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ABSTRACT OF DISSERTATION 

PRECLINICAL DEVELOPMENT OF PHYTOCANNABINOID- AND 
ENDOCANNABINOID- BASED PHARMACOTHERAPIES FOR THE TREATMENT OF 

ETHANOL-INDUCED NEURODEGENERATION 
 

Excessive ethanol consumption, characteristic of alcohol use disorders (AUDs), 
is associated with widespread neurodegeneration and cognitive and behavioral 
impairments that may contribute to the chronic and relapsing nature of alcoholism. 
Therefore, identifying novel targets that can afford neuroprotection will undoubtedly aid 
current treatment strategies for AUDs. The cannabinoids have been shown to provide 
neuroprotection in a variety of preclinical models of neurodegeneration; however minimal 
data is available regarding the use of cannabinoid-based pharmacotherapies for treating 
ethanol-induced neurodegeneration. Therefore, the current dissertation examined the 
overarching hypothesis: the cannabinoids are a therapeutic strategy to afford 
neuroprotection in the context of ethanol-induced neurodegeneration. Importantly, this 
overarching hypothesis was approached with translational considerations in mind. 
Specifically, the use of many cannabinoids in the clinic is hindered due to multiple 
unfavorable pharmacokinetic/pharmacodynamic profiles, including high first pass 
metabolism and untoward psychoactivity. Therefore, the studies herein were designed to 
circumvent these PK/PD obstacles. The first set of studies examined whether 
transdermal delivery of the phytocannabinoid, cannabidiol (CBD), could attenuate binge 
ethanol induced neurodegeneration. Transdermal CBD afforded neuroprotection in the 
entorhinal cortex and neuroprotection was similar in magnitude as intraperitoneal 
administration. The second set of studies found that binge ethanol treatment transiently 
down-regulated the main CNS cannabinoid receptor, CB1R. Interestingly, these changes 
were not accompanied by alterations in one of the major endogenous ligands, 
anandamide (AEA), or other related n-acylethanolamides (NAEs). The latter finding is in 
contrast to other literature reports demonstrating that endocannabinoid content is 
substantially elevated in response to a CNS insult. Nevertheless, studies were carried 
out to determine if administration of the AEA and NAE catabolism inhibitor, URB597, 
could attenuate binge ethanol induced neurodegeneration. URB597 failed to produce 
neuroprotection in the entorhinal cortex and dentate gyrus of the hippocampus. 
However, additional studies found that URB597 failed to elevate AEA in the entorhinal 
cortex, and in general the biological activity of URB597 was impaired by ethanol 
exposure. Therefore, with further drug discovery/development efforts, it may be feasible 
to optimize such treatment strategies. In conclusion, the studies within the current 

 
 



dissertation demonstrated the feasibility of using some cannabinoid-based agents to 
prevent ethanol-induced neurodegeneration.  
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1. CHAPTER 1 

INTRODUCTION 

1.1 General introduction  
 

An alcohol is an organic compound with a common hydroxyl functional group 

bonded to a saturated carbon atom. Among this large class of compounds, one in 

particular has a long history and significant role in human society. Ethyl alcohol 

(ethanol), better known as alcohol has been used in nearly every aspect of society 

including nutrition, medicine, religion and celebration for thousands of years with the 

earliest evidence of alcohol fermentation dating back to 7000 B.C.E in Neolithic China 

[1]. Although alcohol ingestion can have marginal beneficial effects on health [2], 

excessive use can lead to harmful consequences on the individual and to society. 

Recent reports from the World Health Organization estimate that 4% of all deaths 

worldwide are attributed to alcohol use, making alcohol consumption the 8th leading risk 

factor for death [3]. Additionally, alcohol consumption is 3rd among risk factors leading to 

life years lost globally, only behind childhood malnutrition and unsafe sex. Alcohol 

consumption is a causal factor in over 60 other diseases and injuries. For example, 

alcohol consumption is the leading cause of liver cirrhosis, and a major cause of liver 

cancer, hypertensive heart disease and epilepsy, making alcohol consumption 

accountable for 4.5% of the global burden of disease and injury [3]. Importantly, in 

addition to injurious effects to peripheral organ systems, chronic alcohol consumption 

has deleterious effects on the CNS and 50 - 70% of alcohol-dependent adults show 

permanent cognitive deficits [4].   

Excessive alcohol consumption presents major monetary burdens to the U.S. as 

the annual economic and direct health costs are 223.5 billion and 24.6 billion, 

respectively [5]. In the U.S., alcohol use is among the highest globally [6]. For example, 
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studies estimate that of persons over the age of 12 in the United States, approximately 

51% have reported alcohol use within the past month. Maladaptive alcohol consumption 

in the U.S. is a major concern as it is estimated that at any given time, 8.5% of 

Americans will meet the Diagnostic and Statistical Manual of Mental Disorders - IV 

(DSM-IV) criteria for an alcohol use disorder (AUD) [7, 8]. An AUD, commonly referred to 

as alcoholism, is defined by the DSM-IV as a maladaptive pattern of alcohol 

consumption that produces clinically relevant distress or impairment and includes 

inclusion criteria for alcohol abuse and alcohol dependence [9]. AUDs can be 

characterized by persistent and escalating alcohol consumption, a preoccupation with 

alcohol use that can develop into uncontrolled alcohol use, tolerance to alcohol’s effects 

and physical dependence [9]. 

Importantly, many of the individuals that meet the criteria of an AUD can also be 

classified as binge drinkers and binge drinking is on the rise in the U.S. [10]. Additionally, 

76.4% of the total economic burden of excessive drinking in the US can be attributed to 

binge drinking [5]. Binge drinking is officially classified as 4 standard drinks for women 

and 5 standard drinks for men within 2 hours, which typically results in blood ethanol 

concentrations (BECs) around 0.08 mg%. However, alcohol dependent binge drinkers 

commonly achieve much higher BECs as clinical studies have found that alcoholics 

admitted to the emergency room are often conscience and alert at BECs exceeding 0.3 

mg% [11, 12]. Binge drinking and high BECs associated with this pattern of consumption 

are particularly detrimental. For example, binge drinking increases the risk for alcohol 

dependence, co-morbid psychiatric disorders and neuropathology [13-16].  

 

1.2 Ethanol neuropharmacology 

Ethanol is a small (molecular weight = 46.07 g/mol) amphipathic chemical without 

stereoselectivity. Therefore, ethanol’s interactions with biological substrates, including 
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lipids and proteins, are considerably less selective than other drugs of abuse. For 

example, ethanol has strong interactions with both the hydrocarbon chains and the polar 

head groups of plasma membrane phospholipids; and can readily interact with proteins 

by displacing water molecules from hydrophilic pockets [17]. Through these “allosteric” 

interactions, ethanol can profoundly alter the structure of many proteins, particularly 

transmembrane receptors, which results in significant functional changes [17]. 

Importantly, although ethanol is less selective then many other drugs, ethanol does favor 

interactions with some proteins more than others. 

At low millimolar concentrations, which produce intoxication, ethanol interacts with 

a wide variety of neurotransmitter systems. For example, ethanol directly influences 

opioid, dopamine, acetylcholine, serotonin, glycine and endocannabinoid (eCB, see 

section 1.8) neurotransmission, and these interactions are responsible for many ethanol-

mediated effects, including intoxication, reinforcement and withdrawal. However, in the 

context of the current dissertation, the following discussion will focus on ethanol’s effects 

on glutamate and γ-aminobutyric acid (GABA) neurotransmission, as ethanol-induced 

neuroadaptations in these neurotransmitter systems are hypothesized to contribute to 

the neurodegenerative effects of ethanol [18, 19].      

L-glutamate is the primary excitatory neurotransmitter in the CNS and is a ligand 

for both metabotropic and ionotropic receptors. Of these receptors, ethanol has the most 

profound effects on the N-methyl-D-aspartate (NMDA) receptor subtype. NMDA 

receptors are heterotetrameric, ionotropic receptors that are permeable to cations, 

particularly Ca2+, and are critical for many physiological processes, including synaptic 

transmission and synaptic plasticity. At low millimolar concentrations, ethanol inhibits 

NMDA-mediated neurotransmission [20, 21], an effect that is greater at NMDA receptors 

with NR1/NR2A or NR1/NR2B  compositions compared the NR1/NR2C or NR1/NR2D 

subunit compositions [22]. Conversely, chronic exposure has the capability to upregulate 
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glutamatergic neurotransmission to maintain homeostasis, which contributes to ethanol 

tolerance. For example, chronic ethanol exposure commonly results in elevated 

extracellular glutamate concentrations [23, 24], increased surface expression of NMDA 

receptors [25] and a shifted expression toward the NR1/NR2B subunit composition [26]. 

Importantly, NMDA receptor up regulation is hypothesized to be a critical mechanism 

responsible for ethanol withdrawal induced hyperexcitability, resulting in seizure activity 

and excitotoxic neuronal injury [26-28]. 

 In contrast to the effects of ethanol on NMDA-mediated neurotransmission, 

ethanol potentiates GABAergic neurotransmission. GABA is the principal inhibitory 

neurotransmitter in the CNS and consists of both metabotropic and ionotropic receptors. 

The GABAA receptor is a Cl- permeable ion channel that is responsible for 

hyperpolarizing the postsynaptic membrane and thus increasing the threshold for firing 

an action potential. Through complex allosteric interactions, ethanol enhances the 

function of the GABAA receptor [29, 30], which results in homeostatic changes in the 

function of GABAergic neurotransmission following chronic ethanol exposure. For 

example, chronic ethanol exposure decreases mRNA expression of the α1 GABAA 

subunit [31] and increases internalization of α1 containing GABAA receptors [32], effects 

that are associated with decreased GABAA function and cell hyperexcitability [33]. 

Importantly, in conjunction with ethanol-induced neuroadaptations in glutamatergic 

neurotransmission, reduced GABAergic neurotransmission following chronic ethanol 

exposure could contribute to ethanol withdrawal induced hyperexcitability and excitotoxic 

neuronal injury [34-36].  

 

1.3 Pharmacotherapies for alcoholism 

To date, the Food and Drug Administration (FDA) has approved four 

pharmacotherapies for the treatment of AUDs: disulfuram, acamprosate, oral naltrexone 
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and long-acting injectable naltrexone. Disulfuram (Antabuse®) has been marketed since 

the 1940s and was the first drug approved for alcohol dependence. Alcohol metabolism 

primarily occurs though a two-step process where it its first converted to acetaldehyde 

by alcohol dehydrogenase and then further metabolized to acetate by acetaldehyde 

dehydrogenase. Disulfuram inhibits acetaldehyde dehydrogenase, which produces 

aversive physiological effects following alcohol ingestion as a consequence of 

acetaldehyde accumulation. Reactions to alcohol consumption while being treated with 

disulfuram include headaches, nausea, vomiting, chest pain and death in severe cases 

[37, 38]. Therefore, while on this drug, individuals are likely to abstain from drinking. 

However, the efficacy of disulfuram for the treatment of alcohol dependence is 

undermined by high rates of noncompliance [38, 39] and its clinical use is declining [40].  

 Naltrexone (ReVia®), the first central nervous system (CNS) acting drug for 

alcohol dependence, was approved by the FDA in 1994. Naltrexone is a competitive 

opioid antagonist with affinity towards the µ- κ- and δ- opioid receptor subtypes and 

blocks ethanol-induced stimulation of dopamine release in the nucleus accumbens, a 

major brain region responsible for positive reinforcement [41]. Therefore, it is widely 

hypothesized that naltrexone prevents heavy drinking by blocking some of the the 

positive reinforcing properties of ethanol [42, 43]. The efficacy of naltrexone has been 

examined in 20 clinical trials worldwide to date and these trials have found that 

naltrexone reduces the likelihood of relapse to heavy drinking and may increase the rate 

of complete abstinence [38]. However the effect sizes of these outcomes are modest 

and some reports show a lack of naltrexone efficacy compared to placebo [38, 44].  

Noteworthy, genetic variance can predict efficacy of naltrexone treatment. Individuals 

with a µ-opioid receptor 118G allele rather than 118A, tend to have greater subjective 

feelings of reward following alcohol consumption [45] and tend to respond better to 

naltrexone intervention [46-48]. Collectively, these data suggest that naltrexone may be 
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more beneficial for alcoholics who drink for the positive reinforcing effects of alcohol [49], 

however this hypothesis remains to be substantiated by published findings. The efficacy 

of naltrexone is hindered due to patient noncompliance [50], therefore an injectable long-

acting form of naltrexone (Vivitrol®) was developed and approved by the FDA in 2006. 

Acamprosate (Campral®), was approved by the FDA in 2004 for detoxified and 

abstinent patients for the maintenance of abstinence. The mechanism of action is not 

entirely understood, however evidence suggests that acamprosate has interactions with 

the glutamate system, with potential binding sites at the polyamine site of the NMDA 

receptor [51, 52] and the mGluR5 receptor [53]. Therefore, it’s suggested that 

acamprosate normalizes hyperglutamatergic activity associated with alcohol withdrawal 

and abstinence [54]. Multiple clinical trials have been conducted with acamprosate, 

which, in general, show some efficacy compared to placebo in maintaining abstinence 

[55]. However, two U.S. placebo-controlled studies failed to show a benefit of 

acamprosate on percent days abstinent and time to first heavy drinking day [56, 57]. 

Nevertheless, acamprosate is currently the most prescribed medication for alcohol 

dependence in the U.S. and is responsible for the dramatic increase use of medications 

for the treatment of alcohol dependence [40]. Importantly, acamprosate may be more 

effective in patents who are motivated to abstain from alcohol use [57]. 

 Although these drugs are efficacious for some individuals, in general their effect 

sizes are small compared to placebo [38]. Additionally, the rate of prescribed 

medications for patients with an AUD is only 10 -13% [40, 58]. Although multiple factors 

contribute to the low rate of pharmacological treatment for AUD’s, it is certain that low 

efficacy of current drugs and lack of treatment options plays a critical role [59]. A further 

understanding of the neurobiology of AUDs is necessary for the development of new and 

more efficacious pharmacotherapies [59]. Although the current drugs approved for the 

treatment of AUDs focus on preventing the reinforcing effects of ethanol, it is well known 
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that excessive ethanol consumption results in structural and functional impairments that 

influence the initiation and perpetuation of AUDs [60, 61]. Therefore, it is hypothesized 

that neuroprotective drugs will prevent or even reverse ethanol-induced neurotoxicity, 

restore cognitive function and aid in the recovery of AUDs. In support of this hypothesis, 

a recent study found that alcohol-induced deficits in cortical gray volume are a predictor 

of relapse rates [62]. 

 

1.4 Rationale for treating alcohol-induced neurodegeneration: a novel target 

for the treatment of AUDs 

 Excessive alcohol use results in numerous structural abnormalities in the CNS, 

which are theorized to be important pathological mechanisms underlying the 

neuropsychological and behavioral impairments observed in alcoholics [63]. Operating 

under this theory, it is hypothesized that alcohol-induced neurodegeneration may 

contribute to the development and maintenance of an AUD [60, 61]. For example, 

ethanol-induced damage to the frontal lobe and hippocampus may be associated with 

poor judgment, perseveration, impulsivity, attention deficits and social withdrawal; 

behaviors that are associated with AUDs [60, 63, 64]. Therefore, the treatment of AUDs 

would benefit from a pharmacological approach that could reduce alcohol-induced 

neurodegeneration and reverse these behavioral deficits that may underlie the chronic 

nature of alcoholism.  

 

1.4.1 Human evidence of alcohol-induced neurodegeneration  

Neuropathological studies, although limited in number, have found structural 

abnormalities in the alcoholic brain [65, 66]. Many of the neurodegenerative effects of 

alcohol, have been observed from individuals with comorbid Wernicke-Korsakoff 

syndrome, including neuronal loss in the thalamus, mammillary bodies, basal forebrain, 
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raphe and cerebellar vermis [66]. However, evidence also suggests that alcohol-induced 

neurodegeneration occurs in uncomplicated alcoholics.  For example, postmortem 

studies have found signs of alcohol-induced neurodegeneration including reduced tissue 

weight [67, 68], increased cerebrospinal fluid filled space [68], white matter loss [67], 

deficits in dendritic arborization, cell shrinkage and neuronal cell loss [67, 69, 70]. These 

neurotoxic effects of alcohol appear to be brain region specific as large pyramidal 

neurons of the superior prefrontal cortex are lost, while neurons are spared in the motor 

cortex [67, 70]. Additionally, cortical white matter loss is most severe in the prefrontal 

cortex of the cerebrum [67]. A few reports have also quantified the effects of chronic 

alcohol use on hippocampal neuron populations in human postmortem brains. An initial 

report observed significant reductions in neurons in all hippocampal subfields quantified, 

including Cornu Ammonis (CA) 1 though CA4 and the dentate gyrus [71]. However, a 

more rigorous study failed to observe neuronal loss in any hippocampal subfield, but 

was able to attribute hippocampal volume deficits in alcoholic cases to white matter loss 

[72]. Importantly, these postmortem studies show that alcohol may cause both 

irreversible (i.e. neuron loss) and reversible structural changes (i.e. dendritic atrophy, 

cell shrinkage), both of which may be targeted by neuroprotective pharmacotherapies. 

Although only a limited number of neuropathological reports examining the 

neurodegenerative effects of alcohol are available, in vivo brain morphometric studies 

have reported that the alcoholic brain suffers from diffuse reductions in brain volume 

evidenced by ventricular enlargement and widening of the cortical sulci [63].  Imaging 

studies have found reduced cortical gray matter and cortical white matter with the most 

prominent effects in the frontal lobe [73, 74], temporal lobe [75, 76] and the 

hippocampus [77-80]. Additionally, other subcortical structures including the corpus 

callosum [81, 82], pons [83], mammillary bodies [84, 85] thalamus [75, 86] and 

cerebellum [87] are smaller in the alcoholic brain.    
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1.4.2 Link between alcohol-induced neurodegeneration and neuropsychological 

deficits associated with AUDs 

AUDs are characterized by a well-defined pattern of neuropsychological deficits 

including impairments in working memory and problem solving, poor judgment, response 

perseveration, impulsivity, lack of motivation, attention deficits and social withdrawal [63, 

88, 89]. In fact, 50-75% of detoxified alcoholics show permanent neuropsychological 

dysfunction [4].  Although it is thought that the neurodegenerative effects of alcohol 

underlie the neuropsychological deficits observed in humans, only a few studies have 

observed direct correlations between discrete brain region volumes and 

neuropsychological performance dependent on the same region. For example, studies 

have observed reductions in frontal cortex volume and have found impairments in frontal 

cortex dependent neuropsychological functions, such as working memory, problem 

solving and impulsivity [88]; however, in only some instances have correlations between 

these measures been found [63]. Similarly, reductions in hippocampal volume and 

deficits in hippocampal-dependent neuropsychological functions, including declarative 

memory [90], have been observed, however other studies have shown that these 

measures do not always correlate [77, 91]. The discrepancies between structural and 

neuropsychological measures are seemingly paradoxical; however emerging data 

suggests that subtle structural deficits across multiple loci within connected circuitry may 

be responsible for neuropsychological deficits observed in alcoholism. For example, 

Sullivan and colleagues show evidence that structural deficits in frontocerebellar circuitry 

(i.e. pons, thalamus and cerebellum) rather than discrete deficits in the frontal cortex, 

may underline many executive dysfunctions observed in AUDs, including in working 

memory and behavioral control [63, 86]. 

 The importance of circuitry dysfunction rather than impairments in discrete brain 

regions is also emerging between the hippocampus and prefrontal cortex. Evidence 
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shows that the hippocampus is critically involved in proper functioning of the prefrontal 

cortex (PFC) [92]. For example, hippocampal glutamatergic efferents terminating in the 

PFC, are implicated in proper processing of executive function, working memory, 

contextual information and emotional regulation [92]. Therefore, disruption in the 

structural integrity of the hippocampus may be an underling substrate for impairments in 

these functions typically associated with the PFC. Long-lasting deficits in executive 

function, working memory and emotional regulation are observed following excessive 

alcohol consumption [88, 93, 94] and it is hypothesized that compromised hippocampal 

integrity, including neuron loss, white matter atrophy and/or dendritic shrinkage in 

alcoholics may be important in the expression of these impairments. In support of this 

hypothesis, a recent study observed a correlation between deficits in executive function 

and hippocampal volume [75]. Taken together, alcohol-induced neurodegeneration may 

have a profound impact on multisystem cognition, which may lead to many of the 

hallmark neuropsychological deficits that are observed in alcoholism and that are 

theorized to contribute to the chronic relapsing nature of the disease [60, 61]. 

 

1.5 Animal models showing ethanol-induced neurodegeneration  

The neurodegenerative effects of ethanol were initially described in rodent 

models of chronic ethanol consumption (CEC) in which mice or rats were fed alcohol in 

their drinking water from anywhere between 5 to 18 months. CEC was found to produce 

similar patterns of neurodegeneration as observed in humans, with neuronal loss in 

dentate gyrus, CA2/3 and CA1 of the hippocampus [95-97] and in layer III of the 

prelimbic area of the medial prefrontal cortex [98]. Additionally, withdrawal from CEC 

aggravates cell loss in the hippocampus [99-101], suggesting that both direct neurotoxic 

effects of ethanol as well as ethanol withdrawal contribute to neurodegeneration. 

Noteworthy, withdrawal from CEC is associated with dendritic regrowth and 
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synaptogenesis in the hippocampus and/or cortex, which may represent a mechanism 

by which recovery of brain volume and neuropsychological function may occur in human 

alcoholics [95, 98]. 

In addition to alcohol’s neurodegenerative effects on glutamatergic neurons in 

granular cell layer and pyramidal CA fields of the hippocampus, cholinergic neurons in 

the hippocampus are also sensitive to the neurotoxic effects CEC [102]. Similarly, 

studies have shown that GABA-immunoreactive neurons of the hippocampus are lost 

due to CEC [103, 104], which likely includes dentate basket cells [105] and hilar 

somatostatin-immunoreactive neurons [106]. Similar to the effects seen for glutamatergic 

hippocampal granular and pyramidal neurons, alcohol withdrawal exacerbates the loss 

of both choline acetyltransferase (ChAT)- and GABA- immunoreactive neurons [103, 

107], but not somatostatin immunoreactive neurons [106].  

Although CEC produces profound effects on brain structure which mimic some 

features observed in human alcoholic brains, literature suggests that intermittent or 

binge drinking may be more toxic to the brain then continuous exposure [14].  For 

example, rats exposed to intermittent intraperitoneal ethanol over the course of one 

month have hippocampal cell loss, an effect not observed when rats are continuously 

exposed to ethanol in the drinking water, despite higher total ethanol exposure [108]. 

Additionally, 2 weeks of intermittent intraperitoneal ethanol exposure in adolescents is 

associated with DNA fragmentation and elevated caspase-3 activity, indicative of 

ethanol-induced apoptotic cell death [109].     

Other binge-like models also have been utilized to recapitulate the neurotoxic 

effects of ethanol exposure. Initially developed as a model of alcohol dependence, the 

Majchrowicz binge model [110], reliably produces patterns of neurodegeneration that are 

similar to that observed in human [111]. In this model, rats are administered alcohol 3 

times daily for 4 days by gastric intubation. Rats are initially administered a priming dose 
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of 5 g/kg with subsequent doses titrated based on behavioral intoxication scores, such 

that rats are maintained at highly intoxicating blood ethanol concentrations (BECs) while 

minimizing mortality. In this model, neurons are lost in the olfactory bulb and throughout 

the entire cortico-limbic pathway; however neurodegeneration is particularly evident in 

layer II/III of the entorhinal cortex and the ventral granular cell layer of the dentate gyrus, 

with occasional degeneration in the CA3 pyramidal layer of the hippocampus [111-113]. 

Neurodegeneration in this model has traditionally been observed using deOlmos’ amino 

cupric silver stain [111] and/or Fluoro-Jade B (FJB) stain [113, 114], which capture cells 

currently undergoing degeneration. Corroborating these markers of cell death, a recent 

study has also shown that total numbers of granule cells in the dentate gyrus are 

reduced following binge ethanol treatment, an observation likely due not only to cell loss, 

but also inhibition of ongoing neurogenesis [115]. Additionally, neurodegeneration, 

visualized by FJB, is detected throughout the corticolimbic pathway following cessation 

of alcohol for up to one week (figures 1.1 and 1.2) [113], however the role of ethanol 

withdrawal on neuronal loss in this binge model is still unclear.  

A modified Majchrowicz binge model was used for the studies within the current 

dissertation because it recapitulates many features of human AUDs. For example, 

studies have shown that binge drinking is the most common form of alcohol intake, is on 

the rise in the U.S. [10, 116] and is hypothesized to be particularly neurotoxic [14]. 

Additionally, this model produces BECs between 250 – 450 mg/dL [117] and limbic 

neurodegeneration [113, 118], which is consistent with human studies [70, 71, 75, 77]. In 

addition to having face validity, much is known about the cellular and molecular 

mechanism leading to neurodegeneration and the spatial and temporal profiles of 

neurodegeneration are well characterized, which aids in experimental design.  
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Figure 1.1 Cell death, indicated by FJB, continues for a week into abstinence in 

corticolimbic regions.  

(A) FJB quantification in corticolimbic regions at multiple timepoints following 4-days of 

binge treatment. (B-M) Representative fluorescent photomicrographs show FJB positive 

(+) cells in four cortical regions: rostral piriform (rPir; B–D), caudal piriform (cPir; E–G), 

agranular-insular cortices (AI; H–J), and perirhinal-entorhinal cortices (Per/EntoR; K–M). 

Control rats (top row B, E, H, K) rarely had detectable FJB+ cells in any brain region. 

FJB+ cells are shown for T4days (middle row: C, F, I, L) and T7days (bottom row: D, G, 

J, M). Scale bar in (D) = 100 µm; inset = 10 µm. * p < 0.05 compared to controls. (figure 

from [113]) 
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Figure 1.2 Cell death, indicated by FJB, continues for a week into abstinence in 

the hippocampus. 

(A) FJB quantification in CA3 and the dentate gyrus (DG) at multiple timepoints following 

4-days of binge treatment. (B-G) Representative fluorescent photomicrographs of FJB 

staining. In controls, FJB positive (+) cells were rarely observed in the CA3 (B) or DG 

(E). Conversely, FJB+ cells were observed in CA3 at T4days (C) and T7days (D) and in 

the DG at T4days (F) and T7days (G). GCL, granule cell layer. Scale bar in (D) = 100 

µM, inset = 10 µM. *, p < 0.05. (figure from [113]) 
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Importantly, in contrast to other experimental models of ethanol-induced 

neurodegeneration that require months of treatment [95, 97], substantial 

neurodegeneration is observed following 4 days of ethanol administration [111, 113] and 

is evident as early as 1 or 2 days [114, 119]. Thus, the abbreviated nature of this model 

is amenable to rapid drug screening. In fact, the modified Majchrowicz model has been 

implemented successfully to evaluate a variety of neuroprotective agents [120-123]. 

Species, strain and sex are all important considerations for experimental design that 

may affect outcome measures. Therefore, the studies in the current dissertation used 

male Sprague-Dawley rats, which is consistent with the majority of previous reports 

using a modified Majchrowicz binge model to investigate the neurotoxic effects of binge 

ethanol exposure and to evaluate various neuroprotective agents [114, 118, 120, 124, 

125]. This model was also used because much is known about the cellular and 

molecular mechanism leading to neurodegeneration and the spatial and temporal 

profiles of neurodegeneration are well characterized. Importantly, in contrast to other 

experimental models of ethanol-induced neurodegeneration that require months of 

treatment [95, 97], substantial cell death is observed following 4 days of ethanol 

administration [111, 113] and is evident as early as 1 or 2 days [114, 119]. Thus, the 

abbreviated nature of this model is amenable to rapid drug screening. In fact, the 

modified Majchrowicz model has been implemented successfully to evaluate a variety of 

neuroprotective agents [120-123].  

 

1.6 Mechanisms of ethanol-induced cellular damage 

Although the specific mechanisms responsible for ethanol-induced neuronal cell 

death remain elusive, studies have shown that oxidative stress, excitotoxicity, 

neuroinflammatory signaling and/or tissue edema are critical components [126]. 

Although each of these components can be characterized by distinct molecular 
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mechanisms, a complex interaction between them occurs under neurotoxic conditions, 

creating a self-perpetuating cycle. For example, oxidative stress is a byproduct of 

excitotoxicity and neuroinflammatory enzyme induction; however, prolonged saturation 

of endogenous antioxidant mechanisms can result in cellular toxicity, creating a 

feedback effect on excitotoxicity and neuroinflammatory signaling.  Additionally, 

neuroinflammatory signaling can potentiate excitotoxicity by multiple mechanisms, such 

as membrane insertion of 2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl) propionate 

(AMPA) receptors and inhibition of astrocyte-mediated glutamate reuptake [127]. The 

paragraphs below present further detail on oxidative stress, excitotoxicity, 

neuroinflammatory signaling and edema and how neurotoxic patterns of ethanol 

exposure induce these events.   

 

1.6.1 Excitotoxicity:  

Excitotoxicity is a common pathological event that occurs in a variety of disease 

states in the CNS including stroke, epilepsy, trauma and neurodegeneration [128, 129]. 

In the normal functioning CNS, L-glutamate is responsible for a variety of physiological 

processes including synaptic transmission, synaptic plasticity, and neuronal maturation 

during development. Glutamate activates three major ligand-gated cationic channels, 

including NMDA, AMPA and kainate receptors, which increase neuronal excitability by 

allowing the influx of Ca2+ and Na+ and the efflux of K+. However, glutamate can become 

neurotoxic if normal mechanisms governing its release and/or uptake become 

dysfunctional. Under excitotoxic conditions, excessive synaptic glutamate concentrations 

overstimulate ionotropic glutamate receptors, leading to high neurotoxic concentrations 

of free cytosolic Ca2+ [128]. Additionally, excitotoxicity may be governed by plasticity in 

the expression and function of glutamate receptors. For example, research shows that 

the NR2B subunit of the NMDA receptor increases current decay time, suggesting that 
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this subunit increases time for Ca2+ entry [130] and enhances susceptibility to 

excitotoxicity [26]. The molecular mechanisms that mediate Ca2+ dependent 

neurotoxicity are not entirely clear, however it is established that free radical production, 

activation of Ca2+ sensitive proteases, mitochondrial dysfunction and different 

intracellular cascades, including NF-κB, are involved [128, 129]. 

Some human reports show that brain volume loss is correlated with withdrawal 

frequency, suggesting that withdrawal-induced excitotoxicity may be involved in the 

neurotoxic effects of ethanol [14, 131]. Ethanol-induced neurotoxicity is hypothesized to 

partially result from neuroadaptive changes in inhibitory and excitatory 

neurotransmission in the presence of chronic ethanol exposure [18], which results in 

NMDA receptor-mediated hyperexcitability during withdrawal [27] (also see section 1.2). 

Numerous studies have observed increases in NMDA receptor density [132], NMDA 

receptor sensitization [133] and glutamate release during acute withdrawal [24, 27]. This 

state of hyperglutamatergic activity could result in NMDA receptor mediated aberrant 

increases in intracellular Ca2+, which causes excitotoxic events as described above, 

leading to cellular damage and death [19, 28, 134]. However, withdrawal-induced 

excitotoxicity does not explain all of the neurotoxic effects of ethanol as 

neurodegeneration is observed prior to ethanol-withdrawal in multiple models [95, 111, 

119]. Furthermore, NMDA receptor antagonists have repeatedly failed to prevent 

ethanol-induced neurodegeneration in a 4-day binge model [118, 121]. 

 

1.6.2 Oxidative stress: 

 The brain is highly susceptible to oxidative stress due to high concentrations of 

unsaturated fatty acids and transition metals, such as iron and copper, and due to high 

metabolic demand. The production of ROS and reactive nitrogen species (RNS), such 

as nitric oxide (NO-), peroxynitrite (ONOO-), hydroxyl radical ( -OH), hydrogen peroxide 
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(H2O2) and superoxide (O2
-), occurs during normal metabolic activity and physiology in 

the CNS. Thus, the CNS also contains antioxidant systems to prevent excessive free 

radical production. For example, glutathione scavenges intracellular free radicals; and 

enzymes such as superoxide dismutase and catalase, convert O2
-
 to H2O2 and H2O2 to 

CO2, respectively. However, under neurodegenerative conditions, the balance between 

free radical production and elimination becomes unbalanced and leads to cellular 

distress and death, if left unchecked [135]. For example, free radicals attack unsaturated 

fatty acids which can lead to membrane instability and the formation of malondialdehyde, 

a reactive hydrocarbon which can form DNA adducts [135]. Additionally, DNA and 

protein oxidative damage results in protein dysfunction, protein aggregation, protein-

DNA adducts and direct DNA damage [135]. Common to most neurodegenerative 

disorders, free radical production typically results from neurotoxicant metabolism, 

excitotoxicity, mitochondrial dysfunction and/or neuroinflammation, which is also the 

case for ethanol-induced oxidative stress.  

A primary role of oxidative stress in ethanol-induced neurotoxicity is evident from 

a variety of experimental studies. Consistent with the hypothesis that ethanol 

accelerates the formation ROS and RNS, studies have found that alcohol exposure 

enhances the expression of a variety of free radical producing enzymes, including COX-

2, NADPH oxidase (NOX) and iNOS [120, 124, 136]. For example, a recent study found 

that ethanol administration in mice resulted in increased expression of the NOX subunit 

gp91phox and subsequent free radical production and cell death, both of which could be 

attenuated by NOX inhibition [136]. Importantly, increased expression of gp91phox was 

also observed in postmortem alcoholic brain tissue [136]. Free radical production may 

also occur by ethanol metabolism and induction of the free radical producing cytochrome 

P450, CYP2E1 [137, 138]. In addition to the induction of free radical producing enzymes, 

evidence suggests that ethanol produces ROS by impairing mitochondrial function [137, 
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139]. For example, binge ethanol exposure reduces mitochondrial bioenergetics, which 

is associated with protein oxidation and lipid peroxidation [139]. Further support for the 

role of oxidative stress in ethanol-induced neurodegeneration comes from 

neuroprotection studies using the modified Majchrowicz model. Administration of a 

variety of antioxidants, including butylated hydroxytoluene (BHT), α-tocopherol and 

cannabidiol, attenuate neurodegeneration (Hamelink et al., 2005; Crews et al., 2006a). 

Interestingly, neuroprotection observed following BHT was associated with decreased 

NF-κB-DNA binding, COX-2 expression and Iba-1 upregulation, suggesting a role of 

neuroinflammatory signaling in ethanol-induced oxidative stress and neurodegeneration 

[120]. 

 

1.6.3 Neuroinflammatory signaling: 

Neuroinflammation is commonly observed in disorders of the CNS, including 

neurodegenerative disorders, acutely damaging insults, for example, traumatic brain 

injury and stroke, and psychiatric diseases, such as depression and addiction [140]. 

Therefore, it is not surprising that both human and experimental reports also suggest 

that neuroinflammation is involved in the pathogenesis of alcoholism. Neuroinflammation 

is broadly defined as a physiological response to tissue damage or infection that 

involves a variety of cell types, including neurons, glia and infiltrating systemic immune 

cells, and the induction of a variety of inflammatory mediators including cytokines, 

eicosanoids and inflammatory enzymes in order to limit tissue damage or eliminate 

infection [141]. However, inappropriate and/or chronic activation of the 

neuroinflammatory axis is theorized to contribute to neurotoxicity in the aforementioned 

CNS diseases [140]. Both pathological and genetic studies underscore the importance of 

neuroinflammatory signaling in alcoholism [136, 142, 143]. For example, postmortem 

studies have found that the alcoholic brain shows evidence of neuroinflammation, 

19 
 



 

including increased expression of  MCP-1 (CCL2), NOX (gp91phox), toll-like receptors 

(TLR), high mobility group box 1 (HMGB1, endogenous TLR agonist) and microglia 

markers Iba-1 and GluT5 [136, 142, 144]. 

Experimental evidence also suggests that ethanol exposure initiates 

neuroinflammatory signaling, which may contribute to neurodegeneration. For example, 

multiple studies have found increased NF-kB translocation and DNA binding following 

ethanol exposure [120, 136, 145], which is the quintessential proinflammatory 

transcription factor that is responsible for the induction of multiple inflammatory 

mediators such as cytokines, chemokines and microglial activation. Interestingly, 

treatment with BHT reverses NF-κB-DNA binding, COX-2 expression, Iba-1 upregulation 

and cell death induced by binge ethanol treatment, suggesting that neuroinflammatory 

signaling is initiated; however whether these effects are responsible for or a result of cell 

death is unclear [120]. Although these data support a role of neuroinflammatory 

signaling in ethanol-induced neurodegeneration, a recent report shows that binge 

ethanol treatment fails to induce markers of classical neuroinflammation, such as TNFα, 

IL1β, full microglial activation and systemic immune cell infiltration [146]. In light of the 

current literature, it is likely that the magnitude of ethanol-induced neuroinflammatory 

signaling and its role in ethanol neurotoxicity is dependent on ethanol exposure 

protocols and species. For example,  in contrast to binge ethanol treatment, 10 days of 

episodic ethanol exposure in mice causes increased expression of TNFα, IL-6, MCP-1, 

NOX, TLR3, HMGB1 and Iba-1 immunoreactivity [136, 147, 148]. Similarly, chronic 

ethanol consumption is associated with TLR4 dependent neuroinflammatory signaling 

and caspase-3 cleavage [145].  

Although the link between ethanol-induced neuroinflammatory signaling and 

neurodegeneration is yet to be firmly established, current evidence suggests that 

neuroinflammatory signaling induced by ethanol may contribute oxidative stress-induced 
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neurotoxicity. For example, NOX inhibition prevents ethanol-induced up regulation of 

Iba-1 expression, free radical generation, caspase-3 cleavage and cell death [136]. 

Additionally, inhibition of phospholipase A2 (PLA2) prevents alcohol-induced 

neurodegeneration in hippocampal entorhinal cortex (HEC) cultures, which is likely due 

to inhibition of prostaglandin-mediated neuroinflammatory signaling and oxidative stress 

[149]. Furthermore, inhibition of microglial activation is correlated with neuroprotection 

following ethanol exposure, suggesting that neuroinflammatory function contributes to 

some of the neurotoxic effects of ethanol [147].  

 

1.6.4 Edema:  

 In humans, brain edema has been observed in chronic alcoholics during 

withdrawal [150] and diuretic treatment results in less severe withdrawal [151]. From 

these early reports, it has been suggested that brain swelling may be involved in 

ethanol-induced neuropathology [152]. Over the past decade, evidence has emerged 

that implicates brain edema as an early event that results in ethanol-induced 

neuroinflammatory signaling, oxidative stress and neurodegeneration [149, 153-155]. In 

support of this hypothesis, furosemide, a K+, Cl- co-transporter inhibitor, reverses brain 

water accumulation, ion imbalances and corticolimbic neurodegeneration following 

episodic alcohol exposure in rats [153]. However, furosemide is a potent free radical 

trapping antioxidant, which may explain its neuroprotective effects, thus confounding 

mechanistic interpretation [121]. Further evidence of the edema hypothesis has shown 

that diuretics, acetazolamide and torasemide, which have negligible antioxidant capacity, 

also prevent edema and neurodegeneration in either hippocampal-entorhinal cortex 

(HEC) slice cultures or following in vivo episodic alcohol exposure, possibly by varying 

mechanisms, including inhibition of aquaporin 4 [154]. Proponents of the edema 

hypothesis suggest that alcohol-induced neurodegeneration may occur though 
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mechanical disruption of cellular architecture following increased intracranial pressure 

and/or by induction of neuroinflammatory pathways and oxidative stress [153]. In support 

of the latter, brain edema is associated with the release of arachidonic acid (AA) from 

membrane stores, which may in turn lead to oxidative stress, neuroinflammation and 

induction of a variety of other cytotoxic mechanisms [155]. Interestingly, inhibition of 

PLA2 prevents alcohol-induced brain damage in HEC slice cultures [149]. Although the 

edema ↔ neuroinflammation ↔ ROS hypothesis is gaining momentum, additional 

studies need to establish the exact molecular mechanisms linking these events.  

 

1.7 Cannabinoid physiology and biochemistry 

 According to archeological evidence, marijuana (Cannabis sativa) has been used 

for thousands of years, particularly for its euphoric and mind altering properties. Before 

1990, little was known about the physiological mechanisms of cannabis derivatives 

except for the identification of Δ9 – tetrahydrocannabinol (Δ9 – THC) as the main 

psychoactive constituent of cannabis. Advances in cannabinoid research took off after 

the discovery of the first cannabinoid receptor, the cannabinoid 1 receptor (CB1R), in 

1990 [156] followed by the discovery of the cannabinoid 2 receptor (CB2R) in 1993 

[157].  

 

1.7.1 Cannabinoid receptor expression 

 The CB1R is commonly called the central cannabinoid receptor because it is 

predominately expressed in the CNS where it modulates a variety of behavioral and 

cognitive processes. High expression levels are found in the striatum, hippocampus, 

substantia nigra and cerebellum, while moderate to low levels are found in other 

structures including the cerebral cortex, amygdala, hypothalamus and spinal cord [158]. 

The distribution patterns of CB1Rs throughout the CNS are consistent with the 
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physiological effects observed following cannabinoid administration including analgesia, 

learning and memory deficits, addiction, mood regulation and neuroprotection [159]. On 

the other hand, CB2R expression is abundant in the periphery, particularly on 

macrophages and in the spleen [157, 159], while central expression remains uncertain 

and controversial [160]. Recent reports have identified CB2R in the brain on both 

neuronal and glial processes [161] and are implicated in a wide variety of processes 

including neuroinflammation and psychiatric disorders [162]. In addition to activation of 

CB1Rs and CB2Rs, exogenous and endogenous cannabinoid ligands can activate other 

receptor types including the peroxisome proliferator activated receptors (PPARs), the 

transient receptor potential cation channel (TRPV1) and the orphan receptors, g-protein 

receptor 55 (GPR55) and GPR18 [163].  

 

1.7.2 CB1R signal transduction 

 The cannabinoid receptors are metabotropic G-protein coupled receptors and 

therefore activate a variety of signal transduction pathways [164]. Both CB1Rs and 

CB2Rs are sensitive to pertussis toxin and therefore operate primarily though Gi/o 

proteins and reduce levels of cAMP [164]. Additionally, CB1Rs are coupled to a range of 

ion channels including negative coupling to N, P/Q and L-type voltage-gated calcium 

channels and positively coupled to GIRK and A-type potassium channels [164]. CB1Rs 

can activate a variety of kinases including focal adhesion kinase (FAK), mitogen 

activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K) [164].  

 

1.7.3 Endocannabinoid ligands 

 Cannabinoid receptors are activated by arachidonic acid-derived lipid 

messengers that are synthesized and released through activity dependent mechanisms, 

therefore “on demand”. The first ligand discovered, arachidonylethanolamide 
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(Anandamide, AEA) was isolated in 1992 from porcine brain [165] and was shown to be 

a partial agonist at CB1Rs and CB2Rs [163, 166]. Additionally, AEA has other non-

CB1R and non-CB2R targets, including activation of TRPV1, PPAR isoforms and 

various other ligand gated ion channels [163]. The other major eCB, 2-

arachidonylglycerol (2-AG), was first identified from canine gut, and was found to interact 

with both CB1R and CB2R as a full agonist [167]. 2-AG has greater efficacy and 

selectivity at cannabinoid receptors and can be found on the order of nanomoles per of 

gram tissue (in comparison to picomoles per of gram tissue for AEA), therefore it is 

considered to be the main cannabinoid neurotransmitter of the brain [159, 163]. In 

addition to AEA and 2-AG, other bioactive lipids bind to cannabinoid receptors, including 

dihomo-g-linolenoyl ethanolamide, docosatetraenoyl ethanolamide, 2-arachidonyl 

glycerol ether, 0-arachidonoylethanolamide and n-arachidonoyldopamine, however their 

biological significance is less studied [159, 163]. Although not able to bind to 

cannabinoid receptors, other n-acylethanolamides (NAEs), including 

palmitoylethanolamide (PEA) and oleoylethanolamide (OEA) have the capacity to 

interact with the eCBs by competing for cellular reuptake and catabolism by fatty acid 

amide hydrolase.  

 

1.7.4 Endocannabinoid biochemistry 

 As mentioned above, both eCBs are synthesized in an activity dependent 

manner though Ca2+ sensitive biosynthetic pathways. The major pathway for AEA 

synthesis involves a two-step reaction to convert phosphatidylethanoamine into AEA 

[168]. The first step is the transfer of arachidonic acid from a sn-1-arachidonate-

containing phospholipid to phosphatidylethanoamine by N-acyltransferase to produce 

the intermediate product N-arachidonoyl-phosphatidylethanoamine (NAPE) [169]. This 

step regulates the activity dependent formation of AEA as N-acyltransferase is Ca2+ 
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sensitive and is thought to be the rate limiting step. The second step requires NAPE – 

phospholipase D (NAPE-PLD), which performs the hydrolysis of NAPE into phosphatidic 

acid and AEA [170, 171]. Although this pathway is the primary mechanism of AEA 

formation and the expression patterns of these enzymes and CB1Rs are relatively 

consistent [169], other non-NAPE-PLD pathways exist for the formation of AEA and may 

have biological relevance as NAPE-PLD null mutants have normal AEA content in the 

brain [172].  

   AEA is inactivated by cellular reuptake and subsequent hydrolysis by the serine 

hydrolase, fatty acid amide hydrolase (FAAH). The cellular reuptake of AEA is theorized 

to be assisted by a facilitated diffusion mechanism, however molecular cloning of a 

specific transport/carrier protein remains elusive and its existence is highly controversial 

[173]. In support of a transport system, pharmacological characterization of AEA uptake 

indicates that this process is saturable and sensitive to small molecular inhibitors [173, 

174]. Following reuptake, AEA is hydrolyzed by FAAH into free arachidonic acid and 

ethanolamine [175-178]. FAAH is expressed widely across the brain, including in the 

hippocampus and cortex, and is complimentary to CB1R localization [179]. Although 

FAAH is the major catabolic enzyme for AEA hydrolysis, and pharmacological and 

genetic deletion of FAAH results in elevated AEA tissue content, other enzymes for AEA 

catabolism have been suggested, including COX-2, cytochrome P450s and 

lipoxgenases [168].   

 Similar to AEA, 2-AG can be synthesized by multiple biosynthetic pathways and 

acts as an intermediate for further lipid metabolism. However, evidence strongly 

suggests that the pool of 2-AG responsible for stimulating cannabinoid receptors “on 

demand” is produced by a two-step pathway requiring phospholipase Cβ (PLCβ) and 

diacylglycerol lipase α/β (DAGLα/β), which is independent from biosynthetic pathways 

responsible for basal 2-AG levels [180]. The first step requires the formation of an 
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intermediate 2-arachidonate-containing diacylglycerol (DAG), mediated by PLCβ 

hydrolysis of phosphoinositol-bis-phosphate (PIP2). Subsequently, DAGL-mediated 

hydrolysis of the sn-1 acyl group of 2-arachidonate containing DAG results in the 

generation of 2-AG. Catabolism of 2-AG primarily occurs though monoacylglycerol lipase 

(MAGL) to generate arachidonic acid and glycerol. However, similar to AEA, other routes 

of degradation exist including hydrolysis by FAAH and oxygenation by either 12- and 15- 

lipoxygenases, cytochrome P450s and COX-2 [180]. 

 

1.7.5 Endocannabinoid physiology in the CNS 

 The eCBs are lipid messengers that do not cause direct synaptic transmission 

but modulate other neurotransmitter systems through presynaptic inhibition of 

neurotransmitter release [181-184]. This action has been demonstrated at a variety of 

synapses including serotonin, acetylcholine, dopamine, glycine, norepinephrine and 

glutamate; however eCB-mediated inhibition of neurotransmitter release most commonly 

occurs at GABAergic synapses in multiple brain regions, which include the 

hippocampus, striatum and neocortex [159]. The initial studies that discovered the 

mechanism of eCB signaling showed that postsynaptic depolarization [181-183] or 

activation of  mGlu1Rs [184] caused a rapid but transient decrease in either inhibitory 

postsynaptic currents [181, 183] or excitatory postsynaptic currents [182, 184] that are 

dependent on eCB signaling. Although it was previously demonstrated that CB1R 

activation inhibits neurotransmitter release [185, 186], the aforementioned studies 

confirmed a postsynaptic origin of eCB synthesis/release and presynaptic site of action, 

thus demonstrating that eCBs act as retrograde messengers. Since these seminal 

studies, others have shown that various types of eCB-mediated depression of 

neurotransmitter release exist, which depends on cell type and brain region; and can be 

manifested as either short-term depression or long-term depression contingent on 
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stimulation protocols and recruitment of co-modulators [159]. In addition to modulating 

neurotransmitter release, the eCBs are responsible for affording endogenous 

neuroprotection (see section 1.9 for detailed discussion). 

   

1.8 Ethanol and endocannabinoids  

Over the past 15 years, research has clearly demonstrated that the eCB system 

is intimately involved with the neurophysiological and behavioral effects of ethanol [187, 

188]. For example, genetic and/or pharmacological inactivation of CB1Rs prevents 

ethanol-induced dopamine transients in the nucleus accumbens and attenuates elevated 

neuronal firing of ventral tegmental area dopamine neurons following ethanol 

administration [189-191]. Importantly, ethanol stimulates 2-AG production in the nucleus 

accumbens, providing direct evidence that eCB signaling is involved in the 

neuropharmacological effects of ethanol. Behaviorally, CB1R antagonism can decrease 

ethanol consumption and preference [192-194], an effect that is replicated by genetic 

deletion of the CB1R [190, 194-196]. Conversely, CB1R agonists can increase ethanol 

self-administration [197, 198]. Furthermore, genetic or pharmacological inactivation of 

CB1R influences ethanol-induced hypothermia, ethanol sedation and ethanol withdrawal 

induced conclusions [194, 195]. In addition to behavioral and neurophysiological studies, 

evidence shows that ethanol exposure has profound effects on eCB biochemistry which 

depends on multiple factors, including species, the duration (acute vs. chronic) and 

pattern (continuous vs. intermittent) of ethanol exposure, ethanol dose, brain region and 

eCB of interest.  

Studies examining the acute effects of ethanol exposure on eCB content have 

reported complex patters of regulation. For example, ethanol reduces AEA content in the 

hippocampus, nucleus accumbens, striatum, cerebellum, hypothalamus and amygdala, 

but not in the prefrontal cortex [199-201]. Conversely, acute ethanol decreases 2-AG 
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content in the prefrontal cortex, but enhances 2-AG liberation in the nucleus accumbens 

[200, 201]. Interestingly, acute ethanol administration appears to result in general 

reductions in OEA and PEA, suggesting that acute ethanol may have a general effect on 

mechanisms regulating NAE tissue content [199, 200]. However, these effects on NAE 

content appear to be independent of changes of FAAH and NAPE-PLD activity, even in 

the presence of ethanol ex vivo [199, 202].   

 On the other hand, chronic ethanol administration has distinct effects on the eCB 

system compared to observations following acute exposures. For example, 3 or 4 days 

of ethanol vapor exposure increases AEA content in the cerebral cortex of mice, which is 

accompanied by reductions in CB1R expression and CB1R agonist induced g-protein 

activation [203, 204]. However, these changes appear to normalize or even become 

enhanced following cessation of ethanol exposure [204]. The opposing changes in 

CB1R expression and AEA suggest that CB1R down regulation results from agonist 

induced desensitization, however, chronic alcohol could theoretically alter the kinetics of 

CB1R receptor turnover by either decreasing synthesis or promoting degradation [204]. 

Following longer periods of ethanol exposure, reductions in CB1R mRNA are observed 

in selected brain regions including the cingulate cortex, striatum, ventromedial 

hypothalamic nucleus and hippocampus [205, 206]. In one study, 2-AG elevations 

coincided with CB1 mRNA down regulation further supporting agonist-induced 

desensitization; however prolonged withdrawal was associated with elevated AEA, 2-AG 

and CB1R mRNA [206]. Interestingly, lower CB1R mRNA has been observed in CA1 

and CA2 of the hippocampus, but no changes in CA3 and increased expression in the 

DG [205], suggesting that chronic ethanol exposure may cause reorganization of the 

eCB system within discrete circuitry.  Importantly, not all studies have found changes in 

CB1R expression following chronic ethanol exposure, a discrepancy that may be 

accounted for by ethanol dose or pattern of exposure [207, 208]. In vitro studies have 
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found that 50 and 100 mM ethanol (which is equivalent to BECs of 230 and 460 mg/dl) 

enhances AEA and 2-AG release in hippocampal and cerebellar granular neurons [209-

211]. Interestingly, increases in AEA are accompanied by increases in NAPE, 

suggesting an ethanol effect upstream of AEA biosynthesis. Additionally, another report 

suggests that ethanol may also inhibit AEA transport and FAAH mediated hydrolysis 

[210].  

  Although, the effects of ethanol have been explored in both acute and chronic 

models, the relationship between the eCB system and ethanol has not been studied in a 

model with an acutely damaging event such as a 4-day binge model [111]. 

Neurodegeneration is known to result in the liberation of both AEA and 2-AG (see 

section 1.8), therefore an interaction between the effects of ethanol and the effects of 

neurodegeneration on the eCB system are likely to exist. An understanding of this 

interaction may lead to the development of novel pharmacotherapies for the treatment of 

alcohol use disorders. For example, the eCBs have emerged as a potent 

neuroprotective target, thus modulation of this system may afford protection from 

ethanol-induced neurodegeneration.  

 

1.9 Rationale for targeting endocannabinoids to treat alcohol-induced 

neurodegeneration 

Multiple lines of evidence support the role of eCB signaling in defending the CNS 

from neurodegeneration and that this system can be modulated to afford additional 

neuroprotection [212]. This hypothesis has emerged from several studies observing 

elevated eCB tissue content following acute neuronal injury and during chronic 

neuroinflammation [213-221]. Furthermore, CB1R null-mutant mice are more susceptible 

to pathological insults, suggesting that the eCBs are critical for containing and/or 

attenuating neuronal injury [218, 222]. The neuroprotective properties of the eCB system 
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have been observed in models of CNS injury including traumatic brain injury and 

cerebral ischemia, and in models of chronic neuroinflammatory disease including 

Alzheimer’s, disease, multiple sclerosis and Parkinson’s disease [219, 223]. The exact 

mechanisms governing cannabinoid-mediated neuroprotection are not completely 

elucidated; however it is clear that the effects of cannabinoids are pleiotropic and 

disease state specific. For example, CB1Rs and CB2Rs have potent effects against 

excitotoxicity, neuroinflammation, and oxidative stress and are coupled to multiple cell 

survival pathways that mediate neuroprotection [212]. 

 

1.9.1 Excitotoxicity 

CB1Rs are localized at presynaptic terminals on the majority of neuronal cell 

types including GABAergic and glutamatergic neurons [159]. Following stimulation, 

CB1Rs influence multiple signaling pathways in the presynaptic terminal, including 

inhibition of cAMP production, inhibition of Ca2+ channel conductance and enhancement 

of inward-rectifying K+ channel conductance, resulting in hyperpolarization and 

suppression neurotransmitter release [159]. During states of hyperexcitability, eCBs are 

released from the postsynaptic neuron and provide negative feedback inhibition of 

glutamate release, thus dampening neuronal activity. Importantly, this mechanism has 

been shown to provide endogenous defense against excitotoxicity. For example, in an 

elegant study in 2003, genetic deletion of CB1Rs on glutamatergic forebrain neurons 

increased susceptibility to kainic acid (KA)-induced seizures, hyperexcitability and 

neuronal cell death. Importantly, the frequency of excitatory post synaptic potentials was 

greater in mutant mice suggesting a role of CB1Rs in preventing excitotoxicity by 

suppressing excessive presynaptic glutamate release. Additionally, KA-induced 

increases in early intermediate genes and brain derived neurotrophic factor (BDNF) 

were absent in the mutant mice suggesting that multiple CB1R-dependent mechanisms 
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protect neurons from excitotoxicity. Additional studies examining the molecular 

mechanisms of CB1R-mediated neuroprotection in models of excitotoxicity have 

implicated other functions independent of suppression of neurotransmitter release, which 

include inhibition of nitric oxide production, blockage of TNFα-induced up-regulation of 

AMPA-type receptors at the post synaptic density, and prevention of Ca2+ influx through 

NMDA receptors through a mechanism involving the release of Ca2+ from intracellular 

stores [224-226]. Regardless of the mechanism, the current literature clearly implicates 

eCB signaling in preventing excitotoxic neuronal cell death, which makes the eCB 

system an attractive target for preventing alcohol-withdrawal induced seizures and 

excitotoxicity. In fact, a recent study demonstrated that CB1R activation was capable of 

preventing alcohol withdrawal induced excitotoxicity (figure 7.1), presumably by 

preventing excessive intracellular Ca2+ accumulation [227]. 

 

1.9.2 Neuroinflammatory function 

Neuroinflammation is a complex physiological process that is initiated following 

exposure to noxious stimuli, including CNS infection and injury.  Acute activation of the 

neuroinflammatory axis is necessary for returning the CNS to homeostasis following a 

noxious stimulus. However, prolonged activation can result in CNS damage and 

neurodegeneration [140]. Multiple lines of evidence show that the eCBs are important for 

modulating neuroinflammatory responses, and that this system can be targeted to 

attenuate neuroinflammatory functions associated with neurodegenerative disease [228]. 

Glial cells, including microglia and astrocytes, play an integral role in neuroinflammatory 

function and these cell types express molecular components of the eCB system. For 

example CB1R expression is found on microglia [229] and astrocytes [230], while CB2R 

expression can be stimulated in microglia [231] and is found in primary microglial 

cultures [229, 232].  
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In vivo, activation of the eCB system has been shown to attenuate 

neuroinflammatory function in models of chronic neuroinflammatory disease. For 

example, administration of synthetic cannabinoid agonists following Theiler’s virus 

infection decreases microglial activation, decreases MHCII expression and decreases 

CD4+ T cells in the spinal cord [233].  Similarly, the CB1R/CB2R agonist, WIN55,212-2, 

prevents microglial activation and loss of neuronal markers induced by 

intracerebroventricular injection of  β-amyloid protein [234]. In vitro studies suggest that 

cannabinoids attenuate neuroinflammatory function by preventing microglial activation, 

inhibiting their migration to injured tissue and preventing the release of proinflammatory 

cytokines and nitric oxide [215, 229, 234, 235]. Importantly, some in vitro studies have 

found a direct link between the anti-inflammatory effects of cannabinoids and 

neuroprotection [215, 232]. Interestingly, other in vitro studies have shown that neuronal 

CB1Rs are involved in attenuating neuroinflammatory signaling cascades. For example, 

activation of neuronal CB1Rs prevents NF-κB and COX-2 dependent neurotoxicity 

following either excitotoxic or neuroinflammatory stimuli [235].  Although, in vitro studies 

have isolated specific neuronal, astrocyte and microglial dependent actions on 

neuroinflammatory function, it is likely that these actions act in concert with each other to 

produce neuroprotection in vivo [223]. Whether or not the cannabinoids may prevent 

neuroinflammatory function associated with ethanol-induced neurotoxicity is yet to be 

determined. However the aforementioned reports suggest that the eCB system has the 

capacity to afford such effects.  

 

1.9.3 Oxidative stress 

Studies have demonstrated that cannabinoids have neuroprotective effects by 

attenuating oxidative stress; however the exact mechanisms involved in preventing 

oxidative stress are debated. The phytocannabinoids, Δ9-THC, cannabinol (CBN) and 
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cannabidiol (CBD), and some synthetic cannabinoid ligands have phenolic moieties in 

their chemical structure and therefore are potent antioxidants by scavenging free 

radicals [236, 237]. In fact, some of the phytocannabinoids have been shown to have 

greater oxidation potentials than other well-known antioxidants such as butylated 

hyrdoxytoluene (BHT) and α-tocopherol [121, 236]. Conversely, others have shown that 

cannabinoids prevent oxidative neuronal injury through CB1R-dependent mechanisms 

involving protein kinase A (PKA) [238]. Importantly, CBD has been shown to prevent 

binge alcohol induced neurodegeneration, presumably through its capacity to scavenge 

free radical production [121].    

 

1.9.4 Summary 

 The preceding paragraphs outlined the potential mechanisms by which the 

cannabinoids attenuate neurodegeneration, many of which may be useful for 

counteracting ethanol-induced neurotoxicity. For example, cannabinoids may prevent 

ethanol withdrawal induced excitotoxicity primarily through inhibition of excessive 

glutamate release and/or reducing cell excitability. Additionally cannabinoids may be 

neuroprotective following binge ethanol exposure by inhibiting neuroinflammatory 

function and/or by reducing oxidative stress. The studies within this dissertation utilized a 

4-day binge model of ethanol exposure that produces neurodegeneration within the 

cortico-limbic pathway [111, 113]. Importantly, neurodegeneration resulting from ethanol 

exposure in this model is hypothesized to result from neuroinflammatory signaling 

cascades and oxidative stress, but not excitotoxicity (section 1.5). Therefore, from 

current reports on cannabinoid mediated neuroprotection and mechanisms of binge 

ethanol induced neurodegeneration, it is possible that the cannabinoids may prevent 

neurotoxicity by preventing neuroinflammatory signaling and oxidative stress, but not 

excitotoxicity.  
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1.10 Goals of the dissertation  

 The overall goal of the current dissertation was to evaluate cannabinoid based 

agents to prevent ethanol-induced neurodegeneration utilizing a 4-day binge model. 

Chapter 2 expands on a previous report characterizing the neuroprotective effects of 

CBD administration during binge ethanol treatment. As CBD has poor oral bioavailability, 

which limits its clinical use, the studies reported in chapter 2 were aimed at testing CBD 

transdermal delivery formulations to attenuate binge ethanol induced 

neurodegeneration. The subsequent chapters were designed to evaluate the effects of 

binge ethanol exposure on the eCB system and to manipulate eCB signaling to afford 

neuroprotection. Previous studies have found that brain injury and neurodegeneration 

engages eCB signaling which is hypothesized to represent an endogenous 

neuroprotective mechanism. However, this response has not been examined following 

ethanol-induced neurodegeneration; therefore, chapter 3 presents data validating an 

analytical method for quantifying eCBs and related lipids, including OEA and PEA, while 

chapter 4 examined the effects of binge ethanol intoxication and withdrawal on CB1R 

expression and AEA, OEA and PEA tissue content. Blocking eCB catabolism is 

emerging as a strategy to afford neuroprotection; therefore, chapter 5 evaluated the 

neuroprotective effects of FAAH inhibition following binge ethanol-induced 

neurodegeneration. In summary, these studies expand on current understanding of the 

neuroprotective effects of cannabinoids and the eCB system. Additionally, this 

dissertation discusses a vision for future studies to further evaluate the eCB system for 

the treatment of ethanol-induced neurodegeneration.   
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1.11 Overall Hypotheses  

1.11.1 Hypothesis 1:  Transdermal cannabidiol treatment will prevent ethanol-induced 

neurodegeneration.  

Aim1. Determine if transdermal CBD can prevent ethanol-induced neurodegeneration in 

the entorhinal cortex using an established 4-day binge model.  

Aim 2. Determine a target CBD plasma concentration necessary to observe 

neuroprotection. 

Aim 3. Compare the neuroprotective effects of transdermal CBD to the previously 

established neuroprotective effects of intraperitoneal administration of CBD. 

 

1.11.2 Hypothesis 2: N-acylethanolamide content is amplified in the entorhinal cortex 

and hippocampus in response to ethanol-induced neurodegeneration as an endogenous 

protective mechanism and potentiating this response will result in neuroprotection.  

Aim 1. Determine if binge ethanol exposure decreases CB1R expression in the 

entorhinal cortex and hippocampus by examining a timecourse of CB1R expression 

during ethanol intoxication and withdrawal. 

Aim 2. Develop and validate a LC-MS method for the simultaneous quantification of 

AEA, OEA and PEA in rat brain tissue. 

Aim 3. Determine if binge ethanol exposure increases NAE content, including AEA, OEA 

and PEA, in the entorhinal cortex and hippocampus following multiple timepoints 

associated with the initiation of ethanol-induced neurotoxicity and peak cell death.     

Aim 4. Determine if pharmacological inhibition of FAAH can prevent ethanol-induced 

neurodegeneration in an established 4-day binge model.  

Aim 5. Determine the magnitude of NAE accumulation by acute FAAH inhibition 

following binge ethanol exposure. 
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2. CHAPTER 2 

TRANSDERMAL DELIVERY OF CANNABIDIOL ATTENUATES BINGE ETHANOL 

INDUCED NEURODEGENERATION IN A RODENT MODEL  

OF AN ALCOHOL USE DISORDER 

 

2.1 Introduction  

Approximately 8.5% of the U.S. population currently meets the diagnostic criteria 

for an AUD [8]. Although four pharmacotherapy based interventions are approved in the 

U.S. for the treatment of AUDs, these drugs have limited efficacy in the patient 

population [59]. Additionally, these medications primarily target the motivational 

properties of alcohol, while the neurodegenerative effects of alcohol that impair 

behavioral control and decision making are not managed by these specific treatments. 

Therefore, identification of novel targets and development of new therapeutic agents is 

critical to improve pharmacotherapy based treatment strategies for AUDs.  

Neuroprotective agents are hypothesized to have high therapeutic utility for the 

treatment of AUDs [60]. Excessive alcohol intake, characteristic of AUDs, results in 

neurodegeneration and cognitive and behavioral impairment, effects which are 

hypothesized to influence the transition to addiction [60, 61, 63]. Imaging studies have 

identified gross anatomical abnormalities throughout the brains of human alcoholics 

including widespread disruption of white matter tracts, atrophied cortical gray matter and 

increased cerebrospinal fluid filled space [239-241]. These effects have been confirmed 

in postmortem studies showing significant cortical neuronal loss [67, 70], which is 

consistent with studies demonstrating long term or permanent deficits in function [88]. 

Some brain structures appear to be more susceptible to the neurodegenerative effects of 

alcohol, including frontal cortical regions [67, 73, 136], the temporal lobe [77] and 

hippocampus [77]. The aforementioned brain regions are involved in problem solving, 
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attention, information processing, learning and memory and behavioral control, therefore 

it is not surprising that these functions are impaired in AUDs [88]. Importantly, a recent 

study described an association between reductions in cortical gray matter and risk for 

relapse [62]. Therefore, elucidating the mechanism(s) underlying alcohol-induced 

neurodegeneration and developing neuroprotective pharmacotherapies could improve 

prevention and treatment strategies for AUDs.  

Studies have suggested that chronic alcohol exposure is associated with 

induction of neuroinflammatory mediators and/or oxidative stress, which leads to 

neurodegeneration [126, 136]. Consistent with this hypothesis, a variety of antioxidants, 

including α-tocopherol, BHT and CBD have been effective in reducing binge alcohol-

induced neurodegeneration [120, 121]. Neuroprotection mediated by antioxidant 

treatment is associated with inhibition of NF-κB-DNA binding, reductions of COX-2 

expression and microglial activation [120], all of which support the hypothesis that 

neuroinflammatory signaling and/or oxidative stress contribute to alcohol-induced 

neurodegeneration [126]. These studies have demonstrated clearly that antioxidants 

protect against alcohol-induced neurodegeneration, therefore further development of 

these agents for clinical use is warranted.  

CBD is a main constituent of cannabis sativa. Unlike the more commonly 

recognized constituent, Δ9-THC, CBD does not exhibit psychotropic effects as it is not an 

agonist at CB1Rs [242]. In fact, CBD is very well tolerated in humans [243]. CBD has a 

plethora of actions, including anticonvulsive, anxiolytic, anti-relapse and neuroprotective 

properties [236, 244, 245], which make it an ideal candidate for treating multiple aspects 

of AUDs. CBD was initially shown to be neuroprotective in an in vitro model of 

excitotoxicity by scavenging reactive oxygen species [236]. Indeed, comparison of CBD 

with well-known antioxidants including BHT and α-tocopherol, showed that CBD has a 

higher antioxidant capacity [236]. Extending these findings, another study demonstrated 
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that administration of CBD was neuroprotective in the modified Majchrowicz binge model 

of alcohol-induced neurodegeneration, again presumably through its antioxidant activity 

[121].  

Although CBD is efficacious in preclinical models and is safe for human use [243], 

its clinical use has been minimal because of poor oral bioavailability and low aqueous 

solubility. Estimated oral bioavailability of CBD is roughly 6% [246, 247]; therefore, it is 

difficult and expensive to achieve suitable plasma levels for clinical efficacy. These drug 

delivery obstacles may be circumvented by alternative delivery routes, such as 

transdermal delivery [248]. Additionally, transdermal delivery is advantageous because it 

promotes patient compliance as it is non-invasive and pain free compared to injectable 

formulations, which is especially important in the alcohol dependent population [249]. 

Therefore, the current study investigated the hypothesis that CBD transdermal systems 

can attenuate alcohol-induced neurodegeneration using a well-established model of an 

AUD, the modified Majchrowicz binge model.    

 

2.2 Materials and Methods 

2.2.1 Housing and Animals 

Adult male Sprague Dawley rats weighing approximately 330 grams on arrival  

(n = 142, Charles River, Raleigh, NC) were used in these studies. All treatment protocols 

followed the Guide for the Care and Use of Laboratory Animals (NRC, 1996) and were 

approved by the University of Kentucky Institutional Animal Care and Use Committee. 

Rats were singlely housed in Plexiglas cages in an AAALAC approved University of 

Kentucky vivarium on a 12 h light/dark cycle with access to rat chow and water ad 

libitum unless noted. During acclimation, rats were handled daily for at least three days 

to familiarize rats to experimenters.  
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2.2.2 Ethanol Treatment 

Rats were exposed to ethanol following the modified Majchrowicz binge model 

[110] as reported previously [117]. This model maintains intoxicating BECs typical of 

AUDs [12], with minimal mortality and a well-defined pattern of neurodegeneration [111, 

113]. Rat chow was removed from home cages and rats were administered either 

ethanol (25% w/v) in nutritionally complete Vanilla Ensure Plus® (Abbott Laboratories, 

Columbus OH) or an isocaloric diet consisting of dextrose, water and Vanilla Ensure 

Plus® every 8 hr for 4 days by intragastric gavage. Ethanol rats initially received a 5 g/kg 

priming dose, with subsequent doses based off the following intoxication scale:  0, 

normal (5 g/kg); 1, slightly ataxic and hypoactive (4 g/kg); 2, ataxic with elevated 

abdomen and intact righting reflex (3 g/kg); 3, delayed righting reflex and lack of 

abdominal elevation (2 g/kg); 4, lack of righting reflex with intact eye blink reflex (1 g/kg); 

5, unresponsive including loss of eye blink reflex (0 g/kg). BECs were measured in 

plasma from tail vein blood collected 90 minutes after the 7th dose of ethanol (day 3). 

Approximately 150 µL of blood was collected into microcentrifuge tubes containing 

heparin (5µL; AAP pharmaceuticals, Schaumberg, IL), centrifuged at 1800 x g for 5 min, 

and stored at -20°C. BECs were determined in triplicate using a AM1 alcohol analyzer 

(Analox, Lunenberg, MA) calibrated to a 300 mg/dL external standard.  

 

2.2.3 Cannabidiol Regimen 

CBD was synthesized by AllTranz Inc. and formulated for either intraperitoneal 

(IP) injection or transdermal gel application. CBD (6 mg/mL) and vehicle solutions for IP 

injections were prepared daily prior to the morning dose. IP solutions were comprised of 

76% sterile saline, 21% cremophor and 3% absolute ethanol. The 1%, 2.5%, 5% (w/w) 

CBD gels and vehicle gels were prepared and loaded into syringes for gel application. 

The active and vehicle gels prepared by AllTranz Inc. were composed of ethanol, 
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propylene glycol, sterile water, Transcutol®, preservatives and a crosslinked 

polyacrylate polymer adjusted to the appropriate pH with triethanolamine to provide 

suitable rheological properties and pH dependent CBD stability. The optimized 

formulation described in experiment 2 utilized only a 2.5% (w/w) CBD gel that contained 

decreased levels of ethanol and an increase in water content. Rats receiving gels had 

hair removed on their dorsal side using clippers prior to binge treatment and 24 hours 

before the first gel application. Rats received CBD or vehicle starting after the third dose 

of ethanol by either daily gel application (11:00 am) or IP injection (20 mg/kg) twice daily 

(11:00 am & 11:00 pm; see Figure 2.1). This IP dose was chosen based off a previous 

study demonstrating CBD mediated neuroprotection using a similar binge model 

(Hamelink et al., 2005). Gels (750 µL) were applied to a 35 cm2 area and rubbed into the 

skin for 30 sec with a finger covered by a nitrile glove.  

 

2.2.4 Cannabidiol Quantification  

To determine plasma CBD concentrations, tail blood was collected on day 3 and 

trunk blood was collected during euthanasia. Approximately 250 µL of blood was 

collected and placed into silanized microcentrifuge tubes containing heparin, centrifuged 

at 10,000 x g for 3 min and plasma was stored at -70°C until quantification by LC-MS. 

CBD was extracted according to previously described methods (Paudel et al., 2010). 

Briefly, CBD was extracted from 50 µL of plasma using 500 µL of acetonitrile 

(ACN):ethyl acetate (1:1, v/v). Samples were vortexed for 1 min, centrifuged for 20 min 

at 10,000 x g and supernatants were placed into siliconized test-tubes and evaporated 

under nitrogen at 37°C. Samples were reconstituted with 100 µL of ACN, vortexed for 1 

min and sonicated for 5 min before transfer to HPLC vials with silanized low volume 

HPLC inserts and placed in a Waters Alliance® 2695 HPLC system.
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Figure 2.1 Treatment regimen for cannabidiol neuroprotection studies. 

Rats were administered ethanol according to a 4-day binge paradigm. In addition to receiving ethanol, rats were co-administered 

CBD by IP injection twice daily (filled arrows) or by a topical gel formulation daily (open arrows). Plasma samples were collected on 

day 3 and during euthanasia from tail vein blood or trunk blood, respectively, for determination of BECs and/or plasma CBD 

concentrations.  
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CBD was resolved using a Waters Symmetry® C18 reversed phase column (5 µm, 2.1 × 

150 mm; Milford, MA) fitted with a Sentry Symmetry® C18 (3.5 µm, 2.1 x 10 mm) guard 

column and a mobile phase consisting of ammonium acetate (2mM):ACN (30:70 or 

35:65 v/v) at a flow rate of 0.25 mL/min. Electrospray ionization in negative mode was 

performed for CBD detection (m/z 313, retention time 7.7 or 9.8 min) with either a 

Waters Micromass ZQTM 2000 mass spectrometer or a Waters Micromass Quattro 

MicroTM API system (Milford, MA). 

 

2.2.5 Fluoro-Jade B staining and quantification 

Following binge treatment, rats were euthanized by an overdose of sodium 

pentobarbital (Nembutal®, MWI Veterinary Supply, Nampa, ID or Fatal Plus®, Vortech 

Pharmaceuticals, Dearborn, MI) then perfused transcardially using 0.1 M phosphate 

buffered saline (PBS, pH 7.4) followed by 4% paraformaldehyde (PFA). Brains were 

extracted, post fixed in 4% PFA at 4°C overnight and stored in PBS at 4°C until 

sectioning. Brains were cut in a 1:12 series on the coronal plane at 40 μm using a 

vibrating microtome (Leica Microsystems, Wetzlar, Germany) and stored in 

cyroprotectant at -20°C. Fluoro-Jade B (FJB) was chosen over amino-cupric silver 

staining to assess neurodegeneration because it is more cost effective, less time 

consuming and more consistent [250] and therefore preferable for drug 

discovery/development studies. Additionally, similar magnitudes of effect are observed 

following either FJB or silver staining [123], suggesting that FJB is an appropriate 

alternative to silver stain. FJB staining was performed according to the manufacturer’s 

instructions (Millipore, Billerica, MA) as previously described [114, 115]. A 1:12 tissue 

series for each animal was washed (3 x 5 min in TBS) then mounted on Superfrost Plus® 

slides (Fisher Scientific, Pittsburgh, PA) and allowed to air dry overnight. Sections were 

then rehydrated (5 min, 1% sodium hydroxide in 80% ethanol; 2 min, 70% ethanol; 2 

43 
 



 

min, ddH2O), incubated in 0.06% potassium permanganate for 10 min while gently 

shaking, rinsed in ddH2O for 2 min and stained with 0.001% (w/v) FJB in 0.1% (v/v) 

acetic acid for 20 minutes while gently shaking in the dark. Sections were further rinsed 

(3 x 1 min) with ddH2O in the dark, dried on a covered slide warmer and cover-slipped in 

Cytoseal® (Richard Allen Scientific, Kalamazoo, MI). FJB positive (+) cells were 

quantified at 200X or 400X magnification using an Olympus BX-51 microscope equipped 

for epifluorescence with a 488λ cube for blue excitation. The entorhinal cortex was 

defined using a rat brain atlas (Paxinos and Watson, compact 6th edition, 2009) and 

FJB+ cells were counted by a blinded experimenter in the entorhinal cortex from -3.60 

mm through -6.12 mm from bregma and averaged as the number of FJB+ cells/section. 

Although neurodegeneration can be detected throughout the cortico-limbic pathway, only 

the entorhinal cortex was quantified as a screen for CBD effects because this brain 

region has the most reproducible injury severity. Stereology was not used because the 

entorhinal cortex does not have readily identifiable boundaries necessary for 

implementing stereological procedures and tissue thickness is difficult to accurately 

measure with the low background characteristic of FJB staining. Strict criteria were used 

to identify FJB+ cells: cells were included if they were in cortical layers II or III, displayed 

a pyramidal cell body characteristic of neurons, and/or had observable proximal 

dendrites. FJB+ cells were rarely observed in control rats (< 1 cell/section) regardless of 

CBD treatment and were not significantly different, therefore were collapsed into a single 

control group for each study. 

 

2.2.6 Statistical analysis 

Statistics were performed using Prism (Graphpad version 4.03, La Jolla, CA, 

USA). Average intoxication behavior was analyzed by Kruskal-Wallis test for non-

parametric data followed by Dunn’s post-hoc test when appropriate. Average daily dose, 
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CBD plasma concentrations, and BECs were analyzed by ANOVA followed by 

Bonferroni post-hoc tests when appropriate. FJB data was analyzed using ANOVA 

followed by planned post-hoc t-tests. Significant variability in FJB+ cell counts was 

expected based on previous experience with the binge model; therefore, experiments 

were designed a priori with the intention of collapsing ethanol and ethanol + vehicle rats 

in order to reduce the number of animals used while maintaining power. Additionally, the 

experiments were designed a priori to collapse control groups as FJB is rarely observed 

(< 1 cell/section) in these rats. Values are presented as mean ± standard error of the 

mean and analyses were considered significant at p < 0.05.  

 

2.3 Results 

2.3.1 Experiment 1: Optimization of CBD transdermal delivery for neuroprotection 

Experiment 1 tested the neuroprotective effects of 1.0% (n = 5), 2.5% (n = 4) and 

5.0% (n = 6) CBD gels. First, in order to rule out potentially confounding effects of CBD 

or vehicle treatment on neuroprotection measures; intoxication behavior, ethanol dose 

and BECs were compared across treatment groups. Rats treated with ethanol only (n = 

9) and ethanol plus vehicle gel (n = 6) were indistinguishable across all measured 

variables, therefore these groups were collapsed. Regardless of treatment, all rats 

displayed similar intoxication behavior across the four days of binge treatment (Figure 

2.2A). The grand mean intoxication behavior was 2.5 ± 0.1 out of 5, which is indicative of 

rats being intoxicated to the level where they displayed a delayed righting reflex and 

ataxia. Analysis of mean intoxication behavior (Figure 2.2A inset) revealed a main effect 

of treatment [H(3) = 8.258; p < 0.05] and post-hoc tests indicated a significant difference 

between the ethanol/ethanol + vehicle and ethanol + 1.0% CBD groups (p < 0.05). 
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Figure 2.2 Binge data for transdermal CBD optimization experiment. 

Rats were treated according to the 4-day binge paradigm and administered nothing, 

vehicle, 1%, 2.5% or 5.0% CBD gel formulations. Ethanol only and ethanol + vehicle 

groups were statistically similar and therefore collapsed (black bars). (A) Behavioral 

intoxication scores were similar across groups regardless of treatment (left axis), 

therefore received similar doses of ethanol (right axis). (B,C) The average daily doses 

and BECs also did not differ among treatment groups.  
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Although a significant difference in intoxication was observed between these two groups, 

the effect was not large enough to result in different amounts of ethanol administered. 

The grand mean ethanol dose for rats in this experiment was 8.2 ± 0.2 g/kg/day, which 

was not different among groups (Figure 2.2B). Accordingly, the grand mean peak BEC 

was 436.9 ± 11.1 mg/dL. Although one-way ANOVA revealed a significant effect of 

treatment [F(3,29) = 3.085; p = 0.045], post-hoc analysis failed to reveal a significant 

difference between groups (Figure 2C). These data indicate that transdermal vehicle or 

transdermal CBD did not alter the intoxicating effects or pharmacokinetics of ethanol. 

Additionally, these binge data are similar to previous reports using the modified 

Majchrowicz binge model (Morris et al., 2010).  

Substantial FJB+ staining was observed in the entorhinal cortex following 4-days 

of binge ethanol treatment (Figure 2.3). These cells were typically found in cortical layers 

II and III adjacent to the rhinal fissure and extending ventrally. FJB+ cells were rarely 

observed in control rats and control groups did not differ significantly, therefore, all 

controls were collapsed (n = 22). Ethanol only and ethanol + vehicle gel rats displayed 

statistically similar FJB+ cell counts, therefore these groups were collapsed prior to 

analysis. One-way ANOVA revealed a main effect of treatment [F(4,47) = 13.71, p < 

0.0001]. Post-hoc tests indicated that rats treated with 1.0% or 2.5% CBD gels had 

similar FJB+ cell counts as ethanol/ethanol+veh gel rats. However, rats treated with 

5.0% CBD gels had a 48.8% reduction in the number of FJB+ cells, which trended to 

statistical significance (p = 0.069).  

CBD plasma concentrations were analyzed at the beginning of day 3 and at 

euthanasia (Figure 2.1). Control rats treated with 2.5% CBD gel were not included in this 

experiment therefore a two-way ANOVA was not performed. However, a one-way 

ANOVA of ethanol groups revealed a main effect of CBD gel percentage (Figure 2.4A; 

[F(2,12) = 4.492; p < 0.05]).  
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Figure 2.3 Fluoro-Jade B staining in the entorhinal cortex following 4-day binge 

treatment. 

(A) Quantification of FJB. Control rats typically had < 1 FJB+ cell/section therefore were 

collapsed across treatment groups. Additionally, ethanol and ethanol + vehicle treated 

rats were indistinguishable, therefore collapsed (black bar). (B) Representative images 

for each treatment group. i. control; ii. ethanol; iii. ethanol + vehicle; iv. ethanol + 1.0% 

CBD; v. ethanol + 2.5% CBD; vi. ethanol + 5.0% CBD. Scale bars = 50 μm. 
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Figure 2.4 Cannabidiol plasma levels following application of transdermal gels 

containing 1.0%, 2.5% or 5.0% CBD. 

A) CBD plasma levels quantified from tail vein blood collected 3 days into binge 

treatment. B) CBD plasma levels quantified from trunk blood collected at euthanasia.    

#, p < 0.05 compared to ethanol + 1.0% CBD. 
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Post-hoc analysis showed that 5.0% CBD gels resulted in significantly higher CBD 

plasma concentrations compared to the 1.0% CBD gel group (p < 0.05). However, at 

euthanasia, CBD plasma concentrations were similar between ethanol groups (Figure 

2.4B; [F(2,13) = 0.29; p > 0.05]). 

 

2.3.2 Experiment 2: Neuroprotective effects of transdermal and IP CBD delivery 

Ethanol intoxication measures in this experiment were similar to experiment 1 

and the intoxicating effects of ethanol were similar between ethanol only (n = 13), 

vehicle IP (n = 12), CBD IP (n = 15), vehicle gel (n = 7) and CBD gel (n = 9) groups 

across the 4-days of binge treatment (Figure 2.5A). The grand mean intoxication score 

was 2.2 ± 0.1 out of 5 (Figure 2.5A insert); thus rats in this experiment were intoxicated 

to the level of delayed righting reflexes and ataxia. Additionally, each treatment group in 

this study received similar doses of ethanol, which on average were 8.4 ± 0.2 g/kg/day 

(Figure 2.5B). The grand mean peak BEC for this experiment was 380.4 ± 7.8 mg/dL, 

which did not differ between groups (Figure 2.5C), confirming that the drug treatments 

had no effect on the intoxicating effects or dosing of ethanol.  

Four days of binge ethanol exposure resulted in neurodegeneration as indicated 

by the presence of FJB+ cells along the entorhinal cortex. The severity of ethanol-

induced damage in the entorhinal cortex was similar between experiment 1 (Figure 2.3) 

and experiment 2 (Figure 2.6). Similar to Experiment 1, controls (n = 34) were 

statistically similar and therefore collapsed across drug treatment. In contrast to the 

analysis conducted in experiment 1, ethanol only and ethanol + vehicle groups were not 

collapsed because the vehicles in this study were delivered by different routes of 

administration. One-way ANOVA revealed a main effect of treatment [Fig. 2.6; F(5,84) = 

10.63; p < 0.0001]. 
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Figure 2.5 Ethanol binge data for rats treated with CBD or vehicle by an optimized 

transdermal gel or IP injection. 

(A) Behavioral intoxication scores (left axis) and ethanol doses (right axis) were similar 

across groups at all timepoints. (B,C) Average daily ethanol doses and BECs did not 

differ between treatment groups. 
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Figure 2.6 FJB staining in the entorhinal cortex following 4-day binge treatment. 

(A) Quantification of FJB. Control rats typically had < 1 FJB+ cell/section therefore were 

collapsed across treatment groups. (B) Representative images for each treatment group. 

i. control; ii. ethanol; iii. ethanol +  VEH IP; iv. ethanol + VEH gel; v. ethanol + CBD IP; vi. 

ethanol + 2.5% CBD gel. *; p < 0.05. Scale bars = 50 μm. 
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Post-hoc analysis indicated that administration of CBD by IP administration significantly 

reduced FJB+ cells in the entorhinal cortex by 50.6% compared to the ethanol only 

group (p < 0.05). Similarly, transdermal administration of CBD significantly reduced 

FJB+ cells in the entorhinal cortex by 56.1% compared to the ethanol only group (p < 

0.05). Although IP and transdermal CBD administration reduced FJB+ cells by 49.0% 

and 51.0% compared to their respective vehicle controls, this effect did not reach 

statistical significance (p > 0.05). 

The mean plasma concentration from the 5% CBD gel group in experiment 1 

(Figure 2.4) was used as a target concentration for experiment 2 as this group displayed 

promising neuroprotective effects. Therefore, a plasma concentration of ~100 ng/mL was 

targeted following transdermal CBD treatment using a second generation gel formulation 

from AllTranz Inc. Although the new formulation in experiment 2 only contained 2.5% 

CBD; day 3 target plasma concentrations of ~100 ng/mL was attainable on average 

(Figure 2.7A). Two-way ANOVA revealed main effects of diet [F(1,25) = 7.480; p < 0.05] 

and time point [F(1,25) = 14.75; p < 0.001], with a signification interaction [F(1,25) = 7.398; p 

< 0.05]. Post-hoc analysis revealed that CBD plasma levels were significantly lower in 

binge ethanol treated rats at the day 3 time point compared to controls (p < 0.01). 

Additionally, control CBD plasma levels during euthanasia were significantly lower than 

at day 3 (p < 0.001). CBD plasma levels following IP administration (40.0 mg/kg/d) were 

substantially higher than concentrations achieved following transdermal application 

(Figure 2.7B) and were indistinguishable between control and ethanol treated rats.  
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Figure 2.7 Cannabidiol plasma levels following application of an optimized 

cannabidiol transdermal gel formulation or after IP injection of cannabidiol. 

(A) CBD plasma levels on day 3 and at euthanasia quantified following transdermal gel 

application (B) CBD plasma levels on day 3 and at euthanasia quantified following IP 

injection. **, p <0.01, ###, p < 0.001 compared to day 3 control. 
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2.4 Discussion  

The current study examined the neuroprotective effects of transdermal CBD 

systems in an accepted model of an AUD that produces substantial neurodegeneration 

in the cortico-limbic pathway. The first experiment was a pilot study to determine CBD 

plasma concentrations necessary to observe neuroprotection following transdermal CBD 

treatment. The 5% gel formulation in this experiment produced promising 

neuroprotective effects, a 48.8% decrease (p = 0.069), while the 1.0% and 2.5% gels 

were ineffective (Figure 2.3). The mean day 3 CBD plasma concentration for the 5% 

CBD gel group was ~ 100 ng/mL and was used as a target concentration because 

neuroprotection outcomes were promising for this group (Figure 2.4). In experiment 2, 

an optimized formulation was developed by AllTranz Inc. to efficiently deliver CBD at the 

target plasma concentration while using less CBD (Figure 2.7). Importantly, the 

neuroprotective effects of transdermal delivery of CBD were comparable to the 

magnitude of neuroprotection observed following IP injection (Figure 2.6). Although the 

degree of neuroprotection appeared to be modest, a 50-60% reduction in FJB+ cells in 

the entorhinal cortex is similar to previous studies testing neuroprotective agents using 

the same 4-day binge model [120-123]. Therefore, these results justify additional 

preclinical development of transdermal CBD for the treatment of alcohol-induced 

neurodegeneration. Furthermore, preclinical development of neuroprotective agents for 

the treatment of AUDs is warranted because alcohol-induced brain damage is 

hypothesized to be critical in promoting impairments in executive self-regulatory 

behavior, thus contributing to the downward spiral to addiction [60, 61].   

Interestingly, this study showed that transdermal and IP delivery of CBD 

produced similar magnitudes of neuroprotection although IP administration resulted in 

substantially higher CBD plasma levels. Although a full dose-response experiment was 

not conducted and these studies were not designed to examine the entire PK profile, the 
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current data could suggest that the maximum effective concentration (ECmax) of CBD to 

attenuate FJB+ cells was achieved following both routes of administration. However, an 

earlier study by Hamelink et al. failed to observe neuroprotection in the same binge 

model following IP administration of CBD at 20.0 mg/kg/d [121], a dose likely to result in 

plasma concentrations higher than the levels reached following transdermal delivery in 

the current study. Therefore, it is unlikely that CBD plasma concentrations following 

transdermal delivery were above the ECmax. Alternatively it is possible that 

neuroprotection observed following transdermal CBD and IP CBD are mediated though 

different mechanisms. It has been suggested that the neuroprotective effects of CBD 

observed during binge alcohol induced neurodegeneration are due to its high antioxidant 

capacity [121, 236], however, CBD has a plethora of pharmacological targets that may 

afford neuroprotection. For example, CBD is an inhibitor of eCB cellular reuptake and 

metabolism and an agonist at adenosine A2A, serotonin 5-HT1A and transient receptor 

potential cation channel VI (TRPV1) receptors, all targets implicated in neuroprotection 

[251-254]. Interestingly, many of the receptor mediated effects of CBD follow an inverted 

u-shaped curve, which is also evident for many of the neuroprotective and anti-

inflammatory effects of CBD [167, 252, 255-257]. In fact, a study by Mishima et al., 

found that CBD prevented cerebral infarction via 5-HT1A receptors at 1.0 and 3.0 mg/kg, 

but not 0.1 or 10 mg/kg [257]. Therefore, it is possible that CBD plasma concentrations 

achieved following transdermal delivery are conducive to receptor mediated (possibly 5-

HT1A) neuroprotection, while higher IP doses, although out of the range for receptor 

mediated neuroprotection, have effects primarily though antioxidant effects. 

Alternatively, the neuroprotection observed following transdermal CBD and IP CBD 

could be related to the different pharmacokinetic profiles expected following each route 

of administration. It is well known that cannabinoids rapidly distribute to fatty tissue 

including the brain [258] and although CBD concentrations were not measured in the 
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brain, it would be interesting to determine how transdermal and IP delivery at these 

doses differentially affect the brain penetrance of CBD. For example, a recent study 

found that Cmax and estimated exposure (AUC) in the brain was higher following oral 

administration compared to IP, which suggests that different routes of administration and 

their resulting pharmacokinetic profiles differentially affect CBD accumulation in the brain 

[259]. Therefore, an alternative interpretation to explain the similar magnitudes of 

neuroprotection following transdermal and IP administration of CBD could be that 

transdermal administration at these doses optimizes brain distribution of CBD.   

Importantly, we observed a positive relationship between CBD gel percentage 

and day 3 CBD plasma concentrations in ethanol treated rats, while CBD plasma 

concentrations were similar across the 1.0%, 2.5% and 5.0% CBD groups during 

euthanasia (Figure 2.4). Although CBD plasma levels were similar at euthanasia, only 

5.0% CBD resulted in promising neuroprotective effects (Figure 2.3). These 

observations highlight the importance of administering CBD at therapeutic levels early 

during binge ethanol treatment. CBD treatment was initiated following the third dose of 

ethanol (Figure 2.1), similar to other studies demonstrating neuroprotection following 

antioxidant treatment [120, 121].  Neuroprotective agents are likely to be more 

efficacious when administered at these early timepoints because cellular stress and 

neurodegeneration can be detected following as few as 1 or 2 days of binge ethanol 

treatment [112, 119]. For example, unpublished observations show significant 

impairments in mitochondrial bioenergetics following 2 days of binge treatment [139]. 

Impairment in mitochondrial function is likely a causal factor contributing to alcohol-

induced neurodegeneration as these impairments result in the production of oxidative 

stress [139]. As CBD is thought to be neuroprotective partially through antioxidant 

properties, it is possible that CBD attenuates oxidative stress caused by impairments in 

the mitochondrial electron transport chain. Collectively, these results suggest that 

57 
 



 

neuroprotective agents, including transdermal CBD, need to be administered at 

therapeutic levels before ethanol-induced neurotoxic events are irreversible.  

Enhanced neuroprotection might be observed by administering CBD as a 

pretreatment in addition to treatment during binge exposure; however this strategy was 

not implemented in order to mimic a feasible human application for transdermal CBD. 

For example, an individual could apply a CBD patch if a relapse event occurred and not 

prophylactically as a pretreatment study would mimic. However, a prophylactic strategy 

should not be dismissed and may enhance the value of transdermal CBD for the 

treatment of a variety of other pathologies associated with AUDs in addition to alcohol-

induced neurodegeneration. Alcoholism is a cyclical disease consisting of periods of 

binge intake, acute physical withdrawal, protracted withdrawal and ultimately relapse, 

which all may be treated by extended release formulations of CBD [244, 245, 260]. For 

example, CBD has anticonvulsant effects (acute withdrawal), anxiolytic effects 

(protracted withdrawal/relapse), reduces drug seeking behavior in rodents 

(craving/relapse) and has neuroprotective properties (binge intoxication). Therefore, a 

prophylactic strategy for transdermal CBD treatment could be beneficial if future studies 

demonstrate efficacy for these other pathologies associated with AUDs. Furthermore, 

transdermal delivery of other medications, such as naltrexone and acamprosate, could 

enhance the utility of pharmacotherapy based treatments for alcohol dependence in 

general. Transdermal delivery is a controllable extended release formulation [248], 

therefore improves patient compliance because medications can be administered less 

frequently. Additionally, transdermal products are non-invasive which promotes patient 

friendly usage, in contrast to injectable formulations. These are important considerations 

for treating alcohol dependence as compliance has been low for currently approved 

mediations [249].  
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Although the results of the current study are promising, there are developmental 

hurdles that need to be overcome in order to translate these findings into a feasible 

treatment for AUDs. Noteworthy, plasma concentrations achieved by the first generation 

gel formulation in experiment 1 were consistently higher in ethanol treated rats (Figure 

2.4). Additionally, CBD plasma concentrations in these rats were ~100 ng/mL prior to 

euthanasia regardless of gel percentage. Although the current data is insufficient to 

definitively explain these observations, it is possible that the high BECs achieved during 

binge ethanol treatment may interfere with the pharmacokinetics of transdermal CBD. 

For example, studies have shown that forced ethanol consumption in rodents, producing 

BECs greater than 100 mg/dL, can result in moisture loss in the stratum corneum [261]. 

Dehydration of the stratum corneum could theoretically affect CBD transdermal flux. 

Furthermore, it is well-known that ethanol interferes with the metabolism of som drugs 

[262]. For example, acute ethanol exposure commonly inhibits hepatic metabolism, while 

chronic ethanol exposure enhances drug metabolism and clearance [263]. Although it is 

currently unknown whether altered metabolism of CBD occurs following binge ethanol 

treatment, this is an important consideration for future drug development efforts. In 

experiment 2, which utilized the second generation gel formulation, CBD plasma levels 

in control rats were significantly lower prior to euthanasia compared to day 3 

measurements (Figure 2.7). This observation was expected because of the greater lag 

time between CBD gel application and plasma CBD quantification during euthanasia 

(see Figure 2.1). In contrast to the first generation CBD gel formulation, the second 

generation gel formulation resulted in lower CBD plasma concentrations in ethanol 

treated rats compared to controls at day 3 (Figure 2.7). Although the reason for this 

discrepancy is currently unknown, this observation may be related to intrinsic differences 

in the transdermal flux of CBD between the two formulations. Even in light of these 

technological issues, neuroprotection was observed following transdermal CBD delivery. 
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Therefore, future drug development studies are warranted and should be focused on 

further understanding and optimizing transdermal CBD systems in intoxicated rodents.      
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3. CHAPTER 3 

SIMULTANEOUS QUANTIFICATION OF ANANDAMIDE, OLEOYLETHANOLAMIDE 

AND PALMITOYLETHANOLAMIDE IN RODENT BRAIN TISSUE USING HIGH 

PERFORMANCE LIQUID CHROMATOGRAPHY-ELECTROSPRAY MASS 

SPECTROSCOPY 

 

3.1 Introduction 

The discovery of the eCB system in the early 1990’s intensified research on 

cannabinoid physiology and pathophysiology. The first receptors identified with affinity 

for Δ9-THC and other synthetic cannabinoids were the CB1R [156], followed by the 

CB2R [157]. Simultaneously, the endogenous ligands were being discovered, with the 

identification of AEA in the porcine brain first [165] followed by 2-AG [167]. Since these 

seminal discoveries, researchers quickly became aware of the complexities of the eCB 

system. It is now known that multiple receptors have the capacity to bind cannabinoid 

ligands such as TRPV1 [264], GPR55 [265] and PPAR isoforms [266], which suggests 

significant crosstalk among different signaling systems. Although 2-AG and AEA are the 

most widely studied, they are not the only endogenous ligands with the capacity to bind 

cannabinoid receptors [159]. Moreover, other bioactive lipids, particularly the NAEs, 

acylglycerols, and acylamides have been shown to be important in cannabinoid 

physiology as they act as entourage compounds by enhancing the activity of AEA and 2-

AG [267]. For example, both PEA and OEA have been shown to reduce the degradation 

of AEA through competition for FAAH [268, 269] and by reduction of FAAH expression, 

as is the case for PEA [270]. Interestingly, OEA and PEA have the capability to displace 

both [3H]-CP55,940 and [3H]-WIN55,212-2 [269] from CB1Rs and CB2Rs. It has also 

been demonstrated that both PEA and OEA can increase the affinity of AEA at TRPV1 

receptors [271], an effect which contributes to the crosstalk between eCB and other 
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signaling systems.  As the understanding of eCB physiology and pathophysiology 

requires an understanding of these lipid classes as a whole, rather than in isolation, it is 

critical to develop analytical techniques that can simultaneously measure several eCBs 

as well as entourage compounds from biological tissue under normal and pathological 

conditions. Furthermore, development of easy, accurate, and reproducible analytical 

techniques to monitor NAEs is of interest because FAAH inhibitors are currently 

undergoing preclinical and clinical testing. 

 A variety of analytical methods have been developed for the measurement of 

eCBs and other related lipids since their initial discovery [272]. Many of the initial 

methods used gas chromatography – mass spectroscopy (GC-MS) procedures to 

measure AEA [273] and/or 2-AG [274]; however, eCBs typically need to be derivatized 

to increase their volatility, which is complex and time consuming [272]. Therefore, more 

recent methods for eCB quantification take advantage of liquid chromatography – mass 

spectroscopy (LC-MS) [275, 276] and more commonly LC-MS-MS [277, 278] techniques 

to quantify eCBs as additional derivatization procedures are not necessary. Although 

MS-MS systems have benefits over MS systems for the measurement of eCBs and 

related compounds, such as increased sensitivity, single quadrupole systems may be 

the only available option for many laboratories, thus development of methods for MS is 

valuable and necessary.    

 eCB extraction from biological matrices and sample preparation widely differs 

among published analytical methods. Chloroform/methanol liquid extraction is commonly 

used for GC-MS and sometimes for LC-MS and LC-MS-MS, however these methods are 

typically followed by sample clean-up using solid phase extraction (SPE) or thin-layer 

chromatography (TLC) [272]. SPE and TLC procedures are time consuming and 

expensive, therefore not ideal for analysis of multiple biological samples and/or high 

throughput drug discovery. Moreover, organic solvents such as toluene [279], ethyl 
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acetate/hexane [277, 280] or ACN [275, 281] have been used for protein precipitation 

and lipid extraction; however, many of these reported methods still require further 

sample clean-up using SPE or TLC. 

 Another major consideration for accurate quantification of eCBs is the effect of 

biological matrices on process efficiency, which can greatly affect accurate estimation of 

eCB content. Reports that include validation in biological matrices have demonstrated 

that extraction efficiencies for eCBs can deviate greatly and this effect is compound 

specific [277]. Therefore, the biological matrix should be factored in when developing 

analytical methods and should be considered for each compound of interest.     

In this study, simultaneous measurement of AEA, OEA and PEA is reported in 

rodent whole brain tissue. This study is the first report that demonstrates the feasibility of 

quantifying this combination of analytes with a simple protein precipitation procedure 

followed by single quadrupole LC-MS detection using low milligrams of brain tissue. 

Notably, this method was validated in whole brain matrix while accounting for the 

endogenous nature of these eCB species. Additionally, AEA, OEA and PEA were 

quantified following FAAH inhibition by URB597 which demonstrated that URB597-

mediated elevations in NAEs are both brain region and compound specific. 

 

3.2 Materials and Methods 

3.2.1 Chemicals 

Methanol and ACN were HPLC grade, while all other chemicals used were 

analytical grade. AEA, OEA and PEA were all purchased from Cayman Chemicals (Ann 

Arbor, MI, USA) and had a purity of ≥ 98%.  Methanol and ACN were purchased from 

VWR International (Batavia, IL, USA), acetic acid was purchased from Fisher Scientific 

(Fairlawn, NJ, USA) and ammonium acetate was purchased from Mallinckrodt 

Chemicals (Phillipsburg, NJ, USA). Water was obtained from a Milli-Q® Advantage A10 
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purification and filtration system (Millipore, Billerica, MA, USA). Mobile phase was filtered 

at 0.2 μm using a nylon membrane filter (Supelco, Bellefonte, PA, USA).    

 

3.2.2 Calibration and quality control sample preparation    

Stock solutions of AEA, OEA and PEA were prepared in ethanol at 2.0 mg/mL 

and stored at -20°C. From these stock solutions, 50 µg/mL working stocks and working 

solutions of appropriate concentration were prepared for each compound in ACN. From 

the working solutions, calibration and quality control (QC) samples were prepared for 

each compound by adding 5 µL of analyte working solution of appropriate concentration 

to 95µL of ACN or tissue homogenate. Calibration curves were constructed for AEA 

using the following calibration concentrations: 2.5, 5, 15, 25, 50 and 100 ng/mL, while 

curves for OEA and PEA were constructed using the following concentrations: 5, 10, 25, 

50, 100, 250 and 500 ng/mL. QC samples for AEA were prepared at three concentration 

levels including 7.5, 35 and 75 ng/mL, while QC samples for OEA and PEA were 

prepared at 15, 30 and 90 ng/mL. The concentration range of calibration and QC 

samples were chosen based on preliminary studies and literature reports for analytes of 

interest to encompass baseline endogenous levels of these NAEs as well as elevated 

NAE levels resulting from treatment with the FAAH inhibitor URB597 [174].  

 

3.2.3 Sample extractions 

NAEs were extracted from brain tissue using a protein precipitation protocol 

modified from Chen et al. 2009 [275]. Brain tissue was weighed and homogenized with 

equal volumes of ice cold saline in a siliconized microcentrifuge tube by rapid sonication 

on ice using a Sonic Dismembrator (Fisher Scientific, Fairlawn, NJ, USA). Following 

sonication, 100 µL of homogenate was transferred to a fresh siliconized microcentrifuge 

tube followed by the addition of 1 mL of ACN. Samples were then vortexed for 
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approximately 30 sec and centrifuged at 13,000 g for 20 min at 4°C. ACN extracts were 

then placed into a 5 mL siliconized test tube and gently evaporated under nitrogen at 

37°C. NAEs were extracted with ACN two additional times and extracts were pooled 

before reconstitution by evaporating repeated extractions in the same test tube. 

Following evaporation, samples were reconstituted in 100 µL ACN. To ensure maximum 

extraction of the analytes of interest from the dry residue, samples were vortexed for 30 

sec, sonicated in an ice cold water bath for 15 min and vortexed again for 30 sec. 

Samples were then transferred to siliconized microcentrifuge tubes and centrifuged at 

13,000 x g at 4°C to remove precipitates following reconstitution. Finally, the 

reconstituted samples were transferred to HPLC vials fitted with siliconized low volume 

inserts and placed in a temperature regulated autosampler (4°C) for analysis. A 20 μL 

aliquot of sample was injected for LC-MS quantification. To ensure maximal extraction of 

analytes of interest, the effect of one vs. three extraction cycles on NAE recovery was 

investigated. To that end, homogenates were created and extracted one or three times 

according to the procedures described above and the relative MS signal between one 

and three extractions was compared as percent of one extraction cycle. 

 

3.2.4 LC-MS conditions 

HPLC was performed using a Waters Alliance 2695 LC pump (Waters, Milford, 

MA, USA) equipped with a Waters Alliance 2695 autosampler and thermostatic column 

compartment which was maintained at 37°C. Separation was achieved using a Waters 

Symmetry® C18 (2.1 x 150 mm, 5 µm) column coupled with a Waters Symmetry® C18 

guard column (2.1 x 10 mm, 3.5 µm). A gradient elution protocol was adapted from Patel 

et al., 2003 [281] with mobile phase A consisting of 1 mM ammonium acetate with 0.1% 

acetic acid (v/v) in methanol and mobile phase B consisting of 1 mM ammonium acetate 

with 0.1% acetic acid (v/v) and 5% methanol in water. Initial conditions were set at 70% 
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A and 30% B. A was increased linearly to 85% over 25 min and maintained for 1 min. A 

was then increased linearly to 100% over 1 min and held at 100% for 5 min. Finally, A 

was returned linearly to 70% over 1 min and held for 10 min for column equilibration. 

Flow rate was maintained at 0.3 mL/min. The MS detector used was a Micromass® ZQTM 

(Waters, Milford, MA, USA) with an electrospray ionization probe (ESI). The MS 

conditions were set according to Chen et al., 2009 [275]: nitrogen desolvation gas 450 

L/hr, nitrogen cone gas 50 L/hr, source temperature 120°C, desolvation temperature 

250°C, capillary voltage 3.5 kV, cone voltage 25 kV, extractor voltage 5.0 kV and RF 

lens voltage 0.5 kV. ESI was set to the positive mode and selective ion monitoring was 

set to the following protonated ions, m/z 348.28 [M + H] + (AEA), m/z 326.6 [M + H] + 

(OEA) and m/z 300.5 [M + H] + (PEA) with dwell times of 0.3 sec for each ion.  

 

3.2.5 Validation 

The method was validated by examining linearity of standard curves, LLOQ, 

intra- and interday accuracy, intra- and interday precision, process efficiency (PE) and 

short-term stability of NAEs in brain extracts at 4°C. AEA, OEA and PEA linearity was 

evaluated over concentration ranges from 2.5 ng/mL to 100 ng/mL for AEA and 5 ng/mL 

to 500 ng/mL for OEA and PEA in ACN and brain tissue by performing linear regression 

analysis. The LLOQ for each analyte was defined as the lowest concentration producing 

a peak height (signal) 10x greater than the baseline height (noise). This concentration 

was back calculated from a linear regression analysis of signal: noise vs. analyte 

concentration at analyte levels ranging from 2.5 ng/mL to 25 ng/mL. Accuracy and 

precision was determined for each analyte at three different QC levels. Intraday QCs 

were run in triplicate on two separate occasions and accuracies and precisions were 

reported for intraday1 and intraday2. Interday QCs (n=8) were run on separate days with 

each day ranging from 1-3 replications. Accuracy was calculated as the following, 
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accuracy = (calculated concentration / nominal concentration)*100, while precision (% 

coefficient of variation, CV) was calculated as, %CV = (standard deviation / mean 

calculated concentration)*100. Accuracy and precision were considered acceptable 

when within 15%. PE was calculated for each analyte at each QC level and was defined 

as the ratio between the relative MS signal of the QC extracted from homogenate and 

the relative MS signal of the QC in ACN; PE = (QC spiked/QC in ACN)*100. To study 

short-term stability of AEA, OEA and PEA, extracts were stored in the autosampler at 

4°C and injected at T=0 hr and T=18 hr. Relative MS signal between the two time points 

were compared as percent of T=0 hr. 

 As endogenous AEA, OEA and PEA may interfere with standardization and 

validation, great care was taken to ensure uniformity of homogenates. To that end, bulk 

brain homogenate used in the preparation of calibration and QC samples was produced 

by sonication on ice followed by vigorous vortexing. With this procedure, consistent 

background levels of AEA, OEA and PEA were achieved as repeated background 

measurements (n = 5-7) varied by only 8.1%, 6.7% and 3.3%, respectively. Background 

signal of each analyte was subtracted prior to calculation of the measured calibrators 

and QC concentrations. In order to accurately measure background levels for each 

analyte, multiple background measurements were collected so that each batch of bulk 

homogenate generally had 5-7 background measurements.   

 

3.2.6 Biological application 

Adult male Sprague Dawley rats weighing approximately 330 grams (n = 12; 

Charles River, Raleigh, NC) were used in this study. All treatment protocols followed the 

Guide for the Care and Use of Laboratory Animals by the National Research Council 

(1996) and were approved by the University of Kentucky Institutional Animal Care and 

Use Committee. Rats were singlely housed in Plexiglas cages in a University of 
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Kentucky vivarium on a 12 hr light/dark cycle with access to rat chow and water ad 

libitum during a 5 day acclimation period. Rats were also handled for at least 3 days. 

During experimentation, rat chow was removed from cages and rats were fed a 

nutritionally complete diet consisting of Vanilla Ensure Plus© (Abbott Laboratories, 

Columbus OH) and dextrose in water. Rats received diet by oral gavage every 8 hr for 

24 hr. Rats were treated with the FAAH inhibitor (n=6), URB597 (0.3 mg/kg) by 

intraperitoneal injection at a concentration of 1.0 mg/mL in dimethylsulfoxide (DMSO) or 

vehicle (n=6). Two hours after injection, rats were euthanized by rapid decapitation, 

brains were extracted, brain regions dissected and placed in a microcentrifuge tube and 

flash frozen using a slurry of dry ice and 70% ethanol. The entire process from 

decapitation to rapid freezing was kept under 6 minutes to minimize post-mortem 

accumulation of NAEs [282]. Tissue was stored at -80°C until processing for NAE 

quantification. Fifty milligrams of tissue was sufficient to achieve quantifiable levels of 

each NAE in hippocampi and entorhinal corticies. System suitability criteria were met 

prior to sample batch analysis.  

 

3.2.7 Statistical analysis 

Statistics were performed using GraphPad Prism (GraphPad version 4.03, La 

Jolla, CA, USA). Linear regression was used to assess linearity of calibration curves for 

AEA, OEA and PEA. Student’s t-tests were used to compare differences in AEA, OEA 

and PEA content between vehicle and URB597 treated rats for each brain region. 

Statistical significance was accepted at p < 0.05. Values are given as mean ± SEM 

unless otherwise indicated. 
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3.3 Results and Discussion 

3.3.1 Method Development 

In this report, NAEs were extracted from whole brain tissue. The simultaneous 

measurement of AEA, OEA and PEA required optimization of the gradient elution 

protocol used in Patel et al., 2003 [281] to prevent peak interference from co-eluting 

analytes. AEA, OEA and PEA eluted at 21.32 min, 25.92 min and 24.24 min, 

respectively, as shown in Figure 3.1. NAE quantification using LC-MS typically requires 

long run times [275, 276]. Therefore method optimization towards shorter elution times 

provides significant advantages when analyzing biological samples such as decreasing 

the possibility of sample instability in the autosampler and increasing sample throughput. 

With the current protocol, the run time was decreased by 7 min relative to Chen et al., 

2009 [275]. Moreover, during method development, a final step involving washing with 

100% methanol for 5 min was incorporated into the gradient protocol to ensure elution of 

peaks that would otherwise cause interference on subsequent runs. Recovery of eCBs 

from biological tissues is typically performed using liquid-liquid extraction/precipitation 

protocols [272]. It is suggested that different solvent conditions can result in better 

extraction efficiencies for specific eCBs [283], thus preliminary experiments were 

performed using different solvents and solvent combinations previously shown to be 

effective for eCB extraction. These solvents included ACN [275, 281, 284], methanol 

[285] and a 9:1 ethyl acetate/hexane mixture [277, 280]. ACN and methanol extraction 

produced similar chromatograms and extraction efficiencies while the ethyl 

acetate/hexane extraction was more time consuming and did not offer any significant 

benefit over the other two protocols (data not shown). Considering the well documented 

superiority of ACN over methanol as a protein precipitant [286], ACN was selected for 

NAE extractions. 
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Figure 3.1 Representative LC-MS chromatograms of NAE analytes in whole brain tissue. 

(a) AEA, RT 21.32 min. (b) OEA, RT 25.92 min. (c) PEA, RT 24.24 min.   

 

70 

 
 



 

The effect of single versus multiple extraction cycles was also examined in order to 

ensure maximal analyte recovery from brain tissue homogenates as shown by others 

[277]. The effect of three extraction cycles is shown in Table 3.1. Repeated extractions 

enhanced relative recovery of each NAE while the CV remained at acceptable levels 

(<15 %). It is also interesting to note that a correlation was observed between the 

endogenous abundance of each NAE with their recovery following three extractions. The 

majority of AEA, which has low endogenous levels (low pmol range), was efficiently 

extracted following 1 extraction cycle, while recovery of PEA, found at higher 

endogenous levels (high pmol range), was greatly enhanced after 3 extractions (118.4% 

increase). Thus, this experiment suggests that multiple extractions with 1 mL of ACN are 

required to overcome a limited capacity of ACN to extract certain NAEs from brain 

tissue.   

 

3.3.2 Validation  

Calibration curves were linear for AEA (R2 = 0.999) over a concentration range of 

2.5 to 100 ng/mL and linear for PEA (R2 = 0.989) and OEA (R2 = 0.999) over a 

concentration range between 5 to 500 ng/mL. The concentration ranges covered 

anticipated endogenous levels of NAEs and elevated NAE levels in URB597 treated 

animals. The LLOQs for AEA, OEA and PEA were 1.4, 0.6 and 0.5 ng/mL, respectively. 

This analytical method is accurate, precise and reproducible for the simultaneous 

measurement of AEA, OEA and PEA in rodent brain tissue (Table 3.2). The intraday and 

interday accuracies were acceptable and generally within 15% of the nominal 

concentration. CVs were also generally well below 15%. These results are acceptable 

for the developed method; however, the slight discrepancies reported in Table 3.2 are 

attributed to the endogenous nature of eCBs in biological tissues, which need to be 

accounted for while validating analytical method. 
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Table 3.1 Effect of Multiple Extraction Cycles on Analyte Recovery 

Analyte 
1 Cycle (n = 3)  3 Cycles (n = 3) 

Mean (% C1) CV (%)  Mean (% C1) CV (%) 

AEA 100.0  14.1  121.4  11.4 
      
OEA 100.0  8.9  163.7  3.7 
      
PEA 100.0  8.0   218.4  3.3 
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Table 3.2 Linearity, Intra- and Interday Accuracy and Precision of Analytical Method for NAE Measurement From Brain Matrix 

Analyte R2 
Nominal  
Concentration 
(ng/mL) 

 Intraday 1 (n = 3)  Intraday 2 (n = 3)  Interday (n = 8) 
 Mean Accuracy 

(%) 
CV 
(%) 

 Mean Accuracy 
(%) 

CV 
(%) 

 Mean Accuracy 
(%) 

CV 
(%) 

AEA 0.999 7.5  8.6 115.0 9.4  7.9 105.8 1.3  8.2 109.5 7.8 

  35  31.7 105.7 6.2  34.2 114.0 6.1  33.2 110.8 7.5 

  75  68.1 90.8 7.5  72.5 96.7 9.1  68.5 91.4 8.15 

               
OEA 0.989 15  18.2 121.5 18.8  14.8 98.4 5.5  15.9 105.8 17.6 

  30  30.9 102.9 5.1  25.1 83.6 2.8  28.4 94.8 13.3 

  90  85.8 95.4 5.3  90.6 100.7 4.2  85.9 95.4 6.1 

               
PEA 0.999 15  14.9 99.4 11.6  13.9 93.0 3.6  14.3 95.0 8.6 

  30  28.5 95.0 13.2  29.1 97.1 7.2  28.6 95.8 8.7 

  90  94.8 105.3 5.4  80.7 89.6 4.9  88.9 98.8 8.9 
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eCBs are notoriously difficult to quantify accurately because their endogenous nature 

adds variability during method validation. Methods using biological matrices for 

validation have to account for endogenous levels of analyte and correct for these basal 

levels to calculate calibration and QC concentrations. However, this is a difficult task 

because the basal levels can vary greatly in tissue homogenates. For example, it is well 

know that eCB species accumulate postmortem and during sample processing [273, 

282]. To reduce variability, tissue is rapidly dissected, flash frozen and kept ice cold 

during processing. Additionally, it is important to prepare a quality homogenate for 

validation studies. However, this process is not standardized in the literature [277, 278, 

280], which may explain different results in validation studies [275, 277]. The method 

used here for ensuring homogenous background levels of eCBs is different than others, 

which may have contributed to the good accuracy and precision (Table 3.2). In the 

current method, bulk homogenates were created each day and great care was taken to 

ensure uniformity by vigorously vortexing the homogenate while kept ice cold. 

Additionally, new background measurements were acquired for every batch of 

homogenate. In Richardson et al., 2007 [277], homogenates were prepared by freezing 

tissue in liquid nitrogen prior to being ground up using a mortar and pestle and aliquoted 

for validation experiments. It is possible that these differences in preparation could result 

in differences in homogenate quality and therefore account for seemingly different 

accuracies and precisions reported in the literature. 

In order to circumvent the obstacles associated with the endogenous nature of 

eCBs, some reports use surrogate matrices. However, opinions on whether or not the 

use of artificial matrices is appropriate while developing analytical methods to quantify 

eCBs vary in the literature. Some reports use alternative matrices commonly consisting 

of water and bovine serum albumin (BSA) for method validation [278, 284]. On the other 

hand, other reports use biological matrices and therefore can adjust for extraction 

74 
 



 

efficiency and potential matrix effects for every analyte of interest [275, 277, 280]. This 

adjustment is particularly important when not using an internal standard or when only 

using a representative internal standard for multiple analytes during validation [275]. In 

the current study, the later approach was used for the reasons mentioned above. 

Although it appears that significant matrix-analyte interactions were not encountered, it is 

possible that this could occur when validating and quantifying other eCB species using 

this method. 

Next, the process efficiency was examined for the recovery of AEA, OEA and 

PEA from whole brain homogenates (Table 3.3). Concentration levels to study process 

efficiency were selected to reflect both reported levels of endogenous AEA, OEA and 

PEA [174] and preliminary analysis of analyte content using our developed method. 

Recovery (PE) values for AEA and OEA ranged from 98.1% to 106.2% and 98.5% to 

102.2%, respectively (Table 3.3). These high recovery values indicate that the current 

extraction method was optimum for recovery of these analytes and that there was no 

indication of a matrix effect. Moreover, the recovery for PEA ranged from 85.4% to 

89.5%. Although a lower recovery was consistently observed for PEA compared to the 

other two analytes, the calculated %CV was acceptable and the recovery rates were 

sufficient to achieve accurate and precise quantification of PEA, as indicated in Table 

3.2. These high recovery rates for AEA, OEA and PEA are consistent with previous 

literature using other extraction procedures [277, 278]. However, contrary to other 

methods, this current method has the advantage of not requiring significant sample 

clean-up [277, 280, 285]. Due to long run times (43 min), the short-term sample stability 

was examined in the autosampler at 4°C. The relative MS signals for AEA, OEA and 

PEA at T=18 hr were 130%, 112.4% and 107% of T0, respectively (Table 3.4). These 

data suggest that under the specified storage conditions NAE degradation is not 

occurring.  

75 
 



 

 Table 3.3 Process Efficiency 

Analyte 
Nominal  
Concentration 
(ng/mL) 

PE (%, n = 3)  CV (%) 

AEA 7.5 106.2  2.4 
 35 99.2  2.3 
 75 98.1  9.6 
     
OEA 15 102.2  2.2 
 30 99.5  16.5 
 90 98.5  6.8 
     
PEA 15 89.5  10.4 
 30 85.4  17.1 
 90 85.8  8.1 
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 Table 3.4 Short-term analyte stability at 4°C 

Analyte 
0 Hours (n = 3)  18 Hours (n = 3) 

Mean (% 0h) CV (%)  Mean (% 0h) CV (%) 

AEA 100.0 13.1  130.5 2.3 
      
OEA 100.0 3.3  112.4 3.5 
      
PEA 100.0 3.7  107.0 4.0 
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However, in order to reduce inflation of estimated NAE levels, samples were not allowed 

to remain in the autosampler longer than 12 hr before being analyzed.  

 

3.3.3 Biological application   

The present method was used to quantify AEA, OEA and PEA in the rat 

hippocampi and entorhinal cortices following administration of the FAAH inhibitor 

URB597 [174].  FAAH is the major enzyme responsible for the degradation of NAEs 

[176], is expressed throughout the CNS [176, 287] and thus is involved in a variety of 

physiological and behavioral processes. For example, pharmacological inhibition and/or 

genetic deletion of FAAH modulates depressive-like behavior [288], reduces 

inflammatory pain [289], alters drug reward [290] and affords neuroprotection [291]. 

Therefore, FAAH is under intense investigation for its therapeutic utility in a variety of 

CNS disorders. In the present study, a significant elevation of all NAEs measured 2 

hours following IP administration of URB597 was observed (Table 3.5). In the 

hippocampus, AEA, OEA and PEA were increased by 57.5%, 475.6% and 986.6%, 

respectively. On the other hand, an increase in AEA content was not observed in the 

entorhinal cortex, and much smaller increases of 250.2% and 435.0% for OEA and PEA, 

respectively. This is the first study to demonstrate brain region and NAE specific 

alterations following a single dose of URB597. These data are consistent with studies 

examining NAE content following chronic URB597 administration.  After weeks of 

URB597 administration, Bortolato et al., 2007 [288] observed elevations of AEA in the 

midbrain, thalamus and striatum, however this effect was absent in the prefrontal cortex 

and hippocampus [288]. It is not surprising that the effects of FAAH inhibition are brain 

region specific.  

78 
 



 

   
Table 3.5 Effect of URB596 on Endogenous levels of AEA, OEA and PEA 
 Vehicle (n = 5-6#) URB597 (0.3 mg/kg, n = 6) 

AEA 
 (nmol/mg tissue) 

Hippocampus 37.9 ± 20.5 59.7 ± 9.4* 

Entorhinal Cortex 43.3 ±12.0 44.0 ± 12.4 

OEA 
(nmol/mg tissue) 

Hippocampus 82.9 ± 11.4 477.2 ± 90.2*** 

Entorhinal Cortex 171.5 ± 146.6 300.1 ± 56.0*** 

PEA 
(nmol/mg tissue) 

Hippocampus 155.7 ± 60.1 1691.8 ± 377.6*** 

Entorhinal Cortex 85.7 ± 50.0 917.6 ± 195.8*** 
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For example, in the current study, NAE elevation was more pronounced in the 

hippocampus relative to the entorhinal cortex, a result that is consistent with 

immunohistochemical data demonstrating that FAAH expression is much more abundant 

in the hippocampus [179].  Noteworthy, another study examined NAE content in the 

spinal cord following 4 daily doses of URB597 and found reduced levels of AEA, OEA 

and PEA relative to single injection [292]. The original characterization of URB597 

reported elevations of AEA, OEA and PEA in whole brain tissue [174] following a single 

dose. However, taken together, the above mentioned studies and the current findings 

suggest complex and region specific regulation of NAEs which has implications for the 

pharmacodynamic effects of FAAH inhibition.          

 

3.4 Conclusions 

The current study describes a novel method for analyzing eCBs and related 

compounds from biological samples with acceptable accuracy and precision. This 

method has been developed to analyze AEA, OEA and PEA from rodent brain tissue 

and offers multiple advantages over other validated methods for eCB quantification. A 

simple extraction protocol was used without time consuming and costly sample clean-up, 

compounds were quantified on a single quadrupole mass spectrometer with satisfactory 

sensitivity, the method was validated using appropriate biological matrices, which 

accurately accounts for analyte-matrix interactions, and this report demonstrated the 

feasibility of measuring these compounds from brain using low milligrams of tissue such 

as bilateral adult rat hippocampi. Finally, this method was proven effective in detecting 

elevations of AEA, OEA and PEA in rodent hippocampus and entorhinal cortex following 

administration of the FAAH inhibitor URB597. 
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4. CHAPTER 4 

CHARACTERIZATION OF THE EFFECTS OF BINGE ETHANOL TREATMENT ON 

COMPONENTS OF THE ENDOCANNABINOID SYSTEM  

4.1 Introduction 

Chronic ethanol consumption results in numerous neuroadaptations that are 

responsible for physical and psychological dependence and ultimately, addiction. 

Elucidating these neuroadaptive changes may lead to the development of novel targets 

for the treatment of AUDs. For example, the eCB system is particularly sensitive to 

ethanol and is critically involved in mediating many of the pharmacological, behavioral 

and reinforcing effects of ethanol and this neurotransmitter system is prone to significant 

ethanol-induced neuroadaptations [187, 188]. Therefore, the eCB system represents a 

promising pharmacotherapeutic target for the treatment of AUDs. Although currently 

under investigated, the eCBs may be influenced by the neurodegenerative effects of 

excessive ethanol consumption in a manner different than non-neurotoxic ethanol 

exposure. This hypothesis is supported by converging evidence demonstrating that 

excessive ethanol consumption is associated with reductions in brain volume, loss of 

neuronal populations and compromised structural integrity [63, 66]; and that the eCB 

system is engaged following experimental brain injury [213, 215, 216, 219]. Therefore, 

the eCB system may also be a novel target for preventing ethanol-induced 

neurodegeneration and aid in the recovery from AUDs.       

The eCB system consists of two primary g-protein coupled receptors, the CB1R 

and the CB2R. The CB1R is the principal neuronal receptor, while CB2R expression, 

although still controversial, has been detected in activated glial cells and to a lower 

extent in some neuronal populations [158, 159, 161]. The endogenous ligands for these 

receptors are eicosanoids, including AEA and 2-AG, and are primarily responsible for 
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presynaptic inhibition of neurotransmitter release, regulation of neuroinflammatory 

signaling and/or cell homeostasis [159, 163]. In addition to the primary components of 

the eCBs, significant crosstalk occurs with other signaling systems such as the NAEs. 

For example, OEA and PEA compete with AEA for cellular reuptake and metabolism 

[268, 269]. Additionally, AEA is a full agonist at TRPV1, while OEA and PEA potentiate 

AEA binding to this receptor [264, 271]. Furthermore, the NAEs, including AEA, are 

ligands for PPAR nuclear receptors [266], which are important for maintaining cellular 

homeostasis. Together, the eCBs and related lipids represent a complex signaling 

network with important physiological and neuropsychological functions, including 

regulating ethanol consumption, drug reinforcement and neuroprotection. 

Ethanol exposure produces significant alterations and neuroadaptations in the 

eCB system [187] (see section 1.8). The literature suggests that these effects are 

dependent on multiple factors including the duration of ethanol exposure, ethanol 

concentration, brain region analyzed and eCB of interest. For example, acute ethanol 

exposure results in reductions in AEA, OEA and PEA in some brain regions but not 

others [199-201], whereas acute ethanol elevates 2-AG but not AEA in the nucleus 

accumbens [201, 293]. Conversely, the most consistent effects of chronic ethanol 

exposure are neuroadaptive elevations in AEA and/or 2-AG and CB1R down-regulation 

[203-206, 208], however these effects are dependent on exposure protocol and brain 

region [294, 295].   

 The eCBs and related NAEs play an important role in the pathogenesis of 

neurodegenerative disorders (see section 1.9 for detailed discussion). For example, 

tissue content of 2-AG, AEA and/or other NAEs are elevated in models of traumatic 

brain injury, stroke and chronic neurodegeneration [213, 215, 216, 219] and it is 

hypothesized that these elevations represent an endogenous mechanisms by which the 

CNS counteracts and isolates neuronal damage [296, 297]. Importantly, preclinical 
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studies have demonstrated that pharmacological enhancement of eCBs and NAEs can 

afford additional neuroprotection [291], while blocking such events increases 

susceptibility to neurotoxicity [218]. NAEs and their NAPE precursors do not appear to 

accumulate in all models of neurodegeneration. For example, Hansen et al., observed 

significant NAPE accumulation following necrotic cell death, induced by NMDA, but not 

apoptotic cell death following MK-801 administration [216]. These data suggest that Ca2+ 

-mediated excitotoxicity may be one important trigger for NAPE and subsequent NAE 

accumulation. Furthermore, production of NAPE intermediates is the rate limiting step of 

NAE synthesis and requires the activity of the Ca2+ sensitive n-acyltransferase, further 

suggesting an important role of Ca2+ for injury-induced NAE formation. Necrotic cell 

death may also occur through mechanisms independent from NMDA receptors and 

voltage-gated Ca2+ channel dependent excitotoxicity.  For example, a form of necrotic 

cell death termed dark cell degeneration is observed following binge ethanol exposure 

[114] and is insensitive to NMDA and voltage-gated Ca2+ channel antagonists [121, 153]. 

However, it is currently unclear whether this form necrotic cell death has the capacity to 

engage eCB and NAE biosynthesis. Importantly, if Ca2+ is required for eCB and/or NAE 

accumulation during neurotoxicity, binge ethanol induced plasma membrane disruption 

[114] and mitochondrial swelling and functional impairment [114, 139] theoretically could 

serve as sources for Ca2+ stimuli.  

Although the studies described in the preceding paragraphs (and in section 1.8) 

have provided critical insight to the effects of ethanol on the eCB system and in turn on 

how the eCBs influence ethanol related behaviors, to date, studies examining how the 

eCB system is altered by ethanol-induced neurodegeneration have not been conducted. 

This question is particularly important because neurodegenerative insults have 

independent effects on the eCBs. Therefore concomitant ethanol exposure and 

neurodegeneration may lead to unique effects on the eCB system. An understanding of 
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how neurodegenerative patterns of ethanol exposure modulate the eCBs may provide 

critical insight into new approaches for preventing ethanol-induced neurodegeneration 

and novel treatment strategies for AUDs. Therefore, the current study examined the 

effects of binge ethanol on the eCB system using an established model of an AUD, the 

modified Majchrowicz binge model, which produces substantial neurodegeneration of 

the cortico-limbic pathway [111, 114]. To that end, CB1R expression and AEA, OEA and 

PEA bulk tissue content was measured in the cortico-limbic pathway at multiple 

intoxication and/or withdrawal time points. 

 

4.2 Methods 

4.2.1 Animals and housing  

Adult male Sprague Dawley rats weighing approximately 330 grams on arrival (n 

= 77, Charles River, Raleigh, NC) were used in these studies. All treatment protocols 

followed the Guide for the Care and Use of Laboratory Animals (NRC, 1996) and were 

approved by the University of Kentucky Institutional Animal Care and Use Committee. 

Rats were singlely housed in Plexiglas cages in an AAALAC approved University of 

Kentucky vivarium on a 12 h light/dark cycle with access to rat chow and water ad 

libitum unless noted. During acclimation, rats were handled daily for at least three days 

to familiarize rats to experimenters. 

 

4.2.2 Binge ethanol treatment  

Rats were treated with ethanol according to a modified Majchrowicz binge model 

as described in chapter 2 with the exception that separate groups of rats were 

administered binge ethanol for 1 (n = 5), 2 (n = 6)  or 4 (n=6) days. BECs were 

measured according to the procedures described in chapter 2 with the exception for 1 

and 2 days groups.  For these groups, trunk blood was collected at euthanasia, which 
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was approximately 2 hr after the last dose of ethanol. In addition to rats that were 

euthanized immediately following 1, 2 or 4 days of binge ethanol treatment, 2 additional 

groups of rats were euthanized following peak withdrawal (17hr) and 48hr after the 

cessation of binge ethanol treatment. Withdrawal behavior for these groups was scored 

on a previously published scale [117, 298] (see Table 4.1) starting 10 h after the last 

dose of ethanol, which is the time when BECs drop to levels where withdrawal behaviors 

appear [110]. All withdrawal behaviors (see Table 4.1) were tallied during hourly 30 min 

blocks over the entire observation period which was 7 h for the 4-Day + T17 (peak 

withdrawal) group and 16 h for the 4-Day + T48 group. Mean withdrawal was calculated 

by averaging the highest withdrawal behavior score for each observation block, while the 

peak withdrawal was defined as the single highest withdrawal behavioral during the 

entire withdrawal period. Rats receiving control diet (see section 2.2.1; n = 4-6) were 

included for each timepoint.  

 

4.2.3 CB1 receptor autoradiography  
 

Rats were euthanized by rapid decapitation and whole brains were immediately 

dissected and flash frozen in isopentane on dry ice. Brains were then stored at -80°C 

until sectioning. Brains were sectioned at 16 μM in a 1:12 series using a Lecia CM1850 

cryostat (Nussloch, Germany) and mounted on Superfrost Plus® slides (Fisher Scientific, 

Pittsburgh, Pennsylvania). After sectioning, slides were stored overnight at 4°C under 

desiccation and stored at -80°C. CB1 receptor autoradiography was performed using the 

nonselective cannabinoid agonist, [3H]-CP55940, similar to previously described (Perkin 

Elmer, Specific Activity = 173 Ci/mM)[158]. Sections were thawed overnight at 4°C 

under desiccation and brought to room temperature before binding. 
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 Table 4.1 Withdrawal Scale 
Score Behavior 

0 Intoxicated 
1.0 Hyperactive 
1.4 Tail Tremor 
1.6 Tail Spasm 
2.0 Caudal Tremor 
2.2 Arched back  
2.4 Splayed Limbs 
2.6 General Tremor 
3.0 Head Tremor 
3.2 Induced Running 
3.4 Wet Dog Shakes 
3.6 Chattering Teeth 
3.8 Spontaneous Convulsions 
4.0 Death 
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Sections were pre-incubated in Tris-HCl buffer (pH 7.4) containing Tris-HCl (50 mM), 

NaCl (120 mM), KCl (5 mM), MgCl2 (1 mM), CaCl2 (2.5 mM) and 5% BSA for 30 min. 

Sections were then placed in fresh Tris-HCl buffer with the addition of 2.5 nM [3H]-

CP55940 for 2 hr at 37°C. Following incubation with the radioligand, sections were 

washed in Tris-HCl buffer (pH 7.4) containing 1% BSA and no binding salts at 4°C for 1 

hr. Sections were washed again with fresh Tris-HCl buffer for 3 hr at 4°C . Sections were 

then washed for 5 min in Tris-HCl buffer at 4°C without BSA or binding salts. Lastly, 

sections were briefly washed in 4°C dH2O and then dried under gentle air stream 

overnight. Following air-drying, all slides were placed in Fisher Biotech autoradiographic 

cassettes and slides were exposed to Kodak Biomax film for 27 days prior to film 

development.  

Films were imaged using a Power Macintosh based image analysis system 

(Scion LG-3 frame grabber, Sony XC-77 CCD camera and a Northern Lights desktop 

illuminator) and quantified using ImageJ (NIH, version 1.59). Initially, CB1R 

autoradiography was quantified in the entorhinal cortex (Bregma coordinates -5.40 to -

6.48) and hippocampus (Bregma coordinates -2.76 to -4.56), the two brain regions most 

susceptible to binge ethanol induced neurotoxicity. Following initial analysis, the 

substantia nigra pars reticulate (StN; Bregma coordinates -5.40 to -5.64) was included to 

determine whether CB1R down-regulation was global or brain region specific. 

Additionally, subregions of the hippocampus were analyzed to determine which layers 

were responsible for CB1R down-regulation in the hippocampus. The dorsal dentate 

gyurs, CA1 striatum oriens and CA3 striatum oriens were measured from bregma 

coordinates -2.76 to -4.56, while the ventral dentate gyrus was defined as the lateral 

striatum oriens between bregma coordinates -5.40 to -6.12 and from the most ventral 

point to the height of the entorhinal fissure. 
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4.2.4 N-acylethanolamide extraction and quantification  

Processing and quantification procedures for AEA, OEA and PEA were 

performed according to previously described methods (Liput et al., submitted; see 

chapter 3). Rats were euthanized by rapid decapitation, hippocampi, entorhinal corticies, 

striatum and cerebellum were dissected and flash frozen and stored at -80°C. Tissue 

was homogenized, NAEs were extracted than transferred to an HPLC vial containing a 

siliconized microinsert and stored in an autosampler at 4°C. NAEs were resolved using 

HPLC and quantified using ESI-MS. NAE concentrations were back calculated using 

standard curves prepared from tissue standards and quality controls were run 

periodically. Samples that did not meet quality control standards during processing were 

excluded from analysis. 

 

4.2.5 Statistical analysis 

Statistics were performed using GraphPad Prism (Graphpad version 4.03, La 

Jolla, CA, USA). Mean intoxication behavior and withdrawal behavior were analyzed by 

Kruskal-Wallis tests for non-parametric data followed by Dunn’s post-hoc test when 

appropriate. Mean daily ethanol dose and BECs were analyzed by ANOVAs followed by 

Bonferroni post-hoc tests when appropriate. CB1R autoradiography and NAE 

quantification were normalized as percent of respective control to correct for differences 

in film exposures prior to analysis by ANOVAs (treatment x time) followed by Bonferroni 

post hoc tests when appropriate. Intoxication and withdrawal timepoints and brain 

regions were analyzed independently. Values are presented as mean ± standard error of 

the mean and analyses were considered significant at p < 0.05.  

88 
 



 

4.3 Results   

4.3.1 Ethanol binge data  

Binge intoxication measures are presented in Table 4.2. Mean intoxication, mean 

daily dose, and BECs were similar between the CB1R (2-day) and NAE (2-day) groups. 

All groups treated for the entire 4-day binge were compared by Kruskal-Wallis test, 

which revealed a group difference in intoxication behavior [H(4) = 9.012; p < 0.05], a 

group difference in mean daily ethanol dose [F(3,25) = 3.119; p < 0.05], but no group 

differences in BECs [F(3,25) = 2.036; p > 0.05]. Post-hoc analysis revealed a difference in 

intoxication and mean daily dose for the NAE (4-day) group when compared to the 

CB1R (4-day + T48) group (p < 0.05). Mean withdrawal behavior was similar between 

the CB1R withdrawal groups; however a significant difference was observed in peak 

withdrawal behavior (p < 0.01). Binge intoxication measures were analyzed across 

duration of binge treatment. Groups were collapsed by binge duration and rats treated 

for 1-day, 2-day and 4-day were compared by Kruskal-Wallis test or one-way ANOVA, 

which, as expected, revealed a group difference in intoxication behavior [H(3) = 25.61; p 

< 0.0001], a group difference in mean daily ethanol dose [F(2,42) = 52.38; p < 0.0001], and 

a group difference in BECs [F(2,42) = 6.785; p < 0.01]. Post-hoc analysis of intoxication 

scores revealed significant differences between 1-day vs. 4-day (p < 0.001) and 2-day 

vs. 4-day (p < 0.001). Post-hoc analysis of mean daily dose revealed significant 

differences between 1-day vs. 2-day (p < 0.001), 1-day vs. 4-day (p < 0.001) and 2-day 

vs. 4-day (p < 0.001). Post-hoc analysis of BEC revealed a significant difference 

between 1-day vs. 2-day (p < 0.01) and 1-day vs. 4-day (p < 0.05).  
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Table 4.2 Ethanol Binge Data      

Group  Intoxication 
Behavior*  Ethanol Dose 

(g/kg/d)  BEC 
(mg/dL) 

     Withdrawal Behavior** 
 Mean  Peak 

CB1 Autoradiography           
1-Day (n = 5)  0.5 ± 0.1  13.4 ± 0.4  304.1 ± 19.0     
2-Day (n = 6)  1.6 ± 0.1  10.3 ± 0.3  403.2 ± 28.0     
4-Day (n = 6)  2.1 ± 0.2  8.8 ± 0.4  404.9 ± 24.4     

4-Day + T17 (n = 7)  2.2 ± 0.1  8.4 ± 0.4  366.1 ± 26.1  1.5 ± 0.4  2.3 ± 0.1 
4-Day + T48 (n = 6)  1.8 ± 0.0  9.5 ± 0.2  342.6 ± 24.0  1.1 ± 0.3  3.0 ± 0.1 

           
NAE quantification           

2-Day (n = 6)  1.4 ± 0.2  10.8 ± 0.6  443.8 ± 10.5     
4-Day (n = 7)  2.3 ± 0.1  8.1 ± 0.3  420.5 ± 24.1     

*mean intoxication behavior (0-5 scale), **withdrawal behavior(0-4 scale); see text for details 
NAE, n-acylethanolamide; BEC, blood ethanol concentration  
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4.3.2 Experiment 1: CB1 receptor autoradiography  

Experiment 1 was designed a priori to examine the effects of binge ethanol 

exposure on CB1R density in the hippocampus and entorhinal cortex (Figure 4.1) at 

multiple intoxication time points as these brain regions are susceptible to binge ethanol 

induced neurodegeneration. CB1R densities were normalized to percent of control for 

each timepoint in order to correct for inherent differences between batches of 

autoradiographic film exposures. Two-way ANOVAs (treatment X time) were performed 

independently for each brain region which revealed a main effect of ethanol for the 

hippocampus [F(1,44) = 6.941 ; p < 0.05] and a main effect of time and a treatment x time 

interaction for the entorhinal cortex [time: F(4,43) = 3.134 ; p < 0.05, interaction: F(4,43) = 

3.132; p < 0.05]. Post hoc analysis revealed a transient down-regulation in CB1Rs that 

was significant following 2-days of ethanol treatment in the hippocampus and entorhinal 

cortex (p < 0.05; Figure 4.2). Following these initial ANOVAs, additional analyses were 

performed to determine (1) brain region specificity of CB1R down regulation and (2) sub-

layers responsible for CB1R down regulation in the hippocampus. To that end two-way 

ANOVAs (treatment x time) were performed on the molecular layer of the dorsal dentate 

gyrus, molecular layer of the ventral dentate gyrus, CA3, CA1 and the substantia nigra 

pars reticula. This second round of analyses revealed a main effect of ethanol in the 

molecular layer of the dorsal dentate gyrus [F(1,44) = 9.622 ; p < 0.01] and CA1 [F(1,44) = 

4.499 ; p < 0.05]. Additionally, a main effect of time and a treatment x time interaction 

was observed in the molecular layer of the dorsal dentate gyrus [time: F(4,44) = 3.431; p < 

0.05; interaction: F(4,44) = 3.432 ; p < 0.05]. Post hoc analysis revealed a transient down-

regulation in CB1Rs that was significant following 2-days of ethanol treatment in the 

dorsal dentate gyrus and CA1 (p < 0.05; Figure 4.2). No effects were observed in the 

molecular layer of the ventral dentate gyrus, CA3 and substantia nigra pars reticula.  
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Figure 4.1 Representative CB1R autoradiograms. 

Representative autoradiograms from control (A and B) and ethanol (C and D) rats at the 

level of the dorsal hippocampus, dorsal dentate gyrus, CA3 and CA1 (A and C) and at 

the level of the entorhinal cortex, ventral dentate gyrus and substantia nigra (B and D). 

See methods (section 4.2.3) for details on the bregma coordinates for each region of 

interest.  
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Figure 4.2 CB1R quantification in the hippocampus and entorhinal cortex following 1,2 and 4 days of binge ethanol 

treatment. 

(A) hippocampus, (B) molecular layer dorsal dentate gyrus, (C) stratum oriens of CA3, (D) stratum oriens of CA1, (E) molecular layer 

of ventral dentate gyrus and (F) layers I-VI of entorhinal cortex.  *, p < 0.05; **, p < 0.01  compared to time matched controls.  
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Sparate two-way ANOVAs (treatment x time) were performed on withdrawal time points, 

however no differences in CB1R densities were observed in any brain region at 17 h 

(peak withdrawal) or 48 h following the last dose of ethanol (Figure 4.3). 

 

4.3.3 Experiment 2: N-acylethanolamide quantification 

 Effects of binge ethanol treatment on bulk tissue content of AEA, OEA and PEA 

were quantified in the entorhinal cortex, hippocampus, striatum and cerebellum following 

2 and 4 days of binge ethanol treatment (Figure 4.4). Although graphically presented as 

moles per gram tissue, NAE measurements were converted to percent control prior to 

analysis to correct for fluctuations in control levels that are believed to be cause by batch 

processing of 2 and 4 day samples. Additionally, individual brain region samples were 

excluded from analysis if sample processing did not meet quality control standards. 

Separate two-way ANOVAs (treatment x time) for AEA, OEA and PEA were performed 

for each brain region of interest (12 ANOVAs total). In the hippocampus, a main effect of 

ethanol was observed for AEA [F(1,20) = 5.559; p < 0.05], however post-hoc analysis 

failed to reveal a difference at either timepoint. No effects were observed in the 

entorhinal cortex. There was also a main effect of ethanol treatment on PEA in the 

cerebellum [F(1,20) = 5.559; p < 0.05], however post-hoc analysis failed to reveal a 

difference at either timepoint. In the striatum, main effects of ethanol were observed for 

AEA [F(1,19) = 11.73; p < 0.01], OEA [F(1,19) = 5.386; p < 0.05] and PEA [F(1,19) = 4.716; p < 

0.05] and an interaction was observed for AEA [F(1,20) = 11.72; p < 0.01]. Post-hoc 

analysis showed that 2 days of binge ethanol treatment elevated AEA tissue content in 

the striatum (p < 0.01). 
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Figure 4.3 CB1R quantification in the hippocampus and entorhinal cortex following either 17 hr or 48 hr withdrawal from 

binge ethanol treatment. 

(A) hippocampus, (B) molecular layer dorsal dentate gyrus, (C) stratum oriens of CA3,( D) stratum oriens of CA1, (E) molecular layer 

of ventral dentate gyrus and (F) layers I-VI of entorhinal cortex.  
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Figure 4.4 N-acylethanolamide quantification following binge ethanol treatment. 

(A-C) 2-days of binge ethanol treatment. (D-F) 4-days of binge ethanol treatment. HC, hippocampus; eCTX, entorhinal cortex; STR, 

striatum; CB, cerebellum. **, p < 0.05 compared to respective control.  
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4.4 Discussion 

The current study characterized the effects of binge ethanol exposure on the 

eCB system by examining CB1R expression and AEA, OEA and PEA tissue content. 

Significantly decreased binding of the cannabinoid agonist, [3H]-CP55,940, was detected 

following 2 days of binge ethanol exposure in the entorhinal cortex and hippocampus; 

however this observation normalized by the 4-day time point. [3H]-CP55,940 binding was 

also examined at two withdrawal time points, 17 and 48 hours, however no changes in 

binding were observed at these time points. Furthermore, 2 and/or 4 days of binge 

ethanol exposure resulted in only minor alterations in NAE tissue content, which was 

only significant in the striatum at 2 days.  

The eCB system is a critical neural substrate mediating many of the 

neuropharmacological and behavioral effects of ethanol [187, 188]. In humans, variants 

of the CB1R gene, CNR1, predict susceptibility to AUDs [299]. Interestingly, these 

variants are associated with elevated CB1R binding sites [300], suggesting that 

enhanced cannabinoid signaling increases susceptibility to AUDs. In addition, CB1R 

expression is altered by ethanol in humans as decreased expression is observed during 

early (3-28 days) withdrawal [300], while increased CB1R expression has been reported 

slightly later into abstinence [301]. Similar to human studies, reports in rodents have 

observed ethanol-induced down-regulation of the CB1R during intoxication followed by 

normalization or even elevation of CB1R protein, mRNA and/or g-protein coupling 

following 1 to 40 days of ethanol withdrawal [204, 206, 208, 302]. Decreased CB1R 

expression found in the current study is in agreement with these other reports showing 

decreased CB1R protein or mRNA expression following chronic ethanol exposure [203-

205, 208, 302]. However, in the current study, CB1R expression was normalized 

following 4-days of binge ethanol treatment, before induction of withdrawal. Interestingly, 

the current results suggest that ethanol mediated changes in CB1Rs are highly dynamic 
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and cessation of ethanol exposure is not required to see a rebound in CB1R expression 

as suggested in the aforementioned reports. Importantly, the duration and pattern of 

ethanol exposure may explain discrepancies between the current study and the literature 

reports described above.  For example, Basavarajappa et al., 1998 and Vinod et al., 

2006 observed robust decreases in CB1R expression in the hippocampus and cortex in 

mice following 3 days of continuous ethanol vapor exposure, a model that results in 

stable BECs [203, 204]. This is in contrast to the Majchrowicz model used in the current 

study where BECs rise and fall over the course of repeated gastric intubation [111].  

Therefore, continuous exposure to high BECs may result in more pronounced effects on 

CB1R expression during intoxication and withdrawal. Additionally, other studies 

observing CB1R down-regulation followed by CB1R enhancement during withdrawal 

used chronic models in which rats were exposed to intermittent ethanol for up to 160 

days, whereas rats in the current study were only administrated ethanol for 4 days [206]. 

Collectively these data and the current report suggest that pattern and duration of 

ethanol exposure are important factors that influence CB1R expression. 

The mechanisms by which ethanol causes CB1R down-regulation in the current 

study is unknown, however some suggest that ethanol-induced enhancement of AEA 

and/or 2-AG results in agonist-induced desensitization by endocytosis [204, 206, 210, 

211]. It is unclear whether this mechanism is responsible for CB1R down-regulation in 

the current study because AEA content was unaltered following 2-days of binge ethanol 

treatment. Alternatively, enhanced 2-AG signaling may produce CB1R down-regulation; 

but 2-AG tissue content was not determined in these studies. Conversely, CB1R down-

regulation may be a result of diminished NMDA receptor dependent neurotransmission 

as CB1R mRNA expression is decreased following NMDA receptor inhibition [303] and 

ethanol directly inhibits NMDA receptors [20, 21]. Additionally, CB1R null mutant mice 

show diminished basal levels of [3H]MK-801 binding and a loss of chronic ethanol-
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induced enhancement of [3H]MK-801 binding [304], further substantiating a functional 

link between CB1Rs and NMDA receptors.  If ethanol mediates CB1R expression by 

modulating NMDA dependent neurotransmission, then one would expect a rebound in 

CB1R expression due to ethanol tolerance. Interestingly, CB1R expression was 

normalized following 4 days of binge treatment; a timepoint where tolerance is readily 

observed. Thus, the current study further supports a role of NMDA-mediated 

neurotransmission in mediating the effects of ethanol on CB1R expression. Noteworthy, 

a previous study examined the effects the Majchrowicz binge model on NMDA receptor 

expression but did not observe compensatory elevations in NMDA receptors in response 

to ethanol treatment [305]. However this report does not preclude a role of NMDA-

mediated neurotransmission on CB1R expression because compensatory NMDA-

mediated neurotransmission through enhanced glutamate release is a possibility and 

needs further investigation. If an inverse relationship exists between NMDA receptor 

activation and CB1R expression, it would also predict that ethanol withdrawal could 

result in elevated CB1Rs. Although elevated CB1Rs have been observed following 

withdrawal in some studies, no alterations in CB1Rs were observed during peak 

withdrawal (17 hr) or protracted withdrawal (48 hr) in the current study.  Nevertheless, 

ethanol mediated changes in NMDA receptor activity may influence CB1R expression 

and the importance this relationship requires future. 

Although a transient decrease in CB1Rs was observed in the current study, the 

physiological significance of this effect is unknown. It was initially hypothesized that loss 

of CB1R expression could serve as a mechanism that confers susceptibility to ethanol-

induced neurotoxicity as CB1Rs are coupled to cell survival pathways [218, 306, 307] 

and can confer resistance to seizure activity and ethanol withdrawal [195, 218]. 

However, the transient and modest nature of CB1R down-regulation and the lack of 

CB1R changes in the ventral dentate gyrus, which is susceptible to ethanol-induced 
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neurotoxicity [111, 114], does not support this hypothesis. Nevertheless, CB1Rs down-

regulation may represent other physiological effects of ethanol. One may speculate that 

CB1R down-regulation may be a consequence of enhanced eCB signaling, presumably 

to counteract the neuropharmacological effect of ethanol exposure, as suggested by 

others [204, 206, 209, 210]. For instance, stimulation of CB1Rs localized on GABAergic 

interneurons could result in decreased GABAergic neurotransmission to counteract the 

effects of ethanol. Interesting, activation of CB1Rs has the capacity to block ethanol-

induced enhancement of GABAergic neurotransmission in central amygdalar slices 

[308]. Conversely, other literature reports demonstrate that cannabinoids mediate rather 

than counteract the pharmacological effects of ethanol. For example, in cultured 

hippocampal neurons, ethanol inhibits glutamatergic neurotransmission by promoting the 

formation of 2-AG and AEA, an effect blocked by CB1R antagonism [202]. Regardless 

CB1R down-regulation may be a consequence of enhanced eCB signaling and 

represent a maladaptive response to ethanol.  It would be interesting to investigate cell-

type specific effects of binge ethanol exposure on CB1R expression to gain better insight 

on the physiological consequence of ethanol-induced CB1R down-regulation. CB1Rs 

are expressed primarily on cholecystokinin containing GABAergic interneurons within the 

hippocampus, however, CB1Rs are also expressed on glutamatergic terminals of the 

perforant pathway [159]. Therefore, CB1R down-regulation observed in the current 

study, rather than a result of over stimulation, could represent a neuroadaptive effect 

specific to glutamatergic terminals to counteract ethanol-induced inhibition of excitatory 

neurotransmission though NMDA receptor-dependent mechanisms discussed in the 

preceding paragraph. Interestingly, conditional knockout of CB1Rs in glutamatergic 

forebrain neurons but not GABAergic interneurons increases hippocampal excitation 

following a kainic acid challenge [218], indirectly supporting the notion that CB1R down-

regulation in the presence of ethanol may increase hippocampal excitation. Additionally, 
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decreased CB1R immunoreactivity in the hippocampus has been observed in 

pilocarpine treated rats, while CB1R expression in GABA interneurons appeared to be 

preserved [309], supporting the possibility of cell-type specific regulation of CB1Rs. 

Clearly, CB1R down-regulation can have multiple physiological consequences. Thus 

future investigation will need to determine the specificity of ethanol effects on CB1R 

expression. 

The current investigation found brain region specific alterations in CB1R 

expression, which is in agreement with previous studies [205, 295]. In contrast to CB1R 

aredown-regulation in the entorhinal cortex and hippocampus, decreased CB1R 

expression was not observed in the substantia nigra pars reticulate. Additionally, 

subregions of the hippocampus appeared to be more labile to ethanol-induced CB1R 

down-regulation, as significant decreases were observed in the molecular layer of the 

dorsal dentate gyrus and stratum oriens of CA1, but not in stratum oriens of CA3 and the 

molecular layer of the ventral dentate gyrus. Similar layer specific changes were 

observed following pilocarpine-induced status epilepticus and were associated with 

redistribution of CB1R expression within the hippocampus [309]. Collectively, this 

suggests that CB1R expression is highly sensitive to perturbations in hippocampal 

function and dynamic alterations in CB1R expression represent neuroadaptations driven 

by disease states [309].    

NAEs and eCBs are known to play an important role in mediating some of the 

effects of ethanol. For example, genetic and/or pharmacological inactivation of FAAH 

and concomitant potentiation of AEA, OEA and PEA results in decreased sensitivity to 

the sedative effects of ethanol, increased ethanol consumption and decreased sensitivity 

to ethanol withdrawal induced convulsions [310, 311]. Additionally, neurochemical 

evidence shows that NAEs are influenced by ethanol exposure. For example, acute 

injection of ethanol or short-term ethanol consumption results in robust reductions in 
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AEA, PEA and or OEA in multiple brain regions, including the hippocampus [199-201, 

227], while chronic ethanol exposure enhances cortical AEA tissue content [204]. NAE 

tissue content was examined in the current study by quantifying prototypical NAEs, 

including AEA, OEA and PEA in the hippocampus, entorhinal cortex, cerebellum and 

striatum; however these species were generally unaffected following binge ethanol 

exposure. Although discrepancies between the current data and the aforementioned 

studies are currently unclear, differences in duration and pattern of ethanol exposure 

and brain regions of interest are likely explanations. 

NAEs and/or eCBs are hypothesized to be important for maintaining CNS 

homeostasis and NAE and/or eCB elevation occurs in response to neuronal damage 

[213, 216, 219, 312]. The 4-day binge model used in the current study results in necrotic 

cell death in the cortico-limbic pathway, which is most prominent in the entorhinal cortex 

and ventral dentate gyrus of the hippocampus [111, 113, 114]. Therefore, it is surprising 

that NAE elevations were not observed in either the entorhinal cortex or hippocampus, 

especially following 4-days of binge exposure, a timepoint associated with maximal 

neuronal damage [112, 113]. It is possible that NAE biosynthesis may not be sensitive to 

the nature of necrotic cell death following binge ethanol exposure. For example, binge 

ethanol induced neurodegeneration is independent of NMDA and non-NMDA Ca2+ 

channels [121, 153] and studies suggest that NMDA mediated excitotoxicity and the 

associated rise in intracellular Ca2+  are responsible for NAE accumulation by activation 

of the Ca2+ sensitive N-acyltransferase [216, 296, 313]. Alternatively, the lack of NAE 

elevation observed in the current study could be due to limitations in the approach used 

for quantification. Binge ethanol induced neuronal damage occurs in layers II and III of 

the entorhinal cortex and within the granular cell layer of the ventral dentate gyrus of the 

hippocampus. However, NAEs were quantified using the entire entorhinal cortex and 
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hippocampus, therefore potential local elevations in NAE content could be diluted during 

quantification. 

  

4.5 Conclusions 

In summary, binge ethanol exposure resulted in transient down-regulation of 

CB1R expression in the corticolimbic pathway which is consistent with previous reports. 

The mechanisms of CB1R down-regulation are currently unknown; however enhanced 

AEA stimulation of CB1Rs is not a likely factor as AEA elevations were not detected in 

either the hippocampus or entorhinal cortex. Additionally, engagement of NAE signaling 

does not appear to occur in response to ethanol-induced tissue damage, which is in 

contrast to other neurodegenerative stimuli. 
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5. CHAPTER 5 

FATTY ACID AMIDE HYDROLASE INHIBITION DOES NOT PREVENT BINGE 

ETHANOL INDUCED NEURODEGENERATION OF THE CORTICO-LIMBIC PATHWAY 

5.1 Introduction  

Current FDA approved pharmacotherapies for the treatment of AUDs have 

limited clinical utility due to low efficacy and/or compliance [38, 39]. For example, 

acamprosate is currently the most prescribed medication for alcohol dependence [40], 

however, only marginal efficacy has been observed in clinical trials. For example, 

multiple U.S. trials failed to observe a drug effect when compared to placebo on primary 

outcomes including time to first heavy drinking day or percent days abstinent [38]. The 

lack of viable treatment options is highlighted by the fact that less than 15% of patients 

with an AUD are prescribed medication [40, 58]. Multiple factors, such as genetic 

predisposition, comorbid psychiatric disorders, motivation, neurotoxicity and cognitive 

dysfunction contribute to AUDs. As AUDs are heterogeneous in nature, it is highly 

unlikely that a single drug or single target will be effective for all patients [59]. Therefore, 

current medication development for AUDs is focused on increasing the repertoire of 

available pharmacotherapies to increase effective treatment options across the spectrum 

of these disorders. To that end, identification of new biological targets that underlie 

AUDs, such as ethanol-induced neurodegeneration, should aid in medications 

development efforts and improve current treatment strategies.  

Abnormalities in brain structure, including reductions in cortical gray matter and 

white matter volume, are commonly observed following long-term ethanol consumption 

[63, 240]. Ethanol is particularly damaging to the frontal and temporal lobes [70, 73] and 

the hippocampus [77, 80], which may partially explain deficits in executive function, 

learning and memory and emotional processing in alcoholics [88, 93]. Compromised 
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structural integrity and cognitive function is theorized to contribute to the chronic and 

relapsing nature of alcoholism [60, 62]. Therefore, it is hypothesized that neuroprotective 

agents will reduce alcohol-induced neurodegeneration, restore cognitive function and 

improve treatment outcomes for alcoholism.    

 Over the last two decades, the eCB system has emerged as a potent 

neuroprotective target in a variety of models of CNS disease, such as Alzheimer’s 

disease, Parkinson’s disease, Huntington disease, multiple sclerosis, stroke and 

traumatic brain injury [223]. The primary mechanisms by which cannabinoid agents 

afford neuroprotection include attenuation of excitotoxicity, neuroinflammation and 

oxidative stress [223](see section 1.7). Therefore, the eCB system may be a viable 

target to prevent alcohol-induced neurodegeneration as these same events are 

associated with the neurotoxic effects of alcohol [126]. In fact, a recent study has 

demonstrated that targeting CB1Rs prevents alcohol-induced potentiation of NMDA 

neurotoxicity in vitro, presumably through presynaptic inhibition of excessive glutamate 

release [314].  

 Much of the current work on eCBs has utilized CB1R or CB2R agonists to 

demonstrate neuroprotection, but the use of CB1R and CB2R agonists in a clinical 

setting may be limited. CB1R agonists are associated with untoward psychotropic effects 

and abuse liability, which may outweigh the benefits of these agents [315].  Further, 

although CB2R agonists are not associated with the untoward effects of CB1R agonists 

and have neuroprotective properties [316], the role of CB2Rs in the CNS is still unclear 

as the expression and function of CB2Rs appear to be heavily disease state specific. 

Alternatively, indirect modulation of the cannabinoid system by inhibiting the catabolism 

of eCBs may prove advantageous for the treatment of neurodegeneration. Inhibition of 

FAAH recapitulates a distinct subset of CB1R-dependent effects [317], such that the 

beneficial effects of the eCB system may be exploited, while the untoward effects 
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avoided. For example, FAAH inhibitors afford neuroprotection in models of kainic acid-

induced excitotoxic brain damage and following focal cerebral ischemia [214, 253, 318, 

319], while being devoid of classic CB1R adverse responses [320]. Therefore FAAH 

inhibition may have higher therapeutic value compared to CB1R agonists in many cases. 

Additionally, FAAH inhibitors are dependent on “on-demand” synthesis of eCBs and, as 

such, their activity is theorized to be greater in degenerative tissue [291] where 

endogenous elevations of eCBs are commonly observed [213, 217, 219]. Lastly, FAAH 

is responsible for the catabolism of all NAEs so inhibition of this enzyme results in 

elevations of not only AEA but also other neuroprotective NAEs including OEA and PEA 

[174, 266, 321]. 

 To date, little data exists addressing the neuroprotective effects of the 

cannabinoid system in models of ethanol-induced neurodegeneration. A single report 

found that targeting the eCB system is neuroprotective in an in vitro model of alcohol 

withdrawal [314], however withdrawal-induced excitotoxicity is not the sole mediator of 

ethanol-induced neurodegeneration [126]. In fact, alcohol neurotoxicity is observed in 

experimental models in the absence of an overt withdrawal syndrome [95, 118, 119].   

Further no studies have examined the neuroprotective properties of the eCB system in 

an in vivo model of ethanol-induced neurodegeneration. Therefore, the current study 

examined the neuroprotective effects of targeting the eCB system by FAAH inhibition 

using an established model of ethanol-induced neurodegeneration. 

 

5.2 Methods 

5.2.1 Animals and housing  

Adult male Sprague-Dawley rats weighing approximately 330 grams (n = 81, 

Charles River, Raleigh, NC) were used in these studies. All treatment protocols followed 

the Guide for the Care and Use of Laboratory Animals (NRC, 1996) and were approved 
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by the University of Kentucky Institutional Animal Care and Use Committee. Rats were 

singlely housed in Plexiglas cages in an AAALAC approved University of Kentucky 

vivarium on a 12 h light/dark cycle with ad libitum access to rat chow and water unless 

otherwise noted. During acclimation, rats were handled daily for at least three days to 

familiarize rats to experimenters.  

 

5.2.2 Binge ethanol treatment  

Rats were treated with ethanol or control diet according to a modified 

Majchrowicz binge model [110, 115] as described in chapter 2 and outlined in Figure 5.1. 

BECs were measured 90 min after the 7th (experiment 1) or 3rd (experiment 2) dose of 

ethanol using plasma collected from tail blood and processed as described in chapter 2 

(section 2.2.2). 

 

5.2.3 URB597 Regimen  

The FAAH inhibitor, URB597, was dissolved in DMSO at a concentration of     

1.0 mg/mL. For experiment 1, nothing (n = 10), URB597 (0.3 mg/kg, i.p.; n = 10)) or 

vehicle (n = 10) was administered twice daily (11:00 am and 11:00 pm) starting after the 

third intubation of ethanol or control diet and continuing for the duration of binge 

treatment (Figure 5.1B). This dosing regimen was chosen based on previous studies 

demonstrating maximal FAAH inhibition for at least 12 h with 0.3 mg/kg URB597 [174]. 

For experiment 2, nothing (n = 6), a single dose of URB597 (0.3 mg/kg, i.p.; n = 6) or 

single injection of vehicle (n = 6) was administered following the third intubation of 

ethanol or control diet and 2 h prior to euthanasia (Figure 5.1B).  This time interval was 

chosen because URB597 maximally elevates NAEs 2 h following administration [174]. 

Although preliminary studies found no effect of vehicles on any variables of interest, 4 

rats in the ethanol + vehicle group died over the course of the experiment.  
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Figure 5.1 Treatment timelines for neuroprotection and “target engagement” experiments. 

(A) In experiment 1, rats were administered ethanol 3 times daily for 4 days according to a 4-day binge paradigm and co-

administered the FAAH inhibitor, URB597 (0.3 mg/kg), twice daily following the third dose of ethanol. Tail blood was collected 90 

minutes after the 7th dose of ethanol and during euthanasia to determine BECs. (B) In experiment 2, rats were administered binge 

ethanol for one day and then administered a single dose of URB597 (0.3 mg/kg). Two hours following URB597 treatment, n-

acylethanolamide content was quantified in the hippocampus and entorhinal cortex.  
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5.2.4 Fluoro-Jade B staining and quantification 

Approximately 2 h after the last dose of ethanol, rats were transcardially perfused 

and tissue was processed for FJB according to the procedures described in chapter 2 

(section 2.2.5) with the exception that a 1:6 tissue series was used. FJB+ cells were 

quantified by a blinded experimenter in the entorhinal cortex between bregma -5.20 mm 

and -7.44 mm and in the ventral dentate gyrus between bregma -5.20 mm and -6.84 mm 

(Paxinos and Watson, compact 6th edition, 2009). Strict criteria were used to identify 

FJB+ cells: cells were included in ventral dentate gyrus counts if they resided within or 

adjacent to the granular cell layer, while cells were included in entorhinal counts if they 

were located in cortical layers II or III. Cells also needed to have a pyramidal cell body 

characteristic of neurons and/or have observable proximal dendrites. FJB+ cells were 

rarely observed in control rats (< 1 cell/section) regardless of drug treatment, therefore 

control rats were collapsed across treatment group. 

 

5.2.5 Endocannabinoid extraction and quantification  

AEA, OEA and PEA were quantified in the hippocampus and entorhinal cortex 2 

hours following URB597 as described in figure 5.1B. Processing and quantification 

procedures were performed as detailed in chapter 3 and briefly described in chapter 4 

(section 4.2.4). Samples that did not meet quality control standards during processing 

were excluded from analysis. 

 

5.2.6 Statistical analysis  

Statistical analyses were performed using GraphPad Prism (Graphpad version 

4.03, La Jolla, CA, USA). Mean intoxication behavior was analyzed by Kruskal-Wallis 

tests for non-parametric data followed by Dunn’s post-hoc tests when appropriate. Mean 

daily ethanol dose, BECs and NAEs were analyzed by ANOVA followed by Bonferroni 
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post-hoc tests when appropriate. FJB+ cell counts were analyzed by ANOVA followed by 

post-hoc planned student t-tests with Welch’s corrections for unequal variance. Pearson 

correlations were performed to assess the relationship between BECs and NAE 

concentration for rats treated with URB597. All values are given as mean ± standard 

error of the mean and statistical significance was accepted at p < 0.05.  

 

5.3 Results   

5.3.1 Experiment 1: Neuroprotection study  

Intoxication behavior, ethanol dose and BEC were analyzed to rule out 

confounding effects of vehicle or URB597 administration on neuroprotection measures 

(Figure 5.2). Regardless of drug treatment, all ethanol groups displayed similar 

intoxication behaviors across the 4 days of binge treatment with mean intoxication 

behaviors being statistically indistinguishable (Figure 5.2A). Additionally, since ethanol 

doses were calculated from intoxication scores, each treatment group received similar 

doses of ethanol (Figure 5.2A and 5.2B). Previous reports on the neurodegenerative 

effects of binge ethanol show that a peak BEC of ~300 mg/dL must be reached to 

observe cortico-limbic degeneration [111]. In the current study, the grand mean BEC 

was 424.8 ± 11.7, which is well above the threshold to observe neurodegeneration 

(Figure 5.2C). Importantly, intoxication, mean daily dose and BECs did not differ 

between groups, indicating that binge ethanol exposure was similar across all treatment 

groups. 

Consistent with other reports using the modified Majchrowicz binge model to 

assess neurodegeneration, FJB+ cells were observed in the granular cell layer of the 

ventral dentate gyrus and layers II and III of the entorhinal cortex [111, 113] (Figures 5.3 

and 5.4). These cells displayed typical morphology of neurons in these brain regions 

including pyramidal cell bodies and/or proximal dendrites. 
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Figure 5.2 Binge intoxication measures for URB597 neuroprotection study. 

Rats were treated according to a modified Majchrowicz binge and co-administered nothing (n =10), vehicle (n = 6 or 10, see 

methods) or URB597 (0.3 mg/kg, n = 10)). (A) Intoxication scores (left axis) and ethanol doses (right axis) were similar among all 

groups during the 4 days of binge treatment. (B) Average daily doses and (C) BECs were not different among groups.  
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Figure 5.3 FJB staining in the ventral dentate gyrus following 4-day binge 

treatment. 

(A) Quantification of FJB+ cells following binge ethanol treatment. (B) Representative 

images of FJB staining in the vDG. i. control; ii. ethanol; iii. ethanol + vehicle; iv. ethanol 

+ URB597. Scale bar = 50 µM 
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Figure 5.4 FJB staining in the entorhinal cortex following 4-day binge treatment. 

(A) Quantification of FJB+ cells following binge ethanol treatment. (B) Representative 

images of FJB staining in the EC. i, control; ii, ethanol; iii ethanol + vehicle; iv, ethanol + 

URB597. Scale bar = 50 µM 
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Additionally, these cells showed evidence of necrosis including shrunken cell bodies, 

which is consistent with previous characterization of binge ethanol induced cell death 

[114]. In the ventral dentate gyrus, controls typically had < 1 cell/section, therefore 

control groups were collapsed before analysis.One-way ANOVA, revealed an effect of 

treatment (F(3,40) = 4.634, p < 0.01). Post-hoc analysis showed that binge ethanol 

treatment resulted in significant increase in FJB+ labeling in the ventral dentate gyrus (p 

< 0.001). Although URB597 administration appeared to reduce FJB+ cell counts (Figure 

5.3), this difference failed to reach statistical significance compared to ethanol only (p = 

0.12) or ethanol + vehicle (p = 0.19) groups. Similarly, in the entorhinal cortex, controls 

also displayed < 1 cell/section and were therefore collapsed across drug treatment 

before analysis by one-way ANOVA which revealed an effect of treatment (F(3,40) = 

5.937, p < 0.01). Post-hoc analysis showed that binge ethanol resulted in significant 

FJB+ labeling in the entorhinal cortex (p < 0.001), however URB597 treatment did not 

reduce FJB+ cells compared to the ethanol only or ethanol + vehicle groups (p > 0.05, 

Figure 5.4). 

 

5.3.2 Experiment 2: N-acylethanolamide quantification (“target engagement” study) 

Experiment 2 evaluated the effect of URB597 on NAE tissue content in the 

hippocampus and entorhinal cortex following a single day of binge ethanol exposure. 

Rats were treated with ethanol or control diet for a single day (3 doses) and were 

administered an acute dose of URB597 (0.3 mg/kg) 2 hours prior to NAE quantification 

(Figure 5.1B). Binge ethanol exposure was not different across drug treatment groups as 

all intoxication measures were statistically similar. The grand mean intoxication behavior 

was 0.24 ± 0.06, which resulted in a grand mean daily ethanol dose of 14.3 ± 0.2 g/kg/d. 

BECs were measured 2 h following the 3rd dose of ethanol and the grand mean was 

309.2 ± 14.3 mg/dL.  
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In the hippocampus, two-way ANOVAs revealed significant effects of drug 

treatment on AEA (F (2,30) = 10.82; p < 0.001), OEA (F (2,30) = 36.91; p < 0.001) and PEA 

(F (2,30) = 46.74; p < 0.001) tissue content (Figure 5.5A-C). In ethanol naïve rats, post-hoc 

analyses found that URB597 elevated AEA by 57.6% (p < 0.05), OEA by 475.4% (p < 

0.001) and PEA by 986.6% (p < 0.001) in the hippocampus compared to rats treated 

with vehicle. Although NAE content was much lower in ethanol treated rats following 

UBR597 administration, post-hoc analyses showed that URB597 elevated AEA by 

48.1% (p < 0.05), OEA by 188.8% (p < 0.01) and PEA by 287.2% (p < 0.01) relative to 

ethanol + vehicle treated rats. Additionally, there was a significant diet x drug interaction 

for OEA (F (2,30) = 3.781; p < 0.05) and PEA (F (2,30) = 6.381; p < 0.01) in the 

hippocampus. Post-hoc analysis showed that compared to control treated rats, ethanol 

decreased URB597-mediated elevations of OEA by 36.3% (p < 0.05) and PEA by 44.7% 

(p < 0.001) in the hippocampus. 

In the entorhinal cortex, two-way ANOVA reveal a significant effect of drug 

treatment on the levels of OEA (F (2,29) = 27.40; p < 0.001) and PEA (F (2,29) = 34.63; p < 

0.001), but not on AEA (F (2,29) = 0.60; p > 0.05; Figure 5.5D-F). In ethanol naïve rats, 

post-hoc analyses revealed significant effects of URB597 administration compared to 

rats treated with vehicle for OEA by 250.3% (p < 0.001) and PEA by 435.0% (p < 0.001). 

This effect was also evident in ethanol treated rats as URB597-mediated elevations in 

OEA (p < 0.001) and PEA (p < 0.001) were 268.6% and 636.7% higher than in ethanol + 

vehicle treated rats. There was also a main effect of diet on PEA levels in the entorhinal 

cortex (F(1,29) = 4.344; p < 0.05). Post-hoc analysis showed that PEA content following 

URB597 administration in ethanol rats was 36.7% lower than control rats administered 

URB597 (p < 0.05).  
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Figure 5.5 N-acylethanolamide quantification in the hippocampus and entorhinal cortex following a single injection of 

URB597. 

URB597 mediated elevations of OEA and PEA in the hippocampus (B,C) and entorhinal cortex (F) were blunted in rats treated with 

binge ethanol. (D) URB597 mediated elevation of AEA content was absent in the entorhinal cortex. *, p < 0.05; **, p < 0.01; ***, p < 

0.001 compared to URB597 treated controls. $, p < 0.05; $, p < 0.01; $$$, p < 0.001 compared control or control + vehicle. #, p < 

0.05; ##, p < 0.01; ###, p < 0.001 compared ethanol or ethanol + vehicle.
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Pearson correlations were performed on BECs vs. NAE content to further 

examine the relationship between ethanol and NAE content following URB597 

administration (Figure 5.6A-F). In the hippocampus, OEA (r2 = 0.78; p < 0.05) and PEA 

(r2 = 0.74; p < 0.05) were significantly correlated with BECs. In the entorhinal cortex, 

AEA content was significantly correlated with BECs (r2 = 0.75; p < 0.05), while 

correlations for OEA (r2 = 0.62) and PEA (r2 = 0.60) vs. BECs trended towards 

significance (p = 0.07).  

 

5.4 Discussion 

The current study evaluated the neuroprotective effects of FAAH inhibition in a 

model of ethanol-induced neurodegeneration. However, neuroprotection was not 

observed in the dentate gyrus of the hippocampus or entorhinal cortex following 

repeated administration of the FAAH inhibitor, URB597 (Figures 5.3 & 5.4). In light of 

these results, the effect of binge ethanol treatment on URB597-mediated NAE elevation 

in the hippocampus and entorhinal cortex was examined (Figure 5.5). In agreement with 

previous studies [174, 288], an acute dose of URB597 resulted in general elevations of 

AEA, OEA and PEA, with the exception that AEA elevations were not detected in the 

entorhinal cortex. NAE elevation was also observed in the hippocampus and entorhinal 

cortex of binge ethanol treated rats, however this effect was significantly reduced by 

ethanol. Correlation analysis revealed a negative association between BECs and 

URB597-mediated elevations in NAE content (Figure 5.6), which further supports that 

high BECs disrupt the biological activity of URB597. This interaction may be partly 

responsible for the lack of neuroprotection following FAAH inhibition in this model.  

The eCB system is theorized to play a vital role in protecting the CNS from acute 

brain insults and is important for engaging homeostatic mechanisms for counteracting 

CNS disease progression.
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Figure 5.6 Pearson correlations of n-acylethanolamide content and BECs following a single injection of URB597. 

AEA, OEA and PEA content in the hippocampus (A-C) and in the entorhinal cortex (D-F). OEA and PEA content was negatively 

correlated to BECs in the hippocampus (B,C), which was absent for AEA (A). AEA content was negatively correlated to BECs in the 

entorhinal cortex (A), while OEA and PEA content trended to a negative correlation in the entorhinal cortex (E,F).  
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For example, studies have shown that AEA and/or 2-AG accumulate following acute 

tissue damage [213, 214, 216-219] and under chronic neuroinflammatory conditions 

[215]. Additionally, genetic inactivation of CB1Rs enhances susceptibility to 

neuropathology [218, 222], while neuroprotection and attenuation of neuroinflammation 

is observed following CB1R and/or CB2R activation [234, 316, 322]. 

The exact mechanisms governing cannabinoid-mediated neuroprotection are not 

completely elucidated; however it is clear that the effects of cannabinoids are pleiotropic 

and disease state specific. During acute neuronal injury, CB1R activation can decrease 

neuronal excitability, reduce excessive glutamate neurotransmission and reduce 

excessive Ca2+ influx associated with excitotoxicity [218, 224, 225]. Conversely, during 

secondary injury progression or chronic neuropathology, the cannabinoids promote 

neuroprotection through CB1Rs and/or CB2Rs by attenuating pro-inflammatory signaling 

and modulating microglial activity [215, 234, 235, 316]. Within this general framework, 

additional reports suggest that eCBs are also responsible for activation of cell survival 

signaling networks through CB1R- and CB2R- dependent and non-dependent 

mechanisms [307, 316, 323]. For example, AEA and OEA are ligands for the PPAR 

nuclear receptors, which accounts for some of the neuroprotective effects of these lipids 

[266]. Therefore, the eCBs and NAEs are an enticing target for the treatment of ethanol-

induced neurodegeneration as excitotoxicity, neuroinflammatory signaling and oxidative 

stress are mechanisms mediating the neurotoxic effects of ethanol [126, 136]. In fact, 

CB1R activation prevents ethanol-induced potentiation of NMDA neurotoxicity, possibly 

through reducing intracellular Ca2+ transients [314].  

Neuroprotection was not observed in the current study even though FAAH 

inhibition following a single day of binge treatment was associated with elevations in 

AEA, OEA and PEA, albeit at a lower magnitude in ethanol-treated rats (Figure 5.5). 

Although FAAH inhibition induced elevations in NAE content following FAAH inhibition, 
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this treatment failed to achieve the high tissue concentrations of NAEs typically observed 

following a neurotoxic insult [214, 217], or concentrations expected following injury-

induced NAE production in concert with FAAH inhibition. Compensatory elevations in 

eCBs and/or NAEs in response to CNS pathologies is thought to be an endogenous 

mechanism to prevent the spread of neurodegeneration following an insult [296, 297] 

and it is hypothesized that FAAH inhibitors act by amplifying this endogenous response 

[291]. Such an endogenous response was examined following binge ethanol induced 

neurodegeneration (chapter 4), however, elevations in AEA, OEA or PEA were not 

observed in the hippocampus or entorhinal cortex. Therefore, a lack of endogenous NAE 

accumulation following binge ethanol induced neurodegeneration may lower the capacity 

of FAAH inhibitors to produce therapeutic NAE concentrations. Unfortunately, 2-AG 

tissue content was not measured in chapter 4 as 2-AG has been shown to accumulate 

following brain damage [219] even in the absence of AEA accumulation [324]. It would 

be interesting to measure 2-AG in future studies, as this may point to other efficacious 

treatment strategies to prevent binge ethanol-induced neurodegeneration, such as 

MAGL inhibitors, duel FAAH/MAGL inhibitors, and/or eCB transport inhibitors [324, 325]. 

Limitations in the treatment strategy employed in the current study may have also 

contributed to the lack of URB597-mediated neuroprotection. Initial characterization of 

URB597 found that substantial FAAH inhibition occurred for at least 16 hours; however 

the timecourse of NAE elevation was more constrained as AEA, OEA and PEA content 

was elevated for only 6 hours [174]. Therefore, since URB597 was administered on a 

12-hour schedule, it is unlikely that NAE accumulation was entirely maintained 

throughout the 3 days of treatment. It is unclear whether more frequent or higher dosing 

would be beneficial since there is an apparent temporal dissociation between FAAH 

inhibition and NAE accumulation following URB597 treatment. However, one may 

speculate that a small fractional recovery in FAAH activity following URB597 
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administration may be sufficient for maintaining basal NAE levels and therefore a more 

frequent dosing schedule or higher doses may be required. Additionally, experiment 2 

results suggest that FAAH inhibition was compromised by binge ethanol treatment 

(Figure 5.6). The cause for this impairment is unknown; however it is possible that the 

PK/PD of URB597 may be altered by ethanol as it is well documented that ethanol can 

interfere with the PK/PD properties of xenobiotics [262, 263]. Correlations suggested 

that BECs may be an important factor associated with diminished URB597-mediated 

NAE elevation. In fact, two rats with BECs approaching 350 mg/dL failed to have 

detectable elevations in the three NAE’s examined following URB597 administration 

(Figure 5.6). With this in mind, BECs from rats in the neuroprotection study averaged 

over 400 mg/dL therefore, URB597-mediated NAE elevation may have been severely 

diminished over the course of binge treatment. Thus, the dosing protocol implemented 

and/or the reduced efficacy of URB597 in binge ethanol treated rats appears to explain 

the lack of neuroprotection in the first experiment (Figures 5.3 and 5.4). 

The discrepancy between reports that observed neuroprotection following FAAH 

inhibition and the current study could be related to differences in experimental models. 

Previous studies reporting on the neuroprotective effects of FAAH inhibition have 

demonstrated efficacy in models of kainic acid-induced excitotoxicity and focal cerebral 

ischemia, both of which produce an excitotoxic event [214, 253, 318]. Conversely, the 

neurotoxic effects of the binge alcohol exposure model utilized in the current study may 

be independent of excitotoxic mechanisms [118, 121]. Therefore, the current data could 

suggest that FAAH inhibitors may be particularly efficacious at attenuating excitotoxicity 

and not for other mechanisms of neurotoxicity. Alternatively, FAAH inhibitors may be 

more effective as a pretreatment, where NAE levels have time to accumulate (which can 

take multiple hours with current FAAH inhibitors [174, 318]) prior to the induction of 

neurotoxicity. In support of this hypothesis, Degn et al., 2007, observed neuroprotection 

121 
 



 

when URB597 was administered 1.5 h prior to MCAO, but not if URB597 was 

administered immediately following focal cerebral ischemia [214]. As neurotoxicity is 

initiated following as little as 1 or 2 days of binge ethanol treatment, it is possible that 

administration of URB597 was initiated to lake in the current study.  

Although FAAH inhibition is associated with ERK phosphorylation presumably 

though CB1Rs [318], it has yet to be determined whether FAAH inhibitors recapitulate all 

the neuroprotective mechanisms of CB1R and/or CB2R agonists. For example, 

cannabinoid agonists can mediate neuroprotection through inhibition of NF-κB-DNA 

binding [326], reduction of COX-2 and iNOS expression [235, 327] and induction of 

neurotrophins such as BDNF [218, 307, 316]. However, these effects have not been 

demonstrated following FAAH inhibition. NF-kB signaling programs are hypothesized to 

be important inducers of binge ethanol-induced neurodegeneration [126], as 

neuroprotection from binge ethanol exposure is associated with reductions in NF-kB-

DNA binding and attenuation of pro-inflammatory and free radical producing enzymes 

[120, 136]. Therefore, further understanding of the signaling networks engaged following 

FAAH inhibition as well as additional mechanisms of ethanol-induced brain damage, 

would allow for assessment of whether optimization of FAAH inhibition strategies is 

worth pursuing for future drug discovery/development in the context of ethanol-induced 

neurodegeneration. 

Another important finding in the current study was that URB597-mediated NAE 

elevation appeared to be brain region and NAE specific (Figure 5.5). For example, 

enhancement of AEA was observed in the hippocampus but not in the entorhinal cortex. 

Additionally, URB597 had different relative magnitudes of effect as PEA and OEA were 

elevated substantially, while AEA was affected marginally. This brain region specific 

effect is consistent with another study reporting URB597-mediated AEA elevations in the 

midbrain, thalamus and striatum but not in the prefrontal cortex or hippocampus even 
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though FAAH activity was substantially inhibited [288]. Similarly, pharmacodynamic 

tolerance may develop to URB597, as a recent study found that an acute dose of 

URB597 resulted in increased levels of AEA, OEA and PEA in the spinal cord, though, 

this effect was lost after repeated dosing [292]. Interestingly, this tolerance was 

associated with reduced NAPE-PLD protein expression. Therefore, adaptations in NAE 

biosynthetic pathways could explain the lack of neuroprotection observed in the current 

study and future studies should examine this possibility. 

 

5.5 Conclusions 

There is a critical need for the development of new pharmacotherapies for the 

treatment of AUDs as current options are less than adequate. Since chronic ethanol 

consumption is associated with neurodegeneration, neuroprotective drugs should prove 

to be beneficial treatment options. The current study tested whether enhancing eCB 

signally by FAAH inhibition could afford neuroprotection in a model of binge ethanol 

exposure; however these efforts were surprisingly unsuccessful. Nevertheless, this study 

in combination with other reports point to multiple factors that may be important for 

targeting the eCB system by interfering with their degradation. With this insight and with 

future drug discovery efforts, it may be possible to optimize such treatment strategies for 

preventing ethanol-induced neurodegeneration. Based off the current data, URB597 

dose-response relationships for neurochemical response (target engagement) and 

neuroprotection should be investigated in future studies. 
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6. CHAPTER 6 

GENERAL DISCUSSION AND FUTURE DIRECTIONS 

The overall goal of this dissertation was to investigate novel 

pharmacotherapeutic approaches for the treatment of AUDs, with a focus on preventing 

ethanol-induced neurodegeneration. The cannabinoids, including phytocannabinoids, 

synthetic cannabinoids and the eCBs, have emerged as potent neuroprotective agents 

in a variety of preclinical neurodegenerative models (see section 1.8). However, only a 

couple of reports to date have investigated cannabinoid based pharmacotherapies for 

the treatment of ethanol-induced neurodegeneration. For example, the 

phytocannabinoid, CBD, is a potent antioxidant and has been previously shown to 

attenuate neurodegeneration following binge ethanol exposure [121]. Additionally, the 

synthetic CB1R agonist, HU-210, can prevent ethanol withdrawal induced potentiation of 

NMDA excitotoxicity in primary cortical neurons [314], an effect replicated in organotypic 

hippocampal slice cultures using the synthetic CB1R agonist, CP-55,940 (figure 7.1).  

To date there are three examples of cannabinoids with approval for clinical use 

[328]. These include nabilone, a Δ9-THC analogue, used for the treatment of nausea and 

vomiting caused by chemotherapeutics, dronabinol (Δ9-THC), used as an appetite 

stimulant in AIDS patients, and sativex, a Δ9-THC/CBD co-formulation, used for the 

treatment of neuropathic pain in multiple sclerosis patients and as an analgesic adjunct 

therapy for patients with advanced stage cancer. Considering that preclinical research 

has shown that the eCB system is a potentially useful molecular target for the treatment 

of numerous CNS and peripherally mediated diseases, it is disappointing that only three 

cannabinoid based drugs are approved for clinical use. The lack of success for 

translating cannabinoid based preclinical findings to approved pharmacotherapies is 

primarily due to unfavorable PK /PD profiles of many cannabinoid derived agents. For 
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example, CBD has utility for a variety of indications including neurodegenerative 

disease, addiction, pain, anxiety and epilepsy.  However, the clinical use of CBD has 

failed to come to fruition because of significant first pass metabolism, leading to poor 

bioavailability [246, 247]. Additionally, the use of cannabinoids acting at central CB1Rs 

has failed generally due to significant off target effects, primarily neuropsychiatric in 

nature. For instance, the CB1R antagonist, SR141716 (Rimonabant), underwent 

substantial clinical development for the treatment of obesity, however trials were 

suspended due to increased risk of serious neuropsychiatric side effects including 

anxiety, depression and suicidal ideation [329]. In light of these failures, next generation 

cannabinoid based pharmacotherapies will need to address these PK /PD obstacles 

[330, 331]. 

The studies within the current dissertation were not only designed to investigate 

the efficacy of cannabinoid based pharmacotherapies for the treatment of ethanol-

induced neurodegeneration, but were also designed to circumvent the aforementioned 

PK/PD obstacles associated with the cannabinoids. In chapter 2, experiments were 

designed to extend current reports on the neuroprotective effects of CBD following binge 

ethanol exposure by developing transdermal formulations in order to bypass the first 

pass effect that has hindered the use of CBD in humans. In collaboration with AllTranz, 

Inc., multiple topical gel formulations of CBD were developed and evaluated for 

neuroprotective efficacy using a well-established model of an AUD that produces 

substantial neurodegeneration in the corticolimbic pathway, the modified Majchrowicz 4-

day binge [110, 111]. These experiments were successful in establishing a transdermal 

formulation that afforded neuroprotection, and importantly transdermal CBD was as 

efficacious as IP administration of CBD in preventing cell death in the entorhinal cortex 

(figure 2.6). Although significant challenges were encountered (section 2.4), the results 

of chapter 2 are promising and warrant further development of transdermal delivery of 
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CBD for the treatment of ethanol-induced neurodegeneration and for AUDs. Analysis of 

CBD plasma concentration (figure 2.4) suggested that target plasma levels need to be 

achieved early during ethanol exposure (discussed in section 2.4), therefore it would be 

interesting to determine whether pretreatment of transdermal CBD would afford further 

neuroprotection in future studies. This notion is particularly interesting in the context of 

one theoretical treatment strategy where an alcohol dependent patient would apply a 

transdermal formulation prophylactically during recovery, likely as an adjunct therapy. 

CBD has the potential to be an effective drug for the treatment of AUDs as this 

phytocannabinoid has pleiotropic effects and has been shown to be effective at 

preventing convulsions, anxiety, and drug seeking behavior, inhibition of which would be 

useful in the treatment of AUDs (see section 2.4). Therefore, future preclinical studies 

should also evaluate the effect of transdermal CBD on these other indications. Although 

the neuroprotective effects of CBD are attributed to its potent antioxidant capacity, CBD 

has a variety of other molecular targets. For example, CBD and a major CBD metabolite, 

(-)-7-OH-CBD, have the capacity to block AEA uptake and AEA hydrolysis by FAAH 

[251]. Although it is unclear whether these other molecular targets are in any way 

responsible for CBD mediated neuroprotection following binge ethanol treatment, the 

potential for CBD to interact with the eCB system lead to the hypothesis that targeting 

the eCB system by inhibiting AEA metabolism by administering the FAAH inhibitor, 

URB597, would attenuate binge ethanol induced neurodegeneration (Chapter 5). 

Over the past 15 years, it has become increasingly apparent that the eCB system 

is involved in providing endogenous neuroprotection (see section 1.8). For example, 

numerous studies have observed 2-AG, AEA and/or NAE accumulation following 

experimental brain damge and in models of chronic neurodegeneration and importantly, 

other studies have found that CB1R null-mutant mice are more susceptible to 

neurotoxicity [218, 222]. Based on these reports, Chapter 4 examined the effect of binge 
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ethanol induced neurodegeneration on AEA, OEA and PEA content and CB1R 

expression in the entorhinal cortex and hippocampus, the two brain regions most 

susceptible ethanol-induced neurodegeneration. Surprisingly, only minor alterations in 

NAE tissue content were observed following either 2 or 4 days of binge ethanol 

treatment (figure 4.4) suggesting that ethanol and associated neurotoxicity do not 

engage the eCB system, at least in the context of this model, which is in contrast to the 

aforementioned reports. It is possible that binge ethanol treatment may have resulted in 

more profound effects on 2-AG as seen in other experimental models [219], however the 

LC-MS method originally developed to measure AEA, OEA and PEA (see Chapter 3) 

was not effective in accurately quantifying 2-AG levels. Therefore, future studies should 

determine the relationship between ethanol-induced neurodegeneration and 2-AG tissue 

content. In regards to CB1R expression, binge ethanol treatment resulted in only a 

transient down regulation in the corticolimbic pathway, which was most evident following 

2-days of binge exposure (figures 4.2 and 4.3). CB1R down regulation following ethanol 

exposure is consistent with the literature [187], however, unique to the current data, 

CB1R expression normalized prior to ethanol withdrawal. It was originally hypothesized 

that binge ethanol-induced down regulation would increase susceptibility to 

neurodegeneration, which was supported by numerous studies demonstrating that 

CB1R null-mutant mice are more susceptible to neurotoxicity [218, 222] and 

dysregulation of CB1Rs can precede neuropathology [332]. Additionally, CB1Rs are 

coupled to multiple cell survival pathways including PKB/AKT and CREB [212]. 

However, the modest and transient CB1R down regulation reported in chapter 4 

suggests that CB1R down regulation is not a major mechanism of increased 

susceptibility to neurodegeneration following binge ethanol treatment.  

Although elevated NAE tissue content was not observed following binge ethanol 

treatment, NAEs can be pharmacologically elevated by inhibition of FAAH [174]. 
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Additionally, FAAH inhibition affords neuroprotection in both in vitro and in vivo models 

of neuronal injury [291, 318, 319]. Therefore, experiments in chapter 5 tested the 

hypothesis that FAAH inhibition would attenuate neurodegeneration in the entorhinal 

cortex and hippocampus following binge ethanol exposure. Although, neuroprotection 

was not observed following administration of the FAAH inhibitor, URB597 (figures 5.3 

and 5.4), preliminary PK/PD evaluation suggested that ethanol impaired the ability of 

URB597 to elevate NAE content (figures 5.5 and 5.6). Therefore, it is currently unclear 

whether FAAH is a viable target for preventing neurodegeneration following binge 

ethanol treatment. Noteworthy, although FAAH inhibition did not significantly attenuate 

cell death, a trend was observed in the dentate gyrus but not in the entorhinal cortex, 

which may be explained by brain region specific effects of FAAH inhibition as URB597 

mediated elevation of AEA tissue content was only observed in the hippocampus. 

Interestingly, FAAH expression is substantially higher in the hippocampus compared to 

the cortex [179], which may explain the brain region specific effects reported in     

chapter 5. Additionally, studies have found that AEA is a substrate for COX-2 [333], an 

enzyme that is up regulated following the 4-day binge in the cortex, but not dentate 

gyrus [124], which may also contribute to lack of AEA elevation and neuroprotection in 

the entorhinal cortex. Nevertheless, additional studies and optimization of treatment 

protocols will be necessary to definitively determine the utility of FAAH inhibition as a 

target to afford neuroprotection following binge ethanol treatment. For example, only a 

single dose of URB597 was tested for neuroprotective efficacy. Although the dose of 

URB597 was chosen based off previous reports demonstrating maximum FAAH 

inhibition following 0.3 mg/kg, this was determined in mice and not in the context of 

binge ethanol treatment. Therefore, in light of the facts that the rats were used in the 

current dissertation and that the current results suggest the binge ethanol blunts the 
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biological activity of URB597, it may be necessary to evaluate higher doses or more 

frequent dosing intervals to observe neuroprotection.  

 To date, no studies have been reported that pertain to combination drugs for the 

treatment of ethanol-induced neurodegeneration. As ethanol neurotoxicity can be 

initiated by multiple overlapping mechanisms and the fact that all current preclinical 

reports have not blocked ethanol-induced neurodegeneration, but rather only partially 

attenuate cell death, it is reasonable to hypothesize that combination treatments may 

provide more efficacious treatment strategies. In the context of the current dissertation, 

multiple drug combinations could be examined with reasonable rationale. COX-2 is 

known to contribute to neurodegeneration and is up regulated by binge ethanol 

treatment and withdrawal. Additionally, COX-2 is also responsible for metabolizing both 

AEA and 2-AG as discussed previously. Therefore, the co-inhibition of COX-2 and FAAH 

may prove to enhance neuroprotection outcomes and should be examined in future 

studies. A second interesting target for combination drug therapy in context of the 

current dissertation is MAGL, which is responsible for 2-AG catabolism.  2-AG is a full 

agonist at both CB1Rs and CB2Rs and has been shown to mediate neuroprotection 

following a variety of neurotoxic insults by suppressing COX-2 expression and NF-κB 

activity [219, 235, 334, 335]. Therefore, it is possible that dual inhibition of FAAH and 

MAGL or eCB transport may be a more efficacious neuroprotective strategy [253, 325].  

 In conclusion, the studies within the current dissertation examined whether 

cannabinoid based pharmacotherapies are effective in preventing ethanol-induced 

neurodegeneration using a well-established model of an AUD. Currently, there are only 

four approved pharmacotherapies for the treatment of AUDs and these therapies 

generally have limited efficacy for this heterogeneous disease. Furthermore, these drugs 

only target the reinforcing effects of ethanol, even though chronic ethanol consumption 

results in neurodegeneration, cognitive dysfunction and behavioral impairments that 
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contribute to the development and maintenance of an AUD. Therefore, it is of utmost 

importance that new pharmacotherapies be developed to increase the repertoire of 

effective treatments for the treatment of alcoholism. As chronic ethanol intake, 

characteristic of an AUD, results in neurodegeneration and cognitive deficits that are 

hypothesized to contribute to the chronic and relapsing nature of these disordes, it likely 

that neuroprotective agents will have therapeutic utility and future research efforts need 

to be aimed at translational development these pharmacotherapies.  

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © Daniel James Liput 2013

130 
 



 

7. APPENDEX 

 

7.1 Supplementary figures 

 

 

Figure 7.1CB1R activation attenuates ethanol withdrawal induced potentiation of 

NMDA neurotoxicity. 

CP-55,940 dose dependently attenuated ethanol withdrawal induced potentiation of 

NMDA neurotoxicity in organotypic hippocampal slice cultures (OHCSs), however was 

ineffective at preventing NMDA neurotoxicity in ethanol naïve OHCSs. Neuroprotection 

was mediated through CB1R activation as the CB1R selective antagonist, SR141716, 
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blocked neuroprotection afforded by CP-55,940. (A) Quantification of propidium iodide 

(PI) uptake in CA1 of ethanol naïve OHSCs. (B) Quantification of PI in CA1 of ethanol 

withdrawn OHCSs. (C-F) Representative images of PI uptake; EWD, ethanol withdrawal; 

CP, CP-55,940 (10 μM); SR, SR141716 (10 μM). ###, p < 0.001 compared to NMDA; *, 

p < 0.05 and **, p < 0.01 compared to EWD + NMDA; ^, p < 0.05 and ^^, p < 0.01 

compared to EWD + NMDA + CP-55,940 (10 μM) + SR141716 (10 μM).  
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7.2 List of Abbreviations  

2-AG, 2-arachidonoylglycerol 

AEA, anandamide arachidonoylethanolamide  

ACN, acetonitrile 

AMPA, 2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl) propionate  

ANOVA, analysis of variance 

AUD, alcohol use disorder 

BDNF, brain derived neurotrophic factor 

BEC, blood ethanol concentration  

BHT, butylated hydroxytoluene  

BSA, bovine serum albumin 

CA, Cornu Ammonis  

cAMP, cyclic adenosine monophosphate 

CCL2, chemokine (c-c motif) ligand 2 

CEC, chronic ethanol consumption 

ChAT, choline acetyltransferase  

CNS, central nervous system 

COX-2, cyclooxygenase 2 

CV, coefficient of variation  

DAG, diacylglycerol 

DAGL α/β, diacylglycerol lipase α/β 

DMSO, dimethyl sulfoxide  

DNA, deoxyribonucleic acid  

eCB, endocannabinoid 

ESI, electrospray ionization  

FAAH, fatty acid amide hydrolase 
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FAK, focal adhesion kinase  

FDA, food and drug administration  

FJB, fluoro-jade b 

GABA, gamma-amino-butyric acid  

GC-MS, gas chromatography mass spectroscopy 

GIRK, g-protein coupled inward rectifying potassium channel 

GPR55, g-protein receptor 55 

HEC, hippocampal entorhinal cortex  

HMGB1, high motility group protein B1 

Iba1, ionized calcium-binding adapter molecule 1 

iNOS, inducible nitric oxide synthase 

IL1β, interleukin 1β 

IP, intraperitoneal  

KA, kainic acid 

LC-MS, liquid chromatography mass spectroscopy 

MAPK, mitogen activated protein kinase 

MCAO, middle cerebral artery occlusion 

MCP-1, monocyte chemotactic protein 1 

mGLUR5, metabotropic glutamate receptor 5 

MS, mass spectroscopy 

NAE, n-acylethanolamide 

NAPE, n-acyl phosphatidylethanolamide  

NAPE-PLD, n-acyl phosphatidylethanolamide – phospholipase D 

NMDA, N-methyl-D-aspartate  

NOX, NAPDH oxidase 

OEA, oleoylethanolamide  
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PBS, phosphate buffered saline 

PD, pharmacodynamics 

PE, process efficiency  

PEA, palmitoylethanolamide 

PFA, paraformaldehyde 

PFC, prefrontal cortex 

PI, propidium idodide 

PI3K, phosphoinositide-3-kinase  

PIP2, phosphatidylinositol 4,5 bisphosphate  

PK, pharmacokinetic  

PLA2, phospholipase A2 

PLCβ, phospholipase Cβ 

PO, per os (by mouth) 

PPAR, peroxisome proliferator activated receptor 

QC, quality control 

ROS, reactive oxygen species 

RNS, reactive nitrogen species 

SPE, solid phase extraction 

TLC, thin-layer chromatography 

TLR, toll like receptor 

TNFα, tumor necrosis factor α 

TRPV1, transient receptor potential cation channel VI 

Δ9 – THC, Δ9 - tetrahydrocannabinol   
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