
University of Central Florida University of Central Florida

STARS STARS

Electronic Theses and Dissertations, 2004-2019

2014

Practical Implementations Of The Active Set Method For Support Practical Implementations Of The Active Set Method For Support

Vector Machine Training With Semi-definite Kernels Vector Machine Training With Semi-definite Kernels

Christopher Sentelle
University of Central Florida

 Part of the Electrical and Electronics Commons

Find similar works at: https://stars.library.ucf.edu/etd

University of Central Florida Libraries http://library.ucf.edu

This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted

for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more

information, please contact STARS@ucf.edu.

STARS Citation STARS Citation
Sentelle, Christopher, "Practical Implementations Of The Active Set Method For Support Vector Machine
Training With Semi-definite Kernels" (2014). Electronic Theses and Dissertations, 2004-2019. 3044.
https://stars.library.ucf.edu/etd/3044

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/etd
http://network.bepress.com/hgg/discipline/270?utm_source=stars.library.ucf.edu%2Fetd%2F3044&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/etd/3044?utm_source=stars.library.ucf.edu%2Fetd%2F3044&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/

PRACTICAL IMPLEMENTATION OF THE ACTIVE SET METHOD FOR SUPPORT
VECTOR MACHINE TRAINING WITH SEMI-DEFINITE KERNELS

by

CHRISTOPHER GARY SENTELLE
B.S. of Electrical Engineering University of Nebraska-Lincoln, 1993
M.S. of Electrical Engineering University of Nebraska-Lincoln, 1995

A dissertation submitted in partial fulfilment of the requirements
for the degree of Doctor of Philosophy

in the Department of Electrical Engineering and Computer Science
in the College of Engineering and Computer Science

at the University of Central Florida
Orlando, Florida

Spring Term
2014

Major Professor: Michael Georgiopoulos

c© 2014 Christopher Sentelle

ii

ABSTRACT

The Support Vector Machine (SVM) is a popular binary classification model due to its superior

generalization performance, relative ease-of-use, and applicability of kernel methods. SVM train-

ing entails solving an associated quadratic programming (QP) that presents significant challenges

in terms of speed and memory constraints for very large datasets; therefore, research on numer-

ical optimization techniques tailored to SVM training is vast. Slow training times are especially

of concern when one considers that re-training is often necessary at several values of the models

regularization parameter, C, as well as associated kernel parameters.

The active set method is suitable for solving SVM problem and is in general ideal when the Hessian

is dense and the solution is sparse–the case for the `1-loss SVM formulation. There has recently

been renewed interest in the active set method as a technique for exploring the entire SVM regular-

ization path, which has been shown to solve the SVM solution at all points along the regularization

path (all values of C) in not much more time than it takes, on average, to perform training at a sin-

gle value of C with traditional methods. Unfortunately, the majority of active set implementations

used for SVM training require positive definite kernels, and those implementations that do allow

semi-definite kernels tend to be complex and can exhibit instability and, worse, lack of conver-

gence. This severely limits applicability since it precludes the use of the linear kernel, can be an

issue when duplicate data points exist, and doesn’t allow use of low-rank kernel approximations to

improve tractability for large datasets.

The difficulty, in the case of a semi-definite kernel, arises when a particular active set results in

a singular KKT matrix (or the equality-constrained problem formed using the active set is semi-

definite). Typically this is handled by explicitly detecting the rank of the KKT matrix. Unfortu-

nately, this adds significant complexity to the implementation; and, if care is not taken, numerical

iii

instability, or worse, failure to converge can result. This research shows that the singular KKT

system can be avoided altogether with simple modifications to the active set method. The result is

a practical, easy to implement active set method that does not need to explicitly detect the rank of

the KKT matrix nor modify factorization or solution methods based upon the rank.

Methods are given for both conventional SVM training as well as for computing the regularization

path that are simple and numerically stable. First, an efficient revised simplex method is efficiently

implemented for SVM training (SVM-RSQP) with semi-definite kernels and shown to out-perform

competing active set implementations for SVM training in terms of training time as well as shown

to perform on-par with state-of-the-art SVM training algorithms such as SMO and SVMLight.

Next, a new regularization path-following algorithm for semi-definite kernels (Simple SVMPath)

is shown to be orders of magnitude faster, more accurate, and significantly less complex than com-

peting methods and does not require the use of external solvers. Theoretical analysis reveals new

insights into the nature of the path-following algorithms. Finally, a method is given for computing

the approximate regularization path and approximate kernel path using the warm-start capability

of the proposed revised simplex method (SVM-RSQP) and shown to provide significant, orders

of magnitude, speed-ups relative to the traditional grid search where re-training is performed at

each parameter value. Surprisingly, it also shown that even when the solution for the entire path is

not desired, computing the approximate path can be seen as a speed-up mechanism for obtaining

the solution at a single value. New insights are given concerning the limiting behaviors of the

regularization and kernel path as well as the use of low-rank kernel approximations.

iv

To my loving wife who patiently endured the sacrifices and provided encouragement when I lost

my way, my beautiful son who was born during this endeavour, and my parents who gave me

encouragement when I needed it.

v

ACKNOWLEDGMENTS

I would like to thank my committee and my advisors Dr. Michael Georgiopoulos and Dr. Georgios

Anagnostopoulos. I am grateful for their guidance, wisdom, insight, and friendship, which I will

carry with me far beyond this endeavor.

I would like to thank my loving wife for her unending patience and support during this effort and

for keeping me grounded all those times I wanted to give up. I couldn’t have done this on my own.

I would also like to thank my son who in later years may remember those times I was busy working

and couldn’t play.

I would also like to thank all of the Machine Learning Lab members who have been instrumental

in my success in various ways and, in some cases, having to endure reading or critiquing some of

my work.

This work was supported in part by NSF Grant 0525429 and the I2Lab at the University of Central

Florida.

vi

TABLE OF CONTENTS

LIST OF FIGURES . xi

LIST OF TABLES . xiii

CHAPTER 1: INTRODUCTION . 1

Notation . 6

CHAPTER 2: SUPPORT VECTOR MACHINE . 7

Overview . 7

Kernel Methods . 13

Applying Kernel Methods with the Primal Formulation 16

Generalization Performance and Structural Risk Minimization 18

Alternative SVM Derivation using Rademacher Complexity 19

Solving the SVM QP Problem . 23

CHAPTER 3: ACTIVE SET METHOD . 28

Active Set Algorithm . 29

Efficient Solution of the KKT System . 32

vii

Convergence and Degeneracy . 34

Semi-Definite Hessian . 35

CHAPTER 4: LITERATURE REVIEW OF SVM TRAINING METHODS 37

Solving the SVM Problem . 37

Decomposition Methods . 38

Primal Methods . 42

Interior Point Method . 43

Geometric Approaches . 45

Gradient Projection Methods . 46

Active Set Methods . 47

Regularization Path Following Algorithms . 51

Other Approaches . 53

CHAPTER 5: REVISED SIMPLEX METHOD FOR SEMI-DEFINITE KERNELS 55

Revised Simplex . 55

Guarantee of Non-singularity . 59

Solving SVM with the Revised Simplex Method . 62

Initial Basic Feasible Solution . 66

viii

Pricing . 67

Efficient Solution of the Inner Sub-problem . 69

Null Space Method for SVM . 69

Updating the Cholesky Factorization . 71

Results and Discussion . 77

CHAPTER 6: SIMPLE SVM REGULARIZATION PATH FOLLOWING ALGORITHM . 86

Review of the Regularization Path Algorithm . 88

Initialization . 95

Analysis of SVMPath . 104

Analysis of a Toy Problem . 104

Multiple Regularization Paths . 110

Empty Margin Set . 112

Simple SVMPath . 114

Floating Point Precision . 117

Analysis . 117

Degeneracy and Cycling . 120

Initialization . 130

ix

Efficient Implementation . 132

Results and Discussion . 133

CHAPTER 7: SOLVING THE APPROXIMATE PATH USING SVM-RSQP 145

Warm Start for the Revised Simplex Method . 146

Computing the Approximation Regularization Path . 148

Computing the Kernel Path . 151

Limiting Behaviors of the Regularization and Kernel Path 154

Low Rank Approximations of the Kernel Matrix . 159

Results and Discussion . 161

Approximate Regularization Path . 161

Approximate Kernel Path . 173

Incomplete Cholesky Kernel Approximation . 178

CHAPTER 8: CONCLUSIONS . 181

LIST OF REFERENCES . 185

x

LIST OF FIGURES

2.1 The Support Vector Machine (SVM) problem. 8

2.2 Physical interpretation of the SVM dual soft-margin formulation. 13

2.3 Depiction of non-linear margin created with kernel methods 14

4.1 Overview of SVM training methods . 38

6.1 Depiction of the piecewise nature of the objective function as a function of b . 97

6.2 Cost function for large, finite λ . 100

6.3 Interval for b when λc > λ > λ0 . 101

6.4 Entire regularization path solution space for a toy problem 112

6.5 Multiple regularization paths for a toy problem 113

6.6 State transition example for 2 degenerate data points 128

6.7 State transition example for 3 degenerate data points 128

6.8 Initialization with artificial variables . 130

6.9 Simple SVMPath path accuracy for the linear kernel 136

6.10 Simple SVMPath path accuracy for the linear kernel 137

6.11 Simple SVMPath path accuracy for the RBF kernel 138

xi

6.12 Simple SVMPath path accuracy for the RBF kernel 139

6.13 Behavior of ∆λ during path progression for the linear kernel 142

6.14 Behavior of ∆λ during path progression for the RBF kernel 143

7.1 Non-bound support vector size as a function of C and γ 157

7.2 Regularization path training times for the linear kernel 163

7.3 Regularization path training times for the linear kernel 164

7.4 Regularization path training times for the RBF kernel 165

7.5 Regularization path training times for the RBF kernel 166

7.6 Kernel grid search accuracy using the incomplete Cholesky Factorization . . 180

xii

LIST OF TABLES

2.1 Commonly Used Kernel Functions for SVM Training 15

5.1 Datasets used for SVM-RSQP assessment 78

5.2 Performance Comparison for the Linear Kernel 83

5.3 Performance Comparison for the RBF Kernel 84

5.4 Performance Comparison for Large Datasets 85

5.5 Algorithm Efficiency Comparison for Simulated Gaussian Datasets 85

6.1 Example Toy Problem . 104

6.2 Candidate λ at λ0 = 7.44 . 106

6.3 Candidate λ at λ1 = 3.75 . 109

6.4 Datasets Used for SSVMP Performance Comparisons 133

6.5 Linear Kernel Results . 140

6.6 RBF Kernel Results . 141

7.1 Datasets Used for Regularization and Kernel Path Experiments 161

7.2 Approximate Path Timing for the Linear Kernel 167

7.3 Approximate Path Timing for the RBF Kernel 168

xiii

7.4 Regularization Path Test Accuracy for the Linear Kernel 169

7.5 Regularization Path Test Accuracy for the RBF Kernel 170

7.6 Approximate Path Performance versus SSVMP with the Linear Kernel 174

7.7 Approximate Path Performance versus SSVMP with the RBF Kernel 175

7.8 Approximate Kernel Path . 176

7.9 Kernel Path Test Accuracy for the RBF Kernel 177

7.10 Kernel Path with Incomplete Cholesky Kernel Approximation 178

xiv

CHAPTER 1: INTRODUCTION

Vapnik and his colleagues at AT&T Bell Laboratories [93] introduced the Support Vector Machine

(SVM), and it has become an increasingly popular machine learning technique-nearly becoming

ubiquitous within various fields of the academic community as well as within industry. Some

example applications of SVM include face recognition [68], medical applications such as x-ray

image processing [23] and heart rate classification [97], radar target recognition applications [51],

financial forecasting applications [98], [90], [88], and bioinformatics [9]. An extensive survey of

SVM applications can be found in [8], and excellent tutorials on the subject can be found in [7]

and [15].

The SVM is popular in large part due to its excellent generalization performance or its ability to

accurately classify previously unseen examples or patterns. This is due to its strong theoretical

foundation based upon statistical learning theory [93]. Additionally, the SVM has an interesting

and easy to understand geometrical interpretation. While the SVM classifier was originally posed

as a linear classifier, kernel methods can be applied-dramatically enriching its application to a wide

range of non-linear problems. In addition, to supervised, binary classification, the SVM framework

has been applied to semi-supervised training [14], outlier detection as a one-class SVM [78], and

regression [93], [96], to name only a few.

SVM training is performed by solving an associated QP (Quadratic Programming) problem. This

QP problem can be solved with conventional numerical optimization techniques. However, the

dual QP problem possesses a dense Hessian, which grows in size quadratically with dataset size.

Therefore, the SVM problem can be quickly become intractable for traditional off-the-shelf op-

timization routines due to both memory constraints and convergence rates. Even recently, with

state-of-the-art SVM-tailored algorithms, slow training times associated with the SVM often forces

1

the practitioner to choose an alternative machine learning technology [46], [11]. Furthermore, the

practitioner must adjust kernel parameters as well as a regularization parameter in order to achieve

optimal performance, which often requires re-training. For example, in a comparison with Multi-

Objective Genetic Adaptive Resonant Theory (MO-GART) [45], the authors found the SVM was

orders of magnitude slower when performing a grid search to find the optimal parameters. As

a result, research on numerical optimization techniques tailored to the SVM problem is vast and

on-going.

The active set method is naturally suited to solving the numerical optimization problem associated

with SVM training, for which, a significant amount of research has been dedicated, see, for ex-

ample, [77], [84], [38], [67], [95], [10], [1], [96], [65], and [61]. The active set method is shown

to be a strong candidate when the Hessian is dense [77] and the solution is sparse [95], which

is often the case especially for the dual SVM formulation when applying kernel methods. The

popular decomposition-based Sequential Minimal Optimization (SMO) [69] and SVMLight [41]

algorithms can, in fact, be seen to belong to the class of active set methods. However, the decom-

position approaches work by optimizing a fixed subset of the variables at each iteration (SMO only

optimizes two variables at a time), which represents a form of coordinate descent. Therefore, while

alleviating memory consumptions issues associated with large optimization problems, the methods

can suffer from slow convergence. Relative to the decomposition approaches, the traditional active

set method has the following distinct advantages (1) the ability to perform incremental/decremental

training and support for efficient leave-one-out (LOO) estimation [10], (2) improved accuracy [96],

[77], and (3) improved stability and convergence properties over a wider range of the regulariza-

tion parameter, C, [95], [1], [96]. Efficiently implemented active set methods have been shown to

be competitive, overall, with decomposition approaches [77], [79] and are expected to outperform

decomposition methods when the fraction of support vectors is small [95], [96]. More recently, the

active set method has become prominent for the important class of regularization path-following

2

methods [38].

Unfortunately, the conventional active set method, without modification, requires a positive definite

Hessian (or kernel function) when working with the dual SVM formulation. Otherwise, an active

set may be encountered where the corresponding equality-constrained problem is singular. This

limits applicability of the method to a wide range of problems including cases where where a linear

kernel is desired. Further, duplicate data points can create a semi-definite Hessian even when the

kernel function is positive definite, and near-singularity may occur due to numerical precision.

Most importantly, this prevents the use of low-rank kernel approximations [85], [27] for speeding

up the active set method. The majority of active set implementations reported in the SVM literature

are limited to the application of positive definite kernels.

The active set method can be successfully modified to address semi-definite Hessians. In this case,

the active set method detects when a singular system occurs and computes a descent direction that

will adjust the active set so that the next system of equations is non-singular. However, care must be

taken to ensure numerical stability and to prevent cycling in these cases. This is successfully done,

for example, by Scheinberg et al. within the SVM-QP algorithm [77]. For the regularization path

following algorithm, Ong et al. [67] solve a modified linear programming problem that accounts

for the null space when a singular matrix is detected. In general, these methods either require a

modified factorization such as such as QR, SVD, and modified Cholesky and/or require a selective

solution method based upon the number of singular eigenvalues. Therefore, these techniques add

significant complexity, provide additional sources of numerical instability, and may ultimately

prevent convergence. Further, more recent and important methods for computing the regularization

path referred to as approximate or sub-optimal regularization path-following algorithms [30], [44]

do not yet address the semi-definite kernel at all.

The purpose of this research is to address the issues related to use of semi-definite kernels with the

3

active set method. This research largely shows that a change can be made to the pivoting strategy

of the active set method that automatically avoids the singular system of equations. This results in

a method that maintains the simplicity of the active set implementation for positive definite kernels

while providing superior performance and numerical stability compared to existing methods in the

face of semi-definite kernels. Having resolved issues associated with the semi-definite kernel, this

research introduces a novel initialization method for the regularization path following algorithm,

introduces new approximate regularization path and kernel path algorithms for semi-definite ker-

nels, and investigates, for the first time, the use of low-rank kernel approximations within the active

set method. Specifically, the contributions of this research are as follows:

• Introduce an efficiently implemented revised simplex method for quadratic programming

for SVM training with semi-definite kernels that outperforms existing implementations in

terms of training time and is competitive with decomposition methods such as SMO and

SVMLight.

• Introduce a regularization path following algorithm for semi-definite kernels that maintains

the simplicity of the original method for positive definite kernels while significantly outper-

forming the competing method in both training time and numerical stability. An extensive

theoretical analysis is provided along with a proof of convergence. New insight is also pro-

vided into the potential failure of existing methods to accurately compute the regularization

path.

• Introduce a novel initialization method for the regularization path following algorithm for

the case of unequal class sizes that works within the framework of the existing algorithm

avoiding the need for an external solver. This initialization method is only suitable for algo-

rithms that can handle semi-definite kernels. New insights into the initialization problem are

discussed.

4

• Introduce a method for performing an approximate path search as well as a fast grid search

from within the SVM-RSQP algorithm that is competitive with the regularization path fol-

lowing algorithms in terms of speed while also handling semi-definite kernels. This also

represents the first known approximate path method that demonstrates success for the `1-

loss SVM with semi-definite kernels. New insight is provided into the practical benefits of

the approximate path search versus a traditional logarithmic grid search.

• Introduce a novel method for performing approximate kernel path parameter searches within

the SVM-RSQP algorithm, that is, again, able to handle semi-definite cases. This represents

the first known approximate kernel path method.

• The first known results are reported on using low-rank kernel approximations with the active

set method. This represents an important step towards improving tractability of the active set

method for very large datasets in terms of both memory consumption as well as training time.

Additional insight is given on the effectiveness of the incomplete Cholesky factorization for

low-rank kernel approximation from the perspective of the kernel path.

The remainder of this document is organized as follows. Chapter 2 provides an overview of the

Support Vector Machine while Chapter 3 provides an overview of the active set method. Chapter

4 discusses the literature review associated with the broad spectrum of training methods applied to

solving the SVM problem as well as literature review of the active set method. Chapter 5 discusses

the revised simplex method for quadratic programming as a SVM training method for semi-definite

kernels. The details of implementation are provided along with comparisons to other state-of-the-

art implementations. Chapter 6 discusses a new technique for solving the regularization path for

semi-definite kernels. In this chapter, a detailed review of the regularization path algorithm is given

along with detailed analysis and discussion. New insight is given into the nature of the initialization

problem as well as a new initialization method is introduced for unequal class sizes. Chapter 7

5

discusses efficient solution of the approximate regularization and kernel paths within the SVM-

RSQP framework. This chapter also discusses performance of low-rank kernel approximation

within the SVM-RSQP algorithm. Conclusions and summary are provided in Chapter 8.

Notation

Within this research, vectors are denoted with bold-face, lower case, scalars with lower case and

matrices with upper case. Subscripts denote a component of a vector such as xi and a set of

subscripts with lower case denotes a single element of a matrix. For example, qij is the element

corresponding to row i and column j of Q. A single index in lower case denotes a single column

from a matrix. For example, qi is the ith column of the matrix Q. The notation |S| refers to the

cardinality of set S. The matrix, Q, is referenced a number of times in this paper and is defined

as Qij = yiyjK(xi,xj), where y ∈ {−1,+1} and K(·, ·) is a positive kernel associated with a,

potentially infinite-dimensional, reproducing kernel Hilbert space. The notation ‖w‖2
H , 〈w,w〉H

corresponds to a dot product formed in the Hilbert spaceH.

6

CHAPTER 2: SUPPORT VECTOR MACHINE

Overview

In its basic form, the goal of the binary SVM classifier is to find a separating hyperplane, given a set

of data patterns xi ∈ Rd and corresponding binary labels yi ∈ {+1,−1}, that correctly partitions

the labeled data points while maximizing the margin between the hyperplane and the closest data

point xi to the hyperplane. The hyperplane, as depicted in Figure 2.1, can be described by the

equation 〈w,xi〉 + b = 0. The vector w is normal to the hyperplane and the distance from the

origin to the hyperplane is b
‖w‖2 . The predicted label then becomes sgn (〈w,xi〉+ b) where sgn (·)

is the signum function and is +1 or -1 for positive, negative quantities, respectively.

A margin is added requiring a minimum distance between each data point and the hyperplane as

follows

〈w,xi〉 − b ≥ 1, yi = +1 (2.1)

〈w,xi〉 − b ≤ −1, yi = −1 (2.2)

or, more concisely,

yi (〈w,xi〉 − b) ≥ 1 (2.3)

The functional distance between any pattern and the hyperplane is measured as ‖〈w,xi〉 − b‖ and

is equal to 1 for any pattern lying on the margin.

7

support vector−1

+1

separating hyperplane

margin

1
‖w‖

w

b
‖w‖

Figure 2.1: The support vector machine finds a separating hyperplane between two classes of
data maximizing the margin between the hyperplane and closest data point. In the soft-margin
formulation, a few data points are allowed to cross the margin.

The geometric distance between the hyperplane and any pattern x can be found by forming the

projection of the pattern onto the unit normal vector to the hyperplane as follows 〈 w
‖w‖ ,x〉 −

b
‖w‖ .

For points on the positive-side margin, 〈w,x〉 − b = 1, the geometric distance becomes

1 + b

‖w‖
− b

‖w‖
=

1

‖w‖
, (2.4)

This is the geometric width and is commonly referred to as the margin width. The total geometric

margin width, from the +1 to the −1 functional margin, is then 2
‖w‖ .

8

The task of finding a separating hyperplane with maximal margin width can be posed as an opti-

mization problem as follows.

min
w

1
2
‖w‖2 (2.5)

s.t. yi (〈w,xi〉+ b) ≥ 1 ∀i (2.6)

Squaring ‖w‖ as well as multiplying by the constant coefficient 1
2

is done for convenience, i.e.

consider that ∂
∂w

1
2
‖w‖2 = w.

This is referred to as the hard-margin formulation of the SVM. This formulation is impractical

due to the underlying assumption that data patterns are linearly separable or a hyperplane perfectly

separating positively- and negatively-labeled data points can be found. In fact, a feasible solution

(solution satisfying all constraints) does not exist in the instance where the data is not linearly

separable. This is remedied with the soft-margin formulation, which allows some data points to

violate the constraints.

min
w,ξ

1
2
‖w‖2 + C

∑n
i=1 ξi (2.7)

s.t. yi (〈w,xi〉+ b)− 1 + ξi ≥ 0 ∀i (2.8)

ξi ≥ 0 ∀i (2.9)

A set of non-negative slack variables, ξi, specify the degree of violation of the constraints for

each data point. The additional term in the objective is referred to as a regularization term and

penalizes the use of slack variables. Without the penalty term, the addition of slack variables

would result in a solution consisting of an infinite margin width with all points inside the margin.

This formulation adds a user-specified parameter, C, that adjusts the trade between margin width

and margin violation.

9

The previous formulation is also referred to as the `1-loss SVM. An alternative is the `2-loss SVM

formulation [50] as follows

min
w,ξ

‖w‖2 + C
∑n

i=1 ξ
2
i (2.10)

s.t. yi (〈w,xi〉+ b)− 1 + ξi ≥ 0 (2.11)

Note that the non-negativity constraints associated with ξi are no longer necessary and that the

regularization term within the objective function essentially consists of the square of the `2− norm

of ξ, i.e. ‖ξ‖2
2. This formulation has the advantage that the dual objective function, discussed later,

becomes positive definite, which simplifies optimization. However, the solution in terms of the

slack variables, ξi, will be less sparse (fewer zero values). Sparseness is normally desired during

the testing phase [46]. Further, Koshiba et. al [50] reported that training times tended to be faster

for the `1 problem while accuracy was not substantially different between the two formulations.

Instead of working with the primal formulation, the majority of SVM implementations work with

dual formulation, which can be derived as follows. Consider the following standard form opti-

mization problem

min
x
f (x) (2.12)

s. t. gi (x) ≤ 0 (2.13)

hj (x) = 0 (2.14)

where i ∈ {1, ...,m} for a set of m inequality constraints and j ∈ {1, ..., n} for a set of n equality

constraints. The Lagrangian of this problem is formed as follows.

L (x,µ,ν) = f (x) +
m∑
i=1

µigi (x) +
n∑
i=1

νihi (x) (2.15)

10

The variables µi and νi are referred to as Lagrange multipliers or dual variables (sometimes referred

to as KKT multipliers as well). The dual function is formally defined as (see also [6])

g (µ,ν) = inf
x
L (x,µ,ν) (2.16)

where inf is the infimum or the greatest lower bound and is simply the minimum if the greatest

lower bound is in the domain of g (). The dual optimization problem is

max g (µ,ν) (2.17)

s. t. µi ≥ 0 ∀ i (2.18)

The Lagrangian for the `1-loss SVM soft-margin formulation is

L (w, b, α) =
1

2
‖w‖2 −

n∑
i=1

αi (yi (〈xi,w〉+ b)− 1 + ξi) + C
n∑
i=1

ξi −
n∑
i=1

riξi (2.19)

The stationary condition is found by finding the derivative with respect to each of the primal vari-

ables as follows,

∂L

∂w
= w −

n∑
i=1

αiyixi = 0 (2.20)

∂L

∂b
=

n∑
i=1

αiyi = 0 (2.21)

∂L

∂ξi
= C − αi − ri = 0 (2.22)

The variables αi (or Lagrange multipliers) are the dual variables. Upon substituting the first two

11

expressions back into the Lagrangian, the dual function becomes

−1

2

n∑
i,j=1

αiαjyiyj〈xi,xj〉+
n∑
i=1

αi (2.23)

which results in the following dual problem

min
α

1
2

∑n
i,j=1 αiαjyiyj〈xi,xj〉 −

∑n
i=1 αi (2.24)

s. t.
∑n

i=1 yiαi = 0 (2.25)

0 ≤ αi ≤ C ∀i (2.26)

The last inequality results from ri ≥ 0, αi ≥ 0 and C = ri + αi. Therefore, the regularization

parameter, C, now becomes an upper bound on the dual variables αi. Of interest also is the fact

the quantities xi only appear within the dot product, which allows application of the “kernel trick”

for classifying non-linear problems, discussed later.

The dual formulation has an interesting physical interpretation as shown in Figure 2.2. Note that

there is a dual variable αi for each of the inequality constraints in the primal problem and effec-

tively for each of the data points. At the solution, αi = 0 for all data points that are outside the

margin, 0 ≤ αi ≤ C for all points on the margin and αi = C for all points inside the margin. The

data points with αi > 0 are referred to as support vectors. The set of support vectors are often

further partitioned into the set of non-bound support vectors, αi < C, and bound support vectors,

αi = C. Since the dual variables are the Lagrange multipliers for the inequality constraints within

the primal problem, αi = 0 implies that the solution is not sensitive to that particular constraint.

12

support vector

αi = 0

yi = −1

0 ≤ αi ≤ C

yi = 1
αi = C

0 ≤ αi ≤ C

Figure 2.2: Physical interpretation of the SVM dual soft-margin formulation. Yellow circles denote
the support vectors, which are the data points within or on the margin.

As a result, an interesting characteristic of the support vector machine is that these constraints, and

corresponding data points, can be removed from the problem without affecting the solution.

Kernel Methods

A non-linear mapping, possibly to a higher dimensional space, can enable algorithms restricted to

linearly separable problems to be applied to the non-linear problem [15]. The SVM dual formula-

tion is advantageous, as will be shown, since the data vectors appear strictly within a dot-product

term. Consider a non-linear mapping zi = φ (xi) where φ : X → H represents a non-linear

mapping to a Reproducing Kernel Hilbert Space (RKHS)H.

13

Figure 2.3: Depiction of non-linear margin created with kernel methods. By applying kernel
methods the SVM can generate non-linear separating surfaces.

The dual formulation can be be rewritten as

min
α

1
2

∑n
i,j=1 αiαjyiyj〈φ (xi) , φ (xj)〉H −

∑n
i=1 αi (2.27)

s. t.
∑n

i=1 yiαi = 0 (2.28)

0 ≤ αi ≤ C ∀i (2.29)

where the notation 〈·, ·〉H is used to denote the dot product performed in the RKHS, H. In gen-

eral, computing the non-linear mapping φ() might be intractable, for example, when the mapping

function is to an infinite-dimensional space. Instead of explicitly computing the mapping, the

14

dot-product term can be replaced with a kernel function k (xi,xj) in what is often referred to as

a “kernel trick”. The kernel function performs a dot-product in the non-linearly mapped space–

combining the mapping and dot-product steps. Using the “kernel trick”, the dual formulation now

becomes

min
α

1
2

∑n
i,j=1 αiαjyiyjk (xi,xj)−

∑n
i=1 αi (2.30)

s. t.
∑n

i=1 yiαi = 0 (2.31)

0 ≤ αi ≤ C ∀i (2.32)

Some of the most commonly used kernels are defined in Table 2.1. In addition to these, any sym-

metric, positive semi-definite kernel function can be used [15] [Proposition 3.5]. Mercer’s theorem

provides the necessary and sufficient conditions for the kernel to behave as an inner product within

the non-linearly mapped space. Kernels that satisfy these conditions are referred to as Mercer

kernels. Kernels can be derived to allow similarity comparisons between patterns derived from a

wide variety of both numerical, categorical features as well as even unconventional features. For

example, Leslie et al. [55] develop a string-kernel for protein classification.

Table 2.1: Commonly Used Ker-
nel Functions for SVM Training

Linear xTy

Polynomial
(
xTy + 1

)d
Gaussian exp

(
−‖x−y‖22

2σ2

)
Sigmoid tanh

(
κxTy − δ

)

15

Applying Kernel Methods with the Primal Formulation

Kernel methods can also be applied to the primal formulation of the SVM such as in [13], [43],

and [83] using the representer theorem (see [13], [15]). Here, the SVM problem is formulated as

min
w,b

1

2
‖w‖2

H + C

n∑
i=1

`(w, b; xi, yi) (2.33)

where, for the soft-margin formulation, the hinge-loss function is employed

`(w, b; x, y) , [1− yi (〈w, φ(xi)〉H + b)]+ (2.34)

In general, `(w, b; xi, yi) can be any loss function including the quadratic loss of the `2-loss SVM

formulation [50]. In this formulation, w and φ(xi) both belong to the Reproducing Kernel Hilbert

Space (RKHS)H. The kernel function k(·,x) is defined such that k(·,x) = φ(x) and, therefore,

〈k(·,xi), k(·,xj)〉H = k(xi,xj). (2.35)

The representer theorem suggests that the optimal solution w∗ can be written in terms of kernel

functions evaluated at the data points in the problem as follows

w∗ =
n∑
i=1

βik(·,xi) (2.36)

Therefore, the representer theorem allows the problem to be rewritten as

min
β,b

1

2
βTKβ + C

n∑
i=1

[
1− yi

(
n∑
j=1

βjk(xi,xj) + b

)]
+

(2.37)

16

The following equivalent formulation is derived by introducing a set of slack variables ξi,

min
β,b,ξ

C1Tξ + 1
2
βTKβ (2.38)

s.t. ξi ≥ 0, ξi ≥ 1− yi
(
kTi β + b

)
∀i (2.39)

Note that the variables βi are not the Lagrange multipliers, αi, associated with the dual SVM

soft-margin formulation presented earlier. The dual formulation is again derived by forming the

Lagrangian

L(β, b, ξ) = [C1− r−α]T ξ +
1

2
βTKβ + αT [1− Y (Kβ + b1)] (2.40)

where Y is a diagonal matrix containing the labels, yi along the diagonal and 1 is a vector of ones

of size n. Taking the partial derivatives with respect to the primal variables yields

∂L
∂ξ

= C1− r−α = 0 (2.41)

which combined with the fact that αi ≥ 0 and ri ≥ 0 for all i implies 0 ≤ αi ≤ C. The partial

derivative with respect to b yields

∂L
∂b

= αTY 1 = αTy = 0 (2.42)

and, finally, taking the partial derivative with respect to β gives

∂L
∂β

= Kβ −KYα = 0 (2.43)

17

where a solution is β = Yα (unique if K is positive definite). Substituting this expression along

with (2.41) into (2.40) yields the dual objective

L(α) = 1Tα− 1

2
αTQα (2.44)

along with the constraints αTy = 0 and 0 ≤ αi ≤ C. Note that Q , Y KY .

Generalization Performance and Structural Risk Minimization

Many classifiers work to minimize empirical risk defined as

R (f) =
1

2n

n∑
i=1

L (yi, f (xi)) (2.45)

where f (x) is the discriminant or scoring function and incorporates classifier knowledge, x ∈ Rd

is a training pattern with dimensionality d, yi ∈ {+1,−1} is the corresponding label, and there

are n data points. The function L(·, ·) is a loss function that measures the similarity between the

desired labels yi and output of the classifier. An example loss function often used for classification

is the 0−1 loss function, which returns 1 if y 6= f (x). The empirical risk is minimized by reducing

the number of labeling errors the classifier makes. The empirical risk is only an estimate of the

true risk

R (f) =
1

2

∫
L (y, f (x))dP (x, y) (2.46)

True risk is derived based upon complete knowledge of the probability distribution P (x, y), which

can only be estimated from the given training data. In general, it is expected that minimization of

the empirical risk will result in over-training, unless the training samples are of sufficient size to

accurately reflect the true underlying statistics.

18

The SVM, instead of empirical risk minimization, performs structural risk minimization. Structural

risk minimization attempts to balance empirical risk and capacity. Capacity is loosely related to

the ability of the classifier to fit arbitrarily complex surfaces through the data. A classifier with

infinite capacity, in theory, is capable of driving the empirical risk to zero.

The notion of capacity is formalized with the concept of VC (Vapnik Chervonenkis) dimension.

The VC dimension is a measure of the maximum number of data points that can be accurately

classified given all possible combinations of assigned labels. This can be used to provide an upper

bound on the true risk with probability less than 1− η as follows

R (f) ≤ Remp (f) +

√
hlog

(
2n
h

)
− log

(
η
4

)
n

(2.47)

where h is the (VC) dimension, and n is the number of training data points. As expected, this

indicates that the upper bound on the true risk is increased with increased capacity.

The goal of structural risk minimization is to minimize this upper bound as opposed to minimizing

the empirical risk. Vapnik [93] shows us that maximizing the margin within the SVM framework

is equivalent to structural risk minimization. This, then, is the genesis of the generalization per-

formance observed for the support vector machine. For an excellent tutorial on this subject see

Burges [7].

Alternative SVM Derivation using Rademacher Complexity

The SVM primal formulation also naturally arises from a Rademacher complexity generalization

bound perspective. Specifically, the SVM primal problem can be shown to be exactly equivalent

to minimizing the upper bound on the true risk. This is based upon the following theorem from

Mohri et al. [63]

19

Theorem 1 (Theorem 4.5, [63]). For fixed ρ > 0, ∀ h ∈ H , and ∀ δ > 0

R(h) ≤ R̂p(h) +
2

ρ
R̂S(h) + 3

√
ln2

δ

2n
(2.48)

where

R(h) , E {[yh(x) ≤ 0]} (2.49)

R̂p(h) ,
1

n

n∑
i=1

Φp(yih(xi)) (2.50)

R̂S(h) , Eσ

{
sup
h∈H

n∑
i=1

σih(xi)

}
(2.51)

This theorem provides an upper bound on the riskR(h) for a classifier with a discriminant function

h ∈ H . The hypothesis spaceH ⊆ RX contains the space of functions implemented by a classifier.

The quantity R̂p(h) is referred to as the empirical margin loss, and the quantity R̂S(h) is referred

to as the empirical Rademacher complexity of H . The random variable σi is independently and

identically distributed (i.i.d.) and drawn from a Rademacher distribution where there is an equal

probability of drawing either a +1 or −1. The function Φp(u) within the expression for empirical

margin loss is defined as follows

Φp(u) =

1, u ≤ 1

1− p, 0 ≤ u ≤ p

0, u > p

(2.52)

20

For the SVM problem, the hypothesis space consists of the following

H = {h : x 7→ 〈w, φ(x)〉H ,x ∈ X ,w, φ(x) ∈ H | ‖w‖ ≤ R} (2.53)

whereH is a RKHS with inner product 〈·, ·〉H and reproducing kernel, k, and the feature mapping

φ : X → H is used. The quantity R > 0 can be assigned any positive value and controls the

“richness” of H. Define the following space of valid vectors w

Ωw , {w ∈ H : ‖w‖H ≤ R} (2.54)

For the SVM hypothesis space, the empirical Rademacher complexity becomes

R̂S(h) =
1

n
Eσ

{
sup

w∈Ωw

n∑
i=1

σi 〈w, φ(xi)〉H

}
(2.55)

Application of the Cauchy-Schwartz inequality followed by Jensen’s inequality yields

R̂S(h) =
1

n
Eσ

{
sup

w∈Ωw

〈
w,

n∑
i=1

σiφ(xi)

〉
H

}
(2.56)

≤ 1

n
Eσ

{
sup

w∈Ωw

‖w‖H

∥∥∥∥∥
n∑
i=1

σiφ(xi)

∥∥∥∥∥
H

}
(2.57)

=
R

n
Eσ

√√√√∥∥∥∥∥

n∑
i=1

σiφ(xi)

∥∥∥∥∥
2

H

 (2.58)

≤ R

n

√√√√√Eσ

∥∥∥∥∥∑

i

σiφ(xi)

∥∥∥∥∥
2

H

 (2.59)

where the supremum over w ∈ Ωw results in ‖w‖H = R. It is straight-forward to show this

becomes

R̂S(h) ≤ R

n

√
trace(K) (2.60)

21

where Ki,j , 〈φ(xi), φ(xj)〉H and noting that E[σiσj] = 0 for i 6= j and E[σ2
i] = 1. For the

empirical margin loss assume that k(x,x′) ≤ r ∀x,x′ ∈ X , which implies trace(K) ≤ rn. The

function Φp(u) is not convex; however, it is possible to bound the expression as follows

Φp(u) ≤ [p− u]+ (2.61)

Given this, using p = 1 results in

R̂1(h) ≤ 1

n

n∑
i=1

[1− yih(xi)]+ (2.62)

However, the expression on the r.h.s. is simply the hinge-loss or R̂1(h) ≤ R̂hinge(h). Therefore,

the upper bound on empirical risk (or 0-1 loss) for the SVM hypothesis space with probability 1−δ

becomes

R(h) ≤ R̂hinge(h) + 2

√
r

n
R + 3

√
ln2

δ

2n
(2.63)

It turns out that minimizing the SVM primal objective is exactly equivalent to the task of minimiz-

ing the r.h.s. of the above expression, which can be demonstrated as follows. First, the problem of

minimizing R(h) for the SVM is expressed as

min
w∈H,R:R≥‖w‖H

1

n

n∑
i=1

[1− yi 〈w, φ(xi)〉H]+ + 2

√
r

n
R (2.64)

Clearly, for a fixed w, then the objective is minimized when R = ‖w‖H, therefore, the following

equivalent problem is solved

min
w∈H

1

n

n∑
i=1

[1− yi 〈w, φ(xi)〉H]+ + 2

√
r

n
‖w‖2

H (2.65)

where squaring the last term (‖w‖2
H) yields an equivalent problem. After scaling (multiplying the

22

objective by 1/4
√
n/r and defining C , 1/4

√
rn, the SVM primal formulation (without bias)

results

min
w∈H

C
n∑
i=1

[1− yi 〈w, φ(xi)〉H]+ +
1

2
‖w‖2

H (2.66)

Therefore, the primal formulation directly minimizes the RC-based upper bound on empirical risk,

R(h), for the SVM.

Solving the SVM QP Problem

Both the primal and dual formulations of the SVM optimization problem are convex since the

objective function and set of constraints are both convex. As a result, the SVM possesses a global

minimum, which is guaranteed to be unique for the dual formulation if the kernel matrix is positive

definite. The primal formulation is ideal for large datasets where the number of variables are on the

order of the number of features within the dataset. However, the number of inequality constraints

are on the order of the dataset size for the primal formulation and immediate support for kernel

functions is not provided (except as noted previously and also discussed in Chapelle et al. [13]).

The dual formulation readily admits the use of kernel functions; however, the number of variables

are on the order of the size of the dataset. The Hessian of the dual formulation is generally dense

while the solution tends to be sparse (for the `1-loss formulation). The memory storage require-

ments associated with the Hessian represents the primary challenge for the dual formulation since

the memory requirement grows quadratically with dataset size. In addition, the lack of sparsity

in the Hessian precludes the use of sparse methods to mitigate memory usage and computational

complexity. The dual formulation is the most widely used due to its kernel function support while

the primal formulation may be more commonly used with very large datasets when a linear kernel

is acceptable.

23

If the training set size is sufficiently small so that the Hessian can fit within memory, an ”off-the-

shelf” or conventional quadratic programming or convex optimization algorithm such as MINOS

[64], LOQO [91], QPOPT [31], and SNOPT [32] may be employed. However, the problem can

quickly become intractable for these methods even for moderately-sized problems. Therefore, the

most commonly used optimization techniques are specifically tailored to the SVM formulation. A

detailed review of optimization methods for the SVM formulation is given in Chapter 4.

To gain a basic understanding of the majority of techniques reported in the literature for SVM train-

ing, it is important to review the conditions of optimality for the convex quadratic programming

problem. The KKT (Karush-Kuhn-Tucker) conditions provide the necessary conditions of opti-

mality for an optimization problem with both equality and inequality constraints [66]. Consider

the following general problem,

min
x
f (x) (2.67)

s.t. gi (x) ≥ 0 (2.68)

hj (x) = 0 (2.69)

where i ∈ {1, ...,m} for a set of m inequality constraints and j ∈ {1, ..., n} for a set of n equality

constraints. The Lagrangian is

L (x, µ, ν) = f (x)−
m∑
i=1

µigi (x)−
n∑
j=1

λihj (x) (2.70)

The variables µi and νi are referred to as Lagrange multipliers (or KKT multipliers). The KKT

conditions consist of the stationary condition

∇xL (x∗, µ∗, ν∗) = 0 (2.71)

24

the primal feasibility conditions

gi (x
∗) ≥ 0 ∀ i ∈ {1, ...,m} (2.72)

hj (x∗) = 0 ∀ j ∈ {1, ..., n} (2.73)

the dual feasibility conditions

µ∗i ≥ 0 (2.74)

and, finally, the complementary conditions

gi (x
∗)µ∗i = 0 (2.75)

The complementary condition requires one or both quantities gi (x∗) or µ∗i be zero. The solution

satisfies the strict complementary condition if only one quantity, not both, is zero. The Lagrange

multipliers provide a measure of the problem sensitivity to each of the constraints. If the multiplier

for the inequality constraint is zero, µ∗i = 0, this implies that the inequality constraint is automat-

ically satisfied at the optimal solution, and, in fact, could be removed from the set of constraints

without affecting the optimal solution. On the other hand, a large value for the Lagrange multiplier

indicates the problem is highly sensitive to the associated constraint.

In general, the KKT conditions are not sufficient for optimality; however, it can be shown that the

KKT conditions are necessary and sufficient for a convex problem, and, are, therefore, necessary

and sufficient conditions for optimality for the SVM problem. The Lagrangian for the `1-loss SVM

formulation is as follows

L (w, b, ξ,α, r) =
1

2
‖w‖2

H + C
∑
i

ξi −
∑
i

αi (yi (〈xi,w〉H + b)− 1 + ξi)−
∑
i

riξi (2.76)

25

and the optimality conditions for the SVM primal formulation are

∂L
∂w

= w −
n∑
i=1

αiyixi = 0 (2.77)

∂L
∂b

=
n∑
i=1

αiyi = 0 (2.78)

∂L
∂ξ

= C − αi − ri = 0 (2.79)

yi (〈xi,w〉+ b)− 1 + ξi ≥ 0 (2.80)

ξi ≥ 0 (2.81)

αi ≥ 0 (2.82)

ri ≥ 0 (2.83)

αi (yi (〈xi,w〉+ b)− 1 + ξi) = 0 (2.84)

riξi = 0 (2.85)

The variables αi and ri are both referred to as the dual variables of the problem and the constraints

αi ≥ 0, ri ≥ 0 are dual constraints. In cases where the dual formulation of the SVM is worked with

directly, the optimality conditions are derived as follows. The Lagrangian for the dual formulation

becomes

L (α, β, s, t) =
1

2

∑
i,j

yiyjαiαjk (xi,xj)−
∑
i

αi−β
∑
i

yiαi−
∑
i

siαi−
∑
i

ti (C − αi) (2.86)

26

and the resulting optimality conditions are

∑
j

yiyjαjk (xi,xj)− 1− βyi − si + ti = 0 ∀i (2.87)

αi ≥ 0 (2.88)

(C − αi) ≥ 0 (2.89)

si ≥ 0 (2.90)

ti ≥ 0 (2.91)∑
i

yiαi = 0 (2.92)

siαi = 0 (2.93)

ti (C − αi) = 0 (2.94)

The dual formulation optimality conditions are referenced extensively in this research.

27

CHAPTER 3: ACTIVE SET METHOD

The active set method can be used for solving the class of problems with a quadratic objective along

with a set of linear equality and inequality constraints. Therefore, it is a suitable method for solving

the QP problem associated with the SVM. The premise of the active set method is as follows. If

it is known a priori which of the inequality constraints are satisfied as equality constraints and

which can be ignored at the solution, then an equivalent equality- constrained problem can be

posed and simply solved using the method of Lagrange. Unfortunately, the equivalent equality-

constrained problem is not known in advance. The active set method sequences through the set

of inequality constraints to form a series of equality constrained problems guided by gradient

information and feasibility. The active set method terminates upon finding an equality-constrained

problem satisfying the remaining inequality constraints as well as the conditions of optimality.

The active set method is related to the simplex method [20], but extends to quadratic programming.

The key difference is that the optimal solution for quadratic programming is no longer guaranteed

to be on a vertex of the feasible region. In fact, the simplex method can be extended to quadratic

programming in a straight-forward manner.

In general, the active set method can have worst-case exponential convergence where it degrades

into a combinatorial search. On the other hand, methods such as the interior point method have

proven polynomial convergence. Fortunately, in practice, the active set method is rarely seen to

exhibit exponential performance and is still considered to be competitive against methods such as

the interior point method. Further, convergence is proven in the absence of degeneracy, which can

be resolved, if it occurs, by either modifying the set of constraints or with Bland’s pivoting rule

[4].

28

Consider the following optimization problem.

min
x

1

2
xTQx + fTx (3.1)

s. t. Ax = b (3.2)

Cx ≥ d (3.3)

The following partitions the inequality constraints Cx ≥ d into the set of active constraints A and

inactive constraints I where

ci
Tx = di ∀ i ∈ A (3.4)

ci
Tx ≥ di ∀ i ∈ I (3.5)

and cTi is the ith row of C. The active constraints, are then, those constraints that are satisfied

strictly as an equality constraint while the remaining inactive constraints may be satisfied as in-

equality constraints. Note that it is possible for an inactive constraint to be satisfied as an equality

constraint.

Active Set Algorithm

The active set method solves the following equality-constrained problem at each iteration, k given

a partition into the set of active constraints Ak and inactive constraints Ik,

min
x

1

2
xTQx + fTx (3.6)

s. t. Ax = b (3.7)

ci
Tx = di ∀ i ∈ Ak (3.8)

29

The method begins with some initial feasible solution x0 and corresponding partitionA0 or I0. The

initial feasible solution is one that satisfies the feasibility conditions (satisfies the set of constraints)

without necessarily being optimal. In many cases, the initial solution can be found trivially. Oth-

erwise, the two-phase method or M-method, for example, may be used to find an initial feasible

solution [66].

The KKT optimality conditions for the posed QP problem are

Qx + f − rT (Ax− b)−
∑
i∈I∪A

λici = 0 (3.9)

Ax = b (3.10)

Cx ≥ d (3.11)

λi ≥ 0 ∀i (3.12)

λi
(
cTi x− di

)
= 0 (3.13)

The components λi represent the set of Lagrange multipliers associated with each constraint cix ≥

d. Per the complementary condition (last condition above), given a solution x∗ then λi = 0 for

cTi x∗i > di and λi ≥ 0 otherwise. The Lagrange multiplier can be viewed as the sensitivity of

the solution to the constraint. For λi > 0, the solution x∗ is sensitive to the constraint with the

magnitude of λi representing the degree of sensitivity while for λi = 0, the constraint could be

removed without impacting the solution. The active set method ensures feasibility (constraints are

satisfied) at all times with optimality being achieved when λi ≥ 0 for all i.

Starting with the initial feasible solution, the active set method finds and removes an active con-

straint i ∈ A such that λi < 0. The active set is, then, adjusted and instead of directly computing

30

xk using (3.6), the descent direction p = xk − xk−1 is solved as follows

min
p

1
2
pTQp + pTQxk−1 + fTp (3.14)

s. t. Ap = 0 (3.15)

ci
Tp = 0 ∀ i ∈ Ak (3.16)

It is straight-forward to show the following system of equations solves the equality-constrained

problem above Q −BT

B 0

p

λ

 =

−f −Qxk−1

0

 (3.17)

where B is defined as

B =

 A

CAk

 (3.18)

and CAk
contains the rows of C indexed by Ak. This system of equations is often referred to as

the KKT (Karush-Kuhn-Tucker) system and the matrix as the KKT matrix.

This descent direction is followed until either an inactive constraint becomes infeasible or the

solution xk is reached. That is, given xk = xk−1 + αp the maximum α ∈ [0, 1] is found such that

none of the inactive constraints are violated, or

cTi (xk−1 + αp) ≥ di ∀ i ∈ Ik. (3.19)

For cTi p > 0 this will be true for any value of α. However, for cTi p < 0, feasibility is satisfied for

α such that

α ≤ di − cTi xk
cTi p

(3.20)

31

The maximum distance that can be taken along the descent path, α, is computed as

α = min

{
1,
di − cTi xk

cTi p
∀ i ∈ I ∩ cTi p < 0

}
(3.21)

If α 6= 1, then the limiting inactive constraint is added to Ak. Following this, a new descent

direction is computed and the process repeated until a full descent can taken without requiring an

active set transition or αi = 1. This, represents a new feasible solution. The algorithm terminates

if optimality is reached (λi ≥ 0 for all i), otherwise a new constraint such that λi < 0 is selected

to leave active set and the process repeats.

The method just described is referred to as a primal active set method since feasibility is maintained

on the set of primal constraints throughout all iterations. The dual active set method (see [35]),

instead, maintains feasibility on the set of dual constraints found by forming the Wolfe dual of

the original optimization problem. Instead of explicitly forming the dual, the method works by

maintaining all of the optimization conditions with the exception of feasibility.

Efficient Solution of the KKT System

The null space method (see [66]) can be used for solving the KKT system (3.17). Consider, again,

the KKT system Q −BT

B 0

p

λ

 =

−c

b

 (3.22)

where c = b + Qxk−1 and b = 0, Q ∈ Rn×n, x ∈ Rn, c ∈ Rn, B ∈ Rm×n, and b ∈ Rm, with n

variables and m constraints. Use Z ∈ Rn×(n−m) to represent the basis for the null space of B such

that BZ = 0 and further define Y ∈ Rn×m to be any matrix such that the combined matrix [Z|Y]

32

is full rank. The vector x can be decomposed as follows

x = Zxz + Y xy (3.23)

Upon substituting this expression for x within the equality constraint Bx = b the following is

obtained.

B (Zxz + Y xy) = b (3.24)

BY xy = b (3.25)

where the last expression results from the fact that BZ = 0. From this perspective, the component

Y xy can be seen as a particular solution while the component Zxz explores the infinite space of

solutions where Bx = b continues to be satisfied. From Equation 3.22, the following sets of

equations are obtained

QY xy +QZxz −BTλ = −c (3.26)

BY xy = b (3.27)

Multiplying the first equation by ZT results in

ZTQZxz = −ZTc + ZTBTλ− ZTQY xy (3.28)

ZTQZxz = −ZTc− ZTQY xy (3.29)

The reduced HessianZTQZ will be positive definite if the matrix in Equation (3.22) is non-singular

[Nocedal, Lemma 16.1] [66]; therefore, a Cholesky factorization can be used. In addition, the size

of ZTQZ will increase or decrease by one row/column at each iteration due to the incremental

nature of the active set method. As a result, efficient rank-one updates can be used to update

33

ZTQZ that represent a O (n2) computational complexity as opposed to the O (n3) complexity

that would be incurred if the Cholesky factorization had to be recomputed from scratch at each

iteration.

Finally, the component, λ, is computed by multiplying the first equation of (3.22) by Y T to obtain

Y TQx + Y TBTλ = −Y Tc (3.30)

(BY)T λ = −Y T (c +Qx) (3.31)

The null space method is a suitable method as long as Z can be computed efficiently. However,

there is not necessarily one unique solution for Z and it is possible to have poor scaling that results

in ill-conditioning of the reduced Hessian [66]. Often, if an analytical form for Q is not known,

a separate QR factorization is used Z = QR and maintained with rank-one updates. Once Z is

updated, the Cholesky factorization of the reduced Hessian is subsequently updated.

If the reduced Hessian is large, for example when there are a large number of variables with a

limited number of constraints, memory consumption may become an issue. In these instances,

iterative methods, such as the Krylov subspace methods can be used. The conjugate residual

may be used on the KKT system since it can handle indefinite matrices, otherwise, the conjugate

gradient can be used along with the null space method to solve the equations involving the reduced

Hessian matrix.

Convergence and Degeneracy

It is relatively straight-forward to show that the active set method convergences for a strictly convex

quadratic programming problem assuming a strict decrease of the objective is achieved at each

iteration (see [66]). Degeneracy occurs when no progress is made upon adding or removing an

34

active constraint (or α = 0 results when computing (3.21)) and can arise when a linearly dependent

constraint or a weakly active constraint (λi = 0 for i ∈ Ak) is encountered. If this occurs, it is

possible to revisit a previous active set for some iteration p ≥ q where Ap = Aq, which can result

in cycling and lack of convergence. In most cases, degeneracy is a rare event, especially if linearly

dependent constraints are pruned before solving the problem, and, therefore, methods for handling

this may not be necessary. However, as both Nocedal [66] and Fletcher [28] suggest, methods

borrowed from linear programming, such as Bland’s pivoting rule [4], can be applied.

Semi-Definite Hessian

Difficulties arise within the active set method when the Hessian, Q, is semi-definite. This is of

importance within the SVM community since the widely used linear kernel as well as the existence

of duplicate data points will result in a semi-definite QP problem. Perhaps most importantly,

low-rank kernel approximations, which provide significant speed-ups for SVM training, cannot

be used unless the active set method is modified to allow semi-definite Hessians. The problem

occurs when an active set, Ak, is chosen that results in the KKT system defined in Equation 3.17

becoming singular. The conventional methodology for handling this scenario is as follows. First,

the singular system is detected by either explicitly solving for the rank of the KKT matrix or by

detecting the singularity during updates to a factorization of the KKT matrix. For example, a zero

or near-zero diagonal entry may be detected while updating the Cholesky factorization. If the KKT

matrix is singular, a descent direction is carefully chosen that will modify the active set so that the

next KKT system is non-singular. Care must be taken in choosing the descent direction to ensure

cycling is avoided. This is the basis of the SVM-QP algorithm, an active set implementation for

SVM training with semi-definite kernels [77].

Alternatively, the active set method can be modified to avoid working sets yielding a singular

35

KKT system; thus eliminating the need for specialized solve routines and their inherent numerical

difficulties. The inertia-controlling method for general quadratic programming, [33], an example

implementation for indefinite Hessians, actively performs pivots to control the inertia (number

of positive, negative, and singular eigenvalues) of the KKT system. Instead of actively tracking

the inertia of the KKT system, it is possible, in the case of a semi-definite Hessian, to design an

algorithm with a pivoting strategy that automatically avoids the singular KKT system. The revised

simplex method for semi-definite quadratic programming, introduced by Rusin [76], is one such

example. The primary focus of this research is to demonstrate the utility of Rusin’s method for

SVM training and to extend these concepts to the important class of regularization path-following

algorithms.

36

CHAPTER 4: LITERATURE REVIEW OF SVM TRAINING METHODS

Solving the SVM Problem

The SVM formulation represents a convex optimization problem, and, while there are a number of

methods available from the numerical optimization community for solving this type of problem,

the Support Vector Machine (SVM) formulation is particularly challenging since the number of

constraints is on the order of the dataset size and the Hessian matrix, when solving the dual for-

mulation, scales quadratically with the data set size. This is an issue especially for optimization

algorithms that must store the entire Hessian in memory or, even worse, must compute the inverse

of the Hessian. As an example, a data set containing only 10,000 data points would require 800

MBytes of RAM to store the entire Hessian with double floating point precision. Many off-the-

shelf numerical optimization cannot be applied due to the memory constraints or may exhibit slow

training times or poor convergence properties for even moderately sized data sets. As a result, the

pursuit of faster training methods remains a very active area of research in the SVM community.

A sample of the relevant techniques include, interior point methods [100], [27], active set meth-

ods [77], [80], [95], [10], [61], [84] gradient projection [18], [66], [106], [101], [52], Newton-like

methods [46], projected conjugate gradient [99], geometry-based methods such as convex hull-

based methods [48], [82], approximate minimum enclosing ball (CoreSVM) [89], stochastic gra-

dient descent [83], cutting planes [42], sequential minimal optimization (SMO) [71], [49], [25],

chunking [92], [68], [5], and decomposition [41], [52], [103]. In addition to these approaches,

other key methods include convex-hull based techniques [48], [105], [102] as well as CoreSVM

[89], DirectSVM [75], Smooth SVM (SSVM) [54], Reduced SVM [53], and Projected Conjugate

Gradient (PCG) [99]. Figure 4.1 provides a limited, top-level summary of some of the important

methodologies but does not truly convey the extensive literature on this topic. By far the most

37

popular optimization methods appear to be SVMLight and the SMO algorithm as almost all new

methodologies are compared against these last two. The SMO algorithm tends to be fast, has linear

memory requirements, and is easy to implement. However, SVM training is still slow compared to

the training times for other machine learning technologies, and there is a push to improve training

performance for very large datasets. The following provides a high-level survey of some of the

more important reported techniques.

��������

�	
���������

�
���	��	��	��	���
��

����	������

�����	���

����	
����

��������	�����

������������	

�����	� !

"��	����������

��#

�����	���

����	
����

���
�����
���$%

�����	��

����	���

���	
����
�����$�	�

����	
����

�����	�&'�����(�

���������	����

)�*%+����

,	��	������

##-�� ���

������	�����

�����

"������
	�����

"��	����������

����)����!

�����	��

�	��������%-�

���%+�-�

+	������.������

������	��
�

��������������

�����/��

-�������
��� ��

/���

��������������

/���

"�
�	�	����0

�	
�	�	����

1�������

������	�����

��������	����
����
�������	�
����

�	���������
�����������	�������
�

�������������

Figure 4.1: A depiction of the key optimization algorithms applied to solve the SVM quadratic
programming problem. This represents only a sample of the techniques that have been published.

Decomposition Methods

Vapnik originally introduced an optimization algorithm for the SVM problem that included a

methodology later referred to as ”chunking” to solve the memory issues potentially associated

with large training problems [92]. Boser et al. [5] employ and describe the chunking method in

their work. The chunking method starts with an initial subset of the data as a training set. Op-

timization is performed on that subset of data to find the maximal margin hyperplane and, then,

38

those data points that are not support vectors αi = 0 are discarded from the ”chunk” and a fixed

number of data points are chosen from the remaining training set that are incorrectly classified or

are on the wrong side of the margin to form a new ”chunk”. This process is repeated until all data

points are on the correct side of the margin and the ”chunk” contains the set of support vectors

αi > 0. Each chunk is optimized with commercially available optimization software.

The disadvantage of the chunking method is that the chunk size will eventually grow to be on the

order of the number of support vectors identified in the final solution. Typically, the number of

support vectors will grow with the training set size, and eventually, the algorithm may encounter

difficulties with memory. Osuna et al. [68] introduced a decomposition method, which instead of

allowing a variable sub-problem size, employs a fixed sub-problem size. The authors establish a

working set B whose size |B| < n where n is the training set size. The algorithm requires that |B|

is sufficiently large to contain all of the support vectors identified in the final solution. The authors

employ the MINOS algorithm for solving the sub-problem and apply the algorithm to the face

detection problem. The primary advantage of this algorithm, over the chunking algorithm, is that

memory consumption can be reliably predicted. The most important contribution, however, is that

the authors prove that replacing non-support vectors within the current working setB with variables

from the non-working set N that violate the KKT conditions will result in a strict decrease of the

objective function. This later becomes the basis for all decomposition methods.

The decomposition method gained popularity with the introduction of SVMLight by Joachims

[41] and Sequential Minimal Optimization (SMO) by Platt [71]. Unlike the method introduced by

Osuna, these decomposition methods employ a fixed working set size |B| that does not necessarily

contain all of the support vectors. In the method reported by Joachims, a small even-sized working

set size, q, is chosen, typically between q = 2 and q = 20. Joachims introduced a new working

set selection strategy as an optimization problem based upon the feasible direction method by

Zoutendijk. The problem is solved efficiently by performing a partial sort. A series of QP sub-

39

problems, of size q, are then solved. The SVMLight method employs a primal-dual interior point

method introduced by Vanderbei [91] and implemented by Smola [86] (pr LOQO) to solve the

quadratic programming sub-problem. In general, any suitable quadratic programming method can

be applied. The author also introduces the concept of shrinking. The idea behind shrinking is to

identify data points that are not likely to become support vectors and eliminate those variables from

the quadratic programming problem. This can realize a significant speed-up in some problems as

the working set selection problem size can be greatly reduced.

In addition to shrinking, kernel caching can be employed to further reduce kernel evaluations,

usually the most expensive computation of the algorithm. Joachims introduces the notion of em-

ploying a LRU (least-recently used) kernel caching scheme to take advantage of the fact that the

algorithm tends to revisit certain columns of the kernel matrix repeatedly. The idea of shrinking

and kernel caching have become a mainstay of the most efficiently implemented SVM training

algorithms.

As an alternative to the the primal-dual interior point method for solving the sub-problem asso-

ciated with decomposition, more recently, Serafini et al. [81] introduced a gradient projection

method referred to as a generalized variable projection method (GPVM) for solving the sub-

problem. The authors indicate that the GPVM method is a viable alternative to MINOS and

LOQO. LOQO is the sub-problem solver employed by SVMLight and MINOS is employed in

the algorithm reported by Osuna et al.. Zanni et al. [104] further extend the GPVM algorithm to a

parallel implementation for large datasets.

The Sequential Minimal Optimization (SMO) algorithm introduced by Platt [71] takes decompo-

sition to an extreme using a working set size of two. At this extreme, the sub-problem has an

analytical solution and, therefore, doesn’t require a numerical solver. For working set selection,

the algorithm employs a set of heuristics, which alternate between exploring all data points and the

40

group of non-bound support vectors looking for KKT violators. The SMO algorithm maintains an

error cache enabling a significant speedup. The SMO algorithm is easy to implement using pseu-

docode provided in [71]. Compared to other algorithms, SMO employs a large number of cheap

iterations; it is not unusual for iterations to exceed one million iterations.

Following Platt’s initial introduction of SMO, Keerthi et al. pointed out inefficiencies in the heuris-

tics employed for selecting each working set [49]. The authors noted that the original SMO algo-

rithm attempts to estimate the offset, b, at each iteration and suggested that there is a range of

possible values for b that can be derived from the KKT optimality conditions, i.e. [blo, bup]. The

test for optimality within the SMO algorithm requires an estimate for b, which is based upon the

current working set at each iteration within the original SMO implementation. However, since

there is a range of possible values for b, there can be a loss of efficiency as the algorithm might be

delayed in detecting optimality. As a result, Keerthi et al. suggest using a dual threshold system

(blo, bup) when testing for optimality. Their implementation showed considerable improvement in

terms of training speed when compared to the original SMO algorithm. In addition, the working

set selection method discussed by the authors is equivalent to the method proposed by Joachims for

SVMLight [41] when q = 2. Fan et al. [25] provide, yet, a faster implementation of SMO. They

introduce a new working set selection method that includes 2nd order information. The current

implementation of LIBSVM [12], a popular and highly referenced SMO implementation, is based

upon this publication.

Glasmachers et al. [34], introduce a maximum gain working set selection method. The maximum

gain working set method finds a pair of points that will maximize the change in the objective

function. In order to accurately analyze the affect of any pair of points on the objective function,

the affect of clipping must be considered. One method for determining the ”gain” of a particular

pair of points is to test the step made by the two data points and observe the change in the objective

function. Note that similar methods are applied in the simplex method for linear programming

41

such as the steepest edge method [62]. In general, a greedy search for the pair of points that

will maximize the gain would require l (l − 1) or O(l2) tests where l in the worst case can be the

dataset size. Instead of greedily testing all points, the authors suggest making use of the kernel

cache associated with the two data points last updated to find a new pair of points for update. A

proof of convergence for the hybrid MVP (most violating pair), related to Keerthi’s [49] method,

and MG (maximum gain) working set selection is provided.

The convergence properties of decomposition methods have been studied [47], and asymptotic

convergence was shown for a generalized SMO algorithm, which includes the working set selection

introduced in [49] as a special case. The proof of asymptotic convergence was extended to the

generalized working set selection method introduced by Joachims by Lin et al. [58]. In [57] Lin

further shows that the SMO algorithm exhibits worst-case linear convergence rates.

Primal Methods

Chapelle et al. [13] introduced the notion of solving the primal problem instead of the Wolfe dual

problem. They point out that more progress is made against the primal objective versus the dual

objective when a fixed number of conjugate gradient iterations are performed. They also point out

that kernel methods can still be applied in the primal domain by using the Representer theorem.

Subsequently, Joachims et al. [42] introduced SVMPerf, a cutting planes method for solving the

primal problem with a linear kernel on large datasets. Shalev et al. [82] introduce the Pegasos

algorithm, which solves the primal problem by employing a stochastic subgradient methodology

along with a trust region method. The author reports a several order of magnitude improvement

in training speed when compared to SVMLight and a significant improvement when compared to

SVMPerf [42]. Both implementations are very fast (SVMPerf and Pegasos), and more importantly,

42

have a convergence rate that does not depend upon the dataset size but rather the desired accuracy,

ε, making them ideal for very large datasets. The Pegasos algorithm [83] claims faster convergence

than SVMPerf since it does not have a square dependence upon ε.

However, these methods are limited to the linear kernel. In the case of Pegasos, the authors pro-

pose employing the Representer Theorem, as suggested by Chapelle, to enable kernel methods;

however, details on implementation are not given. The SVMPerf algorithm can be modified to

use non-linear kernels, [43]; however, this works again with dual variables and employs kernel

approximations to make the problem tractable.

The SMO algorithm can also be implemented more efficiently in the primal domain when using

a linear kernel. In this case, the number of variables is determined by data dimensionality instead

of data set size. LIBLINEAR [24] is an efficient implementation based upon the SMO algorithm

LIBSVM [25]. Finally, Keerthi et al. [46] introduce a Newton-like method for solving the primal

problem for a linear kernel on very large datasets. They show that they are able to outperform

SMO and SVMLight.

Interior Point Method

The interior point method appears advantageous as it possesses a guarantee of polynomial conver-

gence unlike other methods such as the active set method which can exhibit worst-case exponen-

tial convergence. Further, the interior point method is considered ideal for problems having dense

Hessians. While the active set method explores the convex polytope formed from the set of linear

inequality constraints, or, in general, the border of the feasible region, the interior point method ex-

plores the interior of the feasible region and only settles on the border at optimality. Interior point

techniques have been successfully applied to problems with millions of training samples [100].

43

The SVMLight algorithm, [41], a decomposition method, also uses an interior point method as an

inner solver.

In Fine et al., [27], the authors introduce a primal-dual interior point method for the SVM. In gen-

eral, the system of equations solved by the interior point method at each iteration is expected to be

large, dense and ill-conditioned. As a result, they use a method based upon an incomplete Product

Form Cholesky factorization to factorize the system of equations. They show that the alternative,

using a Sherman-Morrison-Woodbury (SMW) formula for performing low-rank updates to the in-

verse of the matrix, can become numerically unstable. They also employ an incomplete Cholesky

factoriztion as a low-rank approximation to the kernel matrix in effort to reduce the size of the

problem. The approximation method has a O (nk) storage and O (nk2) computational complexity,

where k is the rank of the approximation and n is the number of data points. They report favorable

performance against the SMO and SVMLight algorithms for the linear kernel.

Ferris et al. [26] introduce an interior point method, referred to as OOQP, for solving ”mas-

sive” support vector machines. They use a Mehrotra predictor-method and employ the Sherman-

Morrison-Woodbury (SMW) technique for perform performing low-rank updates to an inverse to

increase the efficiency. In their implementation they found that the number of iterations remained

constant as the dataset size increased while the time per iteration scaled linearly with the dataset

size and quadratically with the data dimensionality (when using a linear kernel). They show that

the interior point method can be employed to solve a non-separable problem with 60 million ex-

amples in 15 to 22.5 hours on a standard work station. While they reported excellent results for the

linear kernel, it is not clear how the method would scale in the case of a non-linear kernel such as

the RBF kernel. Here, the implicit dimension can be very large (based upon the effective rank of

the matrix) and the problem may quickly become intractable for large datasets.

Woodsend et al. [100] introduce yet another interior point implementation based upon separability

44

of the primal, dual variables. The author’s point out that active set methods can become inefficient

with noisy data sets (those that are not clearly linearly separable) and that the advantage of the

IPM method is that a decision is not made concerning the active set until the algorithm is near

the solution. Note that the authors cite numerous decomposition methods, which are not active

set methods in the traditional sense such as those introduced in [77], [61], [10], [95]. The authors

further claim to create an algorithm that has much improved numerical stability when compared

to SMW methodologies while avoiding inefficiencies exposed in the product Cholesky factoriza-

tion method introduced by Fine et al. and providing a level of parallelism that allows for easier

adaptation to a parallel computing environment. The reported method was shown to outperform

all methods with the exception of the LIBLINEAR algorithm [24], a version of LIBSVM adapted

for use of linear kernels on large-scale datasets.

Overall, while the interior point method appears competitive for linear kernels, competitive perfor-

mance does not seem to have been reported for non-linear kernels. One reason for this is likely due

to the fact that significant reductions in memory and or computations are not as readily realized for

non-linear kernels, even with low-rank approximations. Further, a key issue for the interior point

method is that computational complexity has been shown to grow cubically with the size of the

data set [27].

Geometric Approaches

In another class of methods, the SVM problem is posed as a geometry problem where the optimal

separating hyperplane is derived from the convex hull of the data points for each class. Given

the smallest convex hull containing each class is found, the perpendicular bisector of the line

joining the closest points between the two convex hulls represents the maximum margin separating

hyperplane. The “kernel” trick can be applied to these formulations. A detailed discussion of this

45

methodology can be found in [3].

Keerthi et al. [48] introduce, initially, a method that finds the nearest points between two convex

hulls formed from each class of data. In this paper, they derive the nearest point problem formula-

tion for the SVM problem and show that there is a direct correspondence between this nearest point

algorithm and the original SVM problem meaning that the solution to the nearest point problem

directly translates into the solution of the original problem. They derive a fast, iterative method

for solving the nearest point problem and depict results competitive with Platt’s original imple-

mentation of SMO. Research is continuing in this area such as in [105] where a random sampling

approach is used to apply the convex hull method to large data sets and [102] where a fast, incre-

mental learning method based upon convex hulls is introduced.

Gradient Projection Methods

The gradient projection method is a form of steepest descent where the gradient is projected onto

the feasible region defined by the set of constraints. The gradient projection does not need to take

the inverse of the Hessian and is efficient and simple to implement if the constraints are simple,

such as in the case for simple box constraints. More importantly, the gradient projection does

not typically require the Hessian be explicitly stored and appears to be ideal for large datasets.

Further, unlike the active set method, multiple constraints can be activated and/or deactivated at

each iteration. Unfortunately, for the SVM optimization problem, the gradient projection step is

complicated by the existence of the single equality constraint, and, therefore, many of the SVM

implementations specifically address this.

Dai et al. [19] introduce a gradient projection method for singly linearly constrained quadratic

problems with box or bound constraints. In their method they alternate between solving a larger,

46

simpler bound-constrained problem without the equality constraint and a non-linear optimization

problem for updating the Lagrange multiplier associated with the equality constraint. The non-

linear optimization is solved with an outer secant method while a gradient projection is employed

on the larger problem. The premise is that it is now easier to apply the gradient project method to

the larger bound-constrained optimization problem after having removed the equality constraint.

Lee et al. [52] report on a primal-dual hybrid formulation of the SVM problem that becomes a

minimax optimization problem but eliminates the equality constraint. The problem is solved with

alternating gradient projection steps between the primal and dual variables. Zhu et al. [106] intro-

duce a method for dealing with the single equality constraint within the context of solving the total

variation problem for image restoration. In their method, they solve saddle point problem repre-

sented by the primal/dual hybrid problem. Wright recommends the use of this method for the SVM

[101] and a version of this is introduced for solving the semi-parametric SVM in [52] from within,

again, the context of a decomposition-based approach. A semi-parametric SVM admits the inser-

tion of additional equality constraints that allow specification of a priori knowledge. Nonetheless,

this results in multiple equality constraints in addition to the single equality constraint normally

specified.

Serafini et al. [81] and Zanni et al. [104] both report on gradient projection methods for SVM

training as sub-problem solvers for the decomposition method. In addition, Zanni et al. report on

a parallel processing implementation for very large datasets.

Active Set Methods

The active set method is generally ideal for small to medium-sized problems [66]; however, it is

also pointed out in Scheinberg [77] that the active set method is ideal when the Hessian is dense and

47

Vishwanathan et al. [95] point out the active set is superior when the solution is sparse, both valid

for the SVM problem. The active set method, as compared to traditional decomposition methods,

provides an exact solution rather than approximate solution and inherently supports incremental

training. Typically, the active set method can be expected to converge with the number of iterations

being at least on the order of the number of active constraints identified in the final solution [66].

For the SVM problem, then, the number of iterations is expected to be on the order of the number

of support vectors, and this implies the number of iterations will scale linearly with the dataset

size.

Several active set methods have been introduced in the literature for solving the SVM problem

[77], [84] [38], [95], [10], [96] and [61]. An early version was introduced by Cauwenberghs et al.

[10] where they introduced an incremental/decremental training algorithm. In their approach, they

derive the updates (adiabatic increments) necessary for adding a single data point to a fully trained

system. The idea is that the entire system can be trained by starting with a single data point and

incrementally adding data points until a single pass has been made through all of the data points.

Similarly, a method can be derived for updating the solution when a single data point is removed

leading to an efficient way for performing a leave-one-out (LOO) estimation of generalization

performance.

The Active SVM (ASVM) introduced by Mangasarian et al. [61] employs an active set method to

efficiently solve the 2-norm soft margin problem (L2-SVM) (or `2− loss SVM) when using a linear

kernel. They show the `2−loss formulation results in a simplification of the box constraints to a

set of non-negativity constraints and eliminates the equality constraint. They employ the Sherman

Woodbury Morrison (SMW) formula to take advantage of the fact that the kernel matrix rank

depends upon the data dimensionality for a linear kernel and introduce a method for performing

efficient incremental updates to the inverse of the Hessian. The authors report that the algorithm is

suitable for massive data sets. A similar active set method is derived in [56], which also relies on

48

a the `2−loss formulation of the SVM problem.

The SimpleSVM algorithm introduced by Vishwanathan et al. [95]. defines a working set W

consisting of only the non-bound support vectors 0 < α < C, also referred to as free variables. At

each iteration, a data point belonging to the set of bound support vectors α = C or non-support

vectors α = 0 that violates the KKT optimality conditions is chosen for addition to the working

set. Operation of the algorithm follows the basic active set implementation where the “working

set” is the set of inactive constraints. After adding a point to the working set, a descent direction

is computed and followed while variables in the working set that hit αi = 0 or αi = C are

transitioned out of the working set. The algorithm is initialized by selecting a pair of opposite-

labeled data points that are closest neighbors using an efficient log-linear heuristic or randomized

selection heuristic. The authors also recommend the use of a low-rank kernel approximations [85],

[27] to improve speed and memory consumption; however, details are not given and results appear

to be reported without this feature. Nonetheless, they report significant performance improvements

over the Nearest Point Algorithm (NPA) [48] and SMO [71] when the fraction of support vectors

is small.

In Shilton et al. [84], the authors show that the equality constraint within the SVM dual formula-

tion represents a nuisance constraint and can be eliminated by using a primal-dual hybrid formu-

lation of the SVM problem. This formulation becomes a min-max problem where minimization

is performed against a subset of dual variables while maximization is perform against a subset of

primal variables. However, it is still possible for the algorithm to encounter singular systems of

equations when the Hessian is semi-definite. Therefore, the algorithm must explicitly detect rank

degeneracies and adapt the solution method. Interestingly, the authors also point out the impor-

tance of choosing the descent direction when rank deficiencies are detected to ensure cycling and

convergence failure does not result.

49

Kim et al. introduce a fast active set method for L1 regularized regression that employs a form

of block pivoting. The conventional active set method performs single pivoting where a single

variable enters and/or leaves the set of active constraints at one time while block pivoting allows

multiple transitions. The authors incorporate a backup routine, performing a series of single pivots,

in those cases where cycling is detected and, therefore, providing a guarantee of convergence. They

show favorable comparisons to the LARS (Least Angle Regression) algorithm [22], a popular

method for solving this type of problem. However, in this work, it appears to be the case that

the full system of equations involving the non-active constraints is re-solved at each iteration.

Therefore, for a typical active set method, the gains in performance achieved by reducing the

number of iterations may not be as significant where efficient rank-one updates to the system of

equations can be performed at each iteration.

Scheinberg [77] introduced an efficiently implemented active set method for SVM training based

upon a primal-dual active set method given by Nocedal [66]. Since the working set (set of non-

bound support vectors) increases or decreases by one at each iteration, a Cholesky factorization

can be maintained with rank-one updates. A new speed-up method referred to as sprinting is

introduced where pricing is performed on a subset of the most negatively priced variables until

they are optimized and new subsets chosen. With the combination of kernel caching, sprinting, and

shrinking, the author reports competitive performance with SVMLight. The SVM-QP algorithm

method handles semi-definite kernels by explicitly detecting rank deficiencies during the course

of updating the Cholesky factorization and employing modified Cholesky factorizations in rank

deficient cases.

Overall, while good success has been reported with the active set method, the method still suffers

from problems with memory consumption as well as a large number of iterations when contending

with problems having a significant fraction of support vectors. All implementations of the active

set method, thus far, have a O (m2) memory consumption requirement where m is the number of

50

non-bound support vectors. In addition, since a single variable is entered into the working set at a

time, the minimum number of iterations is dictated by the number of support vectors and is usually

several factors of the number of support vectors.

Regularization Path Following Algorithms

Hastie et al. [38] introduced an active set method that finds the SVM solution for the entire regular-

ization path. The regularization path following algorithm represents a form of active set method.

However, in this case, the algorithm starts with an optimal solution for some small value of the

regularization parameter C and increases C while adjusting the active set as necessary to maintain

optimality. The solution path is piece-wise linear in C with breakpoints coinciding with those val-

ues of C where the active set is adjusted. The entire regularization path can be computed in not

much more time than it takes a conventional algorithm, such as SMO, to find a solution at a single

value of the regularization parameter. Hastie et al., for example, report their implementation solves

the entire regularization path in a time which is 50 percent more than the time it takes LIBSVM to

solve one model. In [59], the regularization path is extended to the ν-SVM and ν-SVR algorithms

and an efficient, incremental LOO (leave-one-out) error validation method is included for finding

the optimal regularization parameter. In [72], the method is extended to the one-class SVM.

The method by Hastie et al. requires a positive definite kernel matrix and relies on an external

method for initialization when class sizes are unequal. Ong et al. [67] introduced an improved

regularization path-following algorithm that extends the method to semi-definite kernels. Their

method explicitly detects when a singular system occurs and solves for the null space. A linear

programming problem is solved using an external solver to compute the next breakpoint in the path,

and the SMO algorithm is used for initialization. More recently Dai et al., [16] independently

discovered singular matrices can be avoided by performing single active set transitions. Their

51

method relies on randomized diagonal loading of the kernel matrix to prevent the occurrence of

multiple transition events at a breakpoint in the regularization path and enforce the necessary single

transitions. In separate works, Dai et al. [17] introduce a path-following algorithm for finding the

initial solution in the case of unequal class sizes.

Typically, the SVM solution is evaluated using cross-validation or a test data set at each of the

breakpoints. However, the number of breakpoints is on the order of the data set size and usually 4

to 5 times the number of data points [38]. It is reasonable to expect that classifier performance may

not vary significantly between every breakpoint. Karasuyama et al. [44] and Giesen et al. [30]

introduced methods for finding the approximate regularization path. Specifically, Karasuyama et

al. [44] introduce a sub-optimal path-following algorithm, which results in significant speedups

by relaxing the KKT conditions when identifying successive breakpoints. They employ a tie-

breaking mechanism to prevent cycling in the face of degeneracies that are introduced by the

approximate path algorithm. Giesen et al. provide an approximate path algorithm for the `2-

loss SVM. They point out their method, compared to traditional grid search methods used with

conventional SVM training algorithms, is beneficial when using cross-validation to find the optimal

regularization parameter due to the guarantees provided on relative accuracy between breakpoints.

The approximate methods also typically require a positive definite Hessian (or positive definite

kernel matrix) with the exception of the method by Giesen et al., which solves the `2-loss SVM.

Adequate methods do not yet seem to exist for solving the approximate path for the `1-loss SVM

with a semi-definite kernel.

As an alternative to path following algorithms, a warm start or incremental strategy can be imple-

mented with the traditional active set method to speed-up the grid search. For example, DeCoste et

al. [21] show significant improvements in grid search training times with a modified version of the

LIBSVM and SVMLight algorithms that allow warm starts. Similar warm start implementations

are suggested in [84], [87], and [29] for active set methods. Rather than finding the sequence of

52

regularization values, these methods must be given a set of values to execute. A criticism against

this approach is that the solution behavior between the arbitrarily selected regularization parame-

ter values is unknown [30], [44]. Therefore, no guarantees of optimality can be given when a grid

search is performed.

Other Approaches

In Tsang et al. [89], an approach based upon a minimum enclosing ball (MEB) is introduced for

SVM training. They show that many of the SVM formulations including the `2−loss SVM and

`1− SVM classifiers, and `2−loss SVM one-class classifiers can be posed as a MEB problem.

In general, finding a minimum enclosing ball is computationally difficult, however, this can be

ameliorated with an iterative method that incrementally identifies the furthest data point from the

current MEB at each iteration, adds that data point to the problem, and solves for the new MEB

until no new points are found. To further facilitate speed-up, they employ random sampling to

reduce the computational complexity involved in finding the furthest data point from the current

MEB using a result from [85] indicating that a relatively small random sample size can be chosen

such that the furthest data point in the random sample is among 5% of the furthest data points

in the entire sample space with 95% probability. Interestingly, the algorithm employs the SMO

algorithm to solve the QP problem associated with each MEB problem. Similar to the SVMPerf

and Pegasos methods, this method is shown to have an asymptotic convergence of O
(

1
ε

)
in terms

of the number of iterations.

The DirectSVM [74] algorithm, instead of trying to solve the SVM QP problem directly, takes

a more geometric approach. Their algorithm starts by identifying the nearest neighbor points

between opposite classes and forms a hyperplane as the perpendicular bisector of the segment

between the two points. The worst violator, in terms of being on the wrong side of the hyperplane,

53

is chosen, and the hyperplane is rotated according to a heuristic derived by the authors. The

computational complexity per step of this algorithm is driven by the need to subtract all previous

rotations as part of the updated heuristic. The methodology supports the application of kernel

methods, and the authors claim classification performance on par with that achieved when solving

the SVM QP problem directly while providing much faster training times.

The Smooth SVM (SSVM), introduced by Lee et al. [54], converts the `2−loss SVM problem

into an equivalent unconstrained optimization problem. A Newton-like method is used to solve the

optimization problem after applying a sigmoid smoothing function to create a twice differentiable

objective function. Lee et al., later, extend the SSVM idea to very large datasets (Reduced SVM

(RSVM) [53]) by implementing a random sampling methodology.

Finally, Wen et al. [99] introduce a fast projected conjugate gradient. They build a series of sub-

problems using a projection operator based upon the current working set and apply a conjugate

gradient method for a fixed number of iterations. They include a heuristic for selecting variables

to optimize that is based upon starting with an initial random selection and adding points that

exhibit the highest amount of error relative to the current separating hyperplane. They claim good

performance when compared to the SVMFu [73] algorithm even though their implementation is

still in MATLAB. The SVMFu algorithm is a publicly available implementation that incorporates

features from both SVMLight and SMO implementations. Note that the fast projected conjugate

gradient method maintains many similarities to the class of active set methods.

54

CHAPTER 5: REVISED SIMPLEX METHOD FOR SEMI-DEFINITE

KERNELS

The SVM quadratic programming problem is not strictly convex if a semi-definite kernel is em-

ployed, such as the linear kernel, or if a positive definite kernel is used and there are duplicate data

points. The latter case can be resolved by finding and removing duplicate data points; however,

this may not always be feasible or practical. The active set method, then, can encounter singular

systems of equations and must be prepared to handle this. Rusin [76] introduced a revised sim-

plex method for quadratic programming where the Hessian is semi-definite and singular matrices

are automatically avoided. The revised simplex method for quadratic programming is a variant of

the simplex method for linear programming [20]. The key difference from the linear analogue is

that the optimal solution is no longer guaranteed to be located on a vertex of the convex polytope

formed from the set of inequality constraints. The following describes an efficient implementation

of the revised simplex method for quadratic programming with semi-definite kernels introduced

by Rusin.

Revised Simplex

The revised simplex method for quadratic programming, the details of which can be found in [76]

and reviewed here, solves the following general form

min
x≥0

pTx− 1

2
xTHx (5.1)

subject to Ax = b

55

where x ∈ Rn, p ∈ Rn, A ∈ Rm×n, and b ∈ Rm. We can find the conditions for optimality

starting with deriving the Lagrangian as

L (x, π) = pTx− 1

2
xTHx− πT (Ax− b) (5.2)

where, π is Rm and represents the set of Lagrange multipliers applied to each constraint. Taking

the derivative, ∂L
∂x

, the reduced cost becomes

δ , p−Hx− Aπ (5.3)

and the First Order Necessary Conditions (FONC) (or KKT conditions) are

Ax = b (5.4)

x ≥ 0 (5.5)

δ ≥ 0 (5.6)

δ·x = 0 (5.7)

where the first two conditions are referred to as the feasibility conditions, the last condition is the

complementary slackness condition, and the third condition is the stationarity condition. Note that

these conditions are also sufficient for optimality if the problem is convex, or, in this case, H is

not indefinite. Similar to the simplex method for linear programming, the variable x is partitioned

into the set of basic variables xi > 0 (inactive constraints) and non-basic variables xi = 0 (active

constraints). Using the index set B to denote the set of basic variables, the optimality conditions in

56

terms of those variables becomes,

HB BT

B 0

xB

π

 =

pB

b

 ,xB > 0 (5.8)

where B is comprised of the columns of A corresponding to basic variables xB, and pB and HB

are the corresponding portions of p and H corresponding to the basic variables. The essence of

the revised simplex method is as follows. First, an initial basic feasible solution is found. This

solution satisfies the feasibility as well as complementary conditions while not being optimal since

at least one component of δ is less than zero. From this point, a variable not in the basic set is

chosen such that δi < 0, and the corresponding variable xi is increased. The change in xB and π,

as xi is increased, can be found as follows

HB BT

B 0

h

g

 =

qi

ai

 (5.9)

where i is the index for the newly added variable, xi, qi is the column from H indexed by i and

rows indexed by B, ai is the column ofA indexed by i, and the quantities h, g represent the descent

direction for xB and π, respectively. The matrix in Equation 5.9 is referred to as the basis matrix

(also referred to as the KKT matrix). The descent direction is followed according to xB ← xB−θh,

π ← π − θg where θ > 0. The variable xi is increased until either a basic variable is no longer

feasible or δi = 0 and the complementary condition is satisfied for the newly added variable. The

following expression results from using Equation (5.3) to find δi as a function of h and g

γ = qii − ai
Tg − qi

Th (5.10)

57

where δi is now updated according to δi ← δi−θγ. The complementary condition, then, is reached

when θ = δi
γ

. Therefore, the minimum value for θ is found within the interval
[
0, δi

γ

]
where either

some variable in B becomes infeasible or the basic feasible solution is reached,

θ = min
j∈B

[
xj
hj

∣∣∣∣hj > 0,
δi
γ

∣∣∣∣γ < 0

]
(5.11)

If all hj ≤ 0 and simultaneously γ ≥ 0, then the solution is unbounded and progress halts.

Otherwise, if a basic variable becomes infeasible, then that variable is removed from B and the

index, i, is added to B and progress is continued along a new search path where the complementary

condition is maintained for all variables within B except i. The new descent direction is computed

as

HB BT

B 0

h

g

 =

ei

0

 (5.12)

γ = −1, (5.13)

where the coordinate vector ei is a unit vector with a 1 in the location corresponding to the newly

added basic variable xi. Note that γ = −1 after adding the new variable to B. The search path

continues to be followed, removing basic variables that become infeasible, until the complementary

condition is satisfied for the newly added variable or θ = δi
γ

or θ = −δi. Once achieving a new

basic feasible solution, a new point is identified with δi < 0 to be added to the basic set. If δi > 0

for all i, the algorithm terminates with an optimal solution.

58

Guarantee of Non-singularity

The revised simplex method introduced by Rusin is unique from the typical active set method for

quadratic programming in that the set of equations solved at each iteration, or the basis matrix,

is guaranteed to be non-singular. The following theorems, introduced in [76] and reiterated here

for convenience, depict how non-singularity is maintained. The following shows that if the basis

matrix is non-singular, then adding a new variable will result in a non-singular basis matrix

Theorem 2 ([76]). Given a non-singular basis matrix

M =

HB BT

B 0

 (5.14)

and h, g computed according to

HB BT

B 0

h

g

 =

qi

ai

 (5.15)

and γ = qii − ai
Tg − qi

Th, if γ 6= 0 then the matrix

M̄ =

HB qi BT

qi
T qii ai

B ai
T 0

 (5.16)

is non-singular.

The following shows that the basis matrix will remain nonsingular in the scenario where at least

one variable has already been removed from the basic set and an additional variable is removed.

59

Theorem 3 ([76]). Given the nonsingular matrix

M =

HB qr BT

qr
T qrr ar

B ar
T 0

 , (5.17)

if g, h, and hr are computed as

HB qr BT

qr
T qrr ar

B ar
T 0

h

hr

g

 =

qi

ai

qii

 (5.18)

and hr 6= 0, H is negative semi-definite, then

M̄ =

HB qi BT

qi
T qii ai

B ai
T 0

 (5.19)

is nonsingular.

The final case to consider is when an infeasible variable is removed prior to adding the new variable

to the basic set essentially representing a variable swap.

Theorem 4 ([76]). Given the nonsingular matrix

M =

HB qi BT

qi
T qii ai

B ai
T 0

 , (5.20)

60

if g, h are computed as
HB qi BT

qi
T qii ai

B ai
T 0

h

hr

g

 =

ei

0

0

 (5.21)

and hr 6= 0, H is negative semi-definite, then the basis matrix

M̄ =

HB BT

B 0

 (5.22)

A few key observations can be made. First, the variable identified to enter the basic set is not

added to the basis matrix unless either a variable in the basic set is first removed or adding the new

variable immediately results in a basic feasible solution that satisfies the complementary condition

(or θ = δi
γ

). Secondly, the complementary conditions for the set of variables already in the basic

set are maintained at all times. In particular, upon removing a basic variable due to in-feasibility,

Equation 5.12 ensures the complementary condition continues to be satisfied for data points in the

basic set while driving the pricing variable δi for the newly added variable to zero.

In contrast, other active set implementations often immediately adjust the basis matrix (or KKT

matrix) for the newly identified basic variable before removing other variables-unnecessarily cre-

ating a singular matrix. In addition, these methods do not necessarily ensure the complementary

conditions are satisfied until all variables have been removed from the basic set and a new feasible

solution is found. In some sense, the method reported here can be viewed as a simple modification

to existing active set methods that avoids unnecessarily creating a singular basis (or KKT) matrix.

61

Solving SVM with the Revised Simplex Method

Recall the `1-loss SVM dual formulation

min 1
2
αTQα− 1Tα (5.23)

s.t. yTα = 0

0 ≤ αi ≤ C ∀i

where α,y ∈ Rn×1 and Q ∈ Rn×n when there are n data points. This can be transformed to the

form specified for the revised simplex formulation with the following substitutions.

x ,

α

r

 (5.24)

p ,

−1

0

 (5.25)

H ,

−Q 0

0 0

 (5.26)

b ,

 0

C1

 (5.27)

A ,

yT 0

I I

 (5.28)

where the slack variables r and corresponding equality constraint r + α = C1 is introduced to

convert the SVM box constraints into the form required by the revised simplex method, x,p,b,∈

R2n×1, and H,A ∈ R2n×2n. A partition is formed from the set of non-support vectors, αi = 0,

62

ri = C, non-bound support vectors 0 < αi, ri < C, and bound support vectors αi = C, ri = 0.

From this point forward, define the index sets Io, Is, and Ic to contain the indices for the set of

non-support vectors, non-bound support vectors, and bound support vectors, respectively, and the

subscript notation o, s, and c to refer to the corresponding components of a vector or matrix.

With the appropriate substitutions, the constraint matrix B becomes

B =

ys
T yc

T 0 0

Is Ic Io Is

 (5.29)

and the set of basic variables becomes

xB ,

αs

αc

ro

rs

(5.30)

The matrices Io, Is, Ic contain the columns of the identity matrix corresponding to the non-support

vectors, non-bound support vectors, and bound support vectors, respectively. The vectors hs, hc,

uo, ur to refer to the descent directions associated with αs, αc, ro, and rs, respectively. Upon

63

adding a variable αi to the basic set, the descent direction is computed as follows,

−Qss −Qsc · · · · · · · · · ys Is
T

−Qcs −Qcc · · · · · · · · · yc Ic
T

...
...

... Iô
T

...
... Is

T

...
...

... ei
T

ys
T yc

T · · · · · · · · · 0
...

Is Ic Iô Is ei · · · 0

hs

hc

uô

us

ui

gβ

g

=

−qsi

−qci

0

0

0

yi

ei

(5.31)

where gβ is the Lagrange multiplier associated with the constraint yTα = 0 and g ∈ Rn corre-

sponds to the remaining equality constraints αi + ri = C. Note that ui is the descent for ri, which

is already in the basic set and is equal to C prior to adding αi to the basic set. The index set Iô

contains the indices for the non-support vectors minus the index i or Iô = Io \ i. Immediately,

us = −hs, gs = go = 0, ui = 1, hc = 0, and uo = 0. The following is then obtained for hs, gβ

−Qss ys

ys
T 0

hs

gβ

 =

−qsi

yi

 (5.32)

The expression for gc in terms of hs and gβ becomes

gc = qci +Qcshs − ycgβ (5.33)

Similarly, the following is employed to compute the descent direction upon choosing a variable

64

ri = 0 (corresponding to αi = C) to enter the basic set.

−Qss −Qsĉ −qsi · · · · · · ys Is
T

−Qĉs −Qĉĉ −qĉi yĉ Iĉ
T

−qsi
T −qTĉi −qii · · · · · · yi ei

T

...
... Io

T

...
...

... Is
T

ys
T yTĉ yi · · · · · · 0

...

Is Iĉ ei Io Is · · · 0

hs

hĉ

hi

uo

us

gβ

g

=

0

0

0

0

0

0

ei

(5.34)

Note that, in this case, hi corresponds to the descent direction for αi and Iĉ = Ic \ i. Again, this

simplifies to −Qss ys

ys
T 0

hs

gβ

 =

qsi

−yi

 (5.35)

Combining these results into a simple expression for each case results in

−Qss ys

ys
T 0

hs

gβ

 = hi

qsi

−yi

 (5.36)

where

hi =

−1, αi = 0

1, αi = C

(5.37)

Given this, the expression for γ is easily found as

γ = −qii + hi
(
yig − qTsih

)
(5.38)

65

Following the point where an infeasible variable is removed from the basic set, the new descent

direction is computed as follows.

−Qss ys

ys
T 0

h

g

 = hi

ei

0

 (5.39)

where the index set Is now includes i and γ = −1.

Initial Basic Feasible Solution

For the SVM problem, the basic initial feasible solution is bound by setting αi = 0, (equivalently,

ri = C) for all i and arbitrarily choose the 1st component of α or α1 to be in the basic set. Therefore

the initial solution using Equation 5.8 becomes

q11 · · · y1 eT1

... I

y1 · · · 0 · · ·

eT1 I
... . . .

α1

r

β

π

=

−1

0

0

1C

(5.40)

which results in

αi = 0 ∀i (5.41)

ri = C ∀i (5.42)

β = −y1 (5.43)

66

Since the slack variables are dealt with implicitly, the following is obtained

αi = 0 ∀i (5.44)

β = −y1 (5.45)

Io = {2, · · · , N}, Is = {1}, Ic = ∅ (5.46)

Pricing

At optimality, δi ≥ 0 for all i with δi = 0 when xi > 0 to satisfy the complementary condition. In

the case αi = 0 (and ri = C), it is easy to show that the reduced pricing δi becomes,

δi = −1− βyi − πi − qisαs − qicαc (5.47)

and for the case αi = C (ri = 0)

δi = −πi (5.48)

After using Equation (5.8) to solve for π, the following is obtained

−Qss −Qsc · · · · · · ys Is
T

−Qcs −Qcc yc Ic
T

... . . . Io
T

... Is
T

ys
T yc

T

Is Ic Io Is · · · 0

αs

αc

ro

rs

β

π

=

−1

−1

0

0

0

C1

(5.49)

67

from which immediately πo = 0,πs = 0 and, as a result,

πc = −1 +Qcsαs +Qccαc − ycβ, (5.50)

and for the case αi = 0 or i ∈ Io since πo = 0,

δo = −1 +Qosαs +Qocαc − βyo (5.51)

and the following is obtained for αi = C

δc = 1−Qcsαs −Qccαc + βyc. (5.52)

The pricing variables can be incrementally updated noting that ∆δc = −Qcs∆αs + ∆βyc and

∆δo = Qos∆αs + ∆βyo. This avoids recomputing Qocαc or Qccαc at each iteration. However,

as an alternative, these latter quantities can be directly stored and incrementally updated as points

enter and leave the set of bound support vectors, Ic, as is done in this implementation.

The pricing step can be a significant fraction of the computation time per iteration with a compu-

tational complexity of O((No + Nc) × Ns) where No is the number of non-support vectors, Nc

is the number of bound support vectors and Ns is the number of non-bound support vectors. A

straight-forward methodology for speeding up the pricing step is to reduce No + Nc or the num-

ber of variables for which pricing is computed. The strategy employed in SVMLight referred to

as shrinking [41] is equally applicable here. The shrinking strategy attempts to find variables (or

data points) that are not likely to change as progress towards the solution is made. For example,

identifying bound support vectors or non-support vectors that are likely to remain as such at the

solution. Another method shrinking [77] is analogous to a partial pricing scheme used in the sim-

plex method for linear programming. This method performs pricing on a small subset of the most

68

negatively priced variables until all of those become positive. At that point, a new set of most neg-

atively priced variables is chosen, and the process continues. The authors, Scheinberg et al. show

this method outperformed the shrinking strategy within the context of the SVM-QP algorithm (an

active set implementation). It is also possible to combine shrinking and sprinting.

Efficient Solution of the Inner Sub-problem

The Cholesky factorization has the advantage of requiring fewer operations and possessing im-

proved numerical stability compared to other factorizations. Further, the Cholesky factorization

can be easily updated with rank-one updates. The goal, then, is to apply the Cholesky factoriza-

tion when solving for the descent direction at each iteration. However, the Cholesky factorization

cannot be directly applied to the basis matrix (KKT matrix) since it is indefinite. Fortunately, since

the basis matrix is guaranteed to be non-singular, this is easily remedied by using the null-space

method [66]. Note that as an alternative, the Cholesky factorization can be applied directly to the

quantity Qss in the basis matrix in a method analogous to that reported in [77]; however, Qss can

be singular even if the basis matrix is non-singular, thus, requiring a modified form of the Cholesky

factorization.

Null Space Method for SVM

Following the details of the null space method described in Chapter 3, the constraint matrix be-

comes the vector yT from which the null space Z is easily found to be given by the following

orthonormal, sparse, matrix,

Z =

[−y1y2, ...,−y1yn]

I

 . (5.53)

69

The matrix Y , such that [Z|Y] becomes full rank, simply becomes Y = e1 where e1 is a unit

vector with a 1 as the first entry.

Using the null space method, the quantities h , hs and g , gβ in Equations (5.36), (5.39) are

found as follows.

−QssZhz −QssY hy + ysg = u

ys
TY hy = v, (5.54)

where h = Zhz + Y hy. Multiplying the first equation by ZT results in the following

−ZTQZhz = ZT (u +QY hy) (5.55)

where u and v are defined as the right side of Equations (5.36), (5.39). The sequence of steps

for solving h, g are, first, to solve hy using the second equation in Equation (5.54), followed by

solving for hz in Equation (5.55), followed by solving for g using the first equation in Equation

(5.54). Note that further simplifications are possible using the analytical forms of Z and Y . A

Cholesky factorization RTR = ZTGZ can be maintained with rank-one updates in an efficient

manner as reported in Sentelle et al. [80].

70

Updating the Cholesky Factorization

Upon adding a basic variable, a row and column will be added to Z as well as Qss. The Cholesky

factorization is, then, updated by solving the following for r and ρ as follows

RT 0

rT ρ

R r

0 ρ

 = Z̃T

Q q

qT σ

 Z̃, (5.56)

where

Z̃ =

Z −y1yie1

0T 1

 , (5.57)

ei is the unit coordinate vector with a 1 in the ith position, and q, σ represent the row/column from

the kernel matrix corresponding to the newly added variable. The null space Z is also augmented

where yi is the newly added label and y1 is the label corresponding to the first index in the basic

set. Expanding (5.56), results in the following

 ZTQZ −y1yiZ
TQe1 + ZTq

−y1yie1
TQZ + qTZ e1

TQe1 − 2y1yie1
Tq + σ

 (5.58)

Therefore, r and ρ can be solved as follows.

RT r = −y1yiZ
TQe1 + ZTq (5.59)

rT r + ρ2 = e1
TQe1 − 2y1yie1

Tq + σ (5.60)

Actual implementation can be made efficient relying on the fact that Z is sparse, e1 essentially

selects a single row/column or element, and R is upper triangular allowing r to be computed using

a simple forward substitution.

71

Upon removing a variable from the basic set, the Cholesky factorization must be down-dated to

contain one less row and column. In the case where the last row/column is removed, the last

row/column of R is simply removed. In general, there are (2) cases to consider. The first case oc-

curs when the 1st row/column is removed and the second case when any other variable is removed.

In the latter case, a series of permutations are performed to move the variable to be removed to the

last row/column of Q and last column of Z as follows

P T
i−1Z

TP T
i PiQP

T
i PiZPi−1 = P T

i−1Z
TQZPi−1 (5.61)

where Pi is used to permute the ith row/column of Q to the last row/column and to permute the

ith row of Z to the last row, and Pi−1 is employed to permute the i − 1 column of Z to the last

column. Since Pi is orthogonal (P T
i Pi = I), the projection Pi can be eliminated, and this allows

the permutation, Pi−1, to be directly applied to the Cholesky factorization as follows.

P T
i−1Z

TQZPi−1 = P T
i−1R

TRPi−1 = HTH (5.62)

The permutation operation transforms the upper triangular matrixR to an upper Hessenberg matrix

H . Consider the following example with the upper right triangular matrix R ∈ R4×4

x x x x

0 x x x

0 0 x x

0 0 0 x

(5.63)

72

The following permutation operator will move the 2nd column of R to the last

P2 =

1 0 0 0

0 0 0 1

0 1 0 0

0 0 1 0

(5.64)

which, upon application, results in the upper Hessenberg matrix (upper triangular matrix with

additional non-zero entries on the sub-diagonal)

RP2 = H =

x x x x

0 x x x

0 x x 0

0 0 x 0

(5.65)

A series of Givens rotations [36] are employed to convert the upper Hessenberg back into an

upper triangular matrix by zeroing out the sub-diagonal entries. To apply the Givens rotation, the

parameters c and s are found such that

c −s
s c

a
b

 =

r
0

 (5.66)

where c = cos(θ), s = sin(θ). These quantities are typically solved with the following expressions

r =
√
a2 + b2, c = a

r
and s = −b

r
noting that θ is not directly solved. Note that the Givens rotation

is a 2 by 2 matrix; however, the following Givens matrix allows the rotation to be applied to any

73

two arbitrary elements of a vector x

G (i, j, θ) =

1 · · · 0 · · · 0 · · · 0

...
...

...

0 · · · c · · · −s · · · 0

...
...

...

0 · · · s · · · c · · · 0

...
...

... . . . 0

0 · · · 0 · · · 0 · · · 0

(5.67)

G (i, j, θ) x performs a clockwise rotation of x by an angle of θ in the i, j plane (ith, jth components

are affected). The transform RG (i, j, θ) will affect the ith, jth rows of R. In the example given

earlier, a series of Givens rotations G(3, 4, θ2)G(2, 3, θ1)H are performed to zero out the (2) non-

zero entries on the sub-diagonal. This will result in the following upper triangular matrix

G(3, 4, θ2)G(2, 3, θ1)H =

x x x x

0 x x x

0 0 x x

0 0 0 x

(5.68)

Note that G (i, j, θ) is orthogonal, and, therefore, HTG(i, j, θ)TG(i, j, θ)H = HTH . After re-

turning H to an upper triangular form, the last row/column is simply removed and the update is

complete.

Removing the first variable row/column from the factorization is more involved. Note that the first

row of Z is of the form y1 [y2, ...yn] and a simple permutation cannot be employed to transform

74

this. However, the permutation P1 can be applied to move the 1st row/column of Q and 1st row of

Z as follows.

ZTP T
1 P1QP

T
1 P1Z (5.69)

Applying P1 to Z performs the following transformation

P1Z =

 I(n−1)×(n−1)

[−y1y2, ...,−y1yn]

 (5.70)

Compare this with the desired result

[−y2y3, ...,−y2yn]

I(n−2)×(n−2)

 (5.71)

Therefore, the following transform converts P1Z to the desired form as follows

A =

[−y2y3, ...,−y2yn]

I(n−2)×(n−2)

 (5.72)

The complete transformation is then

ATZTP T
1 P1QP

T
1 P1ZA = ATZTQZA = ATRTRA = HTH (5.73)

Again, this transform generates an upper Hessenberg matrix, and the matrix is transformed back

into an upper triangular matrix with a series of Givens rotations. The last column/row is then

removed to complete the update.

75

Algorithm 1 Revised Simplex method for SVM Training (SVM-RSQP)
1: αi ← 0 ∀i,
2: β ← −y1,
3: Io ← {2...N}, Ic ← ∅, Is ← {1}
4: loop
5: Calculate the reduced cost, δj using 5.51, 5.52
6: i = arg minj δj
7: if δi ≥ −tol then
8: stop {optimality achieved}
9: end if

10: ho ← 0, hc ← 0

11: d←

{
−1 i ∈ Io
1 i ∈ Ic

{Choose descent direction of entering variable according to status}

12: solve

(
−Qss ys

ys
T 0

)(
hs

gβ

)
= d

(
qsi

−yi

)
{Solve descent}

hi ← d {Descent for newly added variable}
γ ← −qii + d

(
yigβ − qT

sihs

)
{Descent for pricing of newly added variable}

13: Is ← Is ∪ {i} {Add new variable to non-bound set}
{Optimize until complementary reached for new variable}

14: while δi < −tol do
15: ir ← arg minj∈Is

{
αj−C[hj<0]

hj

}
{Find max descent}

16: θ ← αir−C[hir<0]

hir

17: if γ ≥ 0 or θ < δi
γ

then
18: if hr < 0 then
19: Ic ← Ic ∪ {ir} {Variable became infeasible, add to bound support vector set}
20: else
21: Io ← Io ∪ {ir} {Variable became infeasible, add to non-support vector set}
22: end if
23: Is ← Is \ {ir}, δi ← δi − θγ
24: β ← β − θgβ , α← α− θh
25: else
26: θ ← δi

γ
, δi ← 0 {Complementarity reached for new variable}

27: β ← β − θgβ , α← α− θh
28: break
29: end if

30: solve

(
−Qss ys

ys
T 0

)(
hs

gβ

)
= d

(
−ei

0

)
{Recompute descent}

31: γ ← −1
32: end while
33: end loop

76

Results and Discussion

To assess the revised simplex method for SVM training (denoted as SVM-RSQP), it is compared

against the popular training algorithms LIBSVM [12] (based upon the improved SMO algorithm

[25]), SVMLight [41], and SVM-QP [77], an efficiently implemented active set method. Testing

is done on a sample of small to medium-sized datasets along with a few, selected large datasets.

The SVM-RSQP was implemented in C++ and uses the Blitz++ matrix template library [94]. For

convenience and to allow objective comparison without compiler bias, the SVM-QP method, avail-

able at the COIN-OR website [60], was converted from a FORTRAN implementation to C++ using

the Blitz++ library. The Blitz++ matrix template library provides a complete and fast implemen-

tation of matrix objects and operators, and has been shown to perform on par with FORTRAN

implementations in benchmarks [94]. The Blitz++ library supports configuration of matrices to

use column-major ordering as well as 1-based indexing making the translation of FORTRAN code

to equivalent C++ straightforward. All algorithms were compiled as MEX functions and invoked

from within the MATLAB environment.

The datasets are listed in Table 5.1. The adult-1a and adult-a datasets were obtained from [70],

ocr-0 and ocr-9 are based upon the dataset obtained from the United States Postal Service (USPS)

OCR dataset [40], and the remaining datasets were obtain from the UCI repository [2]. The letter-

g, ocr-0, and ocr-9 are composed as described in [77] where letter-g classifies the letter “G” from

the remaining letters, ocr-0 classifies the number “0” from the remaining numbers and ocr-9 clas-

sifies the number “9” from the remaining numbers. For the Forest Covertype (covtype) dataset, a

total of 50,000 data points was randomly drawn from the first 2 types (classes) to create a binary

classification problem. All attributes are normalized to scale between 0 and 1.

77

Table 5.1: Datasets used for SVM-RSQP assessment

Dataset N d

adult-1a 1,605 123

adult-a 32,561 123

abalone 4,177 7

letter-g 20,000 16

ocr-0 7,291 256

ocr-9 7,291 256

spam 4,601 57

splice 1,000 60

covtype 100,000 54

Experimental results are listed in Table 5.2, for the linear kernel, and in Table 5.3 for the RBF

kernel. Table 5.4 also contains results for large datasets. These results were previously reported in

by Sentelle et al. in [80]. The total training time, number of iterations, as well as the total number

of support vectors (NSV) and number of bound support vectors (NBSV) is shown for each of the

algorithms. The RBF kernel is defined as exp(−γ‖xi − xj‖2
2) and the values for C as well as γ

are chosen for each dataset based upon the best results achieved for 10-fold cross validation. The

stopping criterion of 10−3 was used in all cases. The SVM-QP algorithm was configured to use

sprinting as described in [77] with a subset of 50 non-support vectors and bound support vectors

chosen for pricing at a time. The SVM-RSQP was also configured to use a form of sprinting where

100 data points, not necessarily split evenly between non-support and bound support vectors, are

optimized at a time.

In all cases, the experiments reveal that SVM-RSQP is competitive, in terms of training time, with

SVM-QP, SVMLight, as well as LIBSVM. SVM-RSQP is, on average, two times faster than SVM-

QP for small datasets and nearly two times faster for the larger adult-a dataset and approximately

78

11 percent faster for covtype. SVM-RSQP was also competitive with the SVMLight, usually on par

with or faster than SVMLight in terms of training time. SVMLight was faster in only two cases,

ocr-0 and ocr-9 datasets with the linear kernel, where it was faster than all reported algorithms by

nearly a factor of 2. On the other hand, SVMLight was found to be typically slower, in some cases

by an order of magnitude and did not converge within a reasonable amount of time for the covtype

dataset.

The overall results show that SVM-RSQP, as anticipated, while not being a orders of magnitude

faster than SVM-QP, is at least faster by a constant factor. This is largely due to the computational

efficiency gained by SVM-RSQP in solving Equation 5.36. As reported in [80], given Ns non-

bound support vectors, SVM-RSQP requires 2N2
s + Ns + O(1) computations to solve Equation

5.36. SVM-QP must anticipate the possibility of a singular matrix and, therefore, the number of

computations is dependent upon the rank of the basis matrix. In the case of full rank, SVM-QP

requires 3N2
s +Ns+O(1) floating point computations. However, when the basis matrix is singular,

a modified Cholesky factorization is employed and a particular solution is chosen using the basis

for the null space. In this instance, there are 2N2
s +O(Ns) floating point computations. In addition,

pivoting may need to occur to ensure a stable Cholesky factorization in this instance, which incurs

an additional O(N2
s) computations. Therefore, on average, it is anticipated SVM-RSQP requires

1/3rd fewer operations to solve Equation 5.36 than SVM-QP. This appears to be consistent with

the reported results since the SVM-RSQP algorithm is more than 50 percent faster than SVM-QP

in many cases.

A question arises as to whether the SVM-RSQP algorithm is capable of improving on the num-

ber of iterations relative to the SVM-QP algorithm given the guarantees on non-singularity. The

SVM-QP algorithm must choose a specific descent direction (or solution) out of potentially in-

finite solutions when the basis matrix is singular. In the worst case, it is possible that a chosen

descent direction could result in little or no progress on the solution; however, it seems equally

79

possible that the chosen descent directions could result in faster convergence. Table 5.5 depicts

comparisons between SVM-QP and SVM-RSQP with sprinting and shrinking disabled for sim-

ulated datasets. Two-class datasets are generated from a unit normal distribution with 500 data

points in each class. One class is generated as N (0, 1) or as a unit normal distribution centered

on the origin while the other class is generated according to N (0.1, 1). The number of features as

well as the regularization parameter C is varied. The total training time, KKT solve time (time to

solve the equivalent of Equation 5.36), the number of iterations, as well as the number of infinite

iterations in the case of SVM-QP (number of cases where the basis matrix is singular) is reported

on. In all but one case, the SVM-RSQP algorithm converges with slightly fewer iterations than

the SVM-QP algorithm. In the worst case, the SVM-QP algorithm requires an additional 334 it-

erations for C = 1000 and 200 features. This suggests that the SVM-QP algorithm experiences

a small loss of efficiency associated with having to compute the null space and select an arbitrary

descent direction. Remarkably, the number of infinite iterations does not appear to significantly

impact the total number of iterations. These results also show, as predicted, that the SVM-RSQP

algorithm is 2 to 3 times faster in all cases when the number of features is greater than or equal

to 50. In fact, the for C = 1000 with 200 features, the SVM-RSQP algorithm is nearly 2.5 times

faster at solving the KKT system, which contributes to an overall 50 percent improvement in total

training time.

LIBSVM is a state-of-the-art SMO implementation and still considered to be one of the fastest

algorithms. This method is suitable for very large datasets since memory requirements are O (n)

where n is the dataset size. The largest comparative study of performance of the conventional active

set methods against LIBSVM was done in the work by Sentelle et al. [80], the results of which

are shown again and discussed here. In the majority of cases, the SVM-RSQP algorithm remains

competitive with LIBSVM typically being no more than twice as fast or slower than LIBSVM. The

one exception is for the adult-a dataset and RBF kernel where LIBSVM was nearly 3 times faster.

80

On the other hand, SVM-RSQP was approximately 2 times faster on the covtype dataset, which is

a larger dataset where overall training times are much more significant.

Several factors can affect relative performance between SVM-RSQP and LIBSVM. First, the LIB-

SVM algorithm represents a form of block coordinate descent, which can be slow to converge if

the problem is poorly scaled. Secondly, the active set method must solve a basis matrix that is

of size O(N2
sv) where Nsv is the number of non-bound support vectors. For a linear kernel, it

can be easily shown that there will no more than O (d) non-bound support vectors, where d is the

number of features. Unfortunately, for the non-linear kernel, Nsv can vary as a function of the

kernel parameters as well as the regularization parameter C. Finally, subtleties associated with

implementation of kernel caching, shrinking, sprinting, and other partial pricing mechanisms can

affect performance.

Overall, for the conventional active set method the number of iterations will be roughly 2 to 3 times

the number of active constraints at the solution [66], or, in this case, the number of support vectors.

In experiments, both SVM-QP and SVM-RSQP are observed to perform roughly 2 to 5 iterations

per support vector. On the other hand, the SMO algorithm can take many more iterations although

each iteration is cheap in terms of computational complexity. For example, LIBSVM takes nearly

20 times as many iterations to converge for the abalone dataset and RBF kernel even though it is

only 2 times slower.

In conclusion, the proposed revised simplex method for SVM training can be seen as an improve-

ment to existing active set methods that enables use of semi-definite kernels without a need for

explicitly detecting singular matrices. This significantly simplifies implementation and allows

more options in terms of matrix factorization and storage. Relative to the SVM-QP algorithm, the

SVM-RSQP algorithm exhibits slightly improved efficiency in terms of the number of iterations

and requires fewer operations to solve the system of equations at each iteration. Overall, the SVM-

81

RSQP algorithm was found to be nearly two times faster than SVM-QP in some cases. Overall, the

SVM-RSQP algorithm represents a successful practical implementation of the active set method

for SVM training with semi-definite kernels and appears to be a preferred alternative to existing

active set implementations within the SVM community.

82

Table 5.2: Performance Comparison for the Linear Kernel

Dataset Algorithm Training Accuracy Time (sec) Iter NSV NBSV

adult-1a
linear
C = 0.5

SVM-RSQP 85.73 0.41 2948 602 542

SVM-QP 85.73 0.80 3019 602 542

SVMLight 85.79 0.48 1799 602 541

LIBSVM 85.73 0.23 4986 602 540

abalone
linear
C = 128

SVM-RSQP 79.41 0.97 11361 2053 2044

SVM-QP 79.41 2.50 14101 2054 2044

SVMLight 79.41 50.32 114775 2056 2044

LIBSVM 79.41 1.36 44433 2054 2044

letter-g
linear
C = .0313

SVM-RSQP 96.14 2.63 4800 1553 1542

SVM-QP 96.14 4.50 4997 1550 1538

SVMLight 96.14 6.39 685 1623 1510

LIBSVM 96.14 3.64 804 1569 1527

spam
linear
C = 512

SVM-RSQP 93.39 1.97 7837 919 866

SVM-QP 93.39 5.45 10849 920 866

SVMLight 93.39 83.36 98128 923 854

LIBSVM 93.39 3.58 127240 945 856

splice
linear
C = 0.5

SVM-RSQP 83.80 0.14 1976 437 382

SVM-QP 83.80 0.31 2294 437 382

SVMLight 83.90 0.18 1489 438 381

LIBSVM 83.90 0.28 5057 437 381

ocr-0
linear
C = .0313

SVM-RSQP 99.45 2.42 1404 357 281

SVM-QP 99.45 4.70 1662 360 279

SVMLight 99.45 1.24 480 361 278

LIBSVM 99.45 3.63 1283 360 278

ocr-9
linear
C = .125

SVM-RSQP 98.70 3.25 1913 466 375

SVM-QP 98.70 7.47 2219 466 372

SVMLight 98.70 2.26 1674 469 371

LIBSVM 98.70 4.44 2514 467 372

83

Table 5.3: Performance Comparison for the RBF Kernel

Dataset Algorithm Training Accuracy Time Iter NSV NBSV

adult-1a
rbf
C = 2, γ =
.03125

SVM-RSQP 85.92 0.41 2573 671 573

SVM-QP 85.92 0.72 2463 671 573

SVMLight 85.92 0.58 351 672 572

LIBSVM 85.92 0.27 889 671 573
abalone
rbf
C = 2048, γ =
.5

SVM-RSQP 81.09 1.81 11584 1900 1813

SVM-QP 81.09 4.81 13689 1900 1814

SVMLight -1 - - - -

LIBSVM 81.09 4.08 228435 1900 1812

letter-g
rbf
C = 8, γ = 8

SVM-RSQP 99.98 5.19 1281 662 54

SVM-QP 99.98 7.94 1417 662 54

SVMLight 99.98 9.51 3325 671 54

LIBSVM 99.98 2.55 4633 669 54
spam
rbf
C = 2048, γ =
.125

SVM-RSQP 95.20 1.91 4689 814 663

SVM-QP 95.20 3.89 5176 814 663

SVMLight 95.22 24.33 85032 831 659

LIBSVM 95.22 2.77 77645 819 658
splice
rbf
C = 32, γ =
.03125

SVM-RSQP 100.00 0.77 721 511 11

SVM-QP 100.00 1.23 712 510 11

SVMLight 100.00 0.42 1629 520 10

LIBSVM 100.00 0.41 5144 518 10
ocr-0
rbf
C = 8, γ =
.03125

SVM-RSQP 100.00 4.00 602 464 0

SVM-QP 100.00 4.55 649 464 0

SVMLight 100.00 4.72 459 465 0

LIBSVM 100.00 4.58 1288 464 0
ocr-9
rbf
C = 32, γ =
.03125

SVM-RSQP 100.00 4.64 677 492 0

SVM-QP 100.00 5.05 703 492 0

SVMLight 100.00 5.75 1232 493 0

LIBSVM 100.00 4.45 2204 492 0

84

Table 5.4: Performance Comparison for Large Datasets

Dataset Algorithm Training Accuracy Time Iter NSV NBSV

adult-a
linear
C = 2

SVM-RSQP 85.01 372.39 66457 11480 11387

SVM-QP 85.00 548.20 87072 11481 11386

SVMLight 85.01 1048.36 99976 11571 11327

LIBSVM 85.00 186.97 112817 11541 11344
adult-a
rbf
C = 32, γ =
.03125

SVM-RSQP 87.56 707.81 38544 11499 9062

SVM-QP 87.56 1101.13 59786 11494 9053

SVMLight 87.57 6028.00 100224 12008 8770

LIBSVM 87.55 255.50 100274 11760 8864
covtype
rbf
C = 8192, γ =
.125

SVM-RSQP 85.22 8471.86 208978 37926 36846

SVM-QP 85.23 9580.77 315533 37953 36871

SVMLight - - - - -

LIBSVM 85.21 16344.67 6214081 38103 36694

Table 5.5: Algorithm Efficiency Comparison for Simulated Gaussian Datasets

SVM-QP SVM-RSQP

Features C Time (sec) KKT (sec) Iter Inf Iter Time (sec) KKT (sec) Iter

5 10 .25 .003 3251 985 .23 .004 3301

5 1000 .30 .004 3621 1784 .27 .005 3587

50 10 1.56 .135 4100 88 1.42 .073 3888

50 1000 2.5 .211 5326 2324 1.92 .106 5240

100 10 3.06 .312 3362 32 2.28 .183 3394

100 1000 6.7 .721 5818 2218 5.45 .443 5768

200 10 4.72 1.13 2864 23 3.77 .494 2598

200 1000 12.0 2.52 4934 1102 8.24 1.12 4600

85

CHAPTER 6: SIMPLE SVM REGULARIZATION PATH FOLLOWING

ALGORITHM

The Support Vector Machine (SVM), while possessing excellent generalization performance, still

requires tuning of the regularization parameter C, as well as kernel parameters for optimal gen-

eralization performance. This usually entails retraining across several different values of these

parameters. A popular method for doing this is the “grid search” where retraining occurs across a

grid of C values and kernel parameters. Performance is measured at each parameter setting using

a separate validation data set or through cross-validation to find the one yielding the best test per-

formance. Unfortunately, this can be a time-consuming process especially when there is limited or

no a priori knowledge of the valid range of parameters. Hastie et al. [38] introduced SVMPath, a

homotopy method for solving the entire regularization path (solution path as function of C). This

method relies on the fact that the SVM training solution is piece-wise linear in terms of C. That

is, given a solution to the SVM dual formulation at a particular value of C, the dual variables such

that 0 < αi < C vary linearly according to C until either a data point on the margin (0 < αi < C)

begins to violate a feasibility constraint (αi > C or αi < 0) or a new point enters the margin

(data point with αi = 0 or αi = C). When either of these conditions occur, the active set must

be modified in order to continue, therefore, representing a breakpoint in the piecewise linear path.

The regularization path essentially starts at some small value of C and increases the value while

identifying breakpoints and adjusting the active set as it continues. Hastie et al. reported that the

path following algorithm computed the entire path in a time that was faster than the average time

required for SMO to compute a solution at a single value of C when performing a “grid search”.

While this is an important contribution, the proposed method can only be used with positive definite

kernels. This rules out use of the linear kernel as well as those cases where duplicate data points

86

exist. The existence of duplicate data points is an issue even for the positive definite kernel, and

while it is possible to preemptively remove duplicate data points, this may not be practical for

large datasets. In other important work, Ong et al. [67] introduced an improvement that resolves

issues with using the semi-definite kernel as well as duplicate data points. While successful, the

method has the following limitations: (i) an SVD or QR factorization method is employed for

explicitly detecting rank deficiencies and finding the basis of the null space, (ii) an external solver

is employed to solve a posed linear programming problem at each iteration, (iii) the method can

become unstable or exhibit cycling, which must be resolved using a backup routine, and (iv) the

method incorporates the SMO training algorithm for both initialization and path recovery.

In the course of computing the regularization path, it is possible for more than one active set transi-

tion to be identified at each break-point, especially when using a semi-definite kernel or if duplicate

data points exist. In the original method reported by Hastie et al., all of the identified transitions

are taken. However, further active set transitions may be identified at the same breakpoint after per-

forming the initial transitions. The SVMPath algorithm proceeds with strictly increasing C values,

ignoring these additional transitions. This can lead to a breakdown and subsequent computation

of an invalid solution path [67]. Furthermore, it is possible for all constraints to become active (or

empty margin set), in which case, the algorithm is forced to perform a re-initialization and a valid

portion of the path may be skipped.

The Simple SVM Path algorithm, introduced here, works by performing single active set transi-

tions at each iteration and allowing repeat events (C value does not vary between transitions). This

method automatically avoids singular systems of equations, the empty margin set case, and the

need for an external solver and specialized factorizations. The proposed algorithm also incorpo-

rates a new initialization method for unequal class sizes that works within the framework of the

existing algorithm and, therefore, does not require an external solver. Detailed theoretical analy-

sis is given to (i) show how singular system of equations and empty margin sets are avoided, (ii)

87

provide detail analysis on the occurrence of degeneracy and cycling, and (iii) prove convergence

showing how cycling is avoided with Bland’s pivoting rule [4].

Review of the Regularization Path Algorithm

The following reviews the regularization path algorithm introduced by Hastie et al. [38] while pro-

viding some additional detail and insight. Recall, again, the SVM soft-margin primal formulation

given the dataset D = {(x1, y1), ..., (xn, yn)} and xi ∈ Rd where d is the data dimensionality and

yi ∈ {+1,−1} represents the label for each point,

min
w,b,ξ

1
2
‖w‖2

H + C
∑n

i=1 ξi (6.1)

subject to yi (〈w, zi〉H + b) ≥ 1− ξi, ξi ≥ 0∀i (6.2)

where zi = φ (xi) and φ : X → H represents a non-linear mapping to a Reproducing Kernel

Hilbert Space (RKHS), w ∈ H. The goal is to find the solution to this problem as a function of C.

The above can be recast in terms of λ where λ , 1
C

for convenience.

min
w,b,ξ

λ
2
‖w‖H +

∑n
i=1 ξi (6.3)

subject to 1− yif (xi) ≤ ξi; ξi ≥ 0; f (xi) = wTφ (xi) + b

This can, then, be converted to a dual formulation as follows. First, the Lagrangian of the primal

becomes

LP :
n∑
i=1

ξi +
λ

2
wTw +

n∑
i=1

αi (1− yif (xi)− ξi)−
n∑
i=1

γiξi (6.4)

88

yielding

∂LP
∂w

= 0 ⇒ w =
1

λ

n∑
i=1

αiyixi (6.5)

∂LP
∂b

= 0 ⇒
n∑
i=1

yiαi = 0 (6.6)

∂LP
∂ξi

= 0 ⇒ 1− αi − γi = 0 (6.7)

The KKT complementary conditions along with the remaining inequality constraints are

αi (1− yif (xi)− ξi) = 0 (6.8)

γiξi = 0 (6.9)

αi ≥ 0 (6.10)

ξi ≥ 0 (6.11)

γi ≥ 0 (6.12)

Using this, the following equivalent conditions are shown to be satisfied at optimality.

0 < αi < 1 ⇒ yif (xi) = 1 (6.13)

αi = 1 ⇒ yif (xi) ≤ 1 (6.14)

αi = 0 ⇒ yif (xi) ≥ 1 (6.15)

As reported in Hastie et al., each case is easy to show using the KKT conditions as follows. αi = 0

implies that γi = 1 from (6.7) and ξi = 0 from (6.9). From (6.3) 1− yif (xi) ≤ 0 or yif (xi) ≥ 1.

Similarly, if αi = 1 then γi = 0 from (6.7), and 1 − yif (xi) − ξi = 0 from (6.8). Using the fact

that ξi ≥ 0, then yif (xi) = 1 − ξi ⇒ yif (xi) ≤ 1. Finally, if 0 < αi < C then γi = 1 − αi and

89

0 < γi < 1 implying that ξi = 0 from (6.9) and 1 − yif (xi) − ξi = 0 implies that yif (xi) = 1

since ξi = 0. The following sets are defined based upon these conditions

E = {i : yif (xi) = 1, 0 ≤ αi ≤ 1} (6.16)

L = {i : yif (xi) < 1, αi = 1} (6.17)

R = {i : yif (xi) > 1, αi = 0} (6.18)

where E or elbow contains the points on the margin, L or left contain points that are inside the

margin, not necessarily misclassified if on the correct side of the hyperplane, andR refers to those

points outside the margin and correctly classified.

The Lagrangian dual function by definition is

LD (α,γ) = inf
w,b,ξ
LP (w, b, ξ,α,γ) (6.19)

where LP () is defined in (6.4). Upon substituting in the expressions from (6.5), (6.6) and (6.7),

the following is obtained

LD :
∑
i

αi −
1

2λ

∑
i,j

αiαjyiyj 〈φ(xi), φ(xj)〉H − b
∑
i

αiyi (6.20)

and replacing the dot product with a Mercer kernel, k(,), yields

LD :
∑
i

αi −
1

2λ

∑
i,j

αiαjyiyjk (xi,xj)− b
∑
i

αiyi (6.21)

90

Recalling the dual feasibility constraints

∑
i

αiyi = 0 (6.22)

0 ≤ αi ≤ 1 ∀i (6.23)

the dual formulation becomes

min
α

1Tα− 1
2λ
αTQα (6.24)

s. t. 0 ≤ αi ≤ 1 ∀i (6.25)

yTα = 0 (6.26)

where the objective is negated to obtain an equivalent minimization problem. Note that the dual

solution for the typical SVM formulation, in terms of C, can be simply obtained from the solution

to this dual formulation using α′i = Cαi = αi/λ.

The goal of the regularization path algorithm is to trace out the solution of this optimization prob-

lem as the regularization parameter λ varies. At a particular `th breakpoint, an equality-constrained

problem is formed using the active set defined by E`, R`, and L`. The sets L` and R` represent

the set of equality constraints, i.e. αi = 1 and αi = 0, respectively. The remaining inequality

constraints represented by i ∈ E` (0 ≤ αi ≤ 1) will be automatically satisfied by the solution to the

equality-constrained problem. The relationship between α`i for i ∈ E` and λ can be derived from

this problem. From here on, the following notation will be used. For matrix A, AR refers to both

rows and columns of A indexed by R, AR,L refers to rows indexed by R and columns indexed by

L and, for any vector x, xR refers to entries of x indexed byR.

The dual formulation can be rewritten as follows using Qi,j , yiyjk (xi,xj) and noting that αR =

91

0.

− 1

2λ

αE

αL

T QE QE,L

QL,E QL

αE

αL

+ 1T

αL

αE

− β0

(
yTE yTL

)αE

αL

 (6.27)

Taking the derivative with respect to αE and setting this to 0 yields

−1

λ
QEαE −

1

λ
QE,LαL + 1− β0yE = 0 (6.28)

Using α0 = λb to simplify notation,

−1

λ
QEαE −

1

λ
QE,LαL + 1− 1

λ
α0yE = 0 (6.29)

Immediately at the transition point ` where λ = λ` the following is obtained

− 1

λ`
QEα

`
E −

1

λ`
QE,LαL + 1− 1

λ`
α`0yE = 0 (6.30)

Multiplying each of the previous two expressions by λ and λ`, respectively, and subtracting, results

in

QE
(
αE −α`

E
)

+ yE
(
α0 − α`0

)
=
(
λ− λ`

)
1 (6.31)

The constraint yTα = 0 yields yTEαE = −yTL1 recalling that αL = 1. Additionally, using the

fact that yEα
`
E = −yL1 and subtracting the two expressions, the expression yTE

(
αE −α`

E
)

= 0 is

92

obtained. Combining these expressions results in

Q` y`

yT` 0

αE −α`

E

α0 − α`0

 =

(
λ− λ`

)
1

0

 (6.32)

where y` and Q` represents shorthand notation for yE` and QE` .

Defining δ , 1
λ−λ`

(
αE −α`

E
)
, δ0 , 1

λ−λ`
(
α0 − α`0

)
, yields

Q` y`

yT` 0

δ

δ0

 =

1

0

 (6.33)

For future use, the l.h.s. of the above equation is defined as,

A` ,

Q` y`

yT` 0

 (6.34)

Given the solution δ, δ0, then,

αj = α`j +
(
λ− λ`

)
δj, j ∈ {0} ∪ E` (6.35)

The solution, in terms of αj for j ∈ E , then, varies linearly as a function of λ. At some point as

λ is decreased from λ`, a variable αj will become infeasible (αj < 0 or αj > 1) and the active set

must change. As αj ∈ E and α0 vary, the quantity f (xi) for those points in L and R also varies.

An active set change is also required when yif (xi) approaches 1 for those points L orR.

Given the linear relationship on αE , the relationship for f (xi) as a function of λ can be derived as

follows.

f (xi) = wTφ(xi) + b (6.36)

93

or, expressed in terms of the Lagrange dual variables and using the Mercer kernel, becomes

f (xi) =
1

λ

[∑
j

αjyjk (xi,xj) + α0

]
(6.37)

where α0 = λb. Finally, f (xi) is partitioned as follows

f (xi) =
1

λ

∑
j∈E

αjyjk (xi,xj) +
∑
j /∈E

αjyjk (xi,xj) + α0

 (6.38)

Expressing f (xi) in terms of λ− λ` results in the following

λf (xi)− λ`f ` (xi) =
∑
j∈E

(
αj − α`j

)
yjk (xi,xj) +

(
α0 − α`0

)
(6.39)

where f ` (xi) is computed f (xi) based upon the values of αj∀j ∈ E` ∪ 0 at λ`. and, therefore,

1

λ− λ`
[
λf (xi)− λ`f (xi)

]
=
∑
j∈E

δjyjk (xi,xj) + δ0 (6.40)

Defining

h` (xi) ,
∑
j∈E

δjyjk (xi,xj) + δ0 (6.41)

yields

λf (xi) =
(
λ− λ`

)
h` (xi) + λ`f ` (xi) (6.42)

or

f (xi) =
λ`

λ

[
f ` (xi)− h` (xi)

]
+ h` (xi) (6.43)

As mentioned earlier, when yif (xi) reaches 1 for some point in L,R, that point must be transi-

tioned to E before progress can continue. The point at which this occurs is computed as follows

94

λ`

λ

[
f ` (xi)− h` (xi)

]
+ h` (xi) = yi (6.44)

or

λ = λ`
(
f ` (xi)− h` (xi)

yi − h` (xi)

)
(6.45)

Finally, using Equations (6.45) and (6.35), the maximum λ is found such that λ < λ` at which one

or more of the following occurs

1. The quantity yif (xi) approaches 1 for one or more points from L orR.

2. One or more points from E have αi approach 1 or 0.

Once found, the sets are adjusted and λ`+1 is assigned to λ. The process continues, finding the

breakpoints at which one of the above conditions occurs and adjusting R, L, and E until either L

becomes empty, for a linearly separable dataset, or λ`+1 → 0.

Initialization

The regularization path algorithm is initialized by finding the largest λ, or λ0, such that for all

λ > λ0 the active set remains constant and α = α∗ where α∗ is the solution at λ0. Define the

index sets I+ and I− containing the set of positively-labeled and negatively-labeled data points,

respectively. Correspondingly, the quantities n+ and n− represent the number of positively-labeled

and negatively-labeled data points. There are two cases to consider corresponding to when n− =

n+ and when n− 6= n+. The following Lemmas, introduced in Hastie et al. [38], describe the

form of the initial solution at λ0 in each case as well as show that the solution does not change for

λ > λ0. The following is for the first case when n− = n+.

95

Lemma 1 ([38]). For λ sufficiently large, all the αi = 1. The initial b ∈ [−1, 1] – any value gives

the same loss
∑n

i=1 ξi = n+ + n−

The following describes the initial solution for the second case when n+ > n−, which is applicable

w.l.o.g to the case when n− > n+.

Lemma 2 ([38]). With w =
∑n

i=1 yiαixi, let

{α∗i } = arg min ||w||2 (6.46)

s. t. αi ∈ [0, 1] ∀i ∈ I+, αi = 1 ∀i ∈ I−,
∑
i∈I+

αi = n− (6.47)

Then for some λ0 we have that for all λ > λ0, αi = α∗i .

These are easily shown [38], by first noting that w → 0 as λ → ∞ according to Equation (6.5),

and, therefore, the primal problem simply becomes

min
b

∑n
i=1 ξi (6.48)

s.t. 1− yib ≤ ξi; ξi ≥ 0 (6.49)

Since ξi > 0, then

ξi = [1− b]+ , ∀i ∈ I+ (6.50)

ξi = [1 + b]+ , ∀i ∈ I− (6.51)

defining

[x]+ =

x x > 0

0 x ≤ 0

(6.52)

96

b 0

∑
j ξj

−1 1

2n+

2n−

Figure 6.1: Depiction of the piecewise nature of the objective function as a function of b

Therefore
∑n

i=1 ξi = n+ [1− b]+ + n− [1 + b]+ with the following results for several cases of b

n∑
i=1

ξi = n+ (1− b) , b < −1 (6.53)

n∑
i=1

ξi = n− (1 + b) , b > 1 (6.54)

n∑
i=1

ξi = n+ + n− + (n− − n+)b, −1 ≤ b ≤ 1 (6.55)

Figure 6.1 depicts the piece-wise nature of
∑

j ξj as a function of b for the scenario where n+ >

n−. In general, the minimum is achieved at a value of b = sgn (n+ − n−). For example, if

n+ > n−, then a minimum of 2n− is achieved for b = 1. On the other hand, if n+ = n−,

the minimum is achieved for b in the interval [−1, 1] and the cost function becomes n+ + n−.

Immediate consequences are (i) ai = 1∀i ∈ I− (ii) ai ≤ 1∀i ∈ I+. The first case follows since

ξi > 0 for all i ∈ I− implying γi = 0 from (6.8) and subsequently αi = 1 from (6.7). The second

case occurs since it must also hold that
∑

i∈I+ ai = n− and, therefore, there will be at least one

97

index i ∈ I+, such that ai < 1 unless n+ = n−, then ai = 1∀i ∈ I+.

Departing slightly from the derivation in Hastie, it is interesting to derive the initial solution when

λ is large but finite, again assuming, without loss of generality, n+ ≥ n− Choosing some finite

λ sufficiently large such that α remains constant as λ is varied results in the following primal

problem

min
b,ξ

∑
i ξi (6.56)

s. t. yi

(
1
λ

∑
j αjyj 〈xi,xj〉+ b

)
≥ 1− ξi ∀i (6.57)

where w, λ, and α are constant and assumed known a priori. For the case i ∈ I+,

ξi =

[
1− 1

λ

∑
j

αjyj 〈xi,xj〉 − b

]
+

(6.58)

and for i ∈ I−

ξi =

[
1 +

1

λ

∑
j

αjyj 〈xi,xj〉+ b

]
+

(6.59)

A simplification is made by using w∗ =
∑

j αjyjxj , and w = 1
λ
w∗, to obtain

ξi (b) =

[
1− 1

λ
w∗Txi − b

]
+

(6.60)

for i ∈ I+ and

ξi (b) =

[
1 +

1

λ
w∗Txi + b

]
+

(6.61)

for i ∈ I−. Therefore, ξi > 0 for b < 1− 1
λ
w∗Txi, i ∈ I+, and ξi > 0 for b > −1− 1

λ
w∗Txi, i ∈ I−.

Figure 6.2 depicts an example cost function, in terms of b, with n+ > n−. The minimum occurs,

in this example, in an interval where ξ1 = 0 while the remaining components are greater than 0.

This implies, as expected, that there is at least one component of α such that αi < 1 satisfied by

98

α1 in this case. Also, in Figure 6.2, the curves for ξi, i ∈ I+ will translate to the left (towards

decreasing b) as λ is decreased, for the cases w∗Txi > 0, while, similarly, the curves for ξi, i ∈ I−

will translate to the right with decreasing λ, for the cases w∗Txi < 0. It is important to note, in

this example, that the interval of optimality for b is determined by ξ2 and ξ3, both corresponding to

points in I+. As λ is initially decreased, the interval for b will be determined by points in I+ until,

max
i∈I−

(
−1− 1

λ
w∗Txi

)
> max

i∈I+,αi<1

(
1− 1

λ
w∗Txi

)
(6.62)

where the interval for b is

[
max

i∈I+,αi<1

(
1− 1

λ
w∗Txi

)
, min
i∈I+,αi=1

(
1− 1

λ
w∗Txi

)]
(6.63)

[
1− 1

λ
min

i∈I+,αi<1
w∗Txi, 1−

1

λ
max

i∈I+,αi=1
w∗Txi

]
(6.64)

Eventually, as λ further decreases a point is reached where

−1− 1

λ
min
i∈I−

w∗Txi = 1− 1

λ
max

i∈I+,αi<1
w∗Txi (6.65)

or at

λc =
maxi∈I+,αi<1 w∗Txi −mini∈I− w∗Txi

2
(6.66)

Here, the interval for b is no longer strictly determined by all points in I+, but is determined by

both points in I+ and I− and the interval for b becomes

[
1− 1

λ
min
i∈I−

w∗Txi, 1−
1

λ
max

i∈I+,αi=1
w∗Txi

]
(6.67)

99

b 0

ξi, i ∈ I−
ξi, i ∈ I+

∑
j ξj

optimality

ξ1

ξ2

ξ3

ξ4

ξ5

Figure 6.2: Depiction of the cost function and components ξi for finite but large λ

As λ continues to decrease the interval shrinks until, at some point, the upper and lower bounds

are equal

−1− 1

λ0
w∗Txi− = 1− 1

λ0
w∗Txi+ (6.68)

where i+ = arg maxi∈I+,αi=1 w∗Txi and i− = arg mini∈I− w∗Txi.

100

b 0

maxi∈I+,αi<1

(
1− 1

λ
w∗Txi

)
maxi∈I−

(
−1− 1

λ
w∗Txi

)
ξi, i ∈ I−ξi, i ∈ I+

∑
j ξj

optimality

ξ1

ξ2

ξ3

ξ4

ξ5

Figure 6.3: Depiction of the interval for b when λc > λ > λ0 where the interval is bounded by
points in both I− and I+.

Therefore, λ0 becomes

λ0 =
w∗Txi+ −w∗Txi−

2
, (6.69)

and the quantity b is computed as

b = −1− 1

λ0
w∗Txi− = 1− 1

λ0
w∗Txi+. (6.70)

101

Prior to reaching λ0, b can take on any value in the interval. For the case when n+ = n−, for

example, choosing b to be at one of the extremes of the interval results in the corresponding data

point (xi+ or xi−) being on the margin. The opposing margin will then translate with decreasing λ

until both points are on the margin. Typically, the active set method chooses at least one data point

to be in E and will select one of the extremes. On the other hand, if n+ > n−, then the positive

margin must be placed according to the data points such that 0 < αi < 1. In this case, the opposing

margin will translate until reaching the first data point of the opposite class.

Generalizing initialization for all kernel functions g(), then for n+ ≥ n−, i+ = arg maxi∈I+,αi=1 g
∗ (xi),

i− = arg mini∈I− g
∗ (xi), and g∗ (xi) =

∑
j α
∗
jyjk (xi,xj), α∗i = 1 ∀i the starting solution be-

comes

λ0 =
g∗ (xi+)− g∗ (xi−)

2
(6.71)

b = −
(
g∗ (xi+) + g∗ (xi−)

g∗ (xi+)− g∗ (xi−)

)
(6.72)

In conclusion, a starting point for the regularization path algorithm can be trivially found when

n+ = n− where αi = 1∀i and λ0, b are derived from Equations (6.71) and (6.72). For the case

n+ 6= n−, the initial solution α∗ is not known a priori. As a result, the starting point cannot

be found from Equation (6.71). Further, Lemma 2 [38] only specifies the form of the starting

solution. In this case, an external solver is required to find the initial starting solution. This can

be done by either directly solving the optimization problem posed in Lemma 2 (such as in [17]) or

by employing a training algorithm such as SMO to find the starting solution for some large λ. In

the latter case, the true starting solution λ0 is not found, but instead, a solution is found at some

arbitrarily large λ corresponding to the user’s interval of interest.

102

Algorithm 2 Hastie et al. Entire Regularization Path
1: Compute initial solution α∗ according to Lemma 1 or Lemma 2
2: Find initial solution

λ0 =
g (xi+)− g (xi−)

2
(6.73)

b = −g (xi+) + g (xi−)

g (xi+)− g (xi−)
(6.74)

i+ = arg max
i∈I1+

g (xi) , i− = arg min
i∈I1−

g (xi) (6.75)

where I1
+ ⊂ I+ and I1

− ⊂ I− such that αi = 1.
3: Initialize f 0 (xi) = b+ 1

λ0
g (xi)

4: Set E = {i+, i−}
5: Solve (

Q` y`

yT` 0

)(
δ

δ0

)
=

(
1

0

)
(6.76)

where ` refers to the state at the last `th breakpoint.
6: Compute

λj =

λ`δj−αl

j

δj
, δj < 0

1+λ`δj−αl
j

δj
, δj > 0

(6.77)

7: Find max λj such that λj < λ`
8: Compute

λj = λ`
f ` (xj)− h` (xj)

yj − h` (xj)
(6.78)

9: Find max λj for j /∈ E` such that λj < λ`

10: Set λ`+1 to the largest of λj computed from step 7 and step 9
11: Adjust values

αj = α`j −
(
λ` − λ`+1

)
δj, j ∈ {0} ∪ E` (6.79)

f `+1 (xj) =
λ`

λ`+1

[
f ` (xj)− h` (xj)

]
+ h` (xj) (6.80)

12: Adjust the sets E ,R,L
13: If L is empty or a minimum λ is reached, terminate, else go to step 5

103

Table 6.1: Example Toy Problem

x1 x2 y

1 0.7 0.3 1

2 0.5 0.5 1

3 2.0 2.0 -1

4 1.0 3.0 -1

5 0.75 0.75 1

6 1.75 1.75 -1

Analysis of SVMPath

Analysis of a Toy Problem

As pointed out, the SVMPath algorithm cannot be used with semi-definite kernels or when dupli-

cate data points exist. It is instructive to analyze the behavior of SVMPath in more detail using the

Toy Problem introduced by Ong et al. [67]. The Toy problem is listed in Table 6.1. The following

Q matrix is derived for the toy problem.

Q =

0.58 0.5 −2.0 −1.6 0.75 −1.75

0.5 0.5 −2.0 −2.0 0.75 −1.75

−2.0 −2.0 8.0 8.0 −3.0 7.0

−1.6 −2.0 8.0 10.0 −3.0 7.0

0.75 0.75 −3.0 −3.0 1.125 −2.625

−1.75 −1.75 7.0 7.0 −2.625 6.125

(6.81)

104

Since n− = n+, the initial solution is found by simply assigning αi = 1 for all i, which results in

w∗ = (−2.8,−5.2) and w∗xi+ = −3.52 and w∗xi− = −18.4. Therefore,

λ0 =
−3.52− (−18.4)

2
= 7.44 (6.82)

and

b = −
(
−3.52 +−18.4

−3.52− (−18.4)

)
= 1.47311, (6.83)

and, therefore,

α0 = λ0b = 10.9599348 (6.84)

αi = 1 ∀i ∈ {1, ..., 6} (6.85)

Since i+ = 1 and i− = 4, then E0 = {1, 4}.

A` =

1 .58 −1.6

−1 −1.6 10.0

0 1 −1

 , δ =

.271002

.271002

 , δ0 = 1.2764 (6.86)

and, for j ∈ E0,

α =

1

1

− (7.44− λ)

.27102

.27102

 (6.87)

105

Table 6.2: Candidate λ at λ0 = 7.44

I λ Move

1 3.75 E → R
2 3.7501 L → E
3 3.75 L → E
4 3.75 E → R
5 0.0003 L → E
6 2.2857 L → E

Solving for αj = 0 the next event becomes λ = 3.75 for both α1, α4. Solving the pricing variables

results in

f 0 =

0.9999

0.935475

−.67742763

−1.000008

.6666583

−.40861043

, h0 =

1.0

0.8699186

−.34959

−1.0

0.6666

−.1463414

(6.88)

and, using Equation (6.45),

λ2

λ3

λ5

λ6

=

3.7501

3.7500

0.0003

2.2857

(6.89)

The candidate events are summarized in Table 6.2.

If some small working precision is assumed, there are a total of 4 points that can be moved at

106

λ = 3.75. The SVMPath algorithm accepts all of the transitions resulting in E1 = {2, 3}, L1 =

{5, 6} and R1 = {1, 4}. After performing the transition, an incremental update to f (x) and α is

performed yielding

α1
0 = 10.9599348− (7.44− 3.75)1.2764 = 6.25 (6.90)

α1 =

0

1

1

0

1

1

, f 1 =

1.0000

1.0000

−1.0000

−1.0000

0.6667

−0.6667

(6.91)

This results in

A` =

1 0.5 −2.0

−1 −2.0 8.0

0 1 −1

 , δ =

0.4444

0.4444

 , δ0 = 1.6667 (6.92)

and, for j ∈ E1,

α =

1

1

− (3.75− λ)

0.4444

0.4444

 (6.93)

107

The next event occurs at λ = 1.5 for both α2, α3 and for points in L1,R1,

h1 =

1.0000

1.0000

−1.0000

−1.0000

0.6667

−0.6667

(6.94)

and, therefore,

λ1

λ4

λ5

λ6

=

NaN

3.7500

−0.0000

0.0000

(6.95)

Note the fact that f 1
1 = 1 and h1

1 = 1 implies there is no change in f1 as λ decreases. However,

a divide by zero error can occur if an attempt is made to compute the next event for point 1

according to (6.45). This highlights the need to detect the case f `1 − h`1 = 0. A summary of the

next possible events is listed in Table 6.3. The SVMPath algorithm requires λ`+1 strictly less than

λ`, therefore, the event λ = 1.5 is chosen, ignoring the λ = 3.75 case, and L2 = {5, 6}, E2 = {}

andR2 = {1, 2, 3, 4}. Performing updates

α2
0 = 6.25− (3.75− 1.5)1.6667 = 2.5 (6.96)

108

Table 6.3: Candidate λ at λ1 = 3.75

I λ Move

2 1.5 E → R
3 1.5 E → R
4 3.75 R → E
5 0.00 L → E
6 0.00 L → E

α2 =

0

0

0

0

1

1

, f 2 =

1.0000

1.0000

−1.0000

−1.0000

0.6667

−0.6667

(6.97)

At this point E is empty and reinitialization is required. Computing w∗ =
∑

i∈L yixi = (−1,−1),

w∗xi+ = −1.5, w∗xi− = −3.5 the next event becomes

λ3 =
−1.5− (−3.5)

2
= 1.0 (6.98)

and

b3 = −
(
−1.5 +−3.5

−1.5− (−3.5)

)
= 2.5 (6.99)

and now L3 = {}, E3 = {5, 6},R3 = {1, 2, 3, 4}. The α values have not changed, i.e., α3 = α2.

109

α3
0 = 2.5 and

f 3 =

1.0000

1.0000

−1.0000

−1.0000

0.6667

−0.6667

(6.100)

Since L is now empty, the algorithm terminates.

Multiple Regularization Paths

Looking again at the case λ1 = 3.75, a question arises as to what other combination of events

could have been taken. In order to satisfy the KKT conditions at λ = 3.75 any combination of the

points {1, 2, 3, 4} can be chosen to belong to E2. There is some confusion, however, since Hastie

defines the set E as the one where yif (xi) = 1 and 0 ≤ αi ≤ 1. Based upon this, all points

should belong to E . However, it is really only necessary that a chosen partition into E ,L, and R

continues to satisfy the KKT conditions as λ decreases. One can determine if the solution at ` = 2,

for example, satisfies the KKT conditions by looking more closely at the behavior as λ decreases.

Consider, for example, that instead of taking all transitions at λ = 3.75, a partition is chosen such

that E2 = {1, 2, 3}. The following results are obtained

δ =

0.4444

0.5333

−0.0889

 (6.101)

110

which can be rewritten in the following form

α =

0

1

0

− (3.75− λ)

0.4444

0.5333

−0.0889

 (6.102)

Note that the solution, while initially satisfying the KKT conditions, will immediately violate the

feasibility conditions upon decreasing λ since α1 decreases with λ. In this case, the problem is

detected by noting that α1 = 0 while δ1 > 0. Therefore, another partition must be chosen before

λ can be allowed to decrease. In general, it must be the case that δi ≥ 0 when αi = 1 and

δi ≤ 0 when αi = 0. Similarly, it must be the case that yi
(
f ` (xi)− h` (xi)

)
≥ 0 for i ∈ R

and yi
(
f ` (xi)− h` (xi)

)
≤ 0 for i ∈ L when yif ` (xi) = 1. All possible regularization paths

can be enumerated by considering all possible combinations of transitions at each breakpoint. For

each combination of transitions, the next breakpoint λ`+1 is computed, and the case λ` = λ`+1 is

allowed. The result of doing this for the Toy Problem is depicted in Figure 6.4.

There are several that can be made (i) there is a path where the KKT matrix, A`, becomes singular

but many more where this is avoided (ii) there is one path where E becomes empty and an interest-

ing portion of the regularization path is skipped (iii) there are many paths where an empty margin

set, E is avoided, and (iv) there are several cases where repeat λ values occur or λ`+1 = λ` before

continuing with a strictly smaller value. It is also important to note that the sequence of distinct

λ values as well as α0 values is the same regardless of the path taken with the exception of the

interval between λ = 1.5 and λ = 1.0 where two different paths exist.

111

7.44/10.96
{1, 4}/{}

3.75/6.25
{1, 2, 3, 4}/{}

3.75/6.25
{1, 3, 4}/{}

3.75/6.25
{1, 2, 4}/{}

3.75/6.25
{1}/{4}

3.75/6.25
{4}/{1}

3.75/6.25
{3, 4}/{1}

3.75/6.25
{1, 2}/{4}

3.75/6.25
{1, 3}/{4}

3.75/6.25
{2, 4}/{1}

3.75/6.25
{2, 3, 4}/{1}

3.75/6.25
{1, 2, 3}/{4}

3.75/6.25
{3}/{1, 4}

3.75/6.25
{2}/{1, 4}

1.5/2.5
{2, 4}/{1, 3}

1.5/2.5
{1, 3}/{2, 4}

3.75/6.25
{2, 3}/{1, 4}

1.5/2.5
{4}/{1, 2, 3}

1.5/2.5
{2}/{1, 3, 4}

1.5/2.5
{3}/{1, 2, 4}

1.5/2.5
{1}/{2, 3, 4}

1.5/2.5
{}/{1, 2, 3, 4}

1.25/2.75
{4, 5}/{1, 2, 3}

1.25/2.25
{2, 6}/{1, 3, 4}

1.25/2.75
{3, 5}/{1, 2, 4}

1.25/2.25
{1, 6}/{2, 3, 4}

1.25/2.75
{5}/{1, 2, 3, 4}

1.25/2.25
{6}/{1, 2, 3, 4}

1.0/2.5
{5, 6}/{1, 2, 3, 4}

λ / b
E /R

Figure 6.4: All possible solution paths for the toy problem. Cells highlighted in red represent sce-
narios where either a singular system of equations results or the margin set becomes empty. Cells
highlighted in yellow represent states from which λ can be decreased without requiring further
active set transitions

Empty Margin Set

It is important to consider the case when the margin set is allowed to become empty in more detail.

Note that there are two possible values for α0 at λ = 1.25, that is, α0 = 2.25 or α0 = 2.75

depending upon whether point 5 or 6 is in E at λ = 1.25. This implies at least two different

regularization paths exist between λ = 1.5 and λ = 1.0.

112

1
2

5

3

4

6

(a) Path (a) or (b), λ = 1.5

1
2

5

3

4

6

(b) Path (a), λ = 1.25

1
2

5

3

4

6

(c) Path (b), λ = 1.25

1
2

5

3

4

6

(d) Path (a) or (b), λ = 1.0

Figure 6.5: Depiction of multiple paths between λ = 1.5 and λ = 1.0 for the Toy Problem.
SVMPath skips this portion of the path proceeding directly to λ = 1.0 from λ = 1.5. Two
different paths exist depending upon whether points 1 or 2 or points 3 or 4 remain on the margin
while λ is decreased from 1.5. A test data point (blue square) is classified differently for path (a)
and (b) at λ = 1.25

The existence of these multiple paths can be verified by finding a solution at λ = 1.25 using a

conventional SVM training algorithm (e.g. SMO) and randomly permuting the order in which data

is presented. It is interesting to note that since a different value of α0 is achieved along each path,

errors against previously unseen test data may well be different for each path.

Multiple regularization paths result when at some λ` there is a situation where all data points are

candidates for transitioning out of E and data points exist on both margins. When a single data

point is left in E , the corresponding margin becomes pinned to that data point while the opposing

margin translates. Therefore, there are at least (2) choices corresponding to whether at least one

point remains on the y = +1 or y = −1 margin. Figure 6.5 depicts the two possible scenarios

for the Toy Problem. In one instance, points 3 and/or 4 remain in E while the opposing margin

translates until reaching point 5 at λ = 1.25. Point 5 is then placed in E while the remaining points

are removed. The margin at point 5 then becomes pinned while the opposing margin translates

113

until hitting point 6 at λ = 1.0. In a different path, points 1 and/or 2 remain on the margin

while the opposing margin translates until hitting point 6 at λ = 1.25. As shown in Figure 6.5,

classification for a strategically-placed data point may depend upon the regularization path taken.

In this example the impact on overall performance is minimal; however, this could be important in

different scenarios.

Simple SVMPath

The Simple SVMPath algorithm is inspired by noting that the empty margin set as well as singular

KKT system tends to occur in cases where more than one active set transition takes place. On

the other hand, the previous analysis suggests that the regularization path can be successfully

computed by performing only a single transition at a time and allowing repeat events, λ` = λ`+1. It

is important to note that the sets E ,R, andL are mutually exclusive and cannot be used for tracking

an active set. For example, points with yif (xi) = 1 and αi = 0 or αi = 1 are forced to belong to

E . This partition is employed to identify transitions within the SVMPath algorithm, but represents

a primary source of difficulty especially when accommodating semi-definite kernels and will not

allow single transitions. Therefore, the following sets are defined where F contains the subset of

variables in E that are free to vary (inactive constraints),R∗ contains points not in F where αi = 0,

and L∗ contains points not in F and αi = 1. As a result, points in F will correspond to the set

of inactive constraints while those inR∗ and L∗ correspond to the set of active constraints and the

sets now overlap in terms of the KKT optimality conditions. For example, points with yif (xi) = 1

and αi = 1 can belong to either F or L∗ depending upon whether the points is chosen to belong to

the inactive set, F or the active set L∗.

The descent direction δ and δ0 as well as h` (xi) is computed as before using Equations (6.41) and

(6.35); however, instead, using the index sets F , R∗, and L∗. As a result, the components Q` and

114

y` in Equation (6.33) are now indexed by F` instead of E`. Specifically,

αj = α`j +
(
λ− λ`

)
δj, j ∈ {0} ∪ F` (6.103)

and, for points in L∗ andR∗

f (xi) =
λ`

λ

[
f ` (xi)− h` (xi)

]
+ h` (xi) (6.104)

At each step, the next event is found by selecting the minimum λj such that λj ≥ λ` where a point

in F` entersR∗ or L∗ or vice versa a point inR∗` or L∗` enters F .

The event at which a point in F` transitions to L∗ orR∗ is computed as follows

λj =
1 + λ`δj − α`j

δj
(6.105)

for δj < 0 and for δj > 0

λj =
λ`δj − α`j

δj
(6.106)

For a point in L∗` orR∗` , once again, the event at which a point enters F is computed as follows

λj = λ`
(
f `j − h`j

)(
yj − h`j

) (6.107)

Note in the above equation that yi − h`i = 0 implies yih`i = 1, and it is simple to show that

for yif ` (xi) > 1 the quantity yif (xi) will increase as λ decreases and, similarly, yif (xi) will

decrease if yif ` (xi) < 1. Therefore, for data points having h`i = 1, the divide by zero operation

can be avoided and λj = 0 since these points will not transition for any value of λ. Similarly,

λj need not be computed for yi
(
f `i − h`i

)
> 0 for i ∈ R` and yi

(
f `i − h`i

)
< 0 for i ∈ L`. In

115

summary, the next event is computed as follows

λj =

(1+λ`δj−α`
j)

δj
, j ∈ F`, δj < 0

(λ`δj−α`
j)

δj
, j ∈ F`, δj > 0

λ`
(f`j−h`j)
(yj−h`j)

, j ∈ L∗` ,
∣∣yj − h`j∣∣ > τ, yj

(
f `j − h`j

)
> −τ

λ`
(f`j−h`j)
(yj−h`j)

, j ∈ R∗` ,
∣∣yj − h`j∣∣ > τ, yj

(
f `j − h`j

)
< τ

0 otherwise

(6.108)

where a set of tolerances have been incorporated, τ . Once computed, the next event is chosen

where λ`+1 = λj such that
(
λj − λ`

)
/λ` ≤ τ . The complete algorithm is described as follows.

Algorithm 3 Simple SVM Path Algorithm

1: Given λ̂, K ∈ Rn×n, y ∈ Yn, ρ > 0, τ > 0
2: if N+ 6= N− then
3: Augment kernel matrix using artificial variable method (see section on initialization).
4: end if
5: compute λ0, b from (6.71), (6.72)
6: α0 ← λ0b
7: αi ← 1∀i
8: Compute initial fi according to (6.38) (using F0 instead of E)
9: while λ > λ̂ and L∗ is not empty do

10: Solve the KKT system (6.33)
11: Solve λj using (6.108)
12: Find the smallest λj such that

(
λj − λ`

)
/λ` ≤ τ

13: if there is a tie then
14: Choose the minimum index j
15: end if
16: αi ← α`i −

(
λ` − λj

)
β for i ∈ F`, i = 0

17: fi ← λ
λj

(f `i − h`i) + h`i
18: Move point j to new set F ,L∗, orR∗
19: λ`+1 ← λj
20: end while

116

Floating Point Precision

The regularization path-following algorithm can exhibit numerical instability due to incremental

updating of α, α0, and f (xi) according to Equations (6.103) and (6.104). These quantities can

be recomputed during each iteration to improve stability at the expense of significantly increased

training times. The SVMPath algorithm, for example, recomputes these quantities and the authors

state that methods for improving numerical stability with incremental updates is an open area of

research [38]. In this research, careful application of the tolerances prescribed in Equation (6.108)

is found to be necessary to guarantee numerical stability. In addition, the proposed tolerances are

also critical for preventing near-singular KKT systems. Since repeat events are allowed, it is also

important to include a tolerance when finding the largest λj such that λj ≥ λ`. In fact, the largest

λj is chosen such that
(
λj − λ`

)
/λ` ≤ τ . Normalization is necessary since λ can vary by orders

of magnitude between its largest and smallest value.

Analysis

In the analysis of the SVMPath algorithm for a toy problem, the regularization path following

algorithm was shown to skip a portion of the regularization path when the margin set, E is allowed

to become empty. This scenario is automatically avoided when only single transitions are allowed

to occur. Specifically, the following shows that F never becomes empty since, if there is only one

point in F , that point will never be identified for transition.

Proposition 1. If F contains only a single point, i, then the component αi will remain constant as

λ decreases with yif (xi) = 1.

This easily follows since when |F| = 1, the solution to (6.33) is δ0 = yi, δi = 0. When only a

single point remains in F , the associated margin will become “pinned” while the opposing margin

117

translates as λ decreases. This proceeds until another point enters the margin and becomes a

candidate for enteringF . While the empty margin set is avoided, the potential existence of multiple

regularization paths is not addressed. For example, in the toy problem, only one of the two paths

between λ = 1.5 and λ = 1.0 will be taken. As an alternative, it is possible to enumerate all of the

alternative solutions paths. This is not done within this research.

The following set of theorems indicate that the system of equations (6.33) will never become

singular when performing single transitions. More specifically, a point that is on the margin but

not in F` and that is linearly related to the points in F` such that adding the point to F` would

result in a singular system will never be identified to transition into F .

Theorem 5. A data point on the margin, xi, and not in F`, such that adding the point to F` yields

a singular matrix, A`, will remain on the margin, or yif (xi) = 1, as λ is decreased.

Proof. Upon adding the point i to F at iteration `, (6.33) becomes

QF qi yF

qTi qii yi

yTF yi 0

δ

δi

δ0

 =

1

1

0

 (6.109)

where qi contains the rows of Q indexed by F and the column corresponding to the data point

i. Since the system of equations is singular, u, uy can be found such that qi = Qu + yFuy,

yi = yTFu. In order for a solution to exist, it must also be true that uT1 = 1. When i is not in F ,

then QF
(
αF −α`

F
)

+ yF
(
α0 − α`0

)
= 1

(
λ− λ`

)
from (6.33) and

λyif (xi)− λ`yif ` (xi) (6.110)

= qi
(
αF −α`

F
)

+ yi
(
α0 − α`0

)
(6.111)

118

From this

λyif (xi)− λ`yif ` (xi) (6.112)

=
(
uTQF + uyy

T
F
) (

αF −α`
F
)

+ uTyF
(
α0 − α`0

)
(6.113)

= uT
(
1
(
λ− λ`

))
(6.114)

= λ− λ` (6.115)

and, therefore, yif (xi) = yif
` (xi) = 1.

Implicitly, this means that yi
(
f `i − h`i

)
= 0 or yih`i = 1. As a result, via (6.108), λi = 0 will

be computed for the linearly dependent point and it will never be identified to enter F` unless

another point first leaves F`. This result also implies that the point will remain on the margin as λ

is decreased. The following corollary easily follows for duplicate data points

Corollary 1. Given any data point xi not in F`, that is on the margin, yif ` (xi) = 1, and that is a

duplicate of a data point in F`, i.e., xi = xj and yi = yj for some j in F`, that point will remain

on the margin and yif (xi) = 1 as λ decreases.

In the case of duplicate data points, only one of the duplicate data points is placed inF` at any time.

Only when the duplicate data point in F transitions out of F is another available for transition into

F . As an example, when transitioning duplicate data points from L∗ to R∗, a first duplicate data

point is added to F and, as λ is decreased, its corresponding variable αi is driven to zero. Once

this occurs, the first data point is transitioned into R∗ and another of the duplicate data points

remaining in L∗ is free to transition into F . This process is repeated, not necessarily sequentially

(other points not related to the duplicate data points may transition sets), until all of the duplicate

data points have αi = 0 and are inR∗. This incurs additional iterations on the order of the number

of duplicate data points; however the impact is expected to be minimal when the duplicate data

119

points are a small fraction of the total data points.

In summary, by performing single active set transitions at a time, (i) the proposed algorithm auto-

matically precludes the scenario where the margin set or F is allowed to become empty and, there-

fore, avoids the risk of skipping a portion of the regularization path, (ii) avoids creating singular

systems of equations and the need for specialized factorization or rank-detecting mechanisms, and

(iii) automatically handles duplicate data points.

Degeneracy and Cycling

The active set method is proven to converge in the absence of degeneracies. A degeneracy occurs

when an active set change does not result in a corresponding decrease in the objective function.

When this occurs there is a risk of cycling where a series of active set transitions are repeated with

no further progress being made. In the majority of active set implementations, this is disregarded

as a minor problem and is often ignored.

In the case of the regularization path algorithm, the task of finding the next event λ`+1 can be posed

as a linear programming problem as follows

min λ (6.116)

subject to λ ≤ λ`

0 ≤ αi ≤ 1 ∀i ∈ F`

yif (xi) ≥ 1 ∀i ∈ R∗`

yif (xi) ≤ 1 ∀i ∈ L∗`

Therefore, the case where λ = λ` represents a form of degeneracy since the objective value does

120

not decrease. This is also true when considering the original dual objective function since no

changes are made to α, α0, or λ. In the case of the SSVMP algorithm, cycling will occur if a

series of active transitions with λ` = λ`+1 results in a revisit of a previous partition into F`,R∗` , or

L∗` . For an example of degeneracy, consider, again, the analysis of toy problem depicted in Figure

6.4. There are several cases where λ` = λ`+1 = 3.75 and a single active set transition occurs.

For example, consider the path where λ1 = 3.75, E1 = {1}, R1 = {4} followed by λ2 = 3.75,

E2 = {1, 3}, and R2 = {4}, which finally ends in λ4 = 3.75, E4 = {2, 3}, and R4 = {1, 4}.

In the analysis, cycling was prevented since a previous partition into E , L, and R was actively

avoided. However, in the course of algorithm execution, cycling would occur if, for example, step

4 revisited the partitioning at step 1 or E4 = {1} andR4 = {4}.

Degeneracy can only occur when there are multiple data points with yif (xi) = 1 and αi = 0 or

αi = 1. That is, there are several data points that can be simultaneously transitioned between F ,

R∗, and L∗ for some event λ`. For example, in the toy problem, it is the case that α1 = α4 = 0.0

and α2 = α3 = 1.0 at λ = 3.75 and, therefore, there are 4 candidate transitions. Using the previous

example, degeneracy occurs since upon transitioning point 4 toR at λ1 = 3.75, continued progress

was blocked by point 3, which was later transitioned to E at step λ2 = 3.75.

It should be pointed out that degeneracy and cycling is not specific to the SSVMP implementation,

but is, instead, a characteristic of the regularization path following method. For example, Hastie et

al. [38] avoid this issue by requiring λ`+1 be strictly less than λ`, while Ong et al., in the ISVMP

algorithm [67], incorporate a backup routine that is invoked upon detecting cycling. Finally, in the

work by Karasuyama et al. [44], an explicit method is included for breaking ties in the face of

degeneracy.

It can be easily shown that the following conditions must be met at a particular value of λ before

121

progress can continue with λ`+1 < λ`.

j ∈ F`, δj < 0→ αj < 1 (6.117)

j ∈ F`, δj > 0→ αj > 0 (6.118)

j ∈ R∗` , yjf ` (xj) = 1 (6.119)

→ yj
[
f ` (xj)− h` (xj)

]
> 0

j ∈ L∗` , yjf ` (xj) = 1 (6.120)

→ yj
[
f ` (xj)− h` (xj)

]
< 0

When faced with a degeneracy, the SSVMP algorithm will automatically choose one point for

transition that does not satisfy these conditions. As an example, a point in F` with αi = 1 will be

chosen such that δi < 0. In other words, a transition will occur for any data point meeting any of

the following criterion.

δj < 0 for j ∈ F`, αj = 1 (6.121)

δj > 0 for j ∈ F`, αj = 0 (6.122)(
1− yjh`j

)
< 0 for j ∈ R∗` (6.123)(

1− yjh`j
)
> 0 for j ∈ L∗` (6.124)

noting that yjf (xj) = 1 for the degenerate data points since they will already be on the margin. At

a given λ value, transitions will continue at the same λ value until there are no longer any points

satisfying the above conditions and λ can be decreased.

Degeneracy, alone, is not an issue unless it creates a condition for cycling. Therefore, it is important

to analyze the prevalence of cycling given the possible forms of degeneracy. In the face of a

semi-definite kernel and/or duplicate data points, the potential for cycling becomes an immediate

122

concern. However, as the following proposition shows, cycling will not occur when the degenerate

data points are linearly dependent.

Proposition 2. Cycling will not occur for the case where a set of degenerate data points are all

linearly dependent or where upon adding any one data point to F , the remaining data points have

qi,F = uTQF and yi = uTyF for some vector u.

This is easy to show using the result from Theorem 4 since yif (xi) = yif
` (xi) = 1 for the data

points not inF` that are linearly related to the data points inF`. This also implies that 1−yih`i = 0.

Therefore, once one of the linearly dependent data points is transitioned intoF`, the remaining data

points not in F` will have 1 − yih`i = 0 and will not be identified for transition. As shown later,

the data point transitioned into F` will also not immediately transition out of F . Therefore, in the

case where all of the degenerate data points are linearly dependent, cycling will not occur. This is

an important result in that it shows that a semi-definite kernel can be used without risk of cycling

as long as single transitions take place.

While this addresses the immediate concern regarding semi-definite kernels and duplicate data

points, in general, cycling can still occur for even a positive definite kernel. That is, cycling can

occur for a set of degenerate data points that are not linearly dependent. However, the occurrence

of cycling is still limited by the semi-definiteness (or positive definiteness) of the problem and the

fact that the matrix in (6.33) is non-singular. This fact limits the manner in which the quantities

1− yihi and δi can change signs as points are transitioned between sets at a fixed λ value as shown

in the following.

Theorem 6. Given any set of data points on the margin that are simultaneously switched between

F and L∗ or R∗, if δi is computed when i ∈ F and correspondingly gi = 1 − yihi when i /∈ F it

cannot be the case that sgn(δi) = −sgn(gi) for all i.

123

Proof. Given a set of data points inF , i ∈ {1, ..., N}, to be transitioned out and a set of data points

not in F , i′ ∈ {1, ..., N ′} to be transitioned into F , prior to transitioning, solve the following

Q q1 . . . qN y

qT1 q11 . . . q1N y1

...

qTN qN1 . . . qNN yN

yT y1 . . . yN 0

δ

δ1

...

δN

δ0

=

1

1

...

1

0

(6.125)

Defining Λx ,

q1 q2 . . . qN

y1 y2 . . . yN

 and δx =

(
δ1 δ2 . . . δN

)
this simplifies to

Q y

yT 0

δ

δ0

 =

1

0

− Λxδx (6.126)

and

ΛT
x

δ

δ0

+Qxδx = 1 (6.127)

where Qx is the portion of the kernel matrix indexed by x for those points initially in F . For the

points not in F ,

qT
1́
δ + q1́1δ1 + . . .+ q1́NδN + y1́δ0 = y1́h1́ (6.128)

...

qT
Ń
δ + qŃ1δ1 + . . .+ qŃNδN + yŃδ0 = yŃhŃ

124

which can be rewritten as

ΛT
x́

δ

δ0

+Qx́δx = Y h́ (6.129)

where Y is a diagonal matrix with diagonal entries containing the labels yí and Qx́x is a portion of

the kernel matrix with rows indexed by the data points not in F and columns indexed by points in

F . Upon swapping points between F and L∗,R∗, symmetry can be used to immediately yield the

following for δi and yihi

Q y

yT 0

 δ̂

δ̂0

 =

1

0

− Λx́δx́ (6.130)

ΛT
x́

 δ̂

δ̂0

+Qx́δx́ = 1 (6.131)

ΛT
x

 δ̂

δ̂0

+Qxx́δx́ = Y hx́ (6.132)

Subtracting equations (6.126) from (6.130), (6.129) from (6.131), and (6.127) from (6.132) we

have Q y

yT 0

 δ̂ − δ

δ̂0 − δ0

 = −Λx́δx́ + Λxδx

ΛT
x

 δ̂ − δ

δ̂0 − δ0

+Qxx́δx́ −Qxδx = Y hx

ΛT
x́

 δ̂ − δ

δ̂0 − δ0

+Qx́δx́ −Qx́xδx = 1− Y hx́

125

Defining A ,

Q y

yT 0

 ,γa ,

 δ̂ − δ

δ̂0 − δ0

 , δa ,

−δx
δx́

 as well as Λa ,

(
Λx Λx́

)
we have

Aγa = −Λaδa

ΛT
aγa +Qsδa =

Y hx − 1

1− Y hx́

where Qs ,

Qx Qxx́

Qx́x Qx́

 and we have

(
Qs − ΛT

aA
−1Λa

)
δa =

Y hx − 1

1− Y hx́

where the matrix on the l.h.s. is the Schur complement of M =

 A Λa

ΛT
a Qs

 which is a permuta-

tion of the KKT matrix when all points are placed in F . In our case, this matrix is non-singular

and indefinite with a single negative eigenvalue. If A ∈ <m+1×m+1 and Qs ∈ <n×n, then the

inertia of A is In(A) = {m, 1, 0} and In(M) = {m + n, 1, 0}. Using the Haynsworth inertia

additivity formula [39], the inertia of the Schur complement or In(M/A) = {n, 0, 0} or the Schur

complement is positive definite. As a result,

δTa
(
Qs − ΛT

aA
−1Λa

)
δa = δTa

 Y h− 1

1− Y hx́

 > 0 (6.133)

or

δTxgx + δTx́gx́ > 0 (6.134)

126

which, by contradiction, cannot be the case if sgn(δi) = −sgn(gi).

For example, this shows that when transitioning a single point, it will never be the case that

sgn(δi) = −sgn(1 − yih
`
i) for δi computed when the point is in F and the quantity 1 − yihi

computed when the point is not in F . This implies that once a single point is transitioned between

sets, it will never be transitioned back out. For example, consider a data point with αi = 1 that is

on the margin and in L∗. To transition into F , it must be that (1 − yihi) > 0. Once the point is

transitioned into F , then it must the be case that δi > 0.

It is more interesting to analyze the case where there are two or more degenerate data points. For

the following analysis, without loss of generality, assume that all data points are on the margin

with αi = 1 and are candidates for transitioning between F and L∗. Binary notation will be used

to denote the state of a data point with a 1 denoting a data point being within F and a 0 denoting

a point being within L∗. Additionally, use 0̂ to denote a point in L∗ where 1 − yihi > 0 and 0̌ to

denote the quantity 1 − yihi < 0. Similarly, 1̂ denotes a point in F with δi > 0 and 1̌ for δi < 0.

The decoration on the bit will be referred to as the sign of the bit. The states 0̂ or 1̌ represent ones

for which a transition should take place. Given N degenerate data points, a string of N binary

digits are concatenated to represent the complete state. This notation is easily generalized to the

case where αi = 0 by using 1̂ for instance to correspond to placing the data point in F with δi < 0

instead of δi > 0.

A proposed cycle involving 2 data points on the margin is illustrated in Figure 6.6. This does

not represent a valid cycle since the existence of the states 1̌1̂ and 0̂0̌ would imply that sgn(δi) =

−sgn(1 − yihi) for both data points that are transitioned between these two states. In fact, all

scenarios of 2 degenerate data points are easily enumerated, and, it can be shown that cycling will

never occur.

127

0̂0̌ 1̂0̂ 1̌1̂ 0̌1̌

Figure 6.6: An example set of transitions for 2 margin data points. This candidate cycle is not valid
as it violates Theorem 5. There is, in fact, no case where a cycle exists when only 2 data points are
available for transition simultaneously.

1̌1̂1̌ 1̌1̂0̌ 0̌1̌0̂ 0̌0̌0̂ 0̂0̂1̂ 1̂0̂1̂

Figure 6.7: An example cycle for 3 margin data points. This is a valid cycle since in no instance is
Theorem 5 violated.

The situation is a little different for 3 or more data points. For example, Figure 6.7 illustrates a

valid cycle involving 3 data points. This cycle is found by observing that the sign does not change

for all bits that change between any two selected states (not necessarily neighboring states). For

example, the states 1̌1̂0̌ and 0̂0̂1̂ are valid states for the proposed cycle since the sign does not

changes for the second bit. Fortunately, this cycle can be broken with the application of Bland’s

pivoting rule [4]. Bland’s pivoting rule was originally applied to the simplex method for linear

programming and works by breaking ties in the case of degeneracy. Specifically, the variable with

the minimum index is chosen in the case of ties. Similarly, for the SSVMP algorithm, this entails

selecting the minimum index in the case where more than one data point is available for transition.

In the example of Figure 6.7, if the minimum index corresponds to the least significant digit of the

binary representation, then the transition from the 3rd state to the 4th state would not occur. That

is, instead of transitioning 0̌1̌0̂ to 0̌0̌0̂, the transition would have been 0̌1̌0̂ to 0̌1̂1̂, at which point,

128

no further transitions are identified and the cycle is broken.

In general, it can be shown that Bland’s pivoting rule, when applied to the SSVMP algorithm,

prevents cycling. Consider a set of transitions such that λp = λp+1 = . . . λq with the sets

Fp 6= Fp+1 6= . . .Fq = Fp, and, similarly L∗p 6= L∗p+1 6= . . .L∗q = L∗p where, without loss of

generality, all transitions are occurring between the sets F and L∗. The following uses the result

from Theorem 5 to show that Bland’s pivoting rule prevents cycling. This represents a proof of

convergence for the SSVMP algorithm when considering the proof of convergence for active set

methods (see, for example, Nocedal [66]) along with the fact that cycling is avoided.

Theorem 7. Cycling is avoided and the number of repeat events where λ` = λ`+1 is finite if the

minimum index for transition is chosen in the case of ties.

Proof. Given a set of N points involved in cycling, consider the data point with the highest index

in the group, k = N . At some iteration, p ≤ u ≤ q − 1, the point leaves F and, for cycling to

occur, re-enters F at some iteration u + 1 ≤ v ≤ q. At both iterations u and v the following must

be satisfied for i < N , otherwise the pivoting rule would be violated

αi = 0, i ∈ F → δi < 0 (6.135)

αi = 1, i ∈ F → δi > 0 (6.136)

αi = 0, i /∈ F → gi > 0 (6.137)

αi = 1, i /∈ F → gi < 0 (6.138)

For any point that transitions between iterations u and v, this implies it must be the case sgn(δi) =

−sgn(gi). In addition, for the last point, N , either αi = 0, δi > 0 or αi = 1, δi < 0 at iteration

u and αi = 0, gi < 0 or αi = 1, gi > 0 at iteration v which implies that sgn(δi) = −sgn(gi) for

the last point as well. This implies sgn(δi) = −sgn(gi) for all i in F at iteration u and not in F at

129

iteration v, or vice versa, which cannot occur.

Initialization

−5 0 5 10
−5

−4

−3

−2

−1

0

1

2

3

4

5

Artificial Point

Estimated Hyperplane
Initial Hyperplane

Figure 6.8: Example dataset containing unequal class sizes. The initialization method adds dupli-
cate artificial data points to the smaller class that are beyond the most extreme data point for that
class. The error between the approximate hyperplane (dotted) versus the actual initial hyperplane
(dashed line) is shown.

As shown previously, a simple closed form solution exists for the initial or starting solution in the

case of equal class sizes. However, in the case of unequal class sizes an external solver is often

required to find the solution at some arbitrarily large λ value. The problem formulation posed in

[Lemma 2, Hastie [38]] may also be directly solved to find the initial solution. The goal, here, is

to provide an initialization method that can work from within the framework of the path following

algorithm without the need for an external solver.

130

The two-phased method (e.g. see Nocedal [66]) is often used in linear programming (simplex

method) to find an initial feasible solution when it cannot be trivially found. The two-phased

method works by augmenting the original problem with a set of auxiliary variables from which

an initial feasible solution can be trivially found. Optimization is broken into two phases with the

task, during phase I, of optimizing out the auxiliary variables. At that point, an initial feasible

solution to the original problem is found and optimization can continue on the original problem

during phase II.

This is the inspiration for a new initialization routine for the regularization path following algo-

rithm. Instead of auxiliary variables, artificial data points are added to create equal class sizes

from which a trivial starting solution can be found. The artificial data points are designed so that

regularization path following algorithm will initially optimize out the artificial variables (all are in

R∗). Once this occurs, the starting solution for the original problem is found and the algorithm

continues computing the desired regularization path in phase II.

Fortunately, the SSVMP algorithm is capable of working with duplicate data points. Therefore, a

single artificial data point can be created and duplicated to create equal class sizes. The artificial

data point must be chosen so that no other data points within the same class transitions out of L∗

until αi = 0 for all of the artificial data points. One method for doing this is to place the artificial

data point beyond the most extreme data point for the corresponding class relative to the initial

separating hyperplane, or without loss of generality, w̃Tφ (xt) > maxi∈I+ w̃Tφ (xi) forN+ < N−

where xt is the artificial data point, w̃ is the initial separating hyperplane, and φ (xi) : xi ∈

Rd → H, Of course, w̃ is not known a priori. However, the quantity w∗ =
∑

i yiφ (xi), provides a

reasonable estimate of the initial hyperplane especially when |N−−N+| is much less thanN−+N+.

The artificial data point is then placed at a large distance along the vector ytw∗/‖w∗‖ where yt is

the label of the artificial data point. Therefore, the artificial data point is placed according to

φ (xt) = ytρw
∗ where ρ is used to specify the extent of the displacement.

131

The displacement ρ needs to be chosen so that the artificial data point is well beyond the most

extreme data point for the smaller class size allowing for an additional margin for the error in

estimate w∗. Care must also be taken to ensure ρ is not too large as this can result in poor scaling

of the kernel matrix and numerical instability. As a safety mechanism, the algorithm can detect and

report when a data point from the smaller class enters the margin prior to all of the artificial data

points leaving the margin. Instead of finding xt, the kernel matrix can be augmented according

to Kit = ρyt
∑

j yjKij and Ktt = ρ2
∑

i,j yiyjKij . Since duplicate data points are being used,

memory consumption is mitigated by augmenting the kernel matrix with a single row/column.

Figure 6.8 illustrates an example of the initialization method with the artificial data point. The

estimated hyperplane w∗ as well as a notional example of the initial hyperplane w̃ are shown.

While there is a small error in the estimated hyperplane, the estimate is still useful for placing

the artificial data point well beyond the most extreme data point for the class. Initially, one of

the margins will be pinned to the set of the artificial data points. As λ is decreased, the opposing

margin will translate as well as both margins will rotate. The artificial data point should be placed

sufficiently far so that other data points within the same class do not enter the margin until all of

the duplicate data points are no longer on the margin but outside the margin.

Efficient Implementation

The KKT system in Equation (6.33), can be solved using the null-space method [66] and Cholesky

factorization exactly as prescribed in Chapter 5.

132

Table 6.4: Datasets Used for SSVMP Performance Comparisons

Dataset N N+ d

adult-1a 1605 395 123

abalone 4177 2081 10

australian 690 307 14

diabetes 768 500 8

german 1000 300 24

heart 270 150 13

ionosphere 351 225 34

sonar 208 97 60

spam 4601 1813 57

splice 1000 517 60

svmguide1 3089 2000 4

wdbc 569 212 30

web-1a 2477 2405 300

Results and Discussion

Experiments were performed with the SSVMP and ISVMP algoritihms on a Windows 2003 8-

core x64 server workstation with 16 GBytes of RAM. Both algorithms were implemented within

the MATLAB R2011a environment with multi-core support enabled. The ISVMP algorithm was

obtained from the website referenced in [67].

The datasets listed in Table 6.4 were chosen to provide a wide range of complexity and sizes.

Datasets such as the adult-1a and web-1a, for example, possess sparse features and represent a

significant challenge for the regularization path-following algorithms. The dataset web-1a was ob-

tained from the SVM website at Microsoft Research [70], abalone, australian, diabetes, german,

heart, ionosphere, sonar, spam and Breast Cancer Wisconsin Diagnostic wdbc were obtained from

133

the UCI repository [2], and, finally, splice, adult-1a, and svmguide1 were obtained from the LIB-

SVM website [12] where many of the UCI repository datasets can also be obtained. The features

for each dataset were normalized to have zero mean and unit variance.

The ISVMP algorithm was configured to use default tolerances including a stopping criterion of

10−6 while SSVMP was configured with a stopping tolerance of 10−6. Both algorithms were con-

figured to stop computing the regularization path when λ < 10−3. The ISVMP algorithm was

configured to start the path at λ = 106 while SSVMP used the proposed initialization method, with

ρ = 0.01. In both cases, the kernel cache was made large enough to accommodate storing the

entire kernel matrix. This was done to avoid comparing kernel caching strategies and to highlight

the differences in performance associated with computing the actual regularization path.

The results are summarized in Table 6.5 and Table 6.6. The time associated with computing the

regularization path, number of events, initialization time, as well as the number of repeat events is

reported for SSVMP. The path time, initialization time, number of events as well as the number of

times the backup routine is invoked is reported for the ISVMP algorithm. The path time in both

cases does not include the initialization time.

The SSVMP algorithm remained competitive with the ISVMP implementation in almost all cases

being faster by several factors in some cases and by orders in magnitude in others. For example,

with the adult-1a dataset and web-1a datasets, the SSVMP algorithm was more than a factor of

1000 times faster. The ISVMP fails to compute the path in one case for the heart dataset and RBF

kernel while the SSVMP algorithm was successful in all cases.

The ISVMP algorithm appears to be significantly slower when the backup routine is invoked mul-

tiple times, a sign of instability. The backup routine is used as a recovery technique when a viola-

tion of the KKT conditions or cycling is detected signifying a breakdown in the path computation.

When this occurs, the ISVMP algorithm proceeds backwards along the path to the last known good

134

point and invokes an external solver to restart the path. While appearing to adequately recover

in terms of finding the correct solution, there is a significant cost in terms of computational time.

Interestingly, this appears to occur most frequently for the linear kernel and the adult-1a and web-

1a datasets, which contain sparse features. With sparse features, the number of opportunities for

generating a singular KKT matrix greatly increases. These results demonstrate that the SSVMP

algorithm can handle these cases without introducing instability, and, although a similar backup

routine can be implemented with the SSVMP algorithm, it was found to be unnecessary. Surpris-

ingly, the backup routine is invoked a number of times by the ISVMP algorithm for the RBF kernel

as well. While there should be no occurrence of singular matrices in this case, it is possible there

are some issues due to numerical instability. Finally, it is of interest to note that the number of

events reported for both algorithms are nearly the same even when path breakdowns occur for the

ISVMP algorithm.

The accuracy of SSVMP was measured by comparing the objective value obtained at each break-

point with that obtained by running a conventional SVM training algorithm at the same λ = 1
C

values. The SVM-RSQP algorithm was used and configured with a stopping tolerance of 10−6.

The relative precision was measured as | (oSSVMP − oref) /oref |, where oref is the objective func-

tion value for the reference algorithm, and o = 1
2λ
αTQα−1Tα, similar to as done in [67]. Figures

6.9, 6.10, 6.11, and 6.12 show the results for the case of the linear kernel and RBF kernel, respec-

tively. In all cases, the precision is maintained to within 10−6 with higher precision maintained for

the RBF kernel, on average. The worst-case accuracy was seen for the web-1a dataset where the

accuracy just began to exceed the 10−6 precision during the last few iterations. As a comparison,

the worst-case relative accuracy reported in [67] for ISVMP was on the order of 10−3.

It was found that the regularization path algorithm can begin to fail when attempting to compute

the path for λ < 10−3. This was the case for both ISVMP and SSVMP. Failures begin to occur

when λ` − λ`+1 approaches the algorithm tolerance, in this case 10−6.

135

0 1000 2000 3000 4000 5000 6000 7000 8000
10

−16

10
−15

10
−14

10
−13

10
−12

10
−11

10
−10

10
−9

Rel Prec

Ite
ra

tio
n

(a) abalone

0 500 1000 1500
10

−13

10
−12

10
−11

Rel Prec

Ite
ra

tio
n

(b) adult

0 200 400 600 800 1000 1200 1400 1600 1800
10

−13

10
−12

10
−11

10
−10

10
−9

10
−8

Rel Prec

Ite
ra

tio
n

(c) australian

0 100 200 300 400 500 600

10
−12.2

10
−12.1

Rel Prec

Ite
ra

tio
n

(d) diabetes

0 100 200 300 400 500 600
10

−14

10
−13

10
−12

Rel Prec

Ite
ra

tio
n

(e) german

0 100 200 300 400 500 600 700 800
10

−11

10
−10

10
−9

10
−8

10
−7

Rel Prec

Ite
ra

tio
n

(f) heart

Figure 6.9: Simple SVMPath path accuracy for the linear kernel

136

0 100 200 300 400 500 600 700
10

−14

10
−13

10
−12

10
−11

10
−10

Rel Prec

Ite
ra

tio
n

(a) ionosphere

0 2000 4000 6000 8000 10000
10

−11

10
−10

10
−9

10
−8

Rel Prec

Ite
ra

tio
n

(b) spam

0 500 1000 1500 2000
10

−16

10
−15

10
−14

10
−13

10
−12

10
−11

Rel Prec

Ite
ra

tio
n

(c) splice

0 1000 2000 3000 4000 5000 6000
10

−12

10
−11

10
−10

10
−9

10
−8

Rel Prec

Ite
ra

tio
n

(d) svmguide1

0 200 400 600 800 1000 1200
10

−13

10
−12

10
−11

10
−10

10
−9

10
−8

Rel Prec

Ite
ra

tio
n

(e) wdbc

0 200 400 600 800 1000
10

−12

10
−11

10
−10

10
−9

Rel Prec

Ite
ra

tio
n

(f) web-1a

Figure 6.10: Simple SVMPath path accuracy for the linear kernel

137

0 2000 4000 6000 8000 10000
10

−15

10
−14

10
−13

10
−12

10
−11

10
−10

Rel Prec

Ite
ra

tio
n

(a) abalone

0 200 400 600 800 1000 1200 1400 1600
10

−16

10
−15

10
−14

10
−13

10
−12

Rel Prec

Ite
ra

tio
n

(b) adult

0 200 400 600 800 1000 1200 1400 1600
10

−16

10
−15

10
−14

10
−13

10
−12

10
−11

10
−10

Rel Prec

Ite
ra

tio
n

(c) australian

0 200 400 600 800 1000 1200 1400
10

−16

10
−15

10
−14

10
−13

10
−12

10
−11

Rel Prec

Ite
ra

tio
n

(d) diabetes

0 200 400 600 800 1000 1200
10

−16

10
−15

10
−14

10
−13

10
−12

Rel Prec

Ite
ra

tio
n

(e) german

0 20 40 60 80 100 120
10

−16

10
−15

10
−14

10
−13

10
−12

Rel Prec

Ite
ra

tio
n

(f) heart

Figure 6.11: Simple SVMPath path accuracy for the RBF kernel

138

0 100 200 300 400 500 600
10

−14

10
−13

10
−12

10
−11

10
−10

Rel Prec

Ite
ra

tio
n

(a) ionosphere

0 1000 2000 3000 4000 5000 6000 7000
10

−16

10
−15

10
−14

10
−13

10
−12

10
−11

10
−10

10
−9

Rel Prec

Ite
ra

tio
n

(b) spam

0 100 200 300 400 500 600
10

−16

10
−15

10
−14

10
−13

10
−12

Rel Prec

Ite
ra

tio
n

(c) splice

0 1000 2000 3000 4000 5000 6000
10

−16

10
−15

10
−14

10
−13

10
−12

10
−11

10
−10

Rel Prec

Ite
ra

tio
n

(d) svmguide1

0 100 200 300 400 500 600 700 800
10

−16

10
−15

10
−14

10
−13

10
−12

Rel Prec

Ite
ra

tio
n

(e) wdbc

0 100 200 300 400 500 600 700
10

−14

10
−13

10
−12

10
−11

Rel Prec

Ite
ra

tio
n

(f) web-1a

Figure 6.12: Simple SVMPath path accuracy for the RBF kernel

139

Table 6.5: Linear Kernel Results

SSVMP ISVMP

Path Time Init Time Num Num Path Time Init Time Num Num

Dataset (sec) (sec) Events Repeat (sec) (sec) Events BR

abalone 54.63 0.79 7301 451 80.98 1.27 6803 0

adult-1a 8.74 14.86 1452 7 19568.18 3.32 1428 14

australian 2.93 0.52 1719 3 5.70 0.09 1762 0

diabetes 1.03 1.71 522 0 1.74 0.36 522 1

german 1.66 5.07 555 0 60.53 0.86 507 9

hearta 0.67 0.22 730 2 1.67 0.03 776 0

ionosphere 0.79 0.42 679 2 2.13 0.07 677 1

sonar 0.48 0.12 442 0 2.01 0.01 522 0

spam 107.19 37.67 9359 338 984.27 24.52 9125 9

splice 5.27 0.28 1862 18 13.26 0.26 1844 0

svmguide1 34.40 23.21 5213 182 55.79 17.03 5149 1

wdbc 1.58 0.81 1119 15 3.11 0.13 1105 0

web-1a 16.30 66.70 978 35 2855.38 7.48 983 37

a Used ρ = .1 for initialization.

Figures 6.13 and 6.14 depicts the behavior of λ` − λ`+1 as the path algorithm progresses for all

of the datasets for the linear kernel and RBF kernel, respectively. As can be seen, ∆λ tends to

zero as progress is made along the path. Note that the algorithm experiences a number of repeat

events with the heart dataset and RBF kernel, which results in ∆λ approaching 10−12. Repeat

events do not result in path breakdown. In general, as ∆λ, approaches the algorithm tolerance and

disregarding repeat events, the path following algorithm may begin to fail. This suggests there is a

practical limit on the minimum λ, which can be computed due to numerical precision.

140

Table 6.6: RBF Kernel Results, γ = 0.1

SSVMP ISVMP

Path Time Init Time Num Num Path Time Init Time Num Num

Dataset (sec) (sec) Events Repeat (sec) (sec) Events BR

abalone 136.79 0.81 9671 30 269.39 1.18 9672 1

adult-1a 117.36 15.17 1520 10 280.95 3.81 1525 11

australian 5.66 0.50 1575 0 13.82 0.09 1575 1

diabetes 16.43 1.85 1248 0 33.18 0.36 1246 1

german 69.74 5.36 1181 0 116.88 0.90 1184 11

heart 1.55 0.61 122 56 1.06 0.04 2a 1

ionosphere 1.00 0.40 536 1 2.94 0.07 535 1

spam 3671.02 47.23 6959 229 24266.74 29.96 7152 15

sonar 0.83 0.07 158 0 2.49 0.01 170 2

splice 98.31 20.05 510 21 131.40 0.39 486 2

svmguide1 34.61 25.42 5120 87 51.31 18.33 5030 1

wdbc 3.37 0.83 705 0 7.57 0.14 704 1

web-1a 81.54 104.98 624 12 545.87 4.41 674 11

a Failed to compute path

A potential concern with the SSVMP algorithm is that enforcing single transitions may result in

a large number of repeat events and resultant inefficiency. In most cases, the number of repeat

events, where λ` = λ`+1, was a small fraction of the total number of events-typically less than 6

percent of the total events. In one case for the RBF kernel and heart dataset, nearly half of the

122 events were repeat events. This appears to be a highly pathological case as evidenced by the

fact that ISVMP fails to converge. On the other hand, SSVMP does not experience cycling and

converges to an accurate solution even in this case. Overall, the occurrence of repeat events does

not prevent convergence, as expected, and does not appear to affect the overall efficiency in terms

of training times.

141

10
0

10
1

10
2

10
3

10
4

10
−4

10
−2

10
0

10
2

10
4

10
6

Iteration

∆λ

abalone
adult-1a
australian
diabetes
german
heart
ionosphere
sonar
splice
wdbc
web-1a
svmguide1
spam

Figure 6.13: Depiction of the quantity ∆λ as the path following algorithm progresses for several
datasets where the linear kernel is used. Log scale is used for both axes. Smoothing has been
applied to the raw data to highlight trends. The path stops when λ = 10−3.

The initialization method was successful in all cases as indicated by the worst-case precision re-

ported for all of the datasets. Failures are also detected when points begin to transition out of R∗

having the same label as the artificial data points prior to all of the artificial data points leavingR∗.

While ρ = 0.01 was used in the majority of cases, this was changed to ρ = 1.0 for the heart dataset

and linear kernel. Overall, the initialization method appears to be robust in terms of setting ρ. In

general, ρ should be chosen as high as possible; however, setting ρ to high can result in numerical

scaling issues and instability.

142

10
0

10
1

10
2

10
3

10
4

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

Iteration

∆
λ

abalone
adult-1a
australian
diabetes
german
heart
ionosphere
sonar
splice
wdbc
web-1a
svmguide1
spam

Figure 6.14: Depiction of the quantity ∆λ as the path following algorithm progresses for several
datasets where the RBF kernel is used. Log scale is used for both axes. Smoothing has been
applied to the raw data to highlight trends. The path stops when λ = 10−3.

In most cases, the initialization algorithm is found to be slower than the SMO algorithm used

by ISVMP for initialization. This is not entirely unexpected since the SMO algorithm is known

to be highly efficient and possesses speed-up strategies such as shrinking. The time required for

initialization is governed by the number of events occurring during initialization, which is on the

order of |N−−N+| and observed to be between 4 and 5 times |N−−N+|. For example, the adult-1a

dataset has 395 positive examples out of a total of 1601 data points while the abalone dataset has

2081 positive examples out of 4177 total data points. As expected, the initialization time required

for the adult-1a dataset is much higher. However, the initialization time is generally a small fraction

143

of the total time, and the results indicate that total training time, including initialization, is generally

faster for the SSVMP algorithm in all cases.

A key advantage to the proposed initialization method is that the true initial solution is found, that

is, the solution described by Lemma 2 [38]. The ISVMP algorithm, instead, starts with a solution

for some arbitrarily large value of λ. If not selected large enough, a part of the regularization

path may not be computed. Another key advantage, of course, is that the SSVMP algorithm is

completely self-contained and does not rely on an external solver for initialization. This may be

particularly important when considering numerical precision. For example, the ISVMP algorithm

must “interpret” the result obtained from the SMO algorithm when determining how to assign

variables to E , L, and R. This is done by comparing each component αi with a set of tolerances.

This can result in an overestimate of the number of components within E and unnecessarily results

in large, singular KKT matrices. A similar issue arises each time the SMO algorithm is invoked

as part of a backup routine. In summary, use of an external solver can result in loss of efficiency

as well as loss of precision. On the other hand, initialization with the SMO algorithm may still

be a desirable choice for very large datasets when there is a large class size imbalance and as

initialization time becomes a significant fraction of the total training time.

144

CHAPTER 7: SOLVING THE APPROXIMATE PATH USING SVM-RSQP

The regularization path-following algorithms while successful, can still experience numerical dif-

ficulty as discussed in Chapter 6. In addition, recently introduced approximate or sub-optimal

regularization path-following algorithms such as in Karasuyama et al. [44] and Giesen et al. [30]

cannot be used with semi-definite kernels for the `1-loss SVM formulation. As an alternative, the

conventional active set method can be modified, using warm starts, to allow incremental updates

to the solution as the regularization path and/or kernel path is explored. Generally, this is done

within the context of a grid search where a series of user-specified regularization or kernel param-

eter values are explored. In this scenario, for example, the solution at a previous regularization

value is used as an initial solution for the next value as described in [84], [87], and [29]. A similar

approach referred to as “alpha-seeding” is also described by DeCoste et al. [21] where LIBSVM

and SVMLight are modified to allow warm-starts. A criticism against the grid search approach

is that the solution behavior between arbitrarily selected regularization values is unknown [30],

[44]; therefore, there is no guarantee on optimality of the regularization parameter chosen via grid

search.

However, rather than simply solving the regularization and/or kernel path across a series of user-

specified values, the conventional active set method, with warm-starts, can be modified to compute

the approximate regularization path. The approximate path can be efficiently computed since the

same KKT matrix already maintained by the active set method is employed to compute the path.

Note that while algorithms such as SMO and SVMLight support warm-starts, it is not clear whether

the approximate path can be efficiently computed in these methods since the KKT system is not

maintained. The conventional active set method has the advantage of being able to use semi-

definite kernels, possesses improved numerical stability, and benefits from the applicability of

speed-up mechanisms such as shrinking and sprinting as well as kernel caching.

145

In this research, the SVM-RSQP algorithm is modified to compute the approximate regulariza-

tion path and kernel path. The SVM-RSQP algorithm is also modified to incorporate low-rank

kernel approximations as a speed-up mechanism. This represents the first known implementation

of an approximate regularization path algorithm for semi-definite kernels (for the `1-loss SVM),

implementation of an approximate kernel path algorithm, and implementation of a low-rank kernel

approximation within an active set method. In the latter case, while low-rank kernel approxima-

tion methods have been widely reported (e.g., see [27], [43]), active set implementations have most

likely been avoided due to difficulties with semi-definite kernels.

The remainder of this chapter will discuss warm start strategies for the revised simplex method

(SVM-RSQP), the approximate regularization path, the approximate kernel path, low-rank kernel

approximations, and limiting behaviors of the regularization and kernel path. The chapter ends

with detailed results and discussion.

Warm Start for the Revised Simplex Method

The active set method is advantageous, in general, since it allows warm-starts. In this instance,

the goal is to employ warm-starts to allow faster exploration of the regularization parameter and

kernel parameter spaces. The revised simplex method for quadratic programming (SVM-RSQP)

requires an initial solution that is not only feasible but also satisfies the complementary conditions.

The goal, then, is to find a way of scaling or adjusting the solution between regularization or kernel

parameter values so that the initial solution in each case is feasible and satisfies the complementary

conditions.

In the case of the regularization parameter C, given a solution at some C` one possible method for

initializing the solution at C`+1 is to simply scale all of the components αi such that α′ = αC`+1

C`
.

146

This automatically satisfies the feasibility conditions including the equality constraint yTα = 0.

This is quite simple to implement and does not require adjustment of the sets Io, Is, Ic. Most

importantly, the set of non-bound support vectors, Is, remains constant, and, therefore, there is no

required book-keeping or updates to the Cholesky factorization.

However, the complementary conditions become violated after this scaling. Specifically, the pric-

ing variables or components δs, corresponding to the set of non-bound support vectors, are no

longer zero. This needs to be corrected before the active set method can continue. It is straight-

forward to show that the following descent direction will correct the complementary conditions

Qss ys

yTs 0

h

g

 =

−δs
0

 (7.1)

where the quantity γ = Qh− gy represents the descent direction for δs. Updates are computed as

αs ← αs− θh, β ← β − θg, and δs ← δs− θγ. The computed direction is followed until δs = 0

or some variable αi in the set of non-bounds support vectors i ∈ Is becomes infeasible. That is, θ

is found as follows

θ = min

{
αi
hi

∣∣∣∣hi > 0,
C − αi
−hi

∣∣∣∣hi < 0, 1.0

}
(7.2)

If θ = 1.0, the desired solution has been reached; otherwise, a variable is removed from Is, and

the quantities αs, δs, and β are updated using the update formulas and θ from above. The process

is then repeated until max |δi| < ε, i ∈ Is, where ε is a floating point tolerance. The complete

algorithm for adjusting the complementary conditions is listed in Algorithm 4.

Similarly, a warm-start can be provided for a new kernel parameter value. In this case, the com-

ponents, δi, are updated according to the new kernel parameter. This requires a reset of the kernel

cache, if in use, and a full recompute of the pricing variables δi. Therefore, initialization at a new

kernel parameter is more costly than for a new regularization parameter.

147

Algorithm 4 Fixing the Complementary Condition

1: while max |δi| > ε ∀i ∈ Is do

2: solve

(
−Qss ys

ys
T 0

)(
hs

gβ

)
=

(
−δs

0

)
γ ← Qsshs − gys

3: θ = min
{
αi

hi

∣∣∣hi > 0, C−αi

−hi

∣∣∣hi < 0, 1
}

4: if θ < 1 then
5: Adjust the sets Is, Ic, Io.
6: end if
7: δs ← δs − θγ
8: β ← β − θgβ
9: αs ← α− θhs

10: end while

Here, again, the complementary conditions become violated when updating the kernel parameter

and must be corrected; the same procedure described in Algorithm 4 is used here as well. Algo-

rithm 5 describes the warm-start strategy when updating the kernel parameter.

Algorithm 5 Computing Warm Start for a New Kernel Parameter
1: Reset or recompute kernel cache
2: Compute δs = −1− βys +Qosαs +Qocαc

3: Fix the complementary condition according to Algorithm 4
4: Update δi, i ∈ Io, Ic

Computing the Approximation Regularization Path

Instead of providing a series of predetermined C values, the goal of the approximate path method

is to find a series of C values where optimality is maintained within some user-specified tolerance

between consecutive C values. In essence, the revised simplex method will be used to solve the

approximate regularization path. Similar to the regularization path-following algorithm, given a

solution at a particular value C value, the solution at a new value C ′ is easily found, given the set

of active constraints do not change. Recall that given a set of basic variables xB where xi > 0 for

148

i ∈ B, the solution is computed as

QB BT

B 0

xB

π

 =

pB

b

 (7.3)

For the SVM problem, the quantity pB is constant while b is a function of C. Therefore, h and g

are found as QB BT

B 0

h

g

 =

 0

b(C′)− b(C)

 (7.4)

For the SVM optimization problem, it is easy to show this becomes

Qss ys

yTs 0

hs

gβ

 =

 Qsc1

−yTc 1

 (C ′ − C) (7.5)

where αs ← αs + h, β ← β + gβ . The above equation can be efficiently solved since the

Cholesky factorization of the matrix is already maintained by the revised simplex method. Recall

the optimality conditions for the SVM formulation,

yTα = 0 (7.6)

0 ≤ αi ≤ C ∀i (7.7)

δi > 0 ∀i (7.8)

δiαi = 0 (7.9)

The goal is to find the next C value for which the optimality conditions are violated by some toler-

ance τ . In this case, since the active set does not change, the constraint yTα = 0 will be satisfied

as well as the complementary condition αiδi = 0 regardless of C. The τ -optimal conditions are

149

then,

−τ ≤ αi ≤ C + τ ∀i ∈ Is (7.10)

δi > −τ ∀i ∈ Ic ∪ Io (7.11)

where τ is referred to as the path tolerance. Using the expression in Equation (7.5), for the variables

in Is, the relationship for αi as a function of C ′ − C becomes

αi ← αi + (C ′ − C)hi (7.12)

For components where hi > 0, violation of optimality occurs when αi + (C ′ − C)hi > C ′ + τ .

Note that when hi < 1 then αi + (C ′ − C)hi ≤ C ′ for all C ′. Consider, for example, the case

where αi = C, then C + (C ′ − C)hi ≤ C ′ or (C ′ − C)hi ≤ (C ′ − C) is always true. Therefore,

given hi > 1, a violation of optimality occurs when

C ′ >
αi − Chi

1− hi
(7.13)

and, for the case where hi < 0, a violation occurs when

C ′ >
Chi − αi

hi
. (7.14)

The quantity δi for i ∈ Is ∪ Ic varies with C according to

δo(C
′)− δo(C) = (C ′ − C) (Qoshs +Qoc1− yogβ) (7.15)

δc(C
′)− δc(C) = (C ′ − C) (−Qcshs −Qcc1 + ycgβ) (7.16)

Define s such that so = (Qoshs +Qoc1− yogβ) and sc = (−Qcshs −Qcc1 + ycgβ). A violation

150

of optimality occurs when, for si < 0,

−τ > δi + (C ′ − C) si (7.17)

C ′si < −τ − δi + Csi (7.18)

C ′ >
−τ − δi + Csi

si
(7.19)

Therefore, the following is computed

ri =

αi−Chi−τ
1−hi , hi > 1, i ∈ Is

−αi−τ+Chi
hi

, hi < 0, i ∈ Is

−τ−δi+Csi
si

, si < 0, i ∈ Ic ∪ Io

ri =∞, otherwise

(7.20)

The new regularization parameter is found as follows where the tolerance ε ensures forward progress.

C ′ = max
(

min
i
ri, C + ε

)
(7.21)

Computing the Kernel Path

The approximate kernel path can also be solved within the context of the revised simplex method.

Again, given a set of basic variables, xB, if the Hessian depends upon a parameter λ, the solution

is QB(λ) BT

B 0

xB(λ)

π(λ)

 =

pB

b

 (7.22)

151

In general, the matrix QB(λ) is a non-linear function of λ. A first-order Taylor’s series approxi-

mation can be used to find xB(λ),π(λ) as a linear function of λ as follows

xB(λ)

π(λ)

 ≈
xB(λ0)

π(λ0)

+ (λ− λ0)
∂

∂λ

QB(λ0) BT

B 0

−1pB

b

 (7.23)

Using the fact that ∂A−1

∂t
= −A−1 ∂A

∂t
A−1, when A depends on the parameter t, the expression

simplifies to

xB(λ)

π(λ)

 ≈
xB(λ0)

π(λ0)

− (λ− λ0)

QB(λ0) BT

B 0

−1 ∂

∂λ
xB

0

 (7.24)

and, upon defining h , xB(λ)− xB(λ0), g , π(λ)− π(λ0) the following system of equations is

solved to find the direction taken as λ variesQB BT

B 0

h

g

 = (λ− λ0)

−∂QB

∂λ
xB(λ0)

0

 (7.25)

It is straight forward to show that with the SVM formulation (or within the SVM-RSQP imple-

mentation) this becomes

−Qss ys

yTs 0

hs

gβ

 =

∂Qss

∂λ
αs + ∂Qsc

∂λ
1C

0

 (7.26)

The pricing variables δi vary non-linearly, as well, according to λ. Therefore, the Taylor series

approximation is used, again as follows

δi(λ) ≈ δi(λ0) +
∂δi(λ0)

∂λ
(λ− λ0) (7.27)

152

yielding, for δo, for example,

∂δo
∂λ

=
∂Qosαs

∂λ
+
∂Qocαc

∂λ
− ∂βyo

∂λ
(7.28)

which upon expanding and removing constant terms yields

∂δo
∂λ

=
∂Qos

∂λ
αs +Qos

∂αs

∂λ
+
∂Qoc

∂λ
αc − yo

∂β

∂λ
(7.29)

From earlier ∂αs

∂λ

∂β
∂λ

 =

−Qss ys

yTs 0

−1∂Qss

∂λ
αs + ∂Qsc

∂λ
1C

0

 (7.30)

or ∂αs

∂λ
= hs and ∂β

∂λ
= gβ . Therefore, the final result becomes

∂δo
∂λ

=
∂Qos

∂λ
αs +Qoshs +

∂Qoc

∂λ
αc − yogβ (7.31)

and for points in Ic
∂δc
∂λ

= −∂Qcs

∂λ
αs −Qcshs −

∂Qcc

∂λ
αc + ycgβ (7.32)

Define si , ∂δi
∂λ

in this case. Finally, similar to the case for the approximate path in terms of the

regularization path for C, the next path in the approximate path can be found by computing

ri =

C+τ−αi+λ0hi
hi

, hi > 0, i ∈ Is

−αi−τ+λ0hi
hi

, hi < 0, i ∈ Is

−τ−δi+λ0si
si

, si < 0, i ∈ Ic ∪ Io

ri =∞, otherwise

(7.33)

153

The new kernel parameter is found as follows

λ′ = max
(

min
i
ri, λ0 + ε

)
(7.34)

where, once again, a tolerance ε is added to ensure forward progress. Note that while this method

can be implemented efficiently similar to the case for the approximate regularization path, addi-

tional computation and storage is required for the derivative of the kernel matrix. This is unless

the form of the kernel function allows some other simplification. The kernel caching scheme can

be simply modified to store both the original kernel computations along with the derivative since

the access pattern is similar. As a result, storage requirements and computations simply double.

Furthermore, similar to the case where the quantities Qocαc and Qccαc are stored and updated as

variables enter/leave the set Ic, the quantities (∂Qoc/∂λ)αc and (∂Qcc/∂λ)αc can also be stored

and updated.

Limiting Behaviors of the Regularization and Kernel Path

It is of interest to explore the limiting behaviors of the SVM solution for both the regularization

path as well as kernel path. This provides some insight into why the regularization-path following

algorithm may be more efficient than the traditional active set method in some cases. This also

highlights potential improvements that might be made to further improve efficiency in the future.

Of particular interest is the limiting behaviors in terms of the regularization parameter C as well

as the kernel parameter γ for the RBF kernel.

First, note that the limiting behaviors described by Hastie et al. are general and just as applicable

when exploring the solution behavior as C is varies. For thoroughness, the following corollaries

show how the solution varies in terms of C for the conventional `1-loss formulation where C , 1
λ

154

and λ is the regularization parameter used in the typical regularization path-following algorithm.

Recall that the problem was reformulated and λ used in the path-following algorithms as it some-

what simplifies the expressions for computing the next event. The following depicts the expected

solution for the conventional SVM formulation when C is small in the case of equal class sizes or

n+ = n−

Corollary 2. Given n+ = n−, then for sufficiently small C, all the αi = C.

This simply follows the result reported in Hastie et al. [Lemma 1, [38]] using the fact that αi =

Cα′i where α′i represent the dual variables for the SVM formulation in the SVM path following

algorithm reported by Hastie. The following is shown, similarly and without loss of generality, for

the case where n+ > n−.

Corollary 3. If n− > n+, then for sufficiently small C, αi = C ∀i ∈ I− and αi ∈ [0, C] ∀i ∈ I+,∑
i∈I+ αi = Cn−

The following lemma is of interest since it highlights the fact that the active set method will be

efficient in terms of both memory consumption and training time for small C.

Lemma 3. As C approaches zero, it will be the case that |Is| = 1 for all iterations for the SVM-

RSQP algorithm.

This is easily shown by noting that when a new data point is added to Is from Ic or Io, then θ,

which represents the maximum distance that can be taken along the descent direction, approaches

zero as C approach zero. That is, given a single variable, αj is in Is, it is easy to show that upon

choosing a variable αi to enter Is, the quantity hj computed for the variable in Is according to the

SVM-RSQP algorithm is ±1 (see Algorithm 1). Further, given θ is computed as θ =
αj−C[hj<0]

hj

the quantity αj − C[hj < 0] → 0 as C → 0 and, therefore, θ → 0. This implies the variable αj

155

will always be removed from Is before adding the variable αi. Given only single transitions occur,

then the size of Is can never be more than one.

Remarkably, this shows that the SVM-RSQP algorithm (and most active set implementations) can

be very efficient at finding the solution for sufficiently small C since a large number of cheap iter-

ations are performed. In fact, the revised simplex method behaves similarly to the SMO algorithm

since only two variables are optimized during each iteration (one variable is entering Is while

another is leaving and the αi components are adjusted).

Although not proven here, it seems reasonable that |Is| will grow as C increases since data points

are less likely to leave Is when adding a new variable as C is increased. This is supported by

the results shown in Figure 7.1 where the number of non-bound support vectors increase in an

asymptotic fashion as C is increased. The maximum number of non-bound support vectors is

limited by the effective rank of the kernel matrix, which will be discussed later.

This is of practical importance from the perspective of computing the regularization path with

warm-starts. For example, consider the problem possessing a large fraction of bound support

vectors even for high values of C. In that case, the majority of bound support vectors can be found

at low values of C where the algorithm is more efficient. Therefore, the active set method can be

sped up, in this case, by first finding the solution at a small C value and using that solution as a

warm-start for some large C value.

The following proposition further indicates that the maximum size of |Is| is limited by the rank of

the kernel or Gram matrix Q.

Lemma 4. Given rank(Q) = m, then |Is| ≤ m+ 1 for the SVM-RSQP algorithm.

156

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

0

200

400

600

800

1000

1200

1400

C

N
on

−
bo

un
d

S
V

s

γ = .001

γ = 0.05

γ = 0.1

γ = 0.5

γ = 1

Figure 7.1: Depiction of how the number of non-bound support vectors varies as a function of C
and kernel parameters. Results are shown for the abalone dataset and Gaussian kernel.As the kernel
parameter γ increases, the effective rank and, therefore, maximum number of non-bound support
vectors increases. The maximum number of non-bound support vectors are reached asymptotically
as C increases.

This follows from the fact that the KKT matrix−Qss ys

yTs 0

 (7.35)

is non-singular. In general, given a KKT matrix

Q AT

A 0

 (7.36)

where Q ∈ Rn×n, A ∈ Rp×n, the following statements are equivalent (a) the KKT matrix is non-

157

singular (b) ZTQZ is positive definite where AZ = 0 and Z ∈ Rn×n−p, and (c) N (Q) ∩N (A) =

{0} or the null space ofQ andA do not intersect (see Nocedal [66], Boyd [6]). In addition, the KKT

matrix will not be singular ifQ is positive definite [6]. Of use here is also the fact that rank(AB) ≤

min(rank(A), rank(B)) from which it is clear that rank(ZTQZ) ≤ min(rank(Q), rank(Z)).

Since rank(Z) = n− p, then rank(ZTQZ) ≤ min(rank(Q), n− p). Given ZTQZ ∈ Rn−p×n−p,

the KKT system must be singular if rank(Q) < n− p or |Is| ≥ m + 2 given rank(Q) = m, and

therefore, it will always be true that |Is| ≤ m + 1. For |Is| ≤ m + 1, the KKT matrix will be

non-singular as long as N (Qss) ∩N (yTs) = {0}.

For the case of a linear kernel, the rank of the Gram matrix is determined by the data dimensionality

or number of features. Therefore, |Is| ≤ d + 1 where d is the data dimensionality. Unfortunately,

when using a kernel, the dimensionality may be even infinite-dimensional. The maximum rank

of the Gram matrix is n where n is the dataset size, therefore, |Is| ≤ n for any general kernel

function. Practically, the effective rank may be somewhat less than n where effective rank is

measured by the number of singular values above a certain threshold. The effective rank of the

Gram matrix associated with a kernel may depend upon the kernel parameters; for example, the

Gaussian kernel, defined as kij = exp(−γ‖xi−xj‖2
2) generates a rank-one matrix as γ approaches

zero (kij = 1 ∀i, j) and generates a diagonal matrix in the limit as γ tends to infinity. In another

example, the Gram matrix associated with the polynomial kernel approaches a rank-one matrix as

the degree, d, approaches zero. The effects of this behavior are clearly seen in Figure 7.1 where the

maximum value for |Is| increases as γ increases. As γ approaches 0 for the Gaussian kernel; the

number of non-bound support vectors approaches one and, again, the computational complexity

per iteration approaches that of the SMO algorithm. As γ increases, exponentially worse training

times can be expected as |Is| begins to increase, approaching n as γ increases to infinity.

This again suggests a rational for the efficiency of the regularization path and kernel path algo-

rithms. That is, in some cases, if the solution found at some small value of C or γ is close in some

158

sense to the solution at a larger value, then significant speed-ups can be realized. While not fully

realized in this work, this suggests the possibility of dynamically adjusting C and γ (effectively

rescaling the active set problem) as a speed-up mechanism.

Low Rank Approximations of the Kernel Matrix

As shown previously, the maximum size of the KKT matrix is governed by the effective rank of the

kernel matrix. Therefore, an effective means for limiting both memory usage and computational

complexity for large datasets is to limit the rank of the Gram matrix. Fine et al. [27] suggested

employing an incomplete Cholesky factorization for deriving a low-rank kernel approximation.

The goal is to find a set of factors such that L̃L̃T ≈ K. The factor L̃ is of size n×m and results in

a rank- m approximation and a storage requirement of O(mn). The computational complexity of

the incomplete Cholesky is shown to beO(m2n) [27], [37]. The incomplete Cholesky factorization

with pivoting is shown below (see [37]).

Note that this implementation returns an approximation LTL ≈ K where L is Rn×n with only

m rows containing non-zero entries. The algorithm has been modified to take a reference to the

kernel function k(i, j), instead of the entire kernel matrix. This “kernelization” provides additional

efficiency since the algorithm only needs to access O(nm) plus O(n) diagonal entries from the

kernel matrix. It is a straight-forward process to modify the algorithm to store the factor, L, in

a more compact form L ∈ Rm×n. The incomplete Cholesky factorization stops when the trace

of the approximation error or tr(∆K) is less than ε where ∆K = K − K̃ and K̃ = LLT . It is

straightforward to show tr(∆K) =
∑

j dj (see [27]).

Implementation consists of computing and storing the incomplete Cholesky factorization prior to

running the active set method.

159

Algorithm 6 Incomplete Cholesky Factorization with Pivoting

Input: Kernel function k(i, j), desired approximation error, ε
Output: Cholesky factorization L ∈ Rn×n, diagonal d ∈ Rn

1: Set dj = k(j, j)∀j
2: Set π = {1, 2, ..., n}
3: Set err = ‖d‖1

4: m← 1
5: while err < ε do
6: j = arg maxj∈{m,...,n} dπj
7: Swap πj and πm
8: Lm,πm =

√
dπm

9: for i = m+ 1 : n do
10: Lm,πi = k(πm, πi)
11: for j = 1 : m− 1 do
12: Lm,πi = Lm,πi − Lj,πmLj,πi
13: end for
14: Lm,πi = Lm,πi/Lm,πm
15: dπi = dπi − Lm,πiLm,πi
16: end for
17: dπm = 0
18: err =

∑n
j=m+1 dπj

19: m← m+ 1
20: end while

For the SVM-RSQP algorithm, kernel caching is also used; however, the cache entries are formed

from the Cholesky factors instead of computing the kernel function. While kernel caching is

not necessary, this provides some additional savings since O (m) operations are still required to

compute a kernel entry from the Cholesky factors.

160

Results and Discussion

Approximate Regularization Path

Table 7.1: Datasets Used for Regularization and Kernel Path Experiments

Dataset N d

adult-1a 1605 123

abalone 4177 10

australian 690 14

diabetes 768 8

german 1000 24

heart 270 13

ionosphere 351 34

ocr-0 7291 256

sonar 208 60

spam 4601 57

splice 1000 60

web-1a 2477 300

Testing was done to compare performance of the SVM-RSQP algorithm using the traditional grid

search methodology versus a grid search with incremental training and the proposed approximate

path method. The grid search with incremental training is referred to as the “fast grid search”.

Experiments were performed on a Windows NT Server with 8 CPUs and 32 GBytes of RAM.

The SVM-RSQP algorithm, with the proposed modifications, was compiled as a MATLAB MEX

function. A stopping tolerance of 10−6 was employed, and testing was done for both the linear

kernel and RBF kernel. Table 7.1 describes the datasets used for this study. Figures 7.2 and 7.3

depict the approximate path performance for the linear kernel and Figures 7.4 and 7.5 depict the

results for the RBF kernel. Tables 7.2 and 7.3 summarize the results for the complete path search.

161

A grid search is performed with log2(C) varying from -15 to 15 in increments of 2. This grid search

is consistent with that seen in the literature, e.g. for use with LIBSVM [25]. The grid search was

performed both with and without incremental training and individual times as well as cumulative

training times are plotted for the case with full re-training at each C value. The cumulative times

are plotted for the approximate path with path tolerances of 10−3, 10−1, and 10.

As expected cumulative training times for the approximate path algorithm increases greatly as the

path tolerance approaches 10−3. For the linear kernel case, the cumulative approximate path time

is generally less than the cumulative time for the traditional grid search in all cases. When C is

less than approximately 2−5, the approximate path algorithms, regardless of tolerance, tend to be

faster than the conventional grid search. The SVM solution does not vary much in this region (for

the given datasets and scaling) and the traditional grid search is forced to retrain at all C values

specified in the grid search while the approximate methods proceed directly to the C value where

changes begin to occur. In essence, the approximate method finds the initial C value where the

solution begins to change.

In all cases of the linear kernel and for C < 25, the approximate path method with a tolerance of

10−3 is slower than the traditional grid search by a factor of nearly 4 to 5 in some cases. However,

the approximate path, in this case, typically computes several thousand solutions compared to

less than 10 solutions for the traditional grid search. On the other hand, beyond C = 210, the

approximate path is, in some cases faster than the traditional grid search by several factors. For

high values of C, the active set, again, tends to remain constant and the approximate method

avoids computing the solutions at these higher values of C while the grid search method is forced

to re-train. This is especially beneficial since training times for the conventional active set method

typically increase, sometimes exponentially, at higher values of C due to the affects of scaling.

162

−15 −10 −5 0 5 10 15
0

5

10

15

20

25

30

35

40
T

ra
in

in
g

tim
e

(s
ec

)

log
2
 C

Cumulative Time
Indiv. Time
Approx Path 0.001
Approx Path 0.1
Approx Path 10
Fast Grid Srch

(a) abalone

−15 −10 −5 0 5 10 15
0

5

10

15

20

25

30

T
ra

in
in

g
tim

e
(s

ec
)

log
2
 C

Cumulative Time
Indiv. Time
Approx Path 0.001
Approx Path 0.1
Approx Path 10
Fast Grid Srch

(b) adult

−15 −10 −5 0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
ra

in
in

g
tim

e
(s

ec
)

log
2
 C

Cumulative Time
Indiv. Time
Approx Path 0.001
Approx Path 0.1
Approx Path 10
Fast Grid Srch

(c) australian

−15 −10 −5 0 5 10 15
0

0.2

0.4

0.6

0.8

1

1.2

1.4

T
ra

in
in

g
tim

e
(s

ec
)

log
2
 C

Cumulative Time
Indiv. Time
Approx Path 0.001
Approx Path 0.1
Approx Path 10
Fast Grid Srch

(d) diabetes

−15 −10 −5 0 5 10 15
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

T
ra

in
in

g
tim

e
(s

ec
)

log
2
 C

Cumulative Time
Indiv. Time
Approx Path 0.001
Approx Path 0.1
Approx Path 10
Fast Grid Srch

(e) german

−15 −10 −5 0 5 10 15
0

0.05

0.1

0.15

0.2

0.25

T
ra

in
in

g
tim

e
(s

ec
)

log
2
 C

Cumulative Time
Indiv. Time
Approx Path 0.001
Approx Path 0.1
Approx Path 10
Fast Grid Srch

(f) heart

Figure 7.2: Cumulative training times for the regularization path search and linear kernel. Individ-
ual grid search training times are also shown.

163

−15 −10 −5 0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
T

ra
in

in
g

tim
e

(s
ec

)

log
2
 C

Cumulative Time
Indiv. Time
Approx Path 0.001
Approx Path 0.1
Approx Path 10
Fast Grid Srch

(a) ionosphere

−15 −10 −5 0 5 10 15
0

20

40

60

80

100

120

140

160

180

200

T
ra

in
in

g
tim

e
(s

ec
)

log
2
 C

Cumulative Time
Indiv. Time
Approx Path 0.001
Approx Path 0.1
Approx Path 10
Fast Grid Srch

(b) ocr-0

−15 −10 −5 0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

T
ra

in
in

g
tim

e
(s

ec
)

log
2
 C

Cumulative Time
Indiv. Time
Approx Path 0.001
Approx Path 0.1
Approx Path 10
Fast Grid Srch

(c) sonar

−15 −10 −5 0 5 10 15
0

50

100

150

200

250

T
ra

in
in

g
tim

e
(s

ec
)

log
2
 C

Cumulative Time
Indiv. Time
Approx Path 0.001
Approx Path 0.1
Approx Path 10
Fast Grid Srch

(d) spam

−15 −10 −5 0 5 10 15
0

2

4

6

8

10

12

T
ra

in
in

g
tim

e
(s

ec
)

log
2
 C

Cumulative Time
Indiv. Time
Approx Path 0.001
Approx Path 0.1
Approx Path 10
Fast Grid Srch

(e) splice

−15 −10 −5 0 5 10 15
0

5

10

15

20

25

30

35

40

45

T
ra

in
in

g
tim

e
(s

ec
)

log
2
 C

Cumulative Time
Indiv. Time
Approx Path 0.001
Approx Path 0.1
Approx Path 10
Fast Grid Srch

(f) web-1a

Figure 7.3: Cumulative training times for the regularization path search and linear kernel. Individ-
ual grid search training times are also shown.

164

−15 −10 −5 0 5 10 15
0

20

40

60

80

100

120

140

160
T

ra
in

in
g

tim
e

(s
ec

)

log
2
 C

Cumulative Time
Indiv. Time
Approx Path 0.001
Approx Path 0.1
Approx Path 10
Fast Grid Srch

(a) abalone

−15 −10 −5 0 5 10 15
0

50

100

150

200

250

T
ra

in
in

g
tim

e
(s

ec
)

log
2
 C

Cumulative Time
Indiv. Time
Approx Path 0.001
Approx Path 0.1
Approx Path 10
Fast Grid Srch

(b) adult

−15 −10 −5 0 5 10 15
0

1

2

3

4

5

6

7

8

9

T
ra

in
in

g
tim

e
(s

ec
)

log
2
 C

Cumulative Time
Indiv. Time
Approx Path 0.001
Approx Path 0.1
Approx Path 10
Fast Grid Srch

(c) australian

−15 −10 −5 0 5 10 15
0

2

4

6

8

10

12

14

T
ra

in
in

g
tim

e
(s

ec
)

log
2
 C

Cumulative Time
Indiv. Time
Approx Path 0.001
Approx Path 0.1
Approx Path 10
Fast Grid Srch

(d) diabetes

−15 −10 −5 0 5 10 15
0

10

20

30

40

50

60

70

80

90

T
ra

in
in

g
tim

e
(s

ec
)

log
2
 C

Cumulative Time
Indiv. Time
Approx Path 0.001
Approx Path 0.1
Approx Path 10
Fast Grid Srch

(e) german

−15 −10 −5 0 5 10 15
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

T
ra

in
in

g
tim

e
(s

ec
)

log
2
 C

Cumulative Time
Indiv. Time
Approx Path 0.001
Approx Path 0.1
Approx Path 10
Fast Grid Srch

(f) heart

Figure 7.4: Cumulative training times for the regularization path search and RBF kernel. Individual
grid search training times are also shown.

165

−15 −10 −5 0 5 10 15
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
T

ra
in

in
g

tim
e

(s
ec

)

log
2
 C

Cumulative Time
Indiv. Time
Approx Path 0.001
Approx Path 0.1
Approx Path 10
Fast Grid Srch

(a) ionosphere

−15 −10 −5 0 5 10 15
0

1000

2000

3000

4000

5000

6000

T
ra

in
in

g
tim

e
(s

ec
)

log
2
 C

Cumulative Time
Indiv. Time
Approx Path 0.001
Approx Path 0.1
Approx Path 10
Fast Grid Srch

(b) ocr-0

−15 −10 −5 0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

T
ra

in
in

g
tim

e
(s

ec
)

log
2
 C

Cumulative Time
Indiv. Time
Approx Path 0.001
Approx Path 0.1
Approx Path 10
Fast Grid Srch

(c) sonar

−15 −10 −5 0 5 10 15
0

500

1000

1500

2000

2500

T
ra

in
in

g
tim

e
(s

ec
)

log
2
 C

Cumulative Time
Indiv. Time
Approx Path 0.001
Approx Path 0.1
Approx Path 10
Fast Grid Srch

(d) spam

−15 −10 −5 0 5 10 15
0

10

20

30

40

50

60

T
ra

in
in

g
tim

e
(s

ec
)

log
2
 C

Cumulative Time
Indiv. Time
Approx Path 0.001
Approx Path 0.1
Approx Path 10
Fast Grid Srch

(e) splice

−15 −10 −5 0 5 10 15
0

10

20

30

40

50

60

70

80

90

100

T
ra

in
in

g
tim

e
(s

ec
)

log
2
 C

Cumulative Time
Indiv. Time
Approx Path 0.001
Approx Path 0.1
Approx Path 10
Fast Grid Srch

(f) web-1a

Figure 7.5: Cumulative training times for the regularization path search and RBF kernel. Individual
grid search training times are also shown.

166

Table 7.2: Approximate Path Timing for the Linear Kernel

Grid Srch.a Fast Grida Approx Path

Time Time tol = 0.001 tol = 0.1 tol = 10

Dataset (sec) (sec) (sec) Sol. (sec) Sol. (sec) Sol.

adult-1a 28.97 1.16 18.58 911 4.48 133 1.26 12

abalone 36.00 2.62 18.25 2184 4.64 210 2.81 19

spam 222.30 9.64 143.67 2938 32.37 391 11.87 43

ocr-0 79.83 21.68 188.56 1065 45.39 95 20.28 7

web-1a 24.20 3.28 41.23 598 10.46 102 3.62 11

australian 0.99 0.11 0.91 442 0.2 31 0.11 5

diabetes 1.23 0.06 0.48 327 0.11 33 0.06 6

german 4.58 0.16 1.89 361 0.34 39 0.17 6

heart 0.16 0.02 0.24 348 0.05 42 0.02 7

ionosphere 0.55 0.05 0.91 499 0.30 116 0.08 15

sonar 0.2 0.06 0.77 407 0.34 118 0.06 11

splice 11.86 0.48 8.25 786 1.42 61 0.53 7

a Grid search performed across log2(C) = (−15 : 2 : 15) for a total of 16 solutions.

As a result, it may be best to perform the fast grid search for high values of C even if only the

solution at the last value of C is desired.

For path tolerances greater than 0.1, the approximate path-following method begins to be consis-

tently faster than the traditional approach. Only in the case of the sonar dataset and linear kernel is

the approximate path slower than the traditional grid search for a path tolerance equal to 0.1. At a

path tolerance of 10.0 the approximate path is consistently faster than the traditional approach on

all datasets and appears to produce a number of solutions on the order of the traditional grid search

(16 solutions).

167

Table 7.3: Approximate Path Timing for the RBF Kernel

Grid Srch.a Fast Grida Approx Path

Time Time tol = 0.001 tol = 0.1 tol = 10

Dataset (sec) (sec) (sec) Sol. (sec) Sol. (sec) Sol.

adult-1a 35.98 30.81 249.17 1783 134.7 664 61.84 140

abalone 59.91 7.97 158.266 5334 111.14 2126 69.27 777

spam 357.39 200.86 2159.77 4941 965.64 1190 384.78 210

ocr-0 5447.04 1273.20 5866.26 1215 2101.20 59 1888.52 5

web-1a 30.14 11.67 91.72 596 47.40 237 24.64 34

australian 1.34 0.42 8.19 1218 4.48 444 2.73 159

diabetes 2.77 0.75 13.16 1039 7.58 476 5.14 209

german 10.48 8.81 87.27 1416 49.59 583 25.72 165

heart 1.22 0.36 1.63 135 0.47 28 0.27 4

ionosphere 0.28 0.11 1.52 629 0.83 267 0.33 58

sonar 0.30 0.16 0.81 271 0.30 55 0.14 6

splice 25.36 12.27 57.38 934 12.91 60 9.17 6

a Grid search performed across log2(C) = (−15 : 2 : 15) for a total of 16 solutions.

Surprisingly, the fast grid-search as well as the approximate path (tolerance of 10.0) are capable

of computing the solution for several values of C in a time faster than the time it takes to solve a

single value of C with full re-training. As an example, the time required for computing the solution

for the spam dataset and linear kernel, from scratch, at C = 215 was 32 seconds while both the fast

grid search and approximate path computed all the solutions up to C = 215 in less than 12 seconds.

This type of behavior can occur when there are a large number of bound support vectors in the final

solution at large values of C. The majority of these bound support vectors may be found at low

values of C where iterations are cheaper. With incremental training, these bound support vectors

do not have to be discovered again.

168

Table 7.4: Regularization Path Test Accuracy for the Linear Kernel

Approx Path

Dataset tol = 0.001 tol = 0.1 tol = 1 tol = 10 Grid Srch

adult-1a 87.29 87.29 86.92 87.1 86.92

abalone 78.52 78.52 78.45 78.45 78.45

web-1a 98.18 98.18 97.94 97.7 97.94

australian 88.7 88.7 87.39 87.39 88.7

diabetes 80.86 80.86 80.47 80.08 80.47

diabetes 80.86 80.86 80.47 80.08 80.47

german 74.47 74.47 74.17 73.87 74.17

heart 83.33 83.33 83.33 82.22 82.22

ionosphere 92.31 92.31 92.31 92.31 92.31

sonar 81.16 79.71 79.71 79.71 79.71

splice 83.78 83.48 83.48 82.58 83.48

ocr-0 99.26 99.26 99.22 99.26 99.18

spam 93.8 93.8 93.8 93.8 93.74

For example, this scenario also occurs for the adult-1a and abalone datasets where there are 485 out

of 1605 bound support vectors and 2234 out of 4177 bound support vectors for the largest value of

C, respectively. This shows that in some cases (especially when there are a large fraction of bound

support vectors) it may be advantageous to perform a grid search with incremental updates even

when the solution at a single value of C is desired. In those cases, the fast grid search can be seen

as a speed-up technique for the conventional active set method.

Testing was also performed with the RBF kernel (γ = 0.01). Here, the approximate regularization

path method underperformed the traditional grid search in terms of total training time in nearly all

cases while the fast grid search method out-performed the traditional grid search in all cases.

169

Table 7.5: Regularization Path Test Accuracy for the RBF Kernel

Approx Path

Dataset tol = 0.001 tol = 0.1 tol = 1 tol = 10 Grid Srch

adult-1a 84.3 84.3 84.3 83.93 84.3

abalone 80.96 80.96 80.96 80.96 80.6

web-1a 97.7 97.7 97.58 97.58 97.58

australian 89.13 88.7 88.26 87.83 88.26

diabetes 76.56 76.56 76.56 76.56 76.17

german 78.38 78.38 78.38 78.38 78.08

heart 61.11 61.11 60.0 60.0 61.11

ionosphere 97.44 97.44 97.44 97.44 96.58

sonar 89.86 89.86 89.86 88.41 89.86

splice 86.79 86.79 86.49 86.49 86.79

ocr-0 98.81 98.81 98.81 98.81 98.81

spam 93.93 93.93 93.93 93.93 93.54

In those cases where the approximate path is slower than the traditional grid search (at a tolerance

of 10.0), the number of computed solutions or events is typically several orders of magnitude

higher. For example, while the approximate path took nearly twice as long as the traditional grid

search for the adult-1a dataset, nearly 10 times as many solutions were computed. In a few cases,

the fast grid search exhibited cumulative training times that were on-par if not faster than the

time required to compute a solution from scratch. For example, the fast grid search computed all

solutions 50 percent faster than the time taken to compute a single solution at C = 215 for the

abalone dataset.

Overall, these results suggest that a substantial speed-up can be achieved by performing incremen-

tal updates to the solution while performing a grid search. In many cases, the cumulative training

time associated with a full grid search is improved by more than a factor of 10. Performance was

170

best for the linear the kernel. Performance was not as significant for the RBF kernel; however, the

fast grid search was nearly a factor of 5 faster than the traditional grid search for the ocr-0 dataset,

for example. A path tolerance of 10.0 appears to most closely approximate the traditional grid

search in terms of the number of computed solutions as well as speed, especially for the linear ker-

nel. For the non-linear kernel, the approximate path appears to be less predictable with the number

of computed solutions for a path tolerance of 10.0 varying between 4 for the heart dataset and 777

for the abalone dataset. Additional research is needed, here, to understand the relationship between

path tolerance, which is really a measure of algorithm tolerance, versus classifier accuracy.

An additional set of experiments were performed to compare test accuracy for the conventional grid

search versus the approximate regularization path with several path tolerances. For each dataset,

1/3rd of the data was reserved for testing and training was performed on the remaining 2/3rds of

the data. Tables 7.4 and 7.5 summarize these results. Surprisingly, the results suggest that a low

path tolerance provides little benefit in terms of maximizing the performance of the classifier. The

largest disparity in performance between the standard grid search and the approximate path search

is found for the sonar dataset and linear kernel. Here, the approximate path search with the lowest

tolerance yielded a 1.4 percent improvement in accuracy over that achieved with the standard grid

search. In addition, even the highest tolerance case (tolerance of 10.0) yielded a test accuracy

within 1.5 percent of that achieved with the lowest tolerance.

In this testing, a tolerance of 10−3 is found to be overly cautious while incurring significant training

costs. A path tolerance of 1.0 or higher appears to provide reasonable accuracy while attaining

a significant speed-up in terms of training time. The results suggest the fast grid search is the

best option in terms of speed and precision. Remarkably, in fact, the logarithmic grid search,

which is often cited within the literature, performs surprisingly well at finding the best performing

classifier. While the grid search cannot provide guarantees on the degree to which a discovered

solution is optimal, it seems the method can still be expected to perform well from a practical

171

standpoint. Additionally, classifier performance, in terms of test accuracy, is not linearly related to

path tolerance. Test accuracy remained relatively stable even as path tolerance was increased by

several orders of magnitude. Further research is needed to understand the bounds on accuracy for

a given path tolerance. In the end, the approximate path still provides guarantees on optimality and

is the recommended approach.

A question arises as to whether the traditional regularization path algorithm (SSVMP) is faster than

the proposed approximate path search using SVM-RSQP. A set of experiments were performed

with a MATLAB version of SVM-RSQP for comparison with SSVMP. The maximum C value

for the approximate path search was set to 1000.0, which is equivalent to the λ = 10−3 stopping

condition for SSVMP. Reported times do not include times required for kernel caching. Tables 7.6

and 7.7 show results for the linear and RBF kernel, respectively.

For the linear kernel, the SVM-RSQP approximate path algorithm appears to be competitive with

SSVMP. At a path tolerance of 10−6, the number of events for the SVM-RSQP path-following

algorithm appears to be “on par” with the SSVMP algorithm. This seems reasonable since an

algorithm tolerance of 10−6 is used with the SSVMP algorithm. Significant differences in the

number of events occur only for the spam and abalone datasets. As the path tolerance is increased,

significant speed-ups can be achieved. For example, at a tolerance of 1.0, the approximate path is

computed 12 times faster for the web-1a algorithm when compared to the SSVMP algorithm. It is

important to note that the time for computing the approximate path does not necessarily continue

to decrease as path tolerance is increased. This is due to the fact that as path tolerance is increased,

the number of iterations required to update the solution between events also increases. Therefore,

there is a non-linear relationship between training times and path tolerance. In fact, it is possible

to experience increased training times with increased path tolerance, which is explained by the

observation that the regularization path-following algorithm can be seen as a speed-up mechanism

in some instances.

172

For the RBF kernel, small inefficiencies of the SVM-RSQP algorithm compared to SSVMP be-

come more apparent. A path tolerance of 10−6, once again, appears to provide similar results to

the SSVMP algorithm in terms of the number of events being consistent for nearly all datasets

(only the heart dataset experienced fewer events). However, training times for the SVM-RSQP

algorithm are nearly double that of SSVMP in some cases. The poorer performance for the RBF

kernel is due to the fact that the KKT matrix is larger as a result of higher effective rank of the ker-

nel matrix. The source of the inefficiency is that between events, the SSVMP algorithm requires,

typically, only one solution of the KKT matrix while the SVM-RSQP algorithm must solve the

KKT matrix to find the next event, fix the complementary conditions, as well as adjust the active

set. Therefore, as many as 2 to 3 additional solutions involving the KKT matrix may be required

between each event, at a path tolerance of 10−6, when compared to the SSVMP algorithm. Despite

this, training times are reduced as the path tolerance is increased, and, as a result, training times for

the approximate path can be reduced to nearly half of that associated with the SSVMP algorithm.

A possible topic of future research is to explore methods for further improving the efficiency of

the SVM-RSQP algorithm when computing the regularization path.

In summary, the SVM-RSQP algorithm is competitive with the SSVMP algorithm when computing

the “exact” path, especially for the linear kernel. Additionally, the results demonstrate the ability of

the SVM-RSQP algorithm to realize speed-ups associated with computing the approximate path.

Approximate Kernel Path

A MATLAB implementation of the SVM-RSQP algorithm was modified to incorporate the ap-

proximate kernel path algorithm. The MATLAB implementation fully implements kernel caching

as well as rank-one updates to a Cholesky factorization as described in Chapter 5.

173

Table 7.6: Approximate Path Performance versus SSVMP with the Linear Kernel

Dataset tol = 10−6 tol = 10−3 tol = .1 tol = 1 SSVMP

(sec) Evts (sec) Evts (sec) Evts (sec) Evts (sec) Evts

adult-1a 5.86 1454 4.65 902 2.66 129 2.15 40 12.55 1454

abalone 17.46 4103 13.10 2074 8.10 211 7.38 63 29.23 7301

australian 3.05 1423 1.95 435 1.30 31 1.01 12 2.29 1719

diabetes 1.26 511 1.04 325 0.60 29 0.54 10 1.57 522

heart 1.11 583 0.83 340 0.45 37 0.41 13 0.55 650

german 1.66 552 1.37 360 0.84 38 0.78 13 3.91 555

ionosphere 1.43 672 1.23 497 0.71 115 0.54 35 0.85 679

sonar 1.28 514 1.16 404 0.71 117 0.53 34 0.47 521

splice 5.64 1596 3.93 761 2.34 60 1.78 14 3.96 1862

web-1a 8.02 904 7.16 599 3.93 97 3.07 34 36.44 1020

spam 33.01 5278 24.28 2689 14.54 370 12.25 105 69.47 9270

The kernel cache was modified to cache both columns of the kernel matrix as well as columns

of the derivative of the kernel matrix. All routines were executed on a Windows 2003 Server

workstation with 8 CPU cores and 16 GBytes of RAM. MATLAB was configured to enable multi-

core support. The same datasets described in the previous section were used here. A grid search,

fast grid search, as well as approximate grid searches were performed for γ ranging between 2−15

and 215. One third of the data was reserved for testing in all cases. The results focus on training

speed as well as accuracy in all cases.

Timing results are listed in Table 7.8. For the approximate path searches, all cases where the path

tolerance was greater than 10.0 resulted in faster training times than either the standard or fast

grid approaches. However, in most cases, the number of computed solutions were also fewer (20

solutions are computed in the grid search).

174

Table 7.7: Approximate Path Performance versus SSVMP with the RBF Kernel (γ = 0.1)

Dataset tol = 10−6 tol = 10−3 tol = .1 tol = 1 SSVMP

(sec) Evts (sec) Evts (sec) Evts (sec) Evts (sec) Evts

adult-1a 110.09 1515 94.59 974 59.69 106 60.36 28 67.90 1520

abalone 95.54 8623 71.53 4215 52.14 1226 43.89 552 86.85 9671

australian 8.76 1597 7.47 965 4.92 214 4.11 85 5.37 1575

diabetes 19.14 1267 19.25 1029 13.10 272 11.04 111 12.37 1248

heart 0.79 36 0.71 17 0.65 3 0.64 2 1.54 122

german 72.05 1186 63.82 894 33.06 143 30.01 41 40.78 1181

ionosphere 1.71 539 1.49 415 0.88 82 0.70 27 1.27 536

sonar 1.17 168 0.93 110 0.56 13 0.54 4 0.68 170

splice 82.30 478 53.79 148 40.03 12 38.48 3 55.82 510

web-1a 67.84 617 51.74 328 40.93 55 48.72 17 94.57 624

spam 2957.51 6620 2253.70 2597 1541.56 264 1475.22 85 1554.37 6960

In the case of the abalone dataset, 31 solutions were computed in slightly less time than for the

full grid search and 20 solutions were computed in 40 percent less time. For a path tolerance of

0.1, training time is slower than for the grid search in many cases. However, consider that for the

abalone dataset, 928 different kernel values are solved versus 20 in the grid search while taking

only 3 times as long.

The fast grid search method is also faster than the traditional grid search in all cases with the

exception of the abalone dataset where the fast grid search was only slightly slower. In many

cases, the fast grid search is 3 to 5 times faster than the traditional grid search. An interesting

result is observed for the abalone dataset where the approximate search path with a path tolerance

of 100.0 computes 20 solutions in far less time than even the fast grid search, which also computes

20 solutions. Similar behavior is observed for the german dataset and a path tolerance of 1.0.

175

Table 7.8: Approximate Kernel Path for C = 1

Grid Srch.a Fast Grida Approx Path

Time Time 100 10 1 .1

Dataset (sec) (sec) N (sec) N (sec) N (sec) N (sec)

adult-1a 512.75 301.65 4 99.48 7 147.98 21 212.60 93 539.0

abalone 3628.88 3890.44 20 2239.33 31 3442.80 214 4689.23 928 9083.38

web-1a 2287.47 1521.48 4 527.20 6 610.08 16 974.5 33 1348.92

australian 29.75 14.73 6 8.25 12 10.84 67 17.55 236 33.63

diabetes 44.16 16.40 5 7.25 9 10.77 30 13.18 122 26.89

german 103.43 48.06 5 20.95 9 28.34 20 40.29 72 79.03

heart 7.03 1.48 5 0.79 9 1.03 24 1.57 65 2.45

ionosphere 9.04 3.76 5 1.60 10 2.52 32 3.77 104 6.24

sonar 5.38 1.33 4 0.61 7 0.73 17 1.22 50 2.31

splice 83.47 68.39 5 14.06 8 49.04 31 83.71 129 161.34

a Grid search performed across log2(γ) = (−15 : 2 : 15) for a total of 20 solutions.

This suggests a potential advantage of the approximate kernel path method compared to the fast

grid search in terms of training time, perhaps due to the effect of problem scaling at each of

the kernel parameters chosen by the approximate path versus the grid search. Unfortunately, the

number of solutions computed for a given path tolerance is not easily predicted for a given dataset,

a topic of future research.

In addition to training times, the classifier best-case test accuracy is reported for each of the path

tolerances in Table 7.9. In summary, a path tolerance less than or equal to 10.0 was found to be

acceptable in terms of providing an optimal solution. Surprisingly, again, the standard grid search

results in a peak test accuracy within 1 percent of the lowest tolerance case.

176

Table 7.9: Kernel Path Test Accuracy for the RBF Kernel (C = 1)

Approx Path

Dataset tol = 0.1 tol = 1 tol = 10 tol = 100 Grid Srch

adult-1a 82.24 82.24 82.06 80.37 81.68

abalone 78.88 78.88 78.74 78.59 78.88

web-1a 97.94 97.94 97.94 97.94 97.94

australian 87.39 86.96 86.96 86.96 86.96

diabetes 76.95 76.95 76.17 74.22 76.17

german 78.38 78.08 78.08 74.17 77.48

heart 70.00 70.00 70.00 70.00 70.00

ionosphere 96.58 96.58 96.58 94.87 95.73

sonar 84.06 82.61 82.61 84.06 84.06

splice 90.69 89.79 87.39 88.29 90.09

The approximate path with the highest tolerance (100.0) achieved a test accuracy within 4 percent

of the best accuracy and a tolerance of 10.0 achieved an accuracy within 1 percent of the best

case and appeared to perform most similarly to the grid search. The splice dataset represents an

exception where a path tolerance of 10.0 resulted in a test accuracy 3.3 percent less than the best

case.

In summary, the approximate kernel path can provide a significant speed-up in terms of training

time, nearly a factor of 5 speed up in some cases, while providing test accuracy well within the 3

percent of the best case (for a tolerance of 10.0). With the lowest tolerance, the kernel path is no

more than 3 times slower than the conventional grid search while providing up to 50 times as many

solutions.

177

Table 7.10: Kernel Path with Incomplete Cholesky Kernel Approximation (C = 1)

rank = 50 100 150 200 250

Time Acc. Time Acc. Time Acc. Time Acc. Time Acc.

Dataset (sec) % (sec) % (sec) % (sec) % (sec) %

adult-1a 25.86 84.30 39.73 84.30 55.87 84.30 79.37 84.49 98.62 84.49

abalone 100.32 79.81 131.03 79.74 165.44 80.46 210.76 80.46 305.74 80.39

web-1a 25.24 96.97 53.24 96.85 85.12 96.97 118.85 96.97 155.73 96.97

australian 12.43 85.65 16.69 86.52 22.27 86.09 26.55 87.39 31.70 86.52

diabetes 13.30 79.30 18.99 79.30 25.32 79.30 31.99 79.30 37.86 79.30

german 17.04 77.78 24.15 77.18 33.40 76.88 45.50 76.58 58.21 76.58

heart 5.33 63.33 7.21 63.33 9.09 63.33 8.72 63.33 8.84 63.33

ionosphere 5.65 89.74 7.98 93.16 10.55 94.02 11.73 94.02 11.79 94.02

sonar 3.91 79.71 5.07 84.06 6.42 85.51 5.60 85.51 5.57 85.51

splice 21.33 80.78 31.97 82.28 37.71 83.78 46.34 84.38 56.67 85.29

spam 110.90 89.04 155.05 91.39 210.47 92.11 272.95 92.76 346.25 93.02

ocr-0 123.27 97.12 209.24 98.19 309.01 98.35 421.93 98.35 566.78 98.48

Incomplete Cholesky Kernel Approximation

A MATLAB implementation of SVM-RSQP was again modified to incorporate the incomplete

Cholesky factorization technique for low-rank kernel approximation. A grid search was performed

on the RBF kernel parameter with log2 (γ) varying between -15 and 15 in steps of 2. Cumulative

training time as well as maximum grid search test accuracy are reported. The incomplete Cholesky

method was configured to terminate when the trace of the error matrix reaches 10−1 or once the

maximum rank is achieved. The maximum rank was tested at values of 50, 100, 150, 200, and 250.

Results are listed in Table 7.10.

As expected, significant speed-ups can be achieved with the kernel approximation. For example,

178

when compared to the traditional grid search, a worst-case factor of 10 speed-up is observed for

the abalone dataset. Note that the reported results are for a conventional grid search. The potential

benefit gained from performing incremental updates to the solution for the kernel path are mini-

mized by the need to recompute the incomplete Cholesky factorization for each kernel parameter

value. While the kernel path is reported here, more significant speed-ups are expected for the

standard regularization path since the incomplete Cholesky factorization need only be computed

once.

In terms of test accuracy, performance is acceptable in most cases even when the maximum rank

of the approximation is 50. In many cases, the improvement in accuracy gained from increasing

the rank of the kernel approximation from 50 to 250 is less than 1 percent. The spam and ocr-0

datasets appear to benefit the most from extending the rank to 250. These results are consistent

with those reported in Fine et al. [27].

It is instructive to consider the performance of the ocr-0 dataset in more detail. Figure 7.6 shows

that while peak accuracy does not vary significantly as the rank of the approximation varies (less

than 5 percent variation), test accuracy can vary significantly at individual points along the path.

In this case, test accuracy is degraded by more than 50 percent in one case where the lowest

rank approximation is employed and by more than 10 percent at the highest rank approximation.

Generally, the low-rank kernel approximation is expected to perform well for small γ values where

the effective rank of the kernel matrix is low and will become less accurate as γ is increased. At

some point as γ is further increased, the off-diagonal entries of the kernel matrix approach zero.

In this case, the low-rank approximation will again accurately model the off-diagonal elements

although errors along the diagonal will be large. In summary, approximation errors will tend to

be the greatest at some mid-point value of γ where the kernel matrix possesses high effective rank

along with a large number of non-zero off-diagonal entries.

179

10
−4

10
−3

10
−2

10
−1

55

60

65

70

75

80

85

90

95

100

γ

T
es

t A
cc

ur
ac

y
(%

)

50
100
150
200
250
No Approx

Figure 7.6: Example of the test accuracy for the ocr-0 dataset during a kernel grid search (C = 1)
using the incomplete Cholesky factorization for low-rank kernel approximation. Each curve de-
picts a different rank of the kernel approximation. The dashed black curve shows the test accuracy
without approximation.

Restricting the rank of the approximation, rather than strictly relying on the trace of the error ma-

trix to determine the rank, is desirable in cases where memory and/or computational constraints

are considered. More importantly, as the RBF kernel approaches a diagonal matrix, a low-rank

approximation with low error cannot be found with the Cholesky factorization, and, therefore, a

nearly full rank matrix will result since the Cholesky factorization of a diagonal matrix is itself a

diagonal matrix. Therefore, an important topic of future research is to study the kernel approxima-

tion from the context of path-searching that takes into consideration the nature of the kernel matrix

with varying kernel parameters.

180

CHAPTER 8: CONCLUSIONS

This research largely addresses the issues and practical application of the active set method for

SVM training with semi-definite kernels. This research is shown to be important since the linear

kernel, a semi-definite kernel, is one of the most widely-used kernels, the kernel matrix can become

semi-definite even when the kernel function is positive definite when, for example, duplicate data

points exist, and there is a need to employ low-rank kernel approximations for large datasets. The

conventional active set method was shown to encounter difficulty with the semi-definite kernel

when a chosen active set results in a singular KKT system. This research shows that a practical

active set method can be implemented that automatically avoids singular KKT systems. This is

done without needing to explicitly detect the rank of the KKT matrix and adjusting the solution

method or explicitly detecting whether a particular pivot will result in a singular KKT matrix.

The revised simplex method for semi-definite quadratic programming was efficiently implemented

for SVM training (SVM-RSQP) and shown to out-perform existing active set implementations for

semi-definite kernels as well as remain competitive with decomposition methods such as SVM-

Light and SMO, in terms of training time. The active set method has recently gained additional

importance with the regularization path-following algorithms. Therefore, inspired by the revised

simplex method for semi-definite programming, a new algorithm was developed, Simple SVM-

Path (SSVMP), for solving the regularization path with semi-definite kernels. This is a fully self-

contained implementation in that it does not need an external solver. For example, the SVMPath

algorithm [38] requires an external solver for initialization with unequal class sizes and the ISVMP

algorithm [67] requires an external solver for initialization, to compute the next event, and as a

backup recovery mechanism when a breakdown in the path computation is found. The SSVMP

algorithm also implements a new initialization method for unequal class sizes, which relies on the

ability to use semi-definite kernels. The SSVMP algorithm was found to out-perform compet-

181

ing algorithms in terms of both training time and numerical stability. Extensive analysis proves

correctness and convergence of the algorithm as well as reveals previously unknown issues with

existing methods that are solved with SSVMP. As a result, the SSVMP algorithm represents a prac-

tical implementation of a path-following algorithm that can be reliably applied to a broad class of

problems including those with sparse, semi-definite kernels.

Finally, the SVM-RSQP algorithm was modified to compute the approximate regularization path

and approximate kernel path and suggested as a practical alternative to existing path-following

methods. Further, due to the fact that semi-definite kernels can be reliably handled, low-rank

kernel approximations can be successfully applied to speed-up the active set method for large

datasets. While the SVM-RSQP algorithm was found to be slightly less efficient than the SSVMP

algorithm when computing the “exact” regularization path for the RBF kernel, significant speed-

ups were realized when computing the approximate path with higher tolerances. Surprisingly, the

entire approximate regularization path is computed in a time faster than that required to perform

full training at a single regularization value in some cases. As a result, the approximate path

method, in addition to computing solutions at several values of the regularization path, may be

seen to represent a speed-up method for conventional active set methods even when the solution at

a single value of the regularization parameter is desired. This is especially true for large values of

the regularization parameter,C, where training times tend to increase exponentially with increasing

C due to poor scaling of the problem.

Surprisingly, the logarithmic grid search, often reported in the literature (e.g. [25], [80]), was

found to be successful at finding a solution with reasonable test accuracy in most cases. This

suggests that the logarithmic grid search may be an acceptable alternative to the regularization path

algorithms in many cases. The fast grid search, where warm starts are employed to incrementally

update solutions as the regularization or kernel parameter is adjusted, can be used to perform

the logarithmic grid search, providing solutions with orders of magnitude faster training times.

182

However, the approximate path can be configured to provide an equivalent number of solutions as

the logarithmic grid search while providing both a speed-up and guarantees on the optimality of

the computed solution. In most cases, it is found that a high path tolerance is acceptable in terms

of finding the optimal test accuracy. Lower values of the path tolerance may be used when higher

test accuracy is required (< 1 percent) at the potential cost of longer training times.

Finally, the low-rank kernel approximation, via the incomplete Cholesky factorization, was stud-

ied as a mechanism for speeding-up the active set method for large datasets. The low-rank kernel

approximation appears to be the best method for both reducing training times as well as reducing

memory consumption. In fact, given a low-rank kernel approximation with rank m, the memory

requirement becomes O (mn+m2). Orders of magnitude (> 10) speed-ups were reported with

a rank of m = 250 for the low-rank approximation. The incomplete Cholesky factorization was

found to work best, in terms of test accuracy, as expected when the kernel matrix has a low ef-

fective rank. However, cases were found where the incomplete Cholesky factorization begins to

fail when the effective rank of the kernel matrix is high with a large proportion of non-zero off-

diagonal entries. An important topic of future research remains in finding improved methods for

approximating kernel matrices with low effective rank as well as those best approximated as full-

rank diagonal matrices. Note that while suggested by others [95], this represented the first-known

reported instance of using a low-rank kernel approximation with the active set method.

The approximate kernel path was also successfully implemented and shown to provide benefit in

terms of training time relative to the traditional grid search where re-training occurs at each value.

In many cases, training times were 2 or more times faster when the approximate kernel path was

configured to compute a comparable number of solutions to the traditional grid search.

In summary, the active set method can be practically and efficiently applied to SVM training with

semi-definite kernels. As a result, the active set remains a viable SVM training algorithm especially

183

for searching the solution space associated with the regularization and kernel parameters and when

low-rank kernel approximations are employed for large-scale datasets.

184

LIST OF REFERENCES

[1] S. Abe and R. Yabuwaki. Convergence improvement of active set training for support vector

regressors. In Artificial Neural Networks, ICANN 2010, volume 6353 of Lecture Notes in

Computer Science, pages 1–10. Springer Berlin / Heidelberg, 2010.

[2] A. Asuncion and D.J. Newman. UCI machine learning repository, 2007.

[3] K. P. Bennett and E. J. Bredensteiner. Duality and geometry in svm classifiers. In Proceed-

ings of the Seventeenth International Conference on Machine Learning, ICML ’00, pages

57–64, San Francisco, CA, USA, 2000.

[4] R. G. Bland. New finite pivoting rules for the simplex method. Mathematics of Operations

Research, pages 103–107, 1977.

[5] B. E. Boser, I. M. Guyon, and V. N. Vapnik. A training algorithm for optimal margin

classifiers. In COLT ’92: Proceedings of the Fifth Annual Workshop on Computational

Learning Theory, pages 144–152, New York, NY, USA, 1992. ACM.

[6] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, New

York, NY, USA, 2004.

[7] C.J.C. Burges. A tutorial on support vector machines for pattern recognition. Data mining

and knowledge discovery, 2(2):121–167, 1998.

[8] H. Byun and S.W. Lee. Applications of support vector machines for pattern recognition: A

survey. Lecture Notes in Computer Science, pages 213–236, 2002.

[9] E. Byvatov and G. Schneider. Support vector machine applications in bioinformatics. Ap-

plied Bioinformatics, 2(2):67–77, 2003.

185

[10] G. Cauwenberghs and T. Poggio. Incremental and decremental support vector machine

learning. In NIPS, pages 409–415, 2000.

[11] S. Chakrabarti, S. Roy, and M. V. Soundalgekar. Fast and accurate text classification via

multiple linear discriminant projections. The VLDB Journal, 12:170–185, 2003.

[12] C. Chang and C. Lin. LIBSVM: a library for support vector machines, 2001. Software

available at http://www.csie.ntu.edu.tw/ cjlin/libsvm.

[13] O. Chapelle. Training a support vector machine in the primal. Neural Computation,

19(5):1155–1178, 2007.

[14] Y. Chen, G. Wang, and S. Dong. Learning with progressive transductive support vector

machine. In Pattern Recognition Letters, volume 24, pages 1845–1855. Elsevier, 2003.

[15] N. Cristianini and J. Shawe-Taylor. An Introduction to Support Vector Machines and Other

Kernel-Based Learning Methods. Cambridge University Press, 2000.

[16] J. Dai, C. Chang, F. Mai, D. Zhao, and W. Xu. On the svmpath singularity. IEEE Transac-

tions on Neural Networks and Learning Systems, 2013.

[17] J. Dai and F. Mai. On the svmpath initialization. Signal Processing, 92(5):1258–1267, 2012.

[18] Y.H. Dai and R. Fletcher. New algorithms for singly linearly constrained quadratic programs

subject to lower and upper bounds. Mathematical Programming, 106(3):403–421, October

2005.

[19] Y.H. Dai and R. Fletcher. New algorithms for singly linearly constrained quadratic programs

subject to lower and upper bounds. Mathematical Programming, 106(3):403–421, 2006.

[20] G. B. Dantzig and P. Wolfe. Decomposition Principle for Linear Programs. Operations

Research, 8(1):101–111, January 1960.

186

[21] D. DeCoste and K. Wagstaff. Alpha seeding for support vector machines. Proceedings of the

Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,

pages 345–349, 2000.

[22] B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani. Least angle regression. The Annals of

Statistics, 32(5):407–499, 2004.

[23] I. El-Naqa, Y. Yang, M. N. Wernick, N. P. Galatsanos, and R. M. Nishikawa. A support vec-

tor machine approach for detection of microcalcifications. IEEE Transactions on Medical

Imaging, 21(12):1552–63, December 2002.

[24] R. Fan, X. Wang, and C.J. Lin. Liblinear: A library for large linear classification. Journal

of Machine Learning Research, 9:1871–1874, 2008.

[25] R.E. Fan, P.H. Chen, and C.J. Lin. Working set selection using second order information

for training support vector machines. The Journal of Machine Learning Research, 6:1889–

1918, 2005.

[26] M.C. Ferris and T.S. Munson. Interior-point methods for massive support vector machines.

SIAM Journal on Optimization, 13(3):783–804, 2003.

[27] S. Fine and K. Scheinberg. Efficient SVM training using low-rank kernel representations.

The Journal of Machine Learning Research, 2:243–264, 2002.

[28] R. Fletcher. Practical Methods of Optimization. John Wiley & Sons, 1987.

[29] Jerome Friedman and Trevor Hastie. Pathwise coordinate optimization. The Annals of

Applied Statistics, 1(2):302–332, December 2007.

[30] J. Giesen, M. Jaggi, and Z. Eth. Approximate regularization paths for l2-loss support vector

machines. 2009.

187

[31] P. E. Gill, W. Murray, and M. A. Saunders. User’s guide for qpopt 1.0: A fortran package

for quadratic programming, 1995.

[32] P. E. Gill, W. Murray, and M. A. Saunders. Snopt: An sqp algorithm for large-scale con-

strained optimization, 1997.

[33] P. E. Gill, W. Murray, M. A. Saunders, and M. H. Wright. Inertia-Controlling Methods for

General Quadratic Programming. SIAM Review, 33(1):1, 1991.

[34] T. Glasmachers and C. Igel. Maximum-gain working set selection for SVMs. The Journal

of Machine Learning Research, 7:1437–1466, 2006.

[35] D. Goldfarb and A. Idnani. A numerically stable dual method for solving strictly convex

quadratic programs. Mathematical Programming, pages 1–33, 1983.

[36] G. H. Golub and Ch. F. Van Loan. Matrix Computations. The John Hopkins University

Press, Baltimore and London, 3rd edition, 1996.

[37] H. Harbrecht, M. Peters, and R. Schneider. On the low-rank approximation by the pivoted

Cholesky decomposition. Applied Numerical Mathematics, 62(4):428—-440, 2012.

[38] T. Hastie, S. Rosset, R. Tibshirani, and J. Zhu. The entire regularization path for the support

vector machine. The Journal of Machine Learning Research, 5(1):1391–1415, 2004.

[39] E. V. Haynsworth. Determination of the inertia of a partitioned hermitian matrix. Linear

Algebra and its Applications, 1:73–81, 1968.

[40] J. J. Hull. A database for handwritten text recognition research. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 16(5):550–554, May 1994.

188

[41] T. Joachims. Making large-scale support vector machine learning practical. In A. Smola

B. Schölkopf, C. Burges, editor, Advances in Kernel Methods: Support Vector Machines.

MIT Press, Cambridge, MA, 1998.

[42] T. Joachims. Training linear SVMs in linear time. Proceedings of the 12th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, 2006.

[43] T. Joachims and C.N.J. Yu. Sparse kernel SVMs via cutting-plane training. Machine Learn-

ing, 76(2-3):179–193, July 2009.

[44] M. Karasuyama and I. Takeuchi. Suboptimal solution path algorithm for support vector ma-

chine. In Proceedings of the 28th International Conference on Machine Learning ICML11,

pages 473–480, 2011.

[45] A. Kaylani, M. Georgiopoulos, M. Mollaghasemi, G. C. Anagnostopoulos, C. Sentelle, and

M. Zhong. An adaptive multiobjective approach to evolving art architectures. Trans. Neur.

Netw., 21:529–550, April 2010.

[46] S.S. Keerthi and D. DeCoste. A modified finite Newton method for fast solution of large

scale linear SVMs. Journal of Machine Learning Research, 2006.

[47] S.S. Keerthi and E.G. Gilbert. Convergence of a generalized SMO algorithm for SVM

classifier design. Machine Learning, 46(1):351–360, 2002.

[48] S.S. Keerthi, S.K. Shevade, and C. Bhattacharyya. A fast iterative nearest point algorithm

for support vector machineclassifier design. IEEE Transactions on Neural Networks, 2000.

[49] S.S. Keerthi, S.K. Shevade, C. Bhattacharyya, and K.R.K. Murthy. Improvements to Platt’s

SMO algorithm for SVM classifier design. Neural Computation, 13(3):637–649, 2001.

[50] Y. Koshiba and S. Abe. Comparison of L1 and L2 support vector machines. Neural Net-

works, 2003. Proceedings of the, 2003.

189

[51] B. Krishnapuram, J. Sichina, and L. Carin. Physics-based detection of targets in SAR im-

agery using support vector machines. IEEE Sensors Journal, 3(2):147–157, 2003.

[52] S. Lee and S.J. Wright. Decomposition Algorithms for Training Large-Scale Semipara-

metric Support Vector Machines. In Proceedings of the European Conference on Machine

Learning and Knowledge Discovery in Databases: Part II, page 14. Springer, 2009.

[53] Y. Lee and O. L. Mangasarian. Rsvm: Reduced support vector machines. pages 5–7. SIAM,

2001.

[54] Y.J. Lee and O.L. Mangasarian. SSVM: A smooth support vector machine for classification.

Computational Optimization and Applications, 20(1):5–22, 2001.

[55] C. Leslie, E. Eskin, and W. S. Noble. The spectrum kernel: a string kernel for svm protein

classification. Pacific Symposium on Biocomputing, 575:564–75., January 2002.

[56] T. Liang and J. Gu. Active set iteration method for new l2 soft margin support vector

machine. Lecture Notes in Control and Information Sciences, 345:663–669, 2006.

[57] C.J. Lin. Linear convergence of a decomposition method for support vector machines. Tech-

nical report, 2001.

[58] C.J. Lin. On the convergence of the decomposition method for support vector machines.

IEEE Transactions on Neural Networks, 12(6):1288–1298, 2001.

[59] G. Loosli and S. Canu. Comments on the ”Core Vector Machines: Fast SVM Training on

Very Large Data Sets”. The Journal of Machine Learning Research, pages 1–13, 2007.

[60] R. Lougee-Heimer. The common optimization interface for operations research. IBM Jour-

nal of Research and Development, 47(1):57–66, January 2003.

190

[61] O.L. Mangasarian and D.R. Musicant. Active support vector machine classification. Ad-

vances in Neural Information Processing Systems, 13:577 – 583, 2000.

[62] I. Maros. Computational Techniques of the Simplex Method. Kluwer Academic Publishers,

Boston, 2003.

[63] M. Mohri, A. Rostamizadeh, and A. Talwalkar. Foundations of machine learning. MIT

Press, 2012.

[64] B. A. Murtagh, M.l A. Saunders, W. Murray, P. E. Gill, R. Raman, and E. Kalvelagen.

Gams/minos: A solver for large-scale nonlinear optimization problems, 2002.

[65] D. R. Musciant and A. Feinberg. Active support vector machine classification. Techni-

cal Report 01-02, Department of Mathematics and Computer Science, Carleton College,

Northfield, Minnesota, July 2002.

[66] J. Nocedal and S. J. Wright. Numerical Optimization. Operations Research. Springer, 1st

edition, 1999.

[67] C.J. Ong, S. Shao, and J. Yang. An improved algorithm for the solution of the regularization

path of support vector machine. IEEE Transactions on Neural Networks, 21(3):451–462,

2010.

[68] E. Osuna, R. Freund, and F. Girosi. Training support vector machines: An application to

face detection. In CVPR, pages 130–136, San Juan, Puerto Rico, June 1997. 1997 IEEE

Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’97).

[69] J. Platt. Making large-scale support vector machine learning practical. In A. Smola

B. Schölkopf, C. Burges, editor, Advances in Kernel Methods: Support Vector Machines.

MIT Press, Cambridge, MA, 1998.

191

[70] J. Platt. Microsoft Research, 1998. Available at http://research.microsoft.com/∼jplatt.

[71] J. Platt. Sequential minimal optimization: A fast algorithm for training support vector ma-

chines. Advances in Kernel Methods-Support Vector Learning, 1999.

[72] A. Rakotomamonjy and M. Davy. One-class SVM regularization path and comparison with

alpha seeding. In 15th European Symposium on Artificial Neural Networks, Bruges, Bel-

gium, 2007.

[73] R. Rifkin. SVMFu: A fast, flexible architecture for training Support Vector Machines.

Signal Processing, (September):1–2, 2001.

[74] D. Roobaert. Direct svm: a fast and simple support vector machine perceptron. In Pro-

ceeding of IEEE, International Workshop on Neural Networks for Signal Processing, pages

356–365, 2000.

[75] D. Roobaert. DirectSVM: A simple support vector machine perceptron. The Journal of

VLSI Signal Processing, 32(1):147–156, 2002.

[76] M.H. Rusin. A revised simplex method for quadratic programming. SIAM Journal on

Applied Mathematics, 20(2):143–160, 1971.

[77] K. Scheinberg. An efficient implementation of an active set method for SVMs. Journal of

Machine Learning Research, 7:2237–2257, 2006.

[78] B. Scholkopf, J. C. Platt, J. Shawe-Taylor, J. Smola, and R. C. Williamson. Estimating the

support of a high-dimensional distribution. Neural computation, 13(7):1443–71, July 2001.

[79] C. Sentelle, G.C. Anagnostopoulos, and M. Georgiopoulos. A Fast Revised Simplex Method

for SVM Training. Pattern Recognition, 2008. ICPR 2008. 19th, 2008.

192

[80] C. Sentelle, G.C. Anagnostopoulos, and M. Georgiopoulos. Efficient revised simplex

method for svm training. Neural Networks, IEEE Transactions on, 22(10):1650–1661, 2011.

[81] T. Serafini, G. Zanghirati, and L. Zanni. Gradient projection methods for quadratic programs

and applications in training support vector machines. Optimization Methods and Software,

20(2):353–378, 2005.

[82] S. Shalev-Shwartz and Y. Singer. Efficient learning of label ranking by soft projections onto

polyhedra. The Journal of Machine Learning Research, 7:1567–1599, 2006.

[83] S. Shalev-Shwartz, Y. Singer, and N. Srebro. Pegasos: Primal estimated sub-gradient solver

for SVM. In Proceedings of the 24th international conference on Machine learning, pages

807–814. ACM New York, NY, USA, 2007.

[84] A. Shilton, M. Palaniswami, D. Ralph, and A. C. Tsoi. Incremental training of support

vector machines. IEEE Transactions on Neural Networks, 16(1):114–131, January 2005.

[85] A. Smola and B. Scholkopf. Sparse greedy matrix approximation for machine learning. In

Seventeenth International Conference on Machine Learning, pages 911–918. Stanford, June

2000.

[86] A. J. Smola and S.V.N. Vishwanathan. LDL factorization for rank-k modifications of diag-

onal matrices.

[87] I. Steinwart, D. Hush, and C. Scovel. Training SVMs without offset. The Journal of Machine

Learning Research, 12:141–202, 2011.

[88] F. E.H. Tay and L. Cao. Application of support vector machines in financial time series

forecasting. Omega: The International Journal of Management Science, 29(4):309–317,

2001.

193

[89] I.W. Tsang, J.T. Kwok, and P.M. Cheung. Core vector machines: Fast SVM training on very

large data sets. Journal of Machine Learning Research, 2006.

[90] T. Van Gestel, J. Suykens, and D. Baestaens. Financial time series prediction using least

squares support vector machines within the evidence framework. IEEE Transactions on

Neural Networks, 12(4):809–821, 2001.

[91] R. J. Vanderbei. Loqo: An interior point code for quadratic programming. Optimization

Methods and Software, 11(1):451 – 484, 1999.

[92] V. N. Vapnik. Estimation of Dependences Based on Empirical Data. Springer Series in

Statistics. Springer-Verlag, New York, 1982.

[93] V. N. Vapnik. The Nature of Statistical Learning Theory. Information Science and Statistics.

Springer, 1st edition, 1995.

[94] T.L. Veldhuizen. Arrays in blitz++. In Proceedings of the 2nd International Scientific Com-

puting in Object-Oriented Parallel Environments (ISCOPE’98), pages 223–230. Springer-

Verlag, 1998.

[95] S.V.N. Vishwanathan, A.J. Smola, and M.N. Murty. SimpleSVM. In ICML, pages 760–767,

2003.

[96] M. Vogt and V. Kecman. Active-set methods for support vector machines. In Support

Vector Machines: Theory and Applications, volume 177 of Studies in Fuzziness and Soft

Computing, pages 133–158. Springer Berlin Heidelberg, 2005.

[97] M. Vogt, U. Moissl, and J. Schaab. Heart Rate Classification Using Support Vector Ma-

chines, pages 716–723. Springer, 2006.

194

[98] X. Wang, P.K.H. Phua, and W. Lin. Stock market prediction using neural networks: Does

trading volume help in short-term prediction? In Neural Networks, 2003. Proceedings of

the International Joint Conference on, volume 4, pages 4pp2438–2442, 2003.

[99] T. Wen, A. Edelman, and D. Gorsich. A fast projected conjugate gradient algorithm for

training support vector machines. Joint Summer Research Conference on Fast Algorithms,

pages 1–19, 2003.

[100] K. Woodsend and J. Gondzio. Exploiting separability in large-scale linear support vec-

tor machine training. Computational Optimization and Applications, pages 1–29, 2009.

10.1007/s10589-009-9296-8.

[101] S. J. Wright. Optimization in machine learning. NIPS Workshop, December 2008.

[102] C. Wu, X. Wang, D. Bai, and H. Zhang. Fast svm incremental learning based on the convex

hulls algorithm. Computational Intelligence and Security, International Conference on,

1:249–252, 2008.

[103] G. Zanghirati and L. Zanni. Large quadratic programs in training Gaussian support vector

machines. Technical Report, 23:1–18, 2003.

[104] L. Zanni, T. Serafini, and G. Zanghirati. Parallel software for training large scale support

vector machines on multiprocessor systems. J. Mach. Learn. Res., 7:1467–1492, 2006.

[105] X. Zhou, W. Jiang, Y. Tian, and Y. Shi. Kernel subclass convex hull sample selection method

for svm on face recognition. Neurocomput., 73:2234–2246, June 2010.

[106] M. Zhu and T. Chan. An efficient primal-dual hybrid gradient algorithm for total variation

image restoration, 2007.

195

	Practical Implementations Of The Active Set Method For Support Vector Machine Training With Semi-definite Kernels
	STARS Citation

	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	CHAPTER 1: INTRODUCTION
	Notation

	CHAPTER 2: SUPPORT VECTOR MACHINE
	Overview
	Kernel Methods
	Applying Kernel Methods with the Primal Formulation
	Generalization Performance and Structural Risk Minimization
	Alternative SVM Derivation using Rademacher Complexity
	Solving the SVM QP Problem

	CHAPTER 3: ACTIVE SET METHOD
	Active Set Algorithm
	Efficient Solution of the KKT System

	Convergence and Degeneracy
	Semi-Definite Hessian

	CHAPTER 4: LITERATURE REVIEW OF SVM TRAINING METHODS
	Solving the SVM Problem
	Decomposition Methods
	Primal Methods
	Interior Point Method
	Geometric Approaches
	Gradient Projection Methods
	Active Set Methods
	Regularization Path Following Algorithms
	Other Approaches

	CHAPTER 5: REVISED SIMPLEX METHOD FOR SEMI-DEFINITE KERNELS
	Revised Simplex
	Guarantee of Non-singularity
	Solving SVM with the Revised Simplex Method
	Initial Basic Feasible Solution
	Pricing
	Efficient Solution of the Inner Sub-problem
	Null Space Method for SVM
	Updating the Cholesky Factorization

	Results and Discussion

	CHAPTER 6: SIMPLE SVM REGULARIZATION PATH FOLLOWING ALGORITHM
	Review of the Regularization Path Algorithm
	Initialization

	Analysis of SVMPath
	Analysis of a Toy Problem
	Multiple Regularization Paths
	Empty Margin Set

	Simple SVMPath
	Floating Point Precision

	Analysis
	Degeneracy and Cycling
	Initialization
	Efficient Implementation
	Results and Discussion

	CHAPTER 7: SOLVING THE APPROXIMATE PATH USING SVM-RSQP
	Warm Start for the Revised Simplex Method
	Computing the Approximation Regularization Path
	Computing the Kernel Path
	Limiting Behaviors of the Regularization and Kernel Path
	Low Rank Approximations of the Kernel Matrix
	Results and Discussion
	Approximate Regularization Path
	Approximate Kernel Path
	Incomplete Cholesky Kernel Approximation

	CHAPTER 8: CONCLUSIONS
	LIST OF REFERENCES

