”. For 

example, conditions that are just before the crash occurrence would be regarded as “crash 

condition”. By comparing the characteristics of “crash conditions” with “non-crash conditions”, 
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crash precursors could be identified. Like other binary classification models, the output of real-

time risk models indicates the forecasted crash potential. It could be the probability of the crash 

or the odds of crash versus non-crash. Similar to the efficiency measures like delay, the 

forecasted crash potential could be directly employed by “predictive/pro-active” controllers to 

assess the future safety effect of a candidate signal timing in real-time. 

6.3 Algorithm 

In this study, the control problem is formulated into the MORL setting: the signal 

controller acts as an RL agent; it observes the traffic condition of the intersection and the current 

signal status as the state; it directly selects the appropriate phase as its action; the waiting time of 

vehicles acts as the efficiency reward while the risk score derived from the real-time crash risk 

model acts as the safety reward; and the goals of the agents are reducing the delay (efficiency) 

and future crash potential (safety). Weighted sum approach is selected to develop a single policy 

MORL and one of the famous deep reinforcement learning algorithms Double Dueling Deep Q 

Network (3DQN) is utilized as the backend learning algorithm. The details of the algorithm are 

elaborated on in the subsections below. 

6.3.1 State 

The state used in this chapter is the same as the ones used in Chapter 5. 
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6.3.2 Action 

The action of the agent is selecting the appropriate signal phase at each time interval 

based on the current policy. If a phase changing occurs, the controller will activate the interphase 

to clear the intersection.  

Several other rules are applied to restrict the arbitrary selection of actions to ensure traffic 

safety and overcome some fundamental limitations of RL-based ATSC: 

1) Ensure minimum green time (𝑔𝑚𝑖𝑛):   the minimum green time concept is used in 

actuated signal control to satisfy the driver’s expectation (Arroyo et al., 2015). If a minimum 

green time is set too low (or even omitted) and violates the driver’s expectation, there exists a 

risk of increased rear-end crashes. Therefore, the controller is configured not to allow the change 

phase if the minimum green time is not satisfied. The values of minimum green times are set to 

be the same as the ones used in the field to avoid double investigation. However, if there is no 

existing signal control, the values should be set based on the local traffic signal timing manual. 

2) Default phase (𝑝0): If there is no vehicle at the intersection, theoretically the RL-based 

ATSC randomly selects a phase to activate during the learning stage. This is detrimental to both 

traffic efficiency and safety. Therefore, a default phase that represents the major approach 

through movements is set to avoid the random phase changes. 

 3) Maximum allowed waiting time (𝑡𝑚𝑎𝑥𝑤𝑎𝑖𝑡𝑖𝑛𝑔): The benefit of setting a maximum 

allowed waiting time is ensuring fair travel rights. Consider an extreme case. There is only one 

vehicle waiting on the minor approach to turn left, while there are one hundred vehicles that are 

waiting on the major approach going through. As one of the objectives of ATSC is reducing the 

TOTAL delay, the controller would favor clearing the major approach, which results in 
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excessively long waiting time for the vehicle on the minor approach. Therefore, a maximum 

allowed waiting time is configured to prevent the occurrence of such a situation. 

6.3.3 Reward 

Two rewards are designed for traffic efficiency and safety. As for the efficiency, the goal 

is minimizing the travel time of a vehicle, or the delay, which theoretically is the difference 

between the actual and expected travel time. However, it is not feasible to obtain the travel time 

or delay as they are only available when the vehicle reaches its destination. Thus, the cumulative 

waiting time of the queued vehicles is used as the goal indicator. The reward representing the 

traffic efficiency is defined as the difference of the current and previous cumulative waiting time 

of all vehicles. 

As for safety, a risk score is utilized to indicate the relative risk level. The score is 

calculated using a real time crash risk model calibrated based on the local historical crashes and 

traffic data. As the score is site-specific, its calculation process varies for different kinds of 

intersections, different locations, and different interests of the users. Other surrogate safety 

measures that imply the future crash risk could also be used as the “risk score”.  

In this study, the reward for safety is defined as the adjusted risk score by a baseline: 𝑟𝑡𝑠  = {𝑟𝑖𝑠𝑘𝑠𝑐𝑜𝑟𝑒𝑡 − 𝑟𝑖𝑠𝑘𝑠𝑐𝑜𝑟𝑒𝑏𝑎𝑠𝑒       𝑤ℎ𝑒𝑛  𝑟𝑖𝑠𝑘𝑠𝑐𝑜𝑟𝑒 𝑖𝑠 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 0   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                     (19) 

where  𝒓𝒊𝒔𝒌𝒔𝒄𝒐𝒓𝒆𝒕 is the risk score at timestamp t and 𝒓𝒊𝒔𝒌𝒔𝒄𝒐𝒓𝒆𝒃𝒂𝒔𝒆 is a baseline risk score 

calculated during the pre-training. It should be noted that the risk score might not be generated at 

every control step.  In this case, the risk reward acts as a “delay” reward. 
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The reward could be interpreted as an “advantage”: when the reward is positive, the 

safety performance is better than the baseline, which means that the agent will be rewarded; 

otherwise, the agent will be penalized. Defining the reward as an advantage term accelerates the 

learning process as it helps the agent to find the direction. 

It should be also noted that the rewards for traffic efficiency and safety are used to direct 

the training process. Once the control agent is well-trained, such rewards are no longer needed 

during the operation. 

6.3.4 Weighted Sum Approach for Single Policy MORL 

Weighted sum approach (Karlsson, 1997), one of the single policy MORL algorithms, is 

selected due to its computational efficiency since the multi-policy algorithms are computational 

intractable for the ATSC problems. It computes a linearly weighted sum of Q-values for all the 

objectives to obtain a synthetic Q function: 

                                         𝑆𝑄(𝑠, 𝑎) = ∑ 𝑤𝑖𝑄𝑖(𝑠, 𝑎)𝑁𝑖=1                                                    (20) 

where 𝑆𝑄(𝑠, 𝑎) is the synthetic Q value; 𝑄𝑖(𝑠, 𝑎) is the Q value of the ith objective;  𝑤𝑖  is the 

weight, it implies the relative importance of the specific ith objective. The weights could be pre-

configured by the algorithm developers or be determined by the users. 

 In this study, the synthetic Q value is the weighted sum of the normalized Q values: 

                            𝑄(𝑠, 𝑎) = 𝑤𝑒 𝑄𝑒(𝑠,𝑎)−𝑄𝑒,𝑚𝑖𝑛(𝑠,𝑎)𝑄𝑒,𝑚𝑎𝑥(𝑠,𝑎)−𝑄𝑒,𝑚𝑖𝑛(𝑠,𝑎) + 𝑤𝑠 𝑄𝑠(𝑠,𝑎)−𝑄𝑠,𝑚𝑖𝑛(𝑠,𝑎)𝑄𝑠,𝑚𝑎𝑥(𝑠,𝑎)−𝑄𝑠,𝑚𝑖𝑛(𝑠,𝑎)                        (21) 

where 𝑄(𝑠, 𝑎) is the synthetic Q value used to evaluate the actions; 𝑄𝑒(𝑠, 𝑎) and  𝑄𝑠(𝑠, 𝑎) is the 

Q value of traffic efficiency and traffic safety, respectively. Two Q values are normalized to the 

same magnitude by the min-max method since the rewards and Q values of the two objectives 
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have a huge difference in terms of the magnitude. 𝑄𝑖,𝑚𝑖𝑛(𝑠, 𝑎) and 𝑄𝑠,𝑚𝑖𝑛(𝑠, 𝑎), 𝑖 ∈ [𝑒, 𝑠] are the 

minimum and maximum values of the two Q values estimated from the pre-learning. 𝑤𝑒 and 𝑤𝑠 

are the weights.  

6.3.5 Backend Learning Algorithm 

The proposed ATSC utilizes Double Dueling Deep Q Network (3DQN), one of the 

advanced Q-value-based deep learning algorithms, as its backend algorithm. 3DQN uses DNNs 

as its functional approximator. In this study, the convolutional neural network (CNN), one of the 

DNNs widely used in pattern recognition, is employed to construct the functional approximator. 

The structure of CNN used in the proposed algorithm is similar to the one used in the Chapter 5. 

CNN takes the state as the input and outputs the Q values of all actions. It should be noted that 

the functional approximators of two Q values have the exact same structure but are trained 

separately. 

6.3.6 Pre-Training 

According to the design of the algorithm, there are two pre-requests for learning: first, 

getting the baseline risk score to derive the safety reward; second, getting the estimated range of 

the Q values to obtain normalized Q-values. Therefore, a two-phase pre-training is designed.  

The objective of the first phase of the pre-training is to find out the baseline risk score. 

Since the risk score is a relative measure and site-specific, it is impossible to find a “best” risk 

score. Thus, the hourly-average risk score of a benchmark scenario, which is used to evaluate the 
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proposed algorithm, is utilized. It means that the control agent is “directed” to perform better 

than the benchmark signal controller does.  

To estimate the range of Q-values, at the second phase of the pre-training, the control 

agent is asked to learn the exact policy of the benchmark signal controller or another reference 

controller if necessary. During the pre-learning, the agent observes the action taken by the 

benchmark controller rather than taking actions based upon its own policy and update the hyper-

parameters of the functional approximator. The minimum and maximum of Q values generated 

by functional approximator during the learning course are recorded to get the estimated range of 

the Q values. It should be noted that as the baseline controller is not exactly the same as the 

optimal controller, the range of Q values of those two controllers might have a subtle difference. 

Therefore, there exists a dilemma that while it is impossible to know the range of Q values of the 

optimal policy before learning, without knowing the range of the Q values, it is impossible for 

the MORL agent to learn the optimal policy. Thus, a compromise could be achieved by using the 

reference controller if the baseline controller is not close enough to the optimal controller. 

6.3.7 Overall Algorithm 

The flow chart of the proposed algorithm is presented in Figure 15. The algorithm is 

coded by Python programming language using deep learning package Tensorflow (Abadi et al., 

2016). 
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Start
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Pre-learning stage II: find out min and max 
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Figure 15 ATSC Algorithm flow chart 
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6.4 Case Study 

The proposed algorithm was tested in a simulated isolated intersection using a 

commercial traffic simulator Aimsun Next 8.3.0. The algorithm obtains the information from the 

simulator and implements its control policy to the simulated signal controllers. The simulated 

MORL agents were trained extensively. The performance of the well-trained agent is evaluated 

by the real-world signal timings and compared with an RL based ATSC optimizing only traffic 

efficiency (ATSC-SORL). 

6.4.1 Simulation Set Up 

The simulation scenario was built based on a real-world signalized intersection of North 

French Avenue (major arterial) and West 1st Street (minor arterial) in Seminole County, Florida. 

The intersection is a typical mid-size four-way intersection with moderate traffic volume. Figure 

18 shows the lane configuration of the approaches of the intersection. Right turns are permitted 

on red after a complete stop at the stop line, and the left-turns of the east-west approaches are 

configured as permitted-protected. In this study, the lane-based counts of all Tuesdays, 

Wednesdays, and Thursdays from January 2018 to March 2018 were extracted from the 

Automated Traffic Signal Performance Measures (ATSPM) system. Then the average counts for 

every 15 minutes are used to approximate the turning movement counts for a “normal weekday”. 

Then they serve as the travel demands of the intersection. It should be noted that for the shared 

through-right-turning lane, the percentage of right turning is set as 30%. As for the eastbound, as 

there exists a dedicated right-turning lane, the actual right turning volume is used.  
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Figure 16 Lane configuration of the simulated intersection 

Figure 17 15-minutes counts of all approaches 



86 
 

Figure 17 shows the 15-minutes counts for all four approaches. It shows that the  

North-South approach is the major approach. The large volume of eastbound is caused by the 

right-turning vehicles using the dedicated right-turning lane. 

In the field, the intersection is controlled by a coordinated actuated signal controller. In 

this study, a simulated controller using the timings provided by Seminole County is employed to 

replicate the field controller and serves as the benchmark (BC). The benchmark signal timing 

includes three Time of Day (TOD) plans for coordination and the signal runs fully actuated 

during the nighttime. Figure 20 shows the splits of TOD plans and max/min green time when the 

signal is fully actuated. The yellow time is five seconds and the all-red clearance time is two 

seconds. Another ATSC controller developed using a single objective RL algorithm (ATSC-

SORL) (Gong, Abdel-Aty, Cai, et al., 2019), which aims at only optimizing traffic efficiency, is 

also used for comparison. 

Figure 18 Benchmark signal timing 
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6.4.2 Real-time crash risk model 

In this study, a real-time crash risk model is developed to forecast the crash odd in the 

next 5-10 minutes. The forecasted crash odds are used as the “risk score” to generate “safety 

reward”.   

 As mentioned earlier, the real-time crash risk model is a binary classification problem, 

thus a binary logistic model is naturally preferred. If a crash occurred under certain conditions, 

the condition is classified as “crash” and vice versa. Suppose the “crash” case has the outcomes 𝑦𝑖 = 1 and 𝑦𝑖 = 0 with the respective probabilities of 𝑝𝑖 and 1 − 𝑝𝑖 , 𝑖 = 1, 2, … 𝑀. 𝑀 represents 

the total number of samples. The binary logistic regression can be expressed as: 

                                                   𝑦𝑖~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝𝑖)                                                        (22) 

                             𝑙𝑜𝑔𝑖𝑡(𝑝𝑖) =  𝛽0 + 𝛽1𝑋1𝑖 + 𝛽2𝑋2𝑖 + ⋯ + 𝛽𝐾𝑋𝐾𝑖                                (23) 

where 𝛽0 is the intercept, 𝜷 = (𝛽1, 𝛽2, … , 𝛽𝐾) is the coefficients vector, and 𝑿𝒊 = (𝑥1, 𝑥2, … , 𝑥𝐾) 

is the independent variable vector for the ith observation.  

Similar to the previous study by Yuan et al. (2019b), the direct output of the binary 

logistic model is the predicted log crash odd of vehicles entering the intersection from a specific 

approach. As the number of crashes that have occurred at the test intersection is not sufficient to 

develop the model, crashes that have occurred in Seminole County, the same jurisdiction as the 

test intersection, were used. In total, data of 349 crashes from January 2017 to April 2018 were 

collected from Signal Four Analytics. These crashes occurring within the intersection area and 

the at-fault drivers were not under the influence of alcohol and drugs. Traffic data and signal 

timing logs of the intersections where crashes have occurred were extracted from ATSPM for a 

period of 10 minutes (divided into two 5-minutes time slices: slice 1 is 0-5 minutes and slice 2 is 
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5-10 minutes) prior to the crash occurrence. The data of different approaches were labeled using 

the same nomenclature as a previous study (Yuan and Abdel-Aty, 2018). The predicted approach 

is named as “A” approach, which is the traveling approach of the at-fault driver. “B”, “C” and 

“D” approaches are labeled following a clockwise sequence (please refer to Yuan and Abdel-aty, 

2018 for more details). Since the crashes are rare events, the “non-crash” events are randomly 

sampled to generate a balanced dataset. In this study, 3215 “non-crash” events and 349 “crash” 

events were collected to calibrate the final model. 

Table 8 shows the modeling results. The model estimation results show that the future 

crash potential at signalized intersections is affected by various factors that are collected from the 

four approaches, including the green ratio from A approach, through volume from C approach, 

arrive on green from D approach, etc. These results indicate that the crash odd is represented by 

the complicated interactions between signal timing and vehicle arrivals.  

As the value outputted by the model is the predicted “risk score” for one approach, the 

final “risk score” of the whole intersection is defined as the average “risk score” of four 

approaches. 

The risk score is calculated every minute using a rolling horizontal approach. For 

example, at 19:00, the model uses data from 18:50 to 19:00 to forecast the crash likelihood from 

19:05 to 19:10; at 19:01, data from 18:51-19:01 is used to forecast the crash likelihood from 

19:06 to 19:11.  Because the control step is typically several seconds, the risk score might not 

change between two control steps. In this case, the safety reward derived by the risk score act as 

a “delayed” reward. 
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Table 8 Results of the Real-Time Crash Risk 

Variable Coefficient 
Standard 

Error 
P-Values Nomenclature  

Intercept -2.095 0.410 0.000* Prefix(approach label): A/B/C/D 
Turning Movement 
LT: Left turning; TH: Through 
Variable Type: 
AOG: Number of vehicles arrived at 
the intersection on green 
GR: Ratio of the green time within 5-
minute 
Suffix(time slice): S1/S2  
Example: (A_ TH _AOG_S1): Number 
of through vehicles arrived at the 
intersection on green of approach A 
(predicted approach) at the time slice 
1(0-5 minutes before the crash 
occurrence) 

A_LT_GR_S1 1.790 1.048 0.087** 
A_TH_AOG_S1 0.003 0.002 0.076** 
A_TH_GR_S2 -2.302 0.702 0.001* 
B_TH_GR_S2 -2.085 0.705 0.003* 

C_LT_AOG_S2 -0.018 0.010 0.068** 
C_TH_AOG_S1 0.007 0.002 0.000* 
C_TH_GR_S1 -2.167 0.624 0.001* 
C_TH_GR_S2 2.938 0.720 0.000* 
C_TH_Vol_S1 0.014 0.007 0.039* 

D_LT_AOG_S1 0.008 0.003 0.007* 
D_TH_AOG_S1 -2.229 0.972 0.022* 

D_TH_GR_S1 1.786 0.920 0.052** 

6.4.3 Algorithm Setting 

Table 9 provides the algorithm setting. In general, the algorithm imitates the safety-

related setting of the benchmark signal as much as possible. Moreover, the importance of traffic 

safety and efficiency was set to be equal.   

The first phase of the pre-training was conducted using the benchmark signal controller, 

while the reference controller in the second phase of the pre-training is the ATSC-SORL 

controller. 
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Table 9 Parameters Used of  the Algorithm 

Parameter Value Description Note 𝑁𝑎 8 Number of actions  Number of phases 𝑔𝑚𝑖𝑛 
10 seconds (6:30-21:00) 

6 seconds(otherwise) Minimum green time 
 𝑡𝑦  5 seconds Yellow time  Same as benchmark 𝑡𝑎𝑟 2 seconds All-red clearance time  𝑝0 NT/ST Default phase Major approach through 𝑡𝑚𝑎𝑥𝑤𝑎𝑖𝑡𝑖𝑛𝑔  180 seconds 

Maximum allowed 
waiting time 

 

𝑤𝑒 0.5 
Weight of the efficiency 
objective 

 

𝑤𝑠 0.5 
Weight of the safety 
objective 

 

γ 0.99 Discount factor  𝜖𝑒  0.9999 Ending greedy  To avoid oscillation 
M 20000 Replay memory size  Roughly tuned 
B 64 Minibatch size 𝑙𝑟 0.00005 Learning rate   𝑡𝑡𝑟𝑎𝑖𝑛 1 second length of training step Same as control step 

6.4.4 Results 

To evaluate the performance of the proposed multi-objective ATSC algorithm, the well-

trained control agent (ATSC-MORL), the benchmark controller (BC) and the single objective 

controller (ATSC-SORL) were implemented for 30 simulation days. Three kinds of performance 

measures were observed: average daily delay per vehicle, average daily number of stops per 

vehicle and the average daily intersection crash risk score. Table 10 shows the average daily 

performance of the 30 simulated days. 

Table 10 Average Daily Performance of the Controllers 

Controller Efficiency Safety  
(Risk Score) Average Delay (sec) Number of Stops 

BC 26.395 0.703 0.045 
ATSC-SORL 13.434 0.691 0.072 
ATSC-MORL 19.550 0.615 0.041 
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According to the Table 10, compared to the BC controller, ATSC-MORL controller 

reduced average daily delay of by 25.93% (26.395 seconds versus 19.550 seconds), average 

daily number of stops by 12.52% (0.703 versus 0.615) and the average daily crash risk score by 

8.89% (0.045 versus 0.041). Compared with the ATSC-SORL controller, the ATSC-MORL did 

improve traffic safety and reduced the number of stops while increasing travel time. 

Interestingly, while the ATSC-SORL reduces the delay dramatically (49.1%) comparing with the 

benchmark, it does increase the crash likelihood.  

The performance of the three controllers at different times of day was also investigated. 

Figure 19 shows the change of performance measures in 15-min aggregation intervals. Although 

ATSC-MORL performs well in most situations, there exist certain conditions that ATSC-MORL 

performs worse than the benchmark. First, ATSC-MORL tends to increase the average delay per 

vehicle dramatically when the traffic demand is extremely low (23:00-06:00, please refer to Fig 

3 for the demand). However, ATSC-MORL is able to reduce the delay when the traffic demand 

is medium to high. This is completely opposite to the benchmark controller. It is not supersizing 

as the goal of the RL-based ATSC is optimizing the total delay throughout the day; therefore, 

increasing the delay of a small number of vehicles while reducing the delay of a large number of 

increases the average number of stops per vehicle when the traffic demand is low. 

Second, the ATSC-MORL failed to reduce the crash likelihood when the volume is close 

to zero (01:30-04:30). While admittedly, its objective is optimizing the risk score throughout the 

day, the causation needs to be further investigated. 

In conclusion, the proposed ATSC-MORL based ATSC is able to improve both traffic 

efficiency and safety compared with the existing field controller. As traffic safety and efficiency 
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are likely to be competing objectives, if the ATSC does not consider traffic safety, it might lead 

to potential safety issues. 

 

Figure 19 15-minutes aggregated performance measures of the controllers 
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6.5 Discussion 

6.5.1 Control Policy Analysis: Opening the “Black Box” 

Machine learning algorithms are criticized for their lack of interpretability, which is often 

referred to as the “Black Box” metaphor. While the vast majority of studies on RL-based ATSC 

showed their superior performance than traditional signal controllers, little attention has been 

given to illustrate how they achieve it. We would like to open the “Black Box” by analyzing the 

“optimal policy” of RL-based controllers on the test intersection. Especially there exist certain 

conditions that RL-based ATSC performs worse than the benchmark in terms of traffic safety. 

The analysis might not be comprehensive, but rather provides some insights for researchers and 

practitioners.    

Several terms were defined to help control policy analysis: 

Signal group: The set of turning movements that are controlled by the same traffic signal 

indications. For example, in this study, the northbound through movement and the northbound 

right-turning movement are controlled by the same set of signal indications. These two turning 

movements belong to the same signal group NT. Each phase could have a set of non-conflicting 

signal groups. 

Signal group green interval length: The length of the time interval that the indication of a 

signal group is green (short for length in Table 11) 

Green ratio: Ratio of the total signal group green interval length within a specific time 

interval (e.g. 15 minutes).  
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Table 11 Statistics of Green Interval Length, Activated Times and Green Ratio of Signal Groups 

Controller 
NL NT 

Length 
Activated 

Times 
Green 
Ratio 

Flow 
(pdpl) Length 

Activated 
Times 

Green 
Ratio 

Flow 
(pdpl) 

BC 9.55 702 7.8% 
3379 

45.30 1153 56.8% 
6431 ATSC-SORL 8.49 1443 12.4% 17.48 2024 40.9% 

ATSC-MORL 6.39 1133 8.2% 37.02 1662 70.5% 

Controller 
SL ST 

Length 
Activated 

Times 
Green 
Ratio 

Flow 
(pdpl) Length 

Activated 
Times 

Green 
Ratio 

Flow 
(pdpl) 

BC 7.15 248 2.2% 
340 

29.68 1272 41.6% 
3251 ATSC-SORL 11.63 427 6.8% 7.94 2442 20.9% 

ATSC-MORL 6.41 136 1.2% 25.22 1881 52.1% 

Controller 
EL ET 

Length 
Activated 

Times 
Green 
Ratio 

Flow 
(pdpl) Length 

Activated 
Times 

Green 
Ratio 

Flow 
(pdpl) 

BC 10.41 655 9.0% 
632 

9.91 912 10.2% 
1614 ATSC-SORL 8.21 1137 9.0% 7.90 1178 8.5% 

ATSC-MORL 7.12 730 6.6% 6.27 851 6.5% 

Controller 
WL WT 

Length 
Activated 

Times 
Green 
Ratio 

Flow 
(pdpl) Length 

Activated 
Times 

Green 
Ratio 

Flow 
(pdpl) 

BC 8.49 521 5.5% 
532 

8.66 763 7.6% 
787 ATSC-SORL 10.38 1567 17.6% 10.26 1540 17.7% 

ATSC-MORL 7.20 725 7.6% 6.96 752 6.5% 
 

Table 11 presents the average length, the average green ratio, and the activated times of 

each turning movement. The daily traffic flow per lane is also provided as a reference. Figure 20 

illustrates the average 15-minutes-aggregated green ratio for each signal group. In terms of 

efficiency, RL-based ATSCs (ATSC-SORL and ATSC-MORL) which have better performance 

exhibits shorter green intervals. In other words, they change the phase more frequently. For an 

isolated intersection, given that the queue is cleared, shorter green intervals reduce the waiting 

times of vehicles on approaches whose signal indications are red. This might lead to the delay 

reduction of the RL-based ATSCs.  
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Figure 20 15-minutes aggregated green ratios of the controllers 



96 
 

As for traffic safety, ATSC-MORL and BC whose risk score are less than that of ATSC-

SORL favor the major approach through movement (NT-ST). More specifically, for ATSC-

MORL, the green ratio of the NT signal group (with the highest flow) is significantly larger 

while the green ratio of the SL signal group (with the lowest flow) is significantly smaller. One 

possible explanation is that such a policy reduces the probability of the occurrence of conflicts 

with the least sacrificing of traffic efficiency. Consider an extreme case. If the southbound left-

turning is completely prohibited, the conflict points with northbound through movement and 

east-west approaches are eliminated. Since the flow of southbound left-turning is lowest among 

eight signal groups, prohibiting it would not lead to a huge increase of delay. However, a legal 

turning movement could not be prohibited if there exists demand, therefore, a compromise is 

achieved by reducing the activation of the SL signal group. The assumption could also reveal the 

reason why the ATSC-MORL performs worse when the volume is close to zero. In such 

conditions, the green ratio of ATSC-MORL is actually less than that of the benchmark. 

To support the assumption, a hypothetical coordinated actuated signal controller (AD) is 

created by adjusting the benchmark controller. From 6:30 to 21:00, the length of SL phase was 

reduced to the minimum green time (six seconds) while the length of NT phase was increased 

accordingly. Table 12 shows the average daily performance of the AD controller during 30 test 

simulated days. It is not surprising that the average delay is higher than the BC as the southbound 

left-turning movement was intentionally delayed without the remedy of ATSC. This might also 

imply that traffic safety and efficiency are competing objectives. The risk score is significantly 

less than the BC controller and even a little bit less than the ATSC-MORL controller. The green 

ratio of SL signal group of AD controller is actually 1.1%, which is less than that of ATSC-
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MORL controller. Therefore, the aforementioned assumption could be regarded as the abstracted 

knowledge learned by the RL-agent and it could be transferable to a different type of signal 

controller.  

Table 12 Groups Average Daily Performance of the Adjusted Controller 

Controller Efficiency Safety 
(Risk Score) Average Delay (sec) Number of Stops 

BC 26.395 0.703 0.045 
ATSC-MORL 19.550 0.615 0.041 

AD 31.423 0.648 0.039 
 

The result of the control policy analysis of simulated RL-based ATSCs could also serve 

as a reference for improving the existing signal control system if the infrastructure in the field is 

not ready to adopt RL-based ATSCs. However, as the proposed RL-based ATSCs are site-

specific, if it is transferred to other locations, it is recommended to re-train it in a traffic 

simulation that replicates local traffic conditions.  

6.5.2 Other Considerations of the Signal Settings 

ATSCs improve traffic efficiency and/or safety by dynamically adjusting the signal 

timings. However, other signal settings beyond the timing parameters are also known to have 

impact on either efficiency or safety. Two tests were conducted to investigate how these factors 

influence traffic efficiency and/or safety.    

Coordinated versus Non-coordinated 

 As there are no universally accepted rules to select the benchmarking controller, this 

study chooses to use a signal controller that replicates the field one. One might find that the field 
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controller is designed for coordination yet this study focuses on an isolated intersection. 

Therefore, the performance of another hypothetical controller (HAC) that runs fully actuated 

throughout the day was compared with BC and ATSC-MORL (Table 13). The timing of the 

HAC was set as the same as BC when it runs fully actuated to avoid reevaluating safety-related 

timing parameters (such as minimum green time and passage time). According to Table 13, the 

performance of ATSC-MORL is better than HAC in terms of both traffic efficiency and safety, 

which further confirms the superiority of ATSC-MORL. Compared with coordinated BC, HAC 

reduces delay yet increases the number of stops. It is expected as the objective of coordination is 

to reduce the stops of the major approach through movement. 

Permissive versus protected left-turn 

 It is well known that the protected left-turning is safer than permissive/permissive-

protected left-turning yet is more detrimental to traffic efficiency. An interesting test scenario 

was developed to investigate the outcome if the permissive-protected left-turning of the east-west 

approach was changed to protected. Another multi-objective RL-agent (ATSC-MORLP) was 

trained under such conditions. According to Table 13, ATSC-MORLP created excessive delay as 

it prohibits permissive left-tuning. However, it did reduce the risk score comparing with ATSC-

MORL (see also Figure 21), especially when the risk score is relatively high (from 15:00-19:00). 

This might imply that if the current crash risk is high, prohibiting permissive left-turning 

temporarily might be a potential solution. 
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Table 13 Average Daily Performance of the Other Tested Controllers 

Controller Efficiency Safety 
(Risk Score) Average Delay (sec) Number of Stops 

BC 26.395 0.703 0.045 
ATSC-MORL 19.550 0.615 0.041 

HAC 20.045 0.729 0.051 
ATSC-MORLP 28.068 0.672 0.040* 

* a paired T-test was conducted using the data of 30 simulated days to investigate whether the average 
risk scores are statistically significantly different between ATSC-MORL controlled scenarios and 
ATSC-MORLP controlled scenarios. The results showed that the difference is statistically significant at 
0.0001 level. 

 

Figure 21 15-minutes aggregated risk score of the controllers 

6.5.3 Hybrid Controller: A Better Solution 

For any practical problems, there is always a trade-off between computational efficiency 

and algorithm’s performance. While the weighted sum approach used in this study is 

computationally inexpensive, it is not guaranteed to be Pareto-optimal (Vamplew et al., 2008). 

Specifically, the ATSC-MORL controller performs worse than the BC controller does when the 
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travel volume is extremely low. Therefore, a hybrid controller that changes its backend algorithm 

based on the traffic volume might have better performance.  

A simple hybrid controller (HS) was proposed based on the local condition to test the 

feasibility of aforementioned concept. When the sum of 15-minute-flow-rates of all turning 

movements are below 150 vehicles per hour per lane, HS employs BC algorithm. Otherwise, HS 

employs ATSC-MORL algorithm. This eventually leads to a time-of-day-plan-like controller. 

From 0:00 to 5:00, BC is activated while ATSC-MORL is activated from 5:00-24:00. Table 16 

shows the performance of HS controller compared with BC and ATSC-MORL controller. The 

HS controller slightly reduces the delay by 5.1% and reduces the average risk score by 2.5% 

compared with ATSC-MORL. The 15-minutes performance curve is not provided as the 

performance curve of HS is identical to the activated backend algorithm. 

Table 14 Daily Performance of the Hybrid Controller Compared with the Benchmark and ATSC-MORL Controller 

Controller Efficiency Safety 

(Risk Score) Average Delay (sec) Number of Stops 

BC 26.395 0.703 0.045 
ATSC-MORL 19.550 0.615 0.041 

HS 18.538 0.615* 0.040* 
* a paired T-test was conducted using the data of 30 simulated days to investigate whether the number 
of stops and average safety scores are statistically significantly different between ATSC-MORL 
controlled scenarios and HS controlled scenarios. The results showed that the difference of number of 
the number stops is not statistically significant but the difference of average safety scores is statistically 
significant at 0.0001 level. 

 

Other types of hybrid controller such as the hybrid of ATSC-MORL and ATSC-MORLP 

could also be employed to improve traffic safety if necessary. 
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6.6 Summary and Conclusions 

To improve the traffic safety of the signalized intersection, this Chapter proposes a safety-

oriented adaptive signal control algorithm to simultaneously optimize traffic efficiency and safety. 

The control agent takes high-resolution real-time traffic data as its input and selects appropriate 

signal phases every second to reduce vehicles’ delay and the crash risk of the intersection. A multi-

objective reinforcement learning framework using double dueling deep neural network is utilized 

as the backend algorithm to solve the discrete optimization problem. The weighted sum approach, 

one of the single policy multi-objective reinforcement learning algorithms, is employed to deal 

with the trade-off between traffic safety and efficiency. 

 The proposed algorithm was trained and evaluated in a simulated isolated intersection in 

Seminole County, Florida, built based on field observed traffic data. A real-time crash prediction 

model is calibrated using local crash data to provide the crash risk in the near future. The 

performance of the well-trained algorithm was evaluated by the real-world signal timings provided 

by the local jurisdiction. The evaluation results showed that the algorithm improves both traffic 

efficiency and safety compared with the benchmark. In addition, compared with an adaptive traffic 

signal optimizing only traffic efficiency, it did improve traffic safety significantly but with a slight 

deterioration of traffic efficiency. This might imply the traffic safety and efficiency are two 

competing objectives. Practitioners should take the trade-off into consideration. 

 A brief analysis of control policies of different signal controller reveals how the RL-based 

ATSCs are able to improve traffic efficiency and safety. The abstracted control rules from the 

analysis could serve as a reference for improving existing signal control systems if the 

infrastructure in the field is not ready to adopt RL-based ATSCs. However, as the proposed RL-
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based ATSCs are site-specific, it is recommended to train the RL-based ATSC in a traffic 

simulation that replicates the local condition. A hybrid controller that changes its backend 

algorithm based on traffic volume is also proposed to improve the performance of MORL 

controlling algorithm if the well-trained MORL is not Pareto-optimal. 

 Admittedly, there are several limitations. As the weighted sum approach is not guaranteed 

to be Pareto-optimal, the study could be improved by calculating the Pareto-front using more 

computationally efficient algorithms. Meanwhile, other kinds of safety measures such as traffic 

conflicts could be tested as the safety objective using the proposed algorithm. 
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CHAPTER 7: CONCLUSION 

7.1 Summary  

This dissertation aims to provide ATSCs that are more practical-ready. More specifically, 

the main objectives of this dissertation are to (1) understand the types of traffic data on arterials 

that can be utilized as the data feeds of DRL-based ATSC; (2) develop algorithms to improve 

existing traffic data that could be used as the data feed of ATSC ; (3) develop a network-level 

ATSC algorithm based on decentralized Multi-Agent Reinforcement Learning (MARL) based on 

limited traffic information and real-world traffic dynamics ; (4) conduct an exploratory study on 

a multi-objective ATSC aiming at simultaneously optimizing traffic safety and efficiency in real-

time . 

In Chapter 3, various traffic data collection systems on arterials are reviewed. Existing 

traffic data collection systems in the field include traffic counts from inductive loop detectors 

installed for signal actuation, travel time data from BDS and segment-based speed data from the 

private sectors. However, the geographical coverage of infrastructure-based systems is limited. 

Thus, the widely available segment-based speed data from the private sectors could be served as 

valuable data feeds of ATSCs. However, the quality of data from the private sector is often a 

concern, thus rigorous validations or even necessary augmentations are needed. Moreover, state-

of-the-practice ATSCs requires customized detection layout for their own control logic. 

Especially some vendors depend on the video detection systems.  
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In Chapter 4, experiments were conducted to evaluate the feasibility of BLE for 

estimating the traffic counts. Its detection rate and range were assessed. A two-step framework is 

then proposed for identifying the pedestrians and bicyclists from stationary objects and 

motorized travelers using one of the popular machine learning algorithms, one-class support 

vector machine. The proposed system is validated by the benchmark count data from video 

footage.  

In Chapter 5, to evaluate the effectiveness of DRL-based ATSC on the real-world traffic 

dynamics, a network-level decentralized ATSC was developed using double dueling deep Q 

network in the multi-agent reinforcement learning framework. The algorithm was trained and 

evaluated in a simulated real-world traffic network. The simulated network replicates the 

geometric design of the real-world roadways and the simulation scenarios were calibrated by 

real-world traffic data from Automatic Traffic Signal Performance Measures (ATSPM). Besides, 

the proposed ATSC employs camera-like traffic detectors to capture the locations of vehicles 

close to the intersections rather than assuming the information of every single vehicle is known. 

The proposed algorithm was evaluated by the real-world coordinated actuated signals.  

In Chapter 6, to improve traffic safety pro-actively, this study proposes a safety-oriented 

ATSC algorithm to simultaneously optimize traffic efficiency and safety. A multi-objective deep 

reinforcement learning framework is utilized as the backend algorithm. The proposed algorithm 

was trained and evaluated on a simulated isolated intersection built based on real-world traffic 

data. A real-time crash prediction model was calibrated to provide the safety measure. The 

performance of the algorithm was evaluated by the real-world signal timing provided by the local 
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jurisdiction. The results showed that the algorithm improves both traffic efficiency and safety 

compared with the benchmark.  

7.2 Implications  

Chapter 4 concludes that comparing to ordinary Bluetooth and Wi-Fi, BLE is more 

suitable for estimating the counts of pedestrians and bicyclists because of its high detection rate 

and reasonable detection range. The developed machine-learning-based algorithm is able to 

estimate the counts of pedestrians and bicyclists of a mixed-traffic environment. The average 

absolute percentage error is 6.35%. To the best of the author’s knowledge, it is the first time that 

BLE technology is used to estimate traffic counts.  

Chapter 5 introduced a DRL-based ATSC based on real-world traffic dynamics. The 

proposed algorithm outperforms the coordinated actuated signal used in the field. It is able to 

reduce 10.27% of the travel time and almost half of (46.46%) of the total delay. This work 

proved that without knowing the status of every vehicle, the DRL-based ATSC could 

successfully adapt to the real-world complicated traffic dynamics in the network-level. This 

work makes a step forward for the real-world implementation of the DRL-based ATSC. 

Chapter 6 successfully developed a DRL-based safety-oriented ATSC. The proposed 

algorithm is able to reduce the crash risk by around 9% than the benchmark actuated traffic 

signal, given that the DRL-based ATSC only optimizing the traffic efficiency might be 

detrimental to traffic safety. Moreover, abstracted control rules of the proposed ATSC could help 

the traditional signal controllers to improve traffic safety, which might be beneficial if the 



106 
 

infrastructure is not ready to adopt ATSCs. A hybrid controller is also proposed to provide 

further traffic safety improvement if necessary. To the best of the author’s knowledge, the 

proposed algorithm is the first successful attempt in developing adaptive traffic signal system 

optimizing traffic safety. 
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