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ABSTRACT OF DISSERTATION 
 
 
 
 
 

ROLE  OF ALTERNATIVE MACROPHAGE ACTIVATION IN MEDIATING FIBROSIS IN 
PSEUDOMONAS AERUGINOSA PNEUMONIA 

 
 

Patients with cystic fibrosis who are infected with the pathogen Pseudomonas 
aeruginosa have shown favorable responses to the drug azithromycin (AZM).  This drug 
works in an anti-inflammatory capacity, improving clinical outcomes and improving 
quality of life in this population.  The drug has also been shown to affect macrophage 
polarization by shifting these cells away from an inflammatory phenotype toward an 
alternatively activated anti-inflammatory phenotype.  The full impact of this phenotypic 
change is not well understood in the context of the response to P. aeruginosa infection, 
or the overall immune response in cystic fibrosis. 

To understand how the AZM-polarized macrophage affects other types of cells, 
we utilized a co-culture in vitro system, with macrophages and fibroblasts incubating 
together.  In this system, we determined that AZM causes upregulation of the pro-fibrotic 
mediator transforming growth factor-β as well as the extracellular matrix (ECM) protein 
fibronectin.  The mediator of ECM turnover, matrix metalloproteinase (MMP)-9 was 
upregulated in this system as well.  In an in vivo model of P. aeruginosa infection, MMP-
9 and fibronectin were increased in the bronchoalveolar lavage 7 days post-infection in 
mice that were treated with AZM.  This was accompanied by a decrease in damage to 
the lung tissue, determine by histological examination.  To determine if these changes 
would continue in human subjects with cystic fibrosis, a clinical study was done in this 
population.  Subjects with AZM treatment had decreased TGF-β levels, but no 
differences in MMP-9 or fibronectin.  Interestingly, correlations between certain fibrotic 
mediators and inflammatory cytokines, specifically interleukin -1β, were different in 
subjects with AZM treatment compared to subjects without AZM therapy.  Together, 
these data indicate that AZM alters the fibrotic response from the macrophages, as well 
as the interaction of the inflammatory response and fibrosis development. 
 
 
 
 
 
 
 
 



Keywords:  Azithromycin, alternative macrophage, transforming growth factor-β, 
matrix metalloproteinase-9, Pseudomonas aeruginosa 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 
 

Susan Elizabeth Birket 
 
 

July 23, 2012 
 

 

 



 
 
 
 
 
 
 
 
 
 
 

ROLE  OF ALTERNATIVE MACROPHAGE ACTIVATION IN MEDIATING FIBROSIS IN 
PSEUDOMONAS AERUGINOSA PNEUMONIA 

 
 
 

By 
 

Susan Elizabeth Birket 
 
 
 
 

 
 
 
 
 
 
 
 
       
      Dr. David Feola 
      Director of Dissertation 
       
      Dr. Patrick McNamara 
      Co-Director of Dissertation 
 
      Jim R. Pauly 
      Director of Graduate Studies 
 
 
      July 23, 2012 
  



iii 
 

 The following dissertation would not have been possible without the direction and 

support of several people.  First, my mentors, Dr. David Feola, and Dr. Brian Murphy, 

who were kind enough to undertake my tuition, and without whom this would not have 

been possible.  They have been patient and understanding throughout my graduate 

education and have taught me more than the practical application of science, but also 

how to lead and mentor.  I would also like to thank my committee, Dr. Patrick 

McNamara, Dr. Jim Pauly, and Dr. Charlotte Kaetzel, for their continued guidance, which 

has made this process easier and more valuable.  My outside committee member, Dr. 

Joseph McGillis, deserves thanks for agreeing to take time to read my dissertation and 

serve in this capacity.  Also thanks to Dr. Robert Kuhn, who has assisted in various 

capacities throughout my career as well. 

 I also received assistance, advice, and support from various people throughout 

my time here.  Dr. Ted Cory, Dr. Jessica Breslow-Deckman, Ms. Cynthia Mattingly all 

assisted me in the Feola lab.  The members of the Garvy lab, including Ms. Melissa 

Hollifield, Ms. Cathryn Kurkjian, and Ms. Samantha Hoskins, were of invaluable 

assistance in many ways as well.  I’d also like to thank Ms. Catina Rossoll for all her 

priceless help throughout the last five years – without her, this process would have been 

much more difficult.  My undergraduate mentors, Dr. William Picking and Dr. Wendy 

Picking, have been instrumental, not only in guiding me to an interest in research, but in 

helping me in many steps along the way. 

 I additionally wish to thank my parents, Sam and Mary Birket, as well as my 

sister, Katherine Bruce, for all of their support over the years.  I’d also like to thank my 

aunts, Dr. Anne Wagner and Dr. Patricia Wagner, for showing me at a young age that 

women could aspire to any career they chose. 

 



iv 
 

 

TABLE OF CONTENTS 

Title Page    

ABSTRACT 

ACKNOWLEDGEMENTS ........................................................................................... iii 

LIST OF TABLES ........................................................................................................... vi 

LIST OF FIGURES ........................................................................................................ vii 

Chapter 1: Introduction ................................................................................................... 1 

A. Pulmonary Infection in Cystic Fibrosis .................................................................... 1 

B. Alternatively Activated Macrophages and Fibrosis .................................................. 7 

C. Transforming Growth Factor-β ...............................................................................10 

D. Matrix Metalloproteinase-9 ....................................................................................14 

E. Anti-inflammatory Therapy for CF ..........................................................................19 

F. Project Overview ....................................................................................................26 

Chapter 2: Azithromycin-polarized macrophages increase fibrosis mediators in co-

culture with fibroblasts ...................................................................................................28 

A. Introduction ............................................................................................................28 

B. Materials and Methods ..........................................................................................31 

C. Results ..................................................................................................................35 

D. Conclusions ...........................................................................................................54 

Chapter 3: Azithromycin alters fibrotic response to P. aeruginosa infection ...................58 

A. Introduction ............................................................................................................58 

B. Methods.................................................................................................................60 

C. Results ..................................................................................................................66 

D. Conclusion ............................................................................................................86 

Chapter 4: Azithromycin alters correlations between fibrotic mediators and inflammatory 

cytokines in sputum from patients with CF .....................................................................91 



v 
 

A. Introduction ............................................................................................................91 

B. Methods.................................................................................................................93 

C. Results ..................................................................................................................96 

D. Conclusions ......................................................................................................... 116 

Chapter 5: Discussion ................................................................................................. 120 

A. Overview of Results ............................................................................................. 120 

B: Significance ......................................................................................................... 120 

C. Conclusions ......................................................................................................... 134 

REFERENCES ............................................................................................................ 136 

VITA ............................................................................................................................ 146 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 



vi 
 

 

LIST OF TABLES 

Table 1.1 Function and markers of different macrophage phenotypes.. . . . . . . . . . . . . . 5 

Table 4.1 Demographics of subjects enrolled in the study. . . . . . . . . . . . . . . . . . . . . . . 98 

Table 4.2 Demographics by AZM and P. aeruginosa status. . . . . . . . . . . . . . . . . . . . . .98 

Table 4.3 Proteins from sputa compared to age and lung function. . . . . . . . . . . . . . . .107 

Table 4.4 Fibrotic proteins measured from subjects sputa. . . . . . . . . . . . . . . . . . . . . . 108 

Table 4.5 Fibrotic proteins vs inflammatory cytokines. . . . . . . . . . . . . . . . . . . . . . . . . .108 

Table 4.6 Proteins from subjects’ sputa compared to arginase activity. . . . . . . . . . . . .113 

 

 

 

 

 

 

 

 

 
 

 
 

 



vii 
 

 
 

LIST OF FIGURES 

Figure 1.1 Cystic fibrosis pulmonary disease progresses in a cyclical fashion. . . . . .3 

Figure 1.2 Response of T cell subsets in CF disease progression. . . . . . . . . . . . . . .6 

Figure 1.3 Polarization of subtypes of macrophages. . . . . . . . . . . . . . . . . . . . . . . . . 7 

Figure 1.4  Activation of the TGF-β Smad-dependent signaling pathway. . . . . . . . . 14 

Figure 1.5 AZM polarizes macrophages to an alternative phenotype in vitro. . . . . .25 

Figure 1.6 AZM polarizes macrophages to an alternative phenotype in vivo. . . . . . 25 

Figure 1.7  How molecules of interest are altered in CF pathology. . . . . . . . . . . . . . 26 

Figure 2.1  Schematic of experimental methods used in co-culture experiments. . . 31 

Figure 2.2  Azithromycin polarizes macrophages when co-cultured with fibroblasts.36 

Figure 2.3  Azithromycin increases active TGF-β and tgfβ mRNA in the co-culture 

system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 

Figure 2.4  Azithromycin increases MMP-9 protein concentration . . . . . . .. . . . . . . .41 

Figure 2.5  Azithromycin increases MMP-9 protein and mRNA expression.. . . . . . . 42 

Figure 2.6  Azithromycin increases fibronectin concentration. . . . . . . . . . . . . . . . . . 44 

Figure 2.7  TGF-β neutralizing antibody reverses ability of azithromycin to affect 

fibronectin but not MMP-9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 

Figure 2.8  The effect of AZM and TGFβ-neutralizing antibody upon collagen I and 

collagen III expression. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47 

Figure 2.9  MMP-9 inhibitor reverses ability of azithromycin to increase fibronectin 

but does not inhibit activation of TGF-β. . . . . . . . . . . . . . . . . . . . . . . . . .49 

Figure 2.10  Activation of the NF-κB signaling cascade. . . . . . . . . . . . . . . . . . . . . . .  50 

Figure 2.11  Arginase activity in the presence of an IKKβ inhibitor. . . . . . . . . . . . . . . 52 

Figure 2.12  IKK16 inhibits TGF-β activation and MMP-9 and fibronectin increases  

  induced by AZM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  53 

Figure 2.13  Schematic of the production of the fibrotic mediators from macrophages 

co-cultured with fibroblasts with and without treatment with AZM. . . . . . 57 

Figure 3.1  Immune cell infiltration in to the lungs. . . . . . . . . . . . . . . . . . . . . . . . . . .67   

Figure 3.2  Arginase 1 and iNOS expression in C57Bl/6 mice treated with 

methylcellulose vehicle or AZM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 



viii 
 

Figure 3.3  Arginase 1 and iNOS expression in IL-4rα-/- mice treated with 

methylcellulose vehicle or AZM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 

Figure 3.4  Arginase 1 and iNOS co-expression in IL-4rα-/- mice treated with 

methylcellulose vehicle or AZM. . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . 71 

Figure 3.5 Arginase 1 and F4/80 expression in IL-4rα-/- mice treated with 

methylcellulose vehicle or AZM. . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . .71 

Figure 3.6  Expression of MMP-9 in the BALF in response to P. aeruginosa. . . . . . 73 

Figure 3.7  Expression of MMP-9 in the lung in response to P. aeruginosa .. . . . . . 74 

Figure 3.8.  Expression of fibronectin in BALF in response to P. aeruginosa . . . . . . 76 

Figure 3.9.  Expression of fibronectin in the lung in response to P. aeruginosa. . . . .77   

Figure 3.10.  Expression of collagen in response to P. aeruginosa infection. . . . . .  . .79 

Figure 3.11.  Pathology scoring of C57Bl/6 lungs infected with to P. aeruginosa. . . . 80 

Figure 3.12.  Pathology scoring of IL-4rα-/-  lungs infected with P. aeruginosa. . . . . .  81 

Figure 3.13.  Scoring of damage in response to P. aeruginosa infection, with adoptive 

transfer of normal immune cells into IL-4α-/- mice. . . . . . . . . . . . . . . . . . 83 

Figure 3.14.  Lack of MMP-9 affects mouse weights in response to P. aeruginosa 

infection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 

Figure 3.15.  Lack of MMP-9 causes collagen accumulation.  Expression of collagen in 

response to P. aeruginosa infection.  . . . . . . . . . . . . . . . . . . . . . . . . . . .85 

Figure 3.16.  Lack of MMP-9 does not increase fibronectin accumulation.  Expression 

of fibronectin in response to P. aeruginosa infection . . . . . . . . . . . . . . . 86 

Figure 4.1 FEV1 % predicted of subjects enrolled in the study. . . . . . . . . . . . . . . . . 99 

Figure 4.2  Fibrotic mediators from CF subjects’ sputa. . . . . . . . . . . . . . . . . . . . . . 100 

Figure 4.3  Fibrotic mediators from CF subjects’ sputa and P. aeruginosa. . . . . . ..102 

Figure 4.4  Fibrotic mediators from CF subjects’ sputa and S. aureus. . . . . . . . . . 103 

Figure 4.5  Inflammatory cytokines from CF subjects’ sputa. . . . . . . . . . . . . . . . . . 105 

Figure 4.6  Correlations of proteins measured from sputa of CF subjects. . . . . . . .110 

Figure 4.7.   Principal component analysis of protein expression. . . . . . . . . . . . . . . 112 

Figure 4.8.  PC1 and PC2 expression. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .112 

Figure 4.7  Arginase production in CF subjects’ sputa. . . . . . . . . . . . . . . . . . . . . . .115 

 

 

 



ix 
 

 

 

 

 

LIST OF ABBREVIATIONS 

CF, cystic fibrosis; CFTR, cystic fibrosis transmembrane regulator; ASL, airway surface 

liquid; MRSA, methicillin-resistant Staphylococcus aureus; NF-κB, nuclear factor kappa 

B; TLR-4, toll-like receptor 4; MMP, matrix metalloproteinase; NE, neutrophil elastase; 

IL, interleukin; IFN-γ, interferon gamma; TNF, tumor necrosis factor; CAM, classically 

activated macrophage; AAM, alternatively activated macrophage; LPS, 

lipopolysaccharide; iNOS, iducible nitric oxide synthase; NO, nitric oxide; TGF-β, 

transforming growth factor beta; ECM, extracellular matrix; CCL-18, chemokine (CC 

motif) ligand 18; IPF, idiopathic pulmonary fibrosis; LAP, latent associated protein; 

COPD, chronic obstructive pulmonary disease; BALF, bronchoalveolar lavage fluid; 

TIMP, tissue inhibitor of metalloproteases; VAP, ventilator associated protein; AZM, 

azithromycin; FEV1, forced expiratory volume in 1 second; FVC, forced vital capacity; 

ARF, acute respiratory failure; MR, mannose receptor; BEC, S-(2-boronoethyl)-L-

cysteine; CFU, colony forming units. 



1 
 

Chapter 1: Introduction  

A. Pulmonary Infection in Cystic Fibrosis 

Overview 

Cystic fibrosis (CF) is a genetic disorder affecting 30,000 people in the United 

States.  The mutation in the Cystic Fibrosis Transmembrane Regulator gene (CFTR) 

causes a defect in the chloride transporter that it encodes.  Over 1,000 mutations in the 

CFTR gene have been identified.  This defect results in reduced movement of chloride 

ions, subsequently altering sodium transport and water movement, changing the airway 

surface liquid (ASL) depth.[1]  The mutation affects multiple organs, but the impact is 

most prominent in the lungs, most likely due to the changes in ASL and the associated 

consequences.  The most common mutation, ΔF508, results in a missense mutation 

which causes a defect in processing, rendering the protein unable to reach the cell 

membrane. [2]  Other missense mutations, such as G551D, result in a protein at the cell 

membrane that is improperly regulated, and therefore non-functional.  The variation in 

mutations that lead to disease result in a variety of disease phenotypes, ranging from 

mild to severe disease.[3]  Those mutations which cause mild pulmonary disease may 

leave other organs unaffected.  The more severe mutations cause other clinical 

manifestations, including pancreatic insufficiency.[4]  Cystic fibrosis pathology is 

characterized by increased mucus secretions in the pulmonary spaces, which provide an 

excellent environment for frequent bacterial infection.[5]  Patients with CF are colonized 

with a wide variety of bacteria.  Infections early in the progression of the disease are 

commonly caused by pathogens that also commonly cause disease in non-CF children 

and adults, such as methicillin-sensitive Staphylcoccus aureus and Haemophilus 

influenzae.[6]  However, by their teen years and into adulthood, most patients become 

infected with more serious pathogens that produce damaging virulence factors and 
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multiple resistance mechanisms, such as methicillin-resistant S. aureus (MRSA), P. 

aeruginosa, and Burkholderia cepacia complex.[5]  These organisms are not commonly 

observed to cause infection in the normal, immunocompetent population. They produce 

exacerbations that are extremely damaging to lung function and quality of life in this 

patient population.  Especially in the case of P. aeruginosa (and more recently MRSA) 

patients with CF have extreme difficulty clearing these pathogens, resulting in chronic 

colonization.[7, 8]  In fact, according to the most recent epidemiological data from the 

Cystic Fibrosis Registry, a national database that tracks infection incidence, up to 80% 

of patients in their late teens to early twenties typically become chronically infected with 

Pseudomonas aeruginosa.[9]  As approximately 85% of CF mortality is due to 

pulmonary complications, this is an important focus for research efforts. 

The mutation in the CFTR gene is the direct cause of the increased mucus 

secretions in the lung.  As stated above, the damage to the pulmonary system can 

cause significant morbidity and mortality to the CF population.  Damage to the lungs 

during the course of disease occurs in a cyclical fashion (Figure 1.1); mucus buildup 

provides an ideal environment for bacterial infection, which results in a hyper-

inflammatory response from the CF immune system.  This response, in clearing the 

bacterial infection, causes damage to the patient’s pulmonary tissue as a result.  

Neutrophils, the major infiltrating cell type, release a multitude of peptidases and 

elastases, causing damage to the alveolar interstitium.[10]  As the inflammation begins 

to resolve, if damage is severe enough, the repair processes orchestrate remodeling that 

results in scarring, causing an even greater difficulty in clearance of mucus, which leads 

to more bacterial infections.[11]  By the time the patient is nearing adulthood, they are 

subject to chronic infections, a buildup of fibrosis and scarring in their lungs, and a 

quantity of mucus that is difficult to dissipate. This cumulative damage ultimately results 

in pulmonary function decline, which is measured with pulmonary function tests.  Forced 
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expiratory volume in one second (FEV1), tracks the compliance of the lung, and is used 

as a clinical measurement of lung function, and corresponding disease severity.   As 

FEV1 declines, patients are less able to move air through their lungs, resulting in severe 

morbidity and ultimately death of the patient. [12] 

 

 

Figure 1.1. Cystic fibrosis pulmonary disease progresses in a cyclical fashion. 

 

Inflammatory Response 

In addition to the increased susceptibility to bacterial infection, patients exhibit 

vigorous inflammation early in their disease; the inflammatory response causes 

widespread tissue damage in addition to killing the bacteria.  It has been shown that the 

CFTR is directly linked to this hyperinflammation; lack of the CFTR has been shown to 

cause upregulation of nuclear factor (NF)-κB and toll-like receptor (TLR)-4 mistrafficking, 

both of which lead to an increase in inflammatory cytokine expression.[11, 13, 14]  The 

bacterial cell wall component lipopolysaccharide (LPS) binds to the TLR-4 receptor, 

triggering downstream signaling that ultimately activates NF-κB.  In macrophages that 

have the CFTR mutation, TLR-4 degradation is inhibited, resulting in prolonged 

activation of downstream molecules, including NF-κB.[14]   In addition, deregulated 
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signaling from interleukin  (IL)-1β and tumor necrosis factor (TNF) receptors also prolong 

NF-κB activation.[13]   This mistrafficking is demonstrated in macrophages and epithelial 

cells; the result is that they produce cytokines and chemokines which recruit more 

inflammatory cells to the airways.[15-17]  The cellular infiltrates are predominately 

neutrophils, which release proteases, such as matrix metalloprotease(MMP)-9 and 

neutrophil elastase (NE).[18]  While these proteases are vital for bacterial clearance, in 

the CF airway the burden of protease overcomes the presence of naturally produced 

anti-proteases, shifting the effects toward airway damage and ultimately 

bronchiectasis.[19]  In fact, neutrophils and their associated cytokines are increased in 

BAL from patients with CF when infection cannot be detected.[20]  Because of the 

continued NF-kB signaling, constant influx of neutrophils and release of proteases, the 

inflammation characteristic of the disease is more of a prolonged acute response rather 

than chronic inflammation.[21]   

While neutrophils are the primary mediating cell type, T cells are also involved in 

the exaggerated inflammatory response in patients with CF.  Infection leads to a subset 

of CD4+ T cell  response known as Th1, which involves inflammatory cytokines such as 

IL-1β, IL-6, IFN-γ, and TNF.[22]   This response is characteristic of these patients early in 

the course of their disease (Figure 1.2).  The highly inflammatory response, while 

vigorous, is necessary for clearance of the bacteria.  Furthermore, a Th1 response has 

been associated with better outcomes in P. aeruginosa infection, as opposed to a Th2-

predominant response.[23]  However, as disease progresses, patients’ immune 

responses tend to switch to a subset of T cell response known as Th2-mediated 

polarization.[24, 25]  Despite being associated with repair instead of inflammation, a Th2 

response is associated with worse outcomes for P. aeruginosa infection[23].  In contrast 

to a Th1 response, Th2 responses are induced by the cytokines IL-4 and IL-13 (Figure 
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1.2).   T cell response is of primary interest here because the cytokines produced by T 

cells can influence cells of the innate immune response, including macrophages.   

Macrophages can respond to cytokines produced by T cells, and can affect the 

adaptive immune system in return.  Because they are an important part of the innate 

immune response, these cells respond initially to pathogens, but are also present 

throughout the infection.  In response to the cytokines produced by Th1 and Th2 type T 

cells, macrophages are polarized to two distinct phenotypes; classically activated 

macrophages (CAM) or alternatively activated macrophages (AAM), respectively. [26] 

IFN-γ, produced by the Th1 response, polarizes macrophages to the CAM 

phenotype, especially when combined with a pathogen trigger such as 

lipopolysaccharide (LPS), as shown in Figure 1.3.[27]  The primary effector protein of the 

CAM is inducible nitric oxide synthase (iNOS), which metabolizes L-arginine to produce 

nitric oxide (NO).  Along with oxygen radicals, NO is one of the major bactericidal 

components of the lysosomes in the CAM, and mainly responsible for its efficiency at 

bacterial killing.[28]  Furthermore, the signaling cascades induced by IFN-γ and LPS 

stimulate the NF-κB pathway, upregulating the production of inflammatory cytokines.  

Therefore, this macrophage phenotype is associated with inflammation, bacterial 

clearance, and damage.[29]   

The macrophages that are alternatively activated can be stimulated by a variety 

of triggers; IL-4 and IL-13, TGF-β, IL-10, and glucocorticoids, each one resulting in a 

different phenotype and different gene expression patterns.[30]  Some of these AAM 

subsets are summarized in Table 1.1.  As noted in the table, some of the triggers and 

products can overlap between the subsets, making characterization of the specific 

macrophage phenotype complex.  Here, the subset induced by IL-4 and IL-13 will be the 

primary focus.  Macrophages stimulated by IL-4/13 downregulate iNOS and increase 

production of the effector protein arginase in its place, as shown in Figure 1.3.[26]  The 
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enzyme metabolizes the same substrate, L-arginine, to produce L-ornithine.[31]  Without 

products such as NO, the macrophages are less efficient at killing bacteria, and become 

involved in clearing away cellular debris.[32, 33]  Further, the products from arginase are 

further converted to prolines and polyamines, which are precursors to collagen 

production.[29]  In this way, AAM are associated with an increase in collagen deposition 

and therefore participate in mechanisms of tissue repair, as discussed below.  While T 

cells are terminally differentiated into Th1 or Th2 subtypes, macrophages retain plasticity 

and can be polarized into another phenotype.  Because alveolar macrophages can 

influence the immune environment and response to bacterial infection in the pulmonary 

spaces, AAM are a target of investigation in multiple infection models, including those 

caused by fungal pathogens and respiratory syncytial virus.[34]  This dissertation will 

examine, in part, the role of the AAM response to infection with Pseudomonas 

aeruginosa.   

 

Figure 1.2. Response of T cell subsets in CF disease progression. 
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Figure 1.3. Polarization subtypes of macrophages. 
 

 
Table 1.1. Function and markers of different macrophage phenotypes.  Listed are the 
macrophage phenotype, the stimulation necessary to polarize an inactive macrophage to 
that phenotype, the function of the cell, surface markers, functional markers, and the 
cytokines produced (adapted from [27, 35, 36]. 
 

B. Alternatively Activated Macrophages and Fibrosis 

Alternatively activated macrophages, the phenotype of macrophage induced by 

IL-4 and IL-13, produced primarily by Th-2 polarized T cells, have very distinct effector 

proteins produced.  Typically they are identified by increased arginase activity and 

upregulated mannose receptor expression.  The AAM subtype is also marked by higher 
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rates of antigen endocytosis, the expression molecule found in inflammatory zone 1 

(FIZZ-1) and the molecule Ym1.[27, 37, 38]  Other markers include increased 

expression of IL-10, CD23, and chemokine (C-C motif) ligand (CCL)-18.[32]  Paired with 

these changes are downregulation of inflammatory mediators and enzymes, such as 

iNOS, CD80, and the chemokine receptor CCR7, that are CAM markers. 

Without iNOS, which produces NO and other oxygen radicals that are the 

molecules that allow classically activated macrophages to be efficient bacterial killers, 

AAMs are more effective at clearing debris than killing pathogens.[39]  Along with the 

decrease in inflammatory and bactericidal effects  are an association of AAMs with 

increased mediators of extracellular matrix (ECM) production through the upregulation of 

arginase, a fibrotic precursor.[40]  Arginase catalyzes the conversion of L-arginine to 

urea and L-ornithine; L-ornithine is a precursor to prolines and polyamines, which are 

then used to make collagens and other fibrogenic proteins that make up the ECM.[27] 

[41]   

In fact, alveolar macrophages isolated from patients with several types of 

pulmonary fibrotic diseases display characteristics of alternative activation.  These cells 

also cause normal lung fibroblasts to increase collagen production when the two cells 

types are incubated ex vivo. [40]  This effect on fibroblasts appears to be through the 

macrophage production of chemokine CCL-18, which is increased in AAM and can 

recruit naïve T cells.[32]  Gene expression of CCL-18 was increased after Th2 cytokine 

exposure, suggesting this chemokine may be part of a positive feedback loop of fibrosis 

perpetuation by fibroblasts.  In this study by Prasse et al, the effect on fibrosis increase 

occurred with incubation of Th2 cytokines and presence of an infectious agent was not 

necessary.[40] 

Th2 cytokines are also associated with fibrosis as demonstrated in a murine 

model of pulmonary fibrosis using a strain of transgenic mouse which over expresses IL-
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13.  In this study, fibrosis was increased directly through increased activation of 

transforming growth factor (TGF) –β, a chemokine with both anti-inflammatory and pro-

fibrotic properties. [42]  Here, the development of fibrosis was dependent solely on the 

overexpression of IL-13 in the absence of infection, and was blocked through the 

administration of a TGF-β antagonist.  Here, TGF-β was localized to macrophages by 

histology, showing that macrophages do upregulate this fibrotic mediator after exposure 

to IL-13, a primary Th2 cytokine.     

Likewise, arginase and TGF-β have been associated with fibrogenesis in multiple 

models of lung injury and repair.  This suggests that the alternatively polarized 

macrophages are major mediators of pulmonary fibrogenesis.  Genetically engineered 

hTGF-β-1 transgenic mice, which overexpress human bioactive TGF-β, were treated 

with doxycycline to induce a pulmonary fibrosis phenotype, displayed increased arginase 

produced by mononuclear cells, identified by the common macrophage marker F4/80. 

[43]  These mononuclear cells producing arginase were isolated from bronchoalveolar 

lavage fluid, showing that they were alveolar macrophages participating in the 

pulmonary fibrosis response.  Likewise, in a model of murine allergic asthma, 

subepithelial fibrosis was shown to be reduced by the small molecule mepacrine.[44]  

Administration resulted in reduced arginase and TGF-β expression in the allergic asthma 

model, likely secondary to the reduced levels of IL-4 and IL-13 also seen with mepacrine 

treatment.  Also, pirfenidone, a drug under investigation for IPF, has been shown to 

inhibit both arginase and TGF-β, though the mechanism is unclear. [45] 

Combined, this evidence shows that the prolonged presence of AAM could be 

detrimental to the pulmonary environment and participate in the upregulation of fibrotic 

mediators.  However, it is important to note that macrophage polarization is not terminal, 

and once polarized to one phenotype, the cell can be polarized to another phenotype 

when the cytokines present are altered.  When Th1 cytokines are added to AAM cells, 



10 
 

those cells lose their alternative markers and take on classical characteristics.[46]  It is 

also important to remember that, while the AAM can be pro-fibrotic, their anti-

inflammatory properties may make them more protective than harmful long-term.[27] 

 

C. Transforming Growth Factor-β 

As mentioned above, TGF-β is one of the mediators responsible for AAM-

induced fibrogenesis.  It is a cytokine with multiple influences, responsible for cell 

proliferation, differentiation, adhesion, migration and apoptosis of various cells types.[47]  

It is produced from most cell types, including those of the immune system such a 

neutrophils, macrophages, and dendritic cells.[48]  TGF-β is a critical molecule in 

pulmonary homeostasis: it blunts inflammatory response to injury and infection, while 

also coordinating the wound healing process by upregulating matrix genes.[49]  TGF-β is 

produced as a latent precursor bound to latent associated protein (LAP), where it is 

cross-linked to the ECM of most organs to be activated when necessary[50, 51]; when 

activated, TGF-β attracts fibroblasts and induces them to produce a number of fibrotic 

components, including collagen and fibronectin.[52, 53]  It can be activated by cleavage 

of LAP by a variety of proteases, such as thrombospondin, plasmin, and integrin β6, as 

examples.[49, 54, 55]  Once activated, the protein is free to move about the pulmonary 

spaces and bind to the TGFβRII receptor.[56]  When bound to its receptor, TGF-β 

signals through a primarily Smad-dependent manner, as outlined in Figure1.1, to 

upregulate matrix-associated gene production.[47]  

TGF-β is necessary for pulmonary development – in early stages of growth it is 

responsible for the formation of the architecture of the airways and alveolar sacs. [57]  It 

is also a necessary component of the normal immune response.  It is activated late in 

the response to infection in order to downregulate the production of inflammatory 
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cytokines.[51]  Activation of the inactive form is the primary means of regulation of TGF-

β, and this is triggered by the upregulation of its activators, which are typically released 

during hyperinflammatory states.[58]  However, this is a molecule that must be 

maintained in correct balance; too little TGF-β causes hyperinflammation, while too 

much TGF-β results in lung fibrosis and scarring.[59, 60]  When there is too much TGF-β 

present post-development, the mechanisms that are crucial in forming the architecture of 

the lung are re-initiated, leading to deposition of connective tissue where it is harmful.  In 

this way, TGF-β is upregulated in multiple models of lung repair; it is released by multiple 

types of AAM (Table 1.1), and is significantly increased in models of bleomycin-induced 

fibrosis [52, 61].  Other chronic inflammatory and fibrotic pulmonary diseases, such as 

chronic obstructive pulmonary disorder (COPD) and idiopathic pulmonary fibrosis (IPF), 

have reported increases in TGF-β mRNA and protein production as well.[62]   

In IPF, TGF-β increases fibrosis accumulation.  This appears to be promoting 

activation and recruitment of fibroblasts that leads to the fibrotic characteristics of the 

disease.[53]  In lung biopsy samples from patients with advanced IPF, 

immunohistochemistry analysis shows that TGF-β is localized to areas of dense fibrosis 

and connective tissue deposition.[63]  This occurrs in both bronchiolar epithelial cells 

and in type II pneumocytes.  These cell types showed hyperplasticity, which is 

characteristic of the disease. Another study also evaluated biopsy specimens from 

patients with IPF via immunohistochemistry.[64]  Investigators found TGF-β not only in 

epithelial cells, but also in myofibroblasts, indicating that both types of cells are being 

induced to produce matrix proteins.  In addition, the cells that stained TGF-β positive 

persisted over a period of 14 days, while cells that stained positive for TNF-α diminished 

over that time.  Interestingly, the results showed an interaction of the interstitium and the 

alveolar epithelium during IPF, based on TGF-β localization.   
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Broekelmann, et al, went a step further in evaluating the localization of TGF-

β.[65]  This study showed that macrophages that stained positive for TGF-β production 

by in situ hybridization and immunohistochemistry were localized to the site of activated 

fibroblasts that were expressing high amounts of matrix proteins, including fibronectin, 

procollagen, and smooth muscle actin.  This demonstrated a direct correlation that cells 

of the immune system, and not just cytokines, were involved in development of IPF and 

the resulting matrix accumulation. 

TGF-β appears to have similar effects in COPD.  While the initial causes of IPF 

are still unknown, COPD is primarily a disease caused by environmental exposure to 

inhaled chemicals; most often those associated with cigarette smoke.[66]  Most of the 

damage caused by the chemicals is concentrated in areas of the small airways.  In the 

case of emphysema, an obstructive disease under the umbrella of COPD, the damage is 

more generally located to the alveoli.[67]  In all cases of damage, however, TGF-β 

upregulation acts as a function of wound healing, leading to fibrosis, as a 

consequence.[68]  This has been demonstrated in several studies.  TGF-β was 

examined in subjects with or without COPD who underwent lobectomy for cancer; 

subjects were either current or ex-smokers.[62]  In the lung tissue specimens from 

subjects with COPD, TGF-β mRNA was positively correlated with bronchial and 

bronchiolar epithelial cells, while this correlation was not as strong in subjects without 

COPD.  The authors suggest that this increase correlated to the recruitment of mast 

cells and macrophages to sites of damage, as TGF-β is known to be chemotactic.  

Takizawa, et al, correlated TGF-β mRNA not only with COPD but also with smoking. [69] 

This study compared subjects with COPD to healthy subjects who were smokers and 

healthy subjects who never smoked.  TGF-β mRNA was upregulated in smoking 

subjects with and without COPD, and correlated positively with subjects’ duration of 

smoking (in terms of pack-years).  This suggests that TGF-β is directly increased as 
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damage from exposure occurs, and that it could be a major mechanism of fibrosis 

buildup during disease.  

TGF-β has also been investigated as a mitigating factor in CF pulmonary 

disease.  There is some evidence that TGF-β may have an interaction with the CFTR.  A 

study performed at University of California at San Francisco showed that TGF-β reduces 

β2-adrenergic dependent chloride transport, resulting from CFTR reduced activity.  This 

appears to be acting in a cAMP-dependent manner.[70] 

  Importantly, TGF-β expression has been shown to be increased in patients with 

CF compared to patients with a non-CF pulmonary exacerbation.[71]  In this study that 

enrolled patients with CF investigators found a correlation between high TGF-β protein 

levels in BALF and reduced lung function.  Investigators also demonstrated that TGF-β 

levels were not different in patients colonized with P. aeruginosa compared to CF 

patients who had not cultured this pathogen.  An additional study from this group found 

that levels of TGF-β in the plasma correlated to BALF TGF-β levels, and that plasma 

TGF-β was actually increased in patients positive for P. aeruginosa colonization.[72]    

Treatment for the infection decreased plasma levels of TGF-β, and post-treatment 

measurements of TGF-β were inversely correlated with lung function. The implications 

for TGF-β in CF become more interesting when polymorphisms are examined: a 

phenotypic gene study in the Czech Republic showed that patients with CF who had 

TGF-β concentrations at both high and low extremes in their lungs had the worst 

outcomes.[73]  Although the polymorphisms were not associated with lung function, they 

were associated with other organ disease.   

 The studies summarized here demonstrate that TGF-β is of critical importance in 

various diseases of fibrosis, including CF.  It is a protein produced by with AAMs, which 

have also been associated with diseases of fibrosis, as noted above.  There is also 

evidence that in the absence of TGF-β, presence of AAM is reduced.[74] This study will 
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continue to investigate TGF-β in the development of fibrosis, in the context of P. 

aeruginosa infection. 

 

Figure 1.4. Activation of the TGF-β Smad-dependent signaling pathway.  TGF-β 
isoforms binds to TGF-βRI and II coupled, which then phosphorylate Smad2.  
Phosphorylated Smad2 binds Smad4, and the complex travels to the nucleus to bind to 
a transcription factor and begin transcription of TGF-β dependent genes.   
 

D. Matrix Metalloproteinase-9 

In many of the aforementioned pulmonary diseases, TGF-β is linked with MMP 

function.[42]  TGF-β can suppress the production of these proteases that are produced 
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by monocytes and macrophages, which could lead to a reduction in ECM turnover.[75]  

This, in turn, could lead to clearance of ECM proteins before they are accumulated to a 

degree that would lead to scar tissue and pulmonary function decline.’ 

One member of this family is MMP-9.  It is a protease that is also known as 

gelatinase B, as the first known function was to bind and cleave gelatin.  Other 

substrates have since been identified, including collagen IV, α1-antiproteinase, latent 

TGF-β1, latent VEGF, fibrin, and fibronectin.[76, 77].  MMP-9 has similar activity to 

another member of the family, MMP-2, also known as gelatinase A.  Like TGF-β, these 

proteases are produced in an inactive form, and are then activated among the tissues.  

Activation of the pro-forms, or zymogens, is generally based on availability of substrates, 

however, rather than other catalytic enzymes.[78]  Once activated, the enzymes are able 

to execute their main function of cleaving other proteins. 

In the lung, MMP-9 is primarily involved in remodeling.  Many types of cells can 

produce this enzyme, including bronchial epithelial cells, alveolar type II cells, 

fibroblasts, endothelial cells, and immune cells; neutrophils, macrophages, lymphocytes, 

NK cells, and dendritic cells have all been shown to produce MMP-9.[79]  There is 

typically little to no MMP-9 in healthy tissue, but it is released quite readily upon injury. 

[76]  One function is that it appears to facilitate cell migration.  The degradation of 

collagen IV, a basement membrane protein, allows architecture to be changed in order 

for immune cells to migrate to the site of inflammation.[80]  It also allows for remodeling 

of structure after or during inflammation for epithelial cells. [81] 

One type of immune cell that produces MMP-9 in large amounts is neutrophils.  

These cells produce MMP-9-filled granules during bone-marrow maturation and release 

the granules during migration toward sites of inflammation.[79] Therefore, MMP-9 is 

often associated with inflammatory diseases.  For example, in ventilator-induced lung 

injury, in which there is an influx of neutrophils, MMP-9 has been shown to be increased 
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in response to ventilation.[82]  Furthermore, this study showed that MMP-9 activity was 

associated with neutrophil influx, as well as degree of acute lung injury.  The 

investigators also demonstrated that when MMP-9 was inhibited, this effect was 

prevented, suggesting that MMP-9 may be promoting neutrophil influx in this model.   

In a model of emphysema, the result of chronic inflammation, MMP-9 was again 

associated with inflammation.  Mice which had inactivation of the surfactant protein D 

gene developed emphysema and had increased activity of MMP-9 compared with mice 

that had function surfactant protein D.[83]  MMP-9 has also been associated with 

bronchiectasis, which is a result of chronic inflammation in the airways.  In this 

inflammatory disease, bronchial walls are destroyed, often as the result of damage by 

neutrophilic-associated lytic enzymes.  Among these were MMP-9 and MMP-8; these 

two proteins were detected by immunostaining in bronchial biopsy specimens of subjects 

with bronchiectasis, and were highly correlated with number of neutrophils present.[84]  

This study provides evidence that excess MMPs may cause damage to the airways. 

However because MMP-9 has the ability to assist in remodeling pathways, it is 

also an important molecule in diseases of fibrosis.  In a model of bleomycin-induced lung 

fibrosis, MMP-9, as well as MMP-8, concentration was increased in the BAL of mice 

treated with bleomycin.[85]  In these same mice, hydroxyproline, a precursor of collagen, 

was increased at day 14 post-administration.  However, when the neutrophils were 

depleted, MMP-9 concentrations were reduced, compared with that found in the 

bleomycin treated mice.  Conversely, hydroxproline was increased in the neutrophil-

depleted group, suggesting that the upregulation of MMP-9 in fibrotic processes assists 

in turnover of the accumulation of fibrotic proteins.  Also supportive of that notion, a 

group of investigators showed that pro-MMP-9 secretion from macrophages is increased 

by fragmented fibronectin.[77]  When monocytes isolated from human peripheral blood 

were incubated with TNFα and incubated with either native fibronectin or fibronectin 
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degraded into specific fragments, the degraded fibronectin elicited more of a response 

from the macrophages to produce pro-MMP-9.[77]  Because MMP-9 can degrade 

fibronectin directly[79], this data is likely indicative of a feedback mechanism, wherein 

MMP-9 can be stimulated to continue to degrade ECM.  This suggests a role for MMP-9 

in controlling the buildup of fibrosis.  It also suggests that moderate increases in MMP-9 

concentrations may have positive outcomes, by degrading fibronectin before it 

accumulates to cause scarring. 

Lastly, MMP-9 has also been studied in patients with ventilator associated 

pneumonia (VAP) who are infected with Pseudomonas aeruginosa.  In these patients, 

serial BALF samples were collected and analyzed for MMP-9, MMP-8, and tissue 

inhibitor of metalloproteinases (TIMP)-1 concentrations.  TIMP-1 is the natural inhibitor 

of the MMPs, which circulates in order to counteract the activity of the proteases.  Both 

MMP-9 and -8 concentrations were significantly higher in the BALF of patients with VAP 

compared with patients ventilated only for airway protection.[86]  Patients were further 

analyzed for microbiology profiles, to see if their cultures possessed type III secretion 

system (TTSS) characteristics.  The TTSS is the mechanism in P. aeruginosa that 

secretes toxins that cause damage to the host.  When analyzed this way, the authors 

found that MMP-9 was increased in patients whose bacterial growth showed TTSS 

positive characteristics, compared to patients whose bacterial growth was TTSS 

negative.  Lastly, patients with higher MMP-9/TIMP-1 ratios had a higher risk of death 

compared to those with lower MMP-9/TIMP-1 ratios.  Because there is more protease 

compared to its inhibitor, this suggests that more MMP-9 activity, most likely in response 

to more virulent bacteria, is detrimental to the outcome VAP patients.[86]  The authors 

suggest that proteases, such as MMP-9 and -8, are released more readily as the toxicity  

level of the bacterial infections increases, causing heightened risk of airway damage and 

death. 
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MMP-9 also plays an important role in the pathophysiology of CF, a result that is 

not surprising given the data underlining its importance in diseases of neutrophilic 

inflammation, fibrosis, and P. aeruginosa pneumonia.  Increases in MMP-9 production is 

associated with occurrence of pulmonary exacerbation, airway breakdown leading to 

remodeling, and in response to infection with Burkholderia cenocepacia in patients with 

CF, all of which can decrease survival.[87-89]  Sagel, et al, assessed induced sputum 

samples from healthy controls and subjects with CF for levels of MMP-9 and TIMP-1.[90]  

This study found that concentrations of both molecules were significantly higher in the 

CF subject samples, as was the ratio of MMP-9/TIMP-1.  MMP-9 was also negatively 

correlated with FEV1, and therefore positively correlated with disease severity, in these 

subjects.  Lastly, both MMP-9 and TIMP-1 were positively correlated to neutrophil 

counts, and levels of IL-8 in the sputum samples.  

Another study examined lower airway secretions of subjects with CF, comparing 

the results to subjects with non-CF acute respiratory failure(ARF) as the controls.  

Gaggar, et al, showed that subjects with CF had increased active MMP-9 

concentrations, while subjects with ARF had increased active MMP-8 concentrations in 

samples taken from endotracheal suctioning. [19]  The study went on to show that the 

increase in CF MMP-9 activity is constitutive, while subjects with ARF had mostly 

inactive, pro-MMP-9 forms of the enzyme in their samples.  However, subjects with CF 

had lower levels of TIMP-1 in their secretions than did the ARF subjects, and higher 

MMP-9/TIMP-1 ratios.  This indicates dysregulation, and potential hyperactivity of the 

protease in the CF airways.  

Lastly, Ratjen et al examined MMP-9 levels and their potential modulation by a 

commonly used CF treatment.[91]  In this study, the expected increases in MMP-9, 

MMP-8, and TIMP-1 in BALF of subjects with CF compared with healthy controls were 

demonstrated.  However, when the concentrations of these three molecules were 



19 
 

measured in BALF 18 months later, treatment with dornase alfa had reduced levels of all 

three markers after compared to subjects not receiving the drug.  Dornase alfa cleaves 

the DNA that accumulates in the mucus of patients with CF[92];  it has been shown to 

increase FEV1.  This study suggests that preventing tissue destruction by MMPs may be 

one of the ways in which this is being accomplished. 

Taken together, previous study of MMP-9 shows its importance in the process of 

fibrotic disease.  Overabundance of MMP-9 in relationship to its inhibitor predisposes 

toward damage and bronchiectasis, yet the protease is still necessary to turnover of 

ECM proteins.  However, whether this molecule is causing fibrosis by initiating the 

damage that requires subsequent repair, or whether it is upregulated after fibrosis is 

initiated in order to clear away the buildup of repair molecules is unclear. 

 

E. Anti-inflammatory Therapy for CF 

 Patients with CF are treated using a number of different therapeutic approaches.  

Mucolytics, such as dornase alfa (Pulmozyme) and acetylecysteine (Mucomyst) help to 

decrease viscosity and clear away mucus.  Oral, intravenous, and aerosolized 

antimicrobial agents are used during exacerbations caused by infecting organisms and 

routinely for bacterial clearance and suppression.[92]  However, many additional 

therapies for CF now focus on influencing the hyperinflammatory state of the immune 

system.  Inhaled and oral corticosteroids, used in a multitude of other disease states for 

inflammation, are not actually recommended for CF.[92]  While these drugs can be very 

effective for chronic inflammatory disease states such as asthma, studies have shown 

that decline in FEV1 is not improved in CF patients, nor are there decreases in 

exacerbations in patients taking corticosteroids.[93, 94]  In addition, patients with chronic 

steroid use experienced glucose abnormalities, growth retardation, and cataracts.[95]  
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Oral nonsteroidal anti-inflammatory drugs (NSAIDs) have also been studied in patients 

with CF, mostly ibuprofen.  This drug must be dosed significantly higher than typically 

recommended, and must be given on a daily basis.  Studies have demonstrated slowed 

decreases in FEV1 compared to placebo controls, an effect that is dramatic for subjects 

less than 13 years of age.[96] Yet no changes in hospitalizations rates, an indicator of 

exacerbation, have been demonstrated.  However, studies from this group also suggest 

that sub-therapeutic levels of ibuprofen may actually exacerbate inflammation, and 

therefore recommends pharmacokinetic monitoring for each patient.  This 

recommendation makes chronic treatment of ibuprofen difficult for many patients.  

Another concern for long-term therapy with ibuprofen is the potential for renal damage 

and gastrointestinal toxicity; the study done was not powered to detect these effects.  

The limitations of these interventions leave a need for the development of effective anti-

inflammatory therapies to treat the hyper-immune response observed in CF. 

The latest class of drugs to be examined for its anti-inflammatory effects in CF is 

the macrolides.  These antimicrobials target the 50S ribosomal subunit in bacteria, thus 

disrupting protein translation.  Azithromycin (AZM) is the macrolide that is most often 

used, due to its reduced side effects, ease of administration, and broad spectrum.[97]  

AZM has activity against mainly gram negative bacteria, but also atypical organisms, like 

Legionella pneumonia, and some aerobic and facultative gram positive organisms, such 

as S. pneumonia; however it has no bactericidal activity against P. aeruginosa or S. 

aureus. [98, 99]  While AZM is a common therapeutic agent used to treat bronchitis, 

sinusitis, and other upper and lower respiratory infections, because of its spectrum of 

activity it is ineffective in treating many of the types of infections that CF patients are 

prone to.  Instead, AZM is employed as a long-term therapy for its effects on the immune 

system.  AZM is extensively partitioned into the cells, leaving serum concentrations low, 

and has a long half-life, which allows for daily or every other day dosing.[100]  In this 
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way, AZM is able to affect cell signaling of macrophages.  These drugs, especially AZM, 

are shown to have direct anti-inflammatory effects, including alterations in cytokine 

production profiles and changes in NF-κB nuclear translocation.[101]  AZM has minimal 

adverse effects and has not been associated with the issues found when using 

corticosteroids and NSAIDs for chronic treatment. 

To that end, continuous treatment with AZM has now been studied in multiple 

clinical trials.  Subjects treated with AZM have increased FEV1, decreased pulmonary 

exacerbations, and reported better quality of life compared to placebo controls.[50, 102]  

The first study by Saiman, et al, recruited subjects with CF who were colonized with P. 

aeruginosa.[50]  Patients receiving AZM for 168 days reported higher increases in FEV1, 

less incidence of exacerbation, and increased weight as compared to baseline at the 

end of the study compared to patients receiving placebo.  While antibacterial resistance 

is a concern for this treatment, Saiman, et al, showed in this study that treatment with 

AZM did not change resistance profiles in multiple bacteria compared to placebo control 

subjects.  The two groups had similar resistance rates of current infections and growth of 

new infections at the end of the trial, including MRSA, suggesting that AZM does not 

pose a significant threat toward inducing antibacterial resistance in this population.[50]   

While AZM was initially studied in patients who were already infected with P. 

aeruginosa, this group repeated their study in patients negative for P. aeruginosa 

colonization.[103]  Once again, they showed that AZM treatment over 168 days reduced 

the risk of exacerbation compared to placebo.  Here, AZM did not improve pulmonary 

function in this subset, but this study, like the previous, showed no changes in 

microbiology or in treatment-emergent microbiology.  This data was important to show 

that AZM is safe to use long-term in this cohort from a microbial resistance 

standpoint.[103]   



22 
 

 Equi, et al, performed a 15-month crossover trial with AZM treatment in pediatric 

patients with CF in 2002.[104]  Subjects received AZM or placebo for six months, 

followed by a two-month washout period, and then received the opposite therapy.  

Results showed that subjects required fewer days of oral antibiotic therapy when on 

AZM, suggesting AZM could reduce the incidence of exacerbations.  Though this study 

did not demonstrate a statistically significant effect on FEV1, it did show that FEV1 

improved on AZM but returned to baseline at the end of a washout period.  This provides 

some justification for the chronic dosing of the drug.  This study also showed no 

differences in sputum bacterial densities, which is further support that AZM does not 

affect microbial resistance.  Importantly, there were no subjective reports of side effects, 

and liver tests showed no evidence of toxicity. [104] 

 Finally, Wolter, et al, found that patients who received AZM for three months had 

decreased number of IV antibiotic courses, as well as decreased total numbers of days 

on IV antibiotic therapy.  This complements the study done by Equi, et al, to corroborate 

the evidence that AZM can reduce the number of exacerbations when given over the 

long term.  Subjects in this trial also reported significantly improved quality of life, 

assessed by the Chronic Respiratory Disease Questionnaire.[105]  Lastly, these 

subjects had reduced levels of CRP, a general marker of inflammation.[104] 

 While AZM is not bactericidal against P. aeruginosa, there is some evidence that 

it can affect the bacterium in other ways.  Quorum sensing gene production, a regulatory 

mechanism that allows the bacteria to coordinate growth, metabolism, and protein 

production based on density or growth, is disrupted by AZM.[106]  When sub-MIC levels 

of the drug are added to bacterial cultures, organisms undergo reduction in quorum 

sensing gene production and reduced motility.  Also through disruption of quorum 

sensing circuits, AZM blocks alginate and other biofilm component production and 

therefore prevents biofilm to aid the survival of bacteria grown in vitro and in vivo.[107, 
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108]  This was demonstrated both with susceptibility assays in cell culture and in 

pulmonary infection with P. aeruginosa in CFTR-/- mice.  Interestingly, AZM has been 

recently shown to affect some small RNAs upstream of the quorum sensing pathway, 

adding complexity to the impact of the drug on the ability of the bacteria to 

communicate.[109]  Together, these data suggest that, while the drug may not be acting 

directly to kill the bacteria in the CF population, long-term treatment may have some 

overall benefit in disrupting the bacterium’s ability to maintain high-density function.  

  

Azithromycin and Alternatively Activated Macrophages 

Because AZM is utilized in patients with CF for its anti-inflammatory properties, it 

is important to identify the effects of the drug on specific cells.  Published work has 

shown that AZM can affect the NF-κB inflammatory cascade in monocytes and bronchial 

epithelial cells.[110, 111]  However, these authors did not address how the monocytes 

are affected once they become activated into macrophages.  To extend these studies, 

our lab demonstrated that AZM treatment alters surface marker expression and cytokine 

production of macrophages; increasing MR, and decreasing CCR7.  AZM treatment 

increased the effector protein of AAMs, arginase, as well as switching the cytokine 

profile from IL-12 to IL-10 producing, in vitro (Figure 1.5).[112] Together, these data 

suggest that AZM is polarizing macrophages toward an alternatively activated 

phenotype. This is confirmed further, by evidence that AZM increases arginase in vitro 

and in vivo (Figure 1.6), and decreases iNOS, associated with CAM activity.[112]  

Preliminary data from our lab also shows that AZM decreases IKK-β, a molecule in the 

signaling cascade of the toll-like receptors.  When phosphorylated, IKK-β releases NF-

κB to translocate to the nucleus and begin transcription of inflammatory proteins.  

Importantly, in a study conducted by Fong, et al, IKK-β has also been shown to inhibit 

Stat-1, and may be decreasing the CAM effector proteins in this way.[113]   
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Our data, combined with this evidence of IKK-β/Stat-1 interactions, suggest that 

this may be the mechanism by which AZM can alter the polarization of macrophages.  

Furthermore, AZM could be resulting in full AAM function, upregulating ECM mediators 

and components.  If that is the case, and the AZM- polarized macrophages are 

functioning to increase fibrosis, the implications could be important.  As stated above, 

there are quite a few studies showing the association between AAM and fibrosis 

development in either mouse models or human disease.  If patients with CF have 

increased Th2-driven immune responses as their disease progresses, they have the 

natural propensity to have increased numbers of AAM in their pulmonary spaces without 

AZM treatment, an effect that our group also previously characterized and 

published.[114]  Adding another stimulus for AAM may not be beneficial in the long term.  

Alternatively, the increased presence of AAM may inhibit the hyperinflammatory 

response characteristic of the CF pulmonary response.  The full effects of the drug on 

the macrophage are unknown; therefore it is important to examine the full functionality of 

the AZM-polarized macrophage for long-term safety implications. 

To that end, in this project, we studied the pro-fibrotic potential of the AZM-

polarized macrophage.  This macrophage phenotype was examined for its effects on 

other cell types and the immune response to P. aeruginosa in general.  Because of the 

AAM-like properties of the AZM-polarized macrophages, and the fibrotic properties of the 

AAM, we proposed the following hypothesis for this project: AZM-polarized 

macrophages contribute to fibrosis by increasing the production of TGF-β and 

decreasing the production of MMP-9 in the context of P. aeruginosa infection. 

 As stated above, understanding the full mechanism of AZM is important.  The 

effects on the macrophage population could be wide ranging and could affect the way 

the macrophages interact with other immune cell types.  The following dissertation 

examines this interaction in detail. 
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Figure 1.5. AZM polarizes macrophages to an alternative phenotype in vitro.  
Macrophages were treated with INF-γ, with or without AZM.  After overnight incubation, 
LPS was added for stimulation.  In a), arginase activity was measured and normalized 
per µg protein and per 104 cells.  In b), IL-12 and IL-6 was measured from the 
supernatants by CBA.  Data is represented as mean ± SD.  Data were analyzed via one-
way ANOVA.  Significance of < 0.05 is indicated with *. 
© Copyright 2008, Oxford University Press.  All rights reserved. 

 

© Copyright 2010 American Society for Microbiology.  All rights reserved. 

Figure 1.6. AZM polarizes macrophages to an alternative phenotype in vivo.  
Macrophages were treated with INF-γ, with or without AZM.  After overnight incubation, 
LPS was added for stimulation.  Arginase activity was measured and normalized per µg 
protein.  Data is represented as mean ± SD.  Data were analyzed via two-way ANOVA.  
Significance of < 0.05 is indicated with *. 
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Figure 1.7. How molecules of interest are altered in CF pathology. Arginase has been 
shown to be increased in CF, reducing the amount of NO available to kill bacteria.[115] 
TGF-β is increased in patients with CF compared to healthy controls, causing increases 
of ECM products.[71] MMP-9 is increased in patients with CF compared to healthy 
controls, resulting in increased airway damage.[90] 
 

F. Project Overview 

 In order to determine whether AZM-polarized macrophages are affecting fibrosis 

through TGF-β and MMP-9 production, we employed three approaches.  First, we used 

an in vitro co-culture system to examine the direct effects of AZM-polarized 

macrophages on fibroblasts.  Using this system, we were able to examine the resulting 

fibrotic mediator production in response to stimulation with P. aeruginosa.  This model 

was used to examine cell-cell interactions and protein-protein interactions.  We also 

utilized inhibitors of molecules important in fibrosis mediation, in order to determine the 

mechanisms by which AZM is affecting the macrophage’s impact on fibrosis.  Secondly, 

we use a murine model to examine the role of AZM-polarized macrophages in the 

immune response to P. aeruginosa pneumonia.  We studied the immune response 

overall, as well as the interactions of the molecules identified as important from the cell 

culture results, including MMP-9 and fibronectin.  In this model, we were able to 

establish a lasting infection, isolating P. aeruginosa from the mice as late as 14 days 

after inoculation.  We also utilized genetically-engineered mice to examine AZM activity 
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and the importance of the AAM in both the response to P. aeruginosa infection and the 

subsequent fibrosis development.  Finally, this project incorporated a clinical study 

involving subjects with CF.  Sputum samples were collected from these patients, and 

concentrations of fibrotic proteins were measured and correlated to inflammatory 

markers and markers of alternative macrophage activation.  These factors were 

examined in patient groups stratified by both AZM therapy and P. aeruginosa infection.  

Results from the human study give up insights not only to how AZM is affecting 

macrophages in patients, but also which appear to be most important in terms of severity 

of disease. 

 The overarching hypothesis for this project is that AZM-polarized macrophages 

contribute to fibrosis by increasing the production of TGF- and decreasing production of 

MMP-9 in the context of P. aeruginosa infection.  Each approach to this study produced 

complementary results that allow for a better understanding of the role of AZM-polarized 

macrophages in the development fibrosis.  The co-culture model showed increased 

production of fibrotic mediators from cells treated with AZM, including TGF-β, MMP-9, 

and fibronectin.  When the mice infected with P. aeruginosa were examined, we found 

that those treated with AZM had increased concentrations of MMP-9 and fibronectin in 

the BAL, as well as increased accumulation of collagen.  The human study underlined 

the importance of the interaction between infection and AZM treatment, with increased 

arginase and TGF-β production in the sputum of those subjects both receiving AZM and 

positive for bacterial colonization.  This study also highlighted important relationships 

between these proteins and lung function. 

 

 

 

Copyright © Susan Elizabeth 2012 



28 
 

Chapter 2: Azithromycin-polarized macrophages increase fibrosis mediators in 

co-culture with fibroblasts 

A. Introduction 

 Alveolar macrophages are a component of the innate immune response, and 

responsible for being first line of airway defense for pulmonary infections.  The 

macrophages that are involved in bacterial killing and clearance are classically activated; 

these cells upregulate molecules such as inducible nitric oxide synthase (iNOS), which 

produces nitric oxide.  Nitric oxide, along with other products of CAMs, participates in 

bacterial killing in the lysosomes.[26]  These cells are traditionally activated by IFN-γ and 

a microbial trigger, such as LPS.  Conversly, AAMs function to coordinate debris 

clearance, repair, and tissue remodeling.[116, 117]  They produce arginase as a primary 

effector protein, in direct contrast to iNOS, which metabolizes the same substrate, L-

arginine, to urea and L-ornithine, which can then be converted to proline and 

polyamines. These molecules are then incorporated into collagen and fibronectin, key 

components in extracellular matrix.[27]  Further, arginase production has been 

associated with TGF-β activation, which also increases fibrotic mediators.[41]  This has 

been shown in multiple models of pulmonary repair.[41, 45]   

 MMP-9 is a protease, released from multiple cells, which is able to assist in 

turnover of the ECM by degrading proteins such as fibronectin and collagen.[75]  In this 

way, it is able to counteract the pro-fibrotic effects of TGF-β.  However, TGF-β is able to 

decrease expression of MMP-9 from monocytes, as a mechanism of reducing ECM 

turnover.[118]  Therefore, if AZM affects TGF-β, it is important to know if the drug will 

affect MMP-9 as well.  It is this set of effector proteins that this chapter’s work is focused 

on. 
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 Previous work in our lab has shown that AZM is able to polarize macrophages 

toward an alternatively activated-like phenotype.  When macrophages were treated with 

AZM in addition to LPS and IFN-γ, there was an alteration in the phenotype compared to 

macrophages treated only with LPS and IFN-γ.[112]  Macrophages which were treated 

with AZM demonstrated significantly reduced production of the inflammatory cytokines 

IL-6 and IL-12, as well as increased production of the anti-inflammatory cytokine IL-10.  

These AZM-treated macrophages had a shift in surface receptor expression, with 

increases in mannose receptor and CD23, and decreased expression of CCR7, a 

protein profile that is indicative of alternative phenotype.[27]  The cells treated with AZM 

also produced decreased amounts of the CAM effector protein iNOS compared to the 

cells treated with IFN-γ and LPS alone; the AZM-treated cells upregulated arginase, the 

effector protein of the alternative macrophage phenotype.  AZM was able to polarize 

these macrophages toward the alternative phenotype even in the presence of the 

classical cytokine IFN-γ[112]   

This alteration of macrophage function may be the means by which this drug is 

able to positively affect patient’s clinical outcomes.[114, 119]  CAMs produce molecules 

that are damaging the CF lung in response to the repeated and/or chronic infection in 

these patients, and AAMs have been shown to directly inhibit these inflammatory 

functions.[26, 32]  However, as mentioned above, CF patients are already primed to 

have an increase in AAMs, as they have increased concentrations of cytokines such as 

IL-4 and IL-13.[22]  This may be a compensatory protective mechanism as the disease 

severity progresses, in an attempt by the body to minimize the danger.  AZM-polarized 

macrophages have not been evaluated for the effects that they may exert upon other cell 

types involved in the remodeling process.  Therefore, it was important to investigate not 

only the anti-inflammatory response of the macrophage to the bacterium P. aeruginosa, 

but also the effect of these AZM-polarized AAMs on other cell types.  Fibroblasts are 
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important in the lung during remodeling process, and are a major cell type involved in 

the production of fibrotic mediators.  Therefore, we chose to examine these two types of 

cells in vitro in order to determine whether AZM-polarized macrophages are able to 

induce production of fibrotic mediators from fibroblasts.  

Lastly, we sought to determine a mechanism by which AZM affects the shift in 

polarization in the macrophages.  Previous work in our lab has identified alterations in 

the NF-κB signaling cascade as a possible mechanism for the decreased inflammatory 

cytokine production already mentioned.[112]  One of the proteins altered in this cascade, 

IKK-β, was identified as a potential target for AZM during the polarization of the 

macrophage.  To this end, we investigated whether the increase in fibrosis was also 

occurring through this molecule.  

 For these experiments, macrophages and fibroblasts were co-cultured together, 

according to the design in Figure 1 below.  The effect of AZM in an environment that 

would otherwise stimulate toward a CAM phenotype was studied.  As discussed 

previously, TGF-β and MMP-9 are both molecules that have been associated with 

diseases in which fibrosis is a pathologic component.[40, 77]  TGF-β signaling 

upregulates fibrotic proteins, such as fibronectin, from fibroblasts,[65], while MMP-9 can 

degrade these same molecules and result in ECM turnover.[85]  These molecules have 

also been associated with the AAM phenotype in a model of fibrotic disease.[42]  

Therefore, we postulated that TGF-β and MMP-9 may be important molecules in the 

mechanism of AZM’s effect on the macrophage.  We hypothesized that AZM-polarized 

macrophages induce ECM buildup during P. aeruginosa infection by increasing 

production of TGF-β and MMP-9.   
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Figure 2.1. Schematic of experimental methods used for the co-culture experiments. 

 

B. Materials and Methods 

Fibroblast/Macrophage Co-Culture System 

The mouse cell lines NIH/3T3 and J774A.1 (ATCC, Manassas, VA, USA) were 

used for the co-culture system.  The NIH/3T3 line (ATCC #CRL-1568) is a fibroblast cell 

line originally obtained from embryonic cultures of NIH Swiss mice.[120]  The J774 

(J774A.1, ATCC #TIB-67) cell line is an immortalized macrophage cell line derived from 

BALB/cN adult mice.[121]  Cells were grown in RPMI 1640 media (Invitrogen, Carlsbad, 

CA, USA) supplemented with 5% fetal calf serum and 2x10-5M 2-mercaptoethanol at 

37°C and 5% CO2.  At time 0 of the experiment, NIH/3T3 cells were added to culture 

treated 6 well plates at a density of 2.5 X 105 cells/ml, and allowed to incubate overnight.  

The media was then removed and replaced with 5 mL of medium along with 2.5 X 105 

J774 cells/5ml, and again allowed to incubate overnight.  The next morning, cells were 

stimulated by adding interferon-γ (R&D systems, Minneapolis, MN, USA) (IFNγ) 

(100ng/mL) and 2.5 X 105 P. aeruginosa, of the strain PA39018, a non-biofilm producing 

strain obtained from ATCC (Manassas, VA, USA).  Certain wells were additionally 
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treated with 30μM azithromycin (Sigma Aldrich, St. Louis, MO, USA) (AZM).  The 

optimal concentration of AZM had already been determined, based on dose response 

studies, as 30μM is enough to elicit the maximum response of the drug – with regard to 

arginase and mannose receptor expression.  Cells were incubated and harvested after 

0, 6, 12, 24, or 48 hours.  At these time points, cells were dislodged via scraping and 

centrifuged, and 1mL of supernatant was saved for collagen and TGF-β analyses.  Cells 

were washed, enumerated with trypan blue staining to assess viability, and aliquots were 

taken for the arginase activity assay and qRT-PCR.  Supernatants and cells were frozen 

at -80°C for later analysis.  Cells were additionally suspended in 150μl of RIPA buffer 

with Roche Mini-tablet protease inhibitor cocktail for lysis upon thawing, and aliquots of 

cells were frozen in RNAlater (Applied Biosystems, Foster City, CA, USA). 

 

Inhibitor Experiments 

In a subset of experiments, neutralizing antibodies and/or small molecule 

inhibitors were used to mechanistically investigate the role of effector proteins in the 

fibrosis process and the impact AZM has on these processes.  Materials used included: 

S-(2-boronoethyl)-L-cysteine  (BEC), used at 500μM, was utilized to inhibit arginase 

activity.   TGFβ-1,2,3 neutralizing antibody (R&D systems, Minneapolis, MN, USA) was 

used at 0.25μg/mL, as recommended by the company.  MMP-9 inhibitor SB 3CT (Enzo 

Life Sciences, Farmingdale, NY, USA), was used at 600nM, which had been determined 

by other groups to be the concentration to specifically block MMP-9 and no other MMPs. 

[122]  Lastly, the IKKβ inhibitor IKK16 (Tocris Biosciences, Ellisville, MO, USA) was used 

at 100nM, which was determined through previous experiments to optimally inhibit 

arginase production by the macrophages. 
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Arginase Activity 

Arginase activity was quantified by measuring the conversion of L-arginine to 

urea [123].  10mM MnCl2 in 50mM Tris-HCl was added to the lysed sample and the 

mixture was then incubated at 55°C to activate the arginase enzyme.  L-arginine was 

then added and samples were incubated overnight at 37°C.  Each reaction was 

terminated by the addition an acid solution.  The colorometric indicator 9% alpha-

isonitrosopropiophenone (ISPF) in 100% ethanol was then added to each tube, heated 

to 95°C, and the OD of each sample was read using a 490nm filter.  Readings were 

compared to a standard curve of known urea concentration.  One unit of arginase 

activity converts 1μmole of L-arginine to urea per minute.  Values were normalized to 

total protein concentration as assayed by the bicinchoninic acid protein assay (BCA) 

(Pierce Biotechnology, Rockford, IL, USA). 

 

TGF-β Activity 

 Active TGF-β in cell co-culture supernatants were analyzed by ELISA using the 

TGFβ1 Emax ImmunoAssay System (Promega, Madison, WI, USA).  Samples were 

diluted in PBS per manufacturer’s instructions.  Plates were coated with a monoclonal 

antibody specific for bioactive TGFβ, and samples were added to the wells along with a 

standard curve prepared using supplied TGFβ1 standard.  Polyclonal anti-TGFβ1 

antibodies were applied, followed by washing and incubation with horseradish 

peroxidase conjugate.  Development solution was applied to the samples, and the OD 

readings were obtained at 450nm and compared to the TGFβ standard curve to find the 

concentration of the active form of TGFβ in each test sample, then normalized to cell 

count.  
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qRT-PCR 

 RNA was isolated using RNeasy mini kits (Qiagen, Valencia, CA, USA) and 

quantified using a Nanodrop 2000 (Thermo Scientific, Wilmington, DE, USA).  Reverse 

transcription was performed on equal amounts of RNA utilizing Taqman Reverse 

Transcriptase Reagents (Applied Biosystems, Foster City, CA, USA) according to 

manufacturer’s protocols.  Quantitative real-time PCR was initiated utilizing Taqman 

gene expression arrays for murine Tgfb, MMP-9, and GAPDH using an ABI Prism 7000 

(Applied Biosystems, Foster City, CA, USA). 

 

ELISA assay 

Concentrations of effector proteins of interest in cell culture supernatants were 

quantified by indirect ELISA.  Samples were diluted in coating buffer and incubated at 

4°C overnight for adherence to the ELISA plate.  Wells were blocked, then incubated 

with antibodies specific to MMP-9 (Abcam, Cambridge, MA, USA) or fibronectin (Santa 

Cruz Biotechnology, Inc, Santa Cruz, CA, USA), followed by an anti-rabbit HRP 

conjugated secondary antibody (Millipore, CA, USA). Wells were analyzed by OD 

reading at 450nm, using OptEIA detection reagents (BD, CA, USA).  Readings were 

compared to a standard curve using MMP-9 or fibronectin recombinant protein. 

 

Western Blot 

 Cell supernatants or cell lysates were run with β-mercaptoethanol, in denaturing 

conditions, on 10% SDS-PAGE gels, and then transferred to PVDF membrane at 100V 

for 1 hour. Membranes were blocked in 5% dry milk or bovine serum albumin (BSA), in 

the case of phospho-antibodies in TBS for at least four hours. Primary antibodies were 

diluted 1:1000 in 1% dry milk or BSA in TBS, and incubated overnight. Blots were 
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washed and incubated for two hours at room temperature in secondary-HRP conjugate 

at a 1:4000 dilution.  Signal was detected using Pierce ECL Western Blotting Substrate 

(Thermo Scientific, Rockford, IL, USA). Primary antibodies used were specific for Smad2 

and pSmad2 (Cell Signaling Technology, Boston, MA, USA) and Collagen I and 

Collagen III (Abcam, Cambridge, MA, USA). Secondary antibodies used were goat anti-

rabbit HRP conjugated (Millipore, CA, USA), and goat anti-mouse HRP conjugated (BD 

Pharmingen, San Diego, CA, USA). 

 

Statistical Analysis 

 Results are reported as mean ± SD and compared using GraphPad Prism 

(GraphPad Software, La Jolla, CA, USA).  Data were compared via one- or two-way 

ANOVA where appropriate, followed by Bonferroni’s post-test for individual comparisons.  

Differences were deemed statistically significant at a p value <0.05. 

 

C. Results 

Arginase Activity 

The first parameter analyzed in the co-culture system was arginase.  Previously 

we have shown that azithromycin can polarize macrophages exposed to IFN-γ to display 

characteristics of alternative activation when stimulated with LPS isolated from E. 

coli.[112]  We observed a significant increase in arginase concentrations in cell lysates 

after 24 (p<0.01) and 48 (p<0.01) hours of bacterial stimulation in cells treated with 

azithromycin, suggesting an increase in alternatively activated macrophage polarization 

(Figure 2.2a).  Arginase concentrations predictably decreased when the organism was 

introduced, as this shifts macrophages toward a pro-inflammatory state.  Exposure to 

azithromycin caused stabilization in this decrease in arginase production, so that by 24 
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hours the concentration of arginase rebounded to a significantly higher level compared 

to the control wells.  Furthermore, when assessed with Trypan blue staining, there was 

no statistically significant impact upon cell number or viability between azithromycin-

treated and the control cells (Figure 2.2b). Therefore, this suggests that azithromycin is 

able to polarize macrophages to an alternative-like phenotype in the presence of 

fibroblasts when stimulated with P. aeruginosa.  This data confirms that the drug exerts 

similar effects on macrophage polarization using this co-culture design that we reported 

previously for J774 macrophages cultured alone.  While the differences in arginase 

production are small, data discussed later in this chapter indicate the they are likely 

biologically relevant. 

 

  

Figure 2.2. Azithromycin increases arginase production in macrophages when co-
cultured with fibroblasts.  NIH/3T3 and J774 cells were cultured together overnight with 
IFNγ with or without 30μM azithromycin (AZM), and stimulated the following day with P. 
aeruginosa (PA).  (a) Cells were harvested at 0, 6, 12, 24, and 48 hours, and arginase 
activity, a measure of arginase concentration, was assessed in cell lysates.  (b) Cell 
viability was determined using Trypan blue staining and manual counting. AZM does not 
significantly affect cell viability, and does not appear to be cytotoxic at 30μM. Samples 
were run in triplicate, and data is shown as mean ± SD.  Data is representative of 3 
replicated experiments, and was analyzed using one-way ANOVA with Bonferroni’s 
post-test. ** indicates a p value of < 0.01. [124] 
 
 

TGF-β 
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Because arginase and TGF-β have been correlated in models of pulmonary 

fibrosis, [41, 125] we measured active TGFβ concentrations in the co-culture 

supernatants, expecting an arginase-induced increase in production of TGFβ from the 

alternatively polarized macrophages.  Supernatants from co-culture conditions were 

measured for TGF-β activity using the TGF-β1 Emax ImmunoAssay System (Promega, 

Madison, WI, USA).  Samples were run neat to determine endogenous active TGF-β and 

acid-treated, to determine the amount of total TGF-β present.  Total concentrations were 

increased at 48 hours (p < 0.01) in cells treated with AZM (Figure 2.3a).  Active TGFβ 

concentrations in the supernatants were increased in the azithromycin-treated group, 

Figure 2.3b, after 24 and 48 hours of stimulation as compared to baseline (with p values 

<0.05 and < 0.01 respectively).  Cells treated with IFN-γ and LPS had concentrations of 

active TGFβ that fell below baseline by 48 hours after stimulation. 

 When the ratio of active/total TGF-β is plotted over time, AZM treated cells had 

higher ratios compared to controls at 12, 24, and 48 hour timepoints (Figure 2.3c).  The 

difference over time comparing each treatment had an overall p value of 0.01.  This 

shows that the TGF-β that is present is activated more readily in the cells that had the 

additional treatment of AZM.   

 In order to determine if AZM was only affecting activation, as opposed to 

production, of TGFβ, we additionally assessed Tfgβ gene expression via qPCR over 

time after P. aeruginosa stimulation (Figure 2.3d).  Relative to time 0, Tfgβ mRNA 

expression at 6 hours increased to a higher degree in the azithromycin-treated cells than 

that observed in the absence of azithromycin.  Following this, there was a down-

regulation of Tfgβ expression in both groups.  The azithromycin-treated cells maintained 

higher levels of mRNA throughout the experiment, although differences did not reach 

statistical significance.  This result, in conjunction with higher activated TGFβ 
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concentrations (Figure 2.2b), indicates that azithromycin is likely affecting production of 

the protein, but does not rule out the possibility that in vitro activation is also influenced. 

Because arginase and TGF-β have both been increased in other studies of AAM 

[45], we wanted to determine whether the effect on TGF-β activation was a result of the 

increased arginase production induced by AZM treatment.  To do this we utilized the 

small molecule inhibitor BEC, which has the ability to inhibit arginase activity.[126]  

When BEC was added to the co-culture at a concentration of 500μM, total TGF-β 

concentrations were not changed by arginase inhibition (Figure 2.3e). However, 

activated TGF-β concentrations induced by AZM were reduced in cells treated with BEC 

(Figure 2.3f).  As expected, the cells treated with IFN-γ, LPS, and AZM had increased 

concentrations of active TGF-β at the 24 hour timepoint, p < 0.05, as in the previous 

experiments.  The result of this experiment confirms previous studies associating 

arginase and TGF-β in models of pulmonary injury and repair, although other studies 

have not employed the use of arginase inhibition.  Altogether these data show that AZM 

alters TGF-β mRNA transcription as well as protein translation and activation, and that 

this is dependent upon the ability of AZM to increase arginase.   
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Figure 2.3. Azithromycin increases active TGF-β and Tgfβ mRNA in the co-culture 
system.  Macrophages were co-cultured with fibroblasts and treated with IFNγ overnight 
then stimulated with LPS in the presence or absence of azithromycin (AZM).  Cells and 
supernatants were collected at hours 6, 12, 24, and 48 after the addition of LPS.  (a) 
Total TGFβ concentrations in the culture supernatant were measured by the TGF-β1 
Emax ImmunoAssay System.  (b) Activated TGF-β concentrations in the culture 
supernatant as measured by TGFβ1 Emax ImmunoAssay System are graphed over time 
for the azithromycin treatment and non-treatment groups.  (c) Ratios of active to total 
TGF-β were determined, normalized as compared to time zero, and graphed over time.  
(d) qPCR analysis of Tgfβ mRNA was normalized to GAPDH expression in each sample, 
and then normalized to expression of Tgfβ at time zero.  (e) Total TGF-β concentrations 
and (f) active TGF-β concentrations were measured in the same conditions as the upper 
graphs, but with the additions of the arginase inhibitor BEC.   Data was analyzed using 
two-way ANOVA with Bonferroni’s post-test.  Significance is indicated for p values < 0.05 
(*), < 0.01 (**), and < 0.001 (***), and p < 0.05 overall between groups (†).[124] 
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MMP-9 

MMP-9 is a protease that functions as an effector important in the turnover of 

ECM through its ability to cleave fibronectin and collagen. It is also capable of directly 

activating TGF-β.[76, 77, 127]   This is accomplished by cleaving away TGF-β from its 

latent protein while still bound to the matrix, at which point TGF-β is released for 

downstream initiation of fibrogenesis.[55]  Further, MMP-9 is capable of directly 

degrading fibronectin, collagen III, and collagen IV.[76]  Other macrolides, notably 

erythromycin, have been shown to cause reduced levels of MMP-9 protein production, 

making it important to study the effect of AZM on this molecule as well.[128]  Therefore, 

we examined MMP-9 using our macrophage/fibroblast co-culture experiment.  

Macrophages and fibroblasts were co-cultured in the presence or absence of P. 

aeruginosa, azithromycin, and cytokine treatment (IFN-γ or IL-4/IL-13), and supernatants 

were collected 4 hours after exposure to the bacteria.  Figure 2.4a shows that MMP-9 

secretion was significantly increased at 4 hours by the addition of azithromycin (p 

<0.001), even in the absence of cytokine treatment.  Cells exposed to IFN-γ, P. 

aeruginosa, and azithromycin produced concentrations of MMP-9 that were significantly 

higher than cells treated with azithromycin alone (p <0.01), the CAM control condition of 

IFN-γ plus P. aeruginosa (p <0.01), and the AAM control condition of IL-4/13 plus P. 

aeruginosa (p<0.01).  To further examine the modulation of MMP-9 expression in the 

presence of azithromycin, the co-culture was then treated with conditions to induce a 

CAM phenotype (IFNγ plus P. aeruginosa), both with and without azithromycin, and 

analyzed over time.  While cells began with similar levels of MMP-9 in the supernatants, 

by 12 hours the concentration had dropped to levels that would be maintained through 

72 hours (Figure 2.5a).  The steady-state level of MMP-9 was significantly higher in the 

cells treated with azithromycin.  A similar trend was found when mRNA expression of 

MMP-9 was determined under these conditions at earlier timepoints.  Azithromycin 
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treatment prevented the decrease in MMP-9 mRNA expression over time in the first 6 

hours of cells treated with IFNγ and P. aeruginosa (Figure 2.5b).  Taken together, these 

results suggest that while azithromycin eliminated the transient decrease in MMP-9 

production induced by the bacterium, the production to degradation ratio of MMP-9 was 

thereafter maintained between the 2 conditions.  We then examined the impact of 

azithromycin exposure upon MMP-9 secretion from each individual cell line.  The drug 

dramatically increased the concentration of MMP-9 in the supernatant of the J774 

macrophages, with a statistically significant difference at the 24 hour timepoint (Figure 

2.5c).  While production of MMP-9 from the fibroblast cell line was high (Figure 2.5d), 

results were inconsistent across experimental timepoints as to the impact of 

azithromycin directly on this cell type.  These results suggest that the ability of 

azithromycin to act requires interaction between these 2 cell types. 

       

Figure 2.4. Azithromycin increases MMP-9 protein concentration.  (a) Macrophages 
were co-cultured with fibroblasts and treated with INFγ, IL-4/IL-13, or media alone 
overnight.  At time 0, azithromycin and/or P. aeruginosa (PA) were added, and the cells 
were incubated for 4 hours.  Supernatants were collected to measure MMP-9 protein 
concentrations by indirect ELISA.  Data was analyzed with one-way ANOVA with 
Bonferroni’s post-test.  Significance is indicated for p value < 0.001 (***). 
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Figure 2.5. Azithromycin increases MMP-9 protein and mRNA expression.  (a) Co-
culture cells were treated with IFNγ overnight and stimulated with PA in the presence or 
absence of azithromycin (AZM).  Cells and supernatants collected at hours 0, 6, 12, 24, 
and 48. Supernatants were analyzed for MMP-9 protein concentration via indirect 
ELISA.  (b) Co-cultured cells were treated as in (a), but harvested at earlier timepoints to 
measure mRNA for MMP-9.  Cells were collected at timepoints 0, 15 min, 30 min, 1 
hour, 3 hours, and 6 hours after the addition of PA, to determine the impact of 
azithromycin treatment.  Single cell controls were treated similarly to measure MMP-9 
concentration in (c) J774 macrophages alone and (d) NIH3T3 fibroblasts alone.  All data 
was analyzed with two-way ANOVA with Bonferroni’s post-test.  Significance is indicated 
for p values < 0.05 (*), < 0.01 (**), and < 0.001 (***), and p < 0.05 overall between 
groups (†). 

 

Fibronectin 

Fibronectin is a protein incorporated into the ECM during the process of 

fibrogenesis, remodeling, and scar formation.  TGF-β has been shown in other models to 

increase the production of fibronectin [129].  Therefore, fibronectin concentrations were 

examined as an endpoint for ECM increase in the co-culture model.  While fibronectin 
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was measured in the supernatant samples, it was found to be already incorporated into 

the ECM in the tissue culture plate, which was then spun down with the cell after tissue 

harvest.  Fibronectin was therefore measured with the cellular lysates preparations.  At 

specified timepoints, cells were harvested from tissue culture wells, pelleted via 

centrifugation, and then lysed.  Fibronectin was then quantified by indirect ELISA and 

normalized to total protein concentration for each condition.  Upon examination in the co-

cultured cells over time, significantly higher fibronectin concentrations were observed at 

12 and 24 hours after stimulation with LPS in cells exposed to IFN-γ plus azithromycin 

as compared to IFN-γ alone (p<0.001 and p<0.05, respectively, Figure 2.6a).  Most of 

the fibronectin in the cultures was found aggregated within the cell pellet, as opposed to 

suspended in the supernatant, suggesting that fibronectin had already been incorporated 

into the matrix component in the extracellular portion of the wells.  The drug had no 

effect on fibronectin concentration when either J774 or NIH/3T3 cells were separately 

cultured and stimulated with LPS (Figures 2.6b and c).  This data suggests that 

azithromycin is affecting the control that the macrophages exert upon the fibroblasts in 

the model.  Furthermore, the addition of BEC reduced the increase in fibronectin 

production induced by AZM (Figure 2.6d).  This demonstrates that the increase in 

arginase caused by addition of AZM is stimulating fibronectin upregulation, likely through 

TGF-β activation.  
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Figure 2.6. Azithromycin increases fibronectin concentration.  Macrophages and 
fibroblasts were co-cultured and treated with IFNγ and LPS, with or without 30μM 
azithromycin (AZM) from time zero.  Cells and supernatants were collected at hours 0, 6, 
12, 24, and 48 hours after stimulation. (a) Fibronectin concentration in the cell pellet, as 
a measure of protein incorporated into the matrix, was determined by indirect ELISA and 
depicted over time.  Macrophages (b) or fibroblasts (c) cultured alone and treated as in 
(a) with fibronectin concentration shown over time post-stimulation with LPS. Fibronectin 
concentration is also decreased with the addition of the arginase inhibitor BEC (d).  
Results are normalized to μg protein in each sample.  All data was analyzed with two-
way ANOVA with Bonferroni’s post-test. Significance is indicated for p values < 0.05 (*), 
< 0.01 (**), and < 0.001 (***), and p < 0.05 overall between groups (†).[124] 
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TGF-β Neutralization 

Because TGF-β has the ability to increase the production of ECM components, 

we hypothesized that the effect of AZM on fibronectin was caused by the drug’s ability to 

increase active TGF-β concentrations.  Therefore, we conducted a TGFβ neutralization 

experiment to determine if loss of activity would affect fibronectin production from the co-

cultured cells.  The anti-TGFβ antibody utilized for this purpose selectively binds to the 

activated form of the protein only.  The neutralizing antibody was added to select wells of 

co-cultured cells at the same time as LPS.  Fibronectin and MMP-9 concentrations were 

again assessed in the co-culture cell pellets and supernatants, respectively, over time.  

While fibronectin concentrations were increased by azithromycin at 24 and 48 hours 

compared to the control condition (p <0.001 and p < 0.05, respectively, Figure 2.7a), the 

addition of anti-TGFβ antibody resulted in fibronectin concentrations that were nearly 

identical between the treatment groups, ablating the effect of the drug (Figure 2.7b).  

MMP-9 concentrations again decreased over time after stimulation with LPS, with 

azithromycin causing MMP-9 concentrations to stabilize at a higher level than that of the 

control condition (Figure 2.7c).  The addition of the TGFβ-blocking antibody did not 

change the impact of azithromycin treatment on MMP-9 concentration, as the MMP-9 

levels in the supernatants mirrored what was observed in the wells with functional TGFβ 

over time (Figure 2.7d).  To ensure that the neutralizing antibody was indeed effective in 

blocking TGFβ function, we performed a Western Blot to determine the impact of 

neutralization on Smad2 activation.  Smad2 is the main cell signaling molecule that is 

phosphorylated when TGFβ binds to its receptor.  Indeed we observed that Smad2 

phosphorylation was inhibited by the addition of the neutralizing antibody (Figure 2.7e).  

Taken together, these results suggest that the ability of azithromycin to impact MMP-9 

concentration is independent of its effect on TGFβ activation, while the drug’s ability to 

increase fibronectin concentration does rely on increases in TGFβ activation. 
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Figure 2.7. TGF-β neutralizing antibody reverses the ability of azithromycin to affect 
fibronectin but not MMP-9.  Macrophages and fibroblasts were co-cultured, treated with 
INFγ, and stimulated with P. aeruginosa (PA), with or without azithromycin (AZM).  Cells 
and supernatants were harvested over time to measure fibronectin with (a) and without 
(b) the addition of TGFβ neutralizing antibody by indirect ELISA.  MMP-9 concentrations 
were measured in culture over time with (c) and without (d) the addition of TGFβ 
neutralizing antibody by indirect ELISA.  (e) TGFβ-neutralizing antibody’s effect upon 
phosphorylation of Smad2.  Smad and pSmad expression at 0 and 48 hours of culture 
(with β-actin as a loading control) in cells co-cultured with LPS, IFNγ, and azithromycin.  
Significance is indicated for p values < 0.05 (*), < 0.01 (**), and < 0.001 (***), and p < 
0.05 overall between groups (†). 
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Collagen 

In addition to fibronectin, TGF-β can coordinate the production of the ECM 

protein collagen.[129]  For that reason, we also examined the amounts of collagen I and 

III by Western blot to determine whether AZM-induced changed in TGF-β activity would 

influence collagen production in the co-culture.  We hypothesized that AZM would have 

the same effect on the different forms of collagen, increasing their production as it did 

fibronectin.  However, western blot analysis determined that collagen I was actually 

decreased by the addition of AZM when compared to cells that only received IFN-γ and 

LPS.  Additionally, the TGF-β neutralizing antibody did not affect the signal detected 

(Figure 2.8a).  Likewise, when AZM was added to the co-culture, collagen III 

concentration was not altered compared to cells that were treated with IFN-γ and LPS 

alone.  However, when TGF-β neutralizing antibody was added to INF-γ, LPS, and AZM, 

the amount of collagen III was increased in cell lysates (Figure 2.8b), suggesting that 

TGF-β signaling may be causing a decrease in collagen protein production in the co-

culture system.  

                     

Figure 2.8. The effect of AZM and TGFβ-neutralizing antibody upon collagen I and 
collagen III expression. Western blots of collagen I (a) and collagen III (b) expression at 
0 and 48 hours of culture in cell lysates co-cultured with LPS, IFN-γ, and azithromycin 
and TGF-β neutralizing antibody, as indicated below.  Results are representative of 
multiple experiments. 
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MMP-9 Inhibition 

Because the increase in MMP-9 concentrations was not dependent on TGF-β as 

demonstrated in the TGF-β neutralizing experiments, we hypothesized that AZM may 

actually be increasing MMP-9 first, which is then activating TGF-β directly.  MMP-9 has 

been shown to have this ability. [127]  In order to determine if this is the case, an MMP-9 

inhibitor, SB3CT (Enzo Life Sciences, Farmingdale, NY, USA), was added to the co-

culture at 600nM, which is a concentration specific for inhibiting MMP-9. [122]  In these 

experiments, when the levels of active TGF-β were measured by the TGF-β1 Emax 

ImmunoAssay System, there was no decrease in TGF-β activation with MMP-9 

inhibition, as would be expected if our hypothesis was correct.  In fact, TGF-β activation 

was even higher in those cells treated with the MMP-9 inhibitor added, at the 48 hour 

timepoint Figure 2.9b  Further, fibronectin concentrations were decreased with the 

addition of the MMP-9 inhibitor, at 24 and 28 hours, (p < 0.0001 and < 0.001, 

respectively, Figure 2.9c). This is the opposite result expected, considering that 

activated TGF-β is increased in the same conditions, and data above has shown that 

fibronectin is directly dependent on TGF-β.   The data shows that MMP-9 is not the 

major mechanism by which TGF-β is being activated in this co-culture system, but also 

suggests that MMP-9 may actually be involved in some signaling mechanisms whereby 

AZM is increasing production of fibronectin in concert with activated TGF-β.  
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Figure 2.9. MMP-9 inhibitor reverses ability of azithromycin to increase fibronectin but 
does not inhibit activation of TGF-β.  Macrophages and fibroblasts were co-cultured, 
treated with INFγ, and stimulated with LPS, in the presence or absence of azithromycin 
(AZM) 30μM.  Cells and supernatants were harvested over time to measure fibronectin 
with (a) addition of the MMP-9 inhibitor SB3CT by indirect ELISA.  Likewise, TGF-β 
activity was measured over time with (c) addition of the MMP-9 inhibitor SB3CT using a 
TGF-β1 Emax ImmunoAssay System.  Significance is indicated for p values < 0.01 (**),< 
0.001 (***), and < 0.0001 (****). 
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IKKβ Inhibition 

 

Figure 2.10. Activation of the NF-κB signaling cascade.  LPS binds to TLR4, eventually 
leading to activation of the IKK complex.  Upon activation of the IKK complex, it 
phosphorylates IκB, leading to the destruction of IκB.  IκB is bound in its resting state to 
NF-κB, preventing it from translocating to the nucleus of the cell.  When NFκB 
translocates to the nucleus, it binds to DNA leading to the transcription of genes 
associated with inflammation. [124]  
 

While the experiments utilizing the TGF-β neutralizing antibody and the MMP-9 

inhibitor identified fibrotic mechanisms affected by AZM, we also wanted to investigate 

the mechanism by which the drug affects macrophage polarization.  It has been shown 

that AZM has anti-inflammatory affects through decreased NF-κB signaling and 

subsequent downregulation in inflammatory cytokine production.[101, 111]  Yet these 

studies do not investigate the entire NF-κB signaling cascade.  Previous work in our lab 

has shown that AZM alters multiple proteins in this signaling cascade.  When TLR-4 is 

stimulated by LPS, IKKβ is phosphorylated, causing phosphorylation of IκB, which 
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ultimately allows NF-κB to translocate to the nucleus to initiate transcription of 

inflammatory cytokines (Figure 2.10).  Treatment with AZM decreases NF-κB activation 

over time, while increasing IKKβ protein production.  These changes are most dramatic 

at the 10min timepoint post LPS-stimulus, as detected by protein concentration on 

Western blot.  Importantly, IKK-β has been demonstrated to exhibit cross-talk with the 

Stat-1 pathway, decreasing Stat-1 phosphorylation.[113]  This could have important 

implications as to the reason why AZM alters the polarization of macrophages.  

Therefore, we hypothesized that this is the mechanism by which AZM is affecting 

macrophage polarization.   

To confirm this hypothesis, we added the IKKβ inhibitor, IKK16, to macrophages 

and fibroblasts.  IKK16 is a small molecule inhibitor with specificity to the beta form of 

IKK.  Inhibition of IKKβ will result in inhibition of NF-κB downstream (Figure 2.10), by 

reduced degradation of IκB.  Previously, we had identified a target concentration for 

IKK16. We had found that when the cells were treated with either IFN-γ and AZM, or IL-4 

and IL-13, and stimulated with LPS, the addition of IKK16 blunted the increase in 

arginase production induced by AZM when added to cells treated with INF-γ and LPS.  

IKK16 was unable to block arginase upregulation in cells treated with IL-4/13, the 

traditional way to stimulate the alternative macrophage.[27]  Therefore, IKK-β inhibition 

appears to be blunting the effects on arginase only through AZM, which strongly 

supports our hypothesis that IKK-β is involved in the mechanism by which AZM shift 

macrophage polarization.   

To expand our investigation of this mechanism, we hypothesized that the 

inhibition of macrophage polarization by IKK16 would also inhibit downstream fibrosis 

development in the co-culture system.  Therefore, the inhibitor was incubated with first 

fibroblasts alone, and then the cells in co-culture, with cells treated with IFN-γ, AZM, and 
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stimulated with LPS.  Fibroblasts alone (Figure 2.11a) did not show an increase in 

arginase activity in response to AZM until after 48 hours of exposure.  This was 

significantly different than the response from macrophages, which began to increase 

arginase production while exposed to AZM in response to LPS stimulation within 6 

hours.  However, the increase of arginase production in fibroblasts was blunted by the 

addition of IKK16.  Co-culture cells (Figure 2.11b) had increases in arginase activity after 

24 and 48 hours of incubation when treated with IFN-γ, LPS, and AZM compared to cells 

treated with IFN-γ and LPS alone; IKK16 added to cells treated with AZM achieved a 

statistically significant reduction in arginase activity at both 24 and 48 hours (all p values 

< 0.0001).  This suggests that increasing IKKβ activation likely plays a role in the 

mechanism by which AZM is affecting these cell types. 

 

Figure 2.11. Arginase activity in the presence of an IKKβ inhibitor. NIH3T3 fibroblasts 
were cultured alone (a), and J774 macrophages were co-cultured with NIH3T3 
fibroblasts (b), and both were stimulated overnight with IFN, AZM, and the IKKβ inhibitor 
IKK-16.  Cells were then stimulated with LPS up to 48 hours.  Cells were then lysed, and 
lysates were utilized for the arginase assay.  Statistical analysis was performed with a 
one way ANOVA with Bonferroni’s post-test.  Arginase samples were run in triplicate, 
and data represents mean ± SD.   
 

To determine if downstream markers of fibrosis were reduced by the inhibition of 

IKKβ, TGF-β activation, and MMP-9 and fibronectin concentrations were measured in 

the co-culture treated with IKK16.  Both TGF-β total concentrations and activation were 

increased by addition of AZM to IFN-γ and LPS, but this effect of AZM was blocked at 24 
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hours (Figure 2.12a,b), by the addition of the inhibitor of IKK-β, compared to cells that 

were not exposed to inhibitor (Figure 2.12a,b), although this trend did not hold true at 48 

hours.  The concentration of MMP-9 was increased by AZM at 24 hours (p < 0.0001), an 

effect that was again blocked by IKK16.  Although the level of MMP-9 was not increased 

by AZM at 48 hours compared to the control conditions, the concentrations of MMP-9 in 

the sample treated with AZM+IKK16 were lower than the concentration in the condition 

with only AZM (p < 0.0001).  Fibronectin production was not increased by AZM until 48 

hours of exposure, at which point the addition of IKK16 blunted the effect of AZM (p < 

0.05).  These data taken together suggest a mechanism by which AZM is acting through, 

but identifies a pathway by which this may be occurring, and reverses the effect by the 

addition of an inhibitor. 

  


Figure 2.12. IKK16 inhibits TGF-β activation and MMP-9 and fibronectin increases 
induced by AZM.  Macrophages and fibroblasts were co-cultured, treated with INFγ, and 
stimulated with LPS, in the presence or absence of azithromycin (AZM) 30μM.  Cells and 
supernatants were harvested over time to measure TGF-β total (a) and active 
concentrations (b) by TGF-β1 Emax ImmunoAssay System , and MMP-9 (c) and 
fibronectin (d) by indirect ELISA, with an without the addition of the IKKβ inhibitor IKK16.  
Significance is indicated for p values < 0.05 (*) and < 0.0001 (****). 
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D. Conclusions 

 Several important conclusions can be drawn from the data presented in this 

chapter.  It had been demonstrated that AZM was able to polarize macrophages over to 

an alternative-like phenotype in vitro, as marked by an increase of arginase and 

mannose receptor.[112]  Here we show that AZM-polarized cells also have the ability to 

function in the same manner as AAM by participating in stimulating the production of 

fibrotic proteins.  Our hypothesis of how this occurs is depicted in Figure 2.13.  When 

cultured with fibroblasts in vitro, AZM-polarized macrophages increase production and 

activation of TGF-β, in addition to increasing the production of the AAM effector protein 

arginase.  These macrophages also appear to cause fibroblasts to increase production 

of fibronectin, an effect which appears to be dependent on the drug’s impact upon TGF-

β.  This data is consistent with published reports of AAM in pulmonary repair and 

fibrosis, where these cells are correlated with increases in arginase, TGF-β, and 

fibronectin, with the novelty of the AZM-induction of these effects.[40-43]  We have also 

demonstrated here a direct dependence of arginase production on TGF-β activation, 

which is a novel finding.  However, the AZM-polarized cells are also increasing MMP-9 

production, a result that was not expected (Figure 2.13).  As shown by the TGF-β 

neutralization experiments, this is not dependent on TGF-β activation, whereas 

increased fibronectin production is.  In fact, fibronectin shows a dependence upon TGF-

β activity.  This is demonstrated both when TGF-β is reduced indirectly, through the 

arginase inhibitor BEC, and directly, by a TGF-β neutralizing antibody.  Because MMP-9 

appears to be independent of these mechanisms, we hypothesized that MMP-9 may be 

participating in the activation of TGF-β.  When MMP-9 itself is inhibited, the expected 

decrease in activated TGF-β did not occur, suggesting an alternate mechanism through 

which TGF-β is being activated in this co-culture system.  However, fibronectin is also 

decreased when the MMP-9 inhibitor is added.  This indicates that MMP-9 does have 
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some role in the increase in fibronectin caused by AZM treatment.  Whether this effect is 

direct or indirect is unknown.   

 As discussed in Chapter 1, TGF-β signaling causes upregulation of fibrotic 

proteins from cells such as fibroblasts.[40, 130]  Conversely, MMP-9 is able to degrade 

the same products to cause ECM turnover.[77, 85]  Here, we show that AZM is causing 

both activation of TGF-β and increased production of MMP-9.  Therefore, it is possible 

that AZM has caused a form of its own negative-feedback; in that MMP-9 is available to 

degrade excess fibrotic proteins produced by TGF-β signaling.  While fibronectin 

concentrations are increased in the system, collagen concentrations are not, lending 

support to this theory.  Furthermore, if increases in both TGF-β and MMP-9 lead to a 

homeostasis in the lung, rather than a shift to either fibrosis accumulation or excess 

damage, this may explain why patients with CF do well on AZM.[50, 102, 104] 

 Another surprising result from these experiments is that AZM does not appear to 

cause an increase in production of collagen I or III from the co-culture.  Collagen I and III 

are two forms of collagen that are upregulated and secreted by epithelial cells, 

macrophages, and fibroblasts in response to pulmonary injury, and are often associated 

with fibrin and fibronectin in the phases of ECM remodeling.[56]  Therefore, these 

collagens were expected to be affected in the same manner as fibronectin, which was 

found to be untrue.  Indeed, collagen III is even increased, as measured by western blot, 

when the TGF-β neutralizing antibody is added to the cells treated with AZM.  While the 

results regarding collagen were unexpected, this molecule will be of further study in 

Chapter 3. 

 The last conclusions to be made from these data concern the potential 

mechanism of AZM.  We previously demonstrated that AZM increased IKK-β expression 

early after drug exposure (10min), while decreasing NF-κB expression at that same time.  

These results are interesting, because typically an increase of IKK-β is accompanied by 
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an increase in NF-κB activation, while AZM is causing changes in the activation of these 

molecules in opposing directions.  It has been shown, by Fong, et al, that IKKβ can 

inhibit activation of the classical macrophage, by crosstalk through Stat1 pathway. [113]  

The Stat1 pathway provides signaling from IFN-γ to induce the markers of CAM, such as 

iNOS.  Therefore, we hypothesized that AZM may be increasing IKKβ, which is inhibiting 

the activation of the CAM in order to allow the alternative-like phenotype to take its 

place.  We are currently evaluating the effect of AZM upon Stat-1 phosphorylation in our 

in vitro experiments. 

We have previously demonstrated that inhibiting IKK-β with IKK16 caused a 

reversal of the effect AZM on arginase activity in the macrophages.  However, these 

data show that IKK16 not only reverses AZM’s effect on arginase activity in 

macrophages, but also in fibroblasts alone and co-cultured with macrophages.  Further, 

IKK16 reverses AZM’s effect on TGF-β activation, as well as increases in MMP-9 and 

fibronectin concentrations.  This indicates that IKK-β may play a role in AZM-induced 

macrophage polarization and the resultant increase in fibrotic mediators (Figure 2.13). 

 The data generated in these experiments become important for further analyses.  

If patients with CF have an increase in this type of macrophage when they are treated 

with AZM, they might also have increases in the pro-fibrotic protein production which 

could increase pathologic progression.  Alternatively, the suppression of the CAM 

phenotype may prevent some of the hyperinflammation inherent in the disease, which 

may be beneficial.  However, it is unknown how these pro-fibrotic changes may develop 

in the presence of multiple other cell types.  Therefore, the next chapter will study AZM 

treatment in the setting of P. aeruginosa infection in vivo. 
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Figure 2.13. Hypothetical schematic of the production of the fibrotic mediators from 
macrophages co-cultured with fibroblasts with and without treatment with AZM. 
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Chapter 3: Azithromycin alters fibrotic response to P. aeruginosa infection 

A. Introduction 

 While the experiments outlined in Chapter 2 established that AZM-polarized 

macrophages can affect fibroblasts and cause increases in production of fibrotic 

mediators, it is also important to understand how AZM-polarized macrophages influence 

other components of the immune system in response to infection with P. aeruginosa.  In 

order to examine the effects on macrophage phenotype, fibrotic mediators, and 

pulmonary damage, a murine infection model was utilized.   

Previous experiments with the murine model demonstrated that AZM has similar 

effects on the macrophages in vivo  as it did in vitro.  When C57Bl/6 mice were pre-

treated with methylcellulose vehicle or AZM and infected with P. aeruginosa, the AZM 

group had higher survival rates, compared to control treated mice, although body weight 

and bacterial burden were not significantly different.[114]  In these experiments, 

macrophages were also found to show higher surface expression of mannose receptor 

and lower surface expression of CD80 in AZM treated mice 7 days after infection, 

indicating a shift toward the alternative phenotype.  This was confirmed with increased 

arginase activity at the same timepoint in AZM treated mice.  Lastly, histological 

examination determined that treatment with AZM shifted the infiltrating cellular response 

to infection from neutrophilic (in the control mice) to monocytic.  This is significant, 

because, as mentioned previously, CF is a neutrophilic-mediated inflammatory disease.  

Furthermore, the switch to a monocytic response was concurrent with peak bacterial 

burdens.[114]   

 Previous work in our lab established infection models with this bacterium in 

multiple strains of mice.  In experiments to determine the proper infectious dose of 

bacteria, mice were infected with CFUs ranging from 105 to 1010.  C57Bl/6 mice bias 
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toward a Th-1 cytokine response to infection and are generally more susceptible to the 

generation of fibrosis. [131]  These mice responded to infection with P. aeruginosa with 

a 50% lethal dose (LD50) of about 106 CFUs.  In contrast, BALB/c mice have a bias 

toward producing Th-2 cytokines in response to infection and are typically more resistant 

to fibrosis development. [131]   Likewise, they were also more resistant to the P. 

aeruginosa infections.  All of the BALB/c mice infected with CFUs up to 109 survived, yet 

all mice infected with CFUs of 1010 succumbed, showing a more resistant phenotype, as 

reflected by the high LD50.  The third strain of mouse used was chosen as part of our 

investigations into AZM mechanism; the IL-4rα-/- mouse strain.  This genetic knockout 

mouse lacks part of the IL-4 receptor in immune cells, and is unable to respond to either 

IL-4 or IL-13, as both cytokine receptors require the IL-4rα domain to function.  This 

strain was bred onto a BALB/c background, however the IL-4rα-\- mice responded to 

infection with P. aeruginosa much more similarly to the C57Bl/6 – with an LD50 in the 

range of 106.  These mice also lose the resistance to fibrosis that the BALB/c strain 

demonstrates, suggesting that IL-4 and IL-13 signaling, perhaps through the AAM, plays 

a role in preventing fibrosis development.  This suggests that activity of alternative 

macrophage activation is protective upon challenge with this extracellular pathogen.  

Because of the phenotypic similarities of the IL-4αr-/- strain when infected, C57Bl/6 mice 

were used as the control mice for the knockout strain in the experiments described here.   

 Addition of AZM to the co-culture increased production of the pro-fibrotic proteins 

arginase, TGF-β, and fibronectin (Chapter 2).  Additionally, production of the protease 

MMP-9 was increased by AZM as well.  These data show that AZM is capable of 

polarizing to an alternative-like, pro-fibrotic phenotype.  The increase in MMP-9 levels, 

however, identifies this phenotype as distinct from the traditional AAM phenotype, and 

may be one reason that AZM has a positive effect on patient outcomes.  Previous work 

has also established that AZM is capable of polarizing the macrophage to the alternative 
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phenotype in vivo.  However, the impact that the AZM-polarized macrophage exerts 

upon the resulting fibrotic process in the mouse model has yet to be determined.  

Because of the increased concentrations of arginase, TGF-β, MMP-9, and fibronectin 

found in vitro, the same markers were evaluated in mice.  To replicate chronic therapy in 

the CF patient, mice were pre-treated with AZM, and treatment was continued 

throughout the course of the infection, so that the AZM-polarized macrophages should 

persist.  The aim of this chapter is to determine how the AZM-polarized macrophages 

affect fibrosis in a pulmonary model of infection.  We hypothesize that AZM-induced 

alternative macrophage polarization in mice infected with P. aeruginosa promotes 

fibrosis development in the lungs. 

 

B. Methods 

Mice 

 C57BL/6 mice were purchased from The Jackson Laboratory (Bar Harbor, ME).  

BALB/c-Il4ratm1Sz/J strain, homozygous for the Il4ratCAMSz targeted mutation, was bred 

in-house.  IL4rα is a common chain shared by IL4r and IL13r, and is required for 

transmitting signal from both cytokines.[132, 133]  All animal studies were approved by 

the University of Kentucky Institutional Animal Care and Use Committee.  Mice were 

housed under conditions of pathogen free isolation and were transferred to a biosafety 

level 2 housing unit after infection, at which time all mice were within 5 to 7 weeks of 

age. 

 

Azithromycin Dosing 

 Tablets of AZM (Pliva Inc., Zagreb, Croatia) were triturated and the powder was 

suspended in 2% methylcellulose.  Beginning 4 days before infection, mice were given 
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AZM at 0.16 g/kg of body weight in 150 μl or vehicle only via oral gavage in order to 

reach a steady-state concentration of drug exposure at the time of infection.[114]  AZM 

and vehicle administration was continued once daily until the time that the mice were 

killed. Groups of three to six mice per time point per group were used. 

 

Intratracheal Infection  

 The clinically derived mucoid strain P. aeruginosa M57-15 was utilized in these 

experiments.  The bacteria were grown in Trypticase soy broth (TSB) to mid to late log 

phase before being incorporated into agarose beads.[134, 135] Utilizing growth curve 

information and the optical density of the culture, we established the appropriate starting 

number of bacteria required to produce a bead preparation that would result in an 

inoculum that fell within the desired range at the time of infection.[114]  Bacteria were 

mixed with agarose at a temperature of 55°C.  That mixture was then added to rapidly 

stirring and frothing mineral oil at a temperature of 50°C.  The mineral 

oil/bacterial/agarose mixture was rapidly cooled by adding ice to create formation of 

bacteria-filled agarose beads.  Beads were washed with PBS and allowed to settle for 

retrieval of beads in the range of 10-100μm.  The beads were immediately 

homogenized, and the number of CFU was determined after overnight growth on 

Trypticase soy agar.  The P. aeruginosa laden agarose beads were then diluted to 

achieve the desired inoculum for each strain infected.  The beads were instilled 

intratracheally by using a blunted 24-gauge curved inoculation needle while the animals 

were under isoflurane anesthesia.  To confirm that the mice received the desired 

inoculum, an aliquot of the bead preparation used was homogenized and plated on 

Pseudomonas selection agar immediately after infection and the numbers of CFU were 

counted after overnight incubation. 
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Tissue Harvest 

 The mice were humanely euthanized on day 0 and on post-infection days 3, 7, 

and 14.  Bronchoalveolar lavage was performed to obtain a representative sample of the 

airway compartment.  The lungs were lavaged with 5 ml of buffered solution containing 

0.3 mM EDTA in 1-ml aliquots.  The first 1 mL, called “first wash,” was collected 

separately and centrifuged, and the supernatant was saved and frozen at -80°C for 

cytokine measurements.  Pelleted cells from the first washes were added back to the 

remainder of each lavage fluid sample.  The lungs were removed, with lobes saved for 

histological analysis.  The remainder was digested in RPMI medium containing 5% heat-

inactivated fetal calf serum with 1 mg/mL collagenase A and 50 U/mL DNase for 1 h at 

37°C. The lung fragments were then pushed through 70 μm mesh screens to create a 

single cell suspension, and the red blood cells were lysed in a hypotonic solution.  These 

preparations were analyzed as the lung interstitium.  An aliquot was plated to assess the 

bacterial burden by manual counting of the numbers of CFU on Pseudomonas selection 

agar.  Pseudomonas specific agar was utilized to avoid contamination from the upper 

airway flora.  A second aliquot was saved in RIPA buffer for later protein analysis. 

 

Adoptive Transfer 

 Bone marrow-derived monocytes and splenic T cells from BALB/c mice were 

purified using negative selection, with magnetic beads (Stem Cell Technologies, 

Vancouver, BC, Canada).  Cell numbers transferred and timing of transfer were chosen 

based on preliminary experiments.  Mice were anesthetized and 1 x 106 T cells or 1 x 

106 T cells plus 1 x 106 monocytes were injected retro-orbitally one day before infection. 
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Flow cytometry 

 Surface protein expression and intracellular cytokine secretion were 

characterized by flow cytometry.  Lavage and digest cell aliquots were incubated with 

combination panels of fluorescently labeled antibodies (Abs) for CD11b, CD11c, GR1, 

and CD4.  The cells were washed thoroughly and resuspended in phosphate-buffered 

saline for analysis.  The labeled cells were analyzed with an LSRII flow cytometer 

system (BD Biosciences), and 50,000 events were routinely acquired per sample. In 

figures in which cell numbers are given, the percentage of the gated cell subset was 

multiplied by the number of cells manually counted in each sample.  FlowJo software 

(Tree Star, Ashland, OR) was used to analyze the data. 

 

ELISA assay 

 Cell culture supernatants were analyzed and the MMP-9 and fibronectin 

concentrations quantified by indirect ELISA.  Samples were diluted in coating buffer and 

incubated at 4°C overnight for adherence to the ELISA plate.  Wells were blocked, then 

incubated with an antibody specific to MMP-9 (Abcam, Cambridge, MA, USA) and 

fibronectin (Santa Cruz Biotechnology, Inc, Santa Cruz, CA, USA), followed by an anti-

rabbit HRP conjugated secondary antibody (Millipore, CA, USA). Wells were analyzed 

by OD reading at 450nm, using OptEIA detection reagents (BD, CA, USA).  Readings 

were compared to a standard curve using MMP-9 or fibronectin recombinant protein. 

 

Histopathology 

 The mouse lung tissue was excised and immediately fixed in 10% buffered 

formalin.  After an overnight incubation at 4°C, sections were washed three times with 

0.1 M phosphate buffer and were then transferred into 2 ml sterile 20% sucrose (pH 7.2) 
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and stored at 4°C.  The samples were then transferred into optimal cutting temperature 

(OCT) embedding media and incubated at 4°C for 24 h.  The fixed cryoprotected tissues 

were sectioned at a thickness of 10μm (Thermo Fisher Scientific cryostat) and mounted 

on slides to dry overnight.  The slides were stained with hematoxylin-eosin (H&E), Van 

Gieson TriChrome, or immunohistochemistry, by standardized protocols, and 

photographs were taken with an AxioCam HRc camera mounted on a Zeiss Imager.Z1 

microscope. 

 

Immunohistochemistry 

 Slides were washed with PBS+0.02% TritonX-100 (PB:X) for 10 minutes to wash 

OCT mounting media.  When media washed off, slides were blocked with 5% normal 

goat serum (NGS) + 5% bovine serum albumin (BSA) in PBS+0.02% TritonX-100 for at 

least 1 hour at room temperature.  Primary antibody was added in 1% NGS & 1% BSA in 

PB:X overnight at 4◦C, then washed off with PB:X.  Secondary antibody was added in 

0.5% NGS & 0.5% BSA in PB:X at a 1:160 dilution for 1 hour at room temperature, and 

subsequently washed off. Slides were mounted with 20% glycerol and taken to the 

microscope within one hour.  Pictures were obtained using an AxioCam HRc camera 

mounted on a Zeiss Imager.Z1 microscope.  Primary antibodies used were specific for 

MMP-9 (Abcam, Cambridge, MA, USA), fibronectin (Santa Cruz Biotechnology, Inc, 

Santa Cruz, CA, USA), arginase-1 (Santa Cruz Biotechnology, Inc, Santa Cruz, CA, 

USA), and iNOS (Cayman Chemical, Ann Arbor, MI, USA).  Secondary antibodies used 

were goat-anti rabbit IgG-FITC (Sigma Aldrich, St. Louis, MO, USA ), and goat-anti 

rabbit IgG-Texas Red (Abcam, Cambridge, MA, USA).   Intensity of staining was 

quantified using the program ImageJ (National Institutes of Health).  All images for each 

mouse were averaged, and the median fluorescence intensity is represented graphically.   
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TriChrome 

 Slides were stained with Weigert’s hemotoxylin for 3 minutes, washed, and followed 

by Van Gieson’s solution staining, consisting of 0.05% acid fuschin in saturated aqueous 

picric acid.  Slides were then dried with ethanol and cleared with xylenes to remove 

excess dye.  Twenty-four hours after being coverslipped, images were obtained as 

described above. 

 

Pathology Scoring 

 All slides were assessed for severity of four markers of lung damage; 

peribronchiolitis, bronchitis, alveolitis, and interstitial pneumonitis.  Peribronchiolitis is 

identified as inflammatory cells surrounding a bronchiole; bronchitis occurs when the 

inflammatory cells are within the epithelium of the bronchial epithelium; alveolitis is the 

presence of inflammation within the alveolar spaces; and interstitial pneumonitis is 

defined as increased thickness of the alveolar walls, due to inflammatory cells or 

accumulation of fluid.  Damage was scored on a scale of 0 to 4, with 4 being the 

maximum inflammation and 0 being no inflammation.[136]  Scores were averaged for 

each marker, and graphed for statistical analysis in GraphPad Prizm (GraphPad 

Software, La Jolla, CA, USA). 

 

Statistical Analysis 

 Results are reported as mean ± SD, except where indicated, and compared using 

GraphPad Prism (GraphPad Software, La Jolla, CA, USA).  Data were compared via 

one- or two-way ANOVA where appropriate, followed by Bonferroni’s post-test for 

individual comparisons.  Differences were deemed statistically significant at a p value 

<0.05. 
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C. Results 

AZM alters macrophage infiltration 

C57Bl/6 mice were dosed with AZM and then infected with P. aeruginosa to 

analyze the infiltration of immune cells into both the lung and the airway spaces.  Cells 

were analyzed by flow cytometry for markers identifying infiltrating macrophages 

(CD11b+), resident alveolar macrophages (CD11c+), neutrophils (CD11b- GR1+), and T 

cells (CD4+).  Importantly, macrophage numbers were increased at day 7 in the lavage 

samples in mice treated with AZM compared to controls, and the neutrophils in the lung 

digest had a corresponding decrease in the AZM group (Figure3.1a, b).  CD11c+ was 

used to identify resident alveolar macrophages, although this marker is also on dendritic 

cells[137]; these cells were unchanged in either the lung digest or in the lung lavage.  

CD4+ T cell numbers were increased at day 7 in the lung lavage as well as 

macrophages in mice who received AZM.  This is followed by an increase in T cells at 

day 14 in the lung digest in the same group of mice.  Therefore, in addition to previous 

data showing that AZM is altering the phenotype of the macrophages in vivo to the AAM 

[138], the drug is also increasing the presence of the infiltrating macrophages and T cells 

as infection is beginning to resolve.  

However, in the IL-4rα-/- mice, AZM had different effects on cellular infiltration.  

Total cell numbers were decreased in mice that received AZM at day 3 compared to the 

control group.  At the same timepoint, infiltrating macrophages, identified as CD11b+ 

cells, were decreased in both lung digest and lavage (Figure3.1c, d).  There were no 

differences between the treatment groups in any of the other cell types, including 

neutrophils.  It is important to remember that the T cells in these mice are also affected 

by the IL-4rα-/- mutation, and this may be why there were no differences between the 

groups.  Nevertheless, while the IL-4rα-/- mice do not maintain the neutrophilic response 

to infection, the mice still show increased monocytic infiltrates with AZM treatment. 
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Figure 3.1. Immune cell infiltration in to the lungs.  C57Bl/6 or IL4rα-/- mice, 4 per 
timepoint per treatment group, were infected with agarose beads containing 1 x 105 CFU 
of P. aeruginosa intratracheally and dosed with either AZM or methylcellulose vehicle.  
Immune cells were analyzed by flow cytometry in lung digest (a) and lung lavage (b) 
samples of C57Bl/6 mice and digest (c) and lavage (d) samples of IL-4rα-/- mice.  Data is 
representative of 3 replicated experiments. Mean ± SD are reported, with p < 0.05 for the 
timepoint (*) and overall between groups (†). 
© Copyright 2010, American Society for Microbiology. All rights reserved. 

Arginase and iNOS Expression 

In order to determine the impact of AZM treatment upon kinetics of AAM and 

CAM in the lungs infected with P. aeruginosa, and to address whether the drug elicits 

the same effect in the absence of IL-4 and IL-13 signaling, sections from lungs were 

stained by immunohistochemistry for arginase (FITC) and iNOS (Texas-Red).  The 

intensities of the slides were measured by ImageJ (NIH), and median fluorescence 

intensity is represented graphically for each group.  Representative slides are shown in 

panels Figure 3.2a and Figure 3.2d.  WT mice showed increased expression of arginase 
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at day 3 in the AZM treatment group compared to control (p < 0.0001, Figure 3.2b), and 

a decrease of iNOS expression in the AZM treatment group compared to control at days 

0 and 3 (p < 0.01, Figure3.2c).  This indicated a reduction of the inflammatory effector 

protein both four days after AZM treatment began (day 0) and at peak of infection (at day 

3).  In contrast, IL4rα-/- mice had no differences in arginase expression in the AZM 

treatment group compared to vehicle control at any day post-infection (Figure 3.3b).  

IL4rα-/- mice treated with AZM had similar iNOS expression kinetics compared to vehicle 

control, until day 14 - at which point iNOS remained upregulated in the controls, and was 

downregulated in the treatment group (p < 0.01, Figure 3.3c).  Overlays of day 14 are 

represented in Figure 3.4, which show co-staining and some co-localization of arginase 

and iNOS in the control group of the IL4rα-/- mice, but no co-localization in the AZM 

treatment group of the same mice. 

 Lastly, the lack of difference in arginase production in the IL4rα-/- mice suggested 

that while baseline levels of arginase were higher than those observed in the C57Bl/6 

mice, the production was not changed by either infection or administration of AZM 

(Figure3.3c).  Upon further analysis, arginase appeared to be produced by cells other 

than macrophages.  Those sections were stained for both arginase and F4/80, a marker 

of macrophages.  Indeed, we found that arginase appeared to be more prevalent than 

F4/80, especially at day 7, which is represented below (Figure 3.5).  This demonstrates 

that macrophages are not the only producers of arginase in the lung in our model. 
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 (a)   

 

Figure 3.2. Arginase 1 and iNOS expression in C57Bl/6 mice treated with 
methylcellulose vehicle or AZM.  Four mice per treatment group per timepoint were 
infected with agarose beads containing 1.5 x 105 CFU of bacteria. Lung sections from 
mice 0, 3, 7, and 14 days post infection were stained with primary antibodies to both 
arginase 1 and iNOS, with either FITC or texas red secondary staining.  Representative 
slides of at least 3 replicates from C57Bl/6 controls in (a), with mean fluorescence 
intensity quantification of arginase (b) and iNOS (c).  Samples were run in triplicate. 
Significance is indicated for p values < 0.05 (*), < 0.01(**), and < 0.0001(****). 
 
                                   

AZM -  AZM +  
C57Bl/6 
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 (a)  

 

Figure 3.3. Arginase 1 and iNOS expression in IL-4rα-/- mice treated with 
methylcellulose vehicle or AZM.  Four mice per treatment group per timepoint were 
infected with agarose beads containing 1.5 x 105 CFU of bacteria. Lung sections from 
mice 0, 3, 7, and 14 days post infection were stained with primary antibodies to both 
arginase 1 and iNOS, with either FITC or texas red secondary staining.  Representative 
slides from IL-4rα-/- mice in (d), with mean fluorescence intensity, ± SD, quantification of 
arginase (e) and iNOS (f).  Localization of arginase and iNOS in IL4rα-/- mice at day 14 
(g).  Panels represent arginase 1 localization, iNOS localization, and merged data, from 
left to right. Samples were run in triplicate. Significance is indicated for p values < 0.05 
(*), < 0.01(**), and < 0.0001(****). 
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Figure 3.4. Arginase 1 and iNOS co-expression in IL-4rα-/- mice treated with 
methylcellulose vehicle or AZM.  Four mice per treatment group per timepoint were 
infected with agarose beads containing 1.5 x 105 CFU of bacteria. Lung sections from 
mice 0, 3, 7, and 14 days post infection were stained with primary antibodies to both 
arginase 1 and iNOS, with either FITC or texas red secondary staining.  Localization of 
arginase and iNOS in IL4rα-/- mice at day 14 (g).  Panels represent arginase 1 
localization, iNOS localization, and merged data, from left to right. Samples were run in 
triplicate. Significance is indicated for p values < 0.05 (*), < 0.01(**), and < 
0.0001(****).[124] 
 

 
 
Figure 3.5. Arginase 1 and F4/80 expression in IL-4rα-/- mice treated with 
methylcellulose vehicle or AZM.  Lung sections from mice at day 7 post infection with 
agarose beads containing 1.5 x 105 P. aeruginosa. Representative slides of at least 3 
replicates from IL-4rα-/- mice lung sections stained with arginase-FITC and F4/80-Texas 
Red. 
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MMP-9 Expression 

 Next, we examined the effect of AZM on MMP-9 production in the lungs during 

immune response to P. aeruginosa, in order to determine the effect of the drug on 

mediators of ECM turnover.  First, MMP-9 concentrations were measured in BALF 

samples via ELISA.  WT mice had increased concentrations of MMP-9 in the BALF at 

day 7 in the lung lavage of AZM-treated mice as compared to the control group (p < 

0.01, Figure 3.6a).  However, by day 14, MMP-9 concentration had decreased compared 

to vehicle control.  Interestingly, this increase in BALF concentrations follows an 

increase in arginase production at day 3.  In the IL4rα-/- mice, the differences in MMP-9 

concentration between the treatment groups were not statistically significant.  The mice 

also had higher MMP-9 concentrations at day 0, which then decrease after infection in 

both treatment groups.  These mice also had significantly higher concentrations of MMP-

9 in the BALF throughout the duration of the infection. 

Next, to determine MMP-9 expression in the lung, immunohistochemistry was 

performed on lung sections from both C57Bl/6 and IL-4rα-/- mice, using an antibody 

against MMP-9 (FITC).  Representative slides from each mouse are shown in Figure3.4, 

panels c and e. Intensity of the fluorescence was measured using ImageJ, and median 

fluorescence is shown graphically below.  In WT mice, AZM decreased the MMP-9 

expression in the lung at day 3 compared to control (p < 0.0001), with no statistically 

significant differences at the later timepoints (Figure 3.7b).  In contrast to the WT 

controls, IL4rα-/- mice had similar expression of MMP-9 until day 14, at which point the 

AZM treatment group had decreased MMP-9 compared to control (p < 0.01, Figure 

3.7d).  Furthermore, both treatment groups of C57Bl/6 mice had higher concentrations of 

MMP-9 in the lung, even at baseline, than did the IL-4rα-/- mice.  Taken together, these 

data suggest that the C57Bl/6 mice treated with AZM, as well as the IL-4rα-/- mice of both 

treatment groups, are secreting MMP-9 into the airways. 
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Figure 3.6. Expression of MMP-9 in the BALF in response to P. aeruginosa infection.  
Four mice per treatment group per timepoint were infected with agarose beads 
containing 1.5 x 105 CFU of bacteria.  MMP-9 concentrations were measure by indirect 
ELISA from BALF in C57Bl/6 (a) and IL-4rα-/-.  Significance is indicated for p values < 
0.01(**) and < 0.0001(****), and 0.05 overall between groups (†). 
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(a)  (b)   

(c) (d)  

Figure 3.7. Expression of MMP-9 in the lung in response to P. aeruginosa infection.  
Four mice per treatment group per timepoint were infected with agarose beads 
containing 1.5 x 105 CFU of bacteria (b). Lung sections from mice 0, 3, 7, and 14 days 
post infection were stained with primary antibody to MMP-9 and secondary antibody 
tagged with FITC.  Representative slides from C57Bl/6 controls are shown (c).  Median 
fluorescence intensity is represented quantitatively (d).  Representative slides of at least 
3 replicates from IL-4rα-/- mice are shown (e).  Median fluorescence intensity, ± SD, is 
represented quantitatively in (f).  Samples were run in triplicate.  Significance is indicated 
for p values < 0.01(**) and < 0.0001(****), and 0.05 overall between groups (†). 
 
 

Fibronectin Expression 

 Next, we set out to determine the effect of AZM on changes in fibronectin 

concentration over time in the response to P. aeruginosa infection, and whether IL-4rα-/- 
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mice would respond similarly.  ELISA was performed on BALF to measure fibronectin 

concentration in the alveolar space. WT mice treated with AZM had increase fibronectin 

concentration in the BAL at day 7 (p < 0.01) but decreased concentration at day 14 post-

infection compared to control mice (p < 0.0001, Figure 3.8a).  IL4rα-/- mice had higher 

levels of fibronectin at both day 3 and day 7 compared to control mice.  Though this 

difference was not statistically significant at any given timepoint, the overall difference 

has significance over time (Figure 3.8b).   

To determine fibronectin expression in the lung, immunohistochemistry was 

performed on lung sections from each mouse strain.  Representative slides from each 

group are shown in Figure3.5, panels c and e.  Quantification of median fluorescence 

intensity from ImageJ is represented graphically.  WT mice treated with AZM had 

increased fibronectin expression at day 3 (p = 0.05), but decreased expression at days 7 

and 14 (p = 0.05 and p < 0.0001, respectively, Figure 3.9b), compared to vehicle control.  

The control group had a decrease in concentration at day 7, but the subsequent 

increase at day 14 left the fibronectin concentrations roughly at the level of baseline.  In 

contrast, the mice that were treated with AZM had significantly lower levels of fibronectin 

expression in their lungs at day 14.  This may be indicative of reduced fibrotic changes 

secondary to lessened damage. 

IL4rα-/- mice had no differences in fibronectin expression in the lung at any day 

post infection between the treatment  groups (Figure 3.9d).  However, both groups of 

IL4rα-/- mice had an initial decease in fibronectin expression from day 0 to day 7, and 

then rebound expression, with day 14 fibronectin production similar to day 0 levels.  

There was also much less fibronectin in the lungs of the IL4rα-/- mice compared to 

C57Bl/6 controls.  Lastly, fibronectin expression corresponds to the pattern of arginase 

expression, shown above, especially at days 3 and 7.  This data suggests that arginase 
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is increasing fibronectin expression in the in vivo model as was also the case in our in 

vitro co-culture work (Chapter 2). 

 

 

Figure 3.8. Expression of fibronectin in BALF in response to P. aeruginosa infection.  
Four mice per treatment group per timepoint were infected with agarose beads 
containing 1.5 x 105 CFU of bacteria.  Fibronectin concentrations were measure by 
indirect ELISA from BALF in C57Bl/6 (a) and IL-4rα-/-.  Samples were run in triplicate.  
Significance is indicated for p values < 0.5 (*), < 0.01(**) and < 0.0001(****) and 0.05 
overall between groups (†). 
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(a) (b)  

(c) (d)   

Figure 3.9. Expression of fibronectin in the lung in response to P. aeruginosa infection.  
Four mice per treatment group per timepoint were infected with agarose beads 
containing 1.5 x 105 CFU of bacteria.  (b). Lung sections from mice 0, 3, 7, and 14 days 
post infection were stained with primary antibody to fibronectin and secondary antibody 
tagged with FITC.  Representative slides from C57Bl/6 controls are shown (c).  Mean 
fluorescence intensity, ± SD, is represented quantitatively (d).  Representative slides of 
at least 3 replicates from IL-4rα-/- mice are shown (e).  Median fluorescence intensity is 
represented quantitatively in (f).  Samples were run in triplicate.  Significance is indicated 
for p values < 0.5 (*), < 0.01(**) and < 0.0001(****) and 0.05 overall between groups (†). 
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Collagen Accumulation 

 Another important fibrotic marker, the ECM protein collagen, was analyzed in our 

infection model.  Lung lobes from C57Bl/6 and IL4rα-/- mice infected with P. aeruginosa 

were sectioned and stained with Van Gieson’s Tri Chrome reagent specific for all 

isoforms of collagen.  Representative slides for each group are shown in Figure 3.a and 

c.  Compared to vehicle control, C57Bl/6 mice treated with AZM had less lung damage 

early in the infection, but slightly more collagen accumulation around the airways at day 

14 post-infection (Figure 3.10a).  While AZM treatment was able to prevent much of the 

damage associated with the infection, the increased collagen in the treatment group at 

day 14 is a significant finding that could represent an overall lack of long-term impact of 

AZM treatment in terms of limiting lung damage.  In the IL4rα-/- mice, all animals had 

increased lung damage compared to both treatment groups of C57Bl/6 mice at all 

timepoints (Figure 3.10b).  However, AZM-treated mice showed decreased damage 

compared to their own (IL4rα-/-) vehicle control group at day 14 (Figure 3.10b).   

 Each slide taken of Van Gieson stained tissue was assessed for lung damage.  

Sections were scored for severity of four pathologies; peribronchiolitis, bronchitis, 

alveolitis, and interstitial pneumonitis for C57Bl/6 mice (Figure 3.11) and IL4rα-/- mice.  

Peribronchiolitis indicates inflammation and cell infiltration surrounding a bronchiole; 

bronchitis occurs when the inflammatory cells are within the epithelium of the bronchi; 

alveolitis is the presence of inflammation within the alveolar spaces; and interstitial 

pneumonitis is defined as increased thickness of the alveolar walls, due to inflammatory 

cells or accumulation of fluid.  While these pathologies are often localized to specific 

areas of the lung, leaving normal or near-normal tissue in between, each slide was given 

a score of the average damage throughout the specific section.   In the C57Bl/6 mice 

treated with AZM, there was increased peribronchiolitis at day 7 post-infection, as well 

as significantly less severe bronchitis at day 3 post-infection.  This was accompanied by 
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decreased alveolitis in the AZM-treated mice at both days 0 and 3, although this marker 

was then increased in these mice at day 7 post-infection compared to controls.  These 

changes indicate that treatment with AZM may alter the type of damage in the lung, as 

well as the time post-infection when the damage occurs.  In contrast, the IL4rα-/- mice 

which were treated with AZM had less severe peribronchiolitis and alveolitis at days 7 

and 14 post-infection, accompanied by less severe bronchitis at day 7 post-infection.  

Interestingly, interstitial pneumonitis was more severe than in the C57Bl/6 animals, and 

was unchanged with AZM treatment.  This suggests that IL-4 signaling may have a 

protective effect during infection.  Further, while AZM may protect against lung damage, 

it may also contribute to collagen accumulation. 

(a)  (b)  

Figure 3.10. Expression of collagen in response to P. aeruginosa infection.  Four mice 
per treatment group per timepoint were infected with agarose beads containing 1.5 x 105 
CFU of bacteria.  Lung sections from mice 0, 3, 7, and 14 days post infection were 
stained with Van Gieson’s Tri Chrome.  Representative slides of at least 3 replicates 
from C57Bl/6 controls (a) and IL-4rα-/- mice (c) are shown. Pink color of the Tri Chrome 
stains positively for collagen deposition. 



80 
 

    

 

Figure 3.11. Pathology scoring of C57Bl/6 lungs infected with to P. aeruginosa.  Four 
C57Bl/6 mice per treatment group per timepoint were infected with agarose beads 
containing 1.5 x 105 CFU of bacteria.  Lung sections from mice 0, 3, 7, and 14 days post 
infection were stained with Van Gieson’s Tri Chrome.  Slides were scored for markers of 
pathology; peribronchiolitis bronchitis, alveolitis, and interstitial pneumonitis.  Data is 
represented as mean ± SEM.  Samples were run in triplicate.  Significance is indicated 
for p values < 0.5 (*), < 0.01(**), < 0.001(***), and < 0.0001(****), and 0.05 overall 
between groups (†). 
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Figure 3.12. Pathology scoring of IL-4rα-/-  lungs infected with P. aeruginosa.  Four IL-
4rα-/- mice per treatment group per timepoint were infected with agarose beads 
containing 1.5 x 105 CFU of bacteria.  Lung sections from mice 0, 3, 7, and 14 days post 
infection were stained with Van Gieson’s Tri Chrome.  Slides were scored for markers of 
pathology; peribronchiolitis bronchitis, alveolitis, and interstitial pneumonitis.  Data is 
represented as mean ± SEM.  Samples were run in triplicate.  Significance is indicated 
for p values < 0.5 (*), < 0.01(**), < 0.001(***), and < 0.0001(****), and 0.05 overall 
between groups (†). 
 

Monocyte Rescue 

 Because the IL-4rα-/- mice had more severe histological damage than the 

C57Bl/6 controls, we decided to do an adoptive transfer of normal monocytes to attempt 

to correct this pathology in the post-infection timeframe.  IL-4rα-/- mice received normal 

cells adoptively transferred from BALB/c mice.  Mice received either T cells only or 

monocytes and T cells.  All mice received adoptively transferred T cells, as the IL4rα-/- 

mice lack this receptor domain on T cells as well.   
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Previous data confirms that the experiments were successful, by detecting IL4rα 

on CD11b+ cells in the mice that received normal monocytes and T cells, though not on 

CD11b+ cells from mice that received normal T cells only.  Additionally, mice that 

received both monocytes and T cells display a decreased neutrophilic influx compared to 

mice that only received adoptively transferred T cells.  This data suggested that the 

addition of normal monocytes can alter the inflammatory response. 

   In order to determine if monocyte adoptive transfer would also modulate other 

parts of the inflammatory response, lungs were examined histologically.  Lung sections 

were stained with Van Gieson’s Tri Chrome and scored for four pathological markers; 

peribronchiolitis, bronchitis, alveolitis, and interstitial pneumonitis.  The group that 

received both monocytes and T cells from normal mice had lower scores of alveolitis and 

interstitial pneumonitis at day 3 post-infection compared to mice who received only T 

cells from normal mice, although the difference was not statistically significant (Figure 

3.13).  Importantly, day 3 post-infection is at peak of inflammation response.   
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Figure 3.13. Scoring of damage in response to P. aeruginosa infection, with adoptive 
transfer of normal immune cells into IL-4α-/- mice.  Cells were harvested from BALB/c 
mice and retro-orbitally injected into the transgenic strain.  Four mice per treatment 
group per timepoint were then infected with agarose beads containing 1.5 x 105 CFU of 
bacteria.  Lung sections from mice 0, 3, and 6 days post infection were stained with Van 
Gieson’s Tri Chrome.  Slides were scored for markers of pathology; peribronchiolitis, 
bronchitis, alveolitis, and interstitial pneumonitis.  Samples were run in triplicate.   Data is 
represented as mean ± SEM.  Data were not statistically significant. 
 

MMP-9 Deficiency 

 In light of the in vitro data suggesting that MMP-9 is a molecule of critical 

importance to the AZM-polarized macrophage phenotype, a preliminary experiment was 

conducted using MMP-9 deficient mice.  Mice that are homozygous null for Mmp9 gene, 

on a C57B/6 background, were used for these experiments.  These mice have normal 

development, though may have decreased neutrophilic influx to sites of 

inflammation.[139]  This strain of mouse was compared to the C57Bl/6 to determine if 
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the lack of MMP-9 would result in increased amount of fibrosis after infection with P. 

aeruginosa.  We hypothesized that the lack of MMP-9 would result in a buildup of ECM, 

as the protease would be unavailable to degrade excess collagen and fibronectin.  

Previous studies utilizing the strain of MMP-9 deficient mice have primarily investigated 

the role of the protease in inflammation, in diseases such as allergic asthma, ventilator 

induced lung injury, and bronchopulmonary dysplasia.[140-142]  The impact of MMP-9 

deficiency on ECM buildup is currently unknown. 

 For this experiment, the mice were treated with AZM, infected with 1 x 105 CFUs 

of P. aeruginosa, and analyzed 14 days post-infection for the amount of fibrotic proteins 

in their lungs.  The mice lacking MMP-9 tolerated the infection to the same degree as the 

C57Bl/6 mice; the weight loss between the groups was not significantly different at any 

of the timepoints, overall there was a significant different over time (Figure 3.14).  In 

addition, none of the mice in either group grew bacteria on culture at day 14.  This 

suggests that the MMP-9-/- mice did not have impaired inflammatory response significant 

enough to cause impaired bacterial clearance or prolonged infection. 

 When the lungs were sectioned and stained for presence of collagen, there were 

some differences noted between the two strains.  The C57Bl/6 mice showed collagen 

accumulation at both the pre-infection and the post-infection timepoints (Figure 3.15).  

This is not surprising, given previous data with this strain.  However, the MMP-9-/- mice 

had more collagen accumulating to the airways in both the uninfected mice and the mice 

at day 14 post-infection (Figure 3.15).  This supports the hypothesis that lack of MMP-9 

leads to increased accumulation of fibrosis. 

 However, when lung sections were stained by immunohistochemistry for 

fibronectin, there were no differences in expression of this protein between the two 

mouse strains.  Representative pictures are shown in Figure 3.16a, and analyzed 

graphically in Figure 3.16b.  This is an interesting finding, in light of the differences in 
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collagen accumulation.  This data compliments the rest of the data gathered in this 

chapter and in Chapter 2 that shows collagen and fibronectin having different outcomes 

in response to the various stimuli.  However, this preliminary experiment only examined 

a limited set of time after infection; a more detailed study is needed in the future to 

determine the role of MMP-9 in the response of fibrotic mediators to P. aeruginosa 

infection. 

  

Figure 3.14. Lack of MMP-9 affects mouse weights in response to P. aeruginosa 
infection. Weight change of mice in each strain as percentage change from baseline 
weight.  Four mice per group were infected with agarose beads containing 1.5 x 105 CFU 
of bacteria.  Data is represented as mean ± SD, with four mice per group.  Data were 
analyzed by two-way ANOVA, and p < 0.05 over time between groups (†).   

 

Figure 3.15. Lack of MMP-9 causes collagen accumulation.  Expression of collagen in 
response to P. aeruginosa infection.  Four mice per group were infected with agarose 
beads containing 1.5 x 105 CFU of bacteria.  Lung sections from uninfected mice and 
mice 14 days post infection were stained with Van Gieson’s Tri Chrome.  Representative 
slides of at least 3 replicates from C57Bl/6 controls and MMP9-/- mice are shown. Pink 
color of the Tri Chrome stains positively for collagen deposition.   
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 (a)                                                                  

(b)                   

Figure 3.16. Lack of MMP-9 does not increase fibronectin accumulation.  Expression of 
fibronectin in response to P. aeruginosa infection.  Four mice per group were infected 
with agarose beads containing 1.5 x 105 CFU of bacteria.  Lung sections from uninfected 
mice and mice 14 days post infection were stained with fibronectin-FITC by 
immunohistochemistry.  (a)Representative slides of at least 3 replicates from C57Bl/6 
controls and MMP9-/- mice are shown.  (b) Mean fluorescence intensity is represented 
graphically.  Data were analyzed by two-way ANOVA with Bonferroni’s post-test.  Data 
were not significant.  
 

D. Conclusion 

 The hypothesis for this section of experiments, that fibrosis development in 

response to P. aeruginosa would depend on the alternative macrophage activation, 

turned out to be too simplistic for the interactions taking place in the immune response.  
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While these data did show that the AZM-polarized macrophage is affecting fibrosis, as 

well as influencing the response to infection, the effects appear to be multifaceted.   

 In C57Bl/6 mice, AZM caused increased numbers of CD11b+ macrophages to 

partition to the airway spaces at day 7 post-infection compared to the control group, 

while at the same time resulting in decreased numbers of neutrophils. This analysis by 

flow cytometry confirms previous analysis in our lab by histological methods.[138]  This 

result also shows that macrophages are an important cell type in the immune response.  

Therefore, the in vitro data demonstrating AZM’s polarizing effects has increased 

significance. 

 Staining for AAM and CAM markers showed that C57Bl/6 mice have significantly 

increased levels of arginase at day 3 in the AZM-treated group, with a corresponding 

decrease in iNOS.  This shift in effector protein expression mimics the changes seen in 

the in vitro data, both in Chapter 2 and previously observed.[112]  Interestingly, in this 

experiment, the AZM-treated group had a decrease in iNOS at day 0.  At this timepoint, 

the mice had received four days of drug, but were had not yet infected.  Furthermore, in 

the IL-4rα-/- mice, there was no difference in arginase expression between the vehicle 

control and the AZM treatment groups, but there was a significant decrease in iNOS at 

day 14 in the AZM-treated mice.  This suggests that AZM may have a protective effect 

independent of IL-4/13 signaling.   

 Both MMP-9 and fibronectin concentrations in BALF mimics macrophage 

partitioning in C57Bl/6 mice.  Importantly, MMP-9 and fibronectin concentrations are 

higher in the BALF in AZM-treated C57Bl/6 mice at day 7, which is when bacterial 

burden is highest in the course of this infection.  The control mice don’t secrete these 

proteins into their airways until day 14 post-infection.  When lung sections are stained for 

these proteins, the relationships appear to be reversed; MMP-9 and fibronectin are both 

decreased in the lung at days 7 and 14 in the mice treated with AZM compared to 
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vehicle controls.  Although fibronectin is increased at day 3 post-infection in the AZM 

treated mice, MMP-9 is always downregulated in these mice compared to vehicle 

controls. This could suggest that what is being made of these proteins is being directly 

secreted into the airways, at least at day 7, when the mice had received AZM.  It is also 

important to note that MMP-9 is produced in other cell types in addition to macrophages.  

Pretreatment with AZM has been shown to prevent upregulation of MMP-9 in human 

airway epithelial cells.[143]  Furthermore, fibronectin in the lung tissue may have been 

degraded by the presence of P. aeruginosa.  Multiple studies have evidence to support 

the ability of this bacterium to bind and subsequently degrade fibronectin in order to 

establish infection.[144-146]  Degradation of fibronectin by P. aeruginosa could be one 

reason for a decrease in fibronectin concentrations in the lung tissues over the course of 

the experiment. 

 When these proteins are examined in the IL-4rα-/- mice, there are little differences 

in MMP-9, and no differences in fibronectin between the two treatment groups.  While, 

the knockout mice had higher concentrations of these proteins in the BALF compared to 

the control strain, they also produce less of these proteins in the lung tissues, as noted 

both in the representative pictures and in the scales of the median fluorescence intensity 

graphs.  However, compared to the C57Bl/6 mice, the IL-4rα-/- mice had higher MMP-9 

and fibronectin concentration in the BALF, yet lower concentrations of these proteins in 

the lung.  This suggests that the IL-4rα-/- mice secrete these proteins into the airways to a 

higher degree than the C57Bl/6 mice.  

 Another important observation to make about the immunostaining is that the 

localization of these proteins is altered when AZM is given.  Some of the proteins, such 

as arginase, move from the airways to the interstitium with the addition of AZM, and 

some, such as MMP-9, move in the opposite direction.  While this is not represented 
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when the data is analyzed quantitatively, it may be of importance in the overall immune 

response to the infection and the subsequent fibrosis that progresses. 

 Along with reduced fibronectin in the lungs of mice treated with AZM, there was 

correspondingly less damage to the pulmonary tissue.  This damage is also manifested 

by increased cellular infiltrates and fluid accumulation in sections stained with Van 

Gieson’s Tri Chrome.  Especially at day 3, which is when mice show the most dramatic 

weight loss[138], the damage to the vehicle control group is most significant in the 

bronchitis and alveolitis scores, which are both influenced by treatment with AZM.  

However, it appears that AZM may be shifting the kinetics of these types of damage to 

the later timepoints.  Also, there is increased collagen accumulation in this group of mice 

at the latest timepoint.  Because these experiments were unable to assess physiology or 

lung function, it is uncertain what effect the collagen had on the mice in this group. 

 When the IL-4rα-/- mice were assessed for lung damage and collagen 

accumulation, we found that even at baseline, before infection, these mice showed 

increases in cellular infiltration, peribronchiolitis, and collagen accumulation.  Collagen 

was reduced in the AZM-treatment group, which had been receiving drug for four days 

by day 0.  During the course of infection, both treatment groups of this strain developed 

more damage in response to infection that did the C57Bl/6.  Again, AZM ameliorated the 

damage, with reductions in peribronchiolitis, bronchitis, and alveolitis.  Interestingly, in 

the IL-4rα-/- mice that were treated with AZM, there was little collagen accumulation seen 

on histological examination. 

 Because damage was so severe in the IL-4rα-/- strain, even at baseline, we 

hypothesized that the absence of the alternative macrophage could be the reason.  In 

fact, when adoptively transferred with normal cells, the group of mice that received 

normal T cells and normal monocytes had less damage at the peak of infection.  While 
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these data were not significant, the sample size for the experiment was low and did not 

go to a 14 day timepoint, which might have shown even more differences in recovery. 

 The hypothesis proposed for this set of experiments was partially supported.  

Collagen was increased in AZM-treated mice at later timepoints, following an increase in 

arginase in these same mice.  Interestingly, there was little collagen present at the day 3 

timepoints in all experiments analyzed.  This may be due to the high bacterial burden at 

this time; Pseudomonas elastases, an extracellular enzyme produced by the bacteria, 

has been shown to directly degrade collagen.[147]  However, the other fibrotic marker 

analyzed, fibronectin, was decreased in AZM-treated mice, even after the increase in 

arginase.  Furthermore, the increase in arginase in the C57Bl/6 mice was also 

accompanied by a decrease in damage, suggesting that blunting the inflammatory 

response is the main action of the AZM-macrophage, rather than fibrosis increase.  

Whether the decrease in fibronectin or the increase in collagen is more physiologically 

relevant to the mice remains unanswered. 

 Administration of AZM in the murine infection model appears to ameliorate some 

of the inflammation and damage associated with the bacterial infection, although it may 

also increase some of the fibrotic responses as well.  In light of these data, it was 

important to investigate the mediators studied in Chapters 2 and 3 in human studies.  

Therefore, Chapter 4 will focus on the affect of AZM on fibrotic mediators in subjects with 

CF. 

 

 

 

 

 

Copyright © Susan Elizabeth Birket 2012 
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Chapter 4: Azithromycin alters correlations between fibrotic mediators and 

inflammatory cytokines in sputum from patients with CF 

A. Introduction 

 The final component outlined in this dissertation examines the fibrotic mediators 

studied in chapters 2 and 3 in human subjects.  For this study, subjects were recruited 

from the University of Kentucky pulmonology clinic who were diagnosed with CF.  These 

subjects were consented or assented, sputum samples were obtained, and clinical data 

was collected from medical records.  The sputum samples were analyzed for the fibrotic 

mediators identified as important from our in vitro and in vivo animal studies, namely 

TGF-β, MMP-9, fibronectin, and MMP-2.  MMP-2 was added because human studied 

have shown that MMP-9 and MMP-2 often have similar actions in disease states in the 

lungs. [148-150]   

 In addition, inflammatory cytokines were also profiled in these patients.  IL-8 and 

IL-1β were the cytokines that were identified as the most important in these subjects.  IL-

8 is a classic inflammatory cytokine, and is elevated in the CF airway. [151, 152].  IL-1β, 

however, has a more complicated role in the CF disease process.  IL-1β is traditionally 

considered an inflammatory cytokine, as its activity potentiates inflammatory processes 

in multiple pulmonary diseases, including CF. [153, 154] In fact, IL-1β can increase IL-8 

in CF lung epithelial cells by activating NF-κB. [154]  In general, IL-1β is cleaved from its 

pro-form downstream of inflammasome activation, usually in response to microbial 

infection.[155, 156]  Once cleaved, IL-1β is secreted into the airways to coordinate 

inflammatory responses in the lung.[157, 158]   However, IL-1β also initiates fibrotic 

mechanisms in addition to inflammatory processes.[159, 160]  Kolb, et al, showed that 

intratracheal instillation with exogenous IL-1β resulted in early increases in inflammatory 

cytokine production, such as IL-6 and TNF.  The increases in inflammatory proteins were 
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followed by late increases in TGF-β and hydroxyproline, the precursor to collagen.  In 

fact, while inflammatory cytokines peaked at day 7 after IL-1β administration, 

hydroxyproline was still elevated by day 60 post IL-1β exposure.  The delayed presence 

of hydroxyproline could indicate a continued production of collagen.  IL-1β can also 

activate plasminogen activator inhibitor-1 (PAI-1), a conquence of which is the increase 

of collagen and lung fibrosis. [125]  IL-1β has an additional direct effect on the CF 

airway; it can increase the MUC5AC gene, which encodes for mucin – a major 

component of mucus.[161]  Upregulation of MUC5AC can cause increased 

accumulations of mucus in the airways.  This effect also appears to be through NF-κB.  

Because IL-1β has such wide implications on the CF airway, and on mediators important 

for this study, we felt that this would be an important cytokine to include in our analysis. 

 Our lab has previously examined sputa from CF subjects for markers of 

alternative macrophage activation.  This study[114] showed that subjects who were 

infected with P. aeruginosa had higher levels of mannose receptor and arginase activity 

compared to subjects who were uninfected.  Arginase was inversely associated with 

FEV1, and the correlation was stronger in those subjects infected with P. aeruginosa (r = 

-0.662, p  = 0.001).  These subjects also had statistically significantly higher levels of the 

cytokines IL-12 and IL-1β in their sputa.  In this previous work, the impact that AZM 

treatment had upon macrophage disposition was a secondary objective.   

 Based on the in vitro and in vivo data showing that AZM treatment causes 

increases in fibrotic mediator production, we set out to determine whether this 

relationship would be true in the lungs of patients with CF.  For the current study, the 

focus was to determine whether fibrotic mediators in sputa of patients with CF are 

affected by AZM treatment, and whether their expression levels correlated with 

alternative macrophage activation.  Therefore, we hypothesized that AZM therapy in 

patients with CF increases markers of fibrosis buildup and decreases markers of 
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ECM turnover in the lungs, and would be correlated with alternative macrophage 

activation. 

 

B. Methods 

Study design 

 Subjects were recruited from the adult and pediatric outpatient pulmonology 

clinics at the University of Kentucky Medical Center.  Inclusion criteria were: diagnosis of 

cystic fibrosis, age 2 – 50 years, ability to extemporaneously produce sputum samples, 

and currently in a stable state of disease (non-exacerbation) as deemed by the treating 

physician.  Exclusion criteria were presence of HIV, cancer, history or organ transplant, 

pregnancy or breastfeeding, or current IV antibiotic therapy.  Subjects were consented if 

18 or over and assented with parental consent if under 18.  Sputum samples were 

collected, and clinical data from the time of the sample was obtained from the subjects 

chart.  This included medication history, lung function parameters, and bacterial 

colonization status at the time of the sample.  Subjects were considered positive for a 

given organism if that organism was reported to have grown from sputum sample/throat 

swab at the time of the sample collection.  Microbiological data was obtained by the UK 

Medical Center.  All processes were approved by the Internal Review Board at the 

University of Kentucky Medical Center. 

 

Sample processing 

Two to 5 mL of spontaneously expectorated sputum was collected and 

immediately placed on ice.  Samples were digested in 0.1% diothiothreitol and DNase at 

30 μg/mL in phosphate buffer for 30 min, with agitation.  Supernatants were frozen at -

80°C, while cells were washed, counted, and frozen in RNAlater (Applied Biosystems, 
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Foster City, CA, USA) for subsequent gene analysis.  Because of the variability 

generated by this processing, analyses that follow were all normalized to either total 

protein or cell counts in each sample.  This allows for normalization to volume of sample 

collected. 

 

TGF-β Activity 

Sputum supernatants were quantified by ELISA using the TGF-β1 Emax 

ImmunoAssay System (Promega, Madison, WI, USA).  Samples were diluted in PBS 

and processed with an acid wash per manufacturer’s instructions.  Plates were coated 

with a mAB specific for TGF-β, and samples were added to the wells along with a 

standard curve prepared using supplied TGF-β1 standard.  Polyclonal anti-TGF-β1 

antibodies were applied, followed by washing and incubation with horseradish 

peroxidase conjugate.  Development solution was applied to the samples, and the OD 

readings were obtained at 450 nm and compared to the TGF-β1 standard curve.   TGF-β 

concentrations were normalized to cell count.  Because the DTT processing of the 

sputum sample interfered with the assay, all the samples were acid washed, and thus 

represent total concentration of TGF-β.  However, the TGF-β that is expectorated with 

the sputum is likely endogenously activated, as latent TGF-β is still bound to the matrix. 

 

ELISA assay 

Sputum supernatants were isolated and the MMP-9, fibronectin, and MMP-2 

concentrations quantified by indirect ELISA.  Samples were diluted in coating buffer and 

incubated at 4°C overnight for adherence to the ELISA plate.  Wells were blocked, then 

incubated with an antibody specific to MMP-9 (Abcam, Cambridge, MA, USA), 

fibronectin(Santa Cruz Biotechnology, Inc, Santa Cruz, CA, USA), or MMP-2(Abcam, 

Cambridge, MA, USA) followed by an anti-rabbit HRP conjugated secondary antibody 
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(Millipore, CA, USA). Wells were analyzed by OD reading at 450nm, using OptEIA 

detection reagents (BD, CA, USA).  Readings were compared to a standard curve using 

MMP-9, MMP-2, or fibronectin recombinant protein, and values were normalized to cell 

count. 

 

Cytometric bead array 

 The levels of the following cytokines were measured in the sputum supernatant 

samples by using cytometric bead array assay kits (BD Biosciences): IL-8, IL-1β, IL-

12p70, TNF-α, IL-10, and IL-6. Bead populations of distinct sizes that were coated with 

capture antibodies specific for each cytokine were incubated with a 5-fold dilution and a 

50-fold dilution of each sample for 3 h at room temperature along with a phycoerythrin-

conjugated detection antibody. The beads were then washed, and the fluorescence 

intensity was assayed by flow cytometry, as outlined above. Intensities were then 

compared to those on a standard curve generated for each cytokine to determine the 

concentration in each sample. 

 

Statistical Analysis 

 Results are reported as mean ± SD and analyzed using GraphPad Prism (GraphPad 

Software, La Jolla, CA, USA).  Data were compared via ANOVA, followed by 

Bonferroni’s post-test for individual comparisons, or unpaired student’s t-test.  

Correlations were analyzed by linear regression.  Nominal data was analyzed by 

Fischer’s exact test.  Principal component analysis (PCA) was performed as a method of 

data reduction to analyze multifactorial variability.  PCA was run using Statview (Nesbit, 

MS, USA).  Comparisons between PCA groups were done using Mann-Whitney Rank 

test.  Differences for all statistics were deemed statistically significant at a p value <0.05. 
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C. Results 

Subject Demographics 

 Thirty subjects were recruited for the study, with 66 samples collected from 

September 2009 until December 2010.  For 37 of those samples, supernatants were 

saved and protein analysis was available.  The subject demographics are reported in 

Table 4.1.  Approximately 69% of the subjects were being treated with AZM.  This was to 

be expected, as use of AZM is now wide-spread among CF treating physicians, 

especially for patients who are colonized with P. aeruginosa.[92]  Although only 49% 

percent of the subjects were colonized with P. aeruginosa, nearly 80% of subjects were 

positive for S. aureus.  This is not surprising, given that the majority of subjects were 

under 18, and younger than the typical age at which the incidence in P. aeruginosa 

colonization rises.  This is an age when S. aureus infections are more prevalent.[5]  

Lastly, 62% of subjects were homozygous for the ΔF508 mutation.  The remaining 

subjects had one ΔF508 allele and second mutation on their other allele. 

Table 4.2 compares the demographics of the study population between subjects 

with and without AZM treatment, and between subjects with and without P. aeruginosa 

colonization.  Of those subjects being treated with AZM, 73% were pediatric, while all of 

the subjects not being treated with AZM were pediatric.  Additionally, only 56% of 

subjects positive for P. aeruginosa, while 95% of those subjects negative for P. 

aeruginosa were pediatric.  Lung function was measured in these subjects as FEV1 and 

forced vital capacity (FVC) % predicted.  While FEV1 is the most common method of 

tracking patients’ lung function, FVC, which measures the total volume of air expired, 

also indicates lung compliance and function.  Both lung function measurements, FEV1 

and FVC % predicted, were significantly higher in the subjects who were not being 

treated with AZM.  Lung function measurements were also significantly higher in the 

subjects who were not colonized with P. aeruginosa than those who were.  Interestingly, 
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there was no significant difference between those subjects who were either treated with 

AZM or not who were colonized with S. aureus.  There was also no significant 

differences between those positive and negative for P. aeruginosa who colonized with S. 

aureus. 

The lung function measurement ranges for FEV1 and FVC % predicted were 

quite broad, although the age range was not.  This suggests that we achieved our goal 

of including patients at all stages of disease.  While FEV1 decline in patients with acute 

exacerbation indicates an increase in inflammation, FEV1 decrease in stable patients 

(such as our subjects) indicates and increase in amount of fibrosis accumulation, and 

therefore a change in lung architecture.  In these subjects, when FEV1 % predicted is 

regressed against age, the lowest FEV1 values occur over five decades of age (Figure 

4.1a).  Despite this, there was a strong negative correlation of lung function and age.  

When compared by pediatric vs. adult subjects, FEV1 % predicted values were 

significantly higher in pediatric patients (Figure 4.1b).  Similarly, FEV1 % predicted was 

higher in patients not taking AZM – most likely because these patients had less severe 

disease overall (Figure 4.1c).  
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Table 4.1. Demographics of subjects enrolled in the study. 

 

Table 4.2 Demographics analyzed by AZM treatment and P. aeruginosa colonization 

status. 
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Figure 4.1. FEV1 % predicted of subjects enrolled in the study. (a) FEV1 % predicted 
compared by linear correlation to age of subjects.  Statistical analysis was performed 
using linear regression.  (b) FEV1 % predicted compared by pediatric, < 18 years of age, 
or adult subjects, ≥ 18 years of age.  Data was analyzed by student’s t-test.  (c) FEV1 % 
predicted compared by AZM treatment.  Data was analyzed by student’s t-test.  
Statistical significance indicated on the graphs. 
 

Fibrotic markers and AZM 

 Concentrations of TGF-β, MMP-9, and fibronectin protein were measured in 

sputum samples collected from these subjects.  MMP-2 concentration was also 

assessed to determine if the activity of this protease was similar to MMP-9 in this subject 

population.  When protein concentrations were compared between subjects who were 

receiving AZM and those who were not, TGFβ- was the only fibrotic marker that was 

differed statistically.  Interestingly, subjects on AZM had decreased levels of TGF-β in 

their sputum (Figure 4.2, p = 0.02).  Concentrations of MMP-9 and MMP-2 had nearly 

identical means between the two groups (Figure 4.2b and d, p = 0.65 and 0.98 

respectively), suggesting that treatment with AZM does not affect these markers.  
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Fibronectin trended toward a higher mean value in the group of subjects receiving AZM 

than those not receiving AZM, though it the difference was not statistically significant 

(Figure 4.2c, p = 0.10).  Although this is only a trend toward higher concentrations in 

subjects receiving AZM, it is possible that more samples would detect a greater 

difference between the two groups. 

 

Figure 4.2.  Fibrotic mediators from CF subjects’ sputa.  Subjects were analyzed with 
regard to their AZM treatment status.  TGF-β (a) was measured by TGF-β1 Emax 
ImmunoAssay System, while MMP-9 (b), fibronectin (c), and MMP-2 (d) were measured 
by indirect ELISA. to the subjects’ dose (mg) of AZM.  Data were analyzed by student’s 
t-test and considered significant at p < 0.05. 
 

Fibrotic markers and Pseudomonas 

 Because AZM has traditionally been used in patients with CF when they become 

colonized with P. aeruginosa,[50, 103] colonization status for this organism was 

determined at the time of the sample collection.  The same proteins, TGF-β, MMP-9, 
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fibronectin, and MMP-2, were analyzed with regard to subjects’ infection status.  

Interestingly, subjects that were positive for P. aeruginosa had decreased concentrations 

of TGF-β in their sputa compared to subjects whose cultures were negative (Figure 4.3a, 

p = 0.03).  MMP-9 and fibronectin concentrations had very little difference in mean 

between the group positive for P. aeruginosa and the group that was not (Figure 4.3b 

and c, p = 0.53 and 0.44, respectively), indicating that the presence of this pathogen did 

not affect these two proteins. MMP-2 showed a trend toward increased concentrations in 

subjects with positive cultures, though the difference was not statistically significant 

(Figure 4.3d, p = 0.09).   

 In an effort to determine if AZM or PA status was more influential on fibrotic 

marker concentration, especially in the case of TGF-β, subjects on AZM who were 

positive for P. aeruginosa were compared to those who had negative cultures.  Subjects 

not treated with AZM and negative for P. aeruginosa were also included.  There were no 

subjects who were positive for P. aeruginosa but not treated with AZM.  Because the 

subjects were recruited without prior knowledge of their AZM treatment status or their 

microbiological culture results, the lack of an AZM-PA+ subject cohort is indicative of 

prescribing practices at the our clinic sites.  There were no statistical significances 

between the groups receiving and not receiving AZM.  However, there was a significant 

difference in TGF-β concentrations between the AZM+PA+ subjects and the AZM-PA- 

subjects (Figure 4.3e, p< 0.05).  There was no significant difference in MMP-9, MMP-2, 

or fibronectin concentrations between these groups of subjects (Figure 4.3 f, g, h).  This 

data suggests that AZM may be more influential to TGF-β concentrations than the 

presence of P. aeruginosa.  
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Figure 4.3. Fibrotic mediators from CF subjects’ sputa and P. aeruginosa.  Subjects 
were analyzed with regard to colonization status of P. aeruginosa (PA).  TGF-β (a) was 
measured by TGF-β1 Emax ImmunoAssay System, while MMP-9 (b), fibronectin (c), and 
MMP-2 (d) were measured by indirect ELISA. to the subjects’ dose (mg) of AZM.  Data 
in graphs a-d were analyzed by student’s t-test and considered significant at p < 0.05.  
Data in graphs e-h were analyzed via student’s t-test for group AZM+PA+ vs group 
AZM+PA- and via ANOVA with Bonferroni’s post-test for all data.  Data were considered 
significant at p < 0.05. 
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Fibrotic Markers and Staphylcoccus 

 Because such a higher percentage of subjects grew positive cultures for S. 

aureus, it was important to determine if the presence of this pathogen was influencing 

the concentration of these proteins in the subjects’ sputa.  This is particularly important 

considering that most patients are of the age in which S. aureus is a prevalent infection, 

and because of the emerging nature of this pathogen in this population.  However, when 

the subjects were grouped on the basis of presence or absence of a positive Staph 

culture, there were no statistically significant differences in concentrations of TGF-β (p = 

0.20), MMP-9 (p = 0.92), fibronectin (p = 0.72), or MMP-2 (p = 0.98, Figure 4.4).  This 

suggests that S. aureus is not influencing the concentration of these proteins in this 

subject population. 

 

Figureure 4.4.  Fibrotic mediators from CF subjects’ sputa and S. aureus.  Subjects 
were analyzed with regard to infection with S. aureus (Staph).  TGF-β (a) was measured 
by TGF-β1 Emax ImmunoAssay System, while MMP-9 (b), fibronectin (c), and MMP-2 (d) 
were measured by indirect ELISA. to the subjects’ dose (mg) of AZM.  Data were 
analyzed by student’s t-test and considered significant at p < 0.05. 
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Inflammatory Cytokines 

 Next, inflammatory cytokines were analyzed in the subjects’ sputa.  A cytometric 

bead array was executed for a group of pro- and anti-inflammatory cytokines.  The 

cytokines TNF, IL-10, IL-6, and IL-12p70 were measured at below the limit of detection 

in all or nearly all the sputa samples.  This is interesting, although not entirely 

unexpected, as subjects were recruited specifically when in a stable disease state.  

Therefore, they would not be expected to be expressing copious amounts of these 

inflammatory cytokines in extemporaneously expectorated sputum.  However, the 

cytokines IL-8 and IL-1β were detectable in all the samples assessed.  When compared 

between subjects receiving and not receiving AZM, there were no differences in cytokine 

concentrations between the subject groups (Figure 4.5a, b, p = 0.22 for both).  When 

cytokine concentrations were compared with regard to infection status, P. aeruginosa 

colonization made no difference to concentration of either IL-8 or IL-1β (Figure 4.5c, d p 

= 0.13 and 0.61, respectively).  However, subjects with positive S. aureus cultures had 

significantly lower concentrations of IL-1β (Figure 4.5e, p = 0.04) compared to those 

subjects who were negative for S. aureus. Levels of IL-8 were no different between 

subjects positive and negative for S. aureus (Figure 4.5f, p = 0.82).                                
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Figure 4.5.  Inflammatory cytokines from CF subjects’ sputa.  IL-8 and IL-1β were 
measured by cytometric bead array.  Data was analyzed with regard to subjects AZM 
treatment status (a) and (b), colonization with P. aeruginosa (PA) (c) and (d), and 
infection with S. aureus (Staph) (c) and (d).  Data were analyzed by student’s t-test and 
considered significant at p < 0.05. 
 

Correlation between lung function, fibrotic, and inflammatory markers 

 We then examined the correlations between protein concentration and disease 

severity.  We also examined the correlation of fibrotic proteins among themselves and 

with the inflammatory cytokines that were detected in the sputum samples.  These 
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analyses were important to investigate the relationship between markers of fibrosis and 

inflammation.  We hypothesized that the markers of fibrosis would be positively 

correlated to each other, indicating a fibrotic environment in those subjects being treated 

with AZM.  We also expected to find that inflammatory cytokines would have inverse 

correlations to the fibrotic markers. 

 We initially assessed whether the proteins measured from the sputum samples of 

the subjects in the study were linearly correlated to age and markers of lung function.  In 

Table 4.3, regression coefficients and p values are listed for each protein versus age, 

FEV1 % predicted, and FVC % predicted.  A positive linear correlation existed between 

TGF-β and age, which was statistically significant.  This indicates that the older subjects 

had higher concentrations of TGF-β in their sputum.  TGF-β concentration was also 

positively correlated with FEV1 % predicted, with a p value of 0.0011.  When age and 

FEV1 % predicted were compared, the correlation was negative; therefore some other 

factor must be influencing TGF-β.  The correlation between MMP-9 and FEV1 % 

predicted was also statistically significant, and in this case the correlation was negative.  

This is a confirmation of a relationship shown in induced sputum samples, in a study 

performed in 20 subjects with CF.[90]  .  In this study, MMP-9 concentrations were 

increased in CF subjects compared to healthy controls, as well as negatively correlated 

to FEV1% predicted, as well as neutrophil count.  It is, however, interesting that in the 

current study MMP-9 is not significantly correlated to age (Table 4.3), although FEV1% 

predicted and age are correlated in these subjects.  Interestingly, fibronectin is the only 

protein significantly correlated to FVC % predicted.  While FEV1 is the primary lung 

function measurement that is collected and monitored for CF disease progression, FVC 

% predicted is also monitored, as this marker begins to decline in late disease[162].  

Therefore, the fact that fibronectin is correlated to age and FVC, but not FEV1, is 

interesting.  This could indicate that fibronectin is also a marker of late disease decline. 
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Table 4.3. Proteins measured from subjects sputa compared to age and two different 
markers of lung function; FEV1 % predicted and FVC % predicted.  Data was analyzed 
by linear regression.  Regression coefficients and p values reported for each 
comparison. 
 

 Next, the fibrotic markers were compared to each other to see which were 

linearly correlated.  As expected, TGF-β and MMP-9 were highly correlated, with a p 

value of < 0.0001 (Table 4.4).  The correlation between them was a positive one, which 

was interesting.  This is surprising, given that TGF-β and MMP-9 have opposite effects 

on ECM, and would not have been expected to both be increased in the same subjects.   

Of additional importance was the finding that MMP-9 and MMP-2 were highly correlated, 

with a p value of < 0.0001 (Table 4.4).  This is to be expected, given data from other 

studies, which suggest that MMP-9 and MMP-2 are upregulated in the same disease 

processes in human studies.[68, 163]  It is not surprising because the two MMPs are 

generally produced at similar levels as demonstrated in the previous figures that assess 

the effects of AZM, P. aeruginosa, and S. aureus status in the subjects.   
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Table 4.4. Fibrotic proteins measured from subjects sputa compared to markers of ECM 
turnover.  Data was analyzed by linear regression.  Regression coefficients and p values 
reported for each comparison. 
 

 Lastly, fibrotic mediator concentrations were analyzed against inflammatory 

cytokines.  We were interested to know if the markers of inflammation were linearly 

correlated to markers of fibrosis or ECM turnover.  This was important to help determine 

if inflammation is associated with fibrosis, or if the shift toward fibrosis includes a shift 

away from inflammation.  IL-8 was weakly correlated to all four makers of fibrosis, with 

very high p values (Table 4.5).  IL1-β, however, was strongly positively correlated to both 

TGF-β and MMP-9, with p values < 0.0001.   IL-1β was correlated with MMP-2 as well, 

had a correlation, with a p value < 0.05 (Table 4.5).  Interestingly, neither cytokine was 

significantly correlated with fibronectin (Table 4.5).   

 
Table 4.5. Fibrotic proteins measured from subjects sputa compared to inflammatory 
cytokines measured in subjects’ sputa.  Data was analyzed by linear regression.  
Regression coefficients and p values reported for each comparison. 



109 
 

Effect of azithromycin  

 The linear correlations above were analyzed for all the subjects grouped together 

without regard to their status of AZM treatment.  This analysis is important in light of our 

data presented previously showing no significant difference in the mean concentrations 

of these protein concentrations between subjects who are and are not receiving AZM.  In 

the CF population, AZM is dosed on a daily basis, although there is no standard dosage 

recommendation.[92]  Traditionally, patients with CF are prescribed AZM once they are 

positive for P. aeruginosa, although recent studies have given evidence for physicians to 

prescribe this drug for colonization.[103]  Because subjects with more progressive 

disease should have increased levels of fibrosis, AZM may be functioning to ablate 

these effects.  We report in Figure 4.6 that certain markers were found to be have 

different correlations in subjects receiving AZM compared to subjects not receiving AZM.  

TGF-β had a more moderate correlation with FEV1 % predicted in subjects on AZM, with 

an r = 0.4058, compared to subjects without the treatment, who had an r = 0.7376.  In 

this case, the statistical significance remained the same (Figure 4.6a, b).  However, 

subjects who were not receiving AZM had a very strong correlation of IL-1β to FEV1 % 

predicted, with an r = 0.8926 and a statistical significance of p = 0.0029.  When subjects 

treated with AZM were analyzed similarly, the correlation was found to be far weaker, r = 

0.1964, and there was no statistical significance (Figure 4.6c, d).   

 Similarly, subjects not receiving AZM treatment demonstrated a weak correlation 

of r = 0.3458 between TGF-β and MMP-9, a relationship that was not statistically 

significant.  When these markers were analyzed in subjects on AZM, a regression 

coefficient of 0.5973 was observed, which is stronger, and the p value dropped below 

0.05 (Figure 4.6e, f).  While the study is not able to determine causality, it would appear 

that AZM therapy is impacting relationships between proteins and lung function, and 

between some proteins among themselves. 
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Figure 4.6. Proteins correlated by linear regression to lung function or other proteins. 
TGF-β concentrations correlated to FEV1 % predicted compared by linear regression in 
subjects either not on AZM (a) or on AZM therapy (b).  IL-1β concentrations correlated to 
FEV1 % predicted compared by linear regression in subjects either not on AZM (c) or on 
AZM therapy (d). TGF-β concentrations correlated to MMP-9 concentrations compared 
by linear regression in subjects either not on AZM (e) or on AZM therapy (f)  Statistical 
analysis was performed with linear regression.  Regression coefficients and statistical 
significance indicated on the graphs. 
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Multifactorial Analysis 

 In order to better determine the relationships between these proteins, we utilized 

principal component analysis as a data reduction method.  This allows for simultaneous 

evaluation of protein expression variability between the subjects.  When the data are 

analyzed this way, two primary components appeared in the subjects,  The first 

component, named PC1, was heavily comprised of TGF-β, MMP-9, and MMP-2, and 

accounted for 53% of total variance of the protein expression. (Figure 4.7).  The second 

component, PC2, was primarily determined by fibronectin and IL-1β concentrations, and 

comprised and additional 19% of variability between the samples.  Interestingly, IL-8 

contributed to both groups(Figure 4.7).  When the populations are represented 

graphically, the subjects who were not receiving AZM had higher expression of PC1, 

while subjects who were receiving AZM had higher expression of PC2.  These 

associations confirm that fact that TGF-β is highly correlated to both MMPs, as well as 

confirming a potential pro-fibrotic role for IL-1β, as it is correlated with fibronectin.  The 

data also highlight the fact that AZM treatment appeared to be creating two different 

populations of protein association. 

 Additionally, each component was analyzed according to AZM treatment status 

and P. aeruginosa colonization status.  Subjects receiving AZM treatment are less likely 

to be expressing PC1 associated proteins that subjects who are not receiving AZM 

(figure 4.8).  This is not surprising, when remembering that subjects on AZM had lower 

mean TGF-β expression.  However, subjects receiving AZM were more likely to be 

expressing PC2 associated proteins (Figure 4.8).  This suggests that the drug may be 

shifting protein expression from PC1 associated proteins toward PC2.  However, 

colonization with P. aeruginosa did not alter the expression of these proteins to statistical 

significance (Figure 4.8).  This also suggests that AZM treatment is more influential than 

P. aeruginosa colonization. 
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Figure 4.7.  Principal component analysis of protein expression.  a) component matrix 
for proteins assessed.  Components 1 and 2 accounted for 72% of total variance in 
protein expression.  b) Component expression in AZM treated subjects (green) and non-
treated subjects (red). 

 

Figure 4.8.  PC1 and PC2 expression.  Expression of each component was compared to 
AZM treatment status and P. aeruginosa colonization status.  Data are expressed as 
mean + 1 SE, and were analyzed with a Mann-Whitney Rank test.  * indicates p < 0.05. 
 

Arginase activity 

 The last goal for the human study was to determine if arginase, the effector 

molecule of alternative macrophage phenotype, would be correlated with other markers 

of fibrosis or cytokines in subjects with CF.  This data is presented in Table 4.6.  
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Arginase concentration, assayed by arginase activity normalized to total protein, was 

measured in the subjects’ sputa, and analyzed by linear regression with regard to the 

markers of fibrosis, as well as cytokines IL-8 and IL-1β.  There were no significant 

correlations between arginase and any of the proteins measured, nor were these values 

changed when the data was analyzed with regard to AZM treatment status.   

   
Table 4.6. Proteins measured from subjects sputa compared to arginase activity.  Data 
was analyzed by linear regression.  Regression coefficients and p values reported for 
each comparison. 
 

 We also analyzed arginase concentrations with regard to subjects’ AZM 

treatment status, colonization with P. aeruginosa, and infection with S. aureus.  When 

arginase activity levels were compared between subjects who were and were not 

receiving AZM therapy, the difference between the two groups were not statistically 

significant, Figure 4.7a (p = 0.11).  However, there is a trend toward higher arginase 

activity in the AZM therapy group, and more subject samples may make this difference 

more significant.  When arginase concentrations were compared between subjects who 

were colonized with P. aeruginosa and those who are not, there was a statistically 

significant increase in any concentration in subjects colonized with P. aeruginosa (p = 

0.0009, Figure 4.7b).  Interestingly, when the comparison was made for subjects with 

positive S. aureus cultures vs. subjects with negative S. aureus cultures, there was no 
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statistical difference, although there was a trend in the positive group toward higher 

arginase activity (Figure 4.7c).  Because many of the subjects who were positive for P. 

aeruginosa were also positive for S. aureus, we compared arginase concentration 

between subjects positive for both organisms, subjects who were positive for only one, 

and subjects who were negative for both (Figure 4.7d).  In this analysis, the double 

positive group had strikingly higher arginase activity levels, statistically significantly 

higher than subjects with P. aeruginosa only (p value < 0.01), S. aureus only (p value < 

0.0001), and patients colonized with neither pathogen (p value < 0.01).  While the 

sample sizes of these groups are small, this data is highly suggestive that the 

combination of the two pathogens may shift the environment in the lung so that it is 

conducive to alternative macrophage polarization.  It is also interesting to note that the 

other proteins examined in this chapter where analyzed with regard to double infection, 

and none of them were found to be affected in this manner. 
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Figure 4.9. Arginase production in CF subjects’ sputa.  Arginase activity was measured 
as described in Methods. Subjects were analyzed with regard to AZM therapy (a), 
colonization status of P. aeruginosa (PA) (b), and S. aureus (c).  In (d) subjects were 
split into PA+Staph+, PA+Staph-, PA-Staph+ and PA-Staph- groups. Data a-c were 
analyzed by student’s t-test and considered significant at p < 0.05.  Data in graph d was 
analyzed via ANOVA with Bonferroni’s post-test for all data.  Significance is reported on 
graphs, or as p < 0.01 (**) or < 0.0001 (****). 
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D. Conclusions 

 The human study allowed us to draw some interesting conclusions about the use 

of AZM in the CF population.  While this study did not prove the proposed hypothesis to 

be correct, as subjects receiving AZM did not have higher levels of fibrotic protein 

concentrations overall, our data indicated that AZM may have a protective role.  First, 

there were no overall increases in fibrotic mediators associated with AZM therapy as 

predicted by our in vitro data; in fact TGF-β was decreased in subjects on AZM.  

Because there was also no difference in fibronectin concentrations between the two 

groups, this data indicated that AZM may not contribute to increases in fibrosis 

development.  This data was not surprising in combination with the gene data collected 

on the same subjects; fibronectin gene expression also was not increased in subjects 

treated with AZM.  Additionally, the lack of difference in the two different MMPs 

measured shows no effect on ECM turnover when stratifying by AZM treatment.  While 

presence of P. aeruginosa infection also resulted in lower TGF-β concentrations, further 

analysis suggested that this was more reliant on the fact that those patients infected with 

P. aeruginosa were being treated with AZM concurrently, confirmed by the PCA data.  In 

the multifactorial analysis, AZM appeared to be an influential factor in altering protein 

expression, while P. aeruginosa colonization status did not significantly alter any 

proteins. 

 Because the subjects recruited were in a non-exacerbated state, inflammatory 

cytokines were expected to be of less importance.  However, IL-1β exhibited some 

interesting differences in these subjects.  While apparently not affected by AZM 

treatment, there were decreased concentrations of this cytokine in subjects positive for 

S. aureus infection compared to subjects who had negative cultures for this pathogen.  

This is particularly interesting, given evidence that suggests S. aureus can activate the 

inflammasome and induce secretion of IL-1β in monocytes and macrophages.[164, 165]   
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Furthermore, both TGF- β and IL-1β concentrations were highly correlated to FEV1 % 

predicted in subjects not being treated with AZM, but had markedly reduced correlations 

to FEV1 % predicted in subjects on AZM therapy.  The alteration in these relationships 

suggests that AZM treatment may be affecting the interactions of these molecules in the 

mechanism of fibrosis development.  Because of IL-1β’s dual role in inflammation and 

fibrosis,[160] these correlations become significant. 

 While this human study was similar to the previous human study performed by 

our lab, in that we were unable to significantly associate increased arginase levels with 

AZM therapy,[114] similar results were obtained in the association between P. 

aeruginosa  infection status and increased arginase activity.  This subject group showed 

a striking trend toward increased arginase concentrations in subjects who were receiving 

AZM compared to those subjects who were not.  Here, however, we show that subjects 

co-cultured with both P. aeruginosa and S. aureus have increased arginase activity, 

suggestive of the importance of an alternative macrophage phenotype in these subjects.  

This piece of data is quite important in light of the rising incidence of S. aureus infection 

in both the CF and the general population. Patients with CF are becoming more and 

more likely to be infected with both pathogens.  The combination of AZM treatment and 

the alternative macrophage phenotype may be compensating to limit damage as lung 

function gets work.  In vitro data from our lab has demonstrated that AZM does not have 

an effect on macrophage phenotype unless the cells are stimulated with LPS.[112]  This 

may be why there is less arginase activity in subjects with neither pathogen. 

 Samples from subjects in the current study had been previously analyzed for 

gene markers indicative of macrophage phenotype.  The inflammatory gene NOS2, 

which encodes for iNOS, was decreased in subjects treated with AZM, corroborating 

evidence that AZM and the alternative phenotype may be preventing damage, although 

arg1, the gene that encodes for arginase, was unaffected.  Inflammatory cytokine genes 
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IL-1a and TNFα were positively correlated with FVC% predicted, as was the anti-

inflammatory cytokine IL-10.   Furthermore, principal component analysis was used to 

identify groups of patients with CAM and AAM-associated genes.  Interestingly, MMP-9 

was grouped with CAM-associated genes, while TGF-β was grouped with AAM-

associated genes.  Given that the proteins are so tightly correlated to each other in the 

same patients, their gene groupings are interesting. This may suggest that TGF-β and 

MMP-9 are upregulated together in order to prevent a universal shift toward either 

fibrosis or damage; neither fibrotic accumulation nor tissue damage is greater.  

 There are two possible scenarios for the function of AAMs in subjects with CF.  In 

the first scenario, AAMs are upregulated compared to CAMs, which results in increased 

accumulation of fibrosis and lung structure change.  In  the second scenario, the 

increase in AAMs compared to CAMs causes decreased inflammation, which prevents 

the need to upregulate fibrosis, and therefore prevents further change in lung structure.  

The data collected in the human study, when combined with the data from chapters 2 

and 3, suggest that the second scenario Is present in subjects with CF who are treated 

with AZM. 

 

Limitations 

 There were several limitations to this study.  First, since the study focused on 

subjects with stable disease, most of the CF patients recruited were pediatric, and all the 

subjects included in the protein analysis were under 25 years of age.  While it is certainly 

possible for a patient with CF to have advanced disease at this age, we could be 

excluding a subset of the CF population that might be responding to AZM differently due 

to their age or disease process.  Furthermore, the younger patients, regardless of lung 

function, were likely to have experienced fewer exacerbations and fewer types of 

infection, which also may be influencing the response of the immune system. Further, 
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because we were unable to control how long the subjects had been receiving AZM, 

there may be variation in the mediators measured, and may or may not reflect long-term 

treatment status.  

 Importantly, because subjects were recruited from the same clinic, they were all 

subject to the same prescribing practices.  In this instance, that meant that these 

subjects are likely to be on AZM before they are infected with P. aeruginosa, and all of 

the subjects that were positive for P. aeruginosa were on AZM therapy.  While this is 

becoming a national trend, it becomes a complication factor when distinguishing an 

effect of the drug vs. and effect of the pathogen.  In addition, the effect of AZM seen in 

the PCA data may be confounded by disease severity.  In the future, we may be able to 

separate the subjects into groups based on disease severity, to determine if this has any 

effect. 

 Lastly, because we collected sputum samples, there was some variability 

inherent in the study.  This was due to variation in the amount of sample collected from 

each subject and the processing required.  In addition, while subjects receiving oral 

glucocorticoids were excluded from the study, the subjects included were still on a range 

of medications, including inhaled glucocorticoids, which may confound results. 
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Chapter 5: Discussion 

A. Overview of Results 

 The goal of this project was to determine the role of the AZM-polarized 

macrophage in the process of ECM protein accumulation through the increased 

production of TGF-β and MMP-9.  This was pursued by combining in vitro, in vivo, and 

human studies to determine the impact of AZM on remodeling and fibrosis mediators in 

response to P. aeruginosa.  We investigated the impact of the AZM-polarized 

macrophage on fibroblasts using in vitro experiments, as well as the role of the AZM-

polarized cell in the immune response to P. aeruginosa pulmonary infection.  Extending 

our studies to human subjects with CF, our work contributes to a more global 

understanding of the immunomodulatory impact that AZM therapy can impart during the 

progression of CF pathology.   

 

B: Significance 

The fibrotic effects of AZM-polarized macrophages 

 One important function of the macrophage is to secrete chemokines and 

cytokines that alter other cell types.  Therefore, one goal of the project was to determine 

how the AZM-polarized macrophage would affect other cell types, particularly 

concerning fibrotic mediator production.  The in vitro work helped to identify some of the 

interactions between two types of cells involved in the upregulation of fibrotic mediator 

production.  The single cell line controls run along with the co-culture experiments 

showed that the combination of the two cell types together was necessary for the 

increases in TGF-β, MMP-9, and fibronectin production.   

 The response of the macrophage to the drug AZM has, in part, been 

elucidated.[112]  Our first goal was to continue this work by examining the production of 
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molecules from the macrophages polarized with AZM, as well as to investigate the 

effects of this macrophage on fibrotic mediators produced from fibroblasts.  In the lung, 

macrophages move to the site of injury, as part of the initial immune response, where 

they must interact with the resident cells.  In this initial investigation, we found that the 

interaction with fibroblasts allowed the AZM-polarized macrophage to increase 

production the pro-fibrotic molecules arginase, TGF-β, and fibronectin.  From the studies 

outlined in Chapter 1, the associated increases of these three molecules were not 

unexpected.  However, the shift toward fibrosis was not universal; AZM treatment did not 

increase collagen I or III, and it also increased the production of MMP-9, a protease.  

This shows that the AZM-polarized macrophage does not share all the characteristics of 

the typical IL-4/IL-13 stimulated AAM.[27] 

 The increase in MMP-9 concentrations caused by the addition of AZM was an 

unexpected result.  Of importance, increased MMP-9 concentrations were not 

dependent on either TGF-β (as shown in the TGF-β neutralization experiments) or 

arginase (as shown in the arginase inhibitor experiments), while increased fibronectin 

production was dependent on both TGF-β and arginase.  Because MMP-9 was not 

dependent on either, it was hypothesized that TGF-β may in fact be activated by the 

protease as an important mechanism in this setting as AZM drives macrophage 

polarization; the ability of MMP-9 to activate TGF-β has been shown in a model of tumor 

invasion.[127]  However, this was not shown to be the case when MMP-9 itself was 

inhibited.  A possible role for MMP-9 in fibronectin upregulation, however, was observed.  

MMP-9 and fibronectin have been linked in previous studies; fibronectin production can 

induce MMP-9 upregulation.  When fibronectin is directly added to human monocytes in 

the presence or absence of TNF, MMP-9 protein is secreted; in addition, greater 

amounts of MMP-9 are produced when the fibronectin is added as specific 

fragments.[77]  This indicates that already degraded fibronectin may initiate a positive-
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feedback loop to accelerate its own degradation.  In a wound healing assay in vitro, cells 

were treated with fibronectin, causing an increase of MMP-9 mRNA and protein 

activation, compared to cells not treated with fibronectin.  Cell migration was observed in 

these wells.[166]  This suggests that MMP-9 is degrading fibronectin in order to facilitate 

migration to sites of wound healing.  Addition of a fibronectin neutralizing antibody 

prevented the increase in MMP-9 production, suggesting that fibronectin itself is the 

molecule that triggered the increased production of the protease.[167]  However, the 

ability of MMP-9 to affect fibronectin is a functional role that has not previously been 

published. 

 The in vitro experiments also confirmed a possible mechanism for AZM’s ability 

to polarize macrophages to an alternative-like phenotype.  Previous results from our lab 

suggest that AZM reduces arginase production when the molecule IKK-β is inhibited.  

Here we extend these results to show that production of downstream effector molecules 

are also reduced when this inhibitor is added. AZM-polarized macrophages do not 

appear to have the same effect on fibroblasts when IKK-β cannot signal properly.  

Multiple studies have now shown that AZM has the ability to decrease NF-κB activity.  In 

epithelial cells with a mutated CFTR, AZM treatment reduces DNA binding by NF-κB in 

vitro.[101]  When epithelial cells are treated with AZM, there is less nuclear translocation 

of NF-κB, resulting in less upregulation of IL-8 in response to LPS.[168]  The effect of 

AZM on NF-κB has been shown in human cells as well; in human tracheal aspirates 

taken from premature infants, AZM suppressed NF-κB activation and subsequently IL-8 

secretion when the cells were cultured ex vivo.[169]  In dendritic cells, inhibition of NF-

κB activation by AZM also inhibits maturation and function of these cells.[170]   

Previous data from our lab has isolated IKK-β as an important molecule in this 

pathway; AZM treatment dramatically increases expression of this protein.  Work done 

by Fong, et al, has demonstrated that IKK-β can inhibit inflammatory functions in 
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macrophages by preventing Stat-1 activation.[113]  Our previous data has shown both 

an increase in IKK-β expression and a decrease in cytokines downstream of Stat-1 

signaling.[112]  Possible IKK-β/Stat-1 cross-talk may help explain how AZM is able to 

downregulate the inflammatory cytokines and effector proteins, such as iNOS, and allow 

increase of alternatively activated-associated effector proteins instead.  Current work is 

under way to investigate the interaction between these two signaling molecules in our 

AZM treatment model. 

 

The AZM-polarized macrophage in the lung 

 When the AZM treatment during infection with P. aeruginosa was investigated in 

vivo, there was added complexity to the results obtained upon examining the interactions 

of the fibrotic mediators and cellular responses.  This was not unexpected, given that 

there are many more cell types involved in the pulmonary immune response, and that 

the resolution of the infection occurs over weeks rather than days.  The complexities 

included movement of the important mediators and cells from the lung interstitium into 

the alveolar space, as measured by bronchoalveolar lavage.  Treatment with AZM has 

been shown to decrease neutrophilic influx in a model of endobronchial infection with P. 

aeruginosa, although this study did not examine the effect on macrophages in response 

to either infection or AZM. [171]  The response of macrophages, however, is important, 

because Cftr-/- mice have been shown to respond to P. aeruginosa with an increase in 

macrophage influx when treated with AZM.[172]  Furthermore, this shift from neutrophilic 

to monocytic response is also observed when erythromycin is used for pre-treatment 

during P. aeruginosa infection.[173]  Therefore, it was important to determine the 

function and phenotype of these macrophages.  The most striking result was that the 

increased numbers of macrophages in the BALF in the C57Bl/6 mice occurred at the 

same timepoint as the increased concentrations of MMP-9 and fibronectin in BALF in the 



124 
 

mice treated with AZM.   Given that MMP-9 is so often strongly associated with 

neutrophil count [85, 142, 148, 174], it is an important distinction that MMP-9 is 

increased when neutrophils are decreased in this model.  Lastly, these changes 

temporally followed a shift in the lung of expression from the CAM marker iNOS toward 

the AAM marker arginase in the same mice, as was also observed in vitro. 

 The mice that produce more iNOS had more evidence of pulmonary damage as 

a result of P. aeruginosa infection after resolution.  The IL-4rα-/- mice that did not receive 

AZM continued to express iNOS until day 14 post-infection, and had significantly higher 

amounts of peribronchiolitis and alveolitis at day 14 compared to the same mice treated 

with AZM.  This group did not have higher arginase concentrations in the lung but did 

have decreased iNOS at day 14, indicating that AZM’s effect on iNOS may be the 

important factor in decreasing damage.  Similarly, the C57Bl/6 mice of both treatments 

have less iNOS expression at day 7 compared to day 3, and the damage in these mice 

was less than in the IL-4r-/- mice.  Increase in iNOS expression, and a general switch to 

a more CAM-like phenotype in the absence of IL-4 and IL-13 signaling, has been 

previously shown in the IL-4rα-/- mice.[175, 176]  These studies utilized parasitic infection 

models to drive macrophage polarization toward AAMs.    The adoptive transfer 

experiment confirmed that the alternative macrophage can be protective - the shift away 

from iNOS expression may be one of the protective effects of this phenotype.  The shift 

from iNOS to arginase has been shown in multiple models as macrophages become 

alternatively activated, in response to cytokines, tumors, or infection.[26, 176, 177]  The 

identification of decreasing iNOS as the protective event is confirmed by a study of iNOS 

knockout mice that were resistant to injury and fibrosis secondary to bleomycin 

administration.[178]  Likely the contribution to inflammation made by iNOS is initiating 

the repair processes causing the disease.  When iNOS is decreased, less damage 
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occurs, requiring fewer repair processes.  This illustrates one way by which AZM may 

decrease damage caused by infection and inflammation. 

 The effect of AZM in the lungs of mice infected with P. aeruginosa was examined 

as well.  By histological analysis, lungs of mice treated with AZM before and during 

infection showed increases of arginase expression accompanied by a decrease of iNOS 

expression; suggesting a shift of the macrophages toward an AAM phenotype.  The 

increases in arginase in the lung at day 3 were followed by an increased concentration 

of both MMP-9 and fibronectin in the BALF of the AZM-treated mice at day 7.  This is 

significant, because the increases in arginase preceded the increases of MMP-9 and 

fibronectin observed in vitro.  Interestingly, the opposite effect was seen by histology; 

MMP-9 and fibronectin were reduced in the lung tissue in AZM-treated mice.  This may 

be because the histological analysis stains for all the cell types in the lung, while the in 

vitro studies were limited to macrophages and fibroblasts.  It has been shown by others 

that AZM can decrease MMP-9 production from epithelial cells. [143]  Fibronectin is also 

made from many cell types, including epithelial cells, [179], and its production may be 

affected differently by AZM in these cells.  In contrast, the majority of cells in the BALF 

tend to be immune cells, which may be why this fraction was affected by AZM in the way 

that was predicted by the in vitro experiments. 

 However, when examining the histology of the lungs to evaluate damage caused 

by the infection, there are some observations to be made beyond the pathologies that 

were compared.  The mice that were treated with AZM had histological changes at day 

14 that were not inflammatory in nature.  This may indicate a type of pathology that is 

more common in another disease state.  For instance, chord length (the measurement 

between alveoli), was not measured in our studies.  This is a pathology that appears in 

certain types of COPD, but is not indicative of inflammation, infection, or fibrosis,[180] 

and yet may be altered by the treatment.  Because we were unable to examine 
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physiological endpoints in the mice, and because the experiments lasted only 14 days, 

we were unable to determine whether the AZM-treated mice experienced any other 

consequences of treatment, such as change in elasticity or compliance of the lung. 

 When the lungs of each group of mice were examined for damage and markers 

of pathology, there were some interesting differences.  Overall, the lungs of the mice 

treated with AZM appeared to have less damaged, but the architecture was altered 

compared to baseline.  There was overall increased alveolar size in the AZM treated 

mice, especially at later timepoints.  However, the drug did reduce bronchitis and 

alveolitis at early timepoints – yet alveolitis and interstitial pneumonitis were increased 

by the AZM at later timepoints.  The AZM-treatment group also showed increased 

collagen accumulation at the latest timepoint compared to the vehicle group.  However, 

the collagen was accumulated to the bronchi, and there was no difference in bronchitis 

at day 14 between the two groups.  Therefore, it is unclear if the collagen accumulation 

is physiologically significant.   

This increase in collagen observed in the mouse model of infection was not 

present during the in vitro experiments.  This may be due to the fact that the increase 

happens late – 14 days post-infection.  This type of chronic infection is difficult to 

replicate in cell culture, as cell viability becomes an issue.  This may account for the 

difference observed in the co-culture – 48 hours may still be too early for any increase in 

collagen to appear. 

 Evaluation of pathologic processes in the IL-4rα-/- mice were quite different 

between the treatment groups.  Peribronchiolitis and alveolitis were less severe in the 

AZM treatment group at days 7 and 14 compared to the vehicle groups, and bronchitis 

was less severe in the AZM group at day 7.  Based on this difference, IL-4rα-/- mice were 

given either T cells or monocytes and T cells by adoptive transfer.  In this experiment, 

the mice that received both types of cells had less alveolitis and interstitial pneumonitis, 
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although the differences were not statistically significant.  The damage in the mice that 

received T cells alone mimicked the damage seen in IL-4rα-/- infected with P. 

aeruginosa, but not treated with AZM.  Those mice that receiving monocytes and T cells 

more resembled the IL-4rα-/- mice that were infected but also received AZM; however the 

addition of monocytes did not reduce the damage to the degree that the drug did.  This 

could indicate that the IL-4rα-/- which receive normal T cells and monocytes may be able 

to polarize to an alternative phenotype in response to infection.  However, the presence 

of AAMs does not reduce inflammation as much as the administration of AZM. 

 

Fibrotic mediators in human subjects 

 For our human study, we were unable to enroll subjects who were infected with 

P. aeruginosa and simultaneously not treated with AZM.  This is due to the current 

practice of having all or most patients with CF who are infected with P. aeruginosa on 

AZM.  For this reason, we did not have the comparison group that we had in the cell 

culture and mouse studies.  This heightens the importance of our complimentary 

evaluation in our in vitro and mouse models. 

 The study performed in human subjects with CF followed up on examination of 

the fibrotic mediators studied in the other models.  We expected subjects treated with 

AZM to have increased markers of fibrosis compared with subjects who were not on 

AZM therapy.  However, subjects receiving AZM had decreased concentrations of TGF-

β in their sputum.  This change was consistent in subjects with positive P. aeruginosa 

cultures compared to subjects who were negative for this pathogen.  Because the 

subjects who were colonized with P. aeruginosa were all on AZM, it was difficult to 

elucidate which was the underlying factor causing the decreased TGF-β concentrations.  

There are no published reports of changes in sputum TGF-β concentrations associated 
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with the presence of P. aeruginosa, although there is some evidence that plasma TGF-β 

levels are increased in the presence of the pathogen.[72]  This was shown in a study of 

40 children, comparing those with and without P. aeruginosa positive cultures.  In this 

same study, BAL concentrations of TGF-β were not affected by presence of P. 

aeruginosa.  However, the authors argue that plasma concentrations of TGF-β are a 

reliable indicator of lung environment, as they correlated with BAL concentrations. 

 Interestingly, more of the subjects in the study were infected with S. aureus than 

P. aeruginosa, yet the presence of this pathogen did not appear to affect the presence of 

any of the fibrotic mediators.  The only protein that was different between subjects based 

on their S. aureus infection status was IL-1β; its concentrations were lower in subjects 

infected.  Simultaneously, IL-β concentrations were not different when analyzed in terms 

of AZM treatment or P. aeruginosa infection status.  Previously, we found that IL-1β 

concentrations are increased in subjects who are positive for P. aeruginosa compared to 

subjects who are not. [114]  Subjects from these two studies had remarkably similar 

demographics, yet the current study excluding patients who were on systemic 

glucocorticoids, while the previous study included them.  Also, the subjects in the 

previous study were not analyzed by presence or absence of S. aureus.  These issues 

may be the source of variation between the two. 

 The proteins in the sputa that correlated to each other and to degree of lung 

function depict interesting characteristics associating macrophage function and fibrosis 

in these subjects.  TGF-β was positively correlated to both lung function and MMP-9.   

IL-1β was positively correlated with TGF-β, MMP-9, and lung function.  This suggests 

that these molecules may interact during lung function decline.  Furthermore, many of 

the correlations were different when the data was analyzed separately by AZM treatment 

group.  TGF-β and IL-1β have weaker correlations with FEV1 in subjects receiving AZM 

compared to subjects who are not.  This data indicates that treatment with the drug may 
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be changing some of the interactions of the fibrotic and inflammatory mediators we are 

examining.  Furthermore, that TNF, IL-10, IL-6, and IL-12 were below level of detection 

are significant findings.  There is evidence that these inflammatory cytokines are 

typically elevated chronically in CF,[181] and it was expected that we would have 

detectable levels of these cytokines in our subject population.  Although the FEV1 

measurements would suggest otherwise, the subjects in our study may have been on 

average young enough to have mild to moderate disease.  Additionally, the above study 

did not specify whether the subjects were being treated with AZM.  It may be that the 

high percentage of AZM treatment in our subjects may be the reason for the decreased 

inflammatory cytokines. 

 Lastly, the AAM effector protein arginase was measured in these subjects.  As in 

our previous work, arginase concentrations were not different in subjects when analyzed 

for their AZM treatment status, although there was a trend toward higher arginase in 

those who were treated with AZM.  Arginase was, however, increased in subjects 

positive for P. aeruginosa, compared to subjects who were negative for this pathogen.  

This corroborates conclusions of our previous study.[114]  However, in the current study, 

subjects were analyzed for double colonization with P. aeruginosa and S. aureus versus 

single colonization with either pathogen.  Traditionally, patients with CF tend to culture S. 

aureus less frequently as they become positive for P. aeruginosa.[5, 182]  However, as 

S. aureus becomes more prevalent, this appears to be changing,[9] making those 

subjects that are culture-positive for both pathogens an important sub-population.  It is 

important to know how the immune response changes in those patients, and how this 

affects their lung function.  Those subjects who were positive for both pathogens had 

significantly higher arginase activity compared with subjects who were colonized with a 

single bacterium.  There was no difference between subjects who were singly colonized 

and subjects who were negative for both.  While we were unable to measure any other 
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marker of AAM in these subjects, the increased arginase activity may indicate a shift 

toward the alternative phenotype in these subjects.  This may not be the case for the 

subjects who are not colonized with either bacteria because cells must be stimulated 

with a bacterial trigger, like LPS, in order for AZM to have an effect.[112]  Additionally, 

AZM treatment in subjects with double colonization may be causing and IKK-β- 

dependent reduction in Stat-1 signaling, which would further reduce inflammatory 

macrophage products. 

 Important observations were also made regarding the subjects who were 

colonized with S. aureus.  While this infection is quite common in both the young CF 

population and the general population, there is a current shift from methicillin-senstive 

Staphylcoccus aureus (MSSA) to methicillin-resistant Staphylcoccus aureus (MRSA) in 

both populations. [5]  The current study collected information about which strain the 

subjects were infected with, but did not analyze them by resistance profile due to small 

sample sizes.  Therefore, MRSA status may be a confounder to our results.  

Furthermore, as mentioned in Chapter 1, S. aureus is becoming an organism that can 

cause chronic colonization in patients with CF. [8]  The subjects in this study were not 

identified as having transient or chronic S. aureus infections.  This may be another 

confounder. 

 It is also important to note that in the in vitro and in vivo studies conducted 

previously by our lab, it is evident that AZM does not completely inhibit inflammatory 

cytokine production, it merely reduces it. [112, 138]  While the in vitro evidence showed 

general upregulation of fibrotic mediators from macrophages and fibroblasts by AZM, 

those trends were ameliorated in the murine and human studies.  These studies also 

showed decreases in inflammatory products, such as iNOS, with administration of AZM.  

Therefore, the anti-inflammatory properties of the drug may outweigh the pro-fibrotic 

ones.  In addition, both the in vitro and in vivo studies demonstrated an increase in 
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MMP-9 production in AZM treated cells.  The decreased inflammation, coupled with the 

increased MMP-9, may be why the subjects on AZM in our study do not have any 

statistically significant upregulation of fibrotic mediators in their sputa, and may be 

grounds for why AZM is effective at decreasing morbidity in patients with CF.   

 Importantly, the subjects who participated were receiving multiple medications in 

addition to AZM.  In order to reduce as much variability as possible, the study excluded 

known modulators of the immune system, such as systemic glucocorticoids, but all 

patients with CF are receiving multiple medications on a daily basis.  These range from 

mucolytics to digestive aids.[92]  While we did not find any statistical significance in the 

data, one drug of interest was inhaled tobramycin.  This is given to patients who are 

positive for P. aeruginosa cultures, but on a 28-day on, 28-day off cycle.[87]  Therefore, 

the 28 days in which the patients are on both AZM and inhaled tobramycin may produce 

different immune responses than the 28 days in which the same patients are on only 

AZM.  While tobramycin does not have immunomodulatory properties, the drug may be 

altering organism burden and indirectly affecting the immune response.  This is a facet 

of treatment that we were unable to examine in our study, but may warrant further 

investigation. 

 Furthermore, the subjects were specifically chosen for their status of stable 

disease, as AZM is given to CF patients as part of maintenance treatment intended to 

decrease frequency of exacerbation.  However, because AZM affects the inflammatory 

cytokine response, it is still unknown how the relationships between the fibrotic 

mediators and those cytokines might change during an acute exacerbation.  This is a 

difference from the in vitro and in vivo models, which studied the initial and resolution 

phases of the response to the bacterium.  These types of comparisons are not possible 

in our human studies as designed.  Future work will investigate these issues. 
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Future Directions 

 The conclusions made in the experiments outlined here provide the foundation 

for further investigation into mechanism of fibrosis development and turnover.  While we 

examined the interactions of several mediators in depth, there are some interactions that 

warrant future study. 

 MMP-9 was identified during the in vitro experiments as having direct impact 

upon the development of fibrosis, and was increased by the addition of AZM in the 

absence of any other stimuli.  However, the inflammatory response early after infection 

in MMP-9-/- mice was not examined, nor was macrophage phenotype.  There may be 

differences in macrophage and neutrophil influx in mice that lack MMP-9, and therefore 

differences in upregulation of iNOS and arginase.  More in vivo experiments to evaluate 

these parameters and determine the exact mechanism of MMP-9 in the response of P. 

aeruginosa could be important.  Most of the in vivo work done with MMP-/- mice have 

studied diseases of pulmonary structure, such as bronchopulmonary dysplasia, or 

ventilator associated lung injury.[141, 142]  These studies demonstrate that lack of 

MMP-9 protects against ventilator induced lung injury, but also induces alveolar 

hyperplasia and promotes eosinophilic inflammation, suggesting a more complex role in 

inflammation for the molecule.[140]  The preliminary work outlined in Chapter 3 indicates 

that the long-term effects of MMP-9 deficiency could also increase fibrosis.  The data 

collected was not sufficient to determine the full nature of MMP-9’s role in the response 

to bacterial infection, however.  This could be important, especially since the control 

mice exhibited a neutrophilic response to P. aeruginosa infection.[114]  Neutrophils are 

pre-loaded with MMP-9 filled granules – without MMP-9, response of these cells to P. 

aeruginosa may not be the same, nor may the resultant damage and repair.[79]  
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Investigation early in the course of infection may help elucidate the importance of MMP-

9 in neutrophilic influx, and therefore, subsequent pulmonary damage. 

 IL-1β was shown to be affected by AZM treatment in the human subjects, but we 

did not investigate this molecule in the mouse models of infection.  It is known that IL-1β 

can have effects on both inflammatory and fibrotic processes by increasing TNF and IL-

6, as well as TGF-β and fibrotic mediators.[160]  IL-1β can affect macrophages directly – 

inducing production of IL-8 and TNF, as well as later increases in fibrotic proteins such 

as TGF-β in diseases like idiopathic pulmonary fibrosis.[15, 119, 183]  Given this dual 

role, it is likely that IL-1β production is increased in response to P. aeruginosa infection, 

and may be subsequently decreased by treatment with AZM.  Because our human study 

did not include subjects who were positive for P. aeruginosa but not receiving AZM, we 

were not able to assess this affect on IL-1β accurately.  In future experiments, our group 

will investigate this in our murine infection model.   

Lastly, a major limitation of the clinical study was the limited availability of 

subjects who were not being treated with AZM.  The imbalance of subjects in each 

treatment group made the statistics difficult to assess.  Next, we plan to do a crossover 

study, in which subjects are taken off of AZM, a suitable washout period is observed, 

and the same markers measured during and AZM-negative course.  This would not only 

allow us to generate more AZM-negative samples, but also to have more rigid, matched 

controls.  We would observe the same subject both on and off the drug; therefore the 

changes that occur in the production of proteins examined would be more confidently 

attributed to AZM. 
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C. Conclusions 

 This research provides insights into the mechanisms by which AZM can influence 

fibrosis development in the setting of P. aeruginosa infection.  We have identified one 

potential mechanism by which AZM is shifting macrophages toward an AAM phenotype, 

as well as the resultant functional characteristics through which these macrophages are 

then increasing fibrogenesis.  This appears to be occurring through the increased 

production of IKK-β, which then leads to increased production of arginase, increased 

activation of TGF-β, and increased production of fibronectin.  Additionally, AZM-

polarized macrophages are different from typical IL-4/13 stimulated AAM, in that MMP-9 

protein production is increased as well.   

 In vivo, we confirmed the impact exerted by AZM on some of these pathways, 

but also showed that the presence of the alternative phenotype may be globally 

protective.  When faced with an acute infection, the presence of this AZM-polarized 

macrophage may blunt the damage associated with neutrophil-driven inflammation and 

prevent the need for later upregulation in airway repair.  This is supported by the 

decrease in iNOS production in the AZM-treated mice.  Therefore, the AZM-polarized 

macrophage may still be producing some fibrotic proteins, but the need to incorporate 

them into fibrotic tissues may be lessened.  Interestingly, the two fibrotic proteins 

studied, fibronectin and collagen, were impacted oppositely when mice were treated with 

AZM; fibronectin concentration in the lung was decreased, while collagen concentration 

around the airways was increased.  Because the increased collagen was accompanied 

by decreases in lung damage, it is difficult to ascertain what the physiologic 

consequences of the increased collagen might be.  

 The human study provided us with insights into how the fibrotic markers and 

inflammatory cytokines interact with each other.  The proteins studied reflect not a global 

shift toward either fibrosis or inflammation, but rather a possible return to homeostasis 
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when the drug AZM is present.  Additionally, treatment with AZM altered relationships 

between fibrotic mediators and inflammatory cytokines, as well as between specific 

proteins and lung function.  Interestingly, arginase production was only increased in 

subjects who were positive for both P. aeruginosa and S. aureus, indicating that double 

colonization may drive the lung away from a highly inflammatory state as a protective 

mechanism.  While subjects on AZM did not have significantly higher arginase 

production compared to subjects not on AZM, there was a trend that might grow stonger 

with more subjects. 

 Altogether, the three approaches used in this study gave us complementary 

insights into the mechanism of AZM’s impact on fibrosis development, allowing us to 

reach a better understanding of how AZM-polarized macrophages affect fibrosis 

development during P. aeruginosa infection.    
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