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ABSTRACT 

This study investigated water reclamation from an impaired-quality water using forward 

osmosis (FO) membrane functionalized by nano zero valent iron (nZVI) loaded polyelectrolyte 

multilayer films. Stormwater runoff was selected as the impaired-quality water, which served as a 

feed solution (FS) and a NaCl salt solution at a concentration representing reverse osmosis (RO) 

concentrate was used a draw solution (DS). RO concentrate is another impaired-quality water that 

is discharged to the environmental with little or no treatment. A commercial cellulose triacetate 

(CTA) FO membrane was modified using poly allylamine hydrochloride (PAH) (a polycation) and 

poly acrylic acid (PAA) (a polyanion) following a dip coating method. In-situ synthesis of nZVI 

within the PAA/PAH layers was conducted through sodium borohydride reduction. The efficiency 

of the nZVI-PAA/PAH functionalized FO membranes in removing selected stormwater derived 

contaminants was evaluated. 

The virgin CTA membrane had a rough surface and repeated applications of coatings were 

required to ensure uniform layers of PAA/PAH. Following 4, 8, 12, and 14 ‘bilayer’ (BL) coatings, 

it was deduced that 14 BL coatings resulted in the most uniform layers with maximum surface 

overage. The scanning electron microscopy (SEM) images demonstrated that the membrane 

coverage and uniformity of coating improved as more BL coatings were applied. While the 

unmodified membrane initially had a high flux (16 L/m2.h) compared to the modified membranes, 

there was a sharp decline in flux (approximately 1.5 L/m2.h) within the first 2 to 3 h of operation, 

likely due to a rapid accumulation of foulants on the membrane surface. The modified membranes, 

on the other hand, showed markedly less initial flux (2 L/m2.h), but the flux was maintained 

throughout the experimental period with only a slight decline. The flux decline that may be 
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anticipated owing to the additional layers on the membrane was probably offset by the 

hydrophilicity rendered by the PAA/PAH functional groups and less foulant accumulation.  

The nZVI-loaded PAA/PAH coatings did not have any adverse impact on reverse salt flux 

(RSF). Any reduction in RSF due to the coatings might have been counteracted by the PAA/PAH 

induced dilution of the DS. While both NO3
- and PO4

3- removals were already very high (> 97%) 

when using the unmodified membrane, a slight increase in the removal of NO3
- with increased BL 

numbers (8 and 14 BLs) was observed. The removal of selected heavy metals (Cd, Pb, and Cu) by 

the unmodified and modified membranes ranged from approximately 87% for Pb to almost 

complete (~99%) removal for Cd. Mass balance and energy dispersive x-ray spectroscopy (EDX) 

analyses confirmed that a higher number of coating resulted in a higher retention of heavy metals 

by the functionalized FO membranes. This could be attributed to the complexation of metal ions 

with carboxylate and amine groups from the PAA/PAH bilayers. Furthermore, the unmodified 

CTA FO membrane exhibited very high removal (> 97%) of perfluorooctanoic acid (PFOA) and 

perfluorooctanesulfonic acid (PFOS). EDX mapping showed that the 14 BL-nZVI membrane 

adsorbed more PFOS/A compared to the virgin and the 8 BL-nZVI membrane. 
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CHAPTER 1: INTRODUCTION 

Stormwater runoff is a major non-point source of pollution of surface and groundwater 

resources. Stormwater runoff accrues organic and inorganic contaminants including debris, 

pesticides, hydrocarbons, sediments, nutrients, and heavy metals such as Pb, Cd, Cu, Ni, Cr, and 

Zn. About 15% of impaired river miles in the US can be attributed to the discharge of stormwater 

[1, 2]. Approximately 11% of the EPA-assessed stream miles in the US are threatened or impaired 

due to excessive nutrient loading on the surface waters [1]. Various Best Management Practices 

(BMPs) are employed to control the anthropogenic pollution from stormwater runoff. Commonly 

used structural BMPs include wet and dry ponds, surface and underground sand filters, infiltration 

basins and trenches, and permeable pavements [3]. However, the removal of target nutrients, trace 

metals, and organic micropollutants when using BMPs is highly variable. 

As the sources of freshwater continues to decrease, water reuse and reclamation have been 

of great interest in many parts of the world, including the US, in the recent decades. The waters 

reclaimed from stormwater can augment the supply of freshwater and can be used for potable or 

non-potable purposes including toilet flushing, irrigation, industrial usage, etc. Brackish water is 

another impaired-quality source that is utilized to produce potable water using brackish water 

reverse osmosis (BWRO). BWRO plants typically operate from 50 – 85 % recovery ranges, hence, 

15 to 50% of the feedwater becomes concentrated brine [4]. Typical BWRO concentrates contain 

approximately 20,000 ppm of total dissolved solids; therefore, it will require very high pressure to 

purify it further due to its high osmotic pressure.  

Forward osmosis (FO) is a membrane technology that utilizes the differences of osmotic 

pressure between a feed solution (FS) and a draw solution (DS) separated by a semi-permeable 

membrane. The yields of the FO treatment are diluted DS and concentrated FS. The FO membrane 
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processes can achieve similar organic rejection as the reverse osmosis (RO) processes [5]. Since 

FO does not require additional pressure to operate, it is an cost-efficient option compared to RO. 

However, some challenges associated with FO treatment for water reclamation include internal 

concentration polarization, reverse salt diffusion, and membrane fouling. To mitigate such 

problems, the FO membranes are suggested to be thin and smooth and possess hydrophilic and 

antimicrobial properties. There is a lack of studies exploring the reclamation of stormwater using 

FO technology. 

This research is focused on treating an impaired-quality water using a modified FO 

membrane. Stormwater was reclaimed by utilizing simulated BWRO concentrate as the DS in a 

bench-scale FO system. In an attempt to overcome the drawbacks associated with the 

commercially available FO membranes, the membranes were functionalized by layer-by-layer 

depositing of polyelectrolyte multi-layer films (PMFs) and embedding zero valent iron 

nanoparticles (nZVIs) within the PMFs. Polyacrylic acid (PAA) and polyallylamine hydrochloride 

(PAH) were the polyelectrolytes selected for this purpose. nZVIs are generally used as 

environmental remediation substances because they demonstrate high reducing and absorption 

capacities for organics, heavy metals, and metalloid [6]. Therefore, FO membranes with embedded 

nZVIs in the active layer are expected to offer better removal of organic and inorganic 

contaminants while ensure adequate water flux. 
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The specific objectives of this research are: 

1) To functionalize a commercial FO membrane using nZVI loaded PAA/PAH layers 

following a dip coating method; 

2) To determine the effect of nZVI-PAA/PAH functionalization on membrane characteristics 

and flux performance;  

3) To determine the effect of nZVI-integrated PAA/PAH multilayer films on the removal of 

nutrients, selected metals, and selected organic contaminants from synthetic stormwater 

runoff when using FO. 
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CHAPTER 2: LITERATURE REVIEW 

Stormwater Runoff 

Stormwater runoff can be considered as a source of a range of inorganic and organic pollutants 

including contaminants of emerging concern. The carried pollutants could be in form of chemical 

and biological contaminants that could possibly damage the aquatic ecosystems and cause adverse 

effects on human health [7]. Between 1991 to 2000, there had been more than 100 documented 

waterborne illness outbreaks in the US that were connected to the pathogens from the drinking 

water outbreaks [8]. Statistical studies on the US outbreak from 1949 to 1994 suggested that such 

outbreaks happened when there was a major rainfall. Those extreme events generated heavy 

stormwater runoff that eventually contaminated surface and groundwater resources [9]. Studies 

have been conducted for years to quantify the contaminants in the stormwaters such as, heavy 

metals, organics, nutrients [10], and per-and polyfluoroalkyl substances (PFAS) [11]. As a major 

non-point source pollution, the management of the stormwater is important in order to avoid the 

consequences of the stormwater derived pollutants.  

Stormwater Runoff Management  

Various best management practices (BMPs) are employed to mitigate the pollution from the 

stormwater runoff (Figure 1) [12]. Typically, two categories of BMPs, nonstructural BMPs (source 

control) and structural BMPs (retention, detention, and filtration) are applied. Commonly used 

structural BMPs include wet and dry ponds, surface and underground sand filters, infiltration 

basins and trenches, and permeable pavements [3]. Several studies [13-15] have investigated the 

performances of conventional urban stormwater runoff treatment systems; however focused 

mainly on the removal of trace metals and nutrients. Enhanced solid and nutrient removals were 
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observed when using bio-treatment systems incorporating depth filtration, sorption, precipitation, 

and ion exchange [16]. Limited studies [17, 18] have demonstrated or suggested the application of 

stormwater runoff–reclaimed water in irrigation purposes. Other management practices include 

providing public educations, encouraging the public involvement, illicit discharge detection and 

elimination, controlling the construction site, and post-construction control. 

 

Figure 1. Urban stormwater management practices based on their specificity and primary 
focuses [12]. 
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Water Reclamation 

Water is the most essential commodity on earth; however, only 3% of the available water is 

freshwater. Because of population increment, the water usages have increased by six-fold in the 

20th century [19]. The objective of the water reclamation is to achieve sustainability in water usage. 

Several arid countries in Asia and the Middle East are employing various water reclamation 

technologies due to the shortage of their water resources [20]. The reclaimed water generally 

contain high concentration of various ions, heavy metals, and organic compounds [21], but the 

qualities of the reclaimed waters depend on the local standards. In addition to other contaminants 

of emerging concern, per- and polyfluoroalkyl substances (PFAS) were reported in reclaimed 

waters [22]. Nutrients like nitrate and phosphate are also found in reclaimed waters and hence, the 

mismanagement of the reclaimed water could cause nutrient imbalances in the water ecosystems 

[23]. 

Forward Osmosis in Water Treatment  

Forward Osmosis (FO) or osmotically driven membrane processes uses osmotic pressure as the 

main driving force to treatment water. Osmosis is the process of movement of water across a semi-

permeable membrane due to the difference in osmotic pressure between two solutions. FO has 

been investigated to treat industrial wastewaters, landfill leachate, liquid food, and for water 

reclamation, and desalination [24].  As shown in Figure 2, FO process utilizes two different 

solutions: feed solution (FS) and draw solution (DS), having lower and higher osmotic pressures, 

respectively. FO performances depend on several membrane parameters including water 

permeability (A value), salt rejection (B value), and structural parameter (K value) (Table 1). 
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Figure 2. Illustration of forward osmosis processes. 

 

Table 1. Common parameters and equations used in FO processes. 

 

 

 

Parameters  Equations Common Units References 

Water flux (𝑱𝒘) 𝐽𝑤 = 𝐴(𝜋𝐷 − 𝜋𝐹) 𝐿. 𝑚−2. ℎ (𝐿𝑀𝐻) [25], [26] 

Solute flux (𝑱𝒔) 𝐽𝑠 = 𝐵Δ𝐶 𝐺. 𝑚−2. ℎ (𝐺𝑀𝐻) [25], [26] 

Membrane structural 

parameter (K) 

𝐾 = 𝑡𝜏𝐷𝜀 𝑚𝑚2/𝑠 [25], [26] 
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There are two operational modes for FO: active layer facing draw solution (AL-DS) or 

active layer facing feed solution (AL-FS). Based on the operation mode, there are two different 

types of the internal concentration polarization (ICP). Dilutive ICP will be observed when the 

active layer faces FS and concentrative ICP will be observed when the active layer faces DS. 

Although FO operates at low or no applied pressure, the membrane is still subjected to fouling. 

Membrane fouling is the main challenge of all types of membrane processes. Membrane fouling 

reduces the fluid permeability of the membrane [27]. The origin and the mechanism of the 

membrane fouling is hard to predict because there are numerous factors that could affect membrane 

fouling. Several efforts had been made to reduce the membrane fouling, such as using material 

with low-fouling qualities, optimizing the operational conditions, etc [28].  

 

Membrane Surface Functionalization using Polyelectrolytes 

One of the methods to reduce membrane fouling is to modify the surface characteristics of the 

membrane. Majority of the foulants can attach to the surface of the membrane by adsorption caused 

by hydrophobic attraction, hydrogen bonding, van der Waals attraction, or electrostatic attraction 

[29]. The proper surface modification can mitigate all of the interactions resulting in a lower 

chance of membrane to become fouled. The membrane that has more hydrophilic surface is less 

prone to fouling [29, 30].  To address the fouling that is caused by the electrostatic attraction, the 

membrane should have the surface that has the similar charges to repel the treated contaminants 

[31]. The modification of membrane surface to increase the hydrophilicity and charge modification 

of the membrane active surface could be  achieved by using polyelectrolyte coating [32].  
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The polyelectrolyte (PE) modification could be done by conformally depositing alternate 

PE charges, producing polyelectrolyte multi-layer films (PMFs) [33]. The coating can be applied 

using dip-coating, spin-coating, and spray coating [34]. The net charges of the coatings are 

dependent on the final layer of the coating. If the final layer of the coating is polyanion, the net 

charge of the surface will be negative and vice versa. PE coatings can provide anti-fouling 

properties to the membrane [35] due to the enhanced hydrophilicity and charge repulsion with the 

foulants. Several studies have shown that membranes modified via the application of PE coatings 

become resistant to fouling when compared to the unmodified membranes [35-37]. The PE layer-

by-layer coating method could also be used as an approach for nanoparticles embedding [38].  

 

Nano Zero Valent Iron for Water Treatment 

Nanoparticles such as TiO2 [39], Fe [40], Au [41], SnO2 [42], and Ag [43] have been used as water 

remediation media as photocatalysts, or as anti-microbial agents. The nanoparticles are nanosized 

particles that have the particles size between 1 to 100 nm. Because of sizes of the nanoparticles, 

they are commonly more reactive than its bulk counterpart. Nanomaterials had been used to 

remove the heavy metals ion from the water [44]. Nanoscale metallic or zero valent iron (nZVI) 

has been demonstrated as an effective option to remove a wide variety of water contaminants 

including halogenated organic compounds, organophosphates, nitroamines and nitroaromatics, 

inorganic anions, heavy metals, metalloids, and actinides [45, 46]. 
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CHAPTER 3: MATERIALS AND METHODS 

Materials 

Flat-sheet cellulose tri acetate (CTA) forward osmosis (FO) membranes were procured from 

Sterlitech (FTSH2O, Sterlitech, Kent, WA, USA). All solutions used in this study were prepared 

using deionized water. Polyacrylic acid (PAA, 25% in water, M.W. 240,000) was purchased from 

ACROS Organics (Thermo Fisher, NJ, USA). Poly (allylamine hydrochloride) (PAH, M.W. 

120,000 – 200,000) and sodium chloride (NaCl) were purchased from Alfa Aesar (Ward Hill, MA, 

USA). ACS grade sodium hydroxide (NaOH, pellet) and hydrochloric acid (HCl, 1 N) were 

purchased from Fisher Chemical (Thermo Fisher, NJ, USA). 2-(N-morpholino) ethane sulfonic 

acid (MES, fine white crystals) buffer was obtained from Fisher bioreagent (Thermo Fisher, NJ, 

USA) and 1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC.HCl) was 

obtained from Advanced ChemTech (Louisville, KY, USA). Anhydrous ferric chloride (FeCl3, 

98%) was obtained from ACROS Organics (Thermo Fisher, NJ, USA). Sodium Borohydride 

(NaBH4) was obtained from Fisher Chemical (Thermo Fisher, NJ, USA). Nitrate (10 mg/L NO3
--

N) and phosphate (1 mg/L PO4
3-) standards were obtained from Hach (Loveland, Colorado, USA). 

Nitrate testing kit (TNT plus 835, 0.23 – 13.5 mg/L NO3
-N detection range) and phosphate testing 

kit (TNT plus 843, 0.15 – 4.5 mg/L PO4
3- detection ranges) were obtained from Hach (Loveland, 

Colorado, USA). All bivalent heavy metal ion standards (1 mg/L; Cd, Cu, and Pb) were obtained 

from SPEX Certiprep (NJ, USA). Humic acid was obtained from Alfa Aesar (Ward Hill, MA, 

USA). Perfluorooctanoic acid (PFOA) and potassium perfluoroctanesulfonic acid (PFOS) were 

obtained from Sigma Aldrich (Millipore Sigma, Germany).  
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The solid phase extraction (SPE) was performed using weak anion exchange (WAX) mixed 

mode sorbent cartridges obtained from OASIS (3 cc, 30 μm, 60 mg, Waters (Milford, MA, USA). 

All solution for the liquid chromatography tandem mass spectrometry analysis (LC-MS/MS) were 

prepared using LC-MS(Optima™) grade methanol and water (Thermo Fisher, NJ, USA). 

Optima™ grade formic acid (99%), ammonium acetate, and ammonium hydroxide were purchased 

from Fisher Chemical (Thermo Fisher, NJ, USA). A flat sheet FO testing cell CF-042A was 

procured from Sterlitech (Kent, WA, USA). The calibrated conductivity meter with auto-logging 

function was obtained from Apera Instruments (EC-820, Germany). The mass changes from the 

feed and draw solution were recorded by using auto-logging enabled scale connected to a 

computer.  

Stormwater Characterization 

Synthetic stormwater runoff was prepared in lab by spiking selected metals (Cu, Cd, Pb), nutrients, 

organics, and humic acid (Table 2). Humic acid was spiked as the representative of natural organic 

matter. To represent contaminants of emerging concern, perfluorooctanoic acid (PFOA) and 

perfluorooctanesulfonic acid (PFOS) were spiked in the FS. PFOA and PFOS concentrations in 

FSs were analyzed by a SPE-LC-MS/MS method developed based on the EPA Method 537 Rev. 

1.1 [47]. In addition to monitoring the basic water quality parameters (such as pH, conductivity, 

and temperature data), the water samples were analyzed using spectrophotometer (DR5000, Hach, 

USA) for nutrients. Metal ions were analyzed using an Atomic Absorption Spectroscopy (AAS, 

Perkin Elmer, USA). The draw solution was prepared by spiking 20 g/L NaCl into deionized water.  
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Table 2. Synthetic stormwater runoff composition. 

Contaminants Concentration 

Humic Acid 5 mg/L 

Nitrate 10 mg/L 

Phosphate 1 mg/L 

Pb2+ 1 mg/L 

Cd2+ 1 mg/L 

Cu2+ 1 mg/L 

PFOA 1 μg/L 

PFOS 1 μg/L 

 

Membrane Functionalization 

Electrostatic interaction between opposite charges lead to the formation of multilayer films on a 

substrate via the dip coating method [34]. When dip coating is conducted using PE complexes, it 

is important to select the appropriate PE that is to be applied first. A previous study [48] reported 

the zeta potential (ξ) of CTA FO membranes to be -10 mV (at pH = 7.5), signifying the membranes 

have negatively-charged surfaces. Therefore, in the current study, PAH, was selected to be 

deposited on the membrane first, followed by PAA, which is a negatively charged PE.  

A commercial CTA FO membrane was first rinsed by DI water and was immersed for 5 

days in DI water. The membrane is preserved by 1% sodium metabisulfite solution by the 

manufacturer before shipping. The rinsing was conducted to ensure there were no residual of the 

sodium metabisulfite on the surface of the membrane active layer that could hinder the coating 
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process. The membrane was cut into a smaller piece to fit into the customized dip coating apparatus 

(Figure 3). The coating apparatus was designed such that only the active layer was exposed during 

the dip coating process.   

The deposition process began by pouring 0.01 M PAH in 0.01 M of NaCl solution onto the 

dip coating apparatus. After 20 minutes, the coating solution was removed and was rinsed twice 

with DI water for 5 min each time to remove any residual NaCl and PAH. This was followed by 

immersing the membrane in 0.01 M PAA solution in 0.01 M NaCl for 20 min and rinsing twice 

withDI water for 5 min each time. These steps produced one ‘bilayer’ of PAH/PAA. This process 

was repeated to obtain the desired number of bilayers.  

The coated membrane was soaked in 0.01 M of FeCl3 solution for 30 min to form an iron-

complex with carboxylic acid of the PAA, followed by rinsing with DI water to remove the excess 

FeCl3. Then, the membrane was soaked in 0.01 M of NaBH4 solution for 10 min to reduce the 

complexed iron (III) to nano zero valent iron (nZVI) nanoparticles. To increase the amount of the 

nZVI on the coated membrane surface, the same protocol was repeated for four times. After the 

nZVI immobilization, the coated membrane was soaked in 1-ethyl-3-(3-dimethylaminopropyl) 

carbodiimide hydrochloride (EDC) and 2-(N-Morpholino)-ethanesulfonic acid (MES) buffer at pH 

5.5 for one hour for crosslinking. The crosslinking was performed at pH 5.5 to optimize the process 

[49]. The virgin membrane was functionalized using 4, 8, 12, 14 nZVI-loaded PAA/PAH bilayer. 
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Figure 3. Customized dip coating setup for applying polyelectrolyte layers on the membrane. 

 

Membrane Characterization 

The surface and cross-sections of membrane samples were examined by field emission scanning 

electron microscopy (FE-SEM) (ZEISS, Gemini Ultra 55, USA). Energy dispersive x-Ray 

spectroscopy (EDS) was used to determine the elements within the membrane coatings. The 

membrane cross-sections were prepared by snapping the membrane inside a liquid nitrogen bath. 

All membrane surface sample was sputter coated by gold for ~5 nm thickness and the images were 

obtained using around 4.5 mm working distances and 5 keV accelerating voltages.  
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Bench-Scale Forward Osmosis Setup 

A bench-scale FO system, as shown in Figure 4, was used to determine the water flux performance 

and the removal of nutrients, selected metals, and selected organic contaminants from stormwater 

using unmodified and modified FO. The experimental setup consisted of FO membrane test cells, 

feed and draw delivery pumps, two scales connected to the computer to auto-log the mass for every 

1.5 minutes, a calibrated conductivity meter with auto-logging function  to measure the 

conductivity of the feed solution, and two containers for the feed and draw solutions.  

 

Figure 4. Bench-scale forward osmosis setup. 
 

The feed and the draw solution were pumped by a peristaltic pump with a flow rate of 4 

mL/h. The membrane active surface area of the cell is 42 cm2. The calibrated conductivity meter 

with auto-log function was used to measure the conductivity differences for every 15 min 

throughout the experiments. Before running the experiments, the system was equilibrated using 

DI water for at-least 24 h. After 24-h, the feed and draw solutions were added to the respective 

tanks. The samples for the contaminant removal analysis were taken before and after the treatment.  
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The water flux of the experiment was calculated using the following Equation 1. 𝐽𝑤 = Δ𝑚𝐴.Δ𝑡𝜌𝑤                    (1) 

Where Δ𝑚 is the mass changes in the solutions, A is the membrane active area, Δ𝑡 is the time 

difference, and 𝜌𝑤 is the density of water at 22 oC, and 𝐽𝑠 = (𝐶𝑡𝑉𝑡−𝐶𝑜𝑉𝑜)𝐴.t                   (2) 

Where C0 and Ct are the concentrations of the feed solution at time 0 and t, respectively; V0 and 

Vt are the volumes of the feed solution at time 0 and t, respectively. 

 

LC-MS/MS Method for Perfluorooctanoic Acid (PFOA) and 

Perfluorooctanesulfonic Acid (PFOS) Analysis 

An Accucore™ C18 2.6 μm 80 Å 100 mm x 2.1 mm (ThermoFisher Scientific, NJ, USA) 

separation column was used for the analysis. 10 mM ammonium acetate prepared using LC-MS 

grade water was used as the mobile phase ‘A’ and LC-MS grade methanol as the mobile phase 

‘B’. All mobile phases were degassed by sonicating the solution for 15 min. The high-performance 

liquid chromatography pump used for the analysis was Ultimate 3000 pump (ThermoScientific, 

NJ, USA), operated at a flow rate of 0.1 mL/min. The pump gradient for the method was 0-3 min, 

40% B; 3-5.5 min, 40%-95.5% B; 5.5-12 min, 95.5% B; 12-12.1 min, 95.5%-100% B; 12.1 -14 

min, 100% B; 14 – 14.1 min, 100%- 40% B; 14.1- 18 min, 40% B, ‘end’. The temperature of the 

column was set at 30 C. The volume of the sample injection was 5 μL.  

The triple quadrupole mass spectrometer TSQ Quantum Access Max (ThermoScientific, 

NJ, USA) was used as the mass detector. The detection was performed in negative mode using a 



17 

 

heated electrospray ionizer (H-ESI) and the analysis was performed using selected reaction 

monitoring (SRM) mode. The software used to control the analysis was Tracefinder™ (Version 

3.2, ThermoScientific, NJ, USA). The ion spray voltage was set to 2800 V, the capillary 

temperature was set to 270 C, and the sheath gas pressure was 15 psi. The collision gas used was 

Argon with 1.5 mTorr collision gas pressure. The SRM masses investigated are summarized in 

Table 3. The calibration standard of the analysis was prepared using 1, 5, 10, 25, 50. 75, 100, 125, 

and 150 ng/ml of PFOA and PFOS standards. All of the standards were prepared using LC-MS 

grade methanol. The PFOA stock solution was prepared using 96:4 methanol/water solvent, and 

the PFOS stock solution was prepared using LC-MS grade methanol. The method detection limit 

(MDL) was 4 ng/ L for both PFOA and PFOS. 

Table 3. SRM masses of PFOA and PFOS. 
 

Compounds 
Parent Ion Mass          

(Q1, m/z) 

Product Ion Mass         

(Q3, m/z) 

Perfluorooctanoic Acid (PFOA) 413 170 

Perfluorooctanoic Acid (PFOA) 413 369 

Perfluorooctanesulfonic Acid (PFOS) 499 99 

Perfluorooctanesulfonic Acid (PFOS) 499 80 
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Solid Phase Extraction Protocol for PFAS Sample Analysis 

The PFOA and PFOS in feed and draw solutions before and after 24-h filtration were extracted 

using Oasis WAX cartridges. Before loading the samples onto the SPE cartridges, the samples 

were acidified using hydrochloric acid 1 N to bring the pH of the solution to 3. The solid phase 

extraction (SPE) protocol used a 20-position vacuum extraction manifold (Agilent, USA). The 

extraction was initiated by conditioning the cartridges using 2 ml of the LC-MS grade methanol, 

followed by 2 ml LC-MS grade water. After the cartridges were conditioned, 20 ml of the 

previously acidified sample was added with a flow rate of 0.6 ml/min. Then, the cartridges were 

washed by 1 ml of 2% formic acid in LC-MS water solution. The samples were eluted by using 

500 μL(2 x 250 μL) LC-MS grade methanol and 500 μL (2 x 250 μL) 5% ammonium hydroxide 

solution in LC-MS grade methanol. The eluted samples were then dried using a  nitrogen 

evaporator at 65-67 C. The dried samples were reconstituted using 400 μL of 96:4 methanol/water 

solution in 2 ml autosampler vials with polypropylene insert spring and polypropylene caps. Both 

PFOA and PFOS recoveries using the SPE method were 70 ± 5%. 
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CHAPTER 4: RESULTS AND DISCUSSION 

Characterization of Functionalized FO Membrane 

The CTA FO membrane selected for this study has a slightly rough surface as shown in the 

scanning electron microscopy (SEM) image in Figure 4. The membrane underwent several surface 

modifications stages as a result of systematic application of a number of coating layers (Figure 6). 

The coating was initiated by immersing the FO membrane substrate onto a positively charged PAH 

solution. The PAH molecules in the dipping solution slowly accumulated and precipitated on the 

surface of the FO membrane (which has a negatively charged surface) due to electrostatic attraction 

between the membrane substrate and PAH.  

 

Figure 5. Scanning electron microscopy image of the unmodified CTA FO membrane. 
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Figure 6. Illustration of the membrane coating mechanism. 

 

Because of the roughness of the virgin membrane substrate (Figure 5), repeated application of 

coating was required to ensure uniform layers of PEs. Accordingly, 4, 8, 12, and 14 ‘bilayer’ (BL) 

coatings were deposited on the membrane surface and examined using FE-SEM. Figure 7 (a) 

shows the SEM image of the membrane after 4 BL coating. During this stage (i.e., the stage of 4 

BL coating), the coating was observed to be rather unevenly distributed over the surface area of 

the membrane. After 8 BL coating (Figure 7 (b)) more coverage forming spiderweb-like layers 

was observed. This indicated that more bilayer applications should lead to more uniformity of the 

deposition. As shown in Figure 7 (c), the deposition of 12 BLs results in more coverage with 

relatively more uniform when compared to the 8 BL- coated. Finally, 14 BL coating showed even 

more coverage (Figure 7(d) compared to the 4 and 8 BL coatings.  
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This demonstrates that there is a clear link between the number of bilayers deposited and 

coverage and uniformity of PE coating. The coating number, however, must be optimized with 

respect to the flux loss and contaminant rejection by the functionalized membrane. Figure 8 is an 

illustration of different stages of membrane surface modification using dip coating. 

 

Figure 7. SEM images of functionalized FO membranes coated with 4 BL (a), 8 BL (b), 12 BL 
(c), and 14 BL (d) of PAH and PAA.  

 

(a) (b) 

(c) (d) 
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Figure 8. Illustration of membrane surface modification stages during dip coating. 

 

Effect on the Membrane Coating Stages on nZVI Immobilization 

Energy dispersive x-ray spectroscopy (EDX) analysis was used to study the relationship between 

the number of bilayer coating application and the amount of nZVI immobilized on the membrane 

(within the PE coatings). Figure 9 (a) shows the SEM image of the FO membrane coated the 14 

BLs and Figure 9 (b) shows the EDX mapping of iron (Fe) on the FO membrane. It can be inferred 

from Figure 8 that Fe was distributed uniformly on the surface of the membrane when nZVI were 

immobilized with the crosslinked PE bilayers. When the polyelectrolyte complex (PEC) bilayers 

are immersed into the FeCl3 solution during membrane functionalization,                                                            

the carboxylate (-COO-) groups from PAA form complexes with Fe3+ [50],which are reduced to 

nZVI (Fe0) when immersed in a NaBH4 solution. Thus, the availability of carboxylate groups plays 

an important role in nZVI immobilization. The percentages of Fe with respect to carbon in 8 and 

14 BL coated membranes, as obtained from EDX, are shown in Table 4. This observation indicates 

that a higher number of PE bilayer coatings result in higher amount of nZVI immobilization on 

the membrane surface. A schematic of nZVI immobilization in 8 BL and 14 BL coated membrane 

substrate is presented in Figure 10. 



23 

 

 

Table 4. Iron content in 8 and 14 BL coatings with respect to carbon 

 

 

Figure 9. SEM image (a) and EDX mapping of Fe (b) on 14 BL coated FO membrane. 

 

 

 

Atomic Ratio Percentage 
PE bilayer-coated FO membranes 

8 Bilayers 14 Bilayers 

% (Fe/C) 1.4834 3.2764 

(a) (b) 
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Figure 10. Illustration of nZVI immobilization in 8 BL and 14 BL coated membrane substrates. 
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Effect of Membrane Functionalization on FO Flux Performance 

 

The flux performance of the functionalized FO membrane was compared to that of the unmodified 

membrane. Figure 11 presents the FO membrane flux from the feed side to the draw solution side 

over a duration of 24 h. The virgin membrane, as expected, commenced with a high flux (1.6 

L/m2.h) after stabilization, but exhibited a sharp decline after 4 h, likely due to a rapid 

accumulation of foulants on the surface (feed side). While the 8 BL coated-nZVI loaded membrane 

(BL-nZVI) showed a stable initial flux (1.4 L/m2.h), no appreciable decline in flux was observed 

during the experimental period. Contrarily, the 14 BL-nZVI membrane initially produced 

negligible flux; however, interestingly, the flux was increased to approximately 1.4 L/m2.h after 

10 h and was sustained at around 1.5 L/m2.h for the rest of the experimental duration.                       

Figure 11. FO membrane flux from feed side to the draw solution side over a duration of 24 h. 
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One would anticipate that the deposition of additional layers on a membrane substrate would cause 

a membrane flux decline. However, it is known that hydrophilicity plays and important role in 

membrane flux performance. Hydrophilic membranes are less fouling prone [51] and less affected 

by concentration polarization [52].  PE and nZVI functionalization are expected to render the CTA 

FO membrane more hydrophilic when compared to the virgin membrane owing to the surface 

chemistry of deposited materials.  

The virgin membrane has a smoother surface compared to the modified membranes. The 

sharp decline of the feed flux is probably due to the dilutive internal concentration polarization 

(ICP). CTA membrane has moderate hydrophilicity because of the hydrogen bonding from its 

acetic bond. Upon PAH/PAA functionalization, the carboxylic acid (-COOH) and the amine (-

NH2) groups likely facilitate more hydrogen bonding. 

 Hence, the modified membranes are expected to become more hydrophilic with increasing 

number of PAH/PAA layers. The flux decline for the coated membrane over time was likely offset 

by the increased hydrophilicity of the membranes and due to less accumulation of foulants. The 

14 BL-nZVI membrane, which produced apparently no flux at the beginning due to the 14 bilayers 

of the PAH/PAA, exhibited increased flux in approximately 4 h due to hydrophilicity imparted by 

the PAH/PAA layers.  

 

Effect on the Membrane Functionalization on the Solute Flux 

Reverse salt flux (RSF) is a major drawback associated with FO processes. (RSF) is the diffusion 

of salt from the DS to the FS. Since the driving force of the FO processes is the osmotic pressure 

difference between the FS and the DS. If the salt ions from the DS diffuse to the FS, the water flux 

will be eventually reduced. RSF is expected to be more significant when the FO process is operated 



27 

in active layer (AL)-FS mode because the DS face the ‘loose’ support layer of the membrane. RSF 

during FO operation using the virgin and the 8 and 14 BL-nZVI membrane, is shown in Figure 12. 

As expected, the RSF is initially high because DS contain a high concentration of salt. The RSF 

decreases with time since the DS become diluted and the FS becomes concentrated, lowering the 

diffusion of salt from the DS to the FS. From Figure 12, it appears that the membrane 

functionalization using nZVI-loaded PAH/PAA coatings did not have any adverse impact on the 

RSF. Any reduction in RSF due to the coatings might have been counteracted by the PAH/PAA 

induced dilution of the DS. 

 

 

 

 

 

 

Figure 12. Reverse Salt Flux of the Virgin, 8 BL-nZVI, and 14 BL-nZVI 

 

Another major drawback in FO processes is membrane fouling, which is generally caused 

by the accelerated cake-enhanced osmotic pressure (A-CEOP) that can be triggered by the RSF 

[53]. Figure 13 shows the average reverse salt flux (RSF) by the unmodified and modified 

membranes after the fluxes became stabilized. Hence, this data represents the RSF conditions when 

the foulants have accumulated on the membrane surface. Under this condition, the 14 BL-nZVI 
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exhibited the lowest RSF compared to the unmodified and 8 BL-nZVI membranes. This could be 

because this membrane has more PAA/PAH layers providing hydrophilicity and these additional 

layers increased the tortuosity for the salt to pass through to the feed side. The hydrophilicity 

counteracted the effect of dilutive ICP. However, there is a small increment in RSF by the 8BL-

nZVI membrane, probably due to the dilutive ICP from the active layer side. 

 

Figure 13. Stabilized RSF by the unmodified, 8BL-nZVI, and 14 BL-nZVI membranes 
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Membrane Functionalization Effect on Nutrient Removal 

Nitrate (NO3
-) and phosphate (PO4

3-) removals from the simulated stormwater runoff by 

the unmodified and functionalized FO membranes were tested using a bench-scale FO setup. The 

removals were estimated by comparing the nutrients’ concentration in the FS (stormwater runoff) 

and DS. Figure 14 shows NO3
- and PO4

3- removal using the virgin, 8 BL-nZVI, and 14 BL-nZVI 

membranes. The virgin membrane showed almost complete removal of PO4
3- and the modified 

membranes maintained the same level of removal. While NO3
- removal was also already very high 

(97.5%) by the virgin membrane, a slight increase in removal with increased BL numbers (8 and 

14 BLs) was observed. 

Figure 14. Nutrient removal using virgin, 8BL-nZVI, and 14BL-nZVI FO membranes 
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Effect of Membrane Functionalization on Heavy Metal Removal 

The unmodified and modified FO membranes were tested for their heavy metal removal 

efficiency from stormwater runoff using NaCl as a DS. The removal of the selected heavy metals 

(Cd, Pb, and Cu) ranged from approximately 87% for Pb to almost complete (~99%) removal for 

Cd (Figure 15). There was an increasing trend of removal of the metals with the higher number of 

BLs when comparing 8 and 14 BL-coated membranes. The removal of Cd by the virgin membrane 

was already very high and the coated membranes showed a similar or a slightly higher removal. 

The removal of Pb increased from approximately 87% (virgin membrane) to approximately 95% 

when the membrane was coated with 14 BL PAH/PAA. A similar trend was observed for the 

removal of Cu, which increased from approximately 89% to approximately 94%.  

Figure 15. Heavy metal (Cd, Pb, and Cu) removal by the virgin and modified membranes. 

 

80

82

84

86

88

90

92

94

96

98

100

Cd Pb Cu

R
E

M
O

V
A

L
 P

E
R

C
E

N
T

A
G

E
 (

%
)

Virgin

8 BL

14 BL



31 

The membrane modification introduced carboxylate and amine groups to the CTA surface 

of the FO membrane. The carboxylate group could bind with the divalent heavy metal atom and 

form a complex compound (Figure 16). This is plausible mechanism of enhanced metal removal 

by the PAH/PAA functionalized membranes when compared to the unmodified membrane. 
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Figure 16. Heavy metal removal mechanism by the modified membranes. 

 

If the metals form complexes with the carboxylate groups from the PAH/PAA coatings, it 

can be hypothesized that the mass adsorption of the heavy metals by the modified membranes 

should be higher compared to the virgin membrane. This can be tested by applying a simple mass 

balance on the metals in the FS. As shown in Table 5, the virgin membrane adsorbed only up to 

approximately 5% of the metals, likely due to the unacetylated cellulose of the membrane and the 

hydroxyl (-OH) groups from the cellulose forming complexes with heavy metals. The modified 

membrane showed more metal adsorption due to the presence of the carboxylate groups as 

discussed earlier. Up to 22% adsorption of Pb was estimated from the mass balance (Table 5) when 

using the 14 BL- nZVI membrane. The 14 BL-nZVI membrane, however, showed less Cd 

adsorption (~7%) probably because of the competition of Cd with Pb and Cu to form 

complexes.[54]  

For further confirmation of the above finding, the unmodified and modified membranes were 

examined using EDX. Figure 17, 18, and 19 show the SEM images of the corresponding EDX 
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mapping for the tested heavy metals for the unmodified, 8BL-nZVI, and 14 BL-nZVI, respectively. 

The EDX maps indicate that the 14 BL-nZVI membrane had the highest amount of heavy metals 

on its surface, which is consistent with the finding based on the mass balance approach discussed 

before. Thus, it is confirmed that a higher number of coating results in a higher retention of heavy 

metals by the FO membrane. 

 

Figure 17. SEM images of the unmodified membrane and corresponding EDX mapping for, Cd 
(b), Cu (c), and Pb (d). 

 

 

(a) (b) 

(c) (d) 
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Table 5. Heavy metal adsorption by unmodified and modified FO membranes 

 

 

Figure 18. SEM images of the 8 BL-nZVI membrane and corresponding EDX mapping for, Cd 
(b), Cu (c), and Pb (d). 

 

 

Membrane 
% Mass adsorbed 

Cd Pb Cu 

Virgin 3.337199 1.140278 4.841007 

8BL-nZVI 11.90415 15.4 16.69758 

14BL-nZVI 6.947018 22.08189 19.43209 
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Figure 19. SEM images of the 14 BL-nZVI membrane and corresponding EDX mapping for, Cd 
(b), Cu (c), and Pb (d). 
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Removal of PFAS using Virgin and Modified FO Membranes 

The unmodified CTA FO membrane exhibited very high removal of the selected PFASs. 

Approximately 97% PFOA and 98% PFOS (Figure 20) were removed by the virgin membrane. 

The presence of fluorine serves as an indicator of PFAS in a sample matrix and hence, the detection 

of total fluorine (TF) has been recently used as an approach for rapid screening of PFASs [50]. To 

confirm the adsorption of PFOS/A by the functionalized FO membranes, EDX analysis was 

conducted in this study. Figure 21 show the SEM Images and their corresponding EDX fluorine 

(F) mapping for virgin, 8 BL-nZVI, and 14 BL-nZVI membranes. The X-ray detection peaks for 

F (F Kα) was clearly the highest for the 14 BL-nZVI membrane, indicating that this membrane 

adsorbed more PFOS/A compared to the virgin and the 8 BL-nZVI membrane. 

 

 

Figure 20. PFOA/S removal using virgin membrane. 
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Figure 21. SEM images and their corresponding EDX mapping for F-elements for (a-b) virgin, 
(c-d) 8BL-nZVI, and (e-f) 14BL-nZVI membranes. 
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CHAPTER 5: CONCLUSION AND RECOMMENDATION 

Conclusions 

In this study, a commercially available CTA FO membrane was functionalized using 

PAA/PAH multilayer films with embedded nZVI to reclaim water from an impaired-quality 

source, stormwater runoff. Repeated applications of PAA/PAH ‘bilayers’ (BL) were required to 

ensure uniform coating of the rough CTA membrane surface active layer. The membrane coverage 

and uniformity of coating improved as more BL coatings were applied. In addition, SEM images 

indicated that a higher number of PAA/PAH bilayer coatings result in higher amount of nZVI 

immobilization on the membrane surface. The coating protocol, however, must be optimized with 

respect to the flux loss and contaminant rejection by the functionalized membrane. While the 

modified membranes showed markedly less initial flux compared to the unmodified membrane, 

the flux was maintained throughout the experimental period with only a slight decline. The flux 

decline was probably offset by hydrophilicity rendered by the PAA/PAH functional groups and 

less foulant accumulation. The nZVI-loaded PAA/PAH coatings did not have any adverse impact 

on reverse salt flux. While both NO3
- and PO4

3- removal was already very high when using the 

unmodified membrane, a slight increase in the removal of NO3
- with increased BL numbers was 

observed. Mass balance and EDX analyses revealed that a higher number of coatings resulted in a 

higher retention of heavy metals by the functionalized FO membranes. This could be attributed to 

the complexation of metal ions with carboxylate and amine groups from the PAA/PAH bilayers 

deposited on the membrane. Although the unmodified membrane already showed very high 

removal of POFS and PFOA, more retention of these compounds can be expected if more bilayer 

coatings are applied.  
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This study suggested that the treatment of urban stormwater using the modified FO 

membrane can produce water that will be amenable to water reclamation purposes. The 

functionalized membrane efficiently removed nutrients, PFAS, and heavy metals. However, the 

final concentration of the draw solution, although diluted, may need further treatment before being 

reused. The bench-scale experiments were conducted using smaller membrane specimens. It is 

suggested that larger membrane coupons be used for future experiments to verify the impact of 

membrane area on draw solution salt concentration.  

Recommendations 

Water reclamation from other impaired-quality sources should be examined following the 

FO process developed in this study. Future work should focus on additional FO membrane coating 

methods using other PE complexes. Commercial FO membranes are produced by a limited number 

of manufacturers. Hence, future work should attempt fabricating FO membranes that can be fine-

tuned for desired properties. FO membranes must be optimized for fouling resistance and reverse 

salt flux. The effects of additional water quality parameters on the FO process using the 

functionalized membranes should be determined. The effects of draw solution concentration and 

other FO operating conditions should be tested as well. 

In this study, NaCl was added to the coating solution to improve the deposition rate of the 

polyelectrolytes. However, the experiments on the effect of the NaCl concentration on the 

membrane morphology were not performed due to the time constraint. Additional researches could 

be performed to study the effect of the NaCl on the morphology of the coated membrane. 

Furthermore, future research should study how to optimize further the immobilization of nZVI 

within the bilayer coatings.  
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