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ABSTRACT 

Pedestrians are regarded as Vulnerable Road Users (VRUs). Each year, thousands of 

pedestrians’ deaths are caused by traffic crashes, which take up 16% of the total road 

fatalities and injuries in the U.S. (FHWA, 2018). Crashes can happen if there are interactions 

between VRUs and motorized transportation. And pedestrians’ unexpected crossings, such as 

red-light violations at the signalized intersections, would expose them to motorized 

transportation and cause potential collisions. 

This thesis is intended to predict the pedestrians’ red-light violation behaviors at the 

signalized crosswalks based on an LSTM (Long Short-term Memory) neural network. With 

video data collected from real traffic scenes, it is found that pedestrians that crossed during 

the red-light periods are more in danger of being struck by vehicles, from the perspective of 

Surrogate Safety Measures (SSMs). Pedestrians’ features are generated using computer 

vision techniques. An LSTM model is used to predict pedestrians’ red-light violations using 

these features. The experiment results at one signalized intersection show that the LSTM 

model achieves the accuracy of 91.6%. Drivers can be more prepared for these unexpected 

crossing pedestrians if the model is to be implemented in the vehicle-to-infrastructure (V2I) 

communication system.   

 

Keywords: pedestrian safety, red-light violations, deep learning 
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CHAPTER 1 INTRODUCTION 

1.1 Introduction 

Pedestrian safety plays an important role in traffic safety. In 2018, there was 3% 

increase in the pedestrian deaths, ranked the highest since 1990 (NHTSA, 2019). 

Intersections usually have relatively high pedestrian volumes. However, the pedestrians’ 

violation behaviors, especially red-light violations at the signalized intersections, can expose 

pedestrians to motorized transportations and cause potential crashes.  

With the development of Connected Vehicle (CV) technologies, it is possible to warn 

drivers of these unexpected pedestrians. This thesis predicted pedestrians’ red-light violations 

at the signalized intersection using video data. The proposed LSTM neural network (Long-

short term memory neural network) achieves an accuracy of 91.6% at one crosswalk.    

1.2 Thesis Contributions 

This thesis has made a few contributions to pedestrian safety: 

• Traditional studies treated red-light crossings as binary outcomes. This thesis analyzes 

pedestrians’ crossing intentions and labels pedestrians’ red-light violations in time 

series.  

• Traditional models are less effective in capturing the sequential information lying in 

the time series data. The LSTM neural network has special architecture that can better 

learn features from the previous time windows. 
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1.3 The Objectives of the Thesis 

The objectives of this thesis are: 

• To analyze pedestrians’ crossing behaviors at the signalized intersections, 

• To investigate factors influencing pedestrians’ violation behaviors, 

• To predict pedestrians’ red-light violations using the LSTM neural network. 

1.4 Thesis Organization 

The rest of the thesis is organized as follows: Chapter 2 provides the literature review. 

Chapter 3 provides the procedures of data collection. Chapter 4 describes the proposed 

methodologies to predict pedestrians’ red-light violations, and the experimental results. 

Chapter 5 describes the summary based on the results obtained in the previous chapters. 
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CHAPTER 2 LITERATURE REVIEW 

Pedestrian safety plays an important role in traffic safety. Compared with vehicles, 

pedestrians are not protected by metal shells. They are regarded as Vulnerable Road Users 

(VRUs). Each year, approximately 5,000 pedestrian deaths are caused by traffic crashes in 

the U.S. (FHWA, 2018).   

2.1  Pedestrians’ Violation Behaviors 

Among all the crashes between vehicles and pedestrians, pedestrians’ violation 

behaviors can be one of the causes. At the signalized intersections, normally, pedestrians are 

sequentially separated from vehicles because of traffic signals. However, pedestrians’ 

violation behaviors especially red-light violations, will expose them to vehicles and cause 

potential crashes. Besides, pedestrians’ abrupt movements, such as suddenly walking out of 

road curvature, can make it hard for drivers to take evasive actions (Yue, Abdel-Aty, Wu, 

Zheng, and Yuan (2020)). 

Some previous studies investigated the relationships between pedestrians’ 

characteristics with their red-light violations. Behavior models such as the theory of planned 

behavior (TPB) model (Ajzen, 1991; Evans & Norman, 1998), and some statistical models 

such as discrete choice models (Brosseau, Zangenehpour, Saunier, & Miranda-Moreno, 2013; 

Hashimoto, Yanlei, Hsu, & Shunsuke, 2015) were used. Hamed (2001) investigated the 

factors influencing pedestrians’ waiting time and crossing attempts. It was found that 

pedestrians’ characteristics, such as age, gender, number of people in groups, were significant 
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factors. Pedestrians’ volume, pedestrians’ time of arrival, and safety awareness were also 

significant factors for pedestrians’ red-light violations (Brosseau et al., 2013; Guo, Gao, 

Yang, & Jiang, 2011; Hamed, 2001). 

Nevertheless, some studies investigated factors of external factors such as road 

geometry design (Gitelman, Balasha, Carmel, Hendel, & Pesahov, 2012). At the signalized 

intersections, types of land use (Cinnamon, Schuurman, & Hameed, 2011), and signal design 

(Brosseau et al., 2013) could influence pedestrians’ waiting time, thus influencing 

pedestrians’ crossing attempts. Traffic conditions (Guo et al., 2011), numbers of the central 

refuges (Hamed, 2001) were also significant factors. It was found that pedestrians’ red-light 

violations were highly time dependent. The pedestrians’ violation intentions increased when 

the pedestrians’ waiting time elapsed longer (Guo et al., 2011; Keegan & O’Mahony, 2003). 

Thus, it is necessary to analyze pedestrians’ red-light violations in time series, to make the 

prediction more effective. 

2.2 Video Data Applications in Transportation  

Video data could be used to analyze the behaviors of road users. As there were high 

irregularities in the pedestrians’ movements, video data could be employed to capture 

pedestrians’ characteristics from a more microscopic view. Video data were used in previous 

work (Formosa, Quddus, Ison, Abdel-Aty, & Yuan, 2020; Fu, Miranda-Moreno, & Saunier, 

2017; Guo et al., 2011; Hashimoto et al., 2015; Ismail, Sayed, & Saunier, 2010; Ka, Lee, 

Kim, & Yeo, 2019; Zaki & Sayed, 2014) to investigate pedestrians’ crossing behaviors. Zaki 

and Sayed (2014) investigated pedestrians’ spatial violations, i.e., the pedestrians were not 
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walking in the designated region, and temporal violations, i.e., the pedestrians crossed during 

improper traffic signal phases. Ka et al. (2019) proposed a system used at intersections to 

predict pedestrians’ red-light crossing intentions based on their characteristics, such as age, 

gender, head orientation, etc. Using R-CNN (Region-based Convolutional Neural Network) 

object detection model (Girshick, Donahue, Darrell, & Malik, 2014) and SORT tracking 

model (Nicolai Wojke, Alex Bewley, & Dietrich Paulus, 2017), the system could identify 

potential dangerous events caused by the pedestrians’ violation behaviors. However, as the 

four models used in this study were machine learning models, they were less effective at 

capturing the relationships in sequential data for future predictions.  

Moreover, with the development of CV technologies, more and more video 

applications could be used to alert drivers of potential dangerous events of pedestrians. Heng 

(2008) investigated a traffic signal device that composed of a transmitter, a receiver and a 

storage medium, where the transmitter could broadcast signals to the receiver. When a 

collision happened, the facilitation of collision impact data was recorded to ease 

responsibility determination. Wolterman (2008) designed a traffic signal system to mitigate 

collisions caused by drivers’ traffic violations. Another application “SAFESPOT” was 

composed of hazard warnings and speed alerts. It was implemented at the black spots of crash 

on the road networks (Bonnefoi, Bellotti, Scendzielorz, & Visintainer, 2007). M. Rahman, 

Islam, Calhoun, and Chowdhury (2019) proposed a system using cameras that outperformed 

DSRC-enabled devices from the perspective of localization accuracy. It could satisfy the 

latency requirements with the processing speed of 100ms/frame. The system used a camera to 
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detect the pedestrians’ presences. With TTC (Time-to-collision) as the indicator of safety, the 

drivers could receive warnings when there were potentially dangerous situations. Another 

system could recognize pedestrians’ crossing intentions, and carry out vehicle evasive 

maneuvers automatically (Köhler et al., 2013).  

Some studies used onboard video sensors to predict the pedestrians’ positions and 

moving paths for proactive pedestrian protection systems (Møgelmose, Trivedi, & Moeslund, 

2015; Schmidt & Färber, 2009). These systems, together with Advanced Driver Assistance 

System (ADAS) technologies, such as Forward Collision Warning (FCW), were found in the 

literature to significantly reduce crashes (Yue, Abdel-Aty, & Wu, 2019; Yue, Abdel-Aty, 

Wu, & Wang, 2018; Yue, Abdel-Aty, Wu, & Farid, 2019). More work should be done to 

predict pedestrians’ red-light violations (Ka et al., 2019; Kotte, Schmeichel, Zlocki, 

Gathmann, & Eckstein, 2017).  

2.3 LSTM Neural Network  

Traditional neural networks were less effective at capturing the relationships in 

sequential data for future predictions. Thus, Recurrent Neural Network (RNN) was proposed 

to mitigate this defect by feeding back the output from a time window to the next time 

window in the same layer. A particular implementation of the Recurrent Neural Network is 

LSTM (Long Short-Term Memory) neural network model (Hochreiter & Schmidhuber, 

1997), which could capture long-term dependencies of time series data. In transportation 

field, LSTM neural networks were used to predict vehicle travel time or traffic speed on 

highway links (Altché & Fortelle, 2017; Yanjie, Yisheng, & Fei-Yue, 2016) as well as urban 
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arterials (Ma, Tao, Wang, Yu, & Wang, 2015). They were also used for driving behavior 

classifications (Saleh, Hossny, & Nahavandi, 2017) and real-time crash risk predictions (Li, 

Abdel-Aty, & Yuan, 2020; Yuan, Abdel-Aty, Gong, & Cai, 2019). Through these 

implementations, LSTM models proved their good performances on sequential traffic data. 

LSTM neural network brings the possibility to better predict pedestrians’ movements such as 

trajectory predictions (Manh & Alaghband, 2018; Xue, Huynh, & Reynolds, 2018). Besides, 

Alahi et al. (2016) used an LSTM neural network to predict pedestrians’ movements based on 

pedestrians’ interactions between each other in crowded spaces. It is promising to predict 

pedestrians’ red-light violation behaviors using LSTM neural network.  
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CHAPTER 3 DATA COLLECTION 

3.1 Experiment setup  

To analyze pedestrian safety at intersections, a crosswalk with a relatively high 

volume of pedestrians at the University of Central Florida (UCF) was selected as the study 

site. This intersection was a key intersection with a total entering volume of about 200veh/h. 

The data of 122 pedestrians who entered the two waiting areas during red-light periods were 

collected for this study. The spatial map of this site is shown in Figure 1. The camera was 

GoPro HERO7 camera, setting on a tripod about 6.56 feet high.  

 

Figure 1 Spatial map of the studied site (Maps, 2020) 

3.2 Evaluation of the Pedestrian Safety at the Study Site  

Traditional research mainly used crash data to investigate safety. However, crash data 

suffer from defects listed as follows: 
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(1)Crashes are highly rare events. Thus, crash data usually have small sample sizes.   

(2)Crash-based safety evaluation is a reactive method to investigate crashes (Tarko, A. Davis, 

Saunier, & Sayed, 2009). It is hard to reveal the happening mechanisms of crashes using the 

information from crash reports, as the process records sometimes come from the experiences 

and the expectations of police officers (Svensson & Hydén, 2006). 

Given above considerations, Surrogate Safety Measures (SSMs), are proposed to 

investigate the happening mechanisms of crashes (Tarko et al., 2009). SSMs, also called 

traffic conflict techniques (TCT), are suitable to measure the near-miss situations, i.e., when 

there are proximities of crashes. Indicators of traffic conflicts include TTC (Time-to-

collision, Minderhoud, Bovy, and Prevention (2001)), PET (Post-encroachment-time, Allen, 

Shin, and Cooper (1978)), DST (Deceleration-to-safety time, Hupfer (1997)), GT (Gap time), 

etc. 

In this work, Post-encroachment time (PET) is used as the indicator of pedestrian 

safety. PET is defined as the time difference between the moment when the first road user 

leaves the potential collision area and the moment when the second user reaches it. As shown 

in Equation 3.1, 𝑡𝑡2 and 𝑡𝑡1 is the time for different road users to reach the same point 

accordingly. And PET is the absolute value of the difference. The PET threshold is set to be 

6s according to the literature (Radwan, Darius, Wu, & Abou-Senna, 2016) to determine if 

there is a dangerous condition for the pedestrian.  

𝑃𝑃𝑃𝑃𝑃𝑃 =  |𝑡𝑡2 − 𝑡𝑡1|                     Equation 3.1 
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The PET values are manually collected to ensure analysis accuracy. Among 122 

pedestrians, 43 pedestrians start to cross the intersection during the red-light phase. As Figure 

2 depicts, among all the situations with small PET values (smaller than the threshold), 23 

cases are caused by red-light crossing pedestrians, while 11 cases are caused by normal-

crossing pedestrians. Thus, red-light violation pedestrians are more dangerous than others at 

the intersection. This is consistent with the findings in the literature. 

 

Figure 2 Frequency of small PETs (0-6s) of red-light crossing pedestrians & normal 
crossing pedestrians 

3.3 Video Processing 

To extract moving trajectories of pedestrians, computer vision techniques including 

camera calibration, object detection, and object tracking are used.  
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3.3.1 Object Detection 

Automated object detection models can identify different kinds of objects in videos, 

such as pedestrians and vehicles.  

For traditional object detection models, background subtraction methods, feature-

based methods, frame differencing and motion based methods were used (R. Hadi, G. Sulong, 

& L. George, 2014) . Motion-based detection methods were typically difficult to detect low-

speed moving objects. On the other hand, neural networks were proposed with higher 

accuracy. Neural networks, especially CNNs (Convolutional Neural Networks), could be 

used to identify different objects from videos by telling objects’ features in pixel level, thus 

classifying objects into different categories. 

Neural networks models can be divided into two-stage approaches and one-stage 

approaches. Two-stage approaches, such as Faster R-CNN (Girshick et al., 2014), first divide 

image into different crops. Then, the CNN is applied to these crops of image to classify 

different objects. Thus, two-stage approaches are usually computationally expensive and hard 

to conduct in real time. 

One-stage approaches, on the other hand, are more computational effective. One-stage 

approaches, such as Single Shot Multi-Box Detector (SSD) (Liu et al., 2016) and YOLO 

(Redmon, Divvala, Girshick, & Farhadi, 2016; Redmon & Farhadi, 2018), can combine the 

two procedures of cropping and classifying together. Take YOLO for example. The YOLO 

model applies the single neural network to the full image, dividing the crops and conducting 

classifications at the same time. As Figure 3 (a) shows, it first resizes the input image to the 
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resolution of 448×448 (pixel) and runs CNN on the image. CNN is used for predicting 

bounding boxes, as well as object classes in these boxes. Figure 3(b) shows the architecture 

of CNN. This CNN has 24 convolutional layers followed by 2 fully connected layers. CNN 

will then output classes and the confidence scores of the predicted objects.  

 

(a) Detection procedure 

 

(b) Neural network architecture 

Figure 3 YOLO detection model (Redmon et al., 2016) 

Compared with other detection models, YOLO is an effective detection model for 

pedestrian detection. It was used in the previous work to detect pedestrians from videos to 

solve transportation problems (Jana, Biswas, & Mohana, 2018; Ka et al., 2019; J. Lin & Sun, 

2018).  

In this thesis, a YOLOv3 model is implemented in Keras framework (allanzelener, 

2017; qqwweee, 2018). YOLOv3 model improves the original model from the perspective of 

accuracy, by using multi-scale images, data augmentation, and batch normalization during the 
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training procedure (Redmon & Farhadi, 2018). OpenCV package is also used to process 

videos (Bradski, 2019). 

YOLOv3 model is evaluated on COCO data set. COCO is a large-scale standardized 

data set (T.-Y. Lin et al., 2014). It has 330,000 images and 80 categories of objects. It uses 

mean Average Precision (mAP) for measuring the performance of various object detection 

models. As COCO data set has 80 categories, including common objects such as person, car, 

truck, cup, et.al. For each category, the Average Precision value is calculated using the 

precision-recall curve (Zhu, 2004). Every point of the curve is made up with precision and 

recall values at different confidence levels. As shown in Equation 3.2, 𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑟𝑟) is the 

maximum precision value over all recall values greater than the recall value 𝑟𝑟. Then the 

Equation 3.3 calculated the area under the curve with all the 𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑟𝑟) values on the curve. 

𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑟𝑟) = max
�̃�𝑖:�̃�𝑖≥𝑖𝑖

𝑝𝑝(�̃�𝑟) Equation 3.2 

𝐴𝐴𝐴𝐴𝑒𝑒𝑟𝑟𝑒𝑒𝑒𝑒𝑒𝑒 𝑃𝑃𝑟𝑟𝑒𝑒𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  � 𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑟𝑟)𝑑𝑑𝑟𝑟
1

0
 

Equation 3.3 

The mean Average Precision (mAP) value is calculated by taking the mean value of 

Average Precision over 80 categories, as shown in Equation 3.4. The mean Average Precision 

reaches 57.9% on the test data set (test-dev) of COCO data set. 

𝑚𝑚𝐴𝐴𝑃𝑃 =
1
𝑃𝑃

 �𝐴𝐴𝑃𝑃𝑖𝑖

𝑖𝑖

𝑖𝑖=1

 
Equation 3.4 
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3.3.2 Object Tracking 

Object tracking is the process of taking the initial sets of object detections (bounding 

boxes’ coordinates), and tracking the objects as they move in the continuous frames. Thus, 

the trajectories of different objects can be generated from video. The calculations of most 

SSM indicators, such as TTC, PET, GT, require the trajectories of both parties during their 

interaction course of the involving road users (Kathuria & Vedagiri, 2020). 

As R. A. Hadi, G. Sulong, and L. E. J. a. p. a. George (2014) demonstrated, there 

were four traditional tracking models available for object tracking, including region based 

tracking methods, contour tracking methods, 3D model based tracking methods, and feature 

based tracking methods. Neural networks are used in the state-of-the-art tracking models, 

especially Multiple Object Tracking (MOT) models. Multiple Object Tracking emerged in 

these years for tracking multiple objects’ movements in the scenes at the same time. In this 

thesis, tracking is conducted using Deep SORT algorithm (Wojke & Bewley, 2018; N. 

Wojke, A. Bewley, & D. Paulus, 2017).  

Deep SORT improves the original SORT model (Bewley, Ge, Ott, Ramos, & Upcroft, 

2016) by using integrated appearance information. It utilizes recursive Kalman filtering and 

frame-by-frame data association as the original SORT model does. A pre-trained CNN is 

used to compute the bounding boxes of the tracked objects. 

Deep SORT achieves good performance on the MOT16 Challenge benchmark (Milan, 

Leal-Taixé, Reid, Roth, & Schindler, 2016). MOT16 Challenge Benchmark is a standardized 

benchmark for measuring the performances of Multiple Object Tracking algorithms. It is a 
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very important guide for related studies. The accuracy of the tracking model (Deep SORT) in 

this paper, is measured based on that. According to N. Wojke et al. (2017), as shown in Table 

1, the previous models are in the red dotted box, and Deep SORT model is in the blue dotted 

box. The Deep SORT model outperformed previous models by increasing MOTA score 

(Multi-object tracking accuracy), and reducing FN (false negatives), etc. This shows this 

tracking model is very effective. And the MOTA score of the model is 61.4. 

Table 1 Evaluation of the Deep SORT tracking model (N. Wojke et al., 2017). 

 

Figure 4 shows a snapshot of automated video processing process. Road users are 

assigned with tracker ID and bounding boxes. The blue boxes are generated from the 

detection model. And the white bounding boxes are generated from the tracking model. The 

green number is the tracker ID. Through the video processing process, features such as 

pedestrian locations were generated as input variables at a frequency of 15Hz (environment: 

NVIDIA GTX 1080Ti 11G GPU). 
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Figure 4 Snapshot of automated video processing 

With a unique tracker ID assigned to each pedestrian detected by detection algorithm, 

movements of the pedestrians are extracted and further analyzed. As Figure 5 shows, 

trajectories of pedestrians are assigned with different colors, which means they own different 

ID numbers. And most people use the crosswalks to cross this three-lag intersection, while 

some walk out of the crosswalk, i.e., they cross the street randomly. It should be noted that 

only one crosswalk is regarded as the studied area in this work under the consideration of 

accuracy. 

 

Figure 5 Pedestrians’ trajectories at the studied site   
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3.3.3 Perspective Transformation  

As the camera is usually thought to have distortions over objects, and the coordinate 

system of image is in 2D plane, a homograph matrix h is used to transform the trajectory 

extracted from image plane to world plane (Naphade et al., 2019; Španhel, Bartl, Juránek, & 

Herout, 2019; Tang et al., 2019), as shown in Equation 3.5. (𝑢𝑢, 𝐴𝐴) is the point on image 

plane, and (𝑋𝑋,𝑌𝑌) is the point on world plane. 

  �
𝑢𝑢
𝐴𝐴
1
� = ℎ �

𝑋𝑋
𝑌𝑌
1
� Equation 3.5 

The procedure to obtain h matrix is demonstrated in Equation 3.6. h matrix contains 9 

values in total, from ℎ1 to ℎ9, while the last one can be 1. Thus, to get the other 8 values, 

both point coordinates in image plane, denoting by (𝑢𝑢𝑖𝑖 , 𝐴𝐴𝑖𝑖), and point coordinates in real 

world plane, denoting by (𝑋𝑋𝑖𝑖 ,𝑌𝑌𝑖𝑖), are gathered. Ten pairs of points in the traffic scene, which 

are not collinear, are extracted from image and Google Maps© to obtain h matrix. Each pair 

of points forms two rows of matrix A. And the right side of the function is a zero vector. This 

function has a linear least-squares solution. And singular value decomposition (SVD) can be 

used. Namely, the SVD will find the solution for minimizing the value of ‖𝐴𝐴 ∗ 𝒉𝒉‖, with ‖𝒉𝒉‖ 

equals 1.  

𝐴𝐴 ∗ 𝒉𝒉 =

⎣
⎢
⎢
⎢
⎡

0 0
𝑋𝑋1 𝑌𝑌1

    0 −𝑋𝑋1
1 0    −𝑌𝑌1  1

0  0    𝐴𝐴1𝑋𝑋1 𝐴𝐴1𝑌𝑌1
−𝑢𝑢1𝑋𝑋1 −𝑢𝑢1𝑌𝑌1

   
𝐴𝐴1
−𝑢𝑢1

0 0
𝑋𝑋2
⋮

𝑌𝑌2
⋮

    
0 −𝑋𝑋2
1
⋮

0
⋮

   
−𝑌𝑌2 1

0
⋮

0
⋮
    

𝐴𝐴2𝑋𝑋2 𝐴𝐴2𝑌𝑌2
−𝑢𝑢2𝑋𝑋2

⋮
−𝑢𝑢2𝑌𝑌2
⋮

 
𝐴𝐴2
−𝑢𝑢1
⋮

 
⎦
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
ℎ1
ℎ2
ℎ3
ℎ4
ℎ5
ℎ6
ℎ7
ℎ8
ℎ9⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
0
0
0
0
0
0
0
0
0⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 Equation 3.6 
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The Figure 6 shows the result of calibration. To validate the accuracy of the camera 

calibration, the back-projection error is used. The back-projection error is defined as 

Euclidean distance in pixel level between a projected point and a measured one. As Figure 7 

shows, the blue dots show the input point𝑃𝑃 (𝑢𝑢𝑖𝑖 ,𝐴𝐴𝑖𝑖). And the red dots (𝑢𝑢�𝑖𝑖 , 𝐴𝐴�𝑖𝑖) are the 

corresponding points back projected from (𝑋𝑋𝑖𝑖 ,𝑌𝑌𝑖𝑖) using h matrix. The average back-

projection error is calculated to be 3.008 in this work, as shown in Equation 3.7. 

𝐴𝐴𝐴𝐴𝑒𝑒𝑟𝑟𝑒𝑒𝑒𝑒𝑒𝑒 𝑏𝑏𝑒𝑒𝑃𝑃𝑏𝑏 − 𝑝𝑝𝑟𝑟𝑃𝑃𝑝𝑝𝑒𝑒𝑃𝑃𝑡𝑡𝑃𝑃𝑃𝑃𝑃𝑃 𝑒𝑒𝑟𝑟𝑟𝑟𝑃𝑃𝑟𝑟

=
∑ 𝑑𝑑𝑃𝑃𝑃𝑃𝑡𝑡𝑒𝑒𝑃𝑃𝑃𝑃𝑒𝑒�(𝑢𝑢𝑖𝑖 , 𝐴𝐴𝑖𝑖), (𝑢𝑢�𝑖𝑖 , 𝐴𝐴�𝑖𝑖) �𝑖𝑖
𝑖𝑖=0

𝑃𝑃
 

Equation 3.7 

 
Figure 6 Perspective transformation 

After acquiring h, all pixel coordinates generated from video (images) are converted 

to real world coordinates further through the inverse matrix of h.  

3.3.4 Other Features   

Other independent variables used in this study, which are manually labeled, include: 

pedestrian’s gender, pedestrian’s walking direction, and whether the pedestrian is walking in 

a group. The walking direction of pedestrians are denoted by 1 (“towards near-sided 

crosswalk”) and 0 (“towards far-sided crosswalk”).  



19 

CHAPTER 4 METHODOLOGY 

4.1 Pedestrian Crossing Modeling   

After above steps, a time series dataset, which is composed of pedestrians’ 

trajectories, is generated from videos. To label the dependent variable 𝑌𝑌, denoting whether 

the pedestrian has red-light violations, a pedestrian’s crossing model is established as shown 

in Figure 7. Suppose the driver will take evasive actions after capturing the pedestrian’s 

crossing intention after the reaction time 𝜃𝜃. In this study, the reaction time 𝜃𝜃 is taken as 1.5s 

according to the literature (M. H. Rahman, Abdel-Aty, Lee, & Rahman, 2019; Wilson, Butler, 

McGehee, & Dingus, 1997). On the other hand, pedestrians’ crossing behavior can be divided 

into three stages, (1) pedestrian showing up, (2) pedestrian showing crossing intention, (3) 

pedestrian starting to cross. The behaviors are observed frame by frame by the author. Thus, 

for jaywalking pedestrians, from 𝑡𝑡2 to 𝑡𝑡3, the dependent predictor 𝑌𝑌 is labeled as positive 

(“1”). This time interval is when the pedestrian is observing surrounding areas and starting to 

cross, i.e., showing crossing intentions. And the time intervals between 𝑡𝑡2 to 𝑡𝑡3 are 

different for different persons. Labels are shifted ahead 𝜃𝜃 units by the timestamp of each 

pedestrian for prediction purpose. Thus, we are basically predicting the pedestrian’s red-light 

crossing intention 1.5 seconds ahead. 
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Figure 7 Pedestrian’s crossing model  

4.2 LSTM Neural Network Model   

4.2.1 LSTM Model 

Based on the above discussion, a methodology of pedestrian crossing intention 

prediction at the signalized crosswalk is carried out using an LSTM neural network 

(Hochreiter & Schmidhuber, 1997). As pedestrians’ trajectories are time-series data, LSTM 

neural network model can better capture the temporal evolution of time sequences.  

LSTM neural network is a special kind of RNN (Recurrent Neural Network). The 

basic formulation of RNN is shown in Equation 4.1 and Equation 4.2. With 𝒙𝒙 is the input 

vector, 𝒚𝒚 is the output vector, the output of the last hidden layer is fed into the input of the 

next layer in the time sequence. 𝑊𝑊 is weight matrix. And 𝑏𝑏𝑦𝑦 is bias term. 

𝒉𝒉𝑻𝑻 = σ(𝑊𝑊1𝒙𝒙𝒕𝒕 + 𝑊𝑊𝑖𝑖ℎ𝒉𝒉𝑻𝑻−𝟏𝟏 + 𝑊𝑊ℎℎ𝑃𝑃𝑖𝑖−1 + 𝑏𝑏𝑦𝑦) Equation 4.1 

𝒚𝒚𝑻𝑻 = 𝑊𝑊ℎ𝑦𝑦𝒉𝒉𝑻𝑻 + 𝑏𝑏𝑦𝑦 Equation 4.2 
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However, RNNs suffer from learning long-term dependency from time-series data, 

which will cause the problem of vanishing gradients. To overcome it, LSTM neural network 

is proposed with a purpose-built memory unit to store information (A. Graves, A.-r. 

Mohamed, & G. Hinton, 2013). As shown in Figure 8, a single unit from the hidden layer of 

the LSTM neural network is composed of an input gate 𝑃𝑃𝑖𝑖, a forget gate 𝑓𝑓𝑖𝑖, an output gate 

𝑂𝑂𝑖𝑖. These three gates control information flow in each unit of the neural network. 𝐶𝐶𝑖𝑖 is the 

memory cell, and ℎ𝑖𝑖 is the hidden layer output. Given the number of time windows 𝑃𝑃, the 

input sequence 𝑥𝑥𝑖𝑖 is computed by Equation 4.3-Equation 4.8 to generate the output 𝑦𝑦𝑖𝑖, 

which is a vector of probabilities, iterated from t=1 to T. σ denotes logistics sigmoid 

function. And  denotes elementwise product of the vectors. ∅ is the activation function 

tanh. 

 

Figure 8 Schematic of LSTM unit (adapted from (A. Graves, A. Mohamed, & G. 
Hinton, 2013; Kang, Lv, & Chen, 2017))   

𝑃𝑃𝑖𝑖 = σ(𝑊𝑊𝑥𝑥𝑖𝑖𝑥𝑥𝑖𝑖 + 𝑊𝑊𝑖𝑖ℎℎ𝑖𝑖−1 + 𝑊𝑊𝑖𝑖𝑖𝑖𝑃𝑃𝑖𝑖−1 + 𝑏𝑏𝑖𝑖) Equation 4.3 

𝑓𝑓𝑖𝑖 = σ(𝑊𝑊𝑓𝑓𝑥𝑥𝑥𝑥𝑖𝑖 + 𝑊𝑊ℎ𝑓𝑓ℎ𝑖𝑖−1 + 𝑊𝑊𝑖𝑖𝑓𝑓𝑃𝑃𝑖𝑖−1 + 𝑏𝑏𝑓𝑓) Equation 4.4 
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𝑃𝑃𝑖𝑖 = σ(𝑊𝑊𝑥𝑥𝑥𝑥𝑥𝑥𝑖𝑖 + 𝑊𝑊ℎ𝑥𝑥ℎ𝑖𝑖−1 + 𝑊𝑊𝑖𝑖𝑥𝑥𝑃𝑃𝑖𝑖 + 𝑏𝑏𝑥𝑥) Equation 4.5 

𝑃𝑃𝑖𝑖 = 𝑓𝑓𝑖𝑖 𝑃𝑃𝑖𝑖−1 + 𝑃𝑃𝑖𝑖 ∅(𝑊𝑊𝑥𝑥𝑖𝑖𝑥𝑥𝑖𝑖 + 𝑊𝑊ℎ𝑖𝑖ℎ𝑖𝑖−1 + 𝑏𝑏𝑖𝑖) Equation 4.6 

ℎ𝑖𝑖 = 𝑃𝑃𝑖𝑖 ∅(𝑃𝑃𝑖𝑖) Equation 4.7 

𝑦𝑦𝑖𝑖 = 𝑊𝑊ℎ𝑦𝑦ℎ𝑖𝑖 + 𝑏𝑏𝑦𝑦 Equation 4.8 

4.2.2 Model Architecture  

The model architecture used in the study is illustrated in Figure 9. The features from 

three time-slices are stacked as input to predict the output of the next time slice. The model 

contains one input layer, one stacked-LSTM layer, a Dense (fully connected) layer, and an 

output neuron denoting the classification result. Besides, dropout layer is added to prevent 

overfitting. The Sigmoid function is used as the activation function to generate the output. 

Adam function is used as the optimization function (Kingma & Ba, 2014). The model is 

implemented in Keras framework (Chollet, 2015). After testing different combinations of 

hyperparameters, the hyperparameter values are selected as below: learning rate is 0.0005, 

batch size is 1000, and epoch number is 5. 
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Figure 9 Model architecture 

4.3 Experiments and Results   

4.3.1 Data Set Overview 

The summary of the descriptive statistics of all variables is shown in Table 2. The 

bold marked row is the dependent predictor. The location feature is generated from videos 

automatically, other features are manually labelled.  

 

 

 

 

 

 

 



24 

Table 2 Summary of variable descriptive statistics 
Variables Description Details 

Gender Gender of pedestrian “male” or 
“female” 

Direction   Pedestrian’s walking direction “1” or “0” 

Grouping Whether the pedestrian is walking in a 
group 

“yes” or “no” 

Locations  Pedestrian’s location (X, Y) 

Crossing intention Whether the pedestrian will cross 
during red-light 

“1” or “0” 

* Note that the first 3 features are manually labeled. Locations are generated from video. 
 

4.3.2 Oversampling  

After splitting the data set into training and test data sets (0.75:0.25), the training data 

set has 60,821 observations and the test data set has 20,274 observations. In the training data 

set, there were 58,882 normal crossing samples and 1,939 jaywalking samples. The ratio is 

around 30:1, indicating the data are highly imbalanced. A highly imbalanced data set will 

result in a bad model. Thus, the oversampling strategy is used to generate a balanced data set 

on the training data set. 

Synthetic Minority Over-Sampling Technique (SMOTE) is an oversampling strategy 

used to increase the number of positive samples (Chawla, Bowyer, Hall, & Kegelmeyer, 

2002). SMOTE is a popular over-sampling method, which can create new instances by 

interpolating between several minority class examples that lie together.  
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4.3.3 Experiment Results 

To evaluate the experiment results, the diagram for metrics calculation used is shown 

in Table 3. “Positive” denotes that pedestrians conducted the red-light violations. “Negative” 

denotes that pedestrian doesn’t conduct the red-light violations. Metrics such as sensitivity, 

specificity, and accuracy are calculated as shown in Equation 4.9- Equation 4.11. Sensitivity 

measures show how good the model is among all the positives, i.e., the proportion of actual 

positives that are correctly identified by the model. Specificity measures the proportion of 

actual negatives that are correctly identified by the model. Accuracy value measures the 

proportion of true positives and negatives in all detected results. 

 

Table 3 Diagram for metrics calculation 

 
Ground truth 

Prediction result Positive Negative 

Positive True positive (TP) False positive (FP) 

Negative False negative (FN) True negative (TN) 

 

𝑆𝑆𝑒𝑒𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑃𝑃𝐴𝐴𝑃𝑃𝑡𝑡𝑦𝑦 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

      Equation 4.9 

𝑆𝑆𝑝𝑝𝑒𝑒𝑃𝑃𝑃𝑃𝑓𝑓𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑦𝑦 = 𝑇𝑇𝐹𝐹
𝑇𝑇𝐹𝐹+𝐹𝐹𝑇𝑇

          Equation 4.10 

𝐴𝐴𝑃𝑃𝑃𝑃𝑢𝑢𝑟𝑟𝑒𝑒𝑃𝑃𝑦𝑦 =  𝑇𝑇𝑇𝑇+𝑇𝑇𝐹𝐹
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇+𝐹𝐹𝐹𝐹+𝑇𝑇𝐹𝐹

                                                                                                             Equation 4.11 

The ROC curve (Receiver Operating Characteristic curve) is used as a comprehensive 

metric to evaluate the model’s performance. This curve plots two parameters, True Positive 

Rate (sensitivity) and False Positive Rate (1-specificity), as shown in Equation 4.12 at 
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different classification thresholds. AUC (Area Under the ROC Curve) value is used as an 

accuracy indicator.  

𝐹𝐹𝑒𝑒𝐹𝐹𝑃𝑃𝑒𝑒 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑃𝑃𝐴𝐴𝑒𝑒 𝑅𝑅𝑒𝑒𝑡𝑡𝑒𝑒 = 𝐹𝐹𝑇𝑇
𝐹𝐹𝑇𝑇+𝑇𝑇𝐹𝐹

          Equation 4.12 

The results of the prediction with the proposed model are listed in Table 4. The 

proposed model achieved the sensitivity value of 92.4% on positive samples, which means it 

can predict 92.4% red-light violation behaviors successfully. However, there are still some 

room for improvements, since the model has a relatively high False Positive Rate. Overall, 

the model shows a prediction accuracy of 91.6% on all classes. And the AUC values 

achieved on the training data set and test data set are 0.943 and 0.938. 

 

Table 4 Prediction results 
Training set Test set 
AUC Sensitivity False Positive Rate Accuracy  AUC 
0.943 0.924 0.203 0.916 0.938 

It should be noted that the model is trained and tested using the data collected at the 

same location, which is also regarded as internal testing. The future study can be to apply the 

trained model to a different location, to prove the model’s generalization. 
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CHAPTER 5 CONCLUSIONS 

This study uses video data to predict pedestrians’ red-light violations at a signalized 

intersection with a stacked LSTM neural network. With real traffic data collected at the 

studied site, pedestrians’ location features are generated using automated video analysis. 

Other features such as gender, walking direction, and grouping behavior are also used to feed 

into the LSTM model. And the red-light crossing intentions of pedestrians are labeled after 

analyzing the interaction between red-light crossing pedestrians and vehicles. An LSTM 

model is proposed to predict pedestrians’ red-light violation behaviors at 1.5 seconds ahead. 

The experiment result shows that the model reaches the accuracy of 91.6% at one signalized 

crosswalk. The related work has been published (Zhang, Abdel-Aty, Yuan, & Li, 2020). 

 However, there are still some improvements to be made. The proposed model has a 

relatively high False Positive Rate, which means it is more likely to treat the normal crossing 

pedestrians as pedestrians with red-light violations. More features related to pedestrian’s 

mobility information such as walking speed and acceleration should be extracted as input for 

the model to overcome this problem.  

 The proposed model can be further implemented at more intersections to alert 

drivers of the pedestrians with unexpected crossing behaviors, thus preventing collisions 

between pedestrians and vehicles.  
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