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ABSTRACT OF DISSERTATION 

 

 

SYNTHESIS AND BIOLOGICAL EVALUATION OF NOVEL RESVERATROL AND 
COMBRETASTATIN A4 DERIVATIVES AS POTENT ANTI-CANCER AGENTS 

Resveratrol has been reported as a potential anticancer agent but cannot be used as an 
antitumor drug due to its chemical and metabolic instability. We have designed and 
synthesized 184 novel compounds related to resveratrol in an attempt to produce more 
potent and drug-like molecules. We have identified a tetrazole analog of resveratrol, ST-
145(a) as a lead anticancer agent from the resveratrol analog series of compounds with a 
GI50 value of less than 10nM against almost all the human cancer cell lines in the 
National Cancer Institute’s screening panel.  

In a separate study, we tested the hypothesis that the limited bioavailability of resveratrol, 
can be improved by synthesizing analogs which would be glucuronidated at a lower rate 
than resveratrol itself. We demonstrated that ST-05 and ST-12(a) exhibit lower 
glucuronidation profiles when compared to resveratrol and that these synthesized 
stilbenoids likely represent useful scaffolds for the design of efficacious resveratrol 
analogs. 

We have also initiated a new discovery program to identify selective CB1 and CB2 
receptor ligands from a library of novel stilbene scaffolds structurally related to the 
resveratrol molecule. From the screened resveratrol analogs, two compounds were 
identified as selective CB2 and CB1 ligands. Compound ST-179 had 47-fold selectivity 
for CB2 (Ki = 284 nM) compared to CB1, while compound ST-160 was 2-fold selective 
for CB1 (Ki = 400 nM) compared to the CB2 receptor. These structural analogs have the 
potential for development as novel cannabinoid therapeutics for treatment of obesity 
and/or drug dependency.



 

Combretastatin A4 (CA-4) is one of the most potent antiangiogenic and antimitotic 
agents of natural origin. However, CA-4 suffers from chemical instability due to cis-trans 
isomerism in solution. To circumvent this problem, we have developed a facile procedure 
for the synthesis of novel 4,5-diaryl-2H-1,2,3-triazoles as CA-4 analogs to constrain the 
molecule to its cis-configuration. Twenty three triazoles were prepared as CA-4 analogs 
and submitted for anticancer screening. Among these CA-4 analogs, ST-467 and ST-
145(b) can be considered as lead anticancer agents from this series, and further 
investigation against various cancer cell types in vivo with this class of compound may 
provide novel therapeutic avenues for treatment. 

Keywords: combretastatin, resveratrol, triazole, tetrazole, cannabinoid 
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Chapter 1: 

Goals of the study and literature review 
 

1.1 Hypothesis: 

The central hypothesis of this work is that the anti-cancer activity, metabolic stability and 

chemical stability of resveratrol can be improved by structural modification of the 

stilbene molecule. The second hypothesis of this work was that the anti-cancer activity 

and chemical stability (cis-trans isomerization) of the related compound, combretastatin 

A4, can be improved by replacing the ethylene bridge with a heterocyclic ring system, 

thereby constraining the molecule to the cis configuration. 

1.2 Overall Aims: 

Cancer is the second most life threatening disease after cardiovascular disease, affecting 

more than six million people per year worldwide. Drastic changes in lifestyle during the 

beginning of 20th century have increased the risk of humans developing different types of 

cancers. Although to date, significant research has carried out to improve treatment of 

various forms of cancer, there is still a lack of effective chemotherapeutic treatment to 

cure most forms of cancer completely. In this respect, considerable effort has been 

focused on identifying molecules with anti-cancer properties from both natural and 

synthetic sources. Herein, two medicinal chemistry projects related to the natural product 

molecules resveratrol and combretastatin A4, both of which possess anticancer 

properties, are presented. 
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Resveratrol (3,5,4-trihydroxystilbene) is a well-known phytoalexin found in grapes, 

peanuts, red wine and other foods. It has been reported as a potential chemotherapeutic 

agent due to its striking inhibitory effects on cellular events associated with cancer 

initiation, promotion, and progression. In clinical studies, resveratrol has demonstrated 

the ability to reduce tumor cell proliferation in patients with colorectal cancer. However, 

resveratrol has some limitations which preclude its use in cancer treatment, since it 

cannot be used as a drug because of its chemical and metabolic instability. This project 

has been designed to improve the chemical and metabolic stability and the anti-cancer 

potency of the resveratrol molecule with structural modifications designed to make the 

molecule more drug like.  

Combretastatin A4 (CA-4), a natural product structurally related the resveratrol molecule 

was first isolated from the South African willow tree, combretum caffrum, by Pettit and 

co-workers (Pettit, Singh et al. 1995). It is one of the most potent antiangiogenic and 

antimitotic agents of natural origin. Combretastatin A4 is structurally and functionally 

similar to a well-known microtubule-targeting agent, colchicine. Its phosphate prodrug 

(CA-4P) is currently in phase 3 clinical trial for the treatment of anaplastic thyroid 

cancer, and it has successfully retarded tumor growth in a wide spectrum of tumor 

models. However, recent studies have reported the chemical instability of CA-4 due to 

cis-trans isomerization to the more thermodynamically stable, but less potent trans-CA-4 

isomer (Nathwani, Hughes et al. 2013). This project has been designed to improve the 

chemical stability and the anti-cancer potency of the resveratrol molecule with structural 

modifications designed to constrict the cis configuration of CA-4. 
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Figure 1.1 Structure of resveratrol and Combretastatin A4 

 
 
1.3 Introduction to cancer  

Cancer is the second most common cause of death in America after cardiovascular 

disease. About 567,628 Americans died of cancer in 2009 alone, almost 11,000 per week. 

About 23 % of deaths in the United States during 2008-2009 were caused by cancer 

(Heron 2012). The cost for the treatment of cancer in the US in 2009 was estimated to be 

$216.6 billion and was expected to double over the next few years. Thus, curing cancer is 

one of the biggest challenges the scientific community is facing in the 21st century. 

Cancer is a disease characterized by unrestrained growth and abnormal spread of cells. If 

the invasion of these abnormal cells to other tissues is not controlled, it may lead to death. 

This abnormality in the cells can be caused by both internal stimuli (hormones, immune 

system, inherited mutations and mutations from metabolism) and external stimuli 

(chemicals, radiation, infectious microorganisms). Both the internal and external factors 

may act together to initiate the development of cancer (Heron 2012). 
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1.4 Natural products as anti-cancer drugs 

Since 1940, a systematic search for novel natural products with interesting biological 

properties has been initiated by pharmaceutical organizations and health institutes all 

around the world. By 1958 Charles Beer had isolated a pure compound from the leaves of 

the Madagascar periwinkle that depleted white cells and named the compound vinblastine 

(Noble, Beer et al. 1959). During the same period, the Eli Lilly Company discovered that 

vinblastine prolonged the life of mice carrying the leukemia cell line P1534. Vinblastine 

is currently being used in the treatment of testicular teratoma and Hodgkin’s lymphoma 

(Gobbi, Broglia et al. 2003). Later, another Vinca alkaloid, vincristine was isolated which 

was used to treat a host of rare childhood cancers such as Wilms tumour, neuroblastoma, 

rhabdomyosarcoma and Ewing’s sarcoma (Johnson, Armstrong et al. 1963).  

 

N
H

N

OH

CO2Me

N

N

O OMe
R

HO

O

OMeO

R
Vinblastine Me
Vinccristine CHO

 
 

 
Figure 1.2 Structures of Vinblastine and Vincristine. 
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Reports of the use of Podophyllum peltatum (Mayapple) for the treatment of cancer 

around 950 AD from the “Leech book of Bald” intrigued the NCI to screen extracts from 

the plant, and thy discovered podophyllotoxin as a potent anticancer drug (Ma, Khan et 

al. 2005). However, due to high toxicity in clinical trials the drug was withdrawn. Further 

SAR studies focused on synthesizing glycoside analogues of podophyllotoxin; this 

approach yielded two successful drugs: Etoposide and Teniposide (Figure 1.3). 

Etoposide is currently being used to treat testicular and small cell lung cancers, 

Teniposide, on the other hand, is used to treat acute lymphoblastic leukemia and rare 

childhood cancers such as neuroblastoma (Ma, Khan et al. 2005). 
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Figure 1.3 Structures of Podophyllotoxin, Etoposide and Teniposide. 

  

In 1958, Monroe Wall discovered and isolated the natural product camptothecin from 

Carmptotheca acuminata, a tree native to China and Tibet. It was found to have potent 

antitumor activity against leukemia cell line L1210. The exact structure was elucidated in 
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1966, and its water soluble analogues, topotecan and irinotecan (Figure 1.4) are used in 

the treatment of colon and ovarian cancer, respectively (Thomas, Rahier et al. 2004).  
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Figure 1.4 Structures of Camptothecin, Topotecan and Irinotecan. 
 
 

The discovery of penicillium by Fleming in 1928 lead scientists to look into 

microorganisms as a source of useful natural products and this led to the discovery of 

several anticancer agents. In 1960, Dr. Faber discovered the anticancer properties of 

actinomycin D (Figure 1.5) and reported its potential for treating Wilms tumour in 

children (Farber, D'Angio et al. 1960). The discovery of actinomycin D introduced a new 

class of antitumor agents from microorganisms. 
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Figure 1.5: Structures of Actinomycin D and Mitomycin C. 

Mitomycin C was first isolated by Wakaki from Streptomyces caespitosus in 1958. It was 

found to be highly toxic towards cancer cells but lacked selectivity, causing bone-marrow 

depression, vomiting, and kidney, liver and heart toxicity. The toxicity of mitomycin C 

was attributed to its bio-reduced product, which can form covalent bonds to DNA, similar 

to alkylating agents (Nguy, Chiu et al. 1987).  

Anthracyclines are a more useful class of anticancer antibiotics. The Arcamone group 

first isolated them in the early 1960s, and they were found to possess potent antitumor 

properties. In the coming years, hundreds of analogues were synthesized and developed 

to yield drugs such as Doxorubicin and Daunorubicin, with a broad spectrum of 

anticancer activity (Arcamone, Franceschi et al. 1964).  
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Figure 1.6 Structures of Daunorubicin and Doxorubicin. 

Another area of developing anticancer agents is the use of hormone mimics. In the early 

1930s Dodd and coworkers reported that a dimer of p-propenyl phenol had potent 

oestrogenic activity and mimicked the activity of estrogen (Hasenbrink, Sievernich et al. 

2006). This lead to the synthesis of a series of dimeric structures, among which 

diethylstilbestrol was found to be a potent compound against breast cancer. Further 

modifications to the diethylstilbestrol structure led to the discovery of Tamoxifen (Early 

Breast Cancer Trialists' Collaborative 1992).  

 

8 
 



HO OH HO

OH

O
NMe2

p-Propenyl phenol
Diethylstilbestrol

Tamoxifen

N

N

N
H
N

H
N

O

N

N

Glivec

 
 

Figure 1.7 Structures of p-Propenyl phenol, Diethylstilbestrol, Tamoxifen and Glivec. 

The initial discoveries in the field of chemotherapy were mostly cytotoxic agents with 

little selectivity for cancer cells. However, as our understanding of cancer improved, 

complimented with computational docking studies, high throughput screening protocols 

and bioinformatics, chemotherapy is now becoming more selective in targeting cancer 

cells. 

By 2001, the first target-based cancer drug, Gleevec (Figure 1.7), was approved by the 

FDA for the treatment of chronic myelogenous leukemia (CML). If treated with Gleevec 

in the early stages of CML, nearly 100% of the diagnosed patients went into remission, 

and no major side effects were reported (Capdeville, Buchdunger et al. 2002). 

Cancer chemotherapy is used as the primary mode of treatment for cancer and is also 

utilized as an adjuvant to other treatment options. However, it often is associated with 
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side effects and poor selectivity. Throughout history, natural products have been a rich 

source of compounds with excellent pharmacological activities and few side effects. The 

huge structural diversity of natural products isolated from natural sources can serve as 

lead compounds for the discovery of new anticancer agents, and their potencies and drug 

likeness properties can be further optimized by appropriate chemical modifications. Most 

of the anticancer drugs currently available on the market are from natural sources 

(Gordaliza 2007). The search for potent and selective semi-synthetically derived 

anticancer agents from parent natural products continues to be an important part of drug 

discovery process. Currently, close to 30 molecules of natural origin are in various stages 

of clinical trials for the treatment of cancer. Researchers and pharmaceutical companies 

devoted to the search for new cancer drugs are exploring new natural products emerging 

from variable sources, with the hope of finding potent, selective, drug-like and non-toxic 

molecules.  

There are more than 100 types of malignancies that have been recognized to date. Almost 

any cell types can become cancerous (Heron 2012). In the last 50 years our understanding 

of cancer has improved greatly, but many forms of cancer still lack effective treatment 

options. In an effort to find anticancer drug leads, pharmaceutical companies often screen 

large chemical libraries which include natural products. Natural products are a rich 

source of complex molecules that are biologically relevant. The method used to develop 

new drugs from a prototype or a lead molecule of known biological activity is known as 

pharmacomodulation. The main aim of pharmacomodulation is to establish a correlation 

between the pharmacophore in the structure and its biological activity.  By understanding 

the structure activity relationships (SAR) of the natural product and its analogs, by semi-
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synthetically altering the functional groups in the molecule, additionally complimented 

with high throughput screening protocols, computational docking studies and 

bioinformatics, medicinal chemists can produce compounds that are far more effective as 

clinical agents in terms of potency and pharmacokinetic parameters. 

1.5 National Cancer institute (NCI) Anticancer screening program 

Screening natural products from different sources for activity against various human 

cancer cells gained momentum after the discovery of vinblastine in the 1950s. The 

National Cancer Institute (NCI) has been screening thousands of natural products and 

their derivatives and has been encouraging researchers to submit semi-synthetically 

produced derivatives for testing against its panel of 60 human tumor cell lines of nine 

different classifications (Rubinstein, Shoemaker et al. 1990). Numerous anticancer drugs 

have been discovered because of the NCI initiative, e.g. paclitaxel, docetaxel, irinotecan 

and topotecan (Shoemaker 2006). The successful discovery of these agents demonstrates 

the potential of natural products in the treatment of cancer. 

Since 1955, the NCI has employed both in vitro and in vivo screens to evaluate the 

activity of natural products, their analogs, and novel synthetic compounds. Up until 1990, 

the NCI used the P388 mouse leukemia cell line to assess the activity of submitted 

compounds (Boyd and Paull 1995). From 1991 onwards the NCI introduced a panel of 60 

human cancer cell lines of nine different classifications for its in vitro screens. The 

classifications represent human cancer lines from leukemia, non-small cell lung, colon, 

CNS, melanoma, ovarian, renal, prostate, and breast cancers. Five different 
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concentrations, viz. 10-4 M, 10-5 M, 10-6 M, 10-7 M and 10-8 M, of the compounds are 

used to evaluate their growth inhibition properties after 48 hours of exposure to cells in 

culture. The NCI employs an effective triage system for the submitted compounds based 

on duplicates already screened and single dose screening results, prior to selecting them 

for five dose testing. According to Rubinstein et al. anti-cancer activity screening studies 

involves a two stage process in which only the compounds showing more than 60% 

growth inhibition in at least eight of the 60 tumor cell line panel with a single dose of 

10µM  are selected for the second stage (five dose testing) (Rubinstein, Shoemaker et al. 

1990). The Sulforhodamine B (SRB) assay is used to quantify the cell growth and 

viability effects of the test compounds. SRB is a chemical which stains basic amino acids 

to afford a pink colored product in mild acidic conditions allowing colorimetric 

quantitation, which is proportional to the total biomass. The collected data, when 

compared to control cells, allows the determination of GI50 values (i.e. 50% Growth 

Inhibition, concentration of drug resulting in a 50% reduction in net protein increase 

compared to control cells), TGI values (Total Growth Inhibition, concentration of drug 

resulting in a 100% reduction in net protein increase compared with control cells) and 

LC50 values (Lethal Concentration, concentration of drug lethal to 50% of cells). The 

screens have identified many potent anticancer drugs, and on average, every year NCI 

screens close to 10,000 novel compounds against its 60 human cancer cells. We have 

utilized the NCI 60-cell cancer screen to gather large quantities of useful biological data 

for the synthesized molecules in this dissertation project against various human tumor 

cell lines.  

12 
 



Herein, two medicinal chemistry projects related to the natural product molecules 

resveratrol and combretastatin, which possess anticancer properties, are presented. The 

projects were designed to improve the chemical/metabolic stability and pharmacokinetic 

properties of the above-mentioned drug molecules.  

1.6 Introduction to resveratrol 
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Figure 1.8 Structure of resveratrol 

The use of resveratrol in an ayurvedic herbal preparation can be dated back to thousands 

of years ago. Darakchasava is an ayurvedic herbal preparation of which the main 

ingredient is Vitis vinifera L (Baur, Pearson et al. 2006). This ayurvedic medicine was 

prescribed to patients with cardiovascular ailments. High performance liquid 

chromatography studies on darakchasava revealed the active ingredient to be resveratrol 

(Paul, Masih et al. 1999).  Resveratrol (Figure 1.8) is a naturally occurring E-3,5,4’-

trihydroxystilbene that was first isolated from the roots of white hellebore in 1940 (Baur 

and Sinclair 2006). The phytoalexin (resveratrol) is produced by a wide variety of plants 

in response to injury, stress, microbial infection and UV irradiation (Aggarwal, Takada et 

al. 2004). Although, red grapes have the highest concentration of resveratrol (50-100 mg 
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per gram) in the plant kingdom, Resveratrol was found in more than 80 plant species  

(Figure 1.9) (Baur and Sinclair 2006).  

 

Figure 1.9 Sources of resveratrol from various plant species. 

Resveratrol received tremendous attention after it was credited for the cardio-protective 

effects of red wine, famously known as the ‘French paradox’ (Kopp 1998). In 1997, Jang 

and coworkers reported that the topical application of resveratrol reduced mouse skin 

tumors to 2%, triggering extensive research on resveratrol (Jang, Cai et al. 1997). Since 

then, hundreds of reports (Figure 1.10) have shown that resveratrol can be used to treat a 

wide variety of diseases including cancer. Resveratrol has been reported as a potential 

chemotherapeutic agent due to its striking inhibitory effects on cellular events associated 

with cancer initiation, promotion, and progression in vitro (Aggarwal, Bhardwaj et al. 

2004). In addition, there are several in vitro and in vivo reports on the biologically 

beneficial properties of resveratrol for coronary, hepatic, neurological, cardiovascular, 

14 
 



and inflammation conditions (Pace-Asciak, Rounova et al. 1996, Fauconneau, Waffo-

Teguo et al. 1997, Jang, Kang et al. 1999, Aggarwal, Bhardwaj et al. 2004, Kim, Zhu et 

al. 2006). Also, resveratrol synergistically enhanced the anti-HIV activity of zidovudine, 

and has antiviral effects against the herpes simplex virus (Docherty, Fu et al. 1999, 

Heredia, Davis et al. 2000). 

Below is a list of breakthrough findings on resveratrol’s biological properties. 

1) Resveratrol modulates low-density lipoprotein levels, reducing the risk for 

development of coronary heart disease (Frankel, Waterhouse et al. 1993). 

2) Resveratrol reduced mouse skin tumors by 98%, indicating its chemo-preventive 

effects (Jang, Cai et al. 1997). 

3) Resveratrol extends the life span of yeast, giving a boost to the sales of resveratrol 

supplements (Howitz, Bitterman et al. 2003). 

4) Resveratrol has a positive effect on obesity and diabetes (Baur, Pearson et al. 

2006) (Lagouge, Argmann et al. 2006). 
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Figure 1.10 Resveratrol citations appearing on Pubmed from 1978 to 2013. The PubMed 
database was searched using the key word ‘resveratrol’. 

 

1.6.1 Molecular targets of resveratrol: 

Extensive studies have been conducted to elucidate the mechanism of resveratrol as an 

anticancer agent. The studies revealed multiple molecular targets, which regulate cell 

growth, invasion, apoptosis, angiogenesis and metastasis. Resveratrol’s direct and 

indirect targets include tumor suppressors p53 and Rb; cell cycle regulator cyclins, 

CDKs, p21WAF1, p27KIP and INK and the checkpoint kinases ATM/ATR; transcription 

factors NFκB, AP-1, c- Jun, and c-Fos; angiogenic and metastatic factors, VEGF and 

matrix metalloprotease 2/9; cyclooxygenases for inflammation; and apoptotic and 

survival regulators Bax, Bak, PUMA, Noxa, TRAIL, APAF, survivin, Akt, Bcl2 and Bcl-

XL (Athar, Back et al. 2009). In addition to these targets, resveratrol is known to exhibit 

pro-oxidant activity in cancer cells causing apoptosis (Seve, Chimienti et al. 2005). 

Resveratrol is an ideal anticancer molecule due to its low toxicity and capacity to target 
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multiple molecular targets that may collectively promote cancerous cell growth and 

invasion. Since resveratrol is known to regulate multiple molecular targets and signaling 

pathways, it is important to elucidate the mechanism by which resveratrol influences 

these molecular targets. One assumption is that the resveratrol may act as an endogenous 

signaling molecule, or act through generation of mediators such as reactive oxygen 

species (ROS), or both (Athar, Back et al. 2009). The biological effects and molecular 

targets of resveratrol against various tumor cell lines are summarized in Table 1.1.  

Table 1.1 Effects of resveratrol on various human cancer cell lines. Adapted from (Athar, 
Back et al. 2009) 

Table 1.1 (continued) 

Cell Type Molecular target Cellular effects References 

Breast cancer 

T47D 

MDA-MB-231 

MDA-MB-468 

MCF-7 

p53, PTEN, p27, ROS, NO, 
QR, p21p70S6K, ppS6RP, 
Src-Stat3, pAkt, Bcl2, NF-
jB, calpain, MMP-9, cyclin 
D, Cdk4, ribonucleotide 
reductase, CYP1A1, 
telomerase 

Apoptosis 

Growth arrest 

Cell migration 

(Lee and Safe 2001, Pozo-
Guisado, Alvarez-Barrientos 
et al. 2002, Pozo-Guisado, 
Merino et al. 2005, Waite, 
Sinden et al. 2005, Lanzilli, 
Fuggetta et al. 2006, Alkhalaf 
2007) 

Prostate cancer 

LNCap 

PC-3 

DU145 

LAPC-4 

Caspases 3/9, p53, p21, 
p27, Bax, Bak, Bid, Bad, 
MKP5PI3K, pAKT, cyclins 
B/D1/E, Cdk1/4, Bcl2, Src-
Stat3, ROS 

Apoptosis, G0/G1-arrest 

Proliferation rate, cell 
viability 

(Awad, Burr et al. 2005, 
Aziz, Nihal et al. 2006, 
Benitez, Pozo-Guisado et 
al. 2007, Nonn, Duong et 
al. 2007) 

Colon cancer 

HT-29 

DLD1 

HCT116 

AMPK, ROS, cathepsin D, 
caspase-2, cytochrome c, 
ATF3 Cdk7, p34Cdc2 

Apoptosis, lysosome 
leakage, G2-arrest, Cell 
growth 

(Liang, Tsai et al. 2003, 
Hwang, Kwak et al. 2007, 
Trincheri, Nicotra et al. 
2007) 

Pancreatic cancer MIC-1, cytochrome c, Apoptosis (Mouria, Gukovskaya et al. 
2002, Golkar, Ding et al. 
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Table 1.1 (continued) 

CD18 

S2-013 

panc-1 

caspase-3 Src-Stat3, NF-jB Cell growth 2007) 

Leukemia 

HL-60 

NO Apoptosis, nuclear size, 
granularity  

Cell growth 

(Quiney, Dauzonne et al. 
2004, Stervbo, Vang et al. 
2006) 

Hepatoma 

HepG2 

NO Apoptosis, nuclear size, 
granularity  

Cell growth 

(Stervbo, Vang et al. 2006) 

B-cell Lymphoma 

LY1 

LY8 

LY18 

p27, p53, CD69 

BCL6, Myc, pAKT, pp70S6K 

Apoptosis, G0/G1-arrest 

glycolysis 

(Faber and Chiles 2006, 
Faber, Dufort et al. 2006) 

Osteosarcoma 

SJSA1 

pERK1/2, pp53(Ser15) Apoptosis 

Cell growth 

(Alkhalaf 2007) 

Acute myeloid leukemia  

OCIM2 

OCI/AML3 

IL-1b, NF-jB S-arrest, apoptosis (Estrov, Shishodia et al. 
2003) 

Thyroid cancer 

PTC 

FTC 

P53, p53(ser15), c-fos, c-
jun, p21 

Apoptosis (Shih, Davis et al. 2002) 

Gastric adenocarcinomas 

KATO-III 

RF-1 

PKC, PKCa G0/G1-arrest, apoptosis 

DNA synthesis 

(Atten, Attar et al. 2001) 

 

 

 

 

18 
 



1.6.2 Pharmacokinetics of resveratrol: 

Nearly all the reports claiming the biologically beneficial effects of resveratrol to date 

have been generated in vitro and in animal models. Thus, it is still unclear if these claims 

can be translated to humans. At higher doses, protective effects of resveratrol were 

observed. For example, a daily dose of 40 mg/kg increased the survival of mice with 

subcutaneous neuroblastomas from 0% to 70% (Chen, Tseng et al. 2004). However, in 

many in vivo studies, no notable chemopreventive effect of resveratrol was observed in 

animal models. For example, treatment with  1-5 mg/kg daily dose of resveratrol failed to 

affect the metastasis of breast cancer in mice, despite encouraging in vitro results. In one 

recent study, resveratrol acted as an ant-proliferative agent against ovarian cancer cells in 

vitro, but failed to exhibit this effect on the same cancerous cells in vivo (Bove, Lincoln et 

al. 2002). Overall, numerous in vitro studies clearly showed promising results, but the 

drug did not yield consistent results in vivo. 

The pharmacokinetic data of resveratrol reported in the literature is both confusing and 

contradicting. The high doses of resveratrol used in animal models (for example 100 ng -

1500 mg/Kg body weight) to achieve pharmacologically relevant concentration in plasma 

raises many questions about its translational effectiveness in humans. Resveratrol was 

found to have a short half-life of 8-10 min after oral administration, and was extensively 

metabolized to both sulfate and glucuronide phase 2 conjugates (Marier, Vachon et al. 

2002). In the case of intravenous administration, resveratrol was completely converted to 

sulfate conjugates within 30 min in humans (Walle, Hsieh et al. 2004). The maximum 

tolerated dose of resveratrol has not been comprehensively determined; however, 
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300mg/Kg (body weight) showed no toxicity in rats, but toxic effects related to the 

kidney have been observed at 1 gram/Kg (body weight) (Crowell, Korytko et al. 2004). 

Despite resveratrol’s low bioavailability, it was speculated that the in vivo efficacy of 

resveratrol could be attributed to its metabolites. However, when resveratrol-3-sulfate 

was tested in vitro it failed to activate SIRT1 and inhibit cyclooxygenase (Yu, Shin et al. 

2003). Another speculation is that the inactive metabolites of resveratrol could act as pool 

from which the resveratrol can be released into the tissues and stimulate the biological 

activity; however, no data on such findings have been reported. 

Because of the extremely low bioavailability and rapid clearance from the circulation, 

resveratrol could not be used as a drug. One approach to addressing this problem is to 

modify resveratrol’s structure to create analogs which would be metabolized at a slower 

rate than resveratrol itself (Greer, Madadi et al. 2014). Another approach is to synthesize 

potent resveratrol analogs that mimic its effect with improved bioavailability (Aggarwal, 

Takada et al. 2004). In the following chapters, both of these approaches have been tested. 

1.7 Introduction to Combretastatin A4 

Microtubules are believed to be one of the most promising targets for cancer 

chemotherapy since the tubulin interacting agent pacitaxel (Figure 1.13) was approved 

by the FDA for cancer treatment. Since then, the interest in tubulin targeting agents has 

significantly increased. Between 2007 and 2009, over 25% of the drug molecules that 
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entered clinical study were tubulin targeting agents (Butler 2008), and almost all of these 

drug molecules were natural products or analogs thereof.  

It is important to evaluate the role of tubulin in the life cycle of the cell in order to 

understand the mechanism of action of tubulin targeting anti-cancer agents. The 

cytoskeleton present in the cytoplasm of eukaryotic cells is responsible for the 

organization of constituents of the cell, maintains cell shape and the movement of the 

various organelles within the cell. There are three types of filaments or fibers that 

makeup the cytoskeleton: they are the microfilaments, the intermediate filaments and the 

microtubules. Microtubules comprise of αβ-tubulin heterodimers and play an important 

role in cell division, cellular transport, and cell mortality, maintaining cell polarity and 

cell signaling (Jordan, Hadfield et al. 1998, Zhou and Giannakakou 2005). Microtubule 

polymerization involves coordinated assembly of αβ-tubulin dimers followed by GTP 

hydrolysis. Each α and β subunit of the heterodimer has one GTP molecule bound to it; 

the GTP attached to the α subunit is irreversible, whereas the GTP molecule attached to 

the β subunit is reversibly hydrolyzed during polymerization (Nogales, Wolf et al. 1998). 

Compromised or non-coordinated microtubule functioning may lead to apoptosis. 

There are mainly three phases of microtubule polymerization 

1. Nucleation (an oligomer consisting of 6-12 α-β-tubulin heterodimers is formed) 

2. Polymer growth (a protofilament is formed where the GTP binds to αβ-tubulin 

dimers) 
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3. Steady-state equilibrium (addition and dissociation of tubulin subunits is 

balanced) 

Treadmilling and dynamic instability are the two types of microtubule dynamics 

observed. In the treadmilling dynamics the subunits from the minus end of the 

microtubule flow to the plus end; this dynamics doesn’t change the average length of the 

microtubules. On the other hand, dynamic instability is associated with alternative growth 

and shortening microtubule ends (Mitchison and Kirschner 1984). The transition from a 

growing phase to a shortening phase is termed as “catastrophe” and the transition from a 

shortening phase to a growing phase as “rescue”, Figure 1.13 illustrates the necessity for 

GTP hydrolysis for switching between catastrophe and rescue.  Microtubules are 

stabilized and destabilized by microtubule-associated proteins (MAP). MAPs such as 

plus and tracking proteins (TIP) interact with the microtubule ends to regulate the 

microtubule dynamics (Akhmanova and Steinmetz 2008). Since the microtubule 

dynamics play an important role in mitosis and basic cellular functions, microtubule 

targeting drugs are used in the treatment of various forms of cancer (Jordan and Wilson 

2004, Singh, Rathinasamy et al. 2008). 
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Figure 1.11 Microtubule dynamic instability, where the coexistence of polymerization 
and depolymerizing microtubules are imperative for dynamic stability. 

Anticancer agents that have polymerizing and depolymerizing effects on tubulin 

assembly are known as Microtubule-interfering Agents (MIA). Both polymerization and 

depolymerization impairs the proper function of microtubules and stagnates the cell cycle 

at G2/M phase leading to apoptosis (Li, Wu et al. 2009). Anticancer drugs such as 

colchicine, vinblastine and vincristine act by depolymerizing mechanism, whereas drugs 

such as paclitaxel and docetaxel act through a polymerizing effect. There are many 

tubulin binding sites for the depolymerizing agents, such as the colchicine and the 

vinblastine binding sites (Ravelli, Gigant et al. 2004, Gigant, Wang et al. 2005). 

Additionally, when depolymerization agents such as estramustine and LY290181 (Figure 

1.12) were treated with tubulin, they did not compete for the colchicine and vinblastine 

binding sites. Also, Chakraborti et al. using fluorescence spectroscopy, demonstrated that 

curcumin binds to tubulin at a site which is close to the vinblastine binding site 
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(Chakraborti, Das et al. 2011). This experiment suggests that each of these 

depolymerization agents have distinct binding site (Singh, Rathinasamy et al. 2008). 
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Figure 1.12 Structures of polymerizing and depolymerizing agents on tubulin assembly. 

Microtubule targeting agents act as anticancer agents by causing the cells to arrest at the 

G2/M stage of the cell cycle promoting apoptosis, and/or by their vascular disrupting 

action. However, the mechanism by which they act is poorly understood. The relationship 

between mitotic block and apoptosis caused by 2’,3,4,4’,5-pentamethoxy-trans-stilbene 

(PMS) (Figure 1.13) was studied by Li and co-workers. The experiments suggested that 

24 
 



hyper phosphorylation of CDC2 or JNK by Bcl-2/Bcl-xL and activation of Bim by JNK 

could be a link between mitotic block and apoptosis (Li, Wu et al. 2009). Also, caspase-8 

activation was observed during paclitaxel-induced apoptosis (Goncalves, Braguer et al. 

2000). 

Interestingly, there is also a strong correlation between microtubule targeting agents and 

their vascular disruption properties (Mason, Zhao et al. 2011). Anticancer agents that 

target the tumor vasculature are known as vascular-targeting agents (VTAs) and can be 

divided into two categories. They are 

(a) Vascular disrupting agents (VDAs). Example: Combretastatin A4. 

(b) Angiogenesis inhibiting agents (AIA). Example: Bevacizumab. 

VDAs like combretastatin A4 influence tubulin polymerization by damaging the 

proliferating endothelial cells of the cancer vasculature, thereby decreasing blood flow to 

the tumor cells leading to cell death. VDAs like combretastatin A4 also have potential 

curative activities in retinal and choroidal neovascularization related diseases, since 

angiogenesis plays a key role in these disease conditions (Nambu, Nambu et al. 2003, 

Jockovich, Suarez et al. 2007). 

A total of seventeen combretastatin compounds have been isolated from the South 

African bushwillow tree Combretum caffrum by Pettit and co-workers (Pettit, Singh et al. 

1995). Among these compounds, a cis-stilbene: Combretastatin A4 (3’-hydroxy-3,4,4’,5-

tetramethoxy-cis-stilbene; CA-4; Figure 1.13), has emerged as a potent anti-cancer agent 

with promising anti-mitotic and anti-angiogenic activity (Tron, Pirali et al. 2006). CA4 

functions as a microtubule targeting agent, interfering with microtubule dynamics and 
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perturbation of the mitotic cycle. Moreover, CA4 selectively inhibits the formation of 

new blood vessels in cancerous cells, sparing the normal cell population (Thorpe 2004). 
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Figure 1.13 Structures of Combretastatin A4 (CA4), CA4P and PMS. 

CA4 is well known anticancer agent for inhibition of tubulin polymerization in vitro. 

CA4 binds to the β-tubulin at the colchicine binding site, promoting the disturbance of 

the dynamic equilibrium of microtubule formation (Mikstacka, Stefanski et al. 2013). 

Also, CA4 exerts its antitumor affects against multi-drug resistant (MDR) cancer cells 

(Chaudhary, Pandeya et al. 2007). However, CA4 itself cannot be used as a drug because 

of its poor water solubility leading to low bioavailability, and due to its chemical 

instability, since it forms the thermodynamically more stable and less potent trans CA4 

(Hsieh, Liou et al. 2005) isomer. The low bioavailability of CA4 was addressed by 

preparing the water soluble phosphate salt (disodium CA-4-3-O-phosphate) of CA4 

(CA4P). Currently, CA4P (Figure 1.13) has been moved into phase III clinical trial by 

the pharmaceutical company OXiGENE for the treatment of anaplastic thyroid cancer 

(Siemann, Chaplin et al. 2009). Another approach utilized for improving the 

bioavailability of CA4 was to prepare nitrothiophene ether-linked conjugates of CA4, 

which could function as bioreductively activated prodrugs (Thomson, Naylor et al. 2006). 
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Also, formulations that employ nanoparticles to selectively deliver CA4 and improve its 

bioavailability have also been reported (Calligaris, Verdier-Pinard et al. 2010). 

The chemical instability (isomerization) of CA4 has been addressed by designing and 

synthesizing a series of cis-constrained derivatives of CA4. Extensive studies have been 

conducted to stabilize CA4 by replacing the double bond bridge with heterocyclic ring 

systems such as β-lactam, azetidone, thiazoles, tetrazoles, imidazoles, pyrazoles, 

oxazolones, triazoles, and furanones (Shirai, Takayama et al. 1998, Tron, Pagliai et al. 

2005, Carr, Greene et al. 2010, Beale, Bond et al. 2012, Banimustafa, Kheirollahi et al. 

2013, Mikstacka, Stefanski et al. 2013, Demchuk, Samet et al. 2014).  

Our approach is to design and synthesize triazole modified CA4 analogues that are more 

water soluble and also incapable of undergoing cis-trans isomerization of CA4. 
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Chapter 2 

Synthesis of resveratrol analogues as anti-cancer agents 

2.1 Previous SAR studies on resveratrol analogues 

Resveratrol binds with multiple molecular targets in vitro, and exhibits cytotoxic effects 

against breast, skin, gastric, colon, esophageal, prostate, and pancreatic cancer cells, and 

leukemia cells (Jang, Cai et al. 1997, Aggarwal, Bhardwaj et al. 2004).  However, 

resveratrol has some limitations which preclude its use in cancer treatment, and it cannot 

be used as an antitumor drug due to its photosensitivity and metabolic instability 

(Goldberg, Ng et al. 1995). Literature results indicate that the in vivo effectiveness of 

resveratrol in animal models is limited by its poor systemic bioavailability (Athar, Back 

et al. 2009). Thus, there is a need for the design and synthesis of novel resveratrol 

analogs that retain the potent anti-cancer agents of the parent compound, have good 

chemical and metabolic stability, and are devoid of photosensitivity problems. 

Extensive structure activity relationship (SAR) studies on the resveratrol molecule for its 

anticancer activity and chemical/metabolic stability have been conducted on synthetically 

prepared derivatives and natural products which resemble resveratrol. The studies 

revealed that maintaining the stilbene skeleton is necessary for good metabolic stability 

and for retaining resveratrol’s medicinal properties. Also, replacing the extensively 

metabolized hydroxyl groups with methoxyl groups improves resveratrol’s 

bioavailability.  
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Wang and co-workers compared the anticancer effects of resveratrol and its natural 

derivatives pterostilbene, trans-3,5,4’ -trimethoxy-stilbene, pinostilbene and 

desoxyrhapontigenin against human prostate cancer cell line LNCaP (Figure 2.1). They 

reported that trans-3,5,4’ -trimethoxy-stilbene was the most effective compound among 

resveratrol and its natural derivatives, causing G2/M blockage in the cell cycle leading to 

apoptosis (Wang, Schoene et al. 2010).  

HO

HO
OH

HO

HO
OCH3

H3CO

H3CO
OCH3

HO

H3CO
OH

H3CO

H3CO
OH

(A) Resveratrol (B) Desoxyrhapontigenin (C) 3,5,4' -trimethoxy-stilbene

(D) Pinostilben (E) Pterostilbene

H3CO

H3CO
OCH3

H3CO

(F) 3,4,5,4' -trimethoxy-stilbene

HO

HO
OH

OH
AcO

AcO
OAc

AcO

AcO
OH

(G) Piceatannol (H) 3,5,4' -triacetyl-stilbene (C)3,5-diacetyl resveratrol  

Figure 2.1 Structures of resveratrol and its O-methylated derivatives. 

Chen and co-workers synthesized and evaluated a series of methoxylated resveratrol 

derivatives for their anti-cancer properties against three different human cancer cell lines, 

i.e. K562, HT29, and HePG2. They reported that trans-3,5,4’ -trimethoxy-stilbene 
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(TMR) and trans-3,4,5,4’ -trimethoxy-stilbene (Figure 2.1) were the most effective anti-

cancer agents among the synthesized analogs and showed better cytotoxicity compared to 

resveratrol itself. SAR analysis revealed that methoxy substitutions at positions 3, 4, and 

5 on the A ring and at position 4’ of the B ring promoted cytotoxicity, and that 

incorporation of halogeno substituents such as bromo, chloro and fluoro, or nitro groups 

into the B ring was detrimental to anticancer activity (Chen, Hu et al. 2013).  

Dias et al. evaluated resveratrol, trans-3,5,4’ –trimethoxystilbene (TMR), piceatannol, 

pterostilbene, trans-3,5-diacetyl-4’ hydroxyl stilbene, and trans-3,5,4’-triacetylstilbene, 

and characterized their effects on PCa cells in vitro using a cell proliferation assay. Also, 

they compared the chemopreventative effects of oral resveratrol, trans-3,5,4’ –

trimethoxystilbene, piceatannol in LNCaP-Luc xenografts. Among all these stilbenes 

examined, trans-3,5,4’ –trimethoxystilbene was the most potent in inhibiting cell 

proliferation, and its permeability into the tumor tissues was the highest (Dias, Li et al. 

2013). 
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trans-3,5,4' -trimethoxy-stilbene

H3CO

OCH3 OCH3

cis-3,5,4' -trimethoxy-stilbene

Stable Unstable
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Figure 2.2 Isomerization of cis-3,5,4’-trimethoxystilbene to trans-3,5,4’-
trimethoxystilbene. 
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Paul et al. compared the anticancer activity of trans-3,5,4’-trimethoxystilbene with cis-

3,5,4’-trimethoxystilbene against the colon cancer cell lines HT-29 and Caco-2. Also, in 

vivo studies using HT-29 xenografts in immunodeficient mice were conducted with both 

these isomers. Tumor volume was significantly lowered in groups of mice when trans-

3,5,4’-trimethoxystilbene was used compared to cis-3,5,4’-trimethoxystilbene, Also cis-

3,5,4’-trimethoxystilbene was found to be chemically unstable and isomerized to trans-

3,5,4’-trimethoxystilbene in solution (Paul, Mizuno et al. 2010). 

From these studies, it is evident that trans-3,5,4’-trimethoxystilbene (TMR) is the most 

potent and stable analog of resveratrol, and has better bioavailability than resveratrol. 

Trans-3,5,4’-trimethoxy-stilbene is a natural resveratrol analogue extracted from the 

plant species Pterobolium hexapetallum (Aggarwal, Bhardwaj et al. 2004) and the 

molecule has been reported to have anticancer and antiangiogenic activities (Belleri, 

Ribatti et al. 2005). The trimethoxylated substitution pattern on trans-3,5,4’-

trimethoxystilbene molecule might improve metabolic stability and intestinal absorption. 

Moreover, conversion of the phenolic substituents to methoxy substituents increases the 

lipophilicity and cell membrane permeability properties of the molecule and enhances 

bioavailability. 

2.2 Synthesis of (E)-stilbenes as resveratrol analogues  

Based on the structure-activity relationship analysis reported previously, it is evident that 

O-methylation of resveratrol leads to an enhanced cytotoxic activity. In our continuing 
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quest for improving the potencies of our newly identified lead anti-cancer agents, we 

have synthesized a wide range of such (E)-stilbene resveratrol analogs.  

R1 CHO PPh3
R2

Br

R1
R2

Aldehyde Wittig salt t rans stilbene

a

R1 = R2 = Aromatic ring  

Scheme 2.1 Synthesis of (E)-stilbenes as resveratrol analogues. Reagents and conditions: 
(a) 5% NaOMe, MeOH, reflux. 

The general procedure for the synthesis of trans 2,3-disubstituted stilbenes is illustrated 

in Scheme 2.1. Trans 2,3-disubstituted stilbenes were synthesized by reacting substituted 

benzyl carbaldehydes (1 mmol) with an appropriately substituted benzyl Wittig salt (1.2 

mmol) in 5% NaOMe in methanol. The reaction mixture was stirred at room temperature 

for about 2-3 hours for the reaction to come to completion and the final product crashed 

out of the solution. The resulting precipitate was filtered, washed with methanol, then 

water and dried to yield the desired compound in yields ranging from 60-75% (Scheme 

2.1). If necessary, further purification can be carried out by flash column 

chromatography. The minor cis-stilbene product could be separated during the filtration 

and methanol wash. A total of seventy four trans stilbenes were synthesized via this 

general procedure and their structures are presented in Table 2.1. 

 

Table 2.1: Structures of the synthesized trans-stilbenes and the starting materials (benzyl 
carbaldehyde and Wittig salt) used. 
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Table 2.1 (Continued) 
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Table 2.1 (Continued) 
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Table 2.1 (Continued) 
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Table 2.1 (Continued) 
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Table 2.1 (Continued) 
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31.  
CHO

 Ph3P
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H3CO
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Cl
Cl
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37.  
CHOCl
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Br
NO2

 

Cl
NO2
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Cl

 

38.  

CHOH3CO
 

Ph3P
Br

CN

 
H3CO

CN
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Br

Br

 
H3CO

Br

ST-321  
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Br

 Br
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O
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CN

 

Cl
CN
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OCH3
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H3CO

H3CO

H3CO
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H3CO
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Br

Br
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Br
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 Br
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45.  
CHOCl

Cl  
Ph3P

Br
Br
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Cl

Cl
Br
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Br
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OCH3  

H3CO

H3CO
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48.  CHO
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Br O

O

 

O

O

ST-238  

49.  CHO

 
Ph3P

Br
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H3CO

ST-239  

50.  CHO

 Ph3P
Br
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51.  CHO

 Ph3P
Br
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 Ph3P
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Table 2.1 (Continued) 

53.  CHO

 Ph3P
Br

Cl

 

Cl

ST-243  

54.  

CHO
 Ph3P

Br
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ST-245
 

55.  

CHO
 Ph3P

Br O

O
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O

ST-246
 

56.  

CHO
 Ph3P

Br
O

 OCH
H3CO

ST-247
 

57.  

CHOH3CO
 

Ph3P
Br

 OCH3

ST-249  

58.  

CHOH3CO
 

Ph3P
Br

Cl

 
OCH3

ST-251

Cl

 

59.  CHOO

O  
Ph3P

Br
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O

O
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60.  CHOO

O  
Ph3P

Br O

O

 

O

O

O

O

ST-269  

61.  CHOO

O  Ph3P
Br

O

 

OCH3O

O
ST-270  

62.  CHOO

O  
Ph3P

F

 

F
O

O
ST-273  

63.  CHOO

O  
Ph3P

Br
Cl

 

Cl
O

O
ST-274  

64.  CHOO

O  
Ph3P

Br
NO2

 O

O

NO2

ST-275  

65.  
CHOCl

Cl  Ph3P
Br

O

 
Cl

ST-295
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Cl

 

66.  
CHOCl

Cl  Ph3P
Br

OCH3

OCH3
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Cl
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Cl
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67.  
CHOCl

Cl  
Ph3P

Br
OCH3

 Cl

ST-294

OMe

Cl

 

68.  
CHOCl

Cl  Ph3P
Br

 
Cl

ST-298

Cl

 

69.  
CHOOHC

 
Ph3P

Br
 

ST-283
 

70.  
CHOOHC

 Ph3P
Br

 
ST-284

 

71.  

CHOHO

O2N

O2N

 

Ph3P
Br

OCH3

OCH3

OCH3  

NI-ST-11

OH

H3CO

H3CO

H3CO

NO2

NO2  

72.  
CHOH3CO

O2N  Ph3P
Br

OCH3

OCH3

OCH3  

NI-ST-12

OCH

H3CO

H3CO

H3CO
NO2
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73.  

CHOHO

O2N

O2N

 

Ph3P
Br

OCH3

OCH3  

DNR-1

OH

H3CO

H3CO

NO2

NO2  

74.  

CHOH3CO

H3CO

 

 

Ph3P
Br

Cl

 
Cl

ST-208

OMe

OMe  

 

2.2.1 Analytical data for the synthesized trans-stilbene analogues 

ST-196 :  1H NMR (400 MHz, DMSO-d6): δ 3.68 (s, 3H, -OCH3), 3.84 (s, 6H, -OCH3), 

3.85 (s, 3H, -OCH3), 6.98 (s, 2H, -ArH), 7.34 (d, J =7.2 Hz, 2H, ArH), 7.72 (d, J =8.4 

Hz, 2H, ArH), 7.968 (d, J =8 Hz, 2H, ArH) ppm. 13C NMR (100 MHz, DMSO-d6): 52.4, 

56.3, 60.5, 60.5, 104.76, 126.8, 127.0, 128.4, 130.1, 131.9, 132.6, 142.4, 153.5, 166.4 

ppm. 

ST-192 :  1H NMR (400 MHz, DMSO-d6): δ1.32 (t, J =12.8 Hz, 3H, -CH3), 4.03 (d, J 

=6.8 Hz, 2H, -CH2), 6.02 (s, 2H, -CH2), 6.91 (d, J =6.8 Hz, 3H, ArH), 6.96-7.02 (m, 3H, 

ArH), 7.22 (s,1H, ArH), 7.47 (d, J =7.6 Hz, 2H, ArH) ppm. 13C NMR (100 MHz, 

DMSO-d6): 15.0, 63.4, 101.4, 105.5, 108.7, 115.0, 121.5, 126.2, 126.7, 127.9, 130.1, 

132.4, 147.0, 148.2, 158.4 ppm. 

ST-191 :  1H NMR (400 MHz, DMSO-d6): δ6.04 (s, 2H, -CH2), 6.92 (d, J =8 Hz, 1H, 

ArH), ), 7.02 (d, J =9.2 Hz, 1H, ArH), 7.12 (s,2H, ArH), 7.18 (t, J =17.6 Hz, 2H, ArH), 

7.26 (d, J =1.2 Hz, 1H, ArH), 7.06-7.57 (m, 2H, ArH) ppm. 13C NMR (100 MHz, 
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DMSO-d6): 101.5, 105.6, 108.8, 115.8, 116.0, 122.0, 125.9, 128.4, 128.5, 128.5, 131.9, 

134.3, 147.3, 148.3 ppm. 

ST-193 :  1H NMR (400 MHz, DMSO-d6): δ6.04 (s, 2H, -CH2), 6.92 (d, J =7.6 Hz, 1H, 

ArH), ), 7.04 (d, J =9.2 Hz, 1H, ArH), 7.12 (d, J =16.4 Hz, 1H, ArH), 7.21 (d, J =16.4 

Hz, 1H, ArH), 7.27 (d, J =1.2 Hz, 1H, ArH), 7.41 (d, J =8.8 Hz, 2H, ArH), 7.57 (d, J 

=8.8 Hz, 2H, ArH) ppm. 13C NMR (100 MHz, DMSO-d6): 101.6, 105.8, 108.8, 122.3, 

125.7, 128.2, 129.0, 129.5, 131.7, 131.9, 136.6, 147.5, 148.3 ppm. 

ST-188 :  1H NMR (400 MHz, DMSO-d6): δ 2.38 (s,3H, CH3), 6.04 (s, 2H, -CH2), 6.92 

(d, J =8 Hz, 1H, ArH), ), 7.05-7.01 (m, 2H, ArH), 7.14-7.19 (m, 3H, ArH), 7.28 (d, J 

=16.0 Hz, 1H, ArH), 7.33 (d, J =1.6 Hz, 1H, ArH), 7.61 (d, J =6.8 Hz, 1H, ArH) 

ppm. 13C NMR (100 MHz, DMSO-d6): 19.9, 101.5, 106.0, 108.7, 122.1, 124.6, 125.2, 

126.5, 127.6, 129.8, 130.7, 132.3, 135.7, 136.4, 147.3, 148.3 ppm. 

ST-186: 1H NMR (400 MHz, DMSO-d6): δ 3.76 (s, 3H, -OCH3), 6.02 (s, 2H, -ArH), 

6.88-6.93 (m, 3H, ArH), 6.97-7.04 (m, 3H, ArH), 7.23 (s, 1H, -ArH), 7.49 (d, J =8.8 Hz, 

2H, ArH) ppm.  13C NMR (100 MHz, DMSO-d6): 55.5, 55.6, 101.4, 105.5, 108.8, 114.5, 

121.6, 126.3, 126.7, 127.9, 130.3, 132.3, 147.0, 148.2, 159.1 ppm. 

ST-198 :  1H NMR (400 MHz, DMSO-d6): δ 3.64 (s, 3H, -OCH3), 3.74 (s, 3H, -OCH3), 

3.79 (s, 6H, -OCH3), 6.85 (s, 2H, -ArH), 6.91 (d, J =8.8 Hz, 2H, ArH), 6.97 (d, J =16.4 

Hz, 1H, ArH), 7.11 (d, J =16.4 Hz, 1H, ArH), 7.11 (d, J =8.8 Hz, 1H, ArH) ppm. 13C 

NMR (100 MHz, DMSO-d6): 55.56, 56.29, 60.50, 103.99, 114.64, 126.73, 127.87, 

128.03, 130.20, 133.56, 137.42, 153.48, 159.29 ppm. 
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ST-194 :  1H NMR (400 MHz, DMSO-d6): δ 3.67 (s, 3H, -OCH3), 3.83 (s, 6H, -OCH3), 

6.93 (s, 2H, -ArH), 6.93 (s, 2H, -ArH), 7.21 (s, 2H, -ArH), 7.43 (d, J =8.4 Hz, 2H, ArH), 

7.60 (d, J =8.4 Hz, 1H, ArH) ppm. 13C NMR (100 MHz, DMSO-d6): 56.3, 60.5, 104.4, 

126.8, 128.3, 129.1, 129.9, 132.1, 132.9, 136.5, 137.9, 153.5 ppm. 

ST-190 :  1H NMR (400 MHz, DMSO-d6): δ 3.84 (s, 3H, -OCH3), 6.05 (s, 2H, -CH2), 

6.94 (d, J =8 Hz, 1H, ArH), 7.08 (d, J =16.4 Hz, 1H, ArH), 7.36 (d, J =16.8 Hz, 2H, 

ArH), 7.68 (d, J =8.8 Hz, 2H, ArH), 7.94 (d, J =8.4 Hz, 2H, ArH) ppm. 13C NMR (100 

MHz, DMSO-d6): 52.4, 101.6, 105.9, 108.8, 122.8, 125.8, 126.7, 128.2, 130.0, 131.5, 

142.5, 147.9, 148.3, 166.4 ppm. 

ST-195 :  1H NMR (400 MHz, DMSO-d6): δ 1.33 (t, J =14.0 Hz, 3H, -CH3), 3.66 (s, 3H, 

-OCH3), 3.82 (s, 6H, -OCH3), 4.04 (dd, J =20.8 Hz, J =6.8 Hz,  2H, -CH2), 6.88 (s, 2H, -

ArH), 6.93 (d, J =8.8 Hz, 2H, ArH), 7.03 (d, J =16.4 Hz, 1H, ArH), 7.17 (d, J =16.4 Hz, 

1H, ArH), 7.51 (d, J =8.4 Hz, 1H, ArH) ppm. 13C NMR (100 MHz, DMSO-d6): 15.0, 

56.2, 60.4, 63.4, 103.9, 115.0, 126.6, 127.8, 128.0, 130.0, 133.5, 137.3, 153.4, 158.5 

ppm. 

ST-200 :  1H NMR (400 MHz, DMSO-d6): δ 2.41 (s, 3H, -CH3), 3.68 (s, 3H, -OCH3), 

3.84 (s, 6H, -OCH3), 6.94 (s, 2H, -ArH), 7.05 (d, J =16 Hz, 1H, ArH), 7.19-7.16 (m, 3H, 

ArH), 7.37 (d, J =16.4 Hz, 1H, ArH), 7.63 (d, J =9.6 Hz, 1H, ArH) ppm. 13C NMR (100 

MHz, DMSO-d6): 20.0, 56.3, 60.5, 104.5, 125.5, 125.9, 126.5, 127.7, 130.4, 130.7, 

133.4, 135.8, 136.4, 137.8, 153.5 ppm. 

ST-197:  1H NMR (400 MHz, DMSO-d6): δ 3.67 (s, 3H, -OCH3), 3.83 (s, 6H, -OCH3), 

6.92 (s, 2H, -ArH), 7.11-7.25 (m, 4H, ArH), 7.19-7.16 (m, 3H, ArH), 7.62 (dd, J =14.8 
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Hz, J =6.0Hz, 2H, -CH2) ppm. 13C NMR (100 MHz, DMSO-d6): 56.3, 60.5, 104.3, 

115.9, 116.1, 127.0, 128.5, 128.6, 128.9, 128.9, 133.1, 134.2, 134.2, 137.7, 153.4, 160.7, 

163.2 ppm. 

ST-203 :  1H NMR (400 MHz, DMSO-d6): δ 3.78 (s, 6H, -OCH3), 3.85 (s, 3H, -OCH3), 

6.46 (s, 1H, -ArH), 6.83 (s, 2H, ArH), 7.35 (s, 2H, ArH), 7.73 (d, J =8 Hz, 2H, ArH), 

7.96 (d, J =8 Hz, 2H, ArH) ppm. 13C NMR (100 MHz, DMSO-d6): 52.4, 55.6, 100.9, 

105.3, 127.1, 128.2, 128.7, 130.0, 131.7, 139.0, 142.2, 161.1, 166.4 ppm. 

ST-209 :  1H NMR (400 MHz, DMSO-d6): δ 1.33 (t, J =11.2 Hz, 3H, -CH3), 3.75 (s, 3H, 

-OCH3), 3.81 (s, 3H, -OCH3), 4.03 (d, J =6.4 Hz, 2H, -CH2), 6.90-6.92 (m, 3H, -ArH), 

7.02-7.05 (m, 3H, -ArH), 7.20 (s, 1H, -ArH), 7.49 (d, J =8.0 Hz, 2H, ArH) ppm. 13C 

NMR (100 MHz, DMSO-d6): 15.1, 55.9, 63.4, 109.4, 112.2, 115.0, 119.9, 126.4, 126.5, 

127.8, 130.3, 130.8, 148.8, 149.3, 158.3 ppm. 

ST-210:  1H NMR (400 MHz, DMSO-d6): δ 3.78 (s, 3H, -OCH3), 3.83 (s, 3H, -OCH3), ), 

3.85 (s, 3H, -OCH3), 6.98 (d, J =8.4 Hz, 1H, ArH), 7.16 (d, J =9.6 Hz, 1H, ArH), 7.24 (d, 

J =16.4 Hz, 1H, ArH), 7.29 (d, J =1.6 Hz, 1H, ArH), 7.37 (d, J =16.4 Hz, 1H, ArH), 7.71 

(d, J =8.4 Hz, 2H, ArH) ppm. 13C NMR (100 MHz, DMSO-d6): 52.4, 55.9, 109.8, 112.1, 

1210.0, 125.4, 126.6, 128.1, 1293.9, 130.0, 131.8, 142.7, 149.4, 149.7, 166.4 ppm. 

ST-212 :  1H NMR (400 MHz, DMSO-d6): δ 3.76 (s, 3H, -OCH3), 3.76 (s, 3H, -OCH3), 

3.81 (s, 3H, -OCH3), 6.94-6.91 (m, 3H, ArH), 7.10-6.98 (m, 3H, ArH), 7.20 (s, 1H, -

ArH), 7.51 (d, J =8.4 Hz, 1H, ArH) ppm. 13C NMR (100 MHz, DMSO-d6): 55.5, 55.9, 

55.9, 109.4, 112.2, 114.5, 119.9, 126.3, 126.5, 127.8, 130.4, 130.7, 148.8, 149.3, 159.0 

ppm. 
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ST-211:  1H NMR (400 MHz, DMSO-d6): δ 3.76 (s, 3H, -OCH3), 3.82 (s, 3H, -OCH3), 

6.95 (d, J =8.4 Hz, 1H, ArH), 7.07-7.23 (m, 6H, ArH), 7.59 (t, J =14 Hz, 2H, ArH) 

ppm. 13C NMR (100 MHz, DMSO-d6): 55.9, 55.9, 109.6, 112.1, 115.8, 116.0, 120.3, 

125.5, 128.3, 128.3, 128.8, 130.3, 134.4, 149.1, 149.3 ppm. 

ST-213 :  1H NMR (400 MHz, DMSO-d6): δ 2.32 (s, 3H, -CH3), 3.76 (s, 3H, -OCH3), 

3.82 (s, 3H, -OCH3), 6.95 (d, J =8.4 Hz, 1H, ArH), 7.04-7.26 (m, 6H, ArH), 7.35 (d, J =8 

Hz, 1H, ArH), 7.39 (s, 1H, ArH) ppm. 13C NMR (100 MHz, DMSO-d6): 21.4, 55.9, 55.9, 

109.6, 112.2, 120.2, 123.8, 126.7, 127.0, 128.3, 128.6, 128.9, 130.4, 137.7, 138.1, 149.1, 

149.3 ppm. 

ST-214 :  1H NMR (400 MHz, DMSO-d6): δ 2.33 (s, 3H, -CH3), 3.77 (s, 3H, -OCH3), 

3.81 (s, 3H, -OCH3), 6.94 (d, J =8 Hz, 1H, ArH), 7.02-7.25 (m, 6H, ArH), 7.34 (d, J =8 

Hz, 1H, ArH), 7.41 (s, 1H, ArH) ppm. 13C NMR (100 MHz, DMSO-d6): 20.9, 55.7, 55.9, 

101.3, 116.2, 124.2, 125.8, 126.5, 127.6, 128.5, 128.7, 129.9, 132.8, 134.3, 136.1, 149.7, 

151.4 ppm. 

ST-220:  1H NMR (400 MHz, DMSO-d6): δ 1.35 (t, J =11.2 Hz, 3H, -CH3), 3.74 (s, 3H, 

-OCH3), 3.80 (s, 3H, -OCH3), 4.02 (d, J =6.4 Hz, 2H, -CH2), 6.90-6.92 (m, 3H, -ArH), 

7.02-7.04 (m, 3H, -ArH), 7.21 (s, 1H, -ArH), 7.48 (d, J =8.0 Hz, 2H, ArH) ppm. 13C 

NMR (100 MHz, DMSO-d6): 15.3, 55.8, 63.4, 109.4, 112.2, 115.0, 119.9, 126.4, 126.5, 

127.8, 130.3, 130.8, 148.9, 149.1, 158.5 ppm. 

ST-121 :  1H NMR (400 MHz, DMSO-d6): δ 3.67 (s, 3H, -OCH3), 3.85 (s, 3H, -OCH3), 

3.87 (s, 3H, -OCH3), 6.97 (s, 2H, -ArH), 7.36 (d, J =7.2 Hz, 2H, ArH), 7.71 (d, J =8.0 

Hz, 2H, ArH), 7.98 (d, J =8.4 Hz, 2H, ArH) ppm. 13C NMR (100 MHz, DMSO-d6): 51.1, 
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54.3, 57.5, 60.1, 101.1, 123.8, 127.0, 128.4, 131.1, 131.8, 137.1, 142.8, 150.1, 161.6 

ppm. 

ST-226:  1H NMR (400 MHz, DMSO-d6): δ 3.77 (s, 6H, -OCH3), 6.46 (d, J =6.4 Hz, 2H, 

-CH2), 6.83 (s, 1H, ArH), 7.23-7.37 (m, 5H, -ArH), 7.73-7.86 (m, 6H, -ArH) ppm. 13C 

NMR (100 MHz, DMSO-d6): 55.6, 100.9, 105.3, 127.1, 128.2, 128.5, 128.7, 130.0, 

131.7, 139.0, 142.2, 152.1 ppm. 

ST-227 :  1H NMR (400 MHz, DMSO-d6): δ 1.33 (t, J =12.4 Hz, 3H, -CH3), 4.04 (dd, J 

=20.8 Hz, J =6.8 Hz,  2H, -CH2), 6.88 (d, J =6.8 Hz, 2H, -CH2), 6.93 (d, J =8.8 Hz, 2H, 

ArH), 7.25-7.38 (m, 6H, -ArH), 7.71-7.77 (m, 4H, -ArH) ppm. 13C NMR (100 MHz, 

DMSO-d6): 15.3, 56.2, 103.9, 115.0, 126.6, 126.8, 127.8, 128.0, 130.0, 131.1, 132.5, 

133.5, 137.3, 153.4, 154.5 ppm. 

ST-228:  1H NMR (400 MHz, DMSO-d6): δ 3.67 (s, 3H, -OCH3), 6.97 (s, 2H, -ArH), 

7.36 (d, J =7.2 Hz, 2H, ArH), 7.71 (d, J =8.0 Hz, 2H, ArH), 7.98 (d, J =8.4 Hz, 2H, ArH) 

ppm. 13C NMR (100 MHz, DMSO-d6): 51.1, 101.1, 111.2, 115.4, 120.6, 123.8, 127.0, 

127.4, 127.8, 128.4, 131.1, 137.1, 142.8, 150.1, 161.6 ppm. 

ST-230:  1H NMR (400 MHz, DMSO-d6): δ 3.73 (s, 3H, -OCH3), 6.97 (d, J =7.2 Hz, 2H, 

ArH), 7.36 (d, J =7.2 Hz, 2H, ArH), 7.46-7.53 (m, 11H, -ArH) ppm. 13C NMR (100 

MHz, DMSO-d6): 55.8, 111.5, 125.3, 125.6, 126.7, 129.5, 130.2, 131.4, 140.5, 142.3, 

158.3 ppm. 

ST-237 :  1H NMR (400 MHz, DMSO-d6): δ 1.34 (t, J =13.6 Hz, 3H, -CH3), 4.06 (dd, J 

=20.8 Hz, J =6.8 Hz,  2H, -CH2), 6.96 (d, J =8.4 Hz, 2H, ArH), 7.23-7.37 (m, 2H, -ArH), 

7.46-7.50 (m, 2H, -ArH), 7.58 (d, J =8.4 Hz, 2H, ArH), 7.82-7.90 (m, 3H, -ArH), 6.37 (s, 

49 
 



1H, -ArH) ppm. 13C NMR (100 MHz, DMSO-d6): 15.1, 63.5, 115.1, 123.9, 126.1, 126.4, 

126.8, 128.0, 128.1, 128.3, 128.5, 129.1, 129.9, 132.7, 133.7, 135.4, 158.7 ppm. 

ST-233 :  1H NMR (400 MHz, DMSO-d6): δ 3.67 (s, 3H, -OCH3), 3.78 (s, 6H, -OCH3), 

3.83 (s, 6H, -OCH3), 6.40 (s, 1H, -ArH), 6.77 (d, J =2 Hz, 2H, ArH), 6.92 (s, 2H, ArH), 

7.13-7.24 (m, 2H, -ArH) ppm. 13C NMR (100 MHz, DMSO-d6): 55.6, 56.2, 60.5, 100.3, 

104.3, 104.6, 128.2, 129.5, 133.0, 137.7, 139.6, 153.4, 161.0 ppm. 

ST-234:  1H NMR (400 MHz, DMSO-d6): δ 3.73 (s, 12H, -OCH3), 6.43 (s, 2H, -ArH), 

6.77 (d, J =8 Hz, 2H, ArH), 6.92 (s, 4H, ArH) ppm. 13C NMR (100 MHz, DMSO-d6): 

55.6, 99.6, 105.2, 127.4, 140.2, 158.4 ppm. 

ST-238:  1H NMR (400 MHz, DMSO-d6): δ 3.73 (s, 3H, -OCH3), 7.18-7.30 (m, 3H, 

ArH), 7.45-7.55 (m, 3H, ArH), 7.75 (d, J =7.6 Hz, 1H, ArH), 7.87-7.90 (m, 3H, ArH), 

8.01 (s, 1H, ArH) ppm. 13C NMR (100 MHz, DMSO-d6): 55.6, 121.5, 124.7, 125.4, 

126.7, 126.8, 127.4, 128.0, 128.3, 128.6, 130.2, 130.8, 132.1, 133.7, 135.3, 136.5, 140.1 

ppm. 

ST-239 :  1H NMR (400 MHz, DMSO-d6): δ 3.75 (s, 3H, -OCH3), 6.81 (d, J =8.4 Hz, 

2H, ArH), 7.25-7.36 (m, 2H, -ArH), 7.45-7.59 (m, 2H, -ArH), 7.61 (d, J =8.0 Hz, 2H, 

ArH), 7.80-7.97 (m, 4H, -ArH), 6.37 (s, 1H, -ArH) ppm. 13C NMR (100 MHz, DMSO-

d6): 55.5, 110.4, 122.4, 125.2, 125.4, 126.1, 128.2, 128.3, 128.3, 128.8, 129.1, 129.5, 

132.8, 132.9, 133.2, 152.3 ppm. 

ST-240:  1H NMR (400 MHz, DMSO-d6): δ 2.43 (s, 3H, -CH3), 7.08-7.26 (m, 3H, ArH), 

7.45-7.52 (m, 3H, ArH), 7.71 (d, J =8 Hz, 1H, ArH), 7.84-7.99 (m, 4H, ArH) ppm. 13C 
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NMR (100 MHz, DMSO-d6): 19.7, 119.5, 121.5, 124.1, 125.7, 126.8, 126.9, 128.0, 

128.3, 128.6, 131.1, 132.9, 133.4, 133.9, 134.3, 134.4, 135.3 ppm. 

ST-241:  1H NMR (400 MHz, DMSO-d6): δ 2.45 (s, 3H, -CH3), 7.19-7.31 (m, 3H, ArH), 

7.48-7.59 (m, 3H, ArH), 7.73 (d, J =7.6 Hz, 1H, ArH), 7.89-7.92 (m, 3H, ArH), 8.03 (s, 

1H, ArH) ppm. 13C NMR (100 MHz, DMSO-d6): 20.03, 124.25, 125.5, 126.4, 126.6, 

126.8, 126.9, 128.0, 128.3, 128.6, 130.1, 130.8, 133.0, 133.7, 135.3, 136.0, 136.2 ppm. 

ST-242:  1H NMR (400 MHz, DMSO-d6): δ 6.82 (d, J =8.0 Hz, 2H, ArH), 7.22-7.35 (m, 

2H, -ArH), 7.46-7.61 (m, 2H, -ArH), 7.72 (d, J =8.4 Hz, 2H, ArH), 7.82-7.999 (m, 4H, -

ArH), 6.65 (s, 1H, -ArH) ppm. 13C NMR (100 MHz, DMSO-d6): 113.5, 122.4, 125.2, 

125.4, 125.5, 127.2, 128.2, 128.3, 128.8, 129.1, 129.5, 132.8, 133.7, 135.4, 159.5 ppm. 

ST-243:  1H NMR (400 MHz, DMSO-d6): δ 7.19-7.31 (m, 3H, ArH), 7.48-7.59 (m, 3H, 

ArH), 7.73 (d, J =7.6 Hz, 1H, ArH), 7.89-7.92 (m, 3H, ArH), 8.03 (s, 1H, ArH) ppm. 13C 

NMR (100 MHz, DMSO-d6): 111.7, 125.5, 126.4, 126.6, 126.8, 126.9, 128.0, 128.3, 

128.6, 130.1, 131.8, 133.1, 133.5, 134.3, 135.0, 154.2 ppm. 

ST-245:  1H NMR (400 MHz, DMSO-d6): δ 1.34 (t, J =11.2 Hz, 3H, -CH3), 3.99 (s, 3H, 

-OCH3), 4.05 (dd, J =20.4 Hz, J =6.8 Hz,  2H, -CH2), 6.95 (d, J =8.4 Hz, 2H, ArH), 7.02 

(d, J =7.6 Hz, 1H, ArH), 7.11 (d, J =16 Hz, 1H, ArH), 7.51-7.65 (m, 4H, -ArH), 7.75-

7.82 (m, 2H, -ArH), 8.21 (d, J =8.0 Hz, 1H, ArH), 8.35 (d, J =8.4 Hz, 1H, ArH) ppm. 13C 

NMR (100 MHz, DMSO-d6): 15.3, 55.8, 63.4, 109.4, 112.2, 115.0, 119.9, 126.4, 126.5, 

127.8, 130.3, 130.8, 148.9, 149.1, 158.5 ppm. 

ST-246:  1H NMR (400 MHz, DMSO-d6): δ 3.64 (s, 3H, -OCH3), 3.75 (s, 3H, -OCH3), 

6.37 (s, 1H, -ArH), 6.74 (d, J =1.6 Hz, 2H, ArH), 6.89 (s, 1H, ArH), 7.16 (dd, J =42 Hz, J 
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=16.4 Hz,  2H, -CH2) ppm. 13C NMR (100 MHz, DMSO-d6): 55.6, 56.2, 60.5, 100.3, 

104.3, 104.6, 128.2, 129.5, 133.0, 137.7, 139.6, 153.4, 161.0 ppm. 

ST-247:  1H NMR (400 MHz, DMSO-d6): δ  3.65 (s, 3H, -OCH3), 3.67 (s, 3H, -OCH3), 

6.75 (d, J =8.0 Hz, 2H, ArH), 7.12 (d, J =8.4 Hz, 1H, ArH), 7.11 (d, J =8.4 Hz, 1H, 

ArH), 7.51-7.65 (m, 4H, -ArH), 7.75-7.82 (m, 2H, -ArH), 8.19 (d, J =8.4 Hz, 1H, ArH), 

8.24 (d, J =8.0 Hz, 1H, ArH) ppm. 13C NMR (100 MHz, DMSO-d6): 55.8, 55.9, 104.6, 

112.2, 116.1, 120.4, 126.4, 126.5, 127.8, 130.3, 131.4, 144.1, 145.5, 158.5 ppm. 

ST-268:  1H NMR (400 MHz, DMSO-d6): δ 1.35 (t, J =12.4 Hz, 3H, -CH3), 4.01 (dd, J 

=16.4 Hz, J =8.0 Hz,  2H, -CH2), 4.15 (s, 4H, -CH2), 6.85 (d, J =8.8 Hz, 1H, ArH), 7.06-

7.13 (m, 4H, ArH), 7.15 (t, J =17.6 Hz, 2H, ArH), 7.56-7.60 (m, 2H, ArH) ppm. 13C 

NMR (100 MHz, DMSO-d6): 15.1, 59.1, 64.4, 64.6, 115.1, 115.8, 116.0, 117.6, 120.2, 

125.9, 128.2, 128.3, 128.4, 128.5, 131.9, 134.3, 145.1, 149.1 ppm. 

ST-269 :  1H NMR (400 MHz, DMSO-d6): δ 3.85 (s, 3H, -OCH3), 4.26(s, 4H, -CH2), 

6.88 (d, J =8.4 Hz, 1H, ArH), 7.10-7.18 (m, 3H, ArH), 7.32 (d, J =16.4 Hz, 1H, ArH), 

7.69 (d, J =8.4 Hz, 2H, ArH), 7.93 (d, J =8.4 Hz, 2H, ArH) ppm. 13C NMR (100 MHz, 

DMSO-d6): 52.4, 64.4, 64.6, 115.5, 117.7, 120.7, 125.8, 126.7, 128.2, 130.0, 130.5, 

131.3, 142.5, 143.9, 144.2, 166.4 ppm. 

ST-270:  1H NMR (400 MHz, DMSO-d6): δ 3.76 (s, 3H, -OCH3), 4.24 (s, 4H, -CH2), 

6.83 (d, J =8 Hz, 1H, ArH), 6.93 (d, J =8.4 Hz, 2H, ArH), 6.97-7.07 (m, 4H, ArH), 7.49 

(d, J =8.8 Hz, 2H, ArH) ppm. 13C NMR (100 MHz, DMSO-d6): 55.5, 64.4, 64.5, 114.5, 

114.8, 117.6, 119.9, 126.0, 126.7, 127.9, 130.3, 131.4, 143.2, 143.9, 159.1 ppm.   
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ST-273:  1H NMR (400 MHz, DMSO-d6): δ 4.25 (s, 4H, -CH2), 6.85 (d, J =8.8 Hz, 1H, 

ArH), 7.07-7.11 (m, 4H, ArH), 7.18 (t, J =17.6 Hz, 2H, ArH), 7.57-7.61 (m, 2H, ArH) 

ppm. 13C NMR (100 MHz, DMSO-d6): 64.4, 64.6, 115.1, 115.8, 116.0, 117.6, 120.2, 

125.9, 128.2, 128.3, 128.4, 128.5, 130.9, 134.3, 143.6, 143.9 ppm. 

ST-274:  1H NMR (400 MHz, DMSO-d6): δ 4.25 (s, 4H, -CH2), 6.84 (d, J =8.4 Hz, 1H, 

ArH), 7.05-7.17 (m, 4H, ArH), 7.40 (d, J =8.4 Hz, 2H, ArH), 7.57 (d, J =8.8 Hz, 2H, 

ArH) ppm. 13C NMR (100 MHz, DMSO-d6): 64.4, 64.6, 115.2, 117.6120.4, 1255.7, 

128.2, 129.0, 129.2, 130.8, 131.8, 136.9, 136.6, 143.8, 143.9 ppm. 

ST-275:  1H NMR (400 MHz, DMSO-d6): δ 4.19 (s, 4H, -CH2), 6.79 (d, J =8.8 Hz, 1H, 

ArH), 7.10-7.15 (m, 4H, ArH), 7.21 (t, J =17.6 Hz, 2H, ArH), 7.59-7.63 (m, 2H, ArH) 

ppm. 13C NMR (100 MHz, DMSO-d6): 64.7, 64.7, 113.2, 115.8, 116.1, 119.8, 123.7, 

123.9, 128.5, 129.1, 129.4, 129.5, 131.5, 136.3, 144.4, 146.5 ppm. 

ST-295:  1H NMR (400 MHz, DMSO-d6): δ 1.32 (t, J =12.8 Hz, 3H, -CH3), 4.04 (d, J 

=6.4 Hz, 2H, -CH2), 6.94 (d, J =8.4 Hz, 2H, ArH), 7.07 (d, J =16.4 Hz, 1H, ArH), 7.32 

(d, J =16.4 Hz, 1H, ArH), 7.50-7.59 (m, 4H, ArH), 7.82 (s, 1H, ArH) ppm. 13C NMR 

(100 MHz, DMSO-d6): 15.1, 63.5, 115.0, 1238, 126.5, 128.0, 128.5, 129.4, 130.9, 131.1, 

131.8, 138.9, 159.1 ppm. 

ST-297:  1H NMR (400 MHz, DMSO-d6): δ 3.68 (s, 3H, -OCH3), 3.82 (s, 6H, -OCH3), 

6.93 (s, 2H, ArH), 7.23 (d, J =16.4 Hz, 1H, ArH), 7.33 (d, J =16.4 Hz, 1H, ArH), 7.56 (d, 

J =8.4 Hz, 1H, ArH), 7.63 (d, J =8.4 Hz, 1H, ArH), 7.85 (s, 1H, ArH) ppm. 13C NMR 

(100 MHz, DMSO-d6): 56.3, 60.5, 104.6, 125.6, 126.7, 128.2, 129.7, 131.2, 131.4, 131.9, 

132.6, 138.1, 138.6, 153.4 ppm. 
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ST-294:  1H NMR (400 MHz, DMSO-d6): δ 3.77 (s, 3H, -OCH3), 6.96 (d, J =8.4 Hz, 2H, 

ArH), 7.08 (d, J =16.4 Hz, 1H, ArH), 7.32 (d, J =16.4 Hz, 1H, ArH), 7.52-7.58 (m, 4H, 

ArH), 7.81 (s, 1H, ArH) ppm. 13C NMR (100 MHz, DMSO-d6): 55.5, 114.6, 123.9, 

126.5, 128.0, 128.5, 129.4, 129.5, 130.8, 131.1, 131.8, 138.8, 159.8 ppm. 

ST-298:  1H NMR (400 MHz, DMSO-d6): δ 2.33 (s, 3H, -CH3), 7.12 (d, J =7.2 Hz, 1H, 

ArH), 7.24-7.42 (m, 4H, ArH), 7.61 (dd, J =8.4 Hz, J =15.2 Hz, 2H, ArH), 7.88 (s, 1H, 

ArH) ppm. 13C NMR (100 MHz, DMSO-d6): 21.4, 124.5, 126.1, 126.9, 127.6, 128.4, 

129.1, 129.3, 131.2, 131.3, 136.8, 138.2, 138.5 ppm. 

ST-290:  1H NMR (400 MHz, DMSO-d6): δ 7.22 (s, 1H, ArH), 7.91-7.93 (m, 3H, ArH), 

7.88 (s, 1H, ArH), 8.30-8.34 (m, 3H, ArH) ppm. 13C NMR (100 MHz, DMSO-d6): 106.7, 

108.0, 117.9, 121.9, 124.8, 126.7, 137.5, 140.2, 146.1, 147.4, 149.6 ppm. 

ST-283:  1H NMR (400 MHz, DMSO-d6): δ 2.33 (s, 6H, ArH), 7.46 (d, J =6.8 Hz, 2H, 

ArH), 7.24-7.28 (m, 6H, ArH), 7.38-7.44 (m, 4H, ArH), 7.60 (s, 4H, ArH) ppm. 13C 

NMR (100 MHz, DMSO-d6): 19.8, 121.5, 123.5, 124.1, 125.5, 126.4, 127.4, 127.6, 

128.2, 128.8, 135.2 ppm. 

ST-284:  1H NMR (400 MHz, DMSO-d6): δ 2.42 (s, 6H, ArH), 7.12-7.21 (m, 8H, ArH), 

7.46 (d, J =16.4 Hz, 2H, ArH), 7.64-7.69 (m, 6H, ArH) ppm. 13C NMR (100 MHz, 

DMSO-d6): 19.2, 124.2, 124.8, 124.9, 125.5, 126.4, 127.4, 127.4, 128.6, 129.5, 136.7 

ppm. 

NI-ST-11: 1H NMR (400 MHz, DMSO-d6): δ 3.67 (s, 3H, -OCH3), 3.82 (s, 6H, -OCH3), 

6.93 (s, 2H, -ArH), 7.32 (s, 2H, -ArH), 8.41 (s, 2H, -ArH) ppm. 13C NMR (100 MHz, 
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DMSO-d6): 56.7, 56.8, 61.0, 104.9, 124.8, 127.5, 129.1, 131.5, 133.2, 138.5, 141.4, 

146.0, 154.0 ppm. 

NI-ST-12: 1H NMR (400 MHz, DMSO-d6): δ 3.67 (s, 3H, -OCH3), 3.82 (s, 6H, -OCH3), 

3.94 (s, 3H, -OCH3), 6.92 (s, 2H, -ArH), 7.24 (s, 2H, -ArH), 7.34 (d, J =8.0 Hz, 1H, 

ArH), 7.85 (d, J =8.0 Hz, 1H, ArH), 8.09 (s, 1H, -ArH), 8.52 (s, 2H, -ArH) ppm. 13C 

NMR (100 MHz, DMSO-d6): 56.6, 60.2, 103.6, 112.4, 114.6, 124.6, 127.4, 127.5, 130.5, 

131.2, 134.5, 140.4, 145.4, 149.5, 152.3 ppm. 

DNR-1; 1H NMR (400 MHz, DMSO-d6): δ 3.76 (s, 6H, -OCH3), 6.33 (s, 1H, -ArH), 

6.71 (s, 2H, -ArH), 6.83 (d, 1H, -ArH, J = 16.4 Hz), 7.12 (d, 1H, -ArH J = 16 Hz), 8.10 

(s, 2H, -ArH) ppm. 13C NMR (DMSO-d6, ppm): δ 55.5, 99.6, 104.2, 110.0, 113.5, 124.2, 

128.1, 128.5, 140.7, 143.6, 159.7, 161.0 ppm. 

ST-208 :  1H NMR (400 MHz, DMSO-d6): δ 3.77 (s, 3H, -OCH3), 3.81 (s, 3H, -OCH3), 

6.94 (d, 1H, -ArH J = 8 Hz), 7.09 (d, 1H, -ArH J = 9.6 Hz), 7.15 (s, 1H, -ArH), 7.19 (s, 

1H, -ArH), 7.24 (d, J =1.6 Hz, 1H, ArH), 7.41 (d, 2H, -ArH J = 8 Hz), 7.59 (d, 2H, -ArH 

J = 8.4Hz) ppm. 13C NMR (100 MHz, DMSO-d6): 55.9, 109.6, 112.1, 120.6, 125.3, 

128.1, 129.1, 129.7, 130.1, 131.8, 136.8, 149.3 ppm. 

2.3 Synthesis of (E)-3,5,4’-trimethoxy resveratrol analogues with substitutions at the 
C2 position on the stilbene. 

 

2.3.1 Prior studies with this scaffold 

Structure-activity relationship studies on the resveratrol molecule identified trans-3,5,4’-

trimethoxy-resveratrol as a lead drug candidate and further SAR studies revealed that 
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various substitutions at the C2 position on trans-3,5,4’ -trimethoxy-resveratrol led to 

enhanced cytotoxic activity against a variety of tumor cell lines (Figure 2.3). 
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(B) (E)-2,4-dimethoxy-6-(4-
methoxystyryl)benzaldehyde

(C) (E)-N-(2,4-dimethoxy-6-(4-methoxystyryl)
benzylidene)cyclopentanamine

(D) (E)-3-(2,4-dimethoxy-6-(4-
methoxystyryl)phenyl)-1-(3,4-

dimethoxyphenyl)prop-2-en-1-one

(E) (E)-3-(2,4-dimethoxy-6-(4-methoxystyryl)phenyl)
-2-(pyrrolidine-1-carbonyl)acrylonitrile

(F) N-((E)-2-cyano-3-(2,4-dimethoxy-6-(4-
methoxystyryl)phenyl)acryloyl)nicotinamide  

Figure 2.3 Structures of trans-3,5,4’-trimethoxystilbene and its potent analogs. 

In 2006, Huang et al. reported that O-methylation of resveratrol caused an increase in 

cytotoxicity and that introduction of a formyl group (B) or an alkyl amine moiety (C) at 

the C2 position on the trans-3,5,4’-trimethoxystilbene scaffold (A) led to an enhanced 

cytotoxic activity (Huang, Ruan et al. 2007). In related studies, Ruan et al. have reported 

the antitumor activity of resveratrol derivatives possessing a chalcone moiety (Figure 

2.3. Structure D); these analogues exhibited potent anti-proliferative and antitubulin 
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activities, and compound D inhibited the growth of cancer cell lines HepG2, B16-F10, 

and A549 with IC50 values of 0.2, 0.1, and 1.4 μg/mL, respectively.(Ruan, Lu et al. 

2011). Recently, Raun and co-workers reported compounds E and F to be the most potent 

among the trans-3,5,4’-trimethoxystilbene acrylamides amine derivatives. Compounds E 

had the best cytotoxicity against the HuH-7 cell line and its IC50 was 4.5 μmol/L; and 

compound F had the best anti-tumor activity against the K562 cell line with an IC50 of 

2.9 μmol/L. 

2.3.2 Chemistry and analytical data 

Based on the structure-activity relationship analysis of the above mentioned literature, it 

is evident that substitutions at the C2 position of the trans-3,5,4’-trimethoxystilbene 

scaffold (Figure 2.3, A) leads to enhanced cytotoxic activity along with increased tubulin 

binding capacity. In this respect, we have synthesized a range of trans-3,5,4’-trimethoxy 

resveratrol analogs with substitutions at the C2 position. We designed and synthesized a 

series of novel trans-3,5,4’-trimethoxy resveratrol analogs incorporating an α,β-

unsaturated double bond conjugated to different five, and six membered heterocyclic and 

bicyclic quinuclidinone ring systems Scheme 2.2 and Scheme 2.3. Also, we synthesized 

a series of 3,5,4’-trimethoxy resveratrol analogs with acrylonitrile substitutions at the C2 

position Scheme 2.3. 
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Scheme 2.2 Synthesis of resveratrol analogs with heterocyclic ring substitutions at the C2 
position. (a) MeI, K2CO3, acetone; (a) POCl3, DMF,  0 oC, 69% yield; (b) barbituric acid 
or thiobarbituric acid,  methanol, RT, 6 hrs, 95-96% yield; (c) five membered active 
methylene compound, NH4OAc, AcOH, MWI, 1-2 min, 94-97% yield; (d) isobarbituric 
acid, ethanol, reflux, 4 hrs, 60% yield. 

 

The procedure for synthesizing compound RES-11 involves O-methylating the hydroxyl 

groups on resveratrol with MeI/ K2CO3 in acetone followed by formylation of (E)-1,3-

dimethoxy-5-(4-methoxystyryl) benzene in the presence of a slight excess of POCl3 in 

DMF at 0 0C for 30 min yielding trans-2-formyl-3,4′,5-trimethoxy stilbene (RES-11). 

(RES-11): 1H NMR (DMSO-d6):3.78 (s, 3H), 3.90 (s, 3H), 3.92 (s, 3H), 6.63 (s, 1H), 

6.91 (s, 1H), 6.97 (d, 2H, J = 7.9 Hz), 7.21 (d, 1H, J = 16.2 Hz), 7.50 (d, 2H, J =7.9 Hz), 
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7.95 (d, 1H, J = 16.2 Hz), 10.41 (s, 1H) ppm. 13C-NMR (DMSO-d6): 55.8, 56.1, 101.2, 

102.5, 109.8, 114.3, 129.4, 130.5, 131.4, 139.7, 162.5, 167.8, 193.5 ppm. 

 The novel resveratrol analogs (RES-09 to RES-27) were then prepared by aldol 

condensation of RES-11 with an appropriate active methylene compound, utilizing a 

variety of reaction conditions, i.e., ammonium acetate in acetic acid under microwave 

irradiation (MWI) conditions, by refluxing the reactants in ethanol, or by stirring the 

reaction at ambient temperature in methanol. The synthetic routes to the resveratrol 

analogs RES-09 to RES-27 are illustrated in Scheme 2.2. 

RES-09: 1HNMR (DMSO-d6): δ 3.72-3.86 (m, 9H, 3 -OCH3), 6.38 (d, 1H, J=24 Hz, 

C6H), 6.79 (d, 1H, C4H), 6.81-6.96 (m, 3H, C8H, C11H, C13H), 7.11 (s, 1H, C7H, 

C15H), 7.43-7.48 (m, 3H) ppm.13C-NMR (DMSO-d6): δ 55.3, 55.5, 55.8, 55.8, 56.1, 

97.3, 97.7, 102.2, 111.4, 113.8, 124.6, 127.6, 127.5, 129.1, 129.7, 129.9, 131.8, 132.4, 

139.5, 159.0, 159.8, 162.6, 167.3, 169.8 ppm; mp: 146-148 oC.  

RES-10: 1H NMR (DMSO-d6):  δ  3.78 (d, 6H, -OCH3), 3.84 (s, 3H,  -OCH3), 6.25(s, 

1H, C6H), 6.73 (s, 1H,- Ar), 6.78 (d, 1H, J=1.8Hz,  C4H), 6.89 (d, 2H, C7H ,C8H, J=8.7 

Hz), 6.95 (d, 2H, C11H,C13H,  J=4.5 Hz), 7.35 (d, 2H, J=8.7) ppm. 13C-NMR (DMSO-

d6): δ  56.4, 55.7, 55.9,100.6, 101.7, 109.4, 114.5, 123.4, 129.7, 130.2, 131.4, 136.7, 

148.4, 158.7, 158.9,160.4, 166.5, 166.9, 175.4  ppm; mp: 187-189oC. 

RES-80: 1H NMR (DMSO-d6):  δ  2.74 (s, 3H, -CH3), 3.20 (s, 3H,  -CH3), 3.64 (s, 3H, -

OCH3), 3.76 (s, 3H,  -OCH3), 3.78 (s, 3H,  -OCH3), 4.00 (s, 1H, ArH), 4.59 (s, 1H,- 

ArH), 6.32 (s, 1H, -ArH), 6.58 (s, 1H, ArH), 6.98 (s, 1H, ArH), 7.04 (d, 2H, J=8.4, ArH), 

7.50 (d, 2H, J=8.4, ArH) ppm. 13C-NMR (DMSO-d6): δ  27.91, 28.5, 48.5, 55.7, 55.7, 
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55.8, 95.5, 99.4, 114.9, 127.0, 128.4, 147.1, 149.9, 151.9, 155.3, 159.5, 161.4.  ppm; mp: 

156-158oC. 

RES-14: 1HNMR (DMSO-d6): δ  3.57 (d, 6H, -OCH3), 3.61 (s, 3H,  -OCH3), 6.35 (d, 

1H, J=24 Hz, C6H), 6.75 (d, 1H, C4H), 6.82-6.94 (m, 3H, C8H, C11H, C13H), 7.17 (s, 

2H, C7H, C15H), 7.39-7.48 (m, 2H) ppm.13C-NMR (DMSO-d6): δ 55.6, 55.8, 56.2, 

100.5, 102.3, 109.4, 114.3, 122.4, 124.5, 127.5, 130.4, 136.7, 154.3, 158.6, 159.1, 161.3, 

163.6.ppm; mp: 123-125 oC. 

RES-27: molecular formula: C22H23NST-624; 1H NMR (DMSO-d6):  δ 2.84 (s, 3H, -

NCH3), 3.81 (d, 6H, -OCH3), 3.89 (s, 3H,  -OCH3), 6.39(s, 1H, C6H), 6.75 (s, 1H, =CH), 

6.79 (d, 1H, J=1.8Hz,  C4H), 6.85 (d, 2H, C7H ,C8H, J=8.7 Hz), 6.99 (d, 2H, 

C11H,C13H,  J=4.5 Hz), 7.38 (d, 2H, C10H,C14H, J=8.7) ppm. 13C-NMR (DMSO-d6): 

δ 29.9,  55.6,  55.7, 55.8, 97.5, 100.9, 106.3, 113.7,114.3, 114.4, 124.2, 128.1, 128.5, 

129.8, 130.7, 135.3, 138.9, 158.8, 159.7, 160.8, 167.9, 176.2 ppm; mp: 162-165oC.  

RES-13: 1HNMR (DMSO-d6): δ 3.81-3.93 (m, 9H, 3 x -OCH3),6.51 (s, 1H, C6H), 6.93-

6.98 (m, 4H, C4H, C8H, C11H, C13H ), 6.27 (d, 1H, C7H ),7.45 (d, 2H, J=12.0 Hz, 

C10H, C14H), 8.34 (d, 1H, J=2 Hz, C15H), 11.21  (s, 1H, NH) ppm. 13CNMR (DMSO-

d6): δ 55.6, 55.9, 56.1, 101.4, 114.3, 120.4, 126.4, 129.8, 131.4, 131.6, 137.5, 139.6, 

157.5, 159.4, 161.3, 165.6, 175.9. ppm; mp: 112-114 oC. 

RES-16: 1HNMR (DMSO-d6): δ 3.77 (s, 3H, -OCH3), 3.91 (s, 3H, -OCH3), 3.93 (s, 3H, 

-OCH3),6.54 (s, 1H, C6H), 6.61 (d, 1H, C7H ), 6.81-6.87 (m, 4H, C4H, C8H, C11H, 

C13H ), 7.24 (d, 2H, J=12.0 Hz, C10H, C14H), 8.22 (d, 1H, J=2 Hz, C15H) 

60 
 



ppm. 13CNMR (DMSO-d6): δ 54.6, 55.1, 100.4, 102.4, 112.4, 116.0, 127.9, 130.4, 131.3, 

136.7, 154.3, 160.7, 161.3, 167.6. ppm; mp: 143-144 oC. 

RES-23: Molecular formula: C21H19NO4S2; 1HNMR (DMSO-d6): δ 3.70-3.83 (m, 9H, 3 

-OCH3), 6.31 (d, 1H, J=20.1 Hz, C6H), 6.78 (d, 1H, C4H), 6.86-6.98 (m, 3H, C8H, 

C11H, C13H), 7.11 (s, 2H, C7H, C15H), 7.41-7.48 (m, 2H) ppm.13C-NMR (DMSO-d6): 

δ 55.4, 55.5, 55.6, 55.9, 56.0, 97.8, 97.9, 103.2, 113.7, 114.6, 123.7, 126.9, 128.6, 128.7, 

129.1, 129.8, 132.6, 139.5, 159.0, 159.8, 162.3, 167.6, 169.0 ppm; mp: 130-135 oC.  

RES-18: Molecular formula: C22H20N2O6; 1HNMR (DMSO-d6): δ 3.81-3.93 (m, 9H, 3 x 

-OCH3),6.57 (s, 1H, C6H), 6.96-6.99 (m, 4H, C4H, C8H, C11H, C13H ), 6.15 (d, 1H, 

C7H ),7.54 (d, 2H, J=8.5 Hz, C10H, C14H), 8.32 (d, 1H, J=2 Hz, C15H), 11.0 (s, 1H,  

NH), 11.36  (s, 1H, NH) ppm. 13CNMR (DMSO-d6): δ 53.3, 55.5, 55.6, 55.9, 55.9, 56.2, 

56.3, 97.55, 97.6, 102.1, 102.4, 114.5, 115.6, 121.3, 124.2, 128.6, 129.9, 131.9, 139.7, 

149.7, 150.7 159.4, 159.7, 161.3, 162.4, 163.4 ppm; mp: 141-146 oC. 

RES-17: 1HNMR (DMSO-d6): δ 3.63 (s, 3H, -OCH3), 3.82 (s, 3H, -OCH3), 3.85 (s, 3H, 

-OCH3),6.55 (s, 1H, C6H), 6.64 (d, 1H, C4H), 6.87-6.96 (m, 3H, C8H, C11H, C13H), 

7.12 (d, 1H, C7H ),7.35 (d, 2H, J=12.0 Hz, C10H, C14H), 8.34 (d, 1H, J=2 Hz, C15H) 

ppm. 13CNMR (DMSO-d6): δ 54.6, 54.7, 55.2, 110.4, 115.8, 121.3, 127.7, 128.6, 131.4, 

131.8, 138.3, 139.9, 147.5, 156.8, 162.3, 165.6, 169.5 ppm; mp: 157-159 oC. 
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Scheme 2.3 Synthesis of resveratrol analogs with bicyclic and acrylonitrile substitutions 
at the C2 position (a) Quinuclidinone, 20% NaOH, EtOH, reflux; (b) NH2OH.HCl, 
AcONa, EtOH; (c) Phenylacetonitrile, NaOMe, EtOH, 6hrs reflux. 

The synthetic procedure for synthesizing compounds ST-98-ST-139 is shown in Scheme 

2.3. Trans-2-formyl-3,4′,5-trimethoxystilbene (RES-11) (1 mmol) and an appropriate 

phenylacetonitrile (1.1 mmol) were dissolved in 10 volumes of EtOH. 50% w/v aq. 

NaOMe was then added and mixture was refluxed for 6 hrs. The reaction was monitored 

by TLC (Thin Layer Chromatography). Once the reaction was completed the organic 

solvent was rota evaporated and purified by flash column chromatography with an 

EA/hexane solvent system, to afford analogs (ST-98)-(ST-139) in yields ranging from 

60-90%.  

ST-98: 1H NMR (DMSO-d6): δ 3.71 (s, 3H, -OCH3), 3.75 (s, 3H, -OCH3), 3.82 (s, 3H,  -

OCH3), 3.85 (s, 6H, -OCH3), 3.89 (s, 3H, -OCH3), 6.61 (s, 1H, ArH), 6.94 (d, J=8.4 Hz, 

2H), 7.00 (S, 3H, ArH), 7.08 (d, J=16 Hz, 2H), 7.28 (d, J=16 Hz, 2H), 7.49 (d, J=8.4 Hz, 

1H),  7.98 (s, 1H, ArH) ppm. 13C-NMR (DMSO-d6): δ 55.1, 55.3, 55.8, 56.1, 56.4, 98.2, 
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101.5, 104.7, 108.1, 110.5, 115.4, 117.6, 114.2, 121.4, 127.6, 131.7, 134.2, 159.7, 160.7, 

162.8 166.7 ppm. 

ST-127: 1H NMR (DMSO-d6): δ 3.74 (s, 3H, -OCH3), 3.81 (s, 6H, -OCH3), 3.84 (s, 3H,  

-OCH3), 3.89 (s, 3H, -OCH3), 6.60 (s, 1H, ArH), 6.93 (d, J=8.4 Hz, 2H), 6.97 (s, 1H, 

ArH), 7.03-7.07 (m, 2H), 7.28 (m, 2H), 7.33 (s, 1H, ArH), 7.47 (d, J=8.4 Hz, 2H), 7.89 

(s, 1H, ArH) ppm. 13C-NMR (DMSO-d6): δ 55.3, 55.4, 56.2, 56.4, 56.8, 56.9, 97.5, 

100.8, 104.7, 108.4, 111.5, 111.8, 114.5, 124.7, 129.5, 131.4, 134.8, 138.4, 147.5, 149.6, 

158.7, 163.8, 164.5 ppm. 

ST-99: 1H NMR (DMSO-d6): δ 3.75 (s, 3H, -OCH3), 3.81 (s, 9H, -OCH3), 3.89 (s, 3H,  -

OCH3), 6.61 (d, J=7.2 Hz, 2H), 6.87 (d, J=1.6 Hz, 2H), 6.94 (d, J=8.8 Hz, 2H), 6.98 (d, 

J=1.2 Hz, 1H),  7.07 (d, 1H, J=16.0 Hz, ArH), 7.27 (d, 1H, J=16.0 Hz, ArH),7.49 (d, 1H, 

J=8.4 Hz, ArH), 8.03 (s, 1H, ArH) ppm. 13C-NMR (DMSO-d6): δ 55.2, 55.8, 55.9, 99.5, 

100.5, 101.7, 109.5, 118.6, 120.5, 114.2, 127.4, 131.4, 136.3, 158.5, 160.7, 161.5. ppm. 

ST-100: 1H NMR (DMSO-d6): δ 3.75 (s, 3H, -OCH3), 3.81 (s, 6H, -OCH3), 3.89 (s, 3H,  

-OCH3), 6.60 (S, 1H, ArH), 6.91-7.07 (m, 6H, J= 64.8 Hz ArH), 7.22 (d, 1H, J= 16.4 Hz, 

ArH), 7.45 (d, 2H, ArH ,J= 8.4 Hz), 7.68 (d, 2H, ArH and J= 8 Hz), 7.83 (s, 1H, 

ArH). 13C-NMR (DMSO-d6): δ 55.6, 55.9, 55.9, 56.1, 98.2, 102.2, 114.7, 115.5, 117.2, 

117.6, 123.7, 126.1, 128.5, 129.6, 129.7, 129.9, 131.6, 133.8, 138.9, 139.4, 158.9, 159.7, 

161.6  ppm. 
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ST-128: 1H NMR (DMSO-d6): δ 3.78 (s, 3H, -OCH3), 3.86 (s, 3H, -OCH3), 3.88 (s, 3H,  

-OCH3), 6.18 (s, 1H, ArH), 6.75 (d, J=8.6 Hz, 2H), 6.83 (s, 2H, ArH), 7.12 (d, 1H, 

J=16.0 Hz, ArH), 7.28 (d, 1H, J=16.0 Hz, ArH), 7.43-7.50 (m, 6H, ArH), 7.77 (d, 2H, J= 

8.4 Hz, ArH), 8.01 (s, 1H, ArH). 13C-NMR (DMSO-d6): δ 55.7, 55.2, 56.4, 99.1, 101.2, 

114.7, 117.3, 117.9, 118.9, 124.8, 126.6, 127.6, 128.2, 129.5, 129.8, 131.9, 135.4, 138.5, 

140.2, 158.6, 158.8, 162.4  ppm. 

ST-139: 1H NMR (DMSO-d6): δ 3.74 (s, 3H, -OCH3), 3.82 (s, 3H, -OCH3), 3.89 (s, 3H,  

-OCH3), 6.13 (s, 1H, ArH), 6.93 (d, J=8.8 Hz, 2H), 6.98 (s, 2H, ArH), 7.08 (d, 1H, 

J=16.4 Hz, ArH), 7.22 (d, 1H, J=16.4 Hz, ArH), 7.45-7.51 (m, 6H, ArH), 7.76 (d, 2H, J= 

7.2 Hz, ArH), 7.98 (s, 1H, ArH). 13C-NMR (DMSO-d6): δ 55.5, 55.9, 56.1, 98.2, 102.2, 

114.7, 115.5, 117.1, 117.59, 123.6, 126.0, 128.4, 129.5, 129.6, 129.9, 131.9, 133.8, 138.9, 

139.4, 158.8, 159.6, 161.6  ppm. 

For preparing compound ST-54, E-2,4-dimethoxy-6-(4-methoxystyryl)benzaldehyde 

(RES-11) and quinuclidinone (1.2 mmol) were added to 10 volumes of methanol and the 

resulting mixture stirred at room temperature. The final product ST-54,  crashed out of 

the solution once the reaction was complete in 1-2 hrs. The final product was filtered and 

recrystallized from methanol to afford ST-54 in 80% yield. In the next step, compound 

ST-54 (1mmol), hydroxylamine HCl (1.1 mmol) and sodium acetate (1.5 mmol) were 

dissolved in 10 volumes of ethanol and the mixture was heated under reflux for 6 hrs. A 

white precipitate was formed, which was later filtered off to afford ST-57 in 65% yield 

(Scheme 2.3).ST-54: 1H NMR (DMSO-d6): δ 1.96 (d, J=3 Hz, 4H), 2.63 (s, 1H), 2.90–

2.92 (m, 4H), 3.72–3.82 (m, 6H), 3.86 (s, 3H), 6.39 (d, J=3 Hz, 1H), 6.78 (d, J=3 Hz, 
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1H), 6.86 (d, J=9 Hz, 2H), 6.95 (d, J=6 Hz, 2H), 7.26 (s, 1H), 7.38 (d, J=6 Hz, 2H) ppm 

.13C NMR (DMSO-d6): δ 26.1, 41.0, 48.2, 49.7, 55.6, 55.7, 55.9, 97.9, 101.6, 114.3, 

123.9, 125.4, 127.9, 128.0, 129.8, 130.2, 138.4, 158.8, 159.5, 160.9 ppm. mp: 178–180 

°C. 

ST-57: 1H NMR (DMSO-d6): δ 1.98 (d, J=3 Hz, 4H), 2.43 (s, 1H), 2.73–2.76 (m, 4H), 

3.79–3.84 (m, 6H), 4.13 (s, 3H), 6.46 (d, J=4 Hz, 1H), 6.84 (d, J=4.4 Hz, 1H), 6.89 (d, 

J=9 Hz, 2H), 6.93 (d, J=6 Hz, 2H), 7.28 (s, 1H), 7.41 (d, J=8.4 Hz, 2H) ppm.13C NMR 

(DMSO-d6): δ 26.1, 41.0, 48.2, 49.7, 55.6, 55.7, 55.9, 97.9, 101.6, 114.3, 123.9, 125.4, 

127.9, 128.0, 129.8, 130.2, 138.4, 158.8, 159.5, 160.9 ppm. mp: 142–145 °C. 

X-ray crystallographic data for the representative compounds RES-27, RES-17 and 

RES-54 were obtained which confirmed the Z-geometry (Figure 2.4) in these analogs 

(Madadi, Reddy et al. 2010, Madadi, Parkin et al. 2012). 
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Figure. 2.4 Crystal structures of compounds RES-27, RES-17 and RES-54. 
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Scheme 2.4 Synthesis of resveratrol analogs with hydroxamine, benzylalcohol, bromo, 
cyano and imidazole substitutions at the C2 position (a) NH4OH, NaOAc, ethanol, reflux 
4hrs; (b) NaBH4, methanol; (c) imidazole, neat, MW 180 0C, 5min (f) N-
bromosuccinamide, CHCl3; (g) Aq.NH3, I2, THF. 
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Scheme 2.5: Synthesis of resveratrol analogs with methyl, benzylalcohol and bromo 
substitutions at the C2 position (a) MeI, K2CO3, acetone, reflux 12hrs. (c) N-
bromosuccinamide, CHCl3; (e) NaBH4, methanol. 

  
We wanted to compare the anti-cancer activity of C2 conjugated five and six-membered 

heterocyclic and bicyclic quinuclidinone ring systems with simpler and smaller 

functionalities. Below are the analytical data and reaction conditions for the synthesized 

compounds: 

ST-138:  1H NMR (400 MHz, DMSO-d6): δ 3.32 (s, 3H, -CH3), 6.22 (d, J =2 Hz, 1H, 

ArH), 6.45 (d, J =2 Hz, 1H, ArH), 6.74 (d, J =8.4 Hz, 2H, ArH), 6.82 (d, J =16 Hz, 2H, 

ArH), 7.12 (d, J =16 Hz, 2H, ArH), 7.41 (d, J =7.2 Hz, 8.8H, ArH), 8.91 (s, 1H, -OH), 

9.09 (s, 1H, -OH), 9.53 (s, 1H, -OH) ppm. 13C NMR (100 MHz, DMSO-d6): 11.2, 103.0, 

112.8, 115.9, 123.9, 128.2, 128.8, 129.4, 138.1, 155.8, 156.4, 157.5 ppm. 

ST-76: δ 6.38 (s, 1H, ArH), 6.63 (s, 1H, ArH), 6.79 (d, J =5.6 Hz, 2H, ArH), 6.96 (d, J 

=16.4 Hz, 1H, ArH), 7.18 (d, J =16 Hz, 1H, ArH), 7.41 (d, J =6 Hz, 2H, ArH), 9.44 (s, 
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1H, -OH), 9.62 (s, 1H, -OH), 9.99 (s, 1H, -OH) ppm. 13C NMR (100 MHz, DMSO-d6): 

101.2, 102.8, 104.4, 110.0, 116.0, 124.5, 128.1, 128.5, 131.2, 138.5, 155.3, 157.5, 158.0 

ppm. 

ST-75: δ 6.58 (s, 1H, ArH), 6.72 (s, 1H, ArH), 6.80 (d, J =5.6 Hz, 2H, ArH), 6.92 (d, J 

=16.4 Hz, 1H, ArH), 7.06 (d, J =16 Hz, 1H, ArH), 7.52 (d, J =6 Hz, 2H, ArH), 9.19 (s, 

1H, -CHO), 9.95 (s, 1H, -OH), 10.45 (s, 1H, -OH), 10.66 (s, 1H, -OH) ppm. 13C NMR 

(100 MHz, DMSO-d6): 98.7, 101.8, 103.3, 116.7, 116.0, 124.5, 128.1, 128.5, 134.4, 

138.5, 157.5, 157.9, 193.1 ppm. 

ST-82: δ 3.59 (s, 2H, -CH2), 6.10 (s, 1H, ArH), 6.46 (s, 1H, ArH), 6.77 (d, J =9.2 Hz, 

2H, ArH), 6.81 (s, 1H, ArH), 7.19 (d, J =16.0 Hz, 1H, ArH), 7.40 (d, J =8.4 Hz, 1H, 

ArH) ppm. 13C NMR (100 MHz, DMSO-d6): 43.9, 101.9, 103.0, 109.5, 111.5, 115.5, 

123.1, 127.9, 128.3, 129.6, 138.2, 157.0, 157.2, 158.8 ppm. 

ST-05: E-2,4-Dimethoxy-6-(4-methoxystyryl)benzaldehyde (RES-11) (1mmol), 

hydroxylamine HCl (1.1 mmol) and sodium acetate (1.5 mmol) were dissolved in 10ml 

of ethanol and the resulting mixture was heated under reflux for 4 hrs. A white precipitate 

was formed, which was later filtered off to afford ST-05 in 80% yield. 1H NMR (DMSO-

d6): δ 3.77 (s, 3H, -OCH3), 3.81 (s, 3H, -OCH3), 3.85 (s, 3H, -OCH3), 6.54 (s, 1H, -

ArH), 6.89 (s, 1H, -ArH), 6.93-6.96 (d, 2H, -ArH; J = 8.4 Hz), 7.11-7.15 (d, 1H, -ArH; J 

= 16.4 Hz), 7.45-7.47 (d, 2H, -ArH; J = 8 Hz), 7.59-7.63 (d, 1H, -ArH; J = 16.4Hz), 8.30 

(s, 1H, -ArH), 11.15 (s, 1H, -OH) ppm. 13C-NMR (DMSO-d6): δ 55.6, 55.8, 55.3, 98.0, 

102.7, 110.0, 112.6, 114.6, 126.4, 128.3, 130.1, 130.5, 138.7, 145.2, 159.4, 159.7, 161.0 

ppm. 
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ST-130: E-2,4-Dimethoxy-6-(4-methoxystyryl)benzaldehyde (RES-11) (1mmol) was 

dissolved in methanol and cooled to 0 0C and LiBH4(1.0 mmol) was added. The reaction 

mixture was allowed to stir for 1 hr at ambient temperature. The reaction was monitored 

by TLC, and after consumption of the starting materials, the reaction mixture was 

concentrated and extracted into ethyl acetate followed by concentration on a rotary 

evaporator. Flash column chromatography was carried out using an EA/hexane solvent 

system to afford ST-130 in 85% yield. (ST-130): 1H NMR (CDCl3): δ 3.83 (s, 3H, -

OCH3), 3.85 (s, 3H, -OCH3), 3.86 (s, 3H,  -OCH3), 4.79 (s, 2H, CH2), 6.41 (s, 2H, 

CH2), 6.72 (d, J=2.0 Hz, 1H), 6.91 (d, 2H, J=8.8 Hz, ArH), 6.98 (d, 1H, J=16.0 Hz, 

ArH), 7.36 (d, 1H, J=16.0 Hz, ArH), 7.47 (d, 2H, J= 8.4 Hz, ArH) ppm. 13C-NMR 

(DMSO-d6): δ 56.1, 56.7, 56.8, 58.6, 99.4, 99.8, 101.2, 114.5, 121.3, 124.5, 125.4, 129.7, 

131.2, 136.4, 153.4, 156.7, 159.6  ppm. 

ST-131: Compound ST-130 (1mmol) and imidazole (5mmol) were added to a synthetic 

microwave vial and irradiated for 2 min at 80 0C using a Biotage Initiator synthetic 

microwave. The reaction was monitored by TLC. After the starting material had 

completely disappeared, ethyl acetate was added and the excess imidazole was washed 

out with water. The ethyl acetate solvent was removed on a rotavaporator to yield ST-131 

in 95 % yield. 1H NMR (DMSO-d6): δ 3.78 (s, 3H, -OCH3), 3.83 (s, 3H, -OCH3),3.85 (s, 

3H, -OCH3), 5.29 (s, 2H, -CH2), 6.55-6.56(d, J=2 Hz, 1H, ArH), 6.79 (S, 1H, ArH), 

6.86-6.87(d, J=2Hz, 1H, ArH), 6.94-6.97(d, J=8.4 Hz, 2H, ArH), 7.12-7.16 (d, J=16 Hz, 

1H, ArH), 7.41-7.46 (d, J=16.4 Hz, 1H, ArH), 7.57 (s, 1H, ArH), 7.61-7.63 (d, J= 8.8 Hz, 

2H, ArH) ppm. 13C-NMR (DMSO-d6): δ 55.6, 55.7, 56.3, 98.2, 102.1, 110.0, 114.6, 

115.3, 119.3, 122.6, 128.5, 128.7, 129.9, 131.9, 137.3, 139.3, 159.3, 159.7, 160.7 ppm. 
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ST-62: To a solution of trans-2-formyl-3,4′,5-trimethoxystilbene (RES-11) (1.4 mmol) in 

CHCl3 (need volume), was added drop-wise at 0-5 0C N-bromosuccinimide (1.7 mmol). 

The reaction mixture was stirred for 2 hrs and was monitored by TLC. After compound 

RES-11 was consumed the mixture was added to 10 volumes of water and then extracted 

with 4 volumes of CH2Cl2. Removal of impurities from the product was achieved by 

column chromatography using a silica gel column and an ethyl acetate/hexane solvent 

system to afford ST-62 in 65% yield. 1H NMR (CDCl3): δ 3.83 (s, 3H), δ 3.86 (s, 3H), δ 

3.88 (s, 3H), 6.41 (s, 1H), 6.79 (s, 1H), 6.89 (d, 2H, J=8.8 Hz, ArH), 6.94 (d, 1H, J=16.0 

Hz, ArH), 7.37 (d, 1H, J=16.0 Hz, ArH), 7.50 (d, 2H, J=8.8 Hz, ArH) ppm; 13C-NMR 

(CDCl3): δ 55.1, 55.8, 100.3, 104.6, 105.1, 114.2, 127.4, 137.8, 157.9, 160.2 ppm.  

ST-59: Trans-2-formyl-3,4′,5-trimethoxystilbene (RES-11)(1 mmol) was dissolved in 

1ml of THF and 10 ml of 28% aqueous NH3 solution. Iodine (1.1 mmol) was added and 

the mixture stirred at room temperature for 1hr. The reaction mixture was quenched with 

Na2S2O3 followed by extraction with diethyl ether to afford the nitrile product ST-59 in 

55% yield. 1H NMR (CDCl3): δ 3.79 (s, 3H), δ 3.82 (s, 3H, -OCH3), δ 3.83 (s, 3H, -

OCH3), 6.46 (s, 3H, -OCH3), 6.82 (s, 1H), 6.87 (d, 2H, J=8.8 Hz, ArH), 6.97 (d, 1H, 

J=16.0 Hz, ArH), 7.39 (d, 1H, J=16.0 Hz, ArH), 7.52 (d, 2H, J=8.8 Hz, ArH) ppm; 13C-

NMR (CDCl3): δ 56.4, 56.7, 56.9, 98.6, 99.8, 103.2, 114.5, 121.3, 124.5, 125.4, 128.7, 

131.2, 136.4, 154.4, 156.7, 160.6  ppm. 

ST-132(a): (E)-1,3-Dimethoxy-5-(4-methoxystyryl)benzene (1 mmol) was dissolved in 

10 volumes of  anhydrous acetone. MeI (2 eq) and K2CO3 (5 eq) were added to the 

solution and the mixture refluxed overnight to afford (E)-1,5-dimethoxy-3-(4-

methoxystyryl)-2-methylbenzene (ST-132(a)) along with a mixture of unidentified 
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methylated products. The resveratrol analog (ST-132(a)) was isolated by silica gel 

chromatography utilizing ethyl acetate/hexane as eluting solvent in 40 % yield. (ST-

132(a)): molecular formula: C18H20O3; 1H NMR (DMSO-d6): δ 3.82-3.85 (t, J= 13.6 Hz, 

9H, -OCH3), 6.40-6.41(d, J= 2.4 Hz, 1H, ArH), 6.72-6.73(d, J= 2.4 Hz, 1H, ArH), 6.90-

6.94 (m, J=18 Hz, 3H, ArH), 7.21-7.25 (d, J=16 Hz, 1H, ArH), 7.45-7.48 (d, J= 8.8 Hz, 

1H, ArH) ppm. 13C-NMR (DMSO-d6): δ 10.9, 55.3, 55.4, 55.6, 97.7, 101.2, 114.1, 117.1, 

124.9, 127.8, 129.9, 130.4, 138.1, 158.3, 158.6, 159.3. ppm. mp: 55-57 oC. 

2.4 Synthesis of (Z)-2,3-diaryl substituted acrylonitriles as anticancer agents. 

2.4.1 Prior studies with this scaffold 

In 2011, Tarleton and coworkers serendipitously discovered a family of 2-

phenylacrylonitriles (Figure 2.5, A) with potent growth inhibition properties against a 

panel of ten human cancer cell lines: HT29 and SW480 (colon cancer), MCF-7 (breast 

cancer), A2780 (ovarian cancer), H460 (lung cancer), A431 (skin cancer), DU145 

(prostate cancer), BEC-2 (neuroblastoma), SJ-G2 (glioblastoma), and MIA (pancreatic 

cancer) (Tarleton, Gilbert et al. 2011). They reported (Z)-2-(3,4-dichlorophenyl)-3-(4-

nitrophenyl)acrylonitrile (Figure 2.5, A)  as the lead compound from their studies with a 

GI50 value of 0.127 µM against the (ER+ve) human breast cancer cell line, MCF-7 with a 

543-fold selectivity towards MCF-7 cells compared with nine other non-breast derived 

cancer cell lines.  
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Cl

Cl
NO2

CN
S

CNR

N

CN

(A) 2-phenylacrylonitriles (B) (Z)-benzothiophene acrylonitriles

OCH3

OCH3

OCH3

N

CN

OCH3

OCH3
(C) (Z)-3-(quinolin-2-yl)-2-(3,4,5-

trimethoxyphenyl)acrylonitrile
(D) (Z)-2-(3,5-dimethoxyphenyl)-3-(quinolin-2-

yl)acrylonitrile  

Figure 2.5 Structures of literature reported potent anti-cancer agents in the       
phenylacrylonitrile series. 

Recently, our laboratory has reported on a series of (Z)-benzothiophene acrylonitrile 

analogues (Figure 2.5, B) as potent anti-cancer agents with GI50 values generally in the 

range 10–100 nM against a panel of 60 human cancer cell lines. Of interest, these 

compounds are also able to overcome cell-associated P-glycoprotein mediated resistance, 

since they were equipotent in inhibiting OVCAR8 and NCI/ADR-RES cell growth 

(Penthala, Sonar et al. 2013). 

Also, our laboratory has synthesized and evaluated a series of (Z)-quinolinyl acrylonitrile 

derivatives (Figure 2.5, C, D) as anticancer agents against a panel of 60 human cancer 

cell lines. Of these compounds, (Z)-3-(quinolin-2-yl)-2-(3,4,5-

trimethoxyphenyl)acrylonitrile (Figure 2.5, C) showed potent cytotoxicity against MDA-
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MB-435 melanoma and NCI-H522 non-small cell lung cancer line with GI50 values of 33 

nM and 37 nM, respectively. (Z)-2-(3,5-Dimethoxyphenyl)-3-(quinolin-2-

yl)acrylonitrile (Figure 2.5, D) also displayed potent growth inhibitory activity against 

NCI-H522 non-small cell lung cancer lines with a GI50 value of 94 nM (Penthala, 

Janganati et al. 2014). 

NC

R R

(G) (E)-diarylacrylonitriles(E) (E)-diaryl stilbenes

CN

(F) (Z)-diarylacrylonitriles

RRRR

 

Figure 2.6 Scaffolds of reported potent anticancer agents in the stilbene and 
phenylacrylonitrile  series. 

Of interest, Ohsumi et al. had reported (E)-substituted diarylacrylonitrile analogs (Figure 

2.6, G)  as effective anti-cancer agents against murine solid tumors, but failed to mention 

or compare the activity of their Z-isomers (Ohsumi, Nakagawa et al. 1998). In the current 

work the stilbene structural fragments present in resveratrol are modified by introducing a 

cyano group on the double bond bridge and incorporating methoxy substituents into the 

phenyl rings to improve the compound’s potency. Also, a small structure-anticancer 

activity relationship (SAR) study was performed by comparing the GI50 and TGI values 

from the cytotoxic assay of the synthesized substituted stilbenes (Figure 2.6, E) and 

(E/Z)-substituted diarylacrylonitriles analogs (Table 2.2). 
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2.4.2 Chemistry and analytical data 

R1 CHO CN
R2

R1
R2

Aldehyde Phenylacetonitrile Diarylacrylonitrile

a

R1 = R2 = Aromatic ring

CN

 

Scheme 2.6 Synthesis of (Z)-2,3-diaryl substituted acrylonitriles; reagents and conditions: 
(a) 5% NaOMe, MeOH, reflux. 

A series of (Z)-substituted diarylacrylonitrile analogs (Table 2.2) were synthesized by 

reacting substituted benzyl carbaldehydes with their corresponding substituted 

phenylacetonitriles in 5% sodium methoxide/methanol. The reaction mixture was stirred 

at room temperature for 2-3 hours. On completion of the reaction, the desired product 

crashed out of the solution. The precipitate was filtered off, washed with water and dried 

to yield the final compound in yields ranging from 70-95 % (Scheme 2.6). Compounds 

with (Z)-geometry can convert to their corresponding (E)-isomer under certain reaction 

conditions. This conversion is also dependent on the nature of substituents and 

functionalities (electron donating or accepting) on the aryl rings. However, base-

catalyzed condensation reactions have been reported to form exclusively Z-isomer 

products (Penthala, Sonar et al. 2013). 
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Table 2.2 Structures of the synthesized diarylacrylonitrile products and the starting 
materials (aldehyde and phenylacetonitrile precursors) utilized in their preparation 
 

Table 2.2 (continued) 

 Aldehyde precursor Phenylacetonitrile 

precursor 

Diarylacrylonitrile product 

1.  CHO

 

O

O CN  

CN

O
O

ST-215  

2.  

CHO

MeO

MeO

NO2

 

O

O CN  

OCH3

OCH3

CN
O2N

ST-218

O

O  

3.  CHOO

O  

CN

 

NC

O

O

ST-254  

4.  
             

CHOO

O  

CN
MeO

 
OCH3

NC

O

O

ST-252
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Table 2.2 (continued) 

5.  CHOO

O  
CN

MeO

MeO

MeO

 

 

 

NC

OCH3

OCH3

OCH3

O

O

ST-253
 

6.  CHOO

O  
CN

F3C

 

ST-255

O

O NC

CF3

 

7.  CHOO

O  

CN

MeO

MeO

 
NC

OCH3

OCH3

O

O

ST-257
 

8.  CHOO

O  

CN
O2N

 

NC
NO2

O

O

ST-258  

9.  CHO

 

CN
O2N

 
NO2

NC
ST-259  

10.  CHO

 

CN

MeO

MeO

 OCH3
NC

OCH3
ST-260
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Table 2.2 (continued) 

11.  CHO

 
CN

MeO

MeO

MeO

 NC

OCH3

OCH3

OCH3ST-261
 

12.  CHO

 

CN
MeO

 

 

 

 

OCH3
NC

ST-262
 

13.  CHO

 

CN

 

 

 

 

ST-263

NC

 

14.  CHO

 
CN

F3C

 

ST-264

CF3

NC

 

15.  
CHOMeO

 

O

O CN  O

O

CN

ST-179

OCH3
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Table 2.2 (continued) 

16.  

S

CHO

 

O

O CN  O

O

CN

ST-180

S

 

17.  

N
MeO CHO

 

 

O

O CN  NO

O

CN

ST-181

OCH3

 

18.  CHO

 

O

O CN  

O

O

CN

ST-216  

19.  N CHO

 

O

O CN  NO

O

CN

ST-183  

20.  
CHOO

O  

MeO
CN

MeO  
O

O

OCH3

OCH3
CN

ST-185  

21.  
CHOO

O  

CN

MeO

MeO

MeO

 O

O

OCH3

OCH3
CN

ST-160

OCH3
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Table 2.2 (continued) 

22.  
CHOO

O  

CN

MeO

MeO

 

 

O

O

OCH3
CN

ST-155

OCH3

 

23.  
CHOO

O  

O

O CN  O

O
CN

O

O

ST-161  

24.  

CHO

MeO

MeO

MeO

 

O

O CN  
O

O

OCH3

OCH3

CN

OCH3

ST-162  

25.  

CHO

MeO

MeO

 

O

O CN  
O

O

OCH3

CN

OCH3

ST-164  

26.  
MeO CHO

 

O

O CN  O

O

OCH3CN

ST-163  

27.  
MeO CHO

MeO  

O

O CN  O

O

OCH3

OCH3

CN

ST-165  
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Table 2.2 (continued) 

28.  
MeO CHO

O2N  

O

O CN  O

O

OCH3CN

NO2

ST-166  

29.  
O2N CHO

 

O

O CN  O

O

NO2CN

ST-167  

30.  

CHO

Br

Br

 

O

O CN  
O

O

Br

CN

Br

ST-168  

31.  Cl

Cl

CN

 

O

O CN  O

O

CN

ST-169

Cl

Cl

 

32.  
Cl CHO

Cl  

O

O CN  
O

O

CN

Cl

ST-170

Cl
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Table 2.2 (continued) 

33.  

CHO

F

F

 

O

O CN  
O

O

F

CN

F

ST-171  

34.  
Br CHO

F  

O

O CN  
O

O

CN

F

ST-172

Br

 

35.  
MeO CHO

OMe  

O

O CN  O

O

CN

ST-173

OCH3

OCH3

 

36.  
Cl CHO

Cl  

O

O CN  O

O

CN

ST-174

Cl

Cl

 

37.  O

CHO  

O

O CN  O

O

CN

ST-175

O

 

38.  

N

CHO

Cl  

 

 

O

O CN  
NO

O

CN

ST-176

Cl
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Table 2.2 (continued) 

39.  
MeO CHO

MeO Cl  

O

O CN  O

O

CN

ST-177

OCH3

Cl
OCH3

 

40.  
CHO

 

O

O CN  O

O

CN

ST-178  

41.  
O2N CHO

 
CN

MeO

MeO

MeO

 
NC

OCH3

OCH3

OCH3
TMR-01

O2N

 

42.  
CHO

O2N  

CN

MeO

MeO

MeO

 NC
OCH3

O2N
OCH3

OCH3

TMR-03  

43.  
MeO CHO

O2N  

CN

MeO

MeO

MeO

 
NC

OCH3

OCH3

OCH3
TMR-04

O2N

H3CO

 

44.  
MeO CHO

 MeO
CN

 
O

O
CN

ST-153

OCH3
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Table 2.2 (continued) 

45.  
CHOO

O  

F

F

CN

 

O

O
CN

ST-184

F

F

 

46.  O

CHO  

MeO
CN

 
H3CO

CN

ST-288

O

 

47.  O

CHO  

CN

MeO

MeO

MeO

 H3CO

CN

ST-287

O
H3CO

OCH3

 

48.  
O2N CHO

 

 

 

O2N
CN

 O

O
CN

ST-156

NO2

 

49.  N CHO

 
CN

MeO

MeO

MeO

 

NH3CO

CN

ST-486
H3CO

OCH3  

50.  CHOO

O  
MeO

CN

MeO  
H3CO

CN

ST-479

O

O

H3CO
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Table 2.2 (continued) 

51.  

CHO

Br

Br  

CN

OMe  CN

ST-152

H3CO
Br

Br

 

52.  
MeO CHO

O2N  

HO
CN

 OCH3

NO2

HO
CN

ST-521

 

53.  
O2N CHO

 
CN

MeO

MeO

 

CN
H3CO

H3CO
NO2

ST-101  

54.  
Cl CHO

Cl  

MeO
CN

MeO  

CN
H3CO

H3CO
Cl

Cl
ST-527

 

55.  

CHO

MeO

MeO

 

MeO
CN

 

CN
H3CO

OCH3

OCH3
ST-124

 

56.  

CHO

MeO

MeO

MeO

 

MeO
CN

 

CN
H3CO

OCH

OCH3

OCH3
ST-126

 

57.  
MeO CHO

HO  
MeO

CN

MeO

MeO

 

CN
H3CO

H3CO
OCH

OH

H3CO

ST-145
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Table 2.2 (continued) 

58.  

CHO

MeO

MeO

 

MeO
CN

MeO

MeO

 

CN
H3CO

H3CO
OCH3

H3CO
OCH3

ST-147
 

59.  
MeO CHO

 MeO
CN

MeO

MeO

 

CN
H3CO

H3CO

H3CO
OCH

ST-148
 

60.  

CHO

MeO

MeO

MeO

 

MeO
CN

MeO

MeO

 

CN
H3CO

H3CO

H3CO
OCH

OCH3

OCH3
ST-149

 

61.  
CHO

HO

MeO

 

MeO
CN

MeO  

 

CN
H3CO

H3CO
OCH

OHST-507

 

62.  - - 

H3CO OCH3

NC

OCH3

OH

ST-507(A) * 

63.  - - 

H3CO OCH3

NC

OCH3

OH

ST-510

H3CO

* 

85 
 



Table 2.2 (continued) 

64.  O

CHO  

CN

 
ST-289

O

CN

 

65.  O

CHO  

O2N
CN

 
O2N

ST-290

O

CN

 

66.  O
CHO

 

CN
Cl

F  ST-526 S

CN
Cl

F
 

67.  

N

H
N

CHO  

MeO
CN

MeO

MeO

 ST-488
NH

N
CN

H3CO

H3CO

H3CO

 

 

68.  

CHO

MeO

MeO  

HO
CN

 

H3CO

H3CO
OH

NC
ST-512  

69.  

MeO CHO

MeO

MeO  

HO
CN

 

H3CO

H3CO
OH

NC
ST-514

H3CO

 

70.  
CHO

 

HO
CN

 OH

ST-516

NC
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Table 2.2 (continued) 

71.  
CHOO

O  

HO
CN

 OH
NC

ST-517

O

O

 

72.  
MeO CHO

 HO
CN

 OH
NC

ST-520

MeO

 

73.  
MeO CHO

O2N  

HO
CN

 OH
NC

ST-521

MeO

O2N

 

74.  
N CHO

 

MeO
CN

MeO

MeO

 

N
OMe

NC
ST-486

OMe

OMe  

 
* Synthetic route presented in Scheme 2.7. 

 

ST-215: 1H NMR (400 MHz, DMSO-d6): δ 6.13 (s, 2H, -ArH), 7.55 (t, J =14.8 Hz, 2H, 

ArH), 7.61-7.65 (m, 2H, ArH), 7.85 (d, J =7.2 Hz, 2H, ArH), 7.91 (t, J =13.6 Hz, 2H, 

ArH), 8.07 (d, J =8.4 Hz, 2H, ArH), 8.11 (d, J =8.4 Hz, 2H, ArH), 8.21 (s, 1H, -ArH), 

8.47 (s, 1H, -ArH) ppm. 13C NMR (100 MHz, DMSO-d6): 111.3, 115.5, 121.4, 126.2, 

126.3, 127.4, 128.1, 128.2, 128.9, 129.6, 129.7, 130.8, 131.8, 133.1, 134.4, 134.3, 141.5, 

145.8 ppm. 

ST-218: 1H NMR (400 MHz, DMSO-d6): δ 3.86 (s, 3H, -OCH3), 4.06 (s, 3H, -OCH3), 

6.12 (s, 2H, -ArH), 7.05 (d, J =8.0 Hz, 1H, ArH), 7.20 (d, J =7.6 Hz, 1H, ArH), 7.39 (s, 

1H, -ArH), 7.56 (d, J =8.4 Hz, 1H, ArH), 7.95 (s, 1H, -ArH), 8.23 (d, J =10.8 Hz, 1H, 
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ArH), 8.42 (d, J =1.2 Hz, 1H, ArH) ppm.  13C NMR (100 MHz, DMSO-d6): 57.5, 57.6, 

102.2, 105.5, 105.6, 109.0, 110.2, 115.4, 115.5, 118.1, 121.1, 126.3, 126.6, 128.0, 134.9, 

135.0, 138.7, 138.8, 139.3, 148.7, 148.8, 153.6 ppm. 

ST-252: 1H NMR (400 MHz, DMSO-d6): δ 3.71 (s, 3H, -OCH3), 4.31 (d, J =5.6 Hz, 4H, 

-CH2), 7.12 (d, J =8.8 Hz, 1H, ArH), 7.54 (d, J =8 Hz, 1H, ArH), 7.58 (s, 1H, ArH), 

7.70-7.79 (m, 2H, ArH), 7.98 (d, J =12.8 Hz, 2H, ArH), 8.06 (s, 1H, -ArH) ppm. 13C 

NMR (100 MHz, DMSO-d6): 64.4, 64.9, 107.9, 117.9, 118.0, 118.1, 118.7, 123.8, 123.8, 

123.9, 125.9, 126.0, 127.3, 128.4, 129.5, 134.4, 142.6, 144.4, 149.8, 151.3 ppm. 

ST-253: 1H NMR (400 MHz, DMSO-d6): δ 3.32 (s, 3H, -OCH3), 3.70 (s, 3H, -OCH3), 

3.86 (s, 6H, -OCH3), 4.25 (s, 4H, -ArH), 6.97 (s, 2H, -ArH), 7.09 (d, J =7.6 Hz, 1H, 

ArH), 7.44 (d, J =8.4 Hz, 1H, ArH), 7.58 (s, 1H, -ArH), 7.91 (s, 1H, -ArH) ppm. 13C 

NMR (100 MHz, DMSO-d6): 56.54, 60.60, 102.36, 103.64, 107.95, 108.03, 109.24, 

118.74, 126.18, 128.29, 130.05, 138.67, 142.56, 148.24, 149.74, 153.67 ppm. 

ST-254: 1H NMR (400 MHz, DMSO-d6): δ 4.31 (d, J =5.6 Hz, 4H, -CH2), 7.03 (d, J 

=7.6 Hz, 1H, ArH), 7.34-7.51 (m, 4H, ArH), 7.56 (s, 1H, ArH), 7.72 (d, J =7.6 Hz, 2H, 

ArH), 7.90 (s, 1H, -ArH) ppm. 13C NMR (100 MHz, DMSO-d6): 64.4, 64.9, 107.9, 

117.9, 118.0, 118.1, 118.7, 123.8, 123.8, 123.9, 125.9, 126.0, 127.3, 129.3, 129.5, 134.4, 

142.6, 142.7, 143.8, 146.2 ppm. 

ST-255: 1H NMR (400 MHz, DMSO-d6): δ 4.30 (d, J =5.6 Hz, 4H, -CH2), 7.03 (d, J 

=8.8 Hz, 1H, ArH), 7.51 (d, J =8 Hz, 1H, ArH), 7.58 (s, 1H, ArH), 7.69-7.767 (m, 2H, 

ArH), 7.98 (d, J =12.8 Hz, 2H, ArH), 8.06 (s, 1H, -ArH) ppm. 13C NMR (100 MHz, 
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DMSO-d6): 64.4, 64.9, 107.9, 117.9, 118.0, 118.1, 118.7, 123.8, 123.8, 123.9, 125.9, 

126.0, 127.3, 129.3, 129.5, 134.4, 142.6, 142.7, 143.8, 146.2 ppm. 

ST-258: 1H NMR (400 MHz, DMSO-d6): δ 4.11 (s, 4H, -ArH), 7.12 (d, J =8.4 Hz, 1H, 

ArH), 7.19 (d, J =9.2 Hz, 1H, ArH), 7.41 (d, J =1.2 Hz, 1H, ArH), 8.01-8.07 (m, 4H, 

ArH), 8.31 (d, J =9.2 Hz, 2H, ArH) ppm.  13C NMR (100 MHz, DMSO-d6): 102.4, 105.9, 

109.1, 114.0, 1177.6, 121.9, 124.4, 127.7, 130.4, 138.8, 138.9, 140.6, 148.0, 149.1, 151.1 

ppm. 

ST-259: 1H NMR (400 MHz, DMSO-d6): δ 7.49 (d, J =8.8 Hz, 2H, ArH), 7.69-7.75 (m, 

2H, ArH), 7.82 (t, J =14.0 Hz, 2H, ArH), 8.01 (t, J =14.0 Hz, 2H, ArH), 8.13 (d, J =8.8 

Hz, 2H, ArH), 8.34 (s, 1H, -ArH), 8.35 (s, 1H, -ArH) ppm. 13C NMR (100 MHz, DMSO-

d6): 109.2, 118.1, 122.5, 123.0, 125.2, 125.3, 125.7, 126.1, 127.5, 127.6, 128.1, 128.2, 

128.4, 129.0, 129.1, 129.2, 130.1, 130.3, 130.6, 130.8, 131.2, 131.4, 131.4, 132.6, 133.5, 

138.4, 144.2, 149.9 ppm. 

ST-260: 1H NMR (400 MHz, DMSO-d6): δ 3.71 (s, 3H, -OCH3), 3.75 (s, 3H, -OCH3), 

7.07 (d, J =8.4 Hz, 1H, ArH), 7.31 (d, J =8.0 Hz, 1H, ArH), 7.62-7.66 (m, 4H, ArH), 7.95 

(d, J =7.2 Hz, 1H, ArH), 7.95-8.01 (m, 2H, ArH), 8.15 (m, 1H, ArH), 8.21 (s, 1H, ArH) 

ppm. 13C NMR (100 MHz, DMSO-d6): 56.07, 56.35, 102.26, 106.24, 109.02, 114.71, 

118.10, 121.53, 124.76, 125.91, 127.06, 127.13, 127.41, 128.05, 129.01, 130.66, 131.47, 

132.08, 133.48, 141.05, 148.81, 148.86 ppm. 

ST-261: 1H NMR (400 MHz, DMSO-d6): δ 3.74 (s, 3H, -OCH3), 3.90 (s, 6H, -OCH3), 

7.16 (s, 2H, -ArH), 7.84 (t, J =14 Hz, 1H, ArH), 7.91 (d, J =8.4 Hz, 1H, ArH), 8.04 (t, J 

=19.6 Hz, 2H, ArH), 8.22 (s, 1H, -ArH), 8.53 (d, J =8.4 Hz, 1H, ArH) ppm. 13C NMR 
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(100 MHz, DMSO-d6): 56.6, 60.6, 104.4, 114.9, 117.8, 123.0, 128.0, 128.1, 128.3, 129.3, 

129.7, 130.8, 137.5, 139.5, 140.7, 147.6, 152.3, 153.6 ppm. 

ST-262: 1H NMR (400 MHz, DMSO-d6): δ 3.79 (s, 3H, -OCH3), 7.49 (t, J =14.8 Hz, 2H, 

ArH), 7.54-7.58 (m, 2H, ArH), 7.79 (d, J =8.0 Hz, 2H, ArH), 7.91 (t, J =8.4 Hz, 2H, 

ArH), 8.02 (d, J =8.0 Hz, 2H, ArH), 8.19 (d, J =8.0 Hz, 2H, ArH), 8.27 (s, 1H, -ArH), 

8.31 (s, 1H, -ArH) ppm. 13C NMR (100 MHz, DMSO-d6): 55.3, 112.4, 114.5, 121.4, 

122.2, 126.8, 127.4, 128.1, 128.2, 128.9, 129.6, 129.7, 130.8, 132.3, 133.0, 135.1, 135.4, 

143.3, 147.3 ppm. 

ST-263: 1H NMR (400 MHz, DMSO-d6): δ 7.47 (t, J =14.4 Hz, 1H, ArH), 7.54 (t, J 

=14.8 Hz, 2H, ArH), 7.60-7.63 (m, 2H, ArH), 7.83 (d, J =7.2 Hz, 2H, ArH), 7.99 (t, J 

=13.6 Hz, 2H, ArH), 8.07 (d, J =8.4 Hz, 2H, ArH), 8.13 (d, J =8.4 Hz, 2H, ArH), 8.21 (s, 

1H, -ArH), 8.43 (s, 1H, -ArH) ppm. 13C NMR (100 MHz, DMSO-d6): 110.9, 118.5, 

125.4, 126.2, 126.3, 127.4, 128.1, 128.2, 128.9, 129.6, 129.7, 130.8, 131.8, 133.0, 134.0, 

134.3, 143.3, 143.4 ppm. 

ST-264: 1H NMR (400 MHz, DMSO-d6): δ 7.61 (t, J =13.6 Hz, 2H, ArH), 7.74-7.82 (m, 

2H, ArH), 7.98 (t, J =14.4 Hz, 2H, ArH), 8.07 (t, J =16.8 Hz, 2H, ArH), 8.13 (d, J =8.8 

Hz, 2H, ArH), 8.38 (s, 1H, -ArH), 8.45 (s, 1H, -ArH) ppm. 13C NMR (100 MHz, DMSO-

d6): 109.2, 118.1, 122.5, 123.0, 125.2, 125.3, 125.7, 126.1, 127.5, 127.6, 128.1, 128.2, 

128.4, 129.0, 129.1, 129.2, 130.2, 130.3, 130.6, 130.8, 130.9, 131.4, 131.4, 132.9, 134.2, 

135.4, 145.1, 145.2 ppm. 

ST-179: 1H NMR (400 MHz, DMSO-d6): δ 3.85(s, 3H, -OCH3),  6.09 (s, 2H, -ArH), 

7.59 (d, J =14.2 Hz, 2H, ArH), 7.59-7.63 (m, 2H, ArH), 7.81 (d, J =8.0 Hz, 2H, ArH), 
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7.91 (t, J =14.8 Hz, 2H, ArH), 7.98 (d, J =8.0 Hz, 2H, ArH), 8.02 (d, J =8.0 Hz, 2H, 

ArH), 8.12 (s, 1H, -ArH), 8.24 (s, 1H, -ArH) ppm. 13C NMR (100 MHz, DMSO-d6): 

56.52, 109.2, 112.1, 118.4, 121.2, 123.3, 125.4, 126.1, 128.2, 128.9, 129.6, 129.7, 130.8, 

131.8, 133.1, 134.4, 141.5, 142.4 ppm. 

ST-181: 1H NMR (400 MHz, DMSO-d6): δ 3.81 (s, 3H, -OCH3), 6.11 (s, 2H, -CH2), 

6.56 (t, J =4 Hz, 1H, ArH), 6.82 (s, 1H, ArH), 7.11 (d, J =7.6 Hz, 1H, ArH), 7.46 (d, J 

=7.6 Hz, 1H, ArH), 7.59 (d, J =8 Hz, 1H, ArH), 7.96 (s, 1H, -ArH) ppm. 13C NMR (100 

MHz, DMSO-d6): 55.0, 101.0, 102.3, 104.2, 107.7, 108.8, 118.6, 126.4, 128.1, 136.3, 

142.3, 148.2, 148.9, 155.1 ppm. 

ST-216: 1H NMR (400 MHz, DMSO-d6): δ 6.08 (s, 2H, -CH2), 7.47-7.52 (m, 4H, ArH), 

7.60-7.71 (m, 5H, ArH), 8.07 (d, J =8.4 Hz, 2H, ArH), 8.13 (d, J =8.4 Hz, 2H, ArH 

ppm. 13C NMR (100 MHz, DMSO-d6): 108.1, 112.3, 114.3, 114.6, 116.7, 125.4, 126.2, 

126.3, 127.4, 127.8, 128.1, 128.5, 129.6, 129.7, 130.8, 131.8, 133.1, 133.2, 134.3, 141.0, 

142.8 ppm. 

ST-185: 1H NMR (400 MHz, DMSO-d6): δ 3.76 (s, 3H, -OCH3), 3.81 (s, 3H, -OCH3), 

6.19 (s, 2H, -ArH), 7.12 (d, J =8.0 Hz, 1H, ArH), 7.16 (d, J =8.4 Hz, 1H, ArH), 7.30 (s, 

1H, -ArH), 7.39 (s, 1H, -ArH), 7.79 (s, 1H, -ArH) ppm.  13C NMR (100 MHz, DMSO-

d6): 55.6, 56.1, 102.2, 105.5, 106.0, 109.0, 109.8, 118.71, 120.7, 128.5, 129.7, 132. 4, 

141.1, 148.6, 153.4 ppm. 

ST-156: 1H NMR (400 MHz, DMSO-d6): δ 6.11 (s, 2H, -ArH), 7.10 (d, J =8.4 Hz, 1H, 

ArH), 7.15 (d, J =8.8 Hz, 1H, ArH), 7.41 (d, J =4.0 Hz, 1H, ArH), 8.11-8.15 (m, 4H, 

ArH), 8.31 (d, J =8.0 Hz, 2H, ArH) ppm.  13C NMR (100 MHz, DMSO-d6): 101.4, 102.1, 
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105.9, 109.1, 114.0, 1177.6, 121.9, 124.4, 127.7, 130.4, 138.8, 138.9, 140.6, 148.0, 149.1, 

151.1 ppm. 

ST-145: 1H NMR (400 MHz, DMSO-d6): δ 3.69 (s, 3H, -OCH3), 3.86 (s, 9H, -OCH3), 

6.97 (s, 2H, -ArH),    7.07-7.09 (d, J =8.4 Hz, 1H, ArH), 7.38 (d, J =8.4 Hz, 1H, ArH), 

7.51 (S, 1H, ArH), 7.84 (S, 1H, ArH), 9.42 (S, 1H, -OH) ppm. 13C NMR (100 MHz, 

DMSO-d6): 56.08, 56.52, 60.58, 103.52, 107.09, 112.39, 115.61, 118.88, 122.96, 130.37, 

138.45, 143.00, 146.93, 150.50, 153.63 ppm. HRMS (ESI): m/z calcd for C19H19NO5 

[M-H] 342.1341; found 342.1331. 

ST-507: yellow solid; 1H NMR (400 MHz, DMSO-d6): δ 3.79 (s, 3H, -OCH3), 3.84(s, 

3H, -OCH3), 3.85(s, 3H, -OCH3),  7.04-7.07 (t, J =15.2 Hz, 2H, ArH), 7.20 (dd, J =2, 8.8 

Hz, 1H, ArH), 7.29 (S, 1H, ArH), 7.35 (dd, J =1.6, 8.4 Hz, 1H, ArH), 7.49 (S, 1H, ArH), 

7.77(S, 1H, ArH), 9.38 (S, 1H, -OH) ppm. 13C NMR (100 MHz, DMSO-d6): 55.93, 

55.96, 56.02, 56.13, 56.16, 56.23, 107.16, 108.79, 112.23, 112.34, 112.39, 115.41, 

115.65, 118.94, 118.97, 119.08, 122.75, 127.20, 127.29, 141.15, 141.37, 146.90, 149.53, 

149.91, 150.22 ppm. 

ST-198: 1H NMR (400 MHz, DMSO-d6): δ 3.64 (s, 3H, -OCH3), 3.74 (s, 3H, -OCH3), 

3.79 (s, 6H, -OCH3), 6.85 (s, 2H, -ArH), 6.91 (d, J =8.8 Hz, 2H, ArH), 6.97 (d, J =16.4 

Hz, 1H, ArH), 7.11 (d, J =16.4 Hz, 1H, ArH), 7.11 (d, J =8.8 Hz, 1H, ArH) ppm. 13C 

NMR (100 MHz, DMSO-d6): 55.56, 56.29, 60.50, 103.99, 114.64, 126.73, 127.87, 

128.03, 130.20, 133.56, 137.42, 153.48, 159.29 ppm. 

ST-148: 1H NMR (400 MHz, DMSO-d6): δ 3.67 (s, 3H, -OCH3), 3.81 (s, 3H, -OCH3), 

3.83 (s, 6H, -OCH3), 6.96 (s, 2H, -ArH), 7.07 (d, J =8.4 Hz, 1H, ArH), 7.89-7.91(m, 3H, 
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ArH) ppm. 13C NMR (100 MHz, DMSO-d6): 55.88, 56.2, 60.59, 103.58, 107.54, 114.92, 

118.89, 126.72, 130.22, 131.47, 138.56, 142.59, 153.65, 161.48 ppm. 

ST-147: 1H NMR (400 MHz, DMSO-d6): δ 3.71 (s, 3H, -OCH3), 3.80 (s, 6H, -OCH3), 

3.87 (s, 6H, -OCH3), 6.65 (s, 1H, -ArH), 7.01 (s, 2H, -ArH), 7.12 (d, J =2 Hz, 2H, ArH), 

7.96 (s, 1H, -ArH) ppm. 13C NMR (100 MHz, DMSO-d6): 56.32, 57.05, 61.10, 103.39, 

104.39, 107.97, 111.57, 118.82, 130.18, 136.34, 139.49, 143.28, 154.16, 161.49 ppm. 

ST-124: 1H NMR (400 MHz, DMSO-d6): δ 3.79 (s, 6H, -OCH3), 3.81 (s, 3H, -OCH3), 

3.71 (s, 6H, -OCH3), 6.62 (s, 1H, -ArH), 7.05-7.10 (m, 4H, ArH), 7.69 (d, J =8.8 Hz, 2H, 

ArH), 7.84 (s, 1H, -ArH) ppm. 13C NMR (100 MHz, DMSO-d6): 55.1, 55.4, 55.6, 111.4, 

114.5, 115.9, 118.8, 126.7, 134.2, 135.1, 138.6, 142.9, 147.1, 149.1 ppm. 

ST-126: 1H NMR (400 MHz, DMSO-d6): δ 3.58 (s, 3H, -OCH3), 3.63 (s, 3H, -OCH3), 

3.71 (s, 6H, -OCH3), 7.12 (s, 2H, -ArH), 7.15 (d, J =8.0 Hz, 2H, ArH), 7.21 (d, J =8.8 

Hz, 2H, ArH), 7.36 (s, 1H, -ArH) ppm. 13C NMR (100 MHz, DMSO-d6): 55.88, 55.2, 

56.9, 101.5, 104.5, 114.9, 118.8, 126.7, 134.2, 135.1, 138.6, 142.9, 154.5, 155.8 ppm. 

ST-177: 1H NMR (400 MHz, DMSO-d6): δ 3.84 (s, 3H, -OCH3), 3.86 (s, 3H, -OCH3), 

6.13 (s, 2H, -ArH), 6.67 (d, J =8.4 Hz, 2H, ArH), 7.00 (d, J =8.0 Hz, 1H, ArH), 7.12- (d, 

J =8.4 Hz, 1H, ArH), 7.25 (s, 1H, -ArH), 7.78 (s, 1H, -ArH), 7.92 (d, J =8.8 Hz, 1H, 

ArH) ppm. 13C NMR (100 MHz, DMSO-d6): 55.99, 56.31, 98.79, 120.11, 105.75, 

106.09, 108.38, 109.08, 115.85, 118.84, 120.48, 129.02, 129.40, 136.61, 148.34, 148.68, 

159.61, 163.15 ppm. 

ST-178: 1H NMR (400 MHz, DMSO-d6): δ 6.14 (s, 2H, -CH2), 7.07 (d, J =8.4 Hz, 1H, 

ArH), 7.31 (d, J =8.0 Hz, 1H, ArH), 7.62-7.66 (m, 4H, ArH), 7.95 (d, J =7.2 Hz, 1H, 
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ArH), 8.01 (m, 2H, ArH), 8.16 (m, 1H, ArH), 8.61 (s, 1H, ArH) ppm. 13C NMR (100 

MHz, DMSO-d6): 102.26, 106.24, 109.02, 114.71, 118.10, 121.53, 124.76, 125.91, 

127.06, 127.13, 127.41, 128.05, 129.01, 130.66, 131.47, 132.08, 133.48, 140.07, 148.80, 

148.95 ppm. 

ST-180: 1H NMR (400 MHz, DMSO-d6): δ 6.12 (s, 2H, -CH2), 7.03 (d, J =8.0 Hz, 1H, 

ArH), 7.21 (d, J =8.4 Hz, 1H, ArH), 7.43-7.46 (m, 4H, ArH), 7.95 (s, 2H, ArH), 8.05 (d, 

J =7.6 Hz, 1H, ArH), 8.28 (s, 1H, ArH) ppm. 13C NMR (100 MHz, DMSO-d6): 102.30, 

105.61, 109.02, 109.14, 118.16, 121.23, 123.15, 125.12, 125.66 127.08, 127.89, 131.72, 

1234.80, 137.98, 138.59, 140.67, 148.84, 148.89 ppm. 

ST-160: 1H NMR (400 MHz, DMSO-d6): δ 3.32 (s, 3H, -OCH3), 3.70 (s, 3H, -OCH3), 

3.86 (s, 6H, -OCH3), 6.14 (s, 2H, -ArH), 6.97 (s, 2H, -ArH), 7.09 (d, J =7.6 Hz, 1H, 

ArH), 7.44 (d, J =8.4 Hz, 1H, ArH), 7.58 (s, 1H, -ArH), 7.91 (s, 1H, -ArH) ppm. 13C 

NMR (100 MHz, DMSO-d6): 56.54, 60.60, 102.36, 103.64, 107.95, 108.03, 109.24, 

118.74, 126.18, 128.29, 130.05, 138.67, 142.56, 148.24, 149.74, 153.67 ppm. 

ST-163: 1H NMR (400 MHz, DMSO-d6): δ 3.83 (s, 3H, -OCH3), 6.09 (s, 2H, -ArH), 

7.01 (d, J =8.4 Hz, 1H, ArH), 7.07 (d, J =8.8 Hz, 2H, ArH), 7.15 (d, J =10.4 Hz, 1H, 

ArH), 7.36 (d, J =1.6 Hz, 1H, ArH),7.83 (s, 1H, -ArH), 7.88 (d, J =8.8 Hz, 1H, ArH) 

ppm. 13C NMR (100 MHz, DMSO-d6): 56.54, 60.60, 102.36, 103.64, 107.95, 108.03, 

109.24, 118.74, 126.18, 128.29, 130.05, 138.67, 142.56, 148.24, 149.74, 153.67 ppm. 

ST-173: 1H NMR (400 MHz, DMSO-d6): δ 3.84 (s, 3H, -OCH3), 3.86 (s, 3H, -OCH3), 

6.09 (s, 2H, -ArH), 6.67 (d, J =8.4 Hz, 2H, ArH), 7.00 (d, J =8.0 Hz, 2H, ArH), 7.12- (d, 

J =8.4 Hz, 1H, ArH), 7.25 (s, 1H, -ArH), 7.78 (s, 1H, -ArH), 7.92 (d, J =8.8 Hz, 1H, 
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ArH) ppm. 13C NMR (100 MHz, DMSO-d6): 55.99, 56.31, 98.79, 120.11, 105.75, 

106.09, 108.38, 109.08, 115.85, 118.84, 120.48, 129.02, 129.40, 136.61, 148.34, 148.68, 

159.61, 163.15 ppm. 

ST-162: 1H NMR (400 MHz, DMSO-d6): δ 3.74 (s, 3H, -OCH3), 3.82 (s, 6H, -OCH3), 

6.11 (s, 2H, -ArH), 7.03 (d, J =7.6 Hz, 1H, ArH), 7.18 (d, J =8.0 Hz, 1H, ArH), 7.31 (s, 

2H, -ArH), 7.39 (s, 1H, -ArH), 7.87 (s, 1H, -ArH) ppm.  13C NMR (100 MHz, DMSO-

d6): 56.26, 56.37, 60.60, 102.22, 105.56, 107.08, 109.00, 109.08, 118.71, 120.87, 128.50, 

129.57, 139.74, 141.61, 148.62, 148.78, 153.24 ppm. 

ST-521: 1H NMR (400 MHz, DMSO-d6): δ 3.95 (s, 3H, -OCH3), 6.13 (d, J =8.4 Hz, 2H, 

ArH), 7.21 (d, J =8.4 Hz, 2H, ArH), 7.27 (S, 1H, ArH), 7.44 (d, J =9.2 Hz, 1H, ArH), 

8.06 (d, J =8.4 Hz, 1H, ArH), 8.26 (S, 1H, ArH) ppm. 13C NMR (100 MHz, DMSO-d6): 

57.3, 112.3, 112.7, 115.1, 119.2, 119.9, 124.3, 126.3, 127.5, 128.8, 133.8, 139.5, 151.7, 

174.8 ppm. 

ST-149: 1H NMR (400 MHz, DMSO-d6): δ 3.71-3.75 (m, 6H, -OCH3), 3.84 (s, 6H, -

OCH3), 3.87 (s, 6H, -OCH3), 7.00 (s, 2H, -ArH), 7.32 (s, 2H, ArH), 7.94 (s, 1H, ArH) 

ppm. 13C NMR (100 MHz, DMSO-d6): 60.5, 60.6, 103.6, 107.2, 109.4, 118.7, 129.4, 

129.8, 138.8, 139.9, 142.8, 153.2, 153.6 ppm. 

ST-152: 1H NMR (400 MHz, DMSO-d6): δ 3.88 (s, 3H, -OCH3), 7.07 (t, J =15.2 Hz, 1H, 

ArH), 7.17 (d, J =8.4 Hz, 1H, ArH), 7.49 (d, J =7.2 Hz, 2H, ArH), 7.65 (s, 1H, ArH), 

7.97 (s, 1H, ArH), 8.08 (s, 2H, ArH) ppm. 13C NMR (100 MHz, DMSO-d6): 56.3, 111.4, 

112.5, 117.5, 121.4, 123.2, 123.8, 130.3, 130.8, 131.8, 135.1, 138.0, 143.2, 157.0 ppm. 
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ST-153: 1H NMR (400 MHz, DMSO-d6): δ 3.80 (s, 3H, -OCH3), 6.13 (s, 2H, -ArH), 

7.06 (t, J =18 Hz, 3H, ArH), 7.41 (d, J =9.6 Hz, 1H, ArH), 7.55 (s, 1H, -ArH), 7.65 (d, J 

=8.4 Hz, 2H, ArH), 7.79 (s, 1H, -ArH) ppm.  13C NMR (100 MHz, DMSO-d6): 55.7, 

55.85, 102.2, 107.7, 107.8, 107.9, 109.2, 115.0, 115.2, 118.8, 125.8, 126.7, 127.4, 128.5, 

140.7, 140.8, 148.1, 149.4, 160.2 ppm. 

ST-164: 1H NMR (400 MHz, DMSO-d6): δ 3.79 (s, 6H, -OCH3), 6.11 (s, 2H, -ArH), 

6.62 (s, 1H, -ArH), 7.05 (d, J =7.6 Hz, 1H, ArH), 7.10 (s, 2H, -ArH), 7.21 (d, J =7.6 Hz, 

1H, ArH), 7.39 (s, 1H, -ArH), 7.85 (s, 1H, -ArH) ppm.  13C NMR (100 MHz, DMSO-d6): 

55.7, 102.2, 102.7, 105.7, 107.3, 109.0, 110.6, 118.3, 121.1, 128.3, 135.9, 141.4, 148.7, 

148.8, 160.9 ppm. 

ST-165: 1H NMR (400 MHz, DMSO-d6): δ 3.80 (s, 3H, -OCH3), 3.83 (s, 3H, -OCH3), 

6.10 (s, 2H, -ArH), 7.03 (d, J =8 Hz, 1H, ArH), 7.11 (d, J =8.4 Hz, 1H, ArH), 7.18 (d, J 

=10.4 Hz, 1H, ArH), 7.37 (d, J =2 Hz, 1H, ArH), 7.52 (d, J =10 Hz, 1H, ArH), 7.62 (d, J 

=1.6 Hz, 1H, ArH),  7.83 (s, 1H, -ArH) ppm.  13C NMR (100 MHz, DMSO-d6): 55.7, 

55.8, 56.0, 56.1, 102.1, 105.5, 105.5, 107.1, 109.0, 112.1, 119.0, 120.5, 123.7, 126.8, 

128.8, 141.6, 141.7, 148.3, 148.3, 148.9, 151.1 ppm. 

ST-168: 1H NMR (400 MHz, DMSO-d6): δ 6.14 (s, 2H, -ArH), 7.17 (d, J =8.4 Hz, 1H, 

ArH), 7.28 (t, J =16.0 Hz, 2H, ArH), 7.41 (d, J =8.4 Hz, 1H, ArH), 7.51-7.56 (m, 3H, 

ArH) ppm.  13C NMR (100 MHz, DMSO-d6): 101.3, 106.2, 107.8, 107.9, 109.4, 112.7, 

112.9, 117.6, 124.6, 124.8, 126.3, 126.9, 127.3, 130.5, 148.4, 150.6, 151.0, 158.5, 158.6 

ppm. 
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ST-486: 1H NMR (400 MHz, DMSO-d6): δ 3.74 (s, 3H, -OCH3), 3.90 (s, 6H, -OCH3), 

7.16 (s, 2H, -ArH), 7.84 (t, J =14 Hz, 1H, ArH), 7.91 (d, J =8.4 Hz, 2H, ArH), 8.04 (t, J 

=19.6 Hz, 2H, ArH), 8.22 (s, 1H, -ArH), 8.53 (d, J =8.4 Hz, 1H, ArH) ppm. 13C NMR 

(100 MHz, DMSO-d6): 56.6, 60.6, 104.4, 114.9, 117.8, 123.0, 128.0, 128.1, 128.3, 129.3, 

129.7, 130.8, 137.5, 139.5, 140.7, 147.6, 152.3, 153.6 ppm. 

ST-479: 1H NMR (400 MHz, DMSO-d6): δ 3.79 (s, 3H, -OCH3), 3.84 (s, 3H, -OCH3), 

4.31 (d, J =4 Hz, 4H, ArH), 7.01 (d, J =8.0 Hz, 1H, ArH), 7.05 (d, J =8.4 Hz, 1H, ArH), 

7.22 (d, J =8.4 Hz, 1H, ArH), 7.28 (s, 1H, -ArH), 7.44 (d, J =8.4 Hz, 1H, ArH), 7.52 (s, 

1H, -ArH), 7.80 (s, 1H, -ArH) ppm. 13C NMR (100 MHz, DMSO-d6): 56.0, 56.1, 64.4, 

64.8, 107.9, 108.9, 112.2, 117.7, 117.9, 118.8, 119.1, 123.5, 127.0, 127.6, 140.5, 143.7, 

145.8, 149.5, 150.0 ppm. HRMS (ESI): m/z calcd for C19H18NO4 [M-H] 324.1236; 

found 324.1224. 

ST-161: 1H NMR (400 MHz, DMSO-d6): δ 6.10 (s, 2H, -ArH), 6.13 (s, 2H, -ArH), 7.04 

(d, J =8.4 Hz, 1H, ArH), 7.09 (d, J =8.4 Hz, 1H, ArH), 7.17 (d, J =8.4 Hz, 1H, ArH), 

7.37 (d, J =1.6 Hz, 1H, ArH), 7.42 (d, J =8.0 Hz, 1H, ArH), 7.54 (s, 2H, -ArH), 7.82 (s, 

1H, -ArH) ppm.  13C NMR (100 MHz, DMSO-d6): 102.1, 12.3, 105.5, 105.6, 107.6, 

107.8, 107.9, 109.0, 109.2, 118.7, 120.7, 125.9, 128.3, 128.6, 141.2, 141.3, 148.1, 148.4, 

148.7, 149.5 ppm. 

ST-156: 1H NMR (400 MHz, DMSO-d6): δ 6.17 (s, 2H, -ArH), 7.15 (d, J =8.0 Hz, 1H, 

ArH), 7.55 (d, J =8.4 Hz, 1H, ArH), 7.65 (d, J =1.6 Hz, 1H, ArH), 7.99 (d, J =9.2 Hz, 

1H, ArH), 8.19 (s, 1H, -ArH), 8.34 (d, J =8.8 Hz, 1H, ArH) ppm.  13C NMR (100 MHz, 
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DMSO-d6): 102.6, 105.8, 108.1, 108.2, 109.4, 118.1, 124.7, 127.0, 127.5, 127.7, 140.8, 

146.3, 146.4, 147.4, 148.3, 150.7 ppm. 

ST-175: 1H NMR (400 MHz, DMSO-d6): δ 6.19 (s, 2H, -ArH), 7.23 (s, 1H, -ArH), 7.26 

(s, 1H, -ArH), 7.29 (d, J =7.6 Hz, 1H, ArH), 7.32 (s, 1H, -ArH), 7.51 (d, J =7.6 Hz, 2H, 

ArH), 7.56 (d, J =8.0 Hz, 1H, ArH) ppm. 13C NMR (100 MHz, DMSO-d6): 102.9, 108.7, 

118.2, 121.7, 129.6, 131.5, 138.8, 144.3, 145.9, 153.6 ppm. 

ST-287: 1H NMR (400 MHz, DMSO-d6): δ 3.88 (s, 3H, -OCH3), 3.93 (s, 6H, -OCH3), 

6.81 (s, 2H, -ArH), 7.23 (s, 1H, -ArH), 7.26 (s, 2H, -ArH), 7.32 (s, 1H, -ArH), 7.52 (s, 

1H, -ArH), 7.95 (s, 1H, -ArH) ppm. 13C NMR (100 MHz, DMSO-d6): 56.2, 56.3, 60.9, 

102.9, 108.7, 110.1, 118.2, 121.7, 129.6, 131.5, 138.8, 144.3, 145.8, 145.9, 153.6 ppm. 

ST-288: 1H NMR (400 MHz, DMSO-d6): δ 3.84 (s, 3H, -OCH3), 6.95 (d, J =8.0 Hz, 2H, 

ArH), 7.21 (s, 1H, -ArH), 7.28 (s, 1H, ArH), 7.50 (s, 1H, -ArH), 7.56 (d, J =9.2 Hz, 2H, 

ArH), 7.91 (s, 1H, -ArH) ppm. 13C NMR (100 MHz, DMSO-d6): 55.3, 55.4, 108.7, 

109.8, 114.4, 118.3, 121.9, 126.4, 126.8, 129.9, 144.2, 145.3, 145.4, 160.1 ppm. 

ST-166: 1H NMR (400 MHz, DMSO-d6): δ 4.00 (s, 3H, -OCH3), 6.12 (s, 2H, -ArH), 

7.05 (d, J =8.0 Hz, 1H, ArH), 7.20 (d, J =7.6 Hz, 1H, ArH), 7.39 (s, 1H, -ArH), 7.56 (d, J 

=8.4 Hz, 1H, ArH), 7.95 (s, 1H, -ArH), 8.23 (d, J =10.8 Hz, 1H, ArH), 8.42 (d, J =1.2 

Hz, 1H, ArH) ppm.  13C NMR (100 MHz, DMSO-d6): 57.6, 102.2, 105.5, 105.6, 109.0, 

110.2, 115.4, 115.5, 118.1, 121.1, 126.3, 126.6, 128.0, 134.9, 135.0, 138.7, 138.8, 139.3, 

148.7, 148.8, 153.6 ppm. 

ST-172: 1H NMR (400 MHz, DMSO-d6): δ 6.12 (s, 2H, -ArH), 7.06 (d, J =8.0 Hz, 1H, 

ArH), 7.20 (d, J =10.4 Hz, 1H, ArH), 7.39 (d, J =2 Hz, 1H, ArH), 7.56 (t, J =17.2 Hz, 
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1H, ArH), 7.91-7.97 (m, 2H, -ArH), 8.23 (dd, J =8.8 Hz, J =2.4 Hz, 1H, ArH) ppm.  13C 

NMR (100 MHz, DMSO-d6): 102.3, 105.7, 105.8, 108.9, 109.0, 109.1, 111.4, 117.6, 

117.9, 117.9, 121.9, 127.9, 130.5, 130.6, 130.7, 132.6, 134.5, 134.6, 138.7, 148.7, 149.0, 

158.0, 160.5 ppm. 

ST-167: 1H NMR (400 MHz, DMSO-d6): δ 6.13 (s, 2H, -ArH), 7.08 (d, J =8.4 Hz, 1H, 

ArH), 7.28 (d, J =9.2 Hz, 1H, ArH), 7.47 (d, J =1.2 Hz, 1H, ArH), 8.08-8.10 (m, 4H, 

ArH), 8.36 (d, J =9.2 Hz, 2H, ArH) ppm.  13C NMR (100 MHz, DMSO-d6): 102.4, 105.9, 

109.1, 114.0, 1177.6, 121.9, 124.4, 127.7, 130.4, 138.8, 138.9, 140.6, 148.0, 148.8, 149.4 

ppm. 

ST-184: 1H NMR (400 MHz, DMSO-d6): δ 6.17 (s, 2H, -ArH), 7.13 (d, J =8.0 Hz, 1H, 

ArH), 7.29 (t, J =16.4 Hz, 2H, ArH), 7.46 (d, J =6.8 Hz, 1H, ArH), 7.55-7.63 (m, 3H, 

ArH) ppm.  13C NMR (100 MHz, DMSO-d6): 94.0, 102.6, 107.8, 107.9, 109.4, 112.7, 

112.9, 117.6, 126.9, 127.3, 130.5, 148.4, 150.6, 151.0, 158.5, 158.6, 160.9, 161.0 ppm. 

ST-101: 1H NMR (400 MHz, DMSO-d6): δ 3.81 (s, 6H, -OCH3), 6.71 (s, 1H, -ArH), 

7.21 (s, 2H, -ArH), 8.04 (d, J =9.2 Hz, 2H, ArH), 8.25 (s, 1H, -ArH), 8.37 (d, J =8.8 Hz, 

2H, ArH) ppm. 13C NMR (100 MHz, DMSO-d6): 55.8, 99.5, 99.6, 105.4, 118.5, 124.5, 

125.6, 125.8, 132.4, 136.5, 140.8, 147.1 ppm. 

TMR-01: 1H NMR (400 MHz, DMSO-d6): δ 3.72 (s, 3H, -OCH3), 3.87 (s, 6H, -OCH3), 

7.06 (s, 2H, -ArH), 8.12 (d, J =8.8 Hz, 2H, ArH), 8.17 (s, 1H, -ArH), 8.38 (d, J =8.4 Hz, 

2H, ArH) ppm. 13C NMR (100 MHz, DMSO-d6): 56.5, 60.6, 104.2, 114.3, 117.6, 124.5, 

130.5, 139.5, 140.25, 140.4, 148.1, 153.7 ppm. 
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TMR-03: 1H NMR (400 MHz, DMSO-d6): δ 3.72 (s, 3H, -OCH3), 3.87 (s, 6H, -OCH3), 

7.05 (s, 2H, -ArH), 7.83 (t, J =16 Hz, 1H, ArH), 8.19 (s, 1H, -ArH), 8.29 (d, J =8.4 Hz, 

1H, ArH), 8.36 (d, J =8.0 Hz, 1H, ArH), 8.73 (s, 1H, -ArH) ppm. 13C NMR (100 MHz, 

DMSO-d6): 56.5, 60.6, 104.0, 113.1, 117.7, 124.3, 125.0, 129.0, 131.0, 134.9, 135.7, 

139.3, 140.1, 148.4, 153.7 ppm. 

TMR-04: 1H NMR (400 MHz, DMSO-d6): δ 3.71 (s, 3H, -OCH3), 3.86 (s, 6H, -OCH3), 

4.01 (s, 3H, -OCH3), 7.01 (s, 2H, -ArH), 7.60 (d, J =9.2 Hz, 1H, ArH), 8.07 (s, 1H, -

ArH), 8.29 (d, J =8.8 Hz, 1H, ArH), 8.44 (s, 1H, -ArH) ppm. 13C NMR (100 MHz, 

DMSO-d6): 55.4, 56.2, 56.3, 60.9, 102.9, 108.7, 110.1, 118.2, 121.7, 124.2, 124.5, 124.8, 

129.6, 131.5, 138.8, 144.3, 145.8, 145.9, 153.6 ppm. 

ST-155: 1H NMR (400 MHz, DMSO-d6): δ 3.86 (s, 6H, -OCH3), 6.14 (s, 2H, -CH2), 

6.56 (t, J =4 Hz, 1H, ArH), 6.85 (d, J =2 Hz, 1H, ArH), 7.11 (d, J =7.6 Hz, 1H, ArH), 

7.46 (d, J =7.6 Hz, 1H, ArH), 7.59 (d, J =8 Hz, 1H, ArH), 7.96 (s, 1H, -ArH) ppm. 13C 

NMR (100 MHz, DMSO-d6): 55.9, 101.0, 102.3, 104.2, 107.7, 108.1, 109.2, 118.6, 

126.4, 128.1, 136.3, 143.3, 148.2, 149.9, 161.3 ppm. 

ST-512: 1H NMR (400 MHz, DMSO-d6): δ 3.58 (s, 3H, -OCH3), 3.61 (s, 3H, -OCH3), 

6.52 (d, J =8.0 Hz, 2H, ArH), 6.87 (d, J =8.4 Hz, 2H, ArH), 6.95 (s, 2H, -ArH), 7.12 (s, 

1H, -ArH), 7.36(s, 1H, -ArH), 9.15 (s, 1H, -OH) ppm. 13C NMR (100 MHz, DMSO-d6): 

57.9, 58.2, 101.5, 104.8, 115.4, 118.8, 125.0, 127.5, 129.8, 139.5, 145.2, 151.1, 151.5 

ppm. 

ST-514: 1H NMR (400 MHz, DMSO-d6): δ 3.73 (s, 3H, -OCH3), 3.82 (s, 6H, -OCH3), 

6.89 (d, J =8.8 Hz, 2H, ArH), 7.29 (s, 2H, -ArH), 7.57 (d, J =8.4 Hz, 2H, ArH), 7.75(s, 
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1H, -ArH), 9.94 (s, 1H, -OH) ppm. 13C NMR (100 MHz, DMSO-d6): 56.3, 60.6, 106.9, 

109.4, 116.3, 118.8, 125.0, 127.5, 129.8, 139.5, 140.1, 153.2, 158.9 ppm. 

ST-516: 1H NMR (400 MHz, DMSO-d6): δ 7.55 (d, J =14.8 Hz, 2H, ArH), 7.61-7.65 (m, 

2H, ArH), 7.85 (d, J =7.2 Hz, 2H, ArH), 7.91 (t, J =8.6 Hz, 1H, ArH), 8.07 (d, J =8.4 Hz, 

2H, ArH), 8.11 (d, J =8.4 Hz, 2H, ArH), 8.21 (s, 1H, -ArH), 9.94 (s, 1H, -OH) ppm. 13C 

NMR (100 MHz, DMSO-d6): 111.3, 115.5, 121.4, 126.2, 126.3, 127.4, 128.1, 128.2, 

128.9, 129.6, 129.7, 130.8, 131.8, 133.1, 134.4, 134.3, 141.5, 145.8 ppm. 

ST-520: 1H NMR (400 MHz, DMSO-d6): δ 3.79 (s, 3H, -OCH3), 6.89 (d, J =8.4 Hz, 2H, 

ArH), 6.89 (d, J =8.4 Hz, 2H, ArH), 6.89 (d, J =8.0 Hz, 2H, ArH), 7.29 (s, 2H, -ArH), 

7.57 (d, J =8.0 Hz, 2H, ArH), 9.94 (s, 1H, -OH) ppm. 13C NMR (100 MHz, DMSO-d6): 

55.8, 107.7, 114.8, 116.3, 119.0, 125.3, 127.0, 127.3, 131.1, 139.8, 158.6, 161.0 ppm. 

ST-517: 1H NMR (400 MHz, DMSO-d6): δ 6.12 (s, 2H, -ArH), 6.87 (d, J =8.4 Hz, 2H, 

ArH), 7.07 (d, J =8.4 Hz, 1H, ArH), 7.38 (d, J =10 Hz, 1H, ArH), 7.52-7.54 (m, 3H, 

ArH), 7.71 (s, 1H, -ArH), 9.88 (s, 1H, -OH) ppm. 13C NMR (100 MHz, DMSO-d6): 56.3, 

60.6, 106.9, 109.4, 116.3, 118.8, 125.0, 127.5, 129.8, 139.5, 140.1, 153.2, 158.9 ppm. 

ST-315: 1H NMR (400 MHz, DMSO-d6): δ 3.68 (s, 3H, -OCH3), 3.83 (s, 6H, -OCH3), 

6.97 (s, 2H, -ArH), 7.28-7.43 (m, 3H, ArH), 7.76 (d, J =8 Hz, 2H, ArH), 7.83 (d, J =7.2 

Hz, 2H, ArH) ppm. 13C NMR (100 MHz, DMSO-d6): 56.3, 60.5, 104.9, 110.4, 114.5, 

119.5, 124.8, 125.1, 126.5, 127.3, 133.0, 153.5 ppm. 

ST-301: 1H NMR (400 MHz, DMSO-d6): δ 7.28 (d, J =16.4 Hz, 1H, ArH), 7.41 (d, J 

=16.4 Hz, 1H, ArH), 7.46 (d, J =8.4 Hz, 2H, ArH), 7.57-7.64 (m, 4H, ArH), 7.89 (d, J =2 

101 
 



Hz, 1H, ArH) ppm. 13C NMR (100 MHz, DMSO-d6): 127.1, 127.2, 128.5, 128.8, 129.2, 

129.9, 130.2, 131.2, 131.9, 132.9, 135.9, 138.2 ppm. 

ST-321: 1H NMR (400 MHz, DMSO-d6): δ 4.00 (s, 3H, -OCH3), 7.04 (d, J =8.4 Hz, 1H, 

ArH), 7.17 (d, J =16.0 Hz, 1H, ArH), 7.54-7.61 (m, 4H, ArH), 7.71 (d, J =8.4 Hz, 2H, 

ArH), 7.84 (d, J =8.0 Hz, 1H, ArH), 8.04 (d, J =16 Hz, 1H, ArH), 8.22 (d, J =8.4 Hz, 1H, 

ArH), 8.38 (d, J =8.0 Hz, 1H, ArH) ppm. 13C NMR (100 MHz, DMSO-d6): 56.1, 105.0, 

120.6, 122.3, 124.2, 124.3, 125.2, 125.8, 126.2, 126.7, 127.2, 128.3, 129.0, 131.9, 132.0, 

137.3, 155.3 ppm. 

ST-302: 1H NMR (400 MHz, DMSO-d6): δ 7.52 (d, J =8.4 Hz, 2H, ArH), 7.65 (d, J =8.8 

Hz, 2H, ArH), 7.85 (d, J =2.8 Hz, 2H, ArH), 7.95 (s, 1H, ArH), 8.25 (d, J =5.6 Hz, 1H, 

ArH) ppm. 13C NMR (100 MHz, DMSO-d6): 124.5, 127.6, 128.0, 128.9, 129.0, 130.9, 

131.1, 131.3, 132.0, 137.6, 143.8, 146.9 ppm. 

ST-312: 1H NMR (400 MHz, DMSO-d6): δ 6.03 (s, 2H, -ArH), 6.91 (s, 1H, -ArH), 7.01-

7.10 (m, 2H, ArH), 7.22 (d, J =8 Hz, 1H, ArH), 7.27 (s, 1H, -ArH), 7.47-7.54 (m, 4H, 

ArH) ppm. 13C NMR (100 MHz, DMSO-d6): 101.5, 105.7, 108.8, 120.5, 122.3, 125.7, 

128.5, 129.5, 131.7, 131.9, 137.0, 147.6, 148.3 ppm. 

ST-313: 1H NMR (400 MHz, DMSO-d6): δ 7.44 (d, J =1.6 Hz, 2H, ArH), 7.59-7.65 (m, 

2H, ArH), 7.77 (d, J =8.4 Hz, 2H, ArH), 7.84 (d, J =8.4 Hz, 2H, ArH), 7.91 (d, J =1.6 

Hz, 2H, ArH) ppm. 13C NMR (100 MHz, DMSO-d6): 110.4, 119.3, 127.4, 127.7, 128.8, 

129.5, 129.9, 130.8, 131.3, 132.0, 133.0, 137.7, 141.6 ppm. 

ST-309: 1H NMR (400 MHz, DMSO-d6): δ 3.66 (s, 3H, -OCH3), 3.83 (s, 6H, -OCH3), 

6.11 (s, 2H, -ArH), 6.83-6.88 (m, 4H, ArH), 7.04 (dd, J =1.2 Hz, J =1.8 Hz, 1H, ArH), 
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7.14 (d, J =16.4 Hz, 1H, ArH), 7.28 (d, J =16.4 Hz, 1H, ArH) ppm. 13C NMR (100 MHz, 

DMSO-d6): 51.6, 56.3, 60.5, 101.3, 130.2, 107.7, 120.1, 122.2, 122.8, 131.7, 153.5 ppm. 

ST-316: 1H NMR (400 MHz, DMSO-d6): δ 3.67 (s, 3H, -OCH3), 3.83 (s, 6H, -OCH3), 

6.93 (s, 2H, -ArH), 7.21 (s, 2H, -ArH), 7.55 (dd, J =8.8 Hz, J =13.6 Hz, 4H, ArH) 

ppm. 13C NMR (100 MHz, DMSO-d6): 56.3, 60.5, 104.4, 120.7, 126.9, 128.6, 129.7, 

132.0, 132.9, 136.9, 137.9, 153.5 ppm. 

ST-323: 1H NMR (400 MHz, DMSO-d6): δ 7.30 (d, J =16.4 Hz, 1H, ArH), 7.52-7.60 (m, 

4H, ArH), 7.75 (d, J =8.4 Hz, 2H, ArH), 7.89 (dd, J =3.6 Hz, J =8.4 Hz, 2H, ArH), 8.96 

(d, J =9.2 Hz, 1H, ArH), 8.14 (d, J =16 Hz, 1H, ArH), 8.43 (d, J =8.0 Hz, 1H, ArH) 

ppm. 13C NMR (100 MHz, DMSO-d6): 121.1, 123.6, 124.2, 126.2, 1263, 126.4, 126.7, 

128.5, 128.9, 129.3, 130.5, 131.2, 132.0, 133.8, 134.4, 137.0 ppm. 

ST-314: 1H NMR (400 MHz, DMSO-d6): δ 7.25-7.38 (m, 2H, ArH), 7.53-7.63 (m, 6H, 

ArH), 7.88 (s, 1H, -ArH) ppm. 13C NMR (100 MHz, DMSO-d6): 121.5, 127.1, 127.2, 

128.5, 129.0, 129.9, 130.2, 131.2, 131.9, 132.1, 136.2, 138.2 ppm. 

ST-199: 1H NMR (400 MHz, DMSO-d6): δ 2.32 (s, 3H, -CH3), 3.67 (s, 3H, -OCH3), 

3.83 (s, 6H, -OCH3), 6.93 (s, 2H, -ArH), 7.08 (d, J =7.6 Hz, 1H, ArH), 7.17 (s, 2H, -

ArH), 7.25 (t, J =15.2 Hz, 1H, ArH), 7.37 (d, J =7.6 Hz, 1H, ArH), 7.41 (s, 1H, -ArH) 

ppm. 13C NMR (100 MHz, DMSO-d6): 21.4, 56.2, 60.5, 104.2, 124.0, 127.2, 128.2, 

128.6, 128.8, 129.0, 133.2, 137.4, 138.1, 153.4 ppm. 

ST-160: 1H NMR (400 MHz, DMSO-d6): δ 3.70 (s, 3H, -OCH3), 3.86 (s, 6H, -OCH3), 

6.14 (s, 2H, -CH2), 6.97 (s, 2H, -ArH), 7.11 (d, J =8 Hz, 1H, ArH), 7.46 (d, J =8 Hz, 1H, 
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ArH), 7.57 (s, 1H, -ArH), 7.91 (s, 1H, -ArH) ppm. 13C NMR (100 MHz, DMSO-d6): 

56.5, 60.6, 102.3, 103.6, 107.9, 109.2, 126.1, 142.5, 148.2, 149.7, 153.6 ppm. 

ST-488: 1H NMR (400 MHz, DMSO-d6): δ 3.68 (s, 3H, -OCH3), 3.84 (s, 6H, -OCH3), 

6.93 (s, 2H, -CH2), 7.78 (s, 1H, -ArH), 7.85 (d, J =4 Hz, 2H, ArH) ppm. 13C NMR (100 

MHz, DMSO-d6): 56.3, 56.5, 60.4, 60.6, 102.9, 104.6, 119.0, 122.7, 122.9, 130.3, 135.4, 

135.6, 138.0, 138.2, 153.6 ppm. 

ST-527: 1H NMR (400 MHz, DMSO-d6): δ 3.81 (s, 3H, -OCH3), 3.85 (s, 3H, -OCH3), 

7.07 (d, J =4 Hz, 1H, ArH), 7.25 (d, J =8.8 Hz, 1H, ArH), 7.34 (d, J =16.2 Hz, 1H, ArH), 

7.82 (d, J =8.0 Hz, 1H, ArH), 7.92 (d, J =4.0 Hz, 1H, ArH), 7.96 (s, 1H, -CH2), 8.11 (d, J 

=4 Hz, 1H, ArH) ppm. 13C NMR (100 MHz, DMSO-d6): 56.0, 56.1, 108.9, 112.2, 112.5, 

117.9, 119.8, 126.1, 128.8, 131.2, 131.5, 132.0, 132.7, 135.0, 137.9, 149.6, 150.7 ppm. 

ST-526: 1H NMR (400 MHz, DMSO-d6): δ 7.59 (d, J = 8.8 Hz, 1H, ArH), 7.74-7.79 (m, 

3H, ArH), 7.87 (d, J =16.2 Hz, 2H, ArH), 7.97 (s, 1H, -CH2) ppm. 13C NMR (100 MHz, 

DMSO-d6): 108.0, 1169, 117.1, 117.7, 121.5, 125.0, 125.6, 126.4, 126.5, 129.2, 131.7, 

135.1, 135.2, 136.0, 138.7, 156.3 ppm. 

 
2.5 Synthesis of (E)-2,3-diaryl substituted acrylonitriles as anticancer agents. 

Two (E)-2,3-diaryl substituted acrylonitriles (Scheme 2.7) were synthesized to compare 

their anti-cancer activities to the isomeric (Z)-2,3-diaryl substituted acrylonitriles. 
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Scheme 2.7 Synthesis of (E)-substituted diarylacrylonitrile analogs. 

The (E)-substituted diarylacrylonitrile analogs ST-510, and ST-507(A) were obtained by 

refluxing their Z-isomer counterparts ST-145, and ST-507 in methanol under ultraviolet 

light for 24 hrs. The reaction was monitored by GC-MS. Once the reaction was complete, 

it was cooled to room temperature and the precipitate that formed was filtered off to yield 

the desired (E)-substituted diarylacrylonitrile analogs ST-510, and ST-507(A) (Scheme 

2.7). 

ST-510: yellow solid; 1H NMR (400 MHz, DMSO-d6): δ 3.71 (s, 9H, -OCH3), 3.75 (s, 

3H, -OCH3), 6.67 (s, 2H, -ArH), 6.72 (s, 1H, -ArH),    6.76 (d, J =8.4 Hz, 1H, ArH), 6.86 

(d, J =8.4 Hz, 1H, ArH), 7.42 (S, 1H, ArH), 9.15 (S, 1H, -OH) ppm. 13C NMR (100 MHz, 

DMSO-d6): 55.86, 56.07, 56.35, 56.57, 60.53, 60.75, 106.20, 106.38, 110.00, 112.06, 

116.65, 121.06, 123.51, 126.45, 128.59, 138.55, 144.67, 144.94, 146.46, 150.16, 153.92 

ppm. 

ST-507(A): brown solid; 1H NMR (400 MHz, DMSO-d6): δ 3.92 (s, 3H, -OCH3), 3.96(s, 

6H, -OCH3), 7.04 (T, J =13.2 Hz, 2H, ArH), 7.12 (s, 1H, ArH), 7.22 (d, J =2, 8.4Hz, 1H, 

ArH), 7.31 (S, 1H, ArH), 7.35 (d, J =10.4 Hz, 1H, ArH) ppm. 13C NMR (100 MHz, 

DMSO-d6): 55.95, 56.07, 108.69, 108.74, 109.18, 110.59, 110.61, 111.26, 115.06, 
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115.19, 118.44, 118.75, 122.02, 122.12, 127.47, 127.66, 140.15, 140.24, 145.66, 148.25, 

149.23, 149.76 ppm. 

2.6 Synthesis of (E)-3-(3-hydroxy-4-methoxyphenyl)-2-(3,4,5-
trimethoxyphenyl)acrylic acid for evaluation of anticancer activity and for UDP-
glucuronosyltransferase studies. 

(E)-3-(3-hydroxy-4-methoxyphenyl)-2-(3,4,5-trimethoxyphenyl)acrylic acid was 

designed to investigate its ability to act as a substrate for UDP-glucuronosyltransferases 

and to evaluate the anticancer activity of the compound.  

 

H3CO OCH3

HOOC

OCH3
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ST-12(a)
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OCH3

OCH3H3CO

COOH CHO
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Scheme 2.8 Synthesis of (E)-3-(3-hydroxy-4-methoxyphenyl)-2-(3,4,5-
trimethoxyphenyl)acrylic acid (ST-12(a)). (a) TEA, Ac2O, 140 °C, 40% yield. 

3-Hydroxy-4- methoxybenzaldehyde (9) (1.0 mmol), 2-(3,4,5-trimethoxyphenyl)-acetic 

acid (10) (2.0 mmol) and triethylamine (3.2 mmol) were added to 5 mL of acetic 

anhydride. The resulting reaction mixture was refluxed at 140 °C for 4 h, with periodic 

monitoring by TLC. When the reaction was complete, 10 mL of ice-water was added and 

the mixture extracted with 10 ml of ethyl acetate. The organic phase was concentrated on 

a rotary evaporator and the desired product purified by silica gel flash column 
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chromatography using methanol/DCM as mobile phase to afford ST-12(a) in 35% yield 

(Scheme 2.8). 

ST-12(a): 1H NMR (CDCl3-d6, ppm): δ 3.43 (d, 12H,−OCH3, J = 15.2 Hz), 6.69 (d, 2H, 

−ArH, J = 2.8 Hz), 6.54 (s, 1H, −ArH), 6.61 (s, 1H, −ArH), 6.80 (s, 1H, −ArH), 8.93 (s, 

1H, −ArH), 12.41 (s, 1H, −COOH) ppm. 13C NMR (CDCl3,): δ 55.9, 56.4, 60.6, 107.2, 

110.0, 112.0, 118.0, 123.3, 127.4, 131.0, 132.5, 137.4, 139.5, 146.2, 149.3, 153.5, 169.0 

ppm. 

 

2.7 Synthesis of (Z)-5-(2-(2H-tetrazol-5-yl)-2-(3,4,5-trimethoxyphenyl)vinyl)-2-
methoxyphenol (ST-145(a)) as second generation trans-stilbenes 

Cushman and co-workers designed and synthesized a series of novel imidazole-

containing resveratrol analogues and evaluated their inhibitory activities as aromatase and 

quinone reductase inhibitors. Among the synthesized compound XC (Figure 2.7) 

displayed potent aromatase inhibitory activity (IC50 = 36 nM) and showed promising 

anticancer activity against various human tumor cell lines (Sun, Hoshino et al. 2010). We 

planned to introduce a tetrazole ring resembling the imidazole pharmacophore present on 

XC as a structural modification of our lead compound (ST-145) to improve the 

compounds water solubility and anti-cancer activity. The pharmacological assay data for 

ST-145(a) is discussed in Chapter 3. 
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Figure 2.7 Structures of the potent aromatase inhibitor XC, ST-145 and ST-145(a). 

(Z)-5-(2-(2H-tetrazol-5-yl)-2-(3,4,5-trimethoxyphenyl)vinyl)-2-methoxyphenol (ST-

145(a)) was synthesized as a second generation analogue and a structural analogue of the 

lead molecule (Z)-3-(3-hydroxy-4-methoxyphenyl)-2-(3,4,5-

trimethoxyphenyl)acrylonitrile (ST-145). Initially we tried to synthesize ST-145(a) by 

reacting (Z)-3-(3-hydroxy-4-methoxyphenyl)-2-(3,4,5-trimethoxyphenyl)acrylonitrile 

with NH4Cl/NaN3 in anhydrous DMF condition, but only traces of the final tetrazole 

product were formed. Subsequently, we used tributyltin chloride/NaN3 in DMF to afford 

(Z)-5-(2-(2H-tetrazol-5-yl)-2-(3,4,5-trimethoxyphenyl)vinyl)-2-methoxyphenol (ST-

145(a)) in 58 % yield. 
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                                               Scheme 2.9 Synthesis of ST-145(a). 

(a) A mixture of (Z)-3-(3-hydroxy-4-methoxyphenyl)-2-(3,4,5-

trimethoxyphenyl)acrylonitrile (100mg; 1mmol), sodium azide (50mg; 5mmol) and 

ammonium chloride (42mg; 5mmol) was refluxed in 4ml of anhydrous DMF for 11 hrs. 

After the reaction was complete, 12ml of water was added and the resulting mixture was 

stirred for 10 min. The resulting aqueous solution was washed with five volumes of ethyl 

acetate three times, and the organic layers were combined and concentrated on a rotary 

evaporator.  The residue was purified by DCM/methanol flash chromatography to yield 

(Z)-5-(2-(2H-tetrazol-5-yl)-2-(3,4,5-trimethoxyphenyl)vinyl)-2-methoxyphenol as a pale 

yellow solid in 5% yield. NOE experiments were carried out to confirm the structure of 

the Z-isomer product (Figures 8.7, 8.8 and 8.9).  

(b) Tributyltin chloride (9.76 g, 0.03 mole) and sodium azide (1.95 g, 0.03) were stirred 

for 30 min at 15-30° C. N,N-dimethylformamide (1.46 g, 0.02 mole) was added and the 
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mixture stirred for 30 min. Thereafter, (Z)-3-(3-hydroxy-4-methoxyphenyl)-2-(3,4,5-

trimethoxyphenyl)acrylo nitrile (3.21 g; 0.01 mol) was added followed by o-xylene (5 

ml). The reaction mass was heated to 130-135° C and stirred for until completion of the 

reaction (TLC monitoring). The reaction mixture was then cooled to 20° C, and o-xylene 

(10 ml) and methylene chloride (10 ml) were added followed by water (10 ml). 

Hydrochloric acid (2.0 g, 35% w/w) was then slowly added at 20-25° C over 30 min and 

the slurry obtained was stirred for 60 min. The resulting solid was filtered off, washed 

with methylene chloride (5 ml) and dried to afford the desired tetrazole product as a pale 

yellow powder (58% yield). 

ST-145 (a): 1H NMR (400 MHz, DMSO-d6): δ 3.89 (s, 3H, -OCH3), 3.93 (s, 6H, -

OCH3), 3.97 (s, 3H, -OCH3),   6.85 (s, 2H, ArH), 6.92-6.94 (d, J =8.4 Hz, 1H, ArH), 

7.34 (s, 1H, ArH),  7.48-7.50(d, J =10.8 Hz, 2H, ArH) ppm. 13C NMR (100 MHz, 

DMSO-d6): 56.01, 56.28, 60.99, 103.10, 103.18, 109.26, 110.62, 115.08, 118.36, 122.34, 

127.20, 130.49, 138.76, 141.48, 145.61, 148.44, 153.52 ppm. 

 

Copyright © Nikhil Reddy Madadi 2014 
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Chapter 3 

Anticancer activities of synthesized resveratrol analogs 

3.1 NCI-60 Human Tumor Cell Line Screen 

The biological evaluation of potential anticancer agents at the NCI is a two-stage process, 

starting with the screening of the submitted compounds against a panel of 60 human 

tumor cell lines at a single dose of 10 µM. The results from the single dose is reported as 

a mean graph and is analyzed by the algorithm software, COMPARE. The software is 

used for comparing the anticancer activity of various molecules at a same time. Using 

this software, compounds which showed promising growth inhibitory activity at 10 µM 

are then evaluated against the 60 cell panel at five concentration levels, viz. 10-4 M, 10-5 

M, 10-6 M, 10-7 M and 10-8 M. 

3.2 Methodology used for the in vitro anticancer screen at the NCI 

RPMI 1640 medium with 5% fetal bovine serum and 2 mM L-glutamine is used for 

growing the NCI-60 human tumor cells. Initially the tumor cells are inoculated into 96-

well microtiter plates in 100 microliters at plating densities starting from 5,000 to 40,000 

cells/well. The range is dependent on the doubling time of individual tumor cell lines. 

The plates are then incubated at 37° C for 24 hours prior to addition of the submitted 

compounds (Shoemaker 2006). 
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After 24 hrs, two microtiter plates of each tumor cell line are fixed in situ with TCA. The 

optical density reading at this point represent the cell population for each tumor cell line 

at the time of compound addition (ODtzero). The experimental compounds are dissolved 

in DMSO at 400-fold concentration to the desired final maximum test concentration, and 

frozen. Then, an aliquot part of the frozen concentrate is thawed and diluted to twice the 

chosen maximum test concentration with medium containing 50 µg/ml gentamicin. Four 

more 10-fold serial dilutions are prepared to afford a total of five drug concentrations. A 

control sample with just DMSO is also prepared. Aliquots of 100 microliters of these 

different experimental drug dilutions controls are added to the appropriate microtiter 

wells containing 100 µl of medium, resulting in the required final drug concentrations, 

viz. 10-4 M, 10-5 M, 10-6 M, 10-7 M and 10-8 M and 0 M (control). 

Once the compounds are added, the microtiter plates are incubated for 48 hrs at 37°C and 

100 % relative humidity. Cold TCA is used to terminate the assay for adherent cells. 

Cells are fixed by the addition of 50 µl of cold 50 % (w/v) TCA and further incubated for 

1 hr at 4°C. The supernatant is thrown away, and the microtiter plates are splashed five 

times with water and air dried. Sulforhodamine B (SRB) solution (100 microliters) at 0.4 

% (w/v) in 1 % CH3COOH is added to each well, and plates are incubated for another 10 

minutes at room temperature. After SRB staining, free SRB is removed by washing five 

times with 1 % acetic acid. Bound SRB stain is successively dissolved with 10 mM 

trizma base, and the optical density is measured at a wavelength of 515 nm. The growth 

inhibitory or cytotoxicity effect of the test compounds in the above cellular assay is 

measured by determining percentage cell growth (PG) inhibition. Optical density (OD) 

measurements of SRB-derived color just before exposing the cells to the test compound 
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(ODtzero) and after 48hrs exposure to the test compound (ODtest) or the control vehicle 

(ODctrl) are recorded. 

Growth percentage is calculated utilizing one of the two formulas below (Madadi, 

Penthala et al. 2014).  

A negative growth percentage implies cytotoxicity. 

If (OD test - ODtzero)≥0, then 

PG = 100-(ODtest -ODtzero)/ (ODctrl- ODtzero)    

and percentage growth is shown as positive. 

 

If (ODtest - ODtzero) < 0, then 

PG = 100 - (ODtest -ODtzero)/ODtzero and 

percentage growth is shown as negative, which implies cell death. 

 

Growth inhibitory or cytotoxicity effects of the test compounds are represented with three 

dose response parameters. They are:  

1. GI50: 50% growth inhibition, indicating concentration of drug resulting in a 50% 

reduction in net protein increase compared with control cells. 

2. TGI: 100% growth inhibition, indicating concentration of drug resulting in a 100% 

reduction in net protein increase compared with control cells. 

3. LC50: lethal concentration, indicating concentration of drug lethal to 50% of cells. 
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3.3 Anticancer activity of simple stilbenes as resveratrol analogues  

A total of 74 stilbenes analogues were synthesized (Table 2.1) and submitted to the NCI 

for screening against the panel of 60 human tumor cell lines, 22 analogs were selected for 

single dose screening at 10µM concentration. The single dose results with 10µM 

concentration are presented in the appendix section (Table 8.1- Table 8.8). From the 22 

compounds selected for single dose screening, one compound (ST-198) showed 

promising anticancer activity and was selected for full five dose study. Of interest, 

Gosslau et al. also reported that ST-198 potently inhibits the proliferation of cancer cells, 

with no inhibitory effect on normal cells (Gosslau, Pabbaraja et al. 2008). These results 

imply that for the stilbene to be active in the anticancer screens the trimethoxy 

substitution pattern on ring A and the p-methoxy group on ring B are essential structural 

elements. The GI50 and TGI values of compound ST-198 against the panel of 60 human 

cancer cell lines are presented in Table 3.1. Interestingly, the introduction a cyano group 

on the stilbene double bond next to ring A (ST-148) dramatically improved the mean 

GI50 value against the panel of NCI 60 tumor cells from μM range to nM range and the 

data is presented in Table 3.4. 
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Figure 3.1 Structures of ST-198 and ST-148. 
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Table 3.1 Growth inhibition (GI50/µM) and Total Growth Inhibition (TGI/µM) data for 
compound ST-198 against human cancer cells. 
 
Table 3.1 (continued) 
Panel/cell line ST-198 

GI50 

( µM ) 
TGI 
(µM) 

Leukemia 
CCRF-CEM 

2.89 >100 

HL-60(TB) 3.14 39.1 
K-562 3.22 >100 
MOLT-4 6.42 >100 
RPMI-8226 3.93 >100 
SR 3.04 >100 
Non-Small  Cell  Lung  Cancer  
A549/ATCC 

3.70 >100 

HOP-62 3.14 25.3 
HOP-92 7.23 >100 
NCI-H23 4.44 >100 
NCI-H522 3.37 >100 
Colon Cancer  
COLO 205 

2.07 5.01 

HCC-2998 3.59 >100 
HCT-116 3.23 >100 
HCT-15 2.82 >100 
HT29 2.32 6.79 
KM12 3.63 >100 
SW-620 3.42 >100 
CNS Cancer 
SF-268 

7.59 >100 

SNB-75 1.88 5.98 
U251 3.07 16.8 
Melanoma 
LOX IMVI 

4.89 >100 

M14 2.81 >100 
MDA-MB-435 1.04 4.49 
SK-MEL-2 3.95 22.7 
SK-MEL-28 3.86 >100 
SK-MEL-5 2.50 12.3 
UACC-62 2.37 >100 
Ovarian Cancer  
IGROV1 

5.29 >100 

OVCAR-3 3.45 14.4 
OVCAR-4 4.00 >100 
NCI/ADR-RES 3.01 31.9 
SK-OV-3 3.34 59.7 
Renal Cancer 5.42 64.8 
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Table 3.1 (continued) 
786-0 
A498 0.74 4.56 
ACHN 4.51 >100 
CAKI-1 3.00 >100 
UO-31 3.69 >100 
Prostate Cancer  
PC-3 

3.22 >100 

DU-145 4.23 >100 
Breast Cancer 
 MCF7 

1.66 >100 

MDA-MB-231/ATCC 3.74 35.6 
HS 578T 3.09 >100 

 
 

3.4 Anticancer evaluation of (E)-3,5,4’-trimethoxy resveratrol analogues with 
substitutions at the C2 position on the stilbene. 

 

Initially, analogs RES-09, RES-10, RES-14, RES-27, RES-13, RES-16, RES-23 and 

RES-18 were evaluated for their anti-proliferative activity against MCF-7 and MDA-231 

breast cancer cell lines, and A549 and H460 lung cancer cell lines in the laboratory of Dr. 

Chendil Damadaran at the University of Kentucky, College of Medicine. 

 MCF-7, MDA-231, A-549 and H-460 cancer cells lines were purchased from the 

American Type Culture Collection (ATCC) (Manassas, VA) and were utilized to test the 

antitumor activity of the above C2-substituted resveratrol analogs. Breast cancer cell 

lines, MCF-7 and MDA-231 were grown in DMEM medium supplemented with 10% 

fetal bovine serum (FBS) and 1% L-glutamine, whereas lung cancer cell lines A549 and 

H460 were maintained and propagated in RPMI 1640 medium containing 2 µM L-

glutamine, 4.5 g/L glucose, 10 µM HEPES, 1.0 µM sodium pyruvate and 10% FBS. All 

cell cultures were maintained at 37oC in a 5% CO2/95% air-humidified atmosphere. Anti-

cancer activity of the resveratrol derived analogs RES-09, RES-10, RES-14, RES-27, 
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RES-13, RES-16, RES-23 and RES-18 were assessed in cell viability assays 

(trypan blue dye exclusion) on both breast (MCF-7 and MDA-231) and lung (A-549 and 

H-460) cancer cells at 24 hours post-treatment at 5 concentrations of drug (1, 5, 10, 20 

and 40 µM) and with vehicle (DMSO) alone. All assays were performed in triplicate. 

Results were expressed as percentage growth inhibition compared to control values. IC50 

values for growth inhibition were derived from a nonlinear regression model based on 

sigmoidal dose-response curves and computed using GraphPad Prism 5 (Graphpad) 

(Koduru, Sowmyalakshmi et al. 2009). 

Table 3.2.  Tryphan blue assay results; IC50 values (µM) for resveratrol analogs (RES-
09, RES-10, RES-14, RES-27, RES-13, RES-16, RES-23 and RES-18) against lung 

and breast cancer cell lines  

Entry 
Lung cancer cell lines Breast cancer cell lines 

A-549 H-460 MCF-7 MDA-231 

RES-09 10.6 13.3 11.8 5.57 

RES-10 29.2 25.2 >40 7.59 

RES-14 33.4 37.0 7.93 4.24 

RES-27 6.19 1.20 14.8 0.99 

RES-13 3.05 7.40 2.40 10.3 

RES-16 7.52 19.3 3.96 10.1 

RES-23 9.20 28.0 1.99 4.09 

RES-18 7.34 24.0 1.28 12.3 

 

 

We initially evaluated the abilities of the resveratrol analogues to inhibit the growth of 

the two human lung cancer cell lines A-549 and H-460 (Table 3.2). All eight compounds 

exhibited IC50 values < 37 µM in both cancer cell lines, and generally showed less 

growth inhibition against A549 lung cancer cells than H460 lung cancer cells. The 
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analogs were also tested for their anti-proliferative activity against estrogen positive 

MCF-7 and estrogen negative MDA-231 breast cancer cell lines. All the compounds 

showed growth inhibition against MCF-7 cell lines with IC50 values ranging from 0.99 

µM to >40 µM. The pseudothiohydantoin analog (RES-16, IC50 = 2.61 µM) and the 

thiohydantoin analog (RES-13, IC50 = 3.05 µM) were identified as the most potent 

cytotoxic agents against A-549 lung cancer cells, whereas the creatinine analog (RES-27, 

IC50 = 1.2 µM) and thiohydantoin analog (RES-13, IC50 = 7.4 µM) were identified as the 

most potent cytotoxic agents against H460 lung cancer cells. The isobarbiturate analog 

(RES-17, IC50 = 1.28 µM) and the isorhodanine analog (RES-18, IC50 = 1.99 µM) were 

identified as potent cytotoxic agents against MCF-7 cells. The thiohydantoin analog 

(RES-13, IC50 = 2.4 µM) and the pseudothiohydantoin analog (RES-16, IC50 = 3.86 µM) 

also exhibited promising cytotoxicity against MCF-7 cells. The creatinine analog (RES-

27, IC50 = 0.99 µM) and the isorhodanine analog (RES-18, IC50 = 4.09 µM) were 

identified as the most potent cytotoxic agents against MDA-231 cells.  

From the library of resveratrol analogs synthesized, the following compounds: (Z)-2-

amino-5-(2, 4-dimethoxy-6-(4-methoxystyryl)benzylidene) 1-methyl-1H-imidazol-

4(5H)-one (RES-27), (Z)-2-amino-5-(2,4-dimethoxy-6-(4-methoxystyryl) 

benzylidene)thiazol-4(5H)-one (RES-16), (Z)-6-(2,4-dimethoxy-6-(4-

methoxystyryl)benzylidene) dihydropyrimidine-2,4,5(3H)-trione (RES-17) and (Z)-5-

(2,4-dimethoxy-6-(4-methoxystyryl) benzylidene)-4-thioxothiazolidin-2-one (RES-18) 

were identified as potent anti-proliferative agents against both lung and breast cancer cell 

lines.  
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Encouraged by the above results, a total of 31 resveratrol analogues with substitutions at 

the C2 position of the stilbene skeleton were submitted to NCI for evaluation in their 

cytotoxicity screening assays against 60 human tumor cell lines. The analogues RES-11, 

RES-17, RES-59, ST-100 and ST-127showed good activity in the 10 µM single dose 

screen, and were selected for five dose response studies for their in vitro cytotoxic effects 

on growth parameters against the 60 tumor cell line panel. Dose response curves were 

created by plotting cytotoxic effect against the log10 of the concentration for each cell 

line. The compound’s cytotoxic effects were determined as their GI50, TGI and LC50 

values, which are presented in Table 3.3. 

 Among the compounds selected for five dose testing, acrylonitrile analogs ST-

100 and ST-127 were found to be very effective against five particular human cancer cell 

lines; i.e. SR, NCI-H522, SF-539, MDA-MB-435 and RXF 393, with GI50 values that 

were less than 300 nM. Lung cancer cell line NCI-H522 appeared to be the most sensitive 

to the growth inhibition effects of ST-100 and ST-127, exhibiting GI50 values of 240 nM 

and 250 nM, respectively. Compounds ST-100 and ST-127 also exhibited impressive 

growth inhibition against melanoma cancer cell line MDA-MB-435 with GI50 values of 

240 nM and 280 nM, respectively. Importantly, compound ST-100 showed promising 

growth inhibitory activity affording GI50 values < 1 µM for more than 50% of the human 

tumor cell lines in the panel. Compound ST-127 was also effective against CNS cancer 

cell lines SF-295 (GI50 = 360 nM) and SF-539 (GI50 = 270 nM), renal cancer cell lines 

786-0 (GI50 = 380 nM), CAKI-1 (GI50 = 500 nM), RXF 393 (GI50 = 310 nM), and breast 

cancer cell line MCF-7 (GI50 = 390 nM). Compound ST-127 was also found to have an 

effective GI50 value of 280 nM against leukemia cancer cell line SR. 
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Table 3.3: Growth inhibition (GI50/µM) and cytotoxicity (LC50/µM) data for compounds 
RES-11, RES-17, RES-59, ST-100 and ST-127 against human cancer cells. 

Table 3.3 (continued) 

Panel/cell line 
RES-11 RES-17 RES-59 ST-100 ST-127 

GI50 

(µM) 
LC50 
(µM) 

GI50 

(µM) 
LC50 
(µM) 

GI50 

(µM) 
LC50 
(µM) 

GI50 

(µM) 
LC50 
(µM) 

GI50 

(µM) 
LC50 
(µM) 

Leukemia 
CCRF-CEM 3.76 >100 2.86 >100 3.75 >100 0.75 >100 2.24 >100 

HL-60(TB) 334 >100 2.13 >100 3.41 >100 1.66 >100 0.58 >100 
K-562 0.58 >100 2.58 NA NA NA 0.43 >100 0.43 >100 
MOLT-4 5.71 >100 2.06 >100 5.52 >100 4.38 >100 3.30 >100 
RPMI-8226 5.47 >100 2.77 >100 3.88 >100 1.16 >100 2.85 >100 
SR 0.52 >100 3.95 >100 1.51 >100 0.91 >100 0.28 >100 
Lung  Cancer 
A549/ATCC 5.06 >100 1.92 8.11 7.25 >100 0.91 >100 3.56 >100 

HOP-62 4.35 >100 1.99 8.96 5.63 >100 0.97 >100 2.79 >100 
NCI-H226 3.67 >100 5.37 52.3 8.54 >100 7.58 >100 17.3 >100 
NCI-H322M 73.8 >100 1.97 >100 27.2 >100 4.66 >100 7.12 >100 
NCI-H460 3.62 >100 2.23 32.6 3.85 >100 1.84 >100 3.47 >100 
NCI-H522 4.40 >100 2.14 31.1 2.29 >100 0.24 >100 0.25 55.3 
Colon Cancer 
COLO 205 

5.49 >100 1.93 6.17 6.70 >100 1.24 >100 2.28 >100 

HCC-2998 4.76 >100 1.53 6.05 8.65 >100 2.49 >100 5.47 >100 
HCT-116 3.80 >100 1.75 7.25 3.94 >100 0.49 >100 1.29 >100 
HCT-15 3.93 >100 2.14 >100 3.71 >100 0.65 >100 0.76 >100 
HT29 2.89 >100 2.05 8.41 3.59 >100 0.69 >100 0.48 >100 
KM12 2.13 >100 1.68 5.91 3.87 >100 0.78 >100 0.64 >100 
SW-620 3.00 >100 1.59 5.78 4.61 >100 0.50 >100 0.71 >100 
CNS Cancer 
SF-268 6.71 >100 1.67 6.06 7.20 >100 4.71 >100 4.18 >100 

SF-295 3.79 >100 1.95 >100 2.37 87.6 0.36 >100 2.51 >100 
SF-539 3.73 >100 2.06 11.2 3.21 90.0 0.27 >100 1.55 >100 
SNB-19 6.63 >100 12.4 69.3 6.13 >100 >100 >100 8.77 >100 
SNB-75 2.05 72.7 10.7 51.8 3.47 >100 0.47 >100 2.28 >100 
U251 3.26 >100 2.18 44.9 5.22 >100 0.64 >100 2.77 >100 
Melanoma 
M14 

2.31 >100 2.16 >100 4.21 >100 1.38 >100 1.14 >100 

MDA-MB-435 0.36 >100 3.61 >100 1.33 66.5 0.24 >100 0.28 >100 
SK-MEL-28 3.06 >100 5.38 63.9 8.67 >100 0.75 >100 4.22 >100 
SK-MEL-5 2.56 >100 5.97 43.2 3.28 >100 2.28 >100 2.44 >100 
UACC-62 4.02 >100 2.89 35.6 2.80 >100 0.70 >100 NA >100 
Ovarian Cancer  
IGROV1 11.8 >100 2.77 61.3 13.8 >100 2.35 >100 5.28 >100 

OVCAR-3 2.79 >100 1.93 9.87 3.73 79.0 0.63 >100 1.38 >100 
OVCAR-4 10.7 >100 10.2 77.5 20.7 >100 0.50 >100 3.59 >100 
OVCAR-5 9.15 >100 2.10 22.2 8.64 >100 6.71 >100 8.37 >100 
OVCAR-8 4.58 >100 3.16 >100 17.2 >100 3.75 >100 3.37 >100 
NCI/ADR-RES 1.02 >100 2.40 >100 3.30 >100 0.65 >100 0.71 >100 

120 
 



Table 3.3 (continued) 
Renal Cancer 
786-0 

3.53 >100 12.7 57.8 4.06 >100 1.72 >100 3.25 >100 

A498 2.44 >100 5.08 56.0 1.66 >100 0.38 >100 1.37 >100 
ACHN 6.79 >100 2.21 18.6 6.96 >100 0.83 >100 4.25 >100 
CAKI-1 3.12 >100 4.76 94.6 3.72 >100 0.50 >100 2.20 >100 
RXF 393 2.16 >100 3.41 38.5 3.04 >100 0.31 >100 2.00 >100 
SN12C 6.33 >100 2.55 38.9 4.72 >100 3.95 >100 4.68 >100 
TK-10 13.6 >100 10.2 52.7 7.03 >100 >100 >100 1.95 >100 
Breast Cancer 
 MCF7 

1.96 >100 1.44 7.89 3.30 >100 0.39 >100 0.72 >100 

MDA-MB-
231/ATCC 10.3 >100 2.76 65.7 2.19 >100 2.78 >100 2.83 >100 

HS 578T 3.64 >100 2.55 >100 4.95 >100 0.68 >100 1.34 >100 
BT-549 2.09 >100 3.91 49.8 6.36 >100 4.58 >100 1.31 >100 
T-47D 7.28 >100 1.66 7.26 5.23 >100 0.80 >100 3.03 >100 
MDA-MB-468 2.68 >100 1.66 7.10 1.93 >100 1.72 >100 1.70 >100 

 

In conclusion, a library of novel resveratrol analogs with different substitutions on the C2 

position of the stilbene skeleton was synthesized and evaluated for their growth inhibition 

properties against a panel of 60 human cancer cell lines. The acrylonitrile analog ST-100 

was found to be the lead compound with GI50 values < 1 µM for more than 50% of the 

cells in the panel. The novel acrylonitrile resveratrol analog ST-100 represents a 

promising lead compound that may have clinical potential in treating a variety of solid 

and hematological cancers. 

3.5 Anticancer activity of (E/Z)-2,3-diaryl substituted acrylonitriles as anticancer 
agents. 

A total of 74 (E/Z)-2,3-diaryl substituted acrylonitriles were synthesized (Table DD) and 

submitted to the NCI for screening against the 60 human tumor cell panel, and 41 analogs 

were selected for single dose screening at 10µM. The single dose results are presented in 

the appendix (Table 8.9- Table 8.14). From the 41 compounds selected for single dose 

screening 18 compounds showed promising anticancer activity and were selected for full 
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five dose studies. The GI50 and TGI values of these 18 compounds against the panel of 

60 human cancer cell lines are presented in Tables 3.4 to 3.8  

Table 3.4: Growth Inhibition (GI50/µM) and Total Growth Inhibition (TGI/µM) data for 
compounds ST-198, ST-148, ST-147 and ST-124 against human cancer cells. 

Table 3.4 (continued) 
Panel/cell line ST-198 ST-148 ST-147 ST-124 

GI50 

( µM ) 
TGI 
(µM) 

GI50 

(nM) 
TGI 
(µM) 

GI50 
(µM) 

TGI 
(µM) 

GI50 

( nM ) 
TGI 
(µM) 

Leukemia 
CCRF-CEM 

2.89 >100 36.7 58.7 51.2 >100 
324 11.1 

HL-60(TB) 3.14 39.1 22.0 6.32 68.6 >100 289 0.89 
K-562 3.22 >100 <10 >100 3.14 >100 317 >100 
MOLT-4 6.42 >100 36.2 33.5 28.2 >100 438 >100 
RPMI-8226 3.93 >100 3.00 17.4 6.64 >100 339 10.5 
SR 3.04 >100 <10 >100 4.14 >100 294 18.5 
Non-Small  Cell  Lung  
Cancer  
A549/ATCC 

3.70 >100 15.1 >100 6.35 >100 
388 >100 

HOP-62 3.14 25.3 30.1 >100 7.63 >100 516 >100 
HOP-92 7.23 >100 23.9 15.7 3.57 69.5 NA NA 
NCI-H23 4.44 >100 57.8 >100 43.0 >100 537 >100 
NCI-H522 3.37 >100 <10 0.02 20.5 >100 94.3 0.61 
Colon Cancer  
COLO 205 

2.07 5.01 13.1 0.03 5.16 42.7 270 0.63 

HCC-2998 3.59 >100 43.5 >100 97.0 >100 349 16.7 
HCT-116 3.23 >100 <10 >100 6.05 >100 333 >100 
HCT-15 2.82 >100 <10 >100 4.47 >100 336 >100 
HT29 2.32 6.79 <10 16.2 4.24 >100 289 1.03 
KM12 3.63 >100 <10 13.6 4.97 >100 388 12.8 
SW-620 3.42 >100 10.6 >100 5.17 >100 424 >100 
CNS Cancer 
SF-268 

7.59 >100 40.7 >100 25.3 >100 
848 >100 

SF-295 2.18 8.20 <10 30.3 5.33 >100 222 0.95 
SF-539 2.18 5.70 <10 0.03 6.60 57.4 223 0.51 
SNB-19 4.85 >100 59.7 >100 5.46 >100 988 >100 
SNB-75 1.88 5.98 <10 >100 2.67 >100 295 59.2 
U251 3.07 16.8 29.3 60.2 7.82 >100 343 30.6 
Melanoma 
LOX IMVI 

4.89 >100 14.1 >100 5.31 >100 580 >100 

M14 2.81 >100 19.3 >100 4.45 94.1 288 >100 
MDA-MB-435 1.04 4.49 <10 NA 1.63 7.58 173 0.48 
SK-MEL-2 3.95 22.7 85.1 >100 5.44 79.7 887 >100 
SK-MEL-28 3.86 >100 NA >100 14.0 >100 498 >100 
SK-MEL-5 2.50 12.3 12.7 0.06 4.70 68.1 278 1.36 
UACC-62 2.37 >100 <10 >100 2.42 61.7 404 >100 
Ovarian Cancer  
IGROV1 5.29 >100 26.3 >100 14.6 >100 

532 >100 
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Table 3.4 (continued) 
OVCAR-3 3.45 14.4 <10 NA 6.69 >100 300 0.73 
OVCAR-4 4.00 >100 14.6 >100 7.48 >100 734 >100 
NCI/ADR-RES 3.01 31.9 <10 86.8 3.25 38.3 274 >100 
SK-OV-3 3.34 59.7 <10 58.3 14.4 >100 370 NA 
Renal Cancer 
786-0 

5.42 64.8 21.6 >100 13.0 >100 425 13.8 

A498 0.74 4.56 <10 0.02 1.29 43.3 252 2.08 
ACHN 4.51 >100 10.6 >100 9.78 >100 532 >100 
CAKI-1 3.00 >100 NA NA 6.19 >100 544 20.9 
UO-31 3.69 >100 <10 28.3 1.92 17.9 490 >100 
Prostate Cancer  
PC-3 

3.22 >100 10.1 >100 4.71 >100 
363 >100 

DU-145 4.23 >100 23.7 >100 71.2 >100 501 16.5 
Breast Cancer 
 MCF7 

1.66 >100 <10 >100 4.35 >100 
310 >100 

MDA-MB-231/ATCC 3.74 35.6 28.3 >100 4.83 64.3 434 6.95 
HS 578T 3.09 >100 <10 >100 16.7 >100 317 >100 
MDA-MB-468 2.22 >100 21.1 20.5 3.44 57.0 294 2.45 

 

Table 3.5: Growth Inhibition (GI50/µM) and Total Growth Inhibition (TGI/µM) data for 
compounds ST-507, ST-507(a), ST-145 and ST-510 against human cancer cells. 

Table 3.5 (continued) 

Panel/cell line 
ST-507 ST-507(a) ST-145 ST-510 

GI50 

( nM ) 
TGI 
(µM) 

GI50 

(nM) 
TGI 
(µM) 

GI50 

(nM) 
TGI 

(µM) 
GI50 

(nM) 
TGI 

(µM) 
Leukemia 
CCRF-CEM 

34.3 >100 38.9 46.5 <10 23.8 <10 >100 

HL-60(TB) 29.9 NA 30.4 NA <10 <0.01 <10 >100 
K-562 22.6 >100 31.5 >100 <10 >100 <10 >100 
MOLT-4 51.1 >100 73.8 22.7 <10 14.0 <10 >100 
RPMI-8226 42.0 54.5 44.6 25.6 <10 2.21 <10 >100 
SR 21.9 >100 26.6 49.6 <10 45.9 <10 >100 
Non-Small  Cell  Lung  
Cancer 
A549/ATCC 

218 >100 259 >100 <10 29.0 <10 >100 

HOP-62 34.6 >100 33.3 93.1 <10 29.1 NA NA 
HOP-92 16900 >100 8650 85.1 <10 1.37 <10 NA 
NCI-H23 76.3 >100 79.7 36.6 <10 17.9 <10 >100 
NCI-H522 <10 0.05 12.9 0.07 <10 <0.01 <10 <0.01 
Colon Cancer 
COLO 205 12400 47.1 12600 44.7 2990 24.9 301 11.1 

HCC-2998 181 >100 172 34.5 26.1 12.1 <10 >100 
HCT-116 36.4 >100 33.7 40.0 <10 10.3 <10 0.01 
HCT-15 36.6 >100 32.9 12.5 <10 16.6 <10 >100 
HT29 5780 >100 6230 >100 3180 46.9 320 4.61 
KM12 22.9 >100 38.2 16.3 <10 19.5 <10 >100 
SW-620 35.2 >100 38.6 78.7 <10 >100 <10 >100 
CNS Cancer 66.3 >100 77.0 65.0 <10 60.4 <10 >100 
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SF-268 
SF-295 966 >100 5870 22.8 49.6 13.7 13.1 >100 
SF-539 21.7 NA 23.1 NA <10 <0.01 <10 <0.01 
SNB-19 50.5 >100 43.7 >100 <10 >100 <10 >100 
SNB-75 21.6 NA 16.8 NA <10 41.1 <10 >100 
U251 43.9 >100 47.3 >100 11.2 25.8 <10 >100 
Melanoma 
LOX IMVI 58.2 >100 69.5 22.6 <10 19.5 <10 >100 

M14 27.5 >100 22.8 NA <10 14.8 <10 NA 
MDA-MB-435 <10 <0.01 <10 0.02 <10 <0.01 <10 <0.01 
SK-MEL-2 NA >100 NA 49.8 <10 39.8 <10 >100 
SK-MEL-28 11100 >100 12700 68.6 1010 24.5 <10 >100 
SK-MEL-5 43.5 2.1 45.4 1.76 <10 0.02 <10 <0.01 
UACC-62 20.9 >100 NA 35.8 <10 21.4 <10 >100 
Ovarian Cancer 
IGROV1 

61.3 >100 71.0 >100 <10 >100 <10 <0.01 

OVCAR-3 17.3 NA 20.8 NA <10 43.7 <10 >100 
OVCAR-4 15600 >100 10700 56.5 <10 22.6 <10 >100 
NCI/ADR-RES 16.2 >100 22.3 0.12 <10 NA <10 >100 
SK-OV-3 48.7 >100 53.7 54.6 16.9 43.5 <10 >100 
Renal Cancer 
786-0 

3660 >100 2430 >100 <10 34.3 14.8 0.85 

A498 20.0 NA 25.0 NA <10 <0.01 <10 >100 
ACHN 84.4 >100 85.6 48.8 <10 43.3 <10 >100 
CAKI-1 >100 >100 423 >100 34.2 33.9 <10 >100 
UO-31 57.2 >100 88.9 26.9 <10 19.3 <10 >100 
Prostate Cancer 
PC-3 

41.2 >100 39.3 50.1 <10 17.0 <10 >100 

DU-145 36.5 >100 37.4 58.7 <10 39.6 <10 >100 
Breast Cancer 
MCF7 

35.3 >100 35.4 24.0 <10 12.1 <10 >100 

MDA-MB-231/ATCC 44.9 >100 45.6 >100 <10 90.8 <10 >100 
HS 578T 25.7 >100 27.7 NA <10 92.2 <10 >100 
MDA-MB-468 43.4 >100 44.6 30.2 <10 <0.01 <10 >100 

 

Table 3.6: Growth Inhibition (GI50/µM) and Total Growth Inhibition (TGI/µM) data for 
compounds ST-179, ST-163, ST-178 and ST-180 against human cancer cells. 

Table 3.6 (continued) 

Panel/cell line 
ST-179 ST-163 ST-178 ST-180 

GI50 

( µM ) 
TGI 
(µM) 

GI50 

(nM) 
TGI 
(µM) 

GI50 

(µM) 
TGI 
(µM) 

GI50 

( nM ) 
TGI 
(µM) 

Leukemia 
CCRF-CEM 

1.91 25.9 250 >100 3.65 >100 46.9 >100 

HL-60(TB) 1.57 17.7 247 >100 3.50 55.2 25.7 >100 
K-562 0.53 30.9 41.3 >100 0.79 70.7 36.4 >100 
MOLT-4 3.71 >100 450 >100 4.99 >100 67.4 >100 
RPMI-8226 3.85 >100 494 >100 4.49 >100 192 >100 
SR 5.44 12.6 54.7 >100 1.60 21.2 35.5 >100 
Non-Small  Cell  2.65 >100 277 >100 500 >100 99.6 >100 
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Table 3.6 (continued) 
Lung  Cancer 
A549/ATCC 
HOP-62 2.14 14.5 308 62.8 3.77 >100 76.9 >100 
HOP-92 12.0 63.2 >1000 >100 4.55 53.0 >1000 >100 
NCI-H23 5.09 91.8 NA >100 6.45 >100 325 >100 
NCI-H522 2.37 7.78 43.0 0.51 2.89 9.73 15.6 0.057 
Colon Cancer 
COLO 205 1.61 4.81 140 1.06 2.58 7.45 36.1 0.200 

HCC-2998 5.42 >100 >1000 >100 11.0 >100 275 >100 
HCT-116 2.41 >100 229 >100 3.72 >100 45.2 >100 
HCT-15 0.75 >100 74.4 >100 1.77 >100 47.3 >100 
HT29 1.60 >100 61.3 >100 3.02 22.6 33.0 13.1 
KM12 2.39 >100 73.8 >100 3.77 >100 51.6 >100 
SW-620 0.72 >100 122 >100 3.72 >100 50.1 >100 
CNS Cancer 
SF-268 9.34 >100 730 >100 8.99 >100 >1000 >100 

SF-295 1.91 10.5 202 13.1 2.96 >100 38.1 20.0 
SF-539 1.58 6.97 249 1.42 2.71 11.0 45.1 >100 
SNB-19 4.24 95.0 751 >100 6.29 >100 237 >100 
SNB-75 1.14 4.88 NA >100 2.45 9.44 27.5 18.2 
U251 2.71 16.4 438 >100 3.85 >100 67.0 38.6 
Melanoma 
LOX IMVI 3.96 >100 571 >100 4.22 >100 56.7 40.2 

M14 1.68 >100 123 >100 3.13 >100 49.5 >100 
MDA-MB-435 0.31 >100 27.5 0.095 0.43 6.20 25.4 0.104 
SK-MEL-2 2.90 17.8 209 50.8 3.18 >100 43.5 >100 
SK-MEL-28 4.52 >100 457 >100 5.84 >100 247 >100 
SK-MEL-5 1.52 18.9 212 >100 3.20 2.04 57.3 2.67 
UACC-62 1.51 41.1 594 >100 2.63 >100 56.3 >100 
Ovarian Cancer 
IGROV1 

4.07 >100 >1000 >100 5.95 >100 90.3 >100 

OVCAR-3 3.04 NA 271 >100 4.18 28.4 37.9 >100 
OVCAR-4 3.79 >100 NA >100 8.25 >100 >1000 >100 
NCI/ADR-RES 1.65 >100 79.2 >100 2.52 >100 42.4 >100 
SK-OV-3 2.35 >100 404 >100 3.58 >100 56.2 >100 
Renal Cancer 
786-0 

4.38 29.1 >1000 >100 5.62 50.6 887 >100 

A498 0.41 5.38 201 6.17 1.17 7.08 31.6 2.50 
ACHN 4.24 >100 525 >100 4.52 >100 63.2 >100 
CAKI-1 2.06 >100 NA >100 4.18 >100 48.9 >100 
UO-31 6.24 >100 579 >100 6.48 >100 83.2 >100 
Prostate Cancer 
PC-3 

3.04 >100 321 >100 5.52 >100 55.6 >100 

DU-145 3.49 >100 587 >100 6.94 >100 216 >100 
Breast Cancer 
MCF7 

0.61 >100 81.0 >100 1.99 >100 87.9 >100 

MDA-MB-
231/ATCC 2.43 >100 >1000 >100 5.11 >100 180 >100 

HS 578T 2.63 80.5 466 >100 3.54 81.6 82.8 >100 
MDA-MB-468 0.51 11.9 281 >100 2.11 62.6 383 45.7 
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Table 3.7: Growth Inhibition (GI50/µM) and Total Growth Inhibition (TGI/µM) data for 
compounds ST-257, ST-260, ST-261 and ST-253 against human cancer cells. 

Table 3.7 (continued) 

Panel/cell line 
ST-257 ST-260 ST-261 ST-253 

GI50 

( µM ) 
TGI 
(µM) 

GI50 

(nM) 
TGI 
(µM) 

GI50 

( nM ) 
TGI 
(µM) 

GI50 

( nM ) 
TGI 
(µM) 

Leukemia 
CCRF-CEM 3.76 >100 297 >100 52.2 >100 209 >100 

HL-60(TB) 2.07 17.9 60.3 NA 30.9 NA 40.4 25.4 
K-562 NA >100 NA NA NA NA NA NA 
MOLT-4 8.85 >100 1010 >100 60.5 >100 622 >100 
RPMI-8226 4.81 >100 34.2 76.2 53.4 >100 57.0 20.8 
SR 0.93 31.5 67.9 21.1 31.7 >100 64.1 >100 
Non-Small  Cell  
Lung  Cancer 
A549/ATCC 

4.12 >100 146 >100 35.8 27.6 60.2 >100 

HOP-62 2.98 >100 94.9 >100 44.2 17.4 51.5 >100 
HOP-92 9.64 >100 1410 72.0 37.9 23.9 119 42.1 
NCI-H23 6.61 >100 598 >100 48.1 16.5 158 >100 
NCI-H522 2.80 >100 67.6 >100 2.73 87.9 51.1 >100 
Colon Cancer 
COLO 205 

2.77 12.3 131 0.42 22.2 0.04/0.08 121 0.38 

HCC-2998 8.85 >100 331 >100 38.9 53.5 140 >100 
HCT-116 2.71 >100 45.2 13.0 30.1 1.13 34.3 13.5 
HCT-15 0.73 >100 57.4 >100 30.6 >100 39.2 >100 
HT29 NA >100 NA NA NA NA NA >100 
KM12 1.59 >100 80.3 >100 39.7 >100 54.4 >100 
SW-620 1.04 >100 54.3 >100 37.8 >100 44.2 >100 
CNS Cancer 
SF-268 5.38 >100 651 >100 51.4 43.2 113 >100 

SF-295 2.49 21.8 41.1 13.1 28.4 13.1 28.6 33.5 
SF-539 2.56 >100 48.8 0.47 25.0 0.09/2.47 25.2 0.07 
SNB-19 4.08 >100 414 >100 60.6 62.0 199 >100 
SNB-75 2.16 >100 91.3 >100 44.4 16.3 34.2 >100 
U251 3.97 44.3 218 >100 36.4 10.3 49.8 60.7 
Melanoma 
LOX IMVI 4.92 >100 145 >100 31.1 >100 64.4 >100 

M14 1.63 >100 48.1 NA 25.6 NA 34.7 NA 
MDA-MB-435 0.26 1.21 25.9 0.092 20.9 0.06 21.4 NA 
SK-MEL-2 1.84 >100 558 >100 NA NA NA >100 
SK-MEL-28 4.59 >100 155 >100 49.1 >100 62.5 >100 
SK-MEL-5 0.84 33.9 66.4 11.9 23.2 0.06 33.1 0.18 
UACC-62 1.04 >100 35.1 >100 38.7 >100 35.3 >100 
Ovarian Cancer 
IGROV1 9.40 >100 660 >100 76.2 >100 633 >100 

OVCAR-3 2.16 10.1 51.8 29.4 36.4 4.55 36.2 >100 
OVCAR-4 11.2 >100 927 >100 77.8 >100 266 >100 
NCI/ADR-RES 1.52 >100 56.2 >100 31.0 >100 32.7 >100 
SK-OV-3 3.24 58.1 113 15.5 30.9 0.09 43.1 >100 
Renal Cancer 3.88 >100 62.4 >100 34.6 >100 38.4 16.8 
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Table 3.7 (continued) 
786-0 
A498 1.35 9.26 49.8 90.0 32.8 2.50 26.3 13.8 
ACHN 7.61 >100 306 >100 46.2 >100 79.8 >100 
CAKI-1 2.92 >100 91.1 >100 50.9 >100 50.1 >100 
UO-31 501 >100 761 >100 2040 >100 NA >100 
Prostate Cancer 
PC-3 4.57 >100 160 >100 41.0 >100 56.3 >100 

DU-145 4.69 >100 381 >100 38.8 21.2 135 >100 
Breast Cancer 
MCF7 0.86 >100 157 >100 32.0 >100 40.2 56.5 

MDA-MB-
231/ATCC 

4.69 >100 376 52.7 26.8 0.07 170 >100 

HS 578T 5.56 >100 154 >100 38.6 >100 71.2 >100 
MDA-MB-468 1.11 >100 94.0 5.64 27.4 0.28 34.0 0.77 

 

Table 3.8: Growth Inhibition (GI50/µM) and Total Growth Inhibition (TGI/µM) data for 
compounds ST-252 and ST-173 against human cancer cells. 

Table 3.8 (continued) 

Panel/cell line 
ST-252 ST-173 

GI50 

( µM ) 
TGI 
(µM) 

GI50 

( µM ) 
TGI 
(µM) 

Leukemia 
CCRF-CEM >100 >100 1.56 24.8 

HL-60(TB) >100 >100 1.49 >100 
K-562 NA >100 0.39 >100 
MOLT-4 >100 >100 2.81 >100 
RPMI-8226 >100 >100 3.23 >100 
SR 2.76 >100 0.53 47.0 
Non-Small  Cell  Lung  
Cancer 
A549/ATCC 

21.7 >100 2.65 
 

>100 

HOP-62 >100 >100 3.30 >100 
HOP-92 >100 >100 7.42 >100 
NCI-H23 >100 >100 6.33 >100 
NCI-H522 >100 >100 2.58 8.98 
Colon Cancer 
COLO 205 >100 >100 1.59 3.77 

HCC-2998 7.78 >100 11.9 >100 
HCT-116 6.33 >100 2.68 >100 
HCT-15 2.10 >100 0.87 >100 
HT29 NA >100 0.71 >100 
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Table 3.8 (continued) 
KM12 4.26 >100 2.25 >100 
SW-620 3.93 >100 1.23 >100 
CNS Cancer 
SF-268 >100 >100 9.36 

>100 

SF-295 10.6 >100 1.75 >100 
SF-539 73.1 >100 1.61 4.31 
SNB-19 >100 >100 6.95 >100 
SNB-75 21.9 >100 NA >100 
U251 >100 >100 3.59 >100 
Melanoma 
LOX IMVI NA >100 5.33 

>100 

M14 3.87 >100 1.32 >100 
MDA-MB-435 0.51 4.50 0.30 >100 
SK-MEL-2 36.8 >100 0.72 >100 
SK-MEL-28 >100 >100 4.47 >100 
SK-MEL-5 3.54 >100 2.58 >100 
UACC-62 8.68 >100 2.32 >100 
Ovarian Cancer 
IGROV1 >100 >100 8.80 

>100 

OVCAR-3 37.1 >100 3.10 >100 
OVCAR-4 24.9 >100 1.65 5.73 
NCI/ADR-RES 4.45 >100 2.41 >100 
SK-OV-3 >100 >100 2.75 >100 
Renal Cancer 
786-0 35.8 >100 4.93 

>100 

A498 >100 >100 1.33 8.62 
ACHN >100 >100 4.92 >100 
CAKI-1 >100 >100 NA >100 
UO-31 >100 >100 6.66 >100 
Prostate Cancer 
PC-3 >100 >100 3.03 

>100 

DU-145 >100 >100 3.62 >100 
Breast Cancer 
MCF7 3.01 >100 0.85 

>100 

MDA-MB-231/ATCC 69.3 >100 3.36 >100 
HS 578T >100 >100 3.62 >100 
MDA-MB-468 4.29 >100 0.69 >100 
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From the 74 (E/Z)-2,3-diaryl substituted acrylonitriles that were synthesized, analogues 

ST-145 and ST-510 were found to be the lead compounds from the five-dose studies 

against the panel of 60 human cancer cell lines. These compounds were remarkable in 

that they afforded GI50 values that were less than 10 nM against almost all human cancer 

cells in the NCI panel. Although, the GI50 values of the two isomers ST-145 and ST-510 

are comparable, the Z isomer, ST-145, had the best TGI (Total Growth Inhibition) profile 

against HL-60(TB), NCI-H522, SF-539, MDA-MB-435, A-498, MDA-MB-468 tumor 

cell lines with values less than 10 nM. 

3.6 In vitro toxicity and tubulin affinity study of ST-145, ST-510, ST-507 and ST-
507(a) against acute myeloid leukemia (AML) cell line MV-411 
 

Compounds ST-507, ST-507(a), ST-145 and ST-510 were found to be very effective 

against the human leukemia sub-panel of cells, and especially the two analogs ST-145 

and ST-510, which had GI50 values of less than 10 nM across all the leukemic cells in the 

subpanel. At this point, we decided to test the lead compounds ST-507, ST-507(a), ST-

145 and ST-510 against acute myeloid leukemia MV-411 cells. The biological assays 

related to MV-411 cell lines were conducted by Dr. Monica Guzman’s research group. 
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Figure 3.2.  Lead compounds ST-507, ST-507(a), ST-145 and ST-510 exhibit potent 
anti-leukemia activity.  MV-411 cells were treated with the indicated compounds for 24 
and 48 h. Cell viability was determined by Annexin V staining.  Percent viability was 
calculated as the percent of annexin v-/7-AAD-cells relative to control.  

 

MV-411 cells (AML cell line) were treated with increasing concentrations of the lead 

compounds ST-507, ST-507(a), ST-145 and ST-510 for 24 and 48 hours.  Figure 3.2 

shows the dose-response curves for each of the compounds at both time courses.  We 

found that ST-510 was the most potent anti-leukemia compound in the series, causing 

more than 80 percent cell death over both 24h and 48h drug treatments at concentrations 

below 5 nM (Figure 3.2 top left panel). Compound ST-145 afforded an LD50 of ~30nM 

over 48 hours of drug treatment (Figure 3.2).  Compounds ST-507 and ST-507(a) 
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presented LD50 values of ~238nM and ~280nM, respectively, at 48h (Figure 3.2).  These 

data suggest that further investigation into the value of the above analogues as possible 

treatment for AML and associated leukemias is warranted, and may provide novel 

therapeutic avenues for treating this hematological malignancy. 
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Figure 3.3: Structures of the lead cyano stilbenes ST-507, ST-507(a), ST-145 and ST-
510 tested against MV-411 (AML) cells. 

 

We wanted to test our hypothesis that the mode of action of the cyano stilbene analogues 

as anticancer agents was through disruption of microtubule dynamics, resulting in the 

inhibition of mitosis. We investigated whether our lead compounds ST-507, ST-507(a), 

ST-145 and ST-510 could interfere with microtubule polymerization by 

immunofluorescence using antibody against tyrosinated tubulin (a marker for dynamic 

microtubules) (Gundersen, Kalnoski et al. 1984, Baas and Black 1990). Through this 

study we also wanted to compare depolymerization activity in the presence of the E/Z 

cyano stilbenes.  
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MV4-11 cells were treated with the indicated doses (25, 50 and 100 nM) of ST-507, ST-

507(a), ST-145 and ST-510 for 2 hrs. Intracellular staining was performed using 

antibody against tyrosinated α-tubulin. Cells were stained with DAPI before mounting to 

the slides to show the cell nucleus. Cells were lysed in microtubule stabilizing buffer. The 

polymerized α-tubulin in the pellets (P) and unpolymerized α-tubulin in the supernatants 

(S) were detected by Western blotting using antibody against tyrosinated α-tubulin.  

 

Figure 3.4: Microtubule depolymerization assay with the lead compounds ST-507, ST-
507(a), ST-145 and ST-510. 

 

Consistent with the superior anti-leukemia activity observed for ST-510 over ST-145 in 

MV4-11 cells, ST-510 demonstrated a more potent inhibition of MT polymerization 

when compared to ST-145 (Figure 3.5).  Thus, our data strongly demonstrates that all 

four E/Z diarylacrylonitriles bind to tubulin directly to inhibit its polymerization. 

In conclusion a library of E/Z diarylacrylonitriles analogs resembling resveratrol were 

synthesized and evaluated for their anticancer activity in an NCI panel of 60 human 

tumor cell lines and the lead compounds from the study (i.e. ST-507, ST-507(a), ST-145 

and ST-510) were tested against MV-411 (Acute Myeloid Leukemia) cells. Analogs ST-
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145 and ST-510 were found to have potent anticancer properties that are likely mediated 

through interference with tubulin polymerization. This data suggests that further 

investigation into the clinical potential of these analogues for treatment of AML could 

provide novel therapeutics for treatment of this hematological malignancy. 

3.7 Anticancer activity of (Z)-5-(2-(2H-tetrazol-5-yl)-2-(3,4,5-
trimethoxyphenyl)vinyl)-2-methoxyphenol (ST-145(a)) as a second generation 
trans stilbene analogue 
 

From the library of synthesized resveratrol analogs, ST-145 was found to a lead 

anticancer agent. However, we wanted to synthesize second generation drug-like 

molecule with improved water solubility while preserving the potency of ST-145. ST-

145(a) is a tetrazole substituted stilbene and was prepared as a second generation 

anticancer molecule in the resveratrol series. The GI50 TGI and LD50 values of the ST-

145(a) against the panel of NCI 60 human cancer cell line panel are presented in Table 

3.9.   

Table 3.9: Growth Inhibition (GI50/µM), Total Growth Inhibition (TGI/µM) and 
Cytotoxicity (LC50/µM) data for compound ST-145(a) against human cancer cells. 

Table 3.9 (continued) 
Panel/cell line ST-145(a) 

GI50 

(nM) 
TGI 
(µM) 

LC50 
(µM) 

Leukemia 
CCRF-CEM <10 20.10 

>100 

HL-60(TB) <10 NA >100 
K-562 <10 >100 >100 
MOLT-4 <10 19.80 >100 
RPMI-8226 <10 8.06 >100 
SR <10 25.50 >100 
Non-Small  Cell  Lung  Cancer  
A549/ATCC <10 21.7 

>100 
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Table 3.9 (continued) 
HOP-62 <10 28.1 >100 
HOP-92 <10 6.66 >100 
NCI-H23 <10 48.5 >100 
NCI-H522 <10 <0.01 >100 
Colon Cancer  
COLO 205 970 11.1 

44.0 

HCC-2998 <10 32.1 >100 
HCT-116 <10 20.1 >100 
HCT-15 <10 27.0 >100 
HT29 2200 59.8 >100 
KM12 <10 11.9 54.4 
SW-620 <10 57.7 >100 
CNS Cancer 
SF-268 <10 40.3 

>100 

SF-295 528 18.6 61.9 
SF-539 <10 <0.01 >100 
SNB-19 <10 >100 >100 
SNB-75 <10 23.7 96.3 
U251 <10 NA >100 
Melanoma 
LOX IMVI <10 25.4 

>100 

M14 <10 16.3 44.6 
MDA-MB-435 <10 <0.01 95.4 
SK-MEL-2 <10 23.3 63.9 
SK-MEL-28 <10 28.5 78.7 
SK-MEL-5 <10 <0.01 5.69 
UACC-62 <10 18.4 47.0 
Ovarian Cancer  
IGROV1 <10 25.7 

>100 

OVCAR-3 <10 NA >100 
OVCAR-4 <10 76.7 >100 
NCI/ADR-RES <10 >100 >100 
SK-OV-3 <10 19.7 >100 
Renal Cancer 
786-0 <10 51.4 

>100 

A498 <10 <0.01 97.5 
ACHN <10 42.3 >100 
RXF 393 <10 25.8 >100 
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Table 3.9 (continued) 
UO-31 <10 16.4 >100 
Prostate Cancer  
PC-3 <10 16.0 

>100 

DU-145 <10 15.3 74.1 
Breast Cancer 
 MCF7 <10 14.2 

80.4 

MDA-MB-231/ATCC <10 59.6 >100 
HS 578T <10 47.7 >100 
MDA-MB-468 <10 12.7 >100 
 

ST-145(a) was selected for full dose response studies had very effective GI50 and TGI 

(Total Growth Inhibition) values against various human tumor cell lines. The majority of 

the LD50 values were >100μM against most of the human cancer cell lines, implying the 

compound is a potent anti-proliferative agent.  ST-145(a) had impressive GI50 values of 

<10nM against almost all the cell lines in the panel except for colon cancer cell lines 

HT29 and COLO 205. The compound also showed potent TGI values of <10nM against 

non-small cell lung cancer cell line NCI-H522, CNS cancer cell line SF-539, Melanoma 

cell line MDA-MB-435 and renal cancer cell line A498.  
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3.8 In vitro toxicity study of ST-145(a) against Acute Myeloid Leukemia cell line 
MV-411 

 

 

Figure 3.5.  Lead compound ST-145(a) exhibited potent anti-leukemia activity against 
MV-411 cells. 

MV-411 cells (AML cell line) were treated with increasing concentrations of the lead 

compound ST-145(a) for 48 hours. Cell viability was determined by Annexin V staining.  

Percent viability was calculated as the percent of annexin v-/7-AAD- cells relative to 

control. Compound ST-145(a) exhibited an LD50 <40nM after 48 hours of drug treatment 

(Figure 3.5), and is worthy of further preclinical investigation as a possible treatment for 

AML. ST-145(a) may also have clinical potential in treating a variety of human cancers. 

3.9 Conclusion 

 In conclusion, a large library of resveratrol analogs have been synthesized and evaluated 

for anticancer activity in the NCI panel of 60 human tumor cell lines. Figure 3.6 

illustrates the triage flow chart with the number of compounds submitted to the NCI 

(180) versus the number of compounds selected for 10µM single dose screening (85). 

LD
50

 ~40 nM 
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Out of 85 compounds screened, 25 showed promising growth inhibitory activity against 

human tumor cell lines and were selected for full dose-response study. The lead 

compounds emerging from these five-dose study were also tested for their tubulin 

binding activity and their cytotoxicity against MV-411 (Acute Myeloid Leukemia) cells 

was determined.  

 

 
 

Figure 3.6: Triage flow chart of resveratrol analogues that were submitted for anticancer 
screening in the NCI panel of 60 human cancer cell lines. 
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Figure 3.7: Structures of the lead resveratrol analogs ST-145(a), ST-145 and ST-510. 
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Three lead compounds, ST-145(a), ST-145 and ST-510 (Figure 3.7) that may have 

clinical potential in treating a variety of human cancers have been discovered that have 

potent anticancer properties. The mechanism of action of these compounds are likely 

mediated through their interference with tubulin polymerization. Further investigation of 

this important class of compounds may provide novel therapeutic agents with clinical 

potential. 

 

 

Copyright © Nikhil Reddy Madadi 2014 
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Chapter 4 

 

Preparation of novel 4,5 disubstituted-2H-1,2,3-triazoles as combretastatin A4 

analogues 

4.1 Introduction 

Although, significant research has been carried out to date to treat cancer, there is still a 

lack of effective chemotherapeutic treatment to cure it completely with minimal side 

effects. Also, considerable effort has been put into identifying molecules with anti-cancer 

properties from both natural and synthetic sources. More than 60% of the anticancer 

drugs currently available are from natural sources (Gordaliza 2007). The search for 

potent semi-synthetically derived anticancer agents from parent natural products 

continues to be an important part of the drug discovery process. 

Antimitotic agents are a major class of cytotoxic drugs for the treatment of cancer, and 

drugs that target microtubule/tubulin dynamics are widely used in cancer chemotherapy 

(Jordan 2002). There are three major binding sites for tubulin. They are the vinca, taxane 

and colchicine domains. The vinca alkaloids such as vincristine and vinblastine, bind to 

the vinca domain and inhibit the assembly of microtubule structures and arrest mitosis 

(Hadfield, Ducki et al. 2003). Paclitaxel acts at the taxane domain and stabilizes 

microtubules interfering with the normal breakdown of microtubules during mitosis 

(Jordan and Wilson 2004). Our area of interest was the colchicine binding site. 

Colchicine binds to tubulin and inhibits microtubule polymerization. Anti-mitotic agents 
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such as combretastatin A-4 (CA-4) and related compounds have the capability of binding 

at the colchicine domain of tubulin. These natural products are structurally related to 

resveratrol and have received much attention lately, since the water-soluble phosphate 

salt of CA-4 is currently in phase III clinical trials for treatment of anaplastic thyroid 

cancer. The phosphate salt of of CA-4 is also in phase II clinical trials as a treatment for 

polypoidal choroidal vasculopathy and neovascular age-related macular degeneration 

(Young and Chaplin 2004, Cooney, Ortiz et al. 2005). 

Combretastatin A4 (CA-4) is a cis-stilbene compound originating from the South African 

willow tree, combretum caffrum. CA-4 functions as a microtubule targeting agent, 

interfering with microtubule dynamics and perturbing the mitotic cycle (Tron, Pirali et al. 

2006). When compared to colchicine, the vascular disrupting effects of CA-4 are well 

below the maximum tolerable dose with fewer side effects in vivo (Tozer, Kanthou et al. 

2002). However, CA-4 suffers from chemical stability issues because of facile cis-trans 

isomerism in solution. CA-4 is a cis-configured stilbene which is readily converted to the 

thermodynamically more stable, but less potent trans-isomer (Hsieh, Liou et al. 2005). 

Extensive studies have been conducted in attempts to stabilize the cis-configuration of 

CA-4 by replacing the ethylene bridge in the molecule with heterocyclic ring systems 

such as β-lactam, azetidone, thiazole, tetrazole, imidazole, pyrazole, oxazolone, triazole, 

furanone moieties (Shirai, Takayama et al. 1998, Tron, Pagliai et al. 2005, Carr, Greene 

et al. 2010, Beale, Bond et al. 2012, Banimustafa, Kheirollahi et al. 2013, Demchuk, 

Samet et al. 2014).  
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Figure 4.1: Structures of Combretastatin A4 (CA-4) (A), Colchicine (B), and 
heterocyclic anti-tubulin compounds (C-I). 

 

In the work described herein, we report on the synthesis of novel and potent cis-

constrained 4,5-disubstituted 2H-1,2,3-triazole combretastatin A-4 analogs which 

incorporates a unique heterocyclic moiety between the two aromatic rings to afford a 

chemically stable, cis-configured CA-4 scaffold. Evaluation of the anti-cancer properties 

of a sub-lbrary of these novel CA-4 analogues against the NCI panel of 60 human tumor 

cell lines has been performed, as well as with the determination of activity of these 

compounds in the tubulin polymerization assay. 
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4.2 Methodology, Development, and Design of 4,5 disubstitutes-2H-1,2,3-triazoles 

1,2,3-Triazoles are an important class of heterocycles which have a wide range of 

applications in agricultural, industrial and pharmaceutical arenas .  This ring system is 

present in a number of drugs with various biological properties, such as anti-cancer, anti-

fungal, anti-viral, anti-consulvant (Pålhagen, Canger et al. 2001), and anti-HIV 

agents (Alvarez, Velazquez et al. 1994),  Industrial applications include dyes, 

photostabilizers, photographic materials and anti-corrosives. Our laboratory is currently 

focusing on the development of anticancer agents structurally related to resveratrol and 

combretastatin A4 (CA-4) (Figure 4.1, A) (Pettit, Singh et al. 1995, Penthala, Janganati et 

al. 2014).  CA-4 suffers from chemical instability in solution, due to cis-trans isomerism 

(Nathwani, Hughes et al. 2013). We are currently involved in identifying chemically 

stable analogues of cis-cyano-CA4 and related compounds that retain their potent 

anticancer properties One approach we are exploring is the replacement of the 

acrylonitrile moiety in these active anticancer agents with a heterocyclic ring system such 

as the triazole moiety, to afford geometrically stable triazole analogs of cyano-CA4 

(Figure 4.2, C) that do not undergo cis-trans isomerism in solution. 
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Figure 4.2: Structures of CA4 and cis constraines heterocyclic CA4 analogs. 
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  The conventional route for preparing 1,2,3-triazoles is via the Huisgen 1,3-dipolar 

cycloaddition of azides with alkynes (Scheme 4.1). However, the disadvantages of this 

synthetic approach are poor regioselectivity and long reaction times. A variety of 

triazoles can also be synthesized by the click chemistry methodologies developed by 

Sharpless et al. between azides and alkynes, to yield 1,5-disubstituted 1,2,3-triazoles 

(Krasiński, Fokin et al. 2004). However, inorganic azides (e.g. NaN3) are not good 

substrates for this reaction, and these methods cannot be applied to the synthesis of 

internal alkynes. Recently, Majireck et al. and Tsai et al. have reported the synthesis of 

4,5-disubstituted 2H-1,2,3-triazoles by cycloaddition of internal alkynes with alkyl azides 

or metal azides, but the disadvantage of this approach is the low yielding synthesis of the 

alkyne reactant,  especially when an electron donating group is attached to the alkyne 

terminus (Majireck and Weinreb 2006, Tsai, Yang et al. 2009). 

R N3 R1

N

N

N
R

R1

N

N

N
R

R1

R2

R2
R2  

Scheme 4.1: 1,2,3 triazole synthesis by the Huisgen azide-alkyne 1,3 dipolar cyclization. 

 

A less explored route for the synthesis of 2H-1,2,3-triazoles is the  cycloaddition of 

azides with alkenes bearing a good leaving group. Zard et al. reported the synthesis of 

4,5-disubstituted-1H-1,2,3-triazoles from nitroalkenes, but did not report any formation 

of 4,5-disubstituted 2H-1,2,3-triazoles via this approach (Quiclet-Sire and Zard 2005). 

Sengupta et al. have reported the synthesis of 4,5-disubstituted 2H-1,2,3-triazoles from 
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nitroalkenes, however, the presence of a vinyl group was necessary for the reaction to 

proceed (Sengupta, Duan et al. 2008). 

 

Herein, we report a novel synthetic procedure for the synthesis of 4,5-disubstituted 2H-

1,2,3-triazoles from (Z)-2,3-diaryl-substituted acrylonitriles by treatment with 

NaN3/NH4Cl in aqueous DMF (Scheme 4.3). The advantage of this methodological 

approach is that cyano-CA4 analogs bearing a broad range of aromatic functionalities can 

be easily converted to their corresponding 2H-1,2,3-triazole derivatives in one step. 

Utilizing (Z)-3-(3,4-dichlorophenyl)-2-(3,4-dimethoxyphenyl) acrylonitrile as a model 

reactant, it was observed that using a combination of 10:1 volumes of DMF/H2O as 

solvent significantly improved the yield of 4-(3,4-dichlorophenyl)-5-(3,4-

dimethoxyphenyl)-2H-1,2,3-triazole compared to using DMF alone (Scheme 4.3). The 

reaction did not proceed in anhydrous THF. The rate of the reaction was found to be 

dependent on the molar amount of NaN3/NH4Cl used (Table 4.1). The optimum 

conditions for this reaction are: heating the reactant under reflux with 3 molar equivalents 

of NH4Cl and 3 molar equivalents of NaN3 in 10:1 volumes of DMF/H2O. X-ray 

crystallographic studies on compounds ST-464 and ST-447(a) confirmed the presence of 

a 2H-1,2,3-triazole ring system and the position of N-methylation (Figure 4.3).  
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Scheme 4.2: Proposed mechanism and optimization of the reaction conditions for the 
synthesis of 4-(3,4-dichloro)-5-(3,4-dimethoxyphenyl)-2H-1,2,3-triazole and synthesis of 
its methylated product. 
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Table 4.1: Optimization of the reaction conditions for the synthesis of 4-(3,4-dichloro)-5-
(3,4-dimethoxyphenyl)-2H-1,2,3-triazole . 

Entry Solvent Reaction Conditions Yielda (%) 

1     DMFc Reflux, 5 hrs, 3 eq NH4Cl/ 3eq NaN3 24 

2 DMF/H2Ob Reflux, 5 hrs, 3 eq NH4Cl/ 3eq NaN3 81 

3 DMF/H2Ob Reflux, 5 hrs, 1 eq NH4Cl/ 1eq NaN3 45 

4 DMF/H2Ob                        Reflux, 5 hrs,  3eq NaN3 32 

5     THFc Reflux, 5 hrs, 3 eq NH4Cl/ 3eq NaN3 0 

 

Previous reports have not elaborated on the mechanism of formation of the 2H-1,2,3-

triazole ring in stilbenes of structure 1a (Scheme 4.3) (Majireck and Weinreb 2006, Tsai, 

Yang et al. 2009). The proposed mechanism of triazole ring formation likely involves 
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initial Michael addition of azide ion at the unsubstituted sp2 olefinic carbon to afford 

compound X followed by cyclization to Y (Scheme 4.2). Acid-catalyzed elimination of 

the cyano moiety then affords ST-447. It is evident from the optimization studies that 

NH4Cl and water are essential components in the reaction (Table 4.1).  All the reactions 

were conducted with (Z)-2,3-diarylacrylonitriles.  However, we did examine the relative 

usefulness of utilizing (E)-2,3-diarylacrylonitriles in these reactions. Thus, (E)-3-(3-

hydroxy-4-methoxyphenyl)-2-(3,4,5-trimethoxyphenyl)-acrylonitrile, the corresponding 

(E)-isomer of  1e (Table 4.2), was used as a starting material for the synthesis of 

compound ST-145(b). The yield of the resulting 2H-1,2,3-triazole ST-145(b) was 21% 

compared to 59% when the (Z)-isomer was utilized under similar reaction conditions 

(Table 4.2; Entry 5), indicating that (E)-2,3-diarylacrylonitriles are less useful than their 

(Z)-counterparts in the synthesis of 2H-1,2,3-triazoles of structure 2 (Scheme 4.3). Also 

when (E)-1,3-dimethoxy-5-(4-methoxystyryl)benzene (TMR) was used as a starting 

material the reaction did not proceed (Table 4.2). 

4.3 Chemistry  
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CN
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Scheme 4.3: Synthesis of 4,5-disubstituted 2H-1,2,3-triazoles from (Z)-2,3-
diarylacrylonitriles. 
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General experimental procedure: A typical experimental procedure entailed refluxing a 

mixture of the (Z)-2,3-diarylacrylonitrile (1, Scheme 4.3), NaN3 and NH4Cl in a mole 

ratio of 1: 3: 3 in 10: 1 volumes of DMF/ H2O for 5-12 hrs. The reaction was monitored 

by TLC and GC-MS. When the starting material had completely disappeared, cold water 

was added and the mixture was stirred over 10-15 min, during which time the final 

product precipitated out and could be filtered off. In the absence of a precipitate, the 

product was extracted into ethyl acetate, the organic extract washed with copious 

amounts of water, and the resulting organic liquor evaporated to dryness on a 

rotovaporator. The residue obtained was purified by flash column chromatography [need 

eluting solvent details] to afford the corresponding triazole (2, Scheme 4.3). Yields of the 

synthesized triazoles are presented in Table 4.2, and ranged from 59% to 87%. 

    A variety of cyano-CA4 analogs were subjected to treatment with NaN3/DMF/H2O 

under the above optimized reaction conditions, and their corresponding 4,5-disubstituted 

2H-1,2,3-triazoles were obtained in modest to good yields (Table 2). No significant side 

products were formed in the reactions shown in Scheme 4.4.  
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acetonitrile aldehyde (Z)-2,3-diarylacetonitriles 4,5-disubstituted 2H-1,2,3-triazoles
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a b

R1 = R2 = variable Aryl, heteroaryl rings  

Scheme 4.4: Synthesis of 4,5-disubstituted 2H-1,2,3-triazoles; reagents and conditions: 
(a) 5% NaOMe, MeOH, reflux. (b) NaN3, NH4Cl, DMF/H2O. 

 

 
 
 
 

147 
 



Table 4.2: Synthesis of 4,5-disubstituted-2H-1,2,3-triazoles from their corresponding (Z)-
2,3-diaryl substituted acrylonitriles. 
 

Table 4.2 (continued) 
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y acetonitrile aldehyde 
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Table 4.2 (continued) 

6.  
S

CN

 Cl
F

CHO

 

Cl
F

CN

S

             

1f 

Cl
F

S

N

H
N

N

 

ST-445 

7.  

CN

N

 Cl

CHO
Cl

 

Cl

Cl
CN

N

 

1g 

Cl

Cl

N

N

H
N

N

 

ST-452 

8.  
OCH3

OCH3

CN

H3CO

 

O

O

CHO

 

O

O
CN

OCH3

OCH3

OCH3

 

1h 

O

O OCH3

OCH3

OCH3

N

H
N

N

 

ST-282 

9.  
NO2

CN

 OCH3

OCH3

CHO

H3CO

 

H3CO
OCH3

H3CO

CN

NO2

 

1i 

H3CO
OCH3

H3CO
N

H
N

N

NO2  

ST-466 

10   

CN

 

CHOO

O  

O

O CN  

1j 

O

O

N

H
N

N

 

ST-471 

11   

CN

H3CO

 

CHO

Br Br  
Br

Br

NC

H3CO

 

1k 

Br

Br

OCH3
N

H
N

N

 

ST-478 

149 
 



Table 4.2 (continued) 
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Table 4.2 (continued) 

ST-109 

18   
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Table 4.2 (continued) 

1w ST-440 

24   - - 

H3CO

H3CO

OCH3

 

TMR 

No reaction 

 
 
 

4.4 Analytical Data: 

ST-464: 1H NMR (400 MHz, DMSO-d6): δ 3.77 (s, 12H, -OCH3), 3.88 (s, 6H, -

OCH2), 6.85 (s, 4H, ArH) ppm. 13C NMR (100 MHz, DMSO-d6): 56.02, 56.11, 

56.19, 60.91, 60.99, 105.47, 125.64, 138.25, 153.27 ppm. HRMS (ESI): m/z calcd for 

C20H23N3O6 [M-H] 402.1665; found 402.1668. 

 

ST-475: 1H NMR (400 MHz, DMSO-d6): δ 3.75 (s, 6H, -OCH3), 5.29 (s, 2H, -CH2), 

5.99 (s, 2H,  ArH), 6.48 (s, 1H,  ArH), 6.72-6.73 (d, J =2.4 Hz, 2H, ArH), 6.80-6.83 

(d, J =8.8 Hz, 1H, ArH), 7.05-7.07 (d, J =6.4 Hz, 2H, ArH), 7.26 (S, 1H, ArH) 

ppm. 13C NMR (100 MHz, DMSO-d6): 55.42, 55.51, 101.05, 101.25, 106.12, 108.51, 

108.80, 122.38, 131.91, 147.81, 147.98, 160.87 ppm. HRMS (ESI): m/z calcd for 

C17H16N3O4 [M-H] 326.1141; found 326.1133.    

 

ST-471: 1H NMR (400 MHz, DMSO-d6): δ 6.00 (s, 2H, -CH2), 6.80-6.82 (d, J =8.8 

Hz, 1H, ArH), 7.03-7.05 (d, J =6.8 Hz, 2H, ArH), 7.38-7.40 (t, J =5.2 Hz, 3H, ArH), 
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7.56-7.58 (m, J =9.6 Hz, 1H, ArH) ppm. 13C NMR (100 MHz, DMSO-d6): 101.25, 

108.58, 108.70, 122.23, 128.24, 128.70, 147.85 ppm. HRMS (ESI): m/z calcd for 

C15H12N3O2 [M-H] 266.0930; found 266.0928. 

 

ST-466: 1H NMR (400 MHz, DMSO-d6): δ 3.70-3.72 (d, 9H, -OCH3), 6.80 (s, 2H,  

ArH), 7.86 (s, 2H, ArH), 8.29-8.31 (d, J =8.4 Hz, 2H, ArH) ppm. 13C NMR (100 

MHz, DMSO-d6): 56.18, 60.81, 124.58, 126.83, 127.84, 137.86, 139.57, 143.83, 

149.52, 154.62 ppm. HRMS (ESI): m/z calcd for C17H17N4O5 [M-H] 357.1199; 

found 357.1199. 

 

ST-467: 1H NMR (400 MHz, DMSO-d6): δ 3.74 (s, 6H, -OCH3), 3.84 (s, 3H, -

OCH3), 3.89 (s, 3H, -OCH3),    6.83 (s, 2H, ArH), 6.91-6.93 (d, J =8.4 Hz, 2H, ArH), 

7.51-7.53 (d, J =8.0 Hz, 2H, ArH) ppm. 13C NMR (100 MHz, DMSO-d6):55.27, 

55.36, 55.96, 56.05, 60.90, 60.99, 105.14, 105.18, 114.03, 125.86, 129.79, 138.07, 

153.27, 159.97 ppm. HRMS (ESI): m/z calcd for C18H20N3O4 [M-H] 342.1454; 

found 342.1448. 

 

ST-145b: 1H NMR (400 MHz, DMSO-d6): δ 3.74 (s, 6H, -OCH3), 3.90 (s, 6H, -

OCH3), 6.84-6.85 (d, J =2 Hz, 3H, ArH), 7.05-7.07 (d, J =8.4 Hz, 1H, ArH), 7.21 (s, 

1H, ArH) ppm. 13C NMR (100 MHz, DMSO-d6): 55.92, 55.98, 56.07, 60.91, 60.98, 

105.23, 110.63, 114.72, 120.61, 123.01, 125.74, 138.09, 145.66, 147.10, 153.23 ppm. 

HRMS (ESI): m/z calcd for C18H20N3O5 [M-H] 358.1403; found 358.1408. 
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ST-450: 1H NMR (400 MHz, DMSO-d6): δ 3.57 (s, 6H, -OCH3), δ 3.84 (s,  3H, -

OCH3), 6.80 (s, 2H, ArH), 7.34-7.39 (m, J =20 Hz, 1H, ArH), 7.61 (s, 1H, ArH), 

7.75-7.77 (d, J =7.6 Hz, 1H, ArH), 7.90-7.92(d, J =8 Hz, 1H, ArH) ppm. 13C NMR 

(100 MHz, DMSO-d6):55.72, 55.85, 60.85, 60.99, 104.57, 104.64, 122.61, 122.73, 

123.65, 123.77, 124.66, 124.74, 124.83, 124.94, 125.28, 127.21, 127.37, 137.56, 

138.12, 139.89, 153.24 ppm. HRMS (ESI): m/z calcd for C19H17N3O3S [M-H] 

367.0991; found 367.0909. 

 

ST-440: 1H NMR (400 MHz, DMSO-d6): 7.22-7.36 (m, J =54 Hz, 3H, ArH), 7.50 (s, 

1H, ArH), 7.68-7.70 (d, J =8.0 Hz, 1H, ArH), 7.85-7.87(d, J =8 Hz, 2H, ArH), 8.55-

8.56 (d, J =3.6 Hz, 1H, ArH), 8.94 (s, 1H, ArH) ppm. 13C NMR (100 MHz, DMSO-

d6):122.69, 122.78,123.33, 123.42, 123.72, 123.77, 124.70, 124.72, 124.90, 124.94, 

125.35, 126.97, 127.08, 127.42, 135.37, 135.46, 137.31, 140.12, 141.14, 147.94, 

148.00, 148.51 ppm. 

 

ST-452: 1H NMR (400 MHz, DMSO-d6): δ 7.26(s, 1H, ArH), 7.38-7.40(d, J =8 Hz, 

2H, ArH), 749-7.54 (m, J =16.4 Hz, 2H, ArH), 7.66-7.68(d, J =6.8 Hz, 1H, ArH), 

8.63 (s, 1H, ArH) ppm. 13C NMR (100 MHz, DMSO-d6):121.33, 123.62, 127.45, 

128.96, 129.75, 129.89, 132.95, 134.99, 135.77, 137.04, 149.66 ppm. HRMS (ESI): 

m/z calcd for C13H9Cl2N4 [M-H] 291.0204; found 291.0201. 

 

ST-447: 1H NMR (400 MHz, DMSO-d6): δ 3.82 (s, 3H, -OCH3), δ 3.93 (s, 3H, -

OCH3), 6.87-6.89 (d, J =8 Hz, 1H, ArH), 7.05-7.07 (d, J =12 Hz, 2H, ArH), ), 7.42 
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(s, 2H, ArH), 7.78 (s, 1H, ArH) ppm. 13C NMR (100 MHz, DMSO-d6):55.87, 55.96, 

111.05, 127.31, 129.80, 129.89, 130.54, 132.60, 132.86, 149.15, 149.754 ppm. 

 

ST-441: 1H NMR (400 MHz, DMSO-d6): δ 3.81 (s, 6H, -OCH3), δ 3.90 (s, 3H, -

OCH3), 6.9 (s, 2H, ArH), 7.29-7.26 (d, J =12.8 Hz, 2H, ArH), 7.70 (s, 2H, ArH), 8.67 

(s, 1H, ArH) ppm. 13C NMR (100 MHz, DMSO-d6): 56.22, 56.33, 61.13, 100.71, 

123.62, 124.25, 127.35, 137.22, 139.48, 149.5, 153.1, 154.8 ppm. HRMS (ESI): m/z 

calcd for C16H17N4O3 [M-H] 313.1301; found 313.1298. 

 

ST-445: 1H NMR (400 MHz, DMSO-d6): δ 7.21-7.22(d, J =4.8 Hz, 1H, ArH), 7.31-

7.33 (d, J =8.4 Hz, 1H, ArH), 7.38-7.41(m, J =14.8 Hz, 3H, ArH), 7.49-7.50 (d, J 

=1.2 Hz, 1H, ArH) ppm. 13C NMR (100 MHz, DMSO-d6):116.17, 116.22, 116.39, 

116.44, 121.32, 121.49, 124.56, 126.73, 126.76, 127.01, 129.50, 130.75, 130.83, 

130.92, 138.32, 141.30, 156.84, 159.31 ppm. HRMS (ESI): m/z calcd for 

C12H8ClFN3S [M-H] 280.0111; found 280.0118. 

 

ST-442: 1H NMR (400 MHz, DMSO-d6): δ 5.99 (s, 2H, -CH2), 6.82-6.84(d, J =8.4 

Hz, 1H, ArH), 7.13-7.14 (d, J =6 Hz, 2H, ArH), 7.26-7.28(d, J =8.4 Hz, 1H, ArH), 

7.69-7.71 (d, J =7.2 Hz, 2H, ArH), 8.69 (s, 1H, ArH) ppm. 13C NMR (100 MHz, 

DMSO-d6):101.15, 101.25, 101.35, 108.52, 109.31, 109.34, 122.78, 123.30, 124.04, 

137.02, 14777, 148.06, 149.56 ppm. HRMS (ESI): m/z calcd for C14H11N4O2 [M-

H] 267.0882; found 267.0879. 
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ST-478: 1H NMR (400 MHz, DMSO-d6): δ 3.76 (s, 3H, -OCH3), 7.03-7.04(d, J =4.8 

Hz, 2H, ArH), 7.39-7.47 (m, J =35.2 Hz, 2H, ArH), 7.62-7.63(d, J =1.6 Hz, 1H, 

ArH), 7.71 (s, 2H, ArH) ppm. 13C NMR (100 MHz, DMSO-d6):55.51, 111.54, 

121.21, 122.83, 129.17, 130.48, 131.29, 133.34, 133.42, 134.96, 156.51 ppm. HRMS 

(ESI): m/z calcd for C15H12Br2N3O [M-H] 407.9347; found 407.9327. 

 

ST-489: 1H NMR (400 MHz, DMSO-d6): δ 3.79 (s, 6H, -OCH3), 3.91 (s, 3H, -

OCH3), 6.77 (s, 2H, ArH), 7.46 (s, 2H, ArH), 7.82 (s, 1H, ArH) ppm. 13C NMR (100 

MHz, DMSO-d6):56.12, 56.23, 60.96, 61.05, 105.39, 105.45, 127.44, 129.88, 129.97, 

130.53, 132.74, 132.84, 138.69, 153.53 ppm. HRMS (ESI): m/z calcd for 

C17H16Cl2N3O3 [M-H] 380.0569; found 380.0564. 

 

ST-492: 1H NMR (400 MHz, DMSO-d6): δ 3.47 (s, 6H, -OCH3), 3.81 (s, 3H, -

OCH3),  6.65 (s, 2H, ArH), 7.50-7.52(t, J =8 Hz, 1H, ArH), 7.54-7.56(d, J =4.4 Hz, 

1H, ArH), 7.76-7.77(t, J =1.6 Hz, 1H, ArH), 7.82-7.84(d, J =8 Hz, 1H, ArH), 8.27-

8.29(d, J =8.8 Hz, 1H, ArH), 9.03-9.04(d, J =4.4 Hz, 1H, ArH) ppm. 13C NMR (100 

MHz, DMSO-d6): 55.70, 55.79, 0.85, 60.95, 104.47, 104.55, 122.68, 122.76, 124.69, 

125.95, 126.66, 127.52, 129.42, 130.21, 138.21, 138.45, 148.15, 149.63, 149.69, 

153.24 ppm. HRMS (ESI): m/z calcd for C20H19N4O3 [M-H] 363.1457; found 

363.1460. 

 

ST-491: 1H NMR (400 MHz, DMSO-d6): δ 3.82 (s, 3H, -OCH3), 3.92 (s, 3H, -

OCH3),  6.87-6.89(d, J =8 Hz, 1H, ArH), 7.04-7.08(m, J =14.4 Hz, 2H, ArH), 7.42-
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7.42(d, J =0.8 Hz, 2H, ArH), 7.78 (s, 1H, ArH) ppm. 13C NMR (100 MHz, DMSO-

d6):55.85, 55.95, 60.47, 111.19, 111.24, 121.00, 127.31, 129.78, 129.87, 130.49, 

130.87, 132.41, 132.79, 149.09, 149.62, 171.36 ppm. HRMS (ESI): m/z calcd for 

C16H14Cl2N3O2 [M-H] 350.0463; found 350.0465. 

 

ST-482: Yellow solid; Yield %; 1H NMR (400 MHz, DMSO-d6): δ 3.77 (s, 6H, -

OCH3), 3.89 (s, 3H, -OCH3),  4.26-4.29 (q, J =12.4 Hz, 4H, ArH), 6.84(s, 2H, ArH), 

6.87-6.89(d, J =8 Hz, 1H, ArH), 7.04-7.05, 7.04-7.07(dd, J =2 Hz, 8 Hz, 1H, ArH), 

7.15-7.16(d, J =1.6 Hz, 1H, ArH), 7.26(s, 1H, ArH) ppm. 13C NMR (100 MHz, 

DMSO-d6):55.99, 56.08, 60.90, 60.99, 64.27, 64.47, 105.24, 105.28, 117.42, 121.80, 

138.18, 143.59, 144.09, 153.26 ppm. HRMS (ESI): m/z calcd for C19H20N3O5 [M-

H] 370.1403; found 370.1398. 

 

ST-497: Yellow solid; Yield %; 1H NMR (400 MHz, DMSO-d6): δ 3.78 (s, 6H, -

OCH3), 3.91 (s, 3H, -OCH3),  7.08 (s, 2H, ArH), 7.54-7.58(t, J =14.8 Hz, 1H, ArH), 

7.70-7.74(t, J =14.8 Hz, 1H, ArH), 7.82-7.83(d, J =6.4 Hz, 2H, ArH), 8.08-8.10 (d, J 

=8.8 Hz, 1H, ArH), 8.16-8.18(d, J =8.4 Hz, 1H, ArH) ppm. 13C NMR (100 MHz, 

DMSO-d6):56.08, 56.18, 60.92, 61.01, 106.21, 120.70, 125.57, 127.12, 127.56, 

127.73, 127.68, 129.04, 130.20, 136.83, 138.50, 147.76, 153.19 ppm. HRMS (ESI): 

m/z calcd for C20H19N4O3 [M-H] 363.1457; found 363.1456. 
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ST-494: Yellow solid; Yield %; 1H NMR (400 MHz, DMSO-d6): δ 3.73 (s, 3H, -

OCH3), 3.80 (s, 6H, -OCH3), 6.83 (s, 2H, ArH) ppm. 13C NMR (100 MHz, DMSO-

d6):56.48, 56.67, 65.20, 106.29, 116.04, 116.84, 130.15, 139.13, 153.08 ppm. 

 

ST-513: Yellow solid; Yield %; 1H NMR (400 MHz, DMSO-d6): δ 3.72 (s, 6H, -

OCH3), 5.29 (s, 1H, ArH), 6.73 (s, 2H, ArH), 6.83-6.85 (d, J =8.4 Hz, 1H, ArH), 

7.42-7.44(d, J =8.8 Hz, 1H, ArH) ppm. 13C NMR (100 MHz, DMSO-d6):56.08, 

56.18, 60.92, 61.01, 106.21, 120.70, 125.57, 127.12, 127.56, 127.73, 127.68, 129.04, 

130.20, 136.83, 138.50, 147.76, 153.19 ppm. 

 

A  mixture of 5-(3,4-dichlorophenyl)-4-(3,4-dimethoxyphenyl)-2H-1,2,3-triazole 

(ST-447) (1 mmol), K2CO3 ( 10 mmol) and MeI ( 2 mmol) in 10 volumes of acetone 

was refluxed for 5 hrs. 2M aqueous HCl was then added to quench the reaction and 

the resulting mixture was evaporated to dryness on a rotavaporator. The resulting 

residue was dissolved in ethyl acetate, filtered, and the filtrate submitted to ethyl 

acetate/hexane flash column chromatography to yield 4-(3,4-dichlorophenyl)-5-(3,4-

dimethoxyphenyl)-2-methyl-2H-1,2,3-triazole 

(ST-447(a)): Pale yellow solid; 1H NMR (400 MHz, CDCl3-d): δ 3.83 (s, 3H, -

OCH3), 3.92 (s,  3H, -OCH3), 4.25 (s,  3H, -CH3), 6.86 (d, J =8 Hz, 1H, ArH), 7.05 

(dd, J =15.2 Hz, 2H, ArH), , 7.42 (dd, J =16.8 Hz, 2H, ArH), 7.74 (d, J =1.6 Hz, 1H, 

ArH) ppm. 13C NMR (100 MHz, CDCl3-d): 41.98, 56.08, 111.40, 121.07, 123.09, 

127.45, 129.97, 130.59, 131.376, 132.41, 132.91, 141.99, 144.87, 149.25, 149.63 

ppm. 
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Figure 4.3: X-ray Crystal structures of compounds ST-464 and ST-447(a). 

 

4.5 Biological Evaluation 

4.5.1 Anticancer activity of 2H-triazole analogs against a panel of NCI 60 human 
cancer cells  

The sulforhodamine B (SRB) assay procedure described in Chapter 3 was used to screen 

the synthesized 2H-triazole CA-4 analogues against the panel of 60 human tumor cell 

lines at the NCI (Rubinstein, Shoemaker et al. 1990). The growth inhibitory and cytotoxic 

properties of a tested compound in our present assay is measured by its percentage 

growth (PG) which is proportional to optical density (OD) of the tumor (Madadi, 

Penthala et al. 2014). Optical density (OD) measurements of SRB-derived color just 
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before exposing the cells to the test compound and after 48hrs exposure to the test 

compound or the control vehicle are recorded. All the synthesized CA-4 analogues were 

initially screened at a single dose (10-5 M) to determine growth inhibition properties. The 

NCI screening protocol requires 60% growth inhibition at 10-5 M in at least eight cell 

lines from the panel of 60 cell lines for the compounds to be selected for a complete 

dose-response study at five different concentrations, viz. 10-4 M, 10-5 M, 10-6 M, 10-7 M 

and 10-8 M. 

Out of the submitted twenty three triazole derivatives, 12 analogues: ST-124(a), ST-440, 

ST-442, ST-452, ST-467, ST-471, ST-475, ST-482, ST-492, ST-497 and ST-145(b) 

were selected for single dose screening. The growth percentage values obtained from the 

initial single dose screens are represented in Table 4.3 and Table 4.4.  

Table 4.3: Percentage growth inhibition of NCI 60 human cancer cells by compounds 
ST-124(a), ST-440, ST-442, ST-447, ST-452 and ST-467 at 10µM concentration. 

Table 4.3 (continued) 

Cancer 
Cell 
Type 

ST-
124(a) 

Growth 
% 

ST-440 
Growth 

% 

ST-442 
Growth 

% 

ST-447 
Growth 

% 

ST-452 
Growth 

% 

ST-467 
Growth 

% 

Leukemi
a 

CCRF-
CEM NA 90.7 97.6 79.5 13.3 3.3 
HL-
60(TB) -12.6 108.8 117.2 80.9 67.8 -3.8 
K-562 10.8 108.2 116.8 57.9 46.6 9.3 
MOLT-4 4.0 106.3 123.2 81.4 53.6 6.2 
RPMI-
8226 23.7 92.1 98.3 73.8 55.8 7.1 
SR 5.7 99.9 108.1 79.2 32.4 10.7 

Non-
Small 
Cell 
Lung 

Cancer 

A549/AT
CC 15.2 99.3 102.7 92.5 45.4 21.1 
HOP-62 24.2 99.0 106.9 76.5 43.9 24.0 
HOP-92 NA 84.5 95.4 73.9 79.4 26.5 
NCI-
H226 46.9 94.0 101.7 96.6 71.7 81.5 
NCI-H23 22.1 96.0 98.1 71.4 55.1 29.0 
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Table 4.3 (continued) 
NCI-
H322M 26.0 92.8 98.7 89.2 22.8 40.2 
NCI-
H460 2.4 101.6 102.6 93.1 32.9 4.3 
NCI-
H522 -26.6 97.3 105.0 68.0 60.3 -13.8 

Colon 
Cancer 

COLO 
205 -57.1 105.2 102.9 96.7 64.7 -75.2 
HCC-
2998 -5.3 112.1 111.4 90.8 64.0 20.4 
HCT-116 3.7 102.2 96.0 74.0 26.6 9.5 
HCT-15 14.2 91.7 89.8 62.3 23.0 8.9 
HT29 -10.1 105.4 107.8 102.3 44.0 5.8 
KM12 3.0 103.1 104.1 74.3 59.2 5.1 
SW-620 20.5 100.5 102.2 83.8 48.0 21.8 

CNS 
Cancer 

SF-268 11.2 107.7 105.0 84.7 56.0 17.6 
SF-295 -10.4 95.4 108.9 76.5 34.1 5.9 
SF-539 -38.7 97.0 96.9 91.0 64.2 -20.3 
SNB-19 108.5 102.3 91.4 93.3 69.5 37.3 
SNB-75 18.1 80.7 73.2 58.5 67.6 25.0 
U251 -5.8 96.4 103.8 84.0 46.1 6.0 

Melanom
a 

LOX 
IMVI 20.7 NA NA NA NA 21.5 
MALME
-3M 53.6 NA NA AN NA 78.7 
M14 5.4 102.0 104.6 82.2 52.1 16.7 
MDA-
MB-435 -52.3 102.5 105.5 29.4 68.1 -23.4 
SK-
MEL-2 55.3 110.8 118.0 88.2 90.8 45.0 
SK-
MEL-28 5.8 105.0 113.8 96.2 86.7 43.9 
SK-
MEL-5 58.9 NA 

   
-46.9 

UACC-
257 36.6 100.9 101.2 107.0 94.4 72.6 
UACC-
62 13.5 92.5 96.1 67.1 38.0 32.6 

Ovarian 
Cancer 

IGROV1 -16.2 105.0 104.8 67.4 41.7 22.8 
OVCAR-
3 35.1 106.4 109.3 94.6 28.2 -9.6 
OVCAR-
4 36.0 97.2 96.8 77.9 39.5 34.0 
OVCAR-
5 5.4 103.6 102.4 92.9 88.8 17.5 
OVCAR-
8 9.2 101.5 98.7 97.7 44.6 16.3 
NCI/AD 15.9 NA NA NA NA 4.1 

161 
 



Table 4.3 (continued) 
R-RES 
SK-OV-
3 27.8 104.2 108.9 82.4 64.7 18.5 

Renal 
Cancer 

786-0 -12.0 111.0 104.2 73.6 51.3 13.8 
A498 33.2 62.9 39.4 66.5 56.3 -14.1 
ACHN 21.8 100.8 99.6 82.9 35.6 15.7 
CAKI-1 45.3 95.4 92.4 66.1 20.5 21.6 
SN12C 25.4 94.0 98.1 93.1 63.7 30.8 
TK-10 43.2 103.2 102.1 64.9 66.8 58.4 
UO-31 20.7 73.5 76.6 47.0 -1.6 24.7 

Prostate 
Cancer 

PC-3 10.2 90.5 92.4 79.9 64.1 10.8 
DU-145 -26.2 112.1 111.2 96.2 66.2 4.1 

Breast 
Cancer 

MCF7 12.5 85.3 95.6 52.7 40.5 11.9 
MDA-
MB-231 -28.4 101.1 85.1 76.7 54.5 16.5 
HS 578T 22.0 102.8 99.7 71.8 76.8 16.0 
BT-549 21.7 108.9 93.7 56.4 66.6 41.5 
T-47D 54.3 92.6 99.5 64.0 35.6 67.9 
MDA-
MB-468 47.5 96.4 98.4 55.6 61.9 NA 

 
 
 
 
 
Table 4.4: Percentage growth inhibition of NCI 60 human cancer cells by compounds ST-471, 
ST-475, ST-482, ST-492, ST-497 and ST-145(b) at 10µM concentration. 
 
Table 4.4 (continued) 

Cancer 
Cell 
Type 

ST-471 
Growth 

% 

ST-475 
Growth 

% 

ST-482 
Growth 

% 

ST-492 
Growth 

% 

ST-497 
Growth 

% 

ST-
145(b) 

Growth 
% 

Leukemi
a 

CCRF-
CEM 97.8 NA NA 58.7 11.3 NA 
HL-
60(TB) 106.0 NA NA 60.4 -7.2 NA 
K-562 98.2 NA NA 62.0 11.3 NA 
MOLT-4 92.3 NA NA 63.8 7.1 NA 
RPMI-
8226 94.0 NA NA 45.2 14.4 NA 
SR 89.9 NA NA 25.9 4.2 NA 

Non-
Small 
Cell 
Lung 

Cancer 

A549/A
TCC 98.9 NA NA 87.2 15.1 NA 
HOP-62 91.1 NA NA 60.1 12.3 NA 
HOP-92 73.2 NA NA -11.9 44.3 NA 
NCI- 101.2 NA NA 80.9 61.6 NA 
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Table 4.4 (continued) 
H226 
NCI-H23 111.5 NA NA 76.6 14.4 NA 
NCI-
H322M 106.0 NA NA 89.2 41.4 NA 
NCI-
H460 103.9 NA NA 89.4 1.2 NA 
NCI-
H522 104.2 NA NA 30.1 -41.5 NA 

Colon 
Cancer 

COLO 
205 100.7 NA NA 74.9 -66.0 NA 
HCC-
2998 111.7 NA NA 80.3 6.2 NA 
HCT-
116 95.4 NA NA 71.4 8.7 NA 
HCT-15 104.8 NA NA 70.2 6.0 NA 
HT29 102.9 NA NA 74.9 -23.1 NA 
KM12 97.2 NA NA 71.8 6.1 NA 
SW-620 102.7 NA NA 83.5 17.9 NA 

CNS 
Cancer 

SF-268 98.3 NA NA 86.1 22.8 NA 
SF-295 95.2 NA NA 64.5 1.4 NA 
SF-539 100.7 NA NA 66.0 -43.5 NA 
SNB-19 105.8 NA NA 84.7 42.8 NA 
SNB-75 83.0 NA NA 30.9 15.2 NA 
U251 99.2 NA NA 87.8 -10.5 NA 

Melano
ma 

LOX 
IMVI 105.0 NA NA 75.1 13.4 NA 
MALME
-3M 102.0 NA NA 76.0 47.7 NA 
M14 103.8 NA NA 47.4 15.1 NA 
MDA-
MB-435 101.8 NA NA 41.8 -13.7 NA 
SK-
MEL-2 116.0 NA NA 84.0 15.0 NA 
SK-
MEL-28 110.2 NA NA 72.4 16.8 NA 
SK-
MEL-5 94.9 NA NA 63.1 -38.8 NA 
UACC-
257 107.6 NA NA 76.3 38.1 NA 
UACC-
62 104.6 NA NA 47.4 28.1 NA 

Ovarian 
Cancer 

IGROV1 105.6 NA NA 91.8 17.7 NA 
OVCAR
-3 104.9 NA NA 83.9 -27.0 NA 
OVCAR
-4 98.0 NA NA 71.6 34.4 NA 
OVCAR 110.3 NA NA 76.2 10.5 NA 
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Table 4.4 (continued) 
-5 
OVCAR
-8 105.8 NA NA 85.6 8.1 NA 
NCI/AD
R-RES 110.7 NA NA 78.8 0.8 NA 
SK-OV-
3 96.4 NA NA 80.8 12.4 NA 

Renal 
Cancer 

786-0 100.4 NA NA 58.3 25.0 NA 
A498 84.3 NA NA 79.3 -17.6 NA 
ACHN 106.0 NA NA 85.2 6.6 NA 
CAKI-1 87.1 NA NA 42.1 16.0 NA 
SN12C 101.5 NA NA 98.0 39.1 NA 
TK-10 100.0 NA NA 36.5 60.1 NA 
UO-31 93.7 NA NA 35.9 21.4 NA 

Prostate 
Cancer 

PC-3 87.3 NA NA 39.0 14.5 NA 
DU-145 108.6 NA NA 99.9 4.9 NA 

Breast 
Cancer 

MCF7 106.8 NA NA 55.9 10.4 NA 
MDA-
MB-231 104.2 NA NA 81.7 22.4 NA 
HS 578T 98.1 NA NA 65.7 14.8 NA 
BT-549 81.2 NA NA NA 17.3 NA 
T-47D 90.5 NA NA 70.7 64.4 NA 
MDA-
MB-468 NA NA NA NA NA NA 

NA: Not Available 
 
 
Out of the 12 compounds selected for single dose screening, six compounds were 

selected for full five dose-response studies; below (Table 4.5) are the five dose study 

results for these six compounds.  

 
 
Table 4.5: Growth Inhibition (GI50/µM) and Total Growth Inhibition (TGI/µM) data for 
compounds ST-497, ST-124(a) and ST-467 against NCI human cancer cells. 

Table 4.5 (continued) 

Panel/cell line 
ST-497 ST-124(a) ST-467 

GI50 
(nM) 

TGI 
(µM) 

GI50 
(nM) 

TGI 
(µM) 

GI50 
(nM) 

TGI 
(µM) 

Leukemia 
CCRF-CEM 37.3 >100 31.9 21.8 <10 46.3 

HL-60(TB) 30.0 5.74 22.7 NA <10 NA 
K-562 25.7 >100 <10 >100 <10 >100 
MOLT-4 68.2 >100 48.2 20.0 12.0 16.1 
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Table 4.5 (continued) 
RPMI-8226 36.5 87.6 36.8 21.1 <10 24.6 
SR 21.1 >100 <10 16.9 <10 >100 
Non-Small Cell  
Lung  Cancer  
A549/ATCC 

54.1 >100 37.4 >100 <10 73.4 

HOP-62 46.7 >100 25.0 >100 <10 72.4 
HOP-92 98.9 11.3 <10 2.67 <10 0.08 
NCI-H23 64.9 >100 37.7 27.9 <10 68.7 
NCI-H460 38.1 >100 34.2 >100 <10 10.9 
Colon Cancer  
COLO 205 228 1.16 149 0.64 29.2 0.12 

HCC-2998 230 >100 45.9 11.4 24.9 22.4 
HCT-116 40.2 NA <10 1.47 <10 >100 
HCT-15 37.3 >100 <10 5.13 <10 >100 
HT29 214 14.5 47.6 20.5 <10 10.8 
KM12 35.3 >100 29.8 23.8 <10 0.05 
SW-620 40.6 >100 29.5 >100 <10 >100 
CNS Cancer 
SF-268 503 >100 177 >100 <10 90.0 

SF-295 14.4 >100 10.8 0.15 <10 27.5 
SF-539 20.0 0.05 13.8 0.04 <10 <0.01 
SNB-19 52.5 >100 36.9 >100 <10 >100 
SNB-75 15.7 NA 14.2 >100 <10 NA 
U251 37.1 46.9 37.9 >100 <10 16.5 
Melanoma 
LOX IMVI 65.2 >100 75.5 >100 <10 >100 

M14 21.5 NA <10 >100 <10 23.0 
MDA-MB-435 <10 NA <10 0.01 <10 <0.01 
SK-MEL-2 26.9 4.24 55.5 >100 <10 30.5 
SK-MEL-28 >1000 6.33 NA NA NA 60.7 
SK-MEL-5 12.6 0.35 26.7 0.32 <10 0.02 
UACC-62 157 4.61 <10 >100 >1000 >100 
Ovarian Cancer  
IGROV1 64.8 >100 50.9 >100 <10 21.5 

OVCAR-3 10.8 0.04 24.4 >100 <10 <0.01 
OVCAR-4 77.4 >100 NA >100 <10 >100 
NCI/ADR-RES 23.1 66.1 <10 0.08 <10 17.5 
SK-OV-3 75.0 97.7 45.8 >100 <10 40.3 
Renal Cancer 
786-0 42.8 >100 15.3 >100 <10 19.4 

A498 33.2 6.69 <10 NA <10 <0.01 
ACHN 81.3 >100 145 >100 <10 62.5 
CAKI-1 42.6 >100 50.2 >100 <10 >100 
UO-31 92.3 >100 20.0 >100 <10 25.1 
Prostate Cancer  
PC-3 45.8 >100 41.5 >100 <10 35.2 

DU-145 26.6 NA 44.8 >100 <10 NA 
Breast Cancer 
 MCF7 26.9 >100 24.5 >100 <10 >100 

MDA-MB-
231/ATCC 94.7 >100 46.0 >100 <10 >100 

HS 578T NA >100 40.9 >100 <10 >100 
MDA-MB-468 34.6 26.0 23.3 0.08 <10 22.4 
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Table 4.6: Growth Inhibition (GI50/µM) and Total Growth Inhibition (TGI/µM) data for 
compounds ST-282, ST-482, ST-452 against NCI human cancer cells. 
 
Table 4.6 (continued) 

Panel/cell line 
ST-282 ST-482 ST-452 

GI50 

(nM) 
TGI 
(µM) 

GI50 

(nM) 
TGI 
(µM) 

GI50 

(µM) 
TGI 
(µM) 

Leukemia 
CCRF-CEM 33.7 >100 282 >100 3.38 >100 

HL-60(TB) 18.9 0.08 201 NA 5.75 >100 
K-562 <10 >100 49.6 >100 5.50 >100 
MOLT-4 39.9 11.6 572 51.8 4.23 >100 
RPMI-8226 32.5 11.0 326 22.1 10.7 >100 
SR <10 24.0 43.6 11.6 5.43 >100 
Non-Small Cell  
Lung  Cancer  
A549/ATCC 

22.9 22.6 289 50.9 
4.85 >100 

HOP-62 18.2 19.3 336 >100 5.32 >100 
HOP-92 <10 0.54 122 1.59 3.28 >100 
NCI-H23 48.0 41.7 767 >100 9.13 >100 
NCI-H460 24.6 20.0 335 28.7 3.67 >100 
Colon Cancer  
COLO 205 26.7 0.07 311 1.30 2.89 >100 

HCC-2998 39.4 17.5 >1000 24.6 9.16 >100 
HCT-116 <10 0.81 181 15.6 2.89 >100 
HCT-15 <10 >100 125 >100 2.93 >100 
HT29 25.3 12.3 392 12.5 4.56 >100 
KM12 <10 11.2 70.0 11.9 6.87 >100 
SW-620 <10 >100 105 >100 4.40 >100 
CNS Cancer 
SF-268 68.5 >100 >1000 >100 7.36 >100 

SF-295 <10 42.8 98.9 3.61 3.01 >100 
SF-539 <10 NA 181 0.54 NA >100 
SNB-19 29.4 >100 501 >100 7.75 >100 
SNB-75 <10 21.9 82.4 NA 1.58 >100 
U251 20.1 22.7 302 11.2 5.35 >100 
Melanoma 
LOX IMVI 17.5 37.8 545 87.1 4.83 >100 

M14 <10 NA NA 12.0 14.3 >100 
MDA-MB-435 <10 NA 94.8 NA 2.20 >100 
SK-MEL-2 <10 18.1 23.6 55.7 6.52 >100 
SK-MEL-28 >100 34.8 244 43.5 5.39 >100 
SK-MEL-5 <10 0.16 >1000 11.9 7.89 >100 
UACC-62 >100 21.2 >1000 30.8 3.35 >100 
Ovarian Cancer  
IGROV1 33.2 30.3 >1000 >100 5.94 >100 

OVCAR-3 <10 <0.01 432 0.37 3.38 >100 
OVCAR-4 33.6 57.2 76.3 >100 3.04 >100 
NCI/ADR-RES <10 69.7 84.9 24.0 3.92 >100 
SK-OV-3 <10 12.7 486 93.2 2.72 >100 
Renal Cancer 
786-0 <10 13.5 618 63.5 2.75 >100 

A498 10.4 1.50 343 9.32 3.18 >100 
ACHN <10 >100 705 >100 1.75 >100 
CAKI-1 <10 >100 316 >100 8.42 >100 
UO-31 <10 24.6 661 72.7 6.84 >100 
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Table 4.6 (continued) 
Prostate Cancer  
PC-3 18.4 39.4 255 43.7 4.50 >100 

DU-145 25.0 >100 346 >100 1.41 >100 
Breast Cancer 
 MCF7 <10 37.9 76.8 >100 2.58 >100 

MDA-MB-
231/ATCC 44.4 >100 529 31.5 5.89 >100 

HS 578T 668 64.2 442 >100 11.6 >100 
MDA-MB-468 14.7 30.5 226 25.8 3.20 >100 
 
 
 
 
4.5.2 Anticancer evaluation of ST-145(b) versus 9LSF rat gliosarcoma cells via 
colony formation assay 
 

9LSF cells were acquired from the laboratory of Dennis Deen, Ph.D. (Brain Tumor 

Research Center, University of California, San Francisco).  Cells were exposed to ST-

145(b) at concentrations of 1 nM, 3 nM, 10 nM, 30 nM, 100 nM, 1 µM, or 10 µM for 24 

hours prior to seeding of the colony formation assay.  Cells were then trypsinized, 

counted, seeded into 25 cm2 flasks, and incubated at 37°C to form colonies (Borrelli, 

Stafford et al. 1998). All conditions were seeded in triplicate. Flasks that were plated with 

less than 50,000 cells were previously plated with 50,000 lethally irradiated A549 cells to 

serve as feeders (Borrelli, Thompson et al. 1989). Flasks were removed from incubation 

when colonies were large enough to count (>50 cells).  Colonies were then fixed and 

stained with crystal violet, rinsed, allowed to dry, and counted. LD50 was determined as 

7.5 nM using SigmaPlot Figure 4.4. The colony formation assay was conducted by 

Kevin Howk at Dr. Borelli’s lab. 
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Figure 4.4: Dose response study of ST-145(b) against 9LSF cells. 

 

4.6 Conclusion 

In summary, we have developed a new facile procedure for the synthesis of 4,5-diaryl-

2H-1,2,3-triazoles bearing a broad range of aryl moieties from their corresponding (Z)-

2,3-diarylacrylonitriles. The method does not require an inert atmosphere, is economical, 

can be applied to a wide range of aryl groups and aromatic ring substitutions, and is a 

viable alternative to the Huisgen cycloaddition reaction of alkynes with azides.  

The 2H-triazole CA-4 analogues do not undergo cis-trans isomerization and are stable in 

aqueous solution. They also have a better water-solubility profile compared to the parent 

CA-4 precursor molecules. With the exception of ST-452, all the compounds in this 

sublibrary had LC50 values >100μM against most of the human cancer cell lines in the 

NCI panel, implying that these compounds are anti-proliferative agents.  It is noteworthy 
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that ST-467 had impressive GI50 values of less than 10nM against almost all the cancer 

cell lines in the panel, except for melanoma cancer cell line UACC-62, and colon cancer 

cell lines COLO 205 and HCC-2998. ST-467 also exhibited potent TGI values of <10nM 

against CNS cancer cell line SF-539, melanoma cell MDA-MB-435, ovarian cancer cell 

line OVCAR-3 and renal cancer cell line A498. Analogues ST-124(a) and ST-282 

exhibited GI50 values of <10nM against leukemia cancer cell lines K-562 and SR, non-

small lung cancer cell line HOP-92, colon cancer cell lines HCT-116 and HCT-15, 

melanoma cancer lines M14 and UACC-62, ovarian cancer cell line NCI/ADR-RES and 

renal cancer cell line A498. Melanoma cancer cell line MDA-MB-435 and ovarian cancer 

cell line OVCAR-3 appeared to be the most sensitive to the growth inhibitory effects of 

124(a) and ST-467, exhibiting TGI values of <10 nM. Also, analogue ST-145(b) was 

very effective in the colony formation assay against 9LSF rat gliosarcoma cells, 

exhibiting an LD50 value of 7.5 nM. 
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Figure 4.5: Lead 4,5-diaryl-2H-1,2,3-triazoles as potent CA-4 analogs. 
 

Thus, analogues ST-467, ST-124(a), ST-282 and ST-145(b) can be considered as lead 

anticancer agents from the 2H-triazole series of compounds and further investigation is 

warranted to determine their potential as clinically effective therapeutic agents.  

Copyright © Nikhil Reddy Madadi 201 
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Chapter 5 

Resveratrol derivatives as selective, high affinity cannabinoid receptor ligands and 
correlation with their anti-cancer properties 

5.1 Introduction 

The psychotropic and therapeutic actions of cannabis extracts have been known for 

centuries. By 1940, the concerns about the danger of abuse has led to the banning of 

medical marijuana world-wide (Pisanti, Malfitano et al. 2009). However, increasing 

evidence of biologically beneficial aspects of cannabinoids associated with cancer, 

inflammation, obesity and brain damage is awakening renewed interest in cannabinoid 

receptor studies (Munson, Harris et al. 1975, Cridge and Rosengren 2013).  

CB1 and CB2 receptors are the two major cannabinoid-specific receptors which have 

been characterized from mammalian tissues. CB1 receptors (CB1R) are abundantly 

expressed in the CNS (Pertwee 2006).  These receptors are also expressed in peripheral 

nerve terminals and in many extra-neuronal sites. CB1R activation is responsible for 

most of the pharmacological effects of cannabinoids in the nervous system. In contrast, 

CB2 receptors (CB2R) are known to be expressed in other tissues, predominantly in cells 

of the immune system (Sarfaraz, Adhami et al. 2008). Interestingly, many types of cancer 

cells express relatively high densities of CB1 and CB2 receptors, and most recent studies 

report that cannabinoids can reduce tumor growth and progression in several animal 

models of cancer (Sanchez, de Ceballos et al. 2001, Sarfaraz, Adhami et al. 2008, Wasik, 

Christensson et al. 2011). 
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Cannabinoids can be classified into three structurally distinct groups: endocannabinoids, 

phytocannabinoids, and synthetic cannabinoids (Franks, Ford et al. 2014). 

Endocannabinoids are endogenous compounds synthesized in the body (example: 

Anandamide (Figure 5.1)). Phytocannabinoids are plant-derived compounds that are 

often structurally similar to Δ9-THC (Figure 5.1). Lastly, synthetic cannabinoids are 

compounds specifically designed with high affinity for CB1 and CB2 receptors to alter 

receptor and/or endocannabinoid function. 

To develop cannabinoids with improved therapeutic properties, we synthesized of a novel 

class of cannabinoid receptor inhibitors, the indolequinuclidines (Figure 5.1) that bind 

with high nanomolar affinity to both types of cannabinoid receptors, and we have 

characterized the intrinsic activity of such compounds (Madadi, Penthala et al. 2013, 

Franks, Ford et al. 2014). 
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Figure 5.1 Structures of Anandamide, Tetrahydrocannabinol, N-benzyl 
indolequinuclidinones, Carboxamido-5-aryl-isoxazole. 

171 
 



 

Qamri and co-workers have demonstrated that synthetic cannabinoid receptor agonists 

JWH-133 and WIN-55 (Figure 5.2) inhibit cell proliferation against breast cancer cell 

lines (MDA-MB231, MDA-MB468). Interestingly, these results were reversed when 

breast cancer cells were treated with CB1R and CB2R antagonists AM 251 and SR 44528 

(Figure 5.2), indicating the likely involvement of CB1 and CB2 receptors in tumor 

growth and metastasis (Qamri, Preet et al. 2009).   
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Figure 5.2 Structures of synthetic cannabinoids JWH-133, WIN 55, SR 144528 and 
AM252. 

 

Recently, much attention has focused on potential chemotherapeutic uses for the naturally 

occurring plant stilbenoid, resveratrol, and resveratrol analogs such as the prenylated 

stilbenoids have been reported to have improved affinity for cannabinoid receptors 
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(Brents, Medina-Bolivar et al. 2012). In this regard, identifying selective and high affinity 

ligands for both CB1 and CB2 receptors is a worthwhile goal, since most cannabinoid 

drugs have been associated with potential addictive properties and other unwanted side 

effects due to their lack of selectivity. 

HO
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OHtrans-arachidin-1 trans-arachidin-3  

Figure 5.3 Structures of prenylated stilbenoids trans-arachidin-1 and trans-arachidin-3. 

 Based on the above mentioned literature review, we hypothesized that the anticancer 

activity of the synthesized resveratrol analogs may partly be mediated through their 

interaction with cannabinoid receptors. Thus, we wanted to find a correlation between 

cannabinoid receptor affinity and anticancer activity for our resveratrol derivatives. We 

initiated a study to identify selective CB1 and CB2 receptor ligands from the library of 

novel stilbene scaffolds structurally related to the resveratrol molecule.  From our SAR 

studies we have discovered that incorporating a 3,4-methylenedioxy group into the 

phenyl moieties and introducing a cyano substituent onto the stilbene double bond not 

only improved affinity of these novel stilbenes for CB1 and CB2 cannabinoid receptors, 

but also afforded selectivity at CB1 and CB2 receptors. 

5.2 Standard Operating Procedure for cannabinoid affinity screening 

Membrane homogenates of either whole mouse brain (50 µg) (CB1R) or Chinese hamster 

ovary (CHO)-hCB2 cells (25 µg) (CB2R) were incubated for 90 min at room temperature 

with 0.2 nM [3H]CP-55, 940, 5 mM MgCl2, and either increasing sample concentrations 
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(10 fM–10 µM), 1 µM WIN 55212-2 (to define non-specific binding) or vehicle (to 

determine total binding). Each ligand concentration was examined in duplicate, in a final 

volume of 1 mL of buffer containing 50 mM Tris, 0.05% bovine serum albumin (BSA) 

and 0.1% ethanol/0.1% dimethyl sulfoxide as vehicle. Reactions were terminated by 

rapid vacuum filtration through Whatman GF/B glass fiber filters, followed by five 

washes with ice-cold buffer (50 mM Tris, 0.05% BSA). Filters were immediately placed 

into 7 mL scintillation vials to which 4 mL of scintillation fluid was added. Bound 

radioactivity was determined after overnight incubation at room temperature by liquid 

scintillation spectrophotometry. Specific binding was expressed as total minus 

nonspecific binding and graphed for each data point as a percentage of specific binding 

occurring in the absence of any competitor. The affinity of IQDs for CB1Rs and CB2Rs 

was derived by employing the Cheng–Prusoff (Cheng and Prusoff 1973) equation to 

convert the observed IC50 values to Ki values from 3 to 4 separate competition receptor 

binding curves for each ligand. 

5.3 CB1 and CB2 receptor competitive binding data from screening assay with 
resveratrol analogs 
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Figure 5.4: Structures of TMR, ST-124, ST-179, ST-165 and ST-160. 
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By comparing the CB1 and CB2 receptor competitive binding data for TMR and ST-124 

(Figure 6.1), it was found that incorporating a cyano group into the double bond of the 

stilbene moiety markedly improved the receptor affinity for both CB1 and CB2 receptors 

compared to the parent compound. Subsequently, a variety of cyanostilbenes were 

screened, and it was discovered that 3,4-methylenedioxy cyanostilbenes ST-179, ST-165 

and ST-160 (Figure 6.1) not only exhibited improved receptor affinity but also afforded 

compounds that were selective  ligands at both CB1 and CB2 receptors.  

Figure 5.5: CB1 and CB2 competitive binding screen at 1µM concentration with TMR, 
ST-124, ST-179, ST-165 and ST-160. 
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Initially, all twenty four 3,4-methylenedioxy cyanostilbenes synthesized were screened at 

1µM in CB1 and CB2 competitive receptor binding studies, and several compounds 

showed promising affinities towards both CB1 and CB2 receptors (full screening results 

are given in the Appendix; Figure 8.1-Figure 8.6). However, only compounds with high 

affinity and/or selectivity were selected for subsequent evaluation utilizing complete 

binding curves to derive Ki values. Three compounds (ST-179, ST-165 and ST-160)  

were identified as selective for CB1 and CB2 receptors with relatively high affinities 

(Table 5.1 and Figure 5.3). 

Table 5.1:  Ki values for compounds ST-179, ST-165, and ST-160 for CB1 and CB2 
receptors.  

Ki values (nM) 

               Comp. CB1 CB2 CB1/CB2 

               ST-179 13290 284 47 

ST-165 717 327 2 

ST-160 400 780 0.5 
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Figure. 5.6: Affinity (Ki) of compounds ST-179(A), ST-165(B) and ST-160(C) for 
mouse brain CB1Rs (mCB1) and human CB2Rs (hCB2). 

 

5.4 Discussion and Conclusion 

Twenty four novel 3,4-methylenedioxy substituted stilbene analogs were synthesized 

(Chapter 2). Several showed promising affinities in cannabinoid receptor binding assays, 

and some were selective for both CB1 and CB2 cannabinoid receptors. Two compounds 

were identified as selective receptor ligands. Compound  ST-179 had 47-fold selectivity 

for CB2 receptors (Ki = 284 nM) compared to CB1 receptors, while compound ST-160 

was 2-fold selective for CB1 receptors (Ki = 400 nM) compared to the CB2 receptors. 

Current studies are ongoing to determine the intrinsic activity of these high affinity 

cannabinoid ligands.  
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Compounds ST-179 and ST-165 were screened at a single dose (10-5 M) at NCI to 

determine their growth inhibition properties against various cancer cell lines. To our 

dissapointment compound ST-160 was not selected for single dose screening in the NCI 

panel of human cancer cell lines. Based on the single dose screening results, Compound 

ST-179 was selected for full five dose response study against the NCI 60 cell panel of 

human tumor cell lines. The anticancer study results are presented in Chapter 3. 

Unfortunately, no direct correlation could be derived between the anticancer activity and 

the cannabinoid affinity results for ST-179, ST-165 and ST-160. Thus, further studies 

need to be conducted on these resveratrol analogs to establish if any correlation between 

cannabinoid affinities and anticancer activities exists.  

In conclusion, we have identified 3,4-methylenedioxy cyanostilbenes as a novel class of 

selective cannabinoid ligands that have the potential for development as novel 

cannabinoid therapeutics for treatment of obesity and/or drug dependency. The 

cannabinoid receptor activities of the molecules does not appear to correlate with their 

anticancer activities against human cancer cell lines. 
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Chapter 6 

 

Summary 

Herein, two medicinal chemistry projects related to the natural products resveratrol and 

combretastatin-A4, which possess anticancer properties, are presented. Resveratrol 

(3,5,4-trihydroxystilbene) is a well-known phytoalexin found in grapes, peanuts, red wine 

and other foods. It has been reported as a potential chemotherapeutic agent due to its 

striking inhibitory effects on cellular events associated with cancer initiation, promotion, 

and progression. However, resveratrol has some limitations which preclude its use in 

cancer treatment. It cannot be used as an antitumor drug due to its low bioavailability 

caused by rapid metabolism.  

We have synthesized 184 compounds related to resveratrol with chemical alterations 

designed to make the molecule more potent and drug-like (presented in Chapter 2). 

Thus, the majority of the aromatic hydroxyl groups were defunctionalized by O-

methylation and novel functional groups where added to the stilbene scaffold to improve 

anticancer potency. The resulting resveratrol analogs were divided into four groups based 

on the nature and position of the functional group introduced into the stilbene skeleton, 

i.e. simple stilbenes, C2-substituted stilbenes, cyanostilbenes and tetrazole stilbenes. All 

184 resveratrol analogues were submitted to the NCI anticancer screening program and 

evaluated against a panel of 60 human tumor cells. Eighty five of these analogues were 

selected for single dose screening at 10µM concentration. NCI selects compounds based 

on drug-likeliness of the structures analyzed by the algorithm software COMPARE, and 

does not accept compounds which have been previously submitted. From the 85 
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compounds selected for single dose screening, 25 resveratrol analogs showed promising 

anticancer activity and were selected for full five-dose studies. We have identified a 

tetrazole resveratrol analog ST-145(a) [(Z)-5-(2-(1H-tetrazol-5-yl)-2-

(3,4,5trimethoxyphenyl)vinyl)-2-methoxyphenol] as a lead anticancer agent from the 

resveratrol analog series. ST-145(a) had impressive GI50 values of less than 10nM 

against almost all 60 cell lines in the  NCI panel of human cancer cells, except for colon 

cancer cell lines HT29 and COLO 205. ST-145 also showed potent TGI (Total Growth 

Inhibition) values of <10nM against Non-small cell lung cancer cell line NCI-H522, CNS 

cancer cell line SF-539, Melanoma cell line MDA-MB-435 and renal cancer cell line 

A498. The full anticancer activitiesof the synthesized resveratrol analogs are presented in 

Chapter 3. 

In a separate study we aimed to test the hypothesis that the limited bioavailability of 

resveratrol, can be improved by synthesizing analogs which would be glucuronidated at a 

lower rate than resveratrol itself. From our library of resveratrol analogs we have selected 

three compounds (ST-05, ST-12(a) and DNR-1) hypothesizing that the functional 

moieties that were introduced into the molecule would slow the rate of glucuronidation 

and could constitute useful scaffolds for the subsequent design of resveratrol analogs with 

improved bioavailability. In the current study we demonstrated that ST-05 [(E)-2,4-

dimethoxy-6-(4-methoxystyryl)benzaldehyde oxime) and ST-12(a) [(E)-3-(3-hydroxy-4-

methoxyphenyl)-2-(3,4,5-trimethoxyphenyl)acrylic acid] were substrates for recombinant 

UGT enzymes and human hepatic and intestinal microsomes. In conclusion, the 

glucuronidation of the novel stilbenoids studied in this study revealed that these 

compounds exhibit lower glucuronidation profiles when compared to resveratrol, and 
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likely represent useful scaffolds for the design of efficacious resveratrol analogs with 

improved bioavailability. The glucuronidation study results are discussed in Data set 1 

(Appendices). 

 

Recently, resveratrol analogs such as prenylated stilbenoids have been reported to have 

improved affinity for cannabinoid receptors. In this regard, identifying selective and high 

affinity ligands for both CB1 and CB2 cannabinoid receptors is a worthwhile goal, since 

most cannabinoid drugs have been associated with potential addictive properties and 

other unwanted side effects due to their lack of selectivity. We initiated a new discovery 

program at UAMS to identify selective CB1 and CB2 receptor ligands from the library of 

novel stilbene scaffolds structurally related to the resveratrol molecule. Several of these 

compounds showed promising affinities in cannabinoid receptor binding assays, and 

some were selective for both CB1 and CB2 cannabinoid receptors. From the screened 

resveratrol analogs, two compounds were identified as selective CB2 and CB1 ligands, 

compound ST-179 exhibited 47-fold selectivity for CB2 (Ki = 284 nM) compared to CB1 

receptors. Compound ST-160 was 2-fold selective for CB1 receptors (Ki = 400 nM) 

compared to the CB2 receptors. These structural analogs may have potential for the 

development as novel cannabinoid therapeutics for treatment of obesity and/or drug 

dependency. The cannabinoid receptor affinity studies with the stilbenes are presented in 

Chapter 5) 

Combretastatin A4 (CA-4) is a cis-stilbene originating from the South African willow 

tree Combretum caffrum. It is one of the most potent antiangiogenic and antimitotic 

agents of natural origin. Its O-phosphate prodrug (CA-4P) is currently in phase 3 clinical 
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trial for the treatment of anaplastic thyroid cancer, and successfully retards tumor growth 

in wide spectrum of solid tumor models. However, recent studies have reported the 

chemical instability of CA-4 in solution due to cis- trans isomerization to the more 

thermodynamically stable, but less potent trans-CA-4 isomer. To circumvent this 

problem, introduced an aromatic triazole ring in place of the double bond of the cis-

stilbene moiety of CA-4 to constrain molecule to the cis-configuration and to make 

moecule more stable more water-soluble. We have developed a facile procedure for the 

general synthesis of 4,5-diaryl-2H-1,2,3-triazoles as CA-4 analogs that incorporate a 

broad range of aryl moieties from their corresponding (Z)-2,3-diarylacrylonitriles. This 

method does not require an inert atmosphere, is economical, can be applied to a wide 

range of aryl groups and aromatic ring substitutions, and is a viable alternative to the 

Huisgen cycloaddition reaction of alkynes with azides. The methodology, development 

and design of these 4,5 disubstitutes-2H-1,2,3-triazoles is discussed in Chapter 4. 

A total of twenty three 4,5-diaryl-2H-1,2,3-triazoles as CA-4 analogs were synthesized 

and submitted to the NCI panel of 60 human tumor cells for anticancer screening. Of 

these, twelve analogs were selected for single dose screening at 10µM concentration. 

From the 12 compounds selected for single dose screening, six of these CA-4 analogs 

showed promising anticancer activity and were selected for full five dose-studies. From 

these CA-4 analogs, ST-467 (4-(4-methoxyphenyl)-5-(3,4,5-trimethoxyphenyl)-2H-

1,2,3-triazole) had impressive GI50 values of less than 10nM against almost all the cell 

lines in the panel, except for melanoma cancer cell line UACC-62, and colon cancer cell 

lines COLO 205 and HCC-2998. Compound ST-467 also showed potent TGI values of 

<10nM against CNS cancer cell line SF-539, melanoma cell line MDA-MB-435, ovarian 
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cancer cell line OVCAR-3, and renal cancer cell line A498. Also, compound ST-145(b) 

(2-methoxy-5-(5-(3,4,5-trimethoxyphenyl)-2H-1,2,3-triazol-4-yl)phenol), another triazole 

CA-4 analogue, was very effective in the colony formation assay against 9LSF rat 

gliosarcoma cells, exhibiting an LD50 of 7.5 nM. Both ST-467 and ST-145(b) can be 

considered as lead anticancer agents from the triazole CA-4 series and further 

investigation into their in vivo effects in various solid tumor xenograph models in nude 

mice may provide additional data on their potential as therapeutic agents for treatment of 

a variety of solid tumors. The anticancer activity results of the triazole CA4 analogs are 

presented in Chapter 4. 

 

Copyright © Nikhil Reddy Madadi 2014 
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Appendices 

Data set 1 

Novel Resveratrol-Based Substrates for Human Hepatic, Renal, and Intestinal UDP-
Glucuronosyltransferases 

7.1 Introduction 

Resveratrol is a well-known, natural polyphenol known to be a potent antioxidant, 

coronary protective, hepatic protective, neuroprotective, cardiovascular protective, anti-

inflammatory and anti-carcinogenic agent (Pace-Asciak, Rounova et al. 1996, Jang, Kang 

et al. 1999, Aggarwal, Bhardwaj et al. 2004, Kim, Zhu et al. 2006). Although initial 

preclinical data was encouraging, resveratrol could not be used as a drug because of its 

low bioavailability. Resveratrol was found to have a short half-life of 8-10 min after oral 

administration and was extensively metabolized to both O-sulfate and O-glucuronide 

conjugates (Marier, Vachon et al. 2002).  

The human hepatic and intestinal UDP-glucuronosyltransferases (UGTs) actively 

transform resveratrol to its O-glucuronide conjugate (Sabolovic, Humbert et al. 2006). To 

circumvent this unfavorable metabolism of resveratrol, the search for resveratrol analogs 

with chemical stability, enhanced bioavailability and more promising metabolic stability, 

is of great importance.  
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Recently, Dr. Radominska’s group at UAMS have discovered that prenylated resveratrol 

analogues, trans-arachidin-1 and trans-arachidin-3 (Figure 7.1) had O-glucuronidation 

rates that were slower in comparison to resveratrol (Brents, Medina-Bolivar et al. 2012). 

From our library of resveratrol analogs, three compounds were selected (ST-05, ST-12(a) 

and DNR-1, Figure 5.1) that were hypothesized to have a slow rate of O-glucuronidation 

and might represent a useful scaffold for the design of potent resveratrol analogs with 

improved bioavailability and which could be developed as chemotherapeutic agents with 

clinical potential. The glucoronate studies were carried out by members of Dr. 

Radominska’s research group. 
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Figure 7.1: Structures of resveratrol analogs trans-arachidin-1, trans-arachidin-3, ST-
05, DNR-1 and ST-12(a). 
 
The three compounds selected for the study had the majority phenolic groups blocked by 

O-methylation or incorporated a hydroxylamine, carboxylic acid or aromatic nitro group 

on the stilbene scaffold.  

The study was designed to elucidate: 
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1) If the above three chemically synthesized stilbene derivatives are substrates for human 

recombinant UGTs. 

2) If the rate of glucuronidation of the three analogues was comparable to resveratrol 

itself. 

Twelve major recombinant human UGT1A and UGT2B enzymes were utilized to 

determine their capability to metabolize these three reseveratrol analogs. 

HPLC−UV−VIS analysis was used to identify the formation of glucuronide conjugates. 

LC−MS/MS and β-glucuronidase hydrolysis was used to elucidate the structures of the 

metabolites. 

7.2 Source of Human Microsomes and Recombinant UGTs. 

Human hepatic microsomes were acquired from ten contributors, and human intestinal 

microsomes were acquired from thirteen contributors. Recombinant proteins UGT1A1, 

1A3, 1A4, and 1A6−1A10 were cloned and expressed in baculovirus-infected insect cells 

(Kurkela, Garcia-Horsman et al. 2003, Kuuranne, Kurkela et al. 2003). Human UGT2B4, 

2B7, 2B15, and 2B17 were purchased from BD Biosciences (Woburn, MA) and the 

manufacturer’s protocols were used to carry out the assays.  

7.3 Screening of Human Microsomes and Recombinant UGTs 

Screening trials for glucuronidation were conducted with human hepatic and intestinal 

microsomes from 10 and 13 donors, respectively, one pooled liver sample, and 

commercially available hepatosomes. A 250 µL aliquot of substrate was dissolved in 
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ethanol solution and added to the incubation tube. The resveratrol analogs were sonicated 

to ensure solubilization. Reaction buffer and human microsomes (50 mg of total protein) 

or recombinant UGT membranes (5 mg of total protein) were then added. UDP-GlcUA in 

molar excess was added, and the samples containing the analogs were incubated at 37 °C 

for one hour. Final reaction concentrations were as follows: 100 μM Tris−HCl (pH 7.4)/5 

mM MgCl2/5 mM saccharolactone/2% DMSO/250 μM substrate/2 micromolar 

UDPGA/50 or 5 μg of total protein, respectively. The total reaction volume was 30 µL. 

Controls were run under the same reaction conditions in the absence of substrate 

molecules. The glucuronidation rate with these enzymes has been shown to be linear for a 

maximum of 3 hours. The reactions were finally stopped by addition of 30 µL of ethanol. 

Later, centrifugation of the samples was carried out at 14 000 rpm for 8 min to collect the 

protein. The supernatants were investigated by HPLC using an HP1050 HPLC system 

equipped with a UV−VIS diode array detector. Instrument function and data acquisition 

were assessed using Agilent ChemStation software. 

7.4 Enzyme Kinetics Assays.  

Kinetic parameters were calculated by incubating recombinant UGT protein with 

different concentrations of ST-12a (10−1000 μM) or ST-05 (1−1000 μM) with a molar 

excess of UDP-GlcUA for 1 hour. All kinetic assays were conducted in duplicate under 

conditions identical to those employed for screening assays. 
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7.5 Data Analysis.  

Kinetic data analysis for the glucuronidation of ST-12(a) and ST-05 by UGTs were 

estimated by plotting the measured initial reaction velocity values as a function of 

substrate concentration. Graph-Pad Prism v4.0b (GraphPad Software, Inc., San Diego, 

CA) was utilized for conducting curve-fitting and statistical analyses. Kinetic constants 

were obtained by fitting the experimental data to the following kinetic models using the 

nonlinear regression (Curve Fit) function. 

1. Michaelis−Menten (M−M) equation used for the one-enzyme model. 

𝑣𝑣 =
𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚  ×  [𝑆𝑆]
𝐾𝐾𝑚𝑚 +  [𝑆𝑆]  

 

2. Hill equation reflects the extent of cooperativity among multiple binding sites 

(Weiss 1997). 

𝑣𝑣 =
𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚  ×  [𝑆𝑆]𝑛𝑛

𝑆𝑆50𝑛𝑛 +  [𝑆𝑆]𝑛𝑛  

 

3. Uncompetitive substrate inhibition (USI) model, where Ki is the inhibition 

constant describing the rate reduction. 

 

𝑣𝑣 =
𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚

1 + 𝐾𝐾𝑚𝑚
[𝑆𝑆] + [𝑆𝑆]

𝐾𝐾𝑖𝑖
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7.6 Glucuronide Product Analysis 

A HP1050 LC system equipped with a variable wavelength UV-DAD detector was used 

for HPLC-UV analyses of supernatants. Agilent ChemStation software was used for 

instrument control and data collection. A reversed-phase 5 µm Suplex pKb-100 analytical 

column (0.46 cm x 25 cm, C18) was used for HPLC separations. The temperature was 

maintained at 25 ˚C. A flow rate of 1 ml/min with a linear gradient from 15-80% 

methanol in ammonium formate buffer (0.05 M, pH 3.4) for 25 min, followed by a linear 

gradient from 80-100% methanol in ammonium formate for 3 min was utilized. The 

elution of each metabolite of ST-12(a) was monitored at 335 nm, whereas the elution of 

the metabolite of ST-05 was monitored at 325 nm. 

7.7 Analysis of Glucuronide Product Structures by ESI-HPLC-MS 

An Acquity uHPLC system interfaced to a Quattro Premier triple quadrupole mass 

analyzer (Waters Corporation, Beverly, MA) with an electrospray probe operating in the 

positive ion mode was used for HPLC-MS analysis of the glucuronide and structural 

identification of glucuronide products. Liquid chromatography settings were identical to 

those used for LC-UV analysis, and 10 µL of sample was injected onto the column. The 

nitrogen flow rate was 600 L/h and was maintained at 500°C. The source temperature 

was 150°C. 
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Figure 7.2. Metabolism of ST-12(a) and ST-05 with human liver microsomes. 
Representative HPLC analyses are shown from 60 min incubations of 50 μg of human 
liver proteins with 0.25 mM substrate and 3 mM UDP-GlcUA. DNR-1 was not 
metabolized under the similar conditions. 
 
 
7.8 Glucuronide Metabolite Analysis by HPLC−UV−VIS and HPLC−MS/MS 

UGT1A and UGT2B enzymes were used for preliminary studies on the glucuronidation 

of ST-05, DNR-1, and ST-12(a). Glucuronidation products for ST-05 and ST-12(a) were 

detected, identified and quantitated, but no glucuronidation product of DNR-1 was 

formed. Two metabolites at tR = 17.6 and tR = 17.8 min for ST-12(a) and one metabolic 

product at tR 23.2 min for ST-05 were identified (Figure 7.3). 

LC− (+)-ESI−MS analysis (Figure 5.4), indicated that the two glucuronides of ST-12(a) 

(tR = 16.0 and 16.3 min) had an [M + NH4] + peak m/z 554, and suspected to be COO- 

and O-conjugated glucuronides. The enzyme β-glucuronidase selectively hydrolyzes only 
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O-glucuronides, and this enzyme was used to identify which of the two possible 

glucuronide metabolites were present. It was determined that the peak at tR = 16.0 min in 

the HPLC chromatogram was an acyl glucuronide. 

In Figure 7.4, ammonium adducts of ST-05 glucuronides were not observed; however, 

the proton adduct [M + H]+) was observed with a retention time of 23.2 min and an m/z 

490. We suspected the glucuronide product to be a C=N-O-glucuronide. The different LC 

systems with unique system dead volumes can be attributed to the different retention 

times on LC-MS and LC-UV runs. 
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Figure 7.3. Extracted ion chromatogram (m/z 361) and (+)-ESI mass spectra of ST-12(a) 
and its glucuronide conjugate NH4+ adducts. Spectra of ST-12(a) glucuronides (two 
isomers of tR = 16.0 and 16.3 min) showed an [M + NH4] + peak (m/z 554) plus a 
fragment ion resulting from neutral loss of the glucuronide moiety (m/z 361). 
 
 
 

 
Figure 7.4. Structures and Mass spectra of ST-05 and its glucuronide conjugates. 
Spectrum of ST-05 glucuronide (tR = 21.4 min) showed an [M+ H]+ peak (m/z 490) plus 
a major peak corresponding to the ST-05 substrate (m/z 314). 
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7.9 Screening of Recombinant UGTs for glucuronidation of ST-12a and ST-05. 

Eight human recombinant UGT1 enzymes and UGT2B4, 2B7, 2B15, and 2B17 were 

acquired from BD Biosciences and were evaluated for their ability to glucuronidate ST-

12a and ST-05. β-Glucuronidase hydrolysis was used to differentiate between COO- and 

O-glucuronides in ST-12(a) (Figure 7.5). 

For ST-12(a), treatment with human recombinant UGT1A3 led to both COO- and O-

glucuronide formation. When UGT1A1 was utilized only the carboxyl metabolite was 

produced, whereas UGTs 1A7−1A10 formed only the O-glucuronide. None of the 

UGT2B enzymes, UGT1A4 and 1A6 were active toward this compound. 

For compound ST-05, treatment with human recombinant UGT1A1, 1A9, and 1A10 

resulted in the formation of the C=N−O-glucuronide. All of the other UGTs remained 

inactive. 
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Figure 7.5. Glucuronidation of NI-12a and ST-05 by human recombinant UGTs. 
UGT1A1, 1A3, 1A4, 1A6, 1A7, 1A8, 1A9, 1A10, 2B4, 2B7, 2B15, 2B17 (5 μg of 
protein) were evaluated for their ability to glucuronidate DNR-1, ST-12(a), and ST-05. 
No activity was observed toward DNR-1, and UGT2B7, 2B4, 2B15, and 2B17 were not 
active toward any compound. Activities are expressed in nanomoles per milligram of 
protein per minute. 
 
7.10 Glucuronidation of ST-12(a) and ST-05 by Human Hepatic and Intestinal 
Microsomes. 

 

Screening assays for glucuronidation activity were conducted with HLM (Human Liver 

Microsomes) and HIM (Human Intestine Microsomes) from 10 and 13 contributors, one 

pooled liver sample, and commercial hepatosomes (Figure 7.6).  Both ST-12(a) and ST-

05 were shown to be glucuronidated with all the hepatic samples utilized, producing two 

metabolites of ST-12(a) and one metabolic product from ST-05. 
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Intestinal samples HI27, HI28, HI29 and HI54 failed to display glucuronidation activity 

toward ST-12(a). Contributors HI34, HI36, HI40 and HI41 produced only the O-

glucuronide. The remaining contributors with activity produced both COO- and O-

glucuronide metabolites. In the case of ST-05, donors HI27, HI29, and HI30 did not 

display any glucuronidation activity, but all other donors produced the C=N−O-

glucuronide. 

 
 

 
 
Figure 7.6.  Glucuronidation activities of Human Liver Microsomes and Human 
Intestinal Microsomes toward NI-12a and NI-ST-05.  Human liver microsomes from 10 
different donors, a pooled liver sample, and hepatosomes and human intestine 
microsomes from 13 different donors were analyzed. Each substrate concentration was 
0.25 mM for HIM, with a molar excess of UDP-GlcUA; the reactions were incubated for 
60 minutes. Activities are expressed in nmol/mg protein/min. 

 

7.11 Kinetic Analysis of NI-12a and NI-ST-05 with selected recombinant UGTs  

Based on the activity screening data human recombinant UGT isoforms (UGT 1A7 to 

1A10 for ST-12(a) and UGT1A1, 1A9, and 1A10 for ST-05) were subjected to kinetic 

analysis and the results presented in Table 1 and Figure 7.8,7.9 In the case of ST-12(a), 
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human recombinant isoform UGT1A9 was the most active with Vmax = 8.3 nm /mg 

protein/min. UGT1A7 showed the greatest affinity for ST-12(a) with Km = 62 μM, and 

UGT1A10 had the lowest affinity with Km = 500 μM. Because of the high Vmax, the 

catalytic efficiency of UGT1A9 toward ST-12(a), measured by the ratio Vmax/Km (35 

μL/min/mg), was also the highest. Data generated for UGT1A7 and 1A8 fits an 

uncompetitive substrate inhibition kinetic model, which suggests the existence of 

multiple binding sites on these UGT isoforms.   

For ST-05, because of the very small amount of product formation (C=N-O-

glucuronidation) and the low sensitivity of our HPLC-UV/VIS detection capabilities, our 

ability to perform kinetic analyses was limited. Assuming michaelis–menten  kinetics 

UGT1A1 activities at concentrations above 5 µM were used to estimate a Vmax value of 

0.2 nmol/mg/min. Cooperative binding was indicated for UGT1A10 which fit to the Hill 

equation. Also, data generated with isoform UGT1A9 did not fit any of the kinetic 

models tested. 
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Table 7.1.  Glucuronidation Kinetics for NI-12(a) and NI-ST-05 
Metabolites. Glucuronidation activities of selected recombinant UGTs were measured by 
incubating membrane fractions with increasing concentrations of substrate (see Figures 
7.7 and 7.8) at a constant concentration of UDP-GlcUA (3 mM). Reactions were 
centrifuged, supernatants separated by HPLC, and curve fits and kinetic constants 
determined using GraphPad Prism 4 software. *Values estimated based on an incomplete 
data set. 
 

 UGT1A1 UGT1A7 UGT1A8 UGT1A9 UGT1A10 

ST-12(a)      

ST-12a-O-Gluc Not 
Produced     

Km (μM)   62 ± 43 240 ± 76 240 ± 40 500 ± 75 

Vmax 
(nmol/mg/min)   2.2 ± 0.77 6.0 ± 1.3 8.3 ± 0.52 3.5 ± 0.24 

Ks (μM)  242 ± 133 950 ± 449   
CLint  or CLmax 
(µL/mg/min)   35 25 35 7 

Kinetic Model   USI USI M-M M-M 

R2   0.82 0.98 0.97 0.98 

ST-12a-COO-Gluc Too low to be 
assessed 

Not 
Produced 

Not 
Produced Not Produced Not 

Produced 

ST-05       

ST-05-N-O-Gluc  Not 
Produced 

Not 
Produced   

Km  or S50 (µM)  <5*   <5* 6.2 ± 0.35 

Vmax 
(nmol/mg/min)  0.21 ± 0.02*   Undetermined 0.65 ± 

0.017 

n     3.4 

CLint  or CLmax 
(µL/mg/min)      105 

Kinetic Model  M-M*   Undetermined Hill 

R2  0.61*    0.87 
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Figure 7.7. Steady state kinetic curves for the glucuronidation of NI-12a by selected 
human recombinant UGTs. Glucuronidation activities for wildtype UGT1A7, 1A8, 1A9, 
and 1A10 were measured by incubating membrane fractions containing recombinant 
UGTs with increasing concentrations (shown in figure) of the substrates at a constant 
concentration of UDP-GlcUA (3 mM) for 60 min at 37 °C. Curve fits and kinetic 
constants were determined using GraphPad Prism 4 software. The graphical fits of the 
data (mean ± SD) are shown. 
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Figure 7.8. Steady state kinetic curves for the glucuronidation of ST-05 by selected 
human recombinant UGTs. Glucuronidation activities for wildtype UGT1A1, 1A9, and 
1A10 were measured by incubating membrane fractions containing recombinant UGTs 
with increasing concentrations (shown in figure) of the substrates at a constant 
concentration of UDP-GlcUA (3 mM) for 60 min at 37 °C. Curve fits and kinetic 
constants were determined using GraphPad Prism 4 software. The graphical fits of the 
data (mean ± SD) are shown. 
 

5.12 Conclusion 
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Figure 7.9. Glucuronidation rates of resveratrol, ST-05 and ST-12(a). 

 
The current study was designed to test the hypothesis that the limited bioavailability of 

resveratrol can be improved by synthesizing analogs that will be glucuronidated at a 

lower rate than resveratrol itself. The analogs selected for the study: ST-05, DNR-1, and 

ST-12(a), had aromatic hydroxylamine, hydroxyl, nitro and carboxylic acid moieties 

incorporated into their structures and were assumed to be less susceptible to 

glucuronidation, thereby improving their bioavailability. In the current study we 
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demonstrated that ST-05 and ST-12(a) were substrates for recombinant UGT enzymes 

and human hepatic and intestinal microsomes. Because of the presence of sterically 

hindering aromatic nitro groups in the molecule, O-glucuronidation of DNR-1 was not 

observed. Glucuronidation experiments with ST-12(a) resulted in different products and 

atypical reaction kinetics specific for each enzyme (Table 1), which indicates a complex 

mechanism of metabolism for this analog. The results from the kinetic parameters 

discussed earlier indicate that ST-12(a) will have improved bioavailability compared to 

that of resveratrol. Glucuronidation experiments with ST-05 resulted in the formation of 

a rare C=N−O -glucuronide, and the rate of this reaction was significantly lower than that 

for O-glucuronidation of resveratrol. 

In conclusion, the glucuronidation of the novel stilbenoids utilized in this study revealed 

that these compounds exhibit lower glucuronidation profiles as compared to resveratrol. 

Compound ST-12(a) and related stilbenes have been reported to be effective antitubulin 

agents (Borrel, Thoret et al. 2005), and based of these data, the synthesized stilbenoids 

likely represent a useful scaffold for the design of efficacious resveratrol analogs with 

improved bioavailability over resveratrol. 

This data set has been reproduced with permission from the following publication: 

copyright ACS publications: Greer, A. K., N. R. Madadi, S. M. Bratton, S. D. Eddy, Z. 

Mazerska, H. Hendrickson, P. A. Crooks and A. Radominska-Pandya (2014). "Novel 

Resveratrol-Based Substrates for Human Hepatic, Renal and Intestinal UDP-

Glucuronosyltransferases." Chem. Res. Toxicol., 2014, 27 (4), pp 536–545. 

Copyright © Nikhil Reddy Madadi 2014 
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Data Set 2 

 NCI single dose percentage growth results for the simple stilbene analogues. 

Table 8.1. Percentage growth inhibition of NCI 60 human cancer cells by compounds 
ST-191, ST-192, ST-193, ST-194, ST-197, ST-198 and ST-209 at 10µM concentration. 
 
Table 8.1 (continued) 
Cancer cell type ST-191 ST-192 ST-193 ST-194 ST-197 ST-198 ST-209 

Leukemia 

CCRF-CEM 96.6 86.2 NA 82.9 NA NA NA 
HL-60(TB) 119.6 89.2 101.1 47.0 91.7 -18.8 88.1 
K-562 129.1 150.9 146.2 21.8 105.5 17.6 NA 
MOLT-4 108.6 92.0 82.8 50.4 114.1 16.1 118.8 
RPMI-8226 95.3 75.2 NA 44.6 92.9 49.8 95.6 
SR 103.6 100.4 108.4 40.8 91.1 9.6 94.9 

Non-Small 
Cell Lung 
Cancer 

A549/ATCC 122.8 88.4 98.0 67.6 108.7 32.5 116.6 
HOP-62 99.9 97.8 99.9 80.6 88.6 46.6 92.3 
HOP-92 120.6 114.2 NA NA NA NA NA 
NCI-H226 95.2 92.8 94.6 74.3 89.9 34.5 123.9 
NCI-H23 96.5 89.2 101.9 74.0 86.8 40.0 97.5 
NCI-
H322M 83.1 95.6 94.1 87.0 85.7 52.7 97.2 
NCI-H460 104.4 103.7 97.9 93.7 102.2 14.1 99.8 
NCI-H522 95.6 98.0 102.9 59.8 98.6 32.5 103.3 

Colon 
Cancer 

COLO 205 104.6 85.9 99.7 71.5 89.6 0.6 98.7 
HCC-2998 99.6 97.4 106.0 90.7 111.6 9.8 105.5 
HCT-116 97.0 97.3 101.3 68.7 95.4 9.9 103.0 
HCT-15 102.7 99.5 96.4 63.1 85.4 20.2 102.3 
HT29 98.7 92.7 109.2 60.0 98.1 12.6 104.8 
KM12 99.9 91.2 98.5 64.0 100.2 16.1 103.7 
SW-620 100.6 104.9 91.9 64.7 99.3 28.2 100.9 

CNS 
Cancer 

SF-268 103.3 94.7 101.9 81.3 96.9 39.0 107.8 
SF-295 97.3 104.2 106.3 78.9 93.7 6.6 101.1 
SF-539 102.0 97.9 94.2 83.2 100.5 -2.9 108.8 
SNB-19 98.4 85.4 94.5 70.0 74.0 54.3 104.9 
SNB-75 56.0 100.7 NA 57.8 103.6 NA NA 
U251 108.6 97.1 98.2 76.7 98.3 29.0 121.9 

Melanoma 

LOX IMVI 106.1 124.4 115.0 77.6 95.4 35.1 109.3 
MALME-
3M 100.8 93.3 102.7 59.3 96.2 61.9 99.8 
M14 102.2 88.5 96.5 64.4 91.9 20.4 94.3 
MDA-MB-
435 103.4 115.6 105.0 2.4 103.7 -26.4 90.6 
SK-MEL-2 123.2 94.7 115.0 69.6 90.4 62.5 112.8 
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Table 8.1 (continued) 
SK-MEL-28 104.8 98.3 101.9 74.5 87.8 55.7 94.7 
SK-MEL-5 96.9 92.9 96.9 57.0 114.9 27.0 101.3 
UACC-257 NA NA NA 49.3 72.6 NA 78.1 
UACC-62 95.7 74.2 115.8 51.6 93.6 28.3 104.3 

Ovarian 
Cancer 

IGROV1 91.1 96.0 91.1 85.0 101.1 43.5 104.1 
OVCAR-3 104.5 103.9 91.5 NA NA -13.4 NA 
OVCAR-4 85.8 93.7 98.5 75.5 80.0 45.9 90.1 
OVCAR-5 97.9 103.2 90.2 87.1 91.4 50.9 97.5 
OVCAR-8 104.2 103.0 94.7 85.3 NA 28.0 NA 
NCI/ADR-
RES 107.1 95.0 107.7 63.3 86.9 12.7 109.0 
SK-OV-3 104.0 95.7 108.5 84.3 98.5 26.8 97.1 

Renal 
Cancer 

786-0 102.8 105.0 97.5 88.1 101.6 51.2 106.4 
A498 90.6 80.5 102.1 56.4 83.3 -4.3 80.7 
ACHN 110.9 105.6 72.8 84.0 101.1 46.0 106.2 
CAKI-1 94.7 94.3 99.0 62.6 92.4 43.8 100.7 
RXF 393 104.1 112.2 92.7 89.5 95.0 -7.0 116.6 
SN12C 99.0 91.4 103.0 78.9 85.5 23.9 100.8 
TK-10 132.4 90.9 89.9 74.1 115.6 76.2 104.1 
UO-31 89.7 79.8 147.5 51.2 71.8 42.6 92.2 

Prostate 
Cancer 

PC-3 98.6 83.4 67.0 59.6 93.4 49.2 103.1 
DU-145 105.2 100.3 110.7 90.7 94.8 12.1 109.6 

Breast 
Cancer 

MCF7 88.8 89.3 80.9 42.2 96.9 1.8 90.2 
MDA-MB-
231 99.4 102.6 87.4 66.9 94.1 18.2 129.3 
HS 578T 119.2 94.3 109.0 76.4 98.6 12.0 131.0 
BT-549 92.5 91.2 81.4 69.0 85.8 38.9 100.3 
T-47D 86.2 87.2 84.0 64.1 101.3 56.3 94.6 
MDA-MB-
468 100.6 90.4 101.5 NA NA 16.7 NA 

 
 

Table 8.2. Percentage growth inhibition of NCI 60 human cancer cells by compounds 
ST-212, ST-220, ST-226, ST-227, ST-233, ST-234 and ST-236 at 10µM concentration. 
  
Table 8.2 (continued) 
Cancer cell type ST-212 ST-220 ST-226 ST-227 ST-233 ST-234 ST-236 

Leukemia 

CCRF-CEM 93.6 88.5 98.9 106.5 89.5 98.8 85.4 
HL-60(TB) 73.1 78.2 NA NA 79.2 96.6 86.2 
K-562 92.2 101.0 98.9 114.2 89.3 99.4 30.6 
MOLT-4 82.6 79.8 89.5 91.7 74.0 84.1 79.5 
RPMI-8226 86.2 74.4 109.7 102.1 103.0 100.7 99.1 
SR 84.9 95.9 91.8 108.0 69.5 77.4 44.8 

Non-Small A549/ATCC 83.7 87.7 96.4 100.3 97.0 102.0 85.2 
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Table 8.2 (continued) 
Cell Lung 
Cancer 

HOP-62 83.5 100.8 118.1 92.1 84.4 90.4 85.0 
HOP-92 NA NA 90.6 94.6 86.1 NA 79.7 
NCI-H226 104.5 97.7 103.7 110.0 85.8 101.5 100.3 
NCI-H23 98.6 94.4 95.4 104.4 95.3 90.5 92.0 
NCI-
H322M 95.1 100.4 104.5 98.7 103.1 108.9 112.6 
NCI-H460 97.4 99.9 106.2 125.3 103.7 105.4 104.1 
NCI-H522 74.3 77.4 76.5 106.7 67.0 72.8 29.1 

Colon 
Cancer 

COLO 205 100.3 107.4 98.6 91.9 97.4 100.7 98.6 
HCC-2998 103.4 111.0 103.3 100.2 95.3 96.7 92.4 
HCT-116 98.4 91.9 99.4 111.1 98.7 91.8 79.3 
HCT-15 91.9 90.1 95.0 94.7 92.6 96.0 74.6 
HT29 79.9 88.7 90.7 102.3 88.3 86.2 75.2 
KM12 99.5 91.5 97.5 94.1 93.8 91.4 75.3 
SW-620 93.3 97.2 106.3 116.0 100.5 103.3 80.2 

CNS 
Cancer 

SF-268 106.0 104.3 110.7 116.0 83.2 99.8 90.7 
SF-295 91.1 98.8 111.5 107.1 94.2 101.5 74.6 
SF-539 99.0 99.5 100.0 98.4 97.1 97.6 94.9 
SNB-19 99.8 97.3 107.1 96.5 98.3 109.9 92.9 
SNB-75 94.1 89.0 88.3 111.0 80.2 84.2 87.8 
U251 95.2 95.6 109.6 95.6 90.5 103.0 79.8 

Melanoma 

LOX IMVI 100.9 103.3 98.0 98.7 88.6 90.3 84.4 
MALME-
3M 100.9 109.6 114.0 101.4 97.1 99.8 56.0 
M14 99.0 97.2 108.4 120.1 92.3 93.6 73.1 
MDA-MB-
435 92.5 96.1 102.9 103.6 95.9 103.0 3.6 
SK-MEL-2 97.8 98.8 101.4 105.5 85.8 83.0 81.7 
SK-MEL-28 97.6 100.3 100.6 99.8 95.5 98.8 79.1 
SK-MEL-5 96.9 99.1 104.0 111.4 90.9 96.4 85.8 
UACC-257 72.0 71.7 117.9 105.5 101.0 105.1 88.5 
UACC-62 94.9 104.5 78.2 94.6 63.9 67.1 58.5 

Ovarian 
Cancer 

IGROV1 104.4 104.6 109.0 102.5 98.2 101.8 94.0 
OVCAR-3 NA NA NA NA NA NA NA 
OVCAR-4 83.7 88.7 94.6 115.5 100.6 102.3 102.2 
OVCAR-5 82.5 95.1 100.0 99.9 93.1 95.2 95.2 
OVCAR-8 101.2 101.8 113.3 115.5 93.0 101.9 101.6 
NCI/ADR-
RES 99.7 109.5 106.8 109.5 89.4 101.2 63.7 
SK-OV-3 99.9 99.4 101.3 103.8 96.5 93.1 95.7 

Renal 
Cancer 

786-0 97.0 104.0 100.4 98.4 90.9 104.1 90.9 
A498 83.2 80.7 106.0 104.8 74.1 92.6 66.7 
ACHN 92.1 97.0 105.4 106.0 94.9 102.1 94.8 
CAKI-1 92.1 91.7 99.5 98.6 94.5 106.5 71.7 
RXF 393 108.5 110.1 118.9 111.5 100.4 104.4 87.3 
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Table 8.2 (continued) 
SN12C 95.4 98.7 102.0 110.6 81.8 98.3 87.8 
TK-10 78.6 110.4 95.0 95.9 88.3 100.5 78.1 
UO-31 82.9 86.6 93.5 94.7 71.6 107.1 87.9 

Prostate 
Cancer 

PC-3 93.2 93.2 87.5 103.6 87.3 90.8 90.2 
DU-145 93.2 97.6 101.4 102.2 90.6 101.3 98.6 

Breast 
Cancer 

MCF7 87.0 87.0 60.6 100.4 98.0 105.4 58.0 
MDA-MB-
231 108.8 94.4 120.3 118.9 89.9 95.4 88.5 
HS 578T 103.8 104.7 118.2 117.6 100.3 106.6 92.4 
BT-549 94.6 98.9 104.0 98.2 82.1 82.3 106.6 
T-47D 82.3 84.6 73.8 103.1 86.5 64.4 81.2 
MDA-MB-
468 NA NA 98.7 109.8 96.5 100.4 92.6 

 
 
Table 8.3. Percentage growth inhibition of NCI 60 human cancer cells by compounds 
ST-239, ST-247, ST-294, ST-297, ST-309, ST-315 and ST-320 at 10µM concentration. 
 
Table 8.3 (continued) 
Cancer cell type ST-239 ST-247 ST-294 ST-297 ST-309 ST-315 ST-320 

Leukemia 

CCRF-CEM 95.1 91.5 97.6 99.6 97.0 99.7 71.4 
HL-60(TB) 100.5 98.8 NA NA NA NA NA 
K-562 107.5 94.8 95.6 68.9 73.0 81.0 22.3 
MOLT-4 90.8 79.2 89.6 60.2 74.2 90.7 71.1 
RPMI-8226 92.1 102.0 92.9 71.9 83.8 81.3 84.4 
SR 88.3 73.3 95.9 64.8 77.9 79.6 43.0 

Non-Small 
Cell Lung 
Cancer 

A549/ATCC 95.7 94.7 88.2 79.0 79.5 92.0 91.4 
HOP-62 95.0 89.4 86.2 93.3 96.6 97.3 97.6 
HOP-92 101.3 NA 122.6 90.4 73.7 82.8 80.2 
NCI-H226 96.8 89.7 74.6 95.8 98.4 103.3 98.1 
NCI-H23 101.2 90.1 83.3 104.4 91.7 97.5 91.7 
NCI-
H322M 104.1 88.2 95.3 100.9 78.7 91.5 88.9 
NCI-H460 103.6 87.0 98.3 100.4 104.7 104.3 99.3 
NCI-H522 84.2 76.0 81.1 59.9 59.8 76.3 76.1 

Colon 
Cancer 

COLO 205 100.5 96.4 98.2 88.6 91.4 91.5 98.3 
HCC-2998 101.3 84.8 102.7 92.7 89.7 103.7 99.8 
HCT-116 97.0 86.9 91.7 89.3 87.2 93.5 88.2 
HCT-15 101.8 90.7 83.4 76.0 66.1 89.4 62.2 
HT29 101.2 85.5 89.1 68.3 77.6 79.5 73.2 
KM12 101.2 81.7 87.2 100.0 89.2 94.1 79.0 
SW-620 106.1 98.8 95.5 99.7 91.9 105.1 81.4 

CNS SF-268 102.7 101.7 98.7 85.2 81.3 94.8 91.9 
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Table 8.3 (continued) 
Cancer SF-295 NA 102.1 105.8 96.6 90.0 89.3 95.4 

SF-539 99.9 98.0 89.9 94.2 96.6 93.7 86.3 
SNB-19 111.4 105.0 103.2 77.1 74.9 79.6 84.1 
SNB-75 99.4 80.2 84.9 91.8 72.0 81.9 92.3 
U251 97.0 91.9 87.9 88.7 81.4 96.2 87.0 

Melanoma 

LOX IMVI 99.9 93.8 89.1 101.4 97.6 97.9 91.0 
MALME-
3M 93.1 83.0 91.0 83.6 120.3 97.7 75.4 
M14 99.4 88.4 86.6 86.7 92.7 91.0 80.1 
MDA-MB-
435 109.9 100.6 102.1 86.3 92.1 85.9 28.9 
SK-MEL-2 101.0 95.6 99.7 94.1 79.4 90.2 89.2 
SK-MEL-28 107.2 103.1 111.1 95.3 92.5 99.7 93.8 
SK-MEL-5 101.7 93.8 93.9 87.8 87.1 93.0 90.5 
UACC-257 118.0 103.5 116.5 95.4 95.9 102.8 93.4 
UACC-62 101.2 82.4 91.9 80.3 70.5 74.7 75.3 

Ovarian 
Cancer 

IGROV1 97.0 88.8 77.6 96.5 87.1 101.5 86.1 
OVCAR-3 NA NA NA NA NA NA NA 
OVCAR-4 102.5 82.4 78.2 97.1 89.4 83.6 84.9 
OVCAR-5 103.4 96.0 109.1 91.0 91.4 91.4 94.2 
OVCAR-8 105.4 99.8 103.7 95.6 93.5 96.0 96.5 
NCI/ADR-
RES 113.6 106.6 104.7 90.7 73.5 94.5 89.0 
SK-OV-3 102.2 88.4 99.9 101.0 106.8 104.3 90.9 

Renal 
Cancer 

786-0 97.1 100.2 97.0 89.8 82.4 94.1 91.8 
A498 111.5 97.8 86.2 69.3 81.0 67.8 66.8 
ACHN 108.9 96.5 94.2 89.4 79.1 93.9 98.8 
CAKI-1 NA 98.0 85.1 88.9 71.6 100.6 86.3 
RXF 393 114.0 110.2 NA 98.3 88.5 107.2 87.4 
SN12C 105.5 98.1 101.9 80.9 75.8 87.1 91.8 
TK-10 114.1 103.9 131.1 74.8 61.2 65.0 82.6 
UO-31 92.2 81.6 69.5 65.2 59.1 63.5 74.8 

Prostate 
Cancer 

PC-3 100.8 94.2 92.4 64.4 61.5 77.3 80.8 
DU-145 104.1 105.9 99.2 92.7 87.9 94.0 99.2 

Breast 
Cancer 

MCF7 83.6 15.8 66.7 88.2 84.5 89.6 65.3 
MDA-MB-
231 102.0 95.9 77.5 102.8 90.7 93.9 84.6 
HS 578T 111.6 101.8 102.0 112.7 100.5 112.1 118.1 
BT-549 97.1 86.6 89.1 83.3 73.3 82.7 92.9 
T-47D 87.9 58.6 56.3 69.0 62.5 86.2 82.0 
MDA-MB-
468 108.4 7.7 78.6 94.5 85.2 101.7 90.3 
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Table 8.4. Percentage growth inhibition of NCI 60 human cancer cells by compound ST-
321 a 10µM concentration. 
 
Table 8.4 (continued) 
                       Cancer             Cell type ST-321 

Leukemia 

CCRF-CEM 95.2 
HL-60(TB) NA 
K-562 NA 
MOLT-4 83.2 
RPMI-8226 88.8 
SR 107.9 

Non-Small Cell Lung 
Cancer 

A549/ATCC 95.0 
HOP-62 93.2 
HOP-92 84.5 
NCI-H226 87.0 
NCI-H23 95.3 
NCI-H322M 94.1 
NCI-H460 102.8 
NCI-H522 75.2 

Colon Cancer 

COLO 205 91.8 
HCC-2998 NA 
HCT-116 92.3 
HCT-15 91.5 
HT29 85.6 
KM12 96.2 
SW-620 97.5 

CNS Cancer 

SF-268 101.3 
SF-295 102.7 
SF-539 92.6 
SNB-19 92.8 
SNB-75 84.4 
U251 92.0 

Melanoma 

LOX IMVI 93.2 
MALME-3M 83.1 
M14 90.0 
MDA-MB-435 97.9 
SK-MEL-2 93.8 
SK-MEL-28 97.8 
SK-MEL-5 91.2 
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Table 8.4 (continued) 
UACC-257 91.8 
UACC-62 72.7 

Ovarian Cancer 

IGROV1 96.7 
OVCAR-3 NA 
OVCAR-4 96.5 
OVCAR-5 95.5 
OVCAR-8 93.9 
NCI/ADR-RES 106.0 
SK-OV-3 92.3 

Renal Cancer 

786-0 102.0 
A498 102.8 
ACHN 92.2 
CAKI-1 87.8 
RXF 393 94.2 
SN12C 94.0 
TK-10 114.2 
UO-31 82.2 

Prostate Cancer 
PC-3 86.6 
DU-145 104.0 

Breast Cancer 

MCF7 70.1 
MDA-MB-231 88.4 
HS 578T 106.1 
BT-549 105.6 
T-47D 83.0 
MDA-MB-468 101.2 

 
 

NCI single dose percentage growth results for the resveratrol analogues with 
substitutions at the C2 position on the stilbene. 
 
Table 8.5. Percentage growth inhibition of NCI 60 human cancer cells by compounds 
RES-14, RES-17, RES-18, RES-27, RES-16 and RES-54 at 10µM concentration. 
 
Table 8.5 (continued) 
Cancer Cell line RES-14 RES-17 RES-18 RES-27 RES-16 RES-54 

Leukemia 

CCRF-CEM 82.6 -36.0 74.0 91.8 81.2 NA 
HL-60(TB) 100.5 -12.4 79.8 93.0 104.4 94.2 
MOLT-4 84.6 -66.5 77.5 82.5 87.8 95.8 
RPMI-8226 83.3 40.1 75.4 87.4 77.5 NA 
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Table 8.5 (continued) 
SR 88.6 27.9 70.8 71.7 74.3 NA 

Non-Small 
Cell Lung 
Cancer 

A549/ATCC 99.0 63.9 94.2 104.7 104.0 100.2 
EKVX 101.8 59.0 79.9 75.5 92.1 105.1 
HOP-62 97.5 85.9 103.1 113.4 121.5 104.4 
NCI-H226 109.6 76.5 93.5 98.5 103.0 104.6 
NCI-H23 93.9 55.1 87.4 93.9 91.0 103.9 
NCI-H322M NA 41.5 108.7 116.1 109.4 108.4 
NCI-H460 105.3 76.1 88.6 99.3 110.8 112.5 
NCI-H522 86.5 25.3 64.3 74.0 78.2 98.5 

Colon 
Cancer 

HCC-2998 100.9 -100.0 98.1 108.0 111.6 103.6 
HCT-116 102.6 12.7 75.6 91.8 107.8 103.0 
HCT-15 96.4 8.4 93.5 97.9 91.7 100.6 
HT29 104.4 27.9 86.5 106.1 107.2 107.3 
KM12 109.3 25.7 94.5 104.3 106.7 101.5 
SW-620 97.1 -23.5 86.8 93.7 108.0 107.7 

CNS 
Cancer 

SF-268 99.0 -29.5 89.5 96.5 103.9 109.2 
SF-295 100.0 53.7 84.8 88.4 87.1 103.4 
SF-539 101.4 95.2 96.5 101.2 102.9 113.3 
SNB-19 89.8 71.6 81.7 103.2 96.0 107.9 
SNB-75 79.0 83.5 72.7 78.6 96.5 91.3 
U251 100.4 86.0 79.4 99.2 104.1 111.1 

Melanoma 

MALME-3M NA 126.2 134.1 120.3 123.7 100.6 
M14 108.5 82.6 99.6 107.1 106.1 123.7 
MDA-MB-435 93.9 84.9 67.6 75.3 99.3 107.9 
SK-MEL-2 121.2 74.1 102.4 105.9 100.3 99.7 
SK-MEL-28 103.0 91.3 96.6 103.0 107.6 112.5 
SK-MEL-5 114.5 85.2 86.2 103.0 94.0 109.2 
UACC-257 104.1 86.9 113.3 114.8 141.5 106.3 
UACC-62 88.3 48.1 86.0 88.4 87.2 104.8 

Ovarian 
Cancer 

IGROV1 NA 84.4 105.7 110.6 123.3 102.7 
OVCAR-3 106.2 93.6 95.1 110.2 113.2 115.1 
OVCAR-4 136.7 93.8 90.4 86.1 110.5 105.0 
OVCAR-5 107.2 91.9 99.2 95.0 115.2 103.3 
OVCAR-8 102.7 74.2 95.8 99.9 122.9 111.8 
NCI/ADR-RES 99.6 67.0 96.2 98.9 98.9 105.5 
SK-OV-3 108.0 19.2 106.4 125.6 118.9 109.0 

Renal 
Cancer 

786-0 99.8 89.6 94.6 103.0 93.1 100.7 
A498 90.8 94.0 68.7 87.8 90.1 103.0 
ACHN 108.3 52.1 97.4 100.1 107.6 106.5 
CAKI-1 NA 81.2 115.2 120.5 125.3 106.3 
RXF 393 109.3 90.0 104.2 99.4 106.1 99.9 
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Table 8.5 (continued) 
SN12C 93.3 15.3 86.8 104.4 99.4 102.4 
TK-10 128.9 70.6 93.1 131.7 92.3 112.2 
UO-31 NA 76.8 79.9 97.4 93.5 95.8 

Prostate 
Cancer 

PC-3 97.3 45.4 76.0 93.8 119.7 100.2 
DU-145 115.7 53.7 113.1 116.1 115.6 109.0 

Breast 
Cancer 

MCF7 74.8 15.4 72.3 78.2 91.8 100.7 
MDA-MB-
231/ATCC 97.6 67.5 86.0 100.8 88.6 112.9 
HS 578T 106.4 78.4 89.8 93.1 106.9 108.3 
BT-549 89.4 96.0 89.4 86.4 96.1 112.3 
T-47D 83.7 35.0 85.8 91.8 95.6 102.8 
MDA-MB-468 107.2 55.6 91.0 111.9 115.2 110.8 

 
 

Table 8.6. Percentage growth inhibition of NCI 60 human cancer cells by compounds 
RES-57, RES-11, RES-75, RES-59, RES-80 and RES-62 at 10µM concentration. 
 
Table 8.6 (continued) 
Cancer Cell line RES-57 RES-11 RES-75 RES-59 RES-80 RES-62 

Leukemia 

CCRF-CEM NA NA NA NA NA NA 
HL-60(TB) 85.8 NA NA NA 95.2 NA 
MOLT-4 101.9 NA NA NA 100.4 NA 
RPMI-8226 NA NA NA NA NA NA 
SR NA NA NA NA NA NA 

Non-Small 
Cell Lung 
Cancer 

A549/ATCC 110.4 33.9 87.5 51.9 100.6 89.4 
EKVX 111.5 64.5 95.0 82.9 103.5 76.3 
HOP-62 118.3 31.5 95.7 51.9 104.1 88.5 
NCI-H226 108.8 50.1 104.6 83.4 107.9 91.7 
NCI-H23 106.6 41.2 91.0 52.3 104.9 83.7 
NCI-H322M 102.4 69.5 98.0 88.4 105.7 97.0 
NCI-H460 108.8 17.5 97.1 21.4 110.0 101.6 
NCI-H522 96.6 -18.5 78.0 -11.8 107.6 67.0 

Colon 
Cancer 

HCC-2998 105.4 53.1 98.8 65.4 105.3 89.3 
HCT-116 103.4 31.1 93.0 19.7 106.2 81.1 
HCT-15 106.5 38.4 86.9 45.6 100.4 86.1 
HT29 108.9 6.0 101.2 9.9 112.9 89.7 
KM12 105.7 26.0 86.6 19.7 105.4 65.7 
SW-620 103.7 28.8 91.4 26.0 105.8 84.7 

CNS 
Cancer 

SF-268 109.7 53.7 82.6 44.6 112.6 89.6 
SF-295 102.9 6.6 89.9 23.6 98.8 68.0 
SF-539 113.1 4.5 88.6 36.4 110.7 85.8 
SNB-19 103.9 48.2 89.0 54.4 108.5 87.2 

209 
 



Table 8.6 (continued) 
SNB-75 103.7 -13.5 77.5 6.4 101.3 73.7 
U251 105.1 21.2 86.0 29.2 104.0 88.0 

Melanoma 

MALME-3M 98.1 39.0 89.1 39.7 99.6 81.5 
M14 99.0 NA NA NA NA NA 
MDA-MB-435 115.5 26.1 84.6 27.1 110.2 69.3 
SK-MEL-2 99.5 -27.7 79.3 -6.3 99.0 13.1 
SK-MEL-28 107.7 39.2 102.6 25.7 112.2 108.7 
SK-MEL-5 110.4 67.1 102.1 58.0 117.6 83.5 
UACC-257 109.3 14.2 74.3 25.6 106.5 60.5 
UACC-62 95.2 51.1 75.8 71.8 105.8 83.9 

Ovarian 
Cancer 

IGROV1 99.1 39.2 62.8 40.1 99.9 61.3 
OVCAR-3 109.3 55.4 107.3 62.7 111.1 73.0 
OVCAR-4 113.6 -23.0 90.4 -12.4 116.2 93.5 
OVCAR-5 111.1 54.2 90.8 76.7 114.8 97.6 
OVCAR-8 111.4 60.6 102.9 84.6 114.7 96.8 
NCI/ADR-RES 101.3 34.0 86.2 60.6 106.4 94.4 
SK-OV-3 112.4 24.2 86.3 7.6 107.9 76.2 

Renal 
Cancer 

786-0 104.1 17.2 92.9 51.8 100.4 88.7 
A498 104.0 44.0 82.7 42.0 107.5 101.6 
ACHN 103.3 19.1 66.9 43.7 98.1 61.8 
CAKI-1 101.6 58.4 73.1 60.4 105.4 90.2 
RXF 393 97.6 33.5 92.2 57.7 94.1 61.7 
SN12C 101.4 47.6 83.1 62.2 108.2 85.8 
TK-10 112.1 50.6 103.5 71.9 115.0 110.8 
UO-31 90.3 50.7 72.8 62.3 97.8 74.8 

Prostate 
Cancer 

PC-3 102.9 29.5 93.7 54.1 99.2 78.1 
DU-145 110.9 24.8 86.2 66.7 114.0 102.0 

Breast 
Cancer 

MCF7 100.6 34.9 130.0 34.6 97.7 67.1 
MDA-MB-
231/ATCC 104.4 33.4 77.1 43.4 106.8 65.2 
HS 578T 112.6 45.6 86.9 51.9 106.2 74.4 
BT-549 104.2 33.5 77.4 52.2 104.6 95.2 
T-47D 103.8 36.2 82.5 58.4 103.2 73.9 
MDA-MB-468 108.3 -3.6 80.1 6.2 100.2 71.4 

 
 
Table 8.7. Percentage growth inhibition of NCI 60 human cancer cells by compounds 
ST-132(a), ST-127, ST-128 and ST-138 at 10µM concentration. 
 
Table 8.7 (continued) 
Cancer cell type ST-132(a) ST-127 ST-128 ST-138 

Leukemia CCRF-CEM 40.1 NA NA NA 
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Table 8.7 (continued) 
HL-60(TB) 86.0 24.2 100.6 90.1 
K-562 86.9 15.8 86.8 95.0 
MOLT-4 62.7 44.7 86.0 92.2 
RPMI-8226 89.8 54.2 72.6 74.5 
SR 74.7 15.7 84.1 86.1 

Non-Small 
Cell Lung 
Cancer 

A549/ATCC 98.1 NA NA NA 
HOP-62 93.6 59.7 97.7 101.8 
HOP-92 61.1 48.7 76.9 73.3 
NCI-H226 87.1 87.2 78.8 97.8 
NCI-H23 84.9 82.1 79.9 92.2 
NCI-H322M 110.7 92.2 97.6 99.7 
NCI-H460 96.1 75.1 101.4 101.6 
NCI-H522 68.3 NA NA NA 

Colon Cancer 

COLO 205 118.2 72.9 89.0 101.8 
HCC-2998 95.1 76.2 107.3 107.4 
HCT-116 90.0 36.3 76.1 92.8 
HCT-15 90.3 31.7 87.3 86.7 
HT29 94.3 15.0 87.0 102.6 
KM12 88.1 34.0 86.2 88.2 
SW-620 96.5 42.3 100.3 109.8 

CNS Cancer 

SF-268 101.9 66.6 94.4 90.5 
SF-295 94.1 57.1 103.8 94.0 
SF-539 88.1 55.3 98.2 92.6 
SNB-19 89.3 80.1 99.6 91.5 
SNB-75 92.2 49.9 78.7 70.0 
U251 94.1 47.5 96.1 91.0 

Melanoma 

LOX IMVI 98.1 52.7 86.8 87.0 
MALME-3M 85.2 45.6 90.9 80.1 
M14 84.4 42.4 81.5 81.8 
MDA-MB-
435 59.2 -18.1 100.6 89.4 
SK-MEL-2 86.0 30.1 83.6 73.5 
SK-MEL-28 92.6 60.4 101.2 97.4 
SK-MEL-5 97.6 50.3 95.3 90.8 
UACC-257 96.4 NA NA NA 
UACC-62 61.7 66.7 84.5 84.5 

Ovarian 
Cancer 

IGROV1 95.4 51.7 79.6 104.3 
OVCAR-3 108.6 50.7 95.6 98.9 
OVCAR-4 95.4 88.1 95.0 88.4 
OVCAR-5 84.5 82.0 98.4 111.0 
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Table 8.7 (continued) 
OVCAR-8 102.0 74.5 97.8 85.9 
NCI/ADR-
RES 89.0 24.3 83.5 86.2 
SK-OV-3 92.0 65.0 85.7 97.4 

Renal Cancer 

786-0 98.5 68.4 93.5 92.4 
A498 76.3 51.5 112.5 83.1 
ACHN 89.8 59.8 92.3 68.8 
CAKI-1 91.8 52.3 71.2 91.3 
RXF 393 95.7 58.8 101.8 81.6 
SN12C 90.7 80.4 97.2 96.2 
TK-10 116.7 68.6 135.2 104.4 
UO-31 84.6 68.5 76.0 77.3 

Prostate 
Cancer 

PC-3 86.6 57.8 84.5 90.2 
DU-145 102.4 80.6 104.5 95.9 

Breast 
Cancer 

MCF7 94.8 25.0 72.8 103.2 
MDA-MB-
231 82.0 64.0 100.6 93.6 
HS 578T 88.8 74.7 98.8 105.3 
BT-549 100.1 37.7 83.4 73.6 
T-47D 86.5 43.7 56.4 83.7 
MDA-MB-
468 NA 61.3 107.0 85.4 

 
 
Table 8.8. Percentage growth inhibition of NCI 60 human cancer cells by compounds 
ST-139, ST-98, ST-100 and ST-89 at 10µM concentration. 
 
Table 8.8 (continued) 
Cancer cell type ST-139 ST-98 ST-100 ST-89 

Leukemia 

CCRF-CEM NA 85.5 3.0 68.9 
HL-60(TB) 99.9 99.8 5.7 58.1 
K-562 87.5 77.0 13.4 45.5 
MOLT-4 73.2 64.5 1.9 54.5 
RPMI-8226 72.5 81.9 7.7 53.9 
SR 79.7 62.5 2.7 59.2 

Non-Small 
Cell Lung 
Cancer 

A549/ATCC NA 103.9 20.1 78.9 
HOP-62 103.1 117.3 26.9 85.1 
HOP-92 73.0 73.4 58.3 64.7 
NCI-H226 92.3 83.4 65.7 80.3 
NCI-H23 84.3 91.2 31.1 79.5 
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Table 8.8 (continued) 
NCI-H322M 98.4 92.4 42.1 93.5 
NCI-H460 94.2 98.5 11.5 86.4 
NCI-H522 NA 75.5 -28.8 55.9 

Colon 
Cancer 

COLO 205 87.0 121.8 -24.6 101.3 
HCC-2998 96.3 99.0 40.6 72.0 
HCT-116 79.1 90.5 14.3 61.3 
HCT-15 82.1 91.4 24.6 74.1 
HT29 78.3 94.8 5.1 63.3 
KM12 88.9 93.9 25.3 82.4 
SW-620 95.7 96.9 26.9 87.6 

CNS 
Cancer 

SF-268 92.2 90.2 41.9 94.7 
SF-295 101.6 88.9 36.8 83.1 
SF-539 96.8 NA NA NA 
SNB-19 101.8 99.1 49.5 79.6 
SNB-75 74.0 87.6 -1.9 77.5 
U251 84.3 94.3 17.1 67.7 

Melanoma 

LOX IMVI 88.9 67.2 42.6 59.5 
MALME-3M 88.2 101.4 24.9 63.7 
M14 90.6 103.6 16.8 84.9 
MDA-MB-435 93.2 94.1 -19.6 81.0 
SK-MEL-2 83.6 98.9 25.3 86.0 
SK-MEL-28 91.1 107.6 42.4 95.3 
SK-MEL-5 102.6 92.5 6.9 75.7 
UACC-257 NA 105.6 41.7 85.1 
UACC-62 88.3 75.0 31.8 81.3 

Ovarian 
Cancer 

IGROV1 84.5 100.3 53.4 66.7 
OVCAR-3 99.1 97.9 -21.6 76.3 
OVCAR-4 93.7 102.4 58.0 95.5 
OVCAR-5 95.3 104.5 61.8 90.4 
OVCAR-8 92.4 103.8 21.6 75.8 
NCI/ADR-RES 89.1 90.1 11.7 66.9 
SK-OV-3 93.1 101.8 6.3 88.8 

Renal 
Cancer 

786-0 96.6 90.2 48.3 86.4 
A498 92.3 88.6 5.6 66.9 
ACHN 90.0 87.2 54.6 74.1 
CAKI-1 91.2 80.6 43.9 79.7 
RXF 393 107.6 84.2 -29.6 85.6 
SN12C 99.1 95.7 47.3 81.0 
TK-10 112.6 86.4 57.2 94.5 
UO-31 80.3 71.2 35.7 49.3 
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Table 8.8 (continued) 
Prostate 
Cancer 

PC-3 84.5 81.0 35.7 66.3 
DU-145 97.2 99.0 14.7 100.2 

Breast 
Cancer 

MCF7 74.0 84.6 14.7 69.6 
MDA-MB-231 95.0 89.7 36.5 73.4 
HS 578T 99.4 92.8 19.4 86.7 
BT-549 85.6 96.2 57.2 67.1 
T-47D 65.1 79.7 37.4 64.1 
MDA-MB-468 106.8 80.7 16.0 64.3 

 
 

 
NCI single dose percentage growth results for (E/Z)-2,3-diaryl substituted 
acrylonitriles  

Table 8.9. Percentage growth inhibition of NCI 60 human cancer cells by compounds 
ST-101, ST-113, ST-148, ST-147, ST-145, ST-145(a) and ST-161 at 10µM 
concentration. 
 
Table 8.9 (continued) 

Cancer cell type ST-101 ST-113 ST-148 ST-147 ST-145 
ST-

145(a) 
ST-

161 

Leukemia 

CCRF-CEM 107.4 3.3 7.9 25.2 6.4 10.8 73.2 
HL-60(TB) 104.5 -33.3 -44.8 -4.3 -25.1 105.5 57.9 
K-562 89.4 9.9 3.9 8.1 11.9 99.3 24.9 
MOLT-4 105.1 -1.0 -12.4 64.5 2.0 94.9 67.7 
RPMI-8226 107.7 -7.6 6.2 60.4 5.2 8.5 75.2 
SR 93.7 1.4 7.5 11.1 1.3 NA 26.2 

Non-Small 
Cell Lung 
Cancer 

A549/ATCC 93.7 10.1 28.0 37.9 15.3 25.9 59.5 
HOP-62 113.2 21.8 27.0 42.1 30.2 19.5 76.7 
HOP-92 103.0 -1.1 17.0 57.0 NA 17.2 94.2 
NCI-H226 99.7 21.5 33.8 73.8 48.4 33.0 94.9 
NCI-H23 113.5 12.1 22.6 84.1 24.9 21.8 83.2 
NCI-
H322M 98.8 10.6 37.6 80.0 21.6 48.4 106.1 
NCI-H460 101.9 4.0 4.9 79.5 6.4 2.7 83.6 
NCI-H522 87.6 -45.4 -21.9 17.3 -22.1 -6.3 76.4 

Colon 
Cancer 

COLO 205 112.1 -57.3 -67.3 27.3 52.7 33.1 59.8 
HCC-2998 102.5 14.2 6.2 66.9 5.1 20.3 72.3 
HCT-116 104.3 4.6 3.6 24.1 5.5 5.3 57.5 
HCT-15 98.0 14.1 7.0 33.0 15.9 15.1 43.9 
HT29 107.9 -12.6 0.7 11.9 24.2 38.8 39.6 
KM12 105.6 8.1 4.2 NA 2.1 -1.7 42.2 
SW-620 105.9 22.7 26.2 33.4 27.8 26.1 42.9 
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Table 8.9 (continued) 

CNS 
Cancer 

SF-268 103.3 32.8 19.7 63.9 31.9 15.2 81.2 
SF-295 95.3 -12.5 14.2 NA -0.2 4.5 76.5 
SF-539 110.9 -5.6 -32.7 28.9 -17.7 -2.0 79.4 
SNB-19 101.3 47.9 56.3 75.8 116.9 70.7 95.9 
SNB-75 102.3 13.0 45.5 41.2 27.2 54.9 94.3 
U251 105.5 5.4 11.5 56.4 -26.9 10.5 77.2 

Melanoma 

LOX IMVI 97.5 7.4 22.6 34.4 31.3 24.9 65.1 
MALME-
3M 96.1 23.3 85.6 66.5 67.0 123.7 69.0 
M14 110.0 21.3 19.9 29.1 18.1 18.6 50.8 
MDA-MB-
435 105.8 -44.1 -13.0 -35.9 -43.3 -8.4 -5.7 
SK-MEL-2 110.4 -2.3 20.8 31.4 NA 26.2 63.5 
SK-MEL-28 113.9 52.2 74.3 66.4 56.9 74.4 88.5 
SK-MEL-5 101.3 -5.9 -49.8 28.1 0.6 -54.1 75.9 
UACC-257 105.4 58.8 80.9 70.7 62.1 72.8 80.2 
UACC-62 99.0 27.7 36.6 47.8 44.9 44.2 69.4 

Ovarian 
Cancer 

IGROV1 111.0 -45.2 34.5 59.9 12.5 37.5 66.1 
OVCAR-3 111.1 -12.9 -21.7 29.3 0.8 -8.5 71.7 
OVCAR-4 119.4 40.4 61.2 84.2 47.5 68.4 89.7 
OVCAR-5 104.4 37.8 34.3 91.2 51.9 55.9 97.9 
OVCAR-8 103.8 -3.4 24.7 68.2 8.6 21.2 83.8 
NCI/ADR-
RES 107.3 9.8 12.8 29.5 11.1 11.9 41.0 
SK-OV-3 104.6 11.8 22.6 46.9 19.4 16.3 85.5 

Renal 
Cancer 

786-0 100.0 14.9 24.6 46.0 24.2 21.9 90.0 
A498 88.3 -17.0 -7.1 57.5 -6.5 -3.5 73.7 
ACHN 129.3 28.4 21.5 53.9 23.7 24.9 96.2 
CAKI-1 92.4 7.1 28.6 NA 17.0 33.0 66.8 
RXF 393 92.8 13.3 41.2 69.3 62.7 43.7 94.7 
SN12C 96.7 21.4 22.0 56.9 27.2 31.6 90.7 
TK-10 NA NA 53.8 65.0 47.4 73.4 91.0 
UO-31 100.3 19.0 32.1 41.1 21.1 32.8 86.7 

Prostate 
Cancer 

PC-3 108.8 5.6 25.5 58.0 16.3 33.5 70.2 
DU-145 103.6 -14.0 -9.3 94.7 -8.4 3.4 92.5 

Breast 
Cancer 

MCF7 95.4 10.8 14.7 25.5 8.8 10.7 23.9 
MDA-MB-
231 111.4 2.0 7.3 80.3 6.5 27.0 66.8 
HS 578T 94.0 26.7 32.2 69.3 41.0 34.4 89.7 
BT-549 96.2 52.4 24.9 45.2 21.3 39.8 49.6 
T-47D 99.5 7.5 73.7 32.1 58.2 53.8 67.7 
MDA-MB-
468 NA NA 8.9 37.2 29.6 6.1 54.9 
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Table 8.10. Percentage growth inhibition of NCI 60 human cancer cells by compounds 
ST-162, ST-163, ST-164, ST-165, ST-168, ST-169 and ST-170 at 10µM concentration. 
 
Table 8.10 (continued) 
Cancer cell type ST-162 ST-163 ST-164 ST-165 ST-168 ST-169 ST-170 

Leukemia 

CCRF-CEM 96.5 21.6 83.4 89.4 75.4 86.7 91.9 
HL-60(TB) 88.6 0.1 64.5 72.0 62.9 75.0 83.1 
K-562 80.4 15.8 98.7 94.8 96.2 77.5 94.8 
MOLT-4 87.2 19.5 67.2 85.2 66.6 61.2 72.2 
RPMI-8226 88.5 18.9 89.4 96.9 76.6 84.4 80.1 
SR 83.5 11.8 82.0 83.0 79.0 77.0 77.7 

Non-Small 
Cell Lung 
Cancer 

A549/ATCC 93.6 32.3 84.6 96.6 79.9 79.9 70.0 
HOP-62 92.2 43.8 92.3 97.6 103.6 90.6 88.0 
HOP-92 NA 40.4 NA 110.2 112.6 NA NA 
NCI-H226 100.9 71.8 99.8 114.5 114.9 111.0 98.9 
NCI-H23 94.5 43.2 96.6 97.1 91.5 93.7 88.0 
NCI-
H322M 103.8 35.7 89.5 96.8 91.4 102.2 74.1 
NCI-H460 107.1 15.5 101.8 105.7 99.4 101.5 84.7 
NCI-H522 85.8 -2.4 87.9 94.5 76.3 65.4 82.7 

Colon 
Cancer 

COLO 205 103.6 11.9 97.7 106.0 105.6 99.6 93.2 
HCC-2998 91.3 49.4 102.3 106.1 90.7 89.9 92.1 
HCT-116 99.4 17.4 96.3 104.6 82.1 89.7 70.1 
HCT-15 85.7 17.8 102.4 99.8 92.6 92.6 88.7 
HT29 88.8 6.0 92.4 106.1 91.1 93.7 101.6 
KM12 93.8 30.0 94.6 96.2 92.4 95.2 91.7 
SW-620 98.9 19.6 102.1 107.2 100.9 99.9 89.8 

CNS 
Cancer 

SF-268 94.4 38.5 95.5 99.5 93.5 101.5 80.9 
SF-295 96.1 11.2 99.2 105.0 96.4 95.6 77.0 
SF-539 92.4 -13.8 103.8 102.6 94.4 97.9 86.9 
SNB-19 93.8 46.0 100.7 105.1 108.8 106.3 105.3 
SNB-75 114.5 2.2 68.9 87.5 77.3 51.5 20.3 
U251 96.6 16.5 93.7 102.3 99.9 89.0 86.3 

Melanoma 

LOX IMVI 108.9 33.3 103.2 100.9 97.1 98.9 62.7 
MALME-
3M 98.9 24.3 95.7 103.0 84.0 56.1 NA 
M14 95.0 10.5 99.5 106.1 92.8 89.7 96.5 
MDA-MB-
435 74.7 -29.1 100.2 96.1 98.7 63.5 93.7 
SK-MEL-2 90.2 -17.7 94.4 102.1 88.7 90.6 89.7 
SK-MEL-28 97.6 40.7 105.9 115.8 98.9 104.2 105.1 
SK-MEL-5 92.2 16.4 97.3 102.6 95.4 93.5 98.4 
UACC-257 97.5 23.0 97.0 118.3 100.0 99.8 86.3 

216 
 



Table 8.10 (continued) 
UACC-62 87.6 37.5 86.4 113.5 85.4 86.4 108.3 

Ovarian 
Cancer 

IGROV1 95.3 46.3 87.1 96.9 85.1 85.6 67.2 
OVCAR-3 108.3 4.9 102.6 108.7 102.6 97.7 97.7 
OVCAR-4 89.2 67.3 82.9 109.6 81.3 79.9 26.1 
OVCAR-5 99.7 49.6 111.4 104.2 100.1 103.2 99.3 
OVCAR-8 96.3 26.7 92.3 103.8 107.7 92.6 70.9 
NCI/ADR-
RES 93.9 11.6 99.7 101.7 94.9 103.1 79.3 
SK-OV-3 102.7 28.8 101.3 104.8 94.4 97.9 70.6 

Renal 
Cancer 

786-0 96.5 50.3 94.5 103.2 98.2 95.6 72.4 
A498 81.8 -6.2 88.9 96.5 90.4 82.7 94.3 
ACHN 96.0 45.7 107.7 110.8 96.1 103.4 49.1 
CAKI-1 86.6 24.8 96.5 101.6 88.1 83.2 87.4 
RXF 393 100.0 23.3 106.2 111.0 95.5 96.1 94.4 
SN12C 95.4 37.2 95.3 103.2 94.7 95.9 93.5 
TK-10 98.1 32.2 95.6 96.5 96.1 81.0 90.2 
UO-31 67.1 28.0 78.6 88.0 76.5 80.1 73.7 

Prostate 
Cancer 

PC-3 88.7 21.2 97.3 100.4 89.2 94.3 91.5 
DU-145 107.2 28.3 94.4 104.2 94.2 99.3 94.1 

Breast 
Cancer 

MCF7 NA 20.7 85.5 87.2 82.3 93.7 79.9 
MDA-MB-
231 88.2 49.6 92.5 106.5 89.9 95.8 80.5 
HS 578T 100.2 27.2 115.1 114.1 112.0 101.0 81.3 
BT-549 82.1 30.3 86.4 91.8 91.4 100.4 94.1 
T-47D 70.7 35.8 75.6 88.7 82.0 83.8 74.7 
MDA-MB-
468 99.6 1.2 98.7 104.0 103.3 84.9 101.0 

 
Table 8.11. Percentage growth inhibition of NCI 60 human cancer cells by compounds 
ST-171, ST-173, ST-174, ST-175, ST-176, ST-177 and ST-178 at 10µM concentration. 
 
Table 8.11 (continued) 
Cancer cell type ST-171 ST-173 ST-174 ST-175 ST-176 ST-177 ST-178 

Leukemia 

CCRF-CEM 97.7 27.0 93.3 104.5 93.7 NA 52.3 
HL-60(TB) 108.4 7.1 87.3 83.5 83.8 NA NA 
K-562 105.7 15.9 76.2 105.2 112.9 39.2 21.7 
MOLT-4 83.1 22.7 79.2 79.7 NA NA NA 
RPMI-8226 94.7 58.1 84.6 103.5 89.3 NA 77.0 
SR 84.6 15.5 68.7 86.5 92.8 51.1 23.8 

Non-Small 
Cell Lung 
Cancer 

A549/ATCC 100.5 36.4 92.3 92.1 102.6 84.7 55.9 
HOP-62 91.9 54.0 88.0 94.5 102.9 87.2 75.9 
HOP-92 124.6 NA 99.9 NA NA NA NA 
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Table 8.11 (continued) 
NCI-H226 102.1 73.8 113.1 101.0 98.9 85.0 83.0 
NCI-H23 102.8 59.1 96.3 106.0 97.2 85.0 77.7 
NCI-
H322M 121.0 67.6 86.4 90.6 97.0 97.8 90.5 
NCI-H460 102.7 36.0 103.4 104.3 101.6 92.6 77.8 
NCI-H522 132.5 43.3 75.8 95.4 71.7 66.0 47.6 

Colon 
Cancer 

COLO 205 105.3 25.4 99.0 101.1 112.0 85.0 56.0 
HCC-2998 94.6 60.5 94.8 106.1 107.0 76.9 68.8 
HCT-116 97.1 19.3 99.5 102.2 94.0 71.4 32.7 
HCT-15 99.4 24.4 82.9 106.6 98.8 63.9 40.6 
HT29 108.6 10.0 89.7 102.2 106.1 70.3 23.5 
KM12 97.6 28.1 76.0 94.6 108.8 69.2 39.2 
SW-620 104.8 31.9 105.8 108.7 94.8 62.3 35.2 

CNS 
Cancer 

SF-268 101.1 53.1 94.4 101.5 108.9 98.2 71.0 
SF-295 98.5 27.1 97.5 100.9 109.6 91.1 68.2 
SF-539 97.8 19.0 93.8 105.4 99.8 91.8 67.9 
SNB-19 109.7 55.6 99.8 101.1 101.3 89.6 82.1 
SNB-75 111.8 12.8 76.2 67.7 102.3 73.5 61.6 
U251 107.8 29.2 91.1 93.7 95.8 95.5 47.3 

Melanoma 

LOX IMVI 104.6 41.0 102.9 111.6 103.1 77.3 65.2 
MALME-
3M 116.4 49.3 76.4 113.5 106.8 79.1 73.3 
M14 99.0 16.4 88.7 105.3 94.9 72.4 37.9 
MDA-MB-
435 98.2 -28.6 50.7 107.4 97.1 15.3 -28.5 
SK-MEL-2 119.3 2.7 98.9 106.2 98.9 80.1 59.8 
SK-MEL-28 115.1 50.2 98.3 113.0 113.1 91.0 64.6 
SK-MEL-5 104.7 31.7 98.9 102.4 92.2 85.0 66.2 
UACC-257 104.5 44.7 93.8 110.5 111.9 106.5 103.0 
UACC-62 105.7 39.7 81.9 106.5 85.7 56.6 44.7 

Ovarian 
Cancer 

IGROV1 121.0 45.1 97.9 96.4 113.4 77.1 68.8 
OVCAR-3 109.4 15.3 98.4 103.4 115.4 100.5 46.8 
OVCAR-4 106.6 73.7 88.7 91.0 100.0 98.6 68.9 
OVCAR-5 102.9 81.6 105.9 115.2 105.9 92.8 98.2 
OVCAR-8 96.7 63.1 104.0 90.8 56.2 100.1 99.0 
NCI/ADR-
RES 105.6 20.3 100.5 113.4 100.6 60.5 36.5 
SK-OV-3 102.3 33.2 97.3 102.2 103.2 89.2 61.9 

Renal 
Cancer 

786-0 94.6 52.1 91.4 96.7 94.0 84.8 77.1 
A498 111.3 26.5 100.9 103.3 90.7 72.5 35.7 
ACHN 109.3 59.1 101.5 112.1 108.7 92.3 79.3 
CAKI-1 94.2 40.0 86.9 97.3 102.6 79.3 61.2 
RXF 393 98.5 40.3 100.6 101.2 98.3 78.3 64.3 
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Table 8.11 (continued) 
SN12C 106.5 53.3 101.8 103.5 91.7 83.5 75.9 
TK-10 118.9 49.7 90.7 104.1 105.6 87.6 78.2 
UO-31 104.1 46.7 75.1 84.6 87.6 74.9 80.3 

Prostate 
Cancer 

PC-3 101.2 47.0 93.4 110.2 100.9 NA 80.1 
DU-145 109.0 63.9 99.3 98.5 114.6 103.9 77.7 

Breast 
Cancer 

MCF7 88.4 NA 109.5 87.1 112.1 71.6 26.1 
MDA-MB-
231 102.2 48.9 119.0 102.8 99.8 82.3 48.3 
HS 578T 121.7 43.8 135.0 118.8 128.9 81.9 65.5 
BT-549 94.5 35.3 86.4 96.5 88.5 64.1 51.8 
T-47D 102.0 43.5 76.3 90.7 93.4 65.1 67.9 
MDA-MB-
468 102.5 8.3 82.1 105.1 93.7 48.8 25.9 

 
Table 8.12. Percentage growth inhibition of NCI 60 human cancer cells by compounds 
ST-179, ST-180, ST-181, ST-183, ST-152, ST-153 and ST-112 at 10µM concentration. 
 
Table 8.12 (continued) 
Cancer cell type ST-179 ST-180 ST-181 ST-183 ST-152 ST-153 ST-112 

Leukemia 

CCRF-CEM 21.6 16.8 87.7 89.7 90.1 72.1 79.8 
HL-60(TB) 7.8 0.5 70.8 87.1 93.7 66.6 82.0 
K-562 19.1 18.8 64.2 70.3 89.9 37.9 41.3 
MOLT-4 26.8 17.4 71.5 78.5 73.0 70.4 70.2 
RPMI-8226 5.3 9.3 73.2 84.9 81.0 64.7 81.8 
SR 18.4 13.5 50.1 60.5 81.2 39.3 28.3 

Non-Small 
Cell Lung 
Cancer 

A549/ATCC 31.7 17.2 77.4 56.8 88.9 71.2 87.4 
HOP-62 44.4 58.5 88.1 69.7 97.4 86.6 105.2 
HOP-92 NA 60.8 64.9 90.2 54.1 93.0 83.5 
NCI-H226 38.5 28.7 93.3 70.8 72.5 86.6 91.8 
NCI-H23 49.9 31.1 93.7 58.8 77.3 96.1 89.2 
NCI-
H322M 34.3 40.9 98.3 66.6 94.3 94.7 99.6 
NCI-H460 13.2 9.7 95.2 24.7 96.8 64.3 98.3 
NCI-H522 1.4 -20.5 79.8 58.8 58.7 90.5 56.7 

Colon 
Cancer 

COLO 205 7.6 -33.9 97.6 103.5 103.9 76.2 114.2 
HCC-2998 45.7 6.4 93.2 95.1 101.8 80.0 79.1 
HCT-116 21.1 11.6 82.6 20.5 70.3 64.9 86.1 
HCT-15 21.4 20.4 78.0 79.7 74.9 59.0 76.2 
HT29 10.0 5.0 63.8 71.9 84.8 64.5 85.6 
KM12 21.0 6.0 63.9 86.8 89.0 63.6 63.0 
SW-620 10.6 21.0 86.1 89.9 73.1 84.9 83.5 

CNS SF-268 34.0 23.8 91.0 62.5 98.4 92.0 96.9 

219 
 



Table 8.12 (continued) 
Cancer SF-295 5.6 2.9 89.3 64.0 95.6 80.8 94.7 

SF-539 -42.9 -10.1 83.1 69.6 90.8 83.7 NA 
SNB-19 36.1 46.4 96.4 34.7 96.4 49.4 93.0 
SNB-75 -3.1 0.5 57.0 5.4 32.2 80.8 85.0 
U251 18.7 18.4 84.5 26.7 69.6 80.9 88.5 

Melanoma 

LOX IMVI 35.2 19.9 95.6 59.5 99.8 101.9 77.0 
MALME-
3M 37.9 55.1 90.6 68.3 90.6 79.9 85.1 
M14 16.2 20.6 91.1 90.3 88.4 10.4 88.7 
MDA-MB-
435 -26.3 -37.2 37.2 48.3 97.8 77.9 22.7 
SK-MEL-2 13.1 29.2 93.2 87.1 83.2 90.1 84.1 
SK-MEL-28 43.6 60.6 95.1 88.6 104.6 81.4 84.0 
SK-MEL-5 19.1 16.6 84.1 95.3 88.7 91.4 88.5 
UACC-257 41.0 72.8 89.4 NA NA NA 103.5 
UACC-62 25.1 24.0 79.9 86.8 64.2 69.2 76.0 

Ovarian 
Cancer 

IGROV1 36.3 34.3 90.6 55.1 70.5 84.6 84.0 
OVCAR-3 -21.2 -29.5 100.0 63.0 82.3 88.7 101.7 
OVCAR-4 49.7 60.2 81.6 45.0 65.6 76.4 106.1 
OVCAR-5 55.7 50.4 95.0 81.1 98.7 93.9 112.6 
OVCAR-8 29.0 14.0 90.1 60.8 92.8 94.7 86.2 
NCI/ADR-
RES 10.5 -1.9 86.0 64.3 89.0 75.3 72.1 
SK-OV-3 26.9 20.7 83.1 25.8 91.1 88.6 91.3 

Renal 
Cancer 

786-0 40.2 44.7 106.6 51.9 99.9 95.4 98.2 
A498 -8.4 -7.5 70.8 54.1 83.7 63.3 91.0 
ACHN 44.7 38.8 93.4 41.4 86.5 95.3 86.5 
CAKI-1 30.8 41.2 75.3 76.0 71.8 78.2 88.8 
RXF 393 -17.7 -2.6 86.5 80.0 84.1 91.4 92.7 
SN12C 38.6 25.3 92.6 73.0 89.6 84.3 93.7 
TK-10 43.8 42.7 80.4 45.0 122.7 85.7 103.8 
UO-31 42.1 34.9 82.3 72.8 70.1 72.8 79.6 

Prostate 
Cancer 

PC-3 36.1 25.8 77.9 77.5 79.2 81.0 82.9 
DU-145 14.9 5.1 97.4 81.3 100.0 95.0 102.9 

Breast 
Cancer 

MCF7 12.1 16.3 83.5 84.6 49.6 60.8 71.4 
MDA-MB-
231 39.4 24.3 75.6 50.2 69.5 68.7 87.5 
HS 578T -14.1 -5.4 100.7 34.8 105.2 92.4 97.1 
BT-549 26.6 56.4 81.0 86.1 80.0 74.7 84.0 
T-47D 38.2 70.4 81.0 69.4 45.4 70.0 82.5 
MDA-MB-
468 -14.5 14.1 60.8 77.8 64.6 48.6 81.6 
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Table 8.13. Percentage growth inhibition of NCI 60 human cancer cells by compounds 
TMR-03, TMR-01, ST-252, ST-253, ST-257, ST-260 and ST-261 at 10µM 
concentration.  
 
Table 8.13 (continued) 

Cancer cell type 
TMR-

03 
TMR-

01 ST-252 ST-253 ST-257 ST-260 ST-261 

Leukemia 

CCRF-CEM NA NA 58.7 0.4 6.4 3.7 1.3 
HL-60(TB) 97.4 33.1 38.0 -46.3 -15.7 -41.3 -47.7 
K-562 93.9 14.3 18.7 7.5 11.6 5.3 3.4 
MOLT-4 98.9 65.1 32.2 -14.3 19.6 -15.8 -12.8 
RPMI-8226 86.2 63.4 80.8 39.2 57.1 67.1 50.3 
SR 80.0 10.9 -1.3 -11.0 1.8 -9.0 -16.5 

Non-Small 
Cell Lung 
Cancer 

A549/ATCC 86.5 38.0 41.5 21.1 40.0 18.1 19.1 
HOP-62 56.3 82.7 68.3 40.8 36.9 38.5 30.6 
HOP-92 NA NA 89.0 -1.7 39.3 6.5 NA 
NCI-H226 88.2 78.2 81.2 43.9 71.1 47.4 42.9 
NCI-H23 74.9 64.1 78.3 20.7 46.8 22.3 21.1 
NCI-
H322M 94.6 95.7 77.5 24.2 34.5 19.5 27.1 
NCI-H460 81.8 49.6 33.4 5.2 12.4 4.5 3.3 
NCI-H522 62.8 55.5 39.3 -27.0 -30.1 -42.2 -44.8 

Colon 
Cancer 

COLO 205 112.8 67.9 50.5 -74.4 -1.3 -51.6 -70.0 
HCC-2998 107.1 69.8 55.7 14.9 60.1 14.9 14.6 
HCT-116 83.2 74.1 38.8 -12.3 22.3 -12.6 -31.0 
HCT-15 95.1 47.4 43.4 16.5 31.6 14.3 10.5 
HT29 103.2 48.2 21.8 0.4 6.6 -17.8 -17.8 
KM12 99.5 54.6 27.8 2.0 30.6 0.7 -10.7 
SW-620 95.4 60.2 28.8 25.2 15.5 22.8 21.6 

CNS 
Cancer 

SF-268 74.6 82.5 71.9 24.6 53.2 26.8 20.5 
SF-295 91.5 66.3 66.7 -8.0 -14.0 -20.2 -21.2 
SF-539 NA NA 63.7 2.5 5.6 -2.4 -19.9 
SNB-19 101.3 80.9 83.3 51.2 53.2 55.4 50.2 
SNB-75 72.3 85.0 61.1 17.1 2.2 5.8 15.2 
U251 88.7 71.0 36.3 8.1 19.9 5.6 4.7 

Melanoma 

LOX IMVI NA NA 56.7 24.7 44.9 21.3 25.3 
MALME-
3M 91.2 66.1 64.6 64.3 51.8 45.2 64.2 
M14 94.7 12.6 38.5 5.7 19.7 1.2 -15.0 
MDA-MB-
435 97.5 53.0 -29.8 -22.2 -17.6 -34.5 -26.3 
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Table 8.13 (continued) 
SK-MEL-2 88.4 66.3 36.0 24.1 19.4 10.5 2.2 
SK-MEL-28 86.7 43.8 75.3 63.0 61.7 64.1 62.0 
SK-MEL-5 81.4 79.8 45.0 -38.0 16.8 -1.5 -31.8 
UACC-257 91.3 50.8 76.7 76.0 66.7 72.8 76.7 
UACC-62 77.2 68.3 53.7 45.4 43.7 38.2 42.3 

Ovarian 
Cancer 

IGROV1 98.3 95.1 71.3 25.5 49.5 26.2 31.4 
OVCAR-3 103.1 64.8 NA NA NA NA NA 
OVCAR-4 63.2 86.4 94.6 44.9 69.3 40.9 33.2 
OVCAR-5 105.4 82.4 88.0 49.1 73.5 42.5 43.5 
OVCAR-8 69.1 48.1 77.1 10.4 30.1 6.2 2.4 
NCI/ADR-
RES 81.0 76.0 34.4 17.0 24.5 2.5 15.2 
SK-OV-3 69.8 82.5 81.0 17.6 20.0 15.9 3.5 

Renal 
Cancer 

786-0 95.0 -10.6 80.2 14.8 39.3 17.2 10.7 
A498 87.8 74.9 70.9 -11.0 -4.1 -1.3 -10.1 
ACHN 83.5 62.9 87.7 34.4 51.3 34.8 27.1 
CAKI-1 88.2 60.4 64.2 20.0 17.6 8.5 0.5 
RXF 393 96.3 82.2 77.3 41.8 14.9 19.2 27.1 
SN12C 87.5 83.5 72.1 34.5 56.7 34.1 27.1 
TK-10 124.6 66.7 65.2 48.5 45.7 41.7 50.2 
UO-31 83.8 63.6 73.2 23.9 41.8 26.9 31.4 

Prostate 
Cancer 

PC-3 80.9 91.8 70.9 26.5 21.3 16.5 16.3 
DU-145 100.0 63.4 84.7 6.7 20.7 6.5 0.3 

Breast 
Cancer 

MCF7 63.3 40.3 24.4 14.6 20.1 13.8 11.5 
MDA-MB-
231 74.2 73.0 68.4 13.7 63.0 16.9 13.7 
HS 578T 72.9 63.2 79.6 18.7 16.3 17.2 11.0 
BT-549 70.9 82.6 56.6 -17.2 19.2 -16.9 -37.9 
T-47D NA NA 40.4 84.4 31.0 79.3 83.1 
MDA-MB-
468 51.7 50.1 14.8 -15.1 -11.4 2.0 0.3 

 
Table 8.14. Percentage growth inhibition of NCI 60 human cancer cells by compounds 
ST-287, ST-288, ST-507, ST-507(A), ST-509, ST-510 and ST-124 at 10µM 
concentration. 
 
Table 8.14 (continued) 

Cancer cell type ST-287 ST-288 ST-507 
ST-

507(A) 
ST-

509 
ST-

510 
ST-

124 

Leukemia 
CCRF-CEM 83.4 88.3 14.5 18.1 17.6 7.9 NA 
HL-60(TB) 41.8 92.3 -3.9 2.5 5.4 5.4 NA 
K-562 NA NA 12.3 14.5 11.7 14.3 NA 
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Table 8.14 (continued) 
MOLT-4 84.3 83.5 15.1 19.9 15.9 8.0 NA 
RPMI-8226 87.1 79.9 37.1 38.3 25.1 12.8 NA 
SR 37.5 88.7 7.1 8.9 9.6 19.0 NA 

Non-Small 
Cell Lung 
Cancer 

A549/ATCC 44.7 86.9 19.4 25.2 22.4 35.8 88.7 
HOP-62 84.5 94.1 41.5 48.2 33.4 49.2 89.8 
HOP-92 55.8 64.1 77.9 47.9 35.4 15.3 111.5 
NCI-H226 94.2 83.4 77.3 72.0 67.7 33.3 100.3 
NCI-H23 89.1 88.7 27.8 28.0 20.1 4.1 101.6 
NCI-
H322M 91.7 93.9 49.9 49.0 40.2 -35.6 95.5 
NCI-H460 79.7 99.0 6.6 8.3 9.5 6.1 100.5 
NCI-H522 66.8 71.8 -24.2 -8.3 -30.6 14.1 92.1 

Colon 
Cancer 

COLO 205 79.3 103.2 97.9 92.3 57.2 6.0 NA 
HCC-2998 93.6 102.3 23.9 26.7 22.6 8.4 97.8 
HCT-116 92.4 97.5 6.3 2.5 2.8 8.9 103.2 
HCT-15 67.8 81.1 13.8 13.6 13.6 10.0 98.3 
HT29 72.4 87.7 81.6 87.9 58.0 22.5 101.8 
KM12 68.4 109.8 16.6 16.1 16.0 22.5 103.5 
SW-620 80.9 102.0 28.5 35.3 36.1 6.2 104.5 

CNS 
Cancer 

SF-268 95.4 94.3 41.7 42.6 36.1 -24.8 108.1 
SF-295 87.6 98.7 19.6 28.1 18.6 22.7 96.8 
SF-539 93.7 101.4 8.4 -1.2 -6.0 61.0 96.2 
SNB-19 90.3 90.0 55.7 62.8 56.8 4.9 108.2 
SNB-75 67.2 89.5 49.2 59.0 70.1 19.2 106.4 
U251 82.1 79.4 13.4 9.6 1.0 70.5 92.8 

Melanoma 

LOX IMVI 93.0 102.0 29.6 33.7 34.2 11.2 NA 
MALME-
3M 78.4 103.7 85.4 80.4 74.5 -13.4 113.7 
M14 91.8 104.6 19.3 13.3 11.4 25.0 NA 
MDA-MB-
435 19.5 96.2 1.9 7.8 5.2 53.7 99.0 
SK-MEL-2 86.9 97.8 28.7 48.5 27.9 -47.2 90.4 
SK-MEL-28 86.8 99.0 47.9 47.4 58.6 46.9 107.2 
SK-MEL-5 66.5 94.6 -20.8 -51.9 -64.1 10.5 116.1 
UACC-257 82.8 91.6 82.6 91.4 63.3 27.0 105.1 
UACC-62 68.7 81.4 47.8 54.6 44.9 1.5 106.7 

Ovarian 
Cancer 

IGROV1 87.5 99.6 41.4 37.6 33.6 38.4 81.4 
OVCAR-3 NA NA NA NA NA NA 104.6 
OVCAR-4 75.0 76.0 10.4 15.0 14.6 7.4 118.2 
OVCAR-5 83.6 97.1 66.4 67.0 55.9 0.7 111.9 
OVCAR-8 85.8 93.6 42.9 50.4 34.8 2.0 102.9 
NCI/ADR-
RES 76.6 99.7 19.7 19.3 12.9 19.2 98.7 
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Table 8.14 (continued) 
SK-OV-3 86.7 105.3 22.2 25.2 24.9 -15.2 89.7 

Renal 
Cancer 

786-0 92.7 97.1 33.5 40.8 23.0 22.7 107.7 
A498 14.4 74.0 30.0 21.4 15.5 22.9 108.0 
ACHN 76.0 88.5 36.2 36.4 8.1 22.2 89.1 
CAKI-1 73.6 92.8 27.7 26.7 29.6 24.6 97.2 
RXF 393 NA NA 41.6 39.5 33.7 55.0 78.5 
SN12C 86.1 91.7 45.5 41.2 42.9 34.1 96.3 
TK-10 78.6 89.0 86.4 87.9 78.2 29.0 116.6 
UO-31 72.5 84.3 47.0 45.4 35.2 10.4 83.2 

Prostate 
Cancer 

PC-3 87.9 86.5 26.4 29.2 35.5 10.5 97.3 
DU-145 101.3 NA 15.5 14.9 16.2 5.9 111.7 

Breast 
Cancer 

MCF7 77.9 103.1 19.4 24.2 22.1 40.1 89.7 
MDA-MB-
231 76.9 98.4 25.8 27.4 33.9 3.5 80.3 
HS 578T 88.7 101.2 44.0 59.7 49.3 61.6 94.6 
BT-549 84.0 93.6 NA NA NA NA 120.2 
T-47D 75.2 80.1 NA NA NA NA 92.7 
MDA-MB-
468 64.6 89.1 32.5 38.5 8.3 -5.9 65.1 
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Data Set 3 

CB1 and CB2 competitive binding screening at 1µM concentration. 

Figure 8.1: CB1 and CB2 competitive binding screen at 1µM concentration with ST-
179, ST-173, ST-165, ST-172, ST-171 and ST-167. 
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Figure 8.2: CB1 and CB2 competitive binding screen at 1µM concentration with ST-
177, ST-162, ST-164, ST-184, ST-178 and ST-161 
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Figure 8.3: CB1 and CB2 competitive binding screen at 1µM concentration with ST-
190, ST-175, ST-181, ST-185, ST-169 and ST-183. 
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Figure 8.4: CB1 and CB2 competitive binding screen at 1µM concentration with ST-
192, ST-193, ST-194, ST-195, ST-196 and ST-197. 
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Figure 8.5: CB1 and CB2 competitive binding screen at 1µM concentration with ST-
198, ST-179(repeat), ST-188, ST-166, ST-176 and ST-191 
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Figure 8.6: CB1 and CB2 competitive binding screen at 1µM concentration with ST-
153, ST-155, ST-147(a) and ST-156. 
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Data Set 4 

NMR spectral data of selected compounds. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.7 1H NMR spectral data of compound ST-145(a) 
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Figure 8.8 1D NOE spectral data of compound ST-145(a). Blue circled hydrogen is 
excited. 
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Figure 8.9 1D NOE spectral data of compound ST-145(a). Blue circled hydrogen is 
excited. 
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Figure 8.10 1H NMR spectral data of compound ST-145 
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Figure 8.11 13C NMR spectral data of compound ST-145 
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Figure 8.12 1H NMR spectral data of compound ST-510 
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Figure 8.13 13C NMR spectral data of compound ST-510 
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Figure 8.14 1H NMR spectral data of compound ST-467 
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Figure 8.15 13C NMR spectral data of compound ST-467 
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Figure 8.17 13C NMR spectral data of compound ST-145(b) 

 

Figure 8.16 1H NMR spectral data of compound ST-145(b) 
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Figure 8.17 13C NMR spectral data of compound ST-145(b) 
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