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ABSTRACT

Multi-Task Learning (MTL) has been an active research area in machine learning for two decades.

By training multiple relevant tasks simultaneously with information shared across tasks, it is pos-

sible to improve the generalization performance of each task, compared to training each indi-

vidual task independently. During the past decade, most MTL research has been based on the

Regularization-Loss framework due to its flexibility in specifying various types of information

sharing strategies, the opportunity it offers to yield a kernel-based methods and its capability in

promoting sparse feature representations.

However, certain limitations exist in both theoretical and practical aspects of Regularization-Loss-

based MTL. Theoretically, previous research on generalization bounds in connection to MTL

Hypothesis Space (HS)s, where data of all tasks are pre-processed by a (partially) common oper-

ator, has been limited in two aspects: First, all previous works assumed linearity of the operator,

therefore completely excluding kernel-based MTL HSs, for which the operator is potentially non-

linear. Secondly, all previous works, rather unnecessarily, assumed that all the task weights to be

constrained within norm-balls, whose radii are equal. The requirement of equal radii leads to sig-

nificant inflexibility of the relevant HSs, which may cause the generalization performance of the

corresponding MTL models to deteriorate. Practically, various algorithms have been developed

for kernel-based MTL models, due to different characteristics of the formulations. Most of these

algorithms are a burden to develop and end up being quite sophisticated, so that practitioners may

face a hard task in interpreting and implementing them, especially when multiple models are in-

volved. This is even more so, when Multi-Task Multiple Kernel Learning (MT-MKL) models are

considered.

This research largely resolves the above limitations. Theoretically, a pair of new kernel-based
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HSs are proposed: one for single-kernel MTL, and another one for MT-MKL. Unlike previous

works, we allow each task weight to be constrained within a norm-ball, whose radius is learned

during training. By deriving and analyzing the generalization bounds of these two HSs, we show

that, indeed, such a flexibility leads to much tighter generalization bounds, which often results to

significantly better generalization performance. Based on this observation, a pair of new mod-

els is developed, one for each case: single-kernel MTL, and another one for MT-MKL. From a

practical perspective, we propose a general MT-MKL framework that covers most of the promi-

nent MT-MKL approaches, including our new MT-MKL formulation. Then, a general purpose

algorithm is developed to solve the framework, which can also be employed for training all other

models subsumed by this framework. A series of experiments is conducted to assess the merits

of the proposed mode when trained by the new algorithm. Certain properties of our HSs and for-

mulations are demonstrated, and the advantage of our model in terms of classification accuracy is

shown via these experiments.
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CHAPTER 1: INTRODUCTION

Multi-Task Learning (MTL) [17] [16] is a machine learning paradigm that, instead of treating each

prediction task independently, trains multiple related tasks simultaneously with information of

each task being shared with the other ones. The hope is that, such an information sharing strategy

can serve as positive inductive bias, so that relevant tasks are benefited from the information that

is shared by the other tasks. As a result, the training can be conducted more efficiently, which

potentially leads to better generalization performance of each task, compared to the traditional

single-task learning paradigm.

After near two decades’ active research, MTL has received a fruitful achievements. Specifically, it

has been shown that MTL is beneficial in many real world application problems, as better general-

ization performance can be achieved via MTL. For example, MTL has been successfully applied in

medical diagnosis [105] [10] [11] [77] [116], computer vision [94] [107] [58], web search ranking

[19], brain-computer interface [3], stock selection [34], and bioinformatics [63], to name only a

few.

Usually formulated as minimization problems with Regularization-Loss objective function, the

benefits of such MTL methods are obvious: First, it is straightforward to encourage information

sharing amongst tasks by designing appropriate regularizer or optimization constraint. Second,

the regularizer can be flexibly selected so that other useful characteristics can be added into the

model; for example, certain MTL regularizers are able to encourage sparse feature selection, when

multiple tasks are learned. Third, thank to the representer theorem [84], most linear models can

enjoy nonlinearity by incorporating the kernel method [86]. As a result, a better generalization

performance can be achieved, compared to pure linear models. This results in the research specif-

ically on kernel-based MTL and, even more sophisticated, Multi-Task Multiple Kernel Learn-
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ing (MT-MKL), when Multiple Kernel Learning (MKL) [55] is incorporated with MTL to facilitate

kernel selection. Last but not least, it is straightforward to conduct theoretical studies, in terms of

generalization bound. This theoretical study is crucial, since it helps people understand why MTL

is advantageous and when we should apply MTL.

However, although having been actively researched recently, certain limitations exist in previous

research works, in both theoretical and practical perspectives.

Theoretically, the limitations lie within the research of the generalization bound of MTL models.

To be concrete, it is a commonly utilized technique to conducting various types of regularizer

for information sharing amongst tasks, as mentioned before. Previously, while most research on

generalization bound of MTL Hypothesis Space (HS)s focused on this category [47] [68] [75],

another type of information sharing strategy has been largely omitted, which applies a common or

partially common pre-processor to map data from all tasks to a (partially) common feature space,

and the tasks are learned in the feature space. Such an important technique is not only used in

subspace learning [6] [48], but is also naturally adapted by kernel-based MTL and MT-MKL with

a (partially) common kernel function used for all tasks [91] [45] [57]. In this case, the data from all

tasks are pre-processed by a (partially) common feature map that is specified by the kernel function.

It is crucial to conduct a thorough theoretical study on these MTL HSs, as it not only leads to a

better understanding of the corresponding MTL methods, but also may inspire the invention of

better MTL models.

However, for this category of MTL HSs, the corresponding generalization bound is only studied

in two papers [65] [4] with very limited scenario. Take [65] as an example, the authors studied the

following HS:

F = {x 7→ [〈w1, Ax〉, · · · , 〈wT , Ax〉]′ : ‖wt‖2 ≤ R, t = 1, · · · , T, A ∈ A} (1.1)
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assuming the t-th task features a linear function 〈wt, Ax〉, and A is a set of bounded self-adjoint

linear operators. The limitation of this work is two-fold. First, the HS does not include the MTL

models where a common kernel function is learned for all tasks, such as the MT-MKL models. This

is because the authors limited the feature mapping A to be a linear operator, while the feature map-

ping associated to the kernel function is not necessarily linear. Second, the authors unnecessarily

set all the task weights to be constrained in norm balls with the same radius. However, letting each

norm ball constraint has its own radius yields a more flexible hypothesis space, and, in practice,

may lead to an improved generalization bound, which potentially results in better performance of

the corresponding model. Similar limitations also exist in [4].

Practically, certain limitations of previous research on MTL exist in terms of development and

application of MTL algorithms. First, since there is no general purpose algorithm for a spectrum

of MTL methods, when a new MTL model is developed, it is usually inevitable to invent an al-

gorithm specifically for the proposed model. In fact, this is a common practice for most previous

research works. However, developing an algorithm for MTL models is usually a non-trivial task.

This is even more true when kernel-based MTL and MT-MKL are considered. As a result, the re-

quirement of model-specific algorithm has become an extra burden for researchers to invent novel

MTL models. Second, since most MTL models are accompanied with model-specific algorithms,

it is difficult for practitioners to compare a set of MTL methods, as several complicated algorithms

have to be interpreted and implemented.

This research is aimed to address the above mentioned limitations, with emphasis on kernel-based

MTL and MT-MKL. Specifically, the contributions of this research are as follows:

• We propose a more general MTL HS, where data from all tasks are mapped to a (partially)

common feature space. Such a HS embraces kernel-based MTL and MT-MKL, therefore is

much more general than the previous two works. Besides, in the proposed HS, each task

3



weight is constrained in a norm ball, whose radius is task-specific and learned during the

training stage, therefore is more flexible than the previous ones, as described above.

• We derive Rademacher complexity-based generalization bound for the proposed HS, which

appears to be tighter than the ones that are proposed in [65] [4], due to the introduction of

task-specific radius for the norm-ball constraints. Such results justify the invention of our

HS. These two contributions addressed the above mentioned theoretical limitation of MTL

research.

• We introduce a new MTL model, in both single kernel and MKL scenario, based on the

proposed HS. With the tighter generalization bound, it is expected that the new model is

able to achieve a better generalization performance.

• We develop a general framework for MTL, which covers not only our proposed MTL model,

but also most existing MT-MKL and single-task MKL methods.

• We invent an easy to implement general purpose algorithm that is able to solve the proposed

MTL framework, therefore not only solves our MTL model, but also all the kernel-based

methods that are covered by the framework. Such an algorithm addressed the above men-

tioned practical limitation of MTL research.

The rest of this dissertation is organized as follows: In Chapter 2, we provide an overview of a

series of preliminary knowledge, including the concept of Rademacher complexity-based general-

ization bound, Support Vector Machine (SVM), MKL and MTL. Chapter 3 discusses the literature

review associated with MTL generalization bounds, models, and algorithms. Then, in Chapter 4,

the proposed HS is introduced, followed by the derivation of the generalization bound. A thorough

analysis to the bound is included, which demonstrates the advantages of the proposed HS. Be-

sides, due to the superiority of the HS, a kernel-based MTL model is introduced based on the HS.
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Such a model is optimized by the algorithm that is developed in Chapter 5, which also solves all

kernel-based MTL models that are covered by the framework that is proposed in the same chapter.

The experimental evaluation of all our works is given in Chapter 6. Conclusions and summary are

provided in Chapter 7.
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CHAPTER 2: PRELIMINARIES

Rademacher Complexity-based Generalization Bound

Generalization Bound

Given some prior knowledge for a certain task, a typical machine learning method is aimed to

learn useful information from the knowledge, so that, based on what it is learned, it generalizes

well in the future, when performing the same task. In this dissertation, we specifically consider

the supervised learning paradigm, where the prior knowledge is given in the form of a set of

training data {(xi, yi)}, i = 1, · · · , N , which are drawn identically and independently from an

unknown joint probability distribution P (X, Y ) with X ∈ X , Y ∈ Y . Here, the output yi of a

given input xi is usually referred to as label. Given the training data, during the training stage, the

machine learning algorithm seeks a function f : X → Y from a fixed set of functions F , which is

called Hypothesis Set or Hypothesis Space (HS). The learned function f is expected to generalize

well; this means that, we expect f(x) = y for most (hopefully all) future (x, y)’s that are drawn

identically and independently from P (X, Y ).

As a concrete example, consider the task of handwritten digits recognition, where the machine

learning method is aimed to learn how to distinguish the 10 different handwritten digits, namely,

from 0 to 9. Assuming each digit is represented by a grayscale image of size h-by-w pixels, then

we can construct a vector xi for each image i = 1, · · · , N , by concatenating the pixel values into

a h ∗ w-dimensional vector. Therefore, the training data set can be comprised with a collection of

pairs (xi, yi) ∈ X×Y , i = 1, · · · , N , which are assumed to be drawn identically and independently

from an unknown probability distribution P (X, Y ), and X ⊆ Rh∗w,Y = {0, · · · , 9}. Based on

this training set, in the training stage, the machine learning method seeks a function f : X → Y
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from the HS F , which is designed a priori. The selected function f is expected to correctly assign

label to the most, hopefully all, of the future handwritten digits.

For different machine learning methods, the HS F may be differently defined, and various algo-

rithms can be specified to select the function f from F . For each method that learns f from F , one

fundamental question that one should ask is that, how well will the learned function f generalize to

future data? In other words, we are interested in the expected generalization error for a particular

function f , or expected error for short, as defined below:

er(f) , E(X,Y ){[f(X) 6= Y ]} (2.1)

where (X, Y ) ∼ P (X, Y ), [f(X) 6= Y ] = 1 if f(X) 6= Y and 0 otherwise. The generalization

error tells us that, on average, how much the mis-prediction rate is for a given prediction function

f and probability distribution P (X, Y ). However, since P (X, Y ) is unknown, it is impossible to

calculate er(f) directly. Instead, it is a widely accepted approach to estimate it with an upper

bound, namely the generalization bound.

In this section, we give an introduction to Rademacher Complexity-based generalization bound

[8], which is widely utilized in many research areas, such as kernel learning [26], metric learn-

ing [14], dictionary learning [67], MTL [65], etc. This section focuses on the single-task binary

classification setting, which is further extended to MTL and MT-MKL later.

Rademacher Complexity-based Generalization Bound for Binary Classification Problems

This dissertation specifically focuses on binary classification problems, namely Y = {1,−1}.

Given a function f : X → R, usually, a datum x is considered to be classified as class 1 if

7



f(x) > 0, or class −1 if f(x) < 0. For the marginal case f(x) = 0 (although rarely happens),

it is always considered as misclassification. In other words, a training data (xi, yi) is correctly

classified when yif(xi) > 0. Therefore, for binary classification, the expected error can be written

as

er(f) , E(X,Y ){[Y f(X) ≤ 0]} = E(X,Y ){1(−∞,0](Y f(X))} (2.2)

where 1(−∞,0](·) is the characteristic function of (−∞, 0] and referred to as the 0/1 loss function.

One drawback of the 0/1 loss function is that, it is non-convex and non-differentiable, thus a

model that directly utilizes the 0/1 loss is usually difficult to optimize. Therefore, it is common

to introduce a surrogate loss function L, which upper bounds the 0/1 loss, in order to measure

the loss induced by misclassification. Usually, L is selected to be convex and (or) differentiable,

and should return 0 for a correct classification, and a positive value for a misclassification. Based

on the training set {xi, yi}, i = 1, · · · , N and the surrogate loss function L, the empirical loss is

defined as follows:

êrL(f) ,
1

N

N∑
i=1

L(yif(xi)) (2.3)

It calculates the average loss induced by the function f on the training set, and is directly accessible

after training, as it does not depend on the unknown probability distribution P (X, Y ). Therefore,

it is natural to estimate the generalization error er(f) with the empirical loss.

Prior to discussing the generalization bound for binary classification problems, we give a theo-

rem below, which serves as a foundation to the derivation of the generalization bounds for binary

classification problems.
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Theorem 1 (Theorem 3.1, [71]). Let G be a family of functions mapping from an arbitrary space

Z to [0, 1], and {zi}, zi ∈ Z, i = 1, · · · , N be a collection of data that are drawn identically and

independently from the probability distribution P (Z). Then, for any δ > 0, with probability at

least 1− δ, each of the following holds for all g ∈ G:

E{g(Z)} ≤ 1

N

N∑
i=1

g(zi) + R̂(G) +

√
9 ln 1

δ

2N
(2.4)

E{g(Z)} ≤ 1

N

N∑
i=1

g(zi) +R(G) +

√
ln 1

δ

2N
(2.5)

where Z is a random variable with probability distribution P (Z).

In the above theorem, the quantities R(Z) and R̂(Z) are called the Rademacher Complexity (RC)

and Empirical Rademacher Complexity (ERC) respectively, which are defined as follows:

R̂(G) , Eσ{sup
g∈G

2

N

N∑
i=1

σig(zi)} (2.6)

R(G) , EzEσ{sup
g∈G

2

N

N∑
i=1

σig(zi)} = Ez{R̂(G)} (2.7)

where σi’s are i.i.d. Rademacher-distributed (i.e., Bernoulli (1
2
)-distributed random variables with

sample space {+1,−1}), and z , {z1, · · · , zN}.

In Equation (2.6), the σi’s can be recognized as the labels of zi’s in a binary classification problem,

since σi ∈ {1,−1}. Therefore, for a given function g ∈ G, a correct classification occurs when
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σig(zi) > 0, and the supremum supg∈G
1
N

∑N
i=1 σig(zi) finds the function in the HS G that gives

the best averaged classification performance. It is not hard to see that the ERC measures the

richness of the HS G: For a rich function space G, given any random label of zi’s, it is possible to

find a function g that gives good classification performance, while a space G that contains only a

few candidate functions may not be able to find a good performing function g for arbitrarily labeled

training data. This argument is also valid for the distribution dependent RC R(Z).

In the following Talagrand’s Lemma, a very useful property of ERC is introduced:

Lemma 1 (Lemma 4.2, [69]). Let ψ : R → R be a Lipschitz continuous function with Lipschitz

constant γ. Define the function space ψ ◦ G , {z 7→ ψ(g(z)) : g ∈ G}, then

R̂(ψ ◦ G) ≤ 1

γ
R̂(G) (2.8)

Based on Theorem 1 and Lemma 1, we introduce the generalization bound for binary classification

problems:

Theorem 2. Let {(xi, yi)},xi ∈ X , yi ∈ Y = {1,−1}, i = 1, · · · , N be a set of training data that

are drawn identically and independently from a probability distribution P (X, Y ), and L : R →

[0, 1] be a fixed Lipschitz continuous loss function with Lipschitz constant γ and upper-bound the

0/1 loss function. Let the HS F be a family of functions f : X → R. Then, for any δ > 0, with

probability at least 1− δ, each of the following holds for all f ∈ F:

er(f) ≤ êrL(f) +
1

γ
R̂(F) +

√
9 ln 1

δ

2N
(2.9)
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er(f) ≤ êrL(f) +
1

γ
R(F) +

√
ln 1

δ

2N
(2.10)

Note that although the above theorem requires the range of L to be upper bounded by 1. In fact,

it can be extended to the more general cases where L : R → [0, a], a > 0, with an additional

constant factor multiply to the RC and ERC term. In this research, to keep notations uncluttered,

we assume that a = 1.

The above theorem tells us that the generalization error for an arbitrary f ∈ F is upper bounded

by the summation of three terms: the empirical loss, the ERC (or RC) of the HS F , and a constant

term. Obviously, in order to get small generalization error, we want the upper bound to be as small

as possible. Therefore, it is not hard to see that there exists a trade-off with the capacity of the

HS F : On one hand, we want the capacity of F to be low, which gives a small value of the ERC

or the RC. However, a small set of function may not contain a good function f that gives small

empirical loss êr(f) on the training set. On the other hand, we want a rich HS F so that we can

find a f ∈ F that gives small empirical loss, but it will generate large ERC (or RC) value. In

the ideal case, F contains only one function f ∗ , arg minf er(f). However, since the probability

distribution P (X, Y ) is unknown, it is impossible to calculate er(f), and thus impractical to find

f ∗. Therefore, it is important to carefully design the HS F , so that a good trade-off can be found

between the empirical loss and the ERC (or RC).

It is worth to note that the RC R(F) is dependent on the unknown distribution P (X, Y ), which

is impossible to calculate, and usually difficult to estimate. Therefore, the generalization bound

(2.10) is often only with theoretical interests. On the other hands, it is easier to calculate or estimate

the ERC, since it is distribution free. In this dissertation, we focus on the ERC-based distribution

free generalization bound.
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Based on the above description, the generalization bound not only reveals the reason behind the

good or bad performance of a given model, but also provides a way to estimate the expected

error er(f), which is the very quantity that practitioners care about. Obviously, the latter can be

achieved as soon as the ERC is calculated or estimated. Therefore, the generalization bound is a

crucial topic of machine learning research, and deriving the upper bound for the ERC values of

specific HSs becomes the center of this research.

Support Vector Machine

SVM [27] [93] is one of the most important classifiers in the machine learning society. Its repu-

tation is earned primarily due to its strong theoretical foundation, appealing geometrical interpre-

tation, and good generalization performance. Also, although born as a linear classifier, it is able

to adapt non-linearity by simply applying the kernel method, which leads to even better general-

ization performance in many scenarios. As a Quadratic Programming problem, a large amount

of algorithms have been proposed specifically for SVM, which improved the training speed dra-

matically . Moreover, there exists open source library for fast SVM training, which facilitates the

usage of SVM for both researchers and practitioners. Due to these advantages, a large amount

of MTL models are built based on SVM, and similarly, in this research, our MTL and MT-MKL

formulations that are proposed in Chapter 4 are based on the SVM model. In this section, we give

an introduction to SVM.

Formulation

Consider a set of training data D , {(xi, yi)} with each datum (xi, yi) ∈ X × {−1, 1}, i =

1, · · · , N , where X ⊆ Rn. Assume that the data set is linearly separable, i.e., the data from
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the two classes, labeled 1 and −1 respectively, can be completely separated by a hyper-plane

〈w,xi〉+ b = 0, which is parametrized by (w, b). In other words, we have that yi(〈w,xi〉+ b) >

0,∀i = 1, · · · , N . While there may exist an infinite number of such hyper-planes, the SVM seeks

the optimal hyper-plane (w, b) in terms of margin maximization, as illustrated in Figure 2.1, where

the margin with respect to the hyper-plane and the training set is defined as the minimal distance

between the training data and the hyper-plane:

min
(xi,yi)∈D

|〈w,xi〉+ b|
‖w‖2

(2.11)

separating hyperplane

margin

1
‖~w‖

~w

Figure 2.1: The support vector machine seeks a hyperplane that separates data from the two classes
by maximizing the margin.
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To find the hyper-plane (w, b) that separates the training data and maximizes the margin, naturally,

the following problem can be proposed:

max
w,b

min
(xi,yi)∈D

|〈w,xi〉+ b|
‖w‖2

s.t. yi(〈w,xi〉+ b) > 0, i = 1, · · · , N.
(2.12)

Problem (2.12) is generally difficult to solve. However, note that the objective function is invariant

under the transform (w, b)→ (kw, kb), k > 0, thus, for any (w, b), it can be assumed without loss

of generality that min(xi,yi)∈D |〈w,xi〉 + b| = 1, which yields the following new expression for

margin:

1

‖w‖2

(2.13)

Also, Problem (2.12) is equivalent to the following problem:

max
w,b

1

‖w‖2

s.t. yi(〈w,xi〉+ b) ≥ 1, i = 1, · · · , N.
(2.14)

or, more often equivalently written as

min
w,b

‖w‖2
2

2

s.t. yi(〈w,xi〉+ b) ≥ 1, i = 1, · · · , N.
(2.15)

Problem (2.15) is usually referred to as hard-margin SVM for the separable case, i.e., the training

data from the two classes can be separated by a hyper-plane. However, in practice, the data are
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not usually linearly separable, which makes Problem (2.15) infeasible. To tackle this issue, the

so-called soft-margin SVM allows some data samples to violate the constraint yi(〈w,xi〉+b) ≥ 1,

by adding the slack variables ξi’s:

min
w,b,ξ

‖w‖2
2

2
+ C

N∑
i=1

ξi

s.t. yi(〈w,xi〉+ b) ≥ 1− ξi, i = 1, · · · , N

ξi ≥ 0, i = 1, · · · , N.

(2.16)

where ξ , [ξ1, · · · , ξN ]′. The slack variables reflect the degree of violation of the original hard-

margin constraint yi(〈w,xi〉 + b) ≥ 1, while the violation is penalized via the minimization

of
∑N

i=1 ξi. The hyper-parameter C is usually chosen by the user via the cross-validation strat-

egy, which specifies the trade-off between the penalty over the margin and the violations. Prob-

lem (2.16) can be equivalently transformed to the following more compact form:

min
w,b

‖w‖2
2

2
+ C

N∑
i=1

Lhinge(yi(〈w,xi〉+ b)) (2.17)

where Lhinge(·) is referred to as the hinge loss, which is defined as Lhinge(yi(〈w,xi〉 + b)) ,

1[0,+∞)(1− yi(〈w,xi〉+ b)).

In practice, the above soft-margin SVM model is the most frequently used, instead of the hard-

margin formulation, since as stated above, the linearly separable data set is barely encountered.
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The Dual Formulation and Kernel Methods

The soft-margin SVM is usually equivalently formulated in the dual domain. Applying the La-

grangian multiplier method on Problem (2.16) gives the following dual formulation:

max
α

N∑
i=1

αi −
1

2

N∑
i=1

N∑
j=1

αiαjyiyj〈xi,xj〉

s.t.
N∑
i=1

αiyi = 0

0 ≤ αi ≤ C, i = 1, · · · , N.

(2.18)

where α , [α1, · · · , αN ]′, and the αi’s are the Lagrangian multipliers. Note that Problem (2.18)

is a Quadratic Programming problem, and all the calculations involving the training data xi’s are

solely within the inner product term 〈xi,xj〉. This characteristic of the dual problem allows the

application of the kernel method, which transfers the linear SVM to a non-linear model.

Definition 1 (Definition 5.1, [71]). A function k : X × X → R is called a kernel over X .

Definition 2 (Definition 5.2, [71]). A kernel function k : X ×X → R is said to be Positive Definite

Symmetric (PDS) if for any (x1, · · · ,xN),xi ∈ X ,∀i = 1, · · · , N , the matrixK ∈ RN×N , whose

(i, j)-th element calculated as k(xi,xj), is symmetric positive semidefinite.

Note that, here, there is no particular assumption about the input space X , thus it is not limited to

the Rn space.

Theorem 3 (Theorem 5.2, [71]). Let k : X ×X → R be a PDS kernel. Then, there exists a Hilbert

spaceH and a mapping φ : X → H, such that

∀xi,xj ∈ X , k(xi,xj) = 〈φ(xi), φ(xj)〉H. (2.19)
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Furthermore,H has the following property known as the reproducing property:

∀h ∈ H,∀x ∈ X , h(x) = 〈h, k(x, ·)〉H. (2.20)

H is called a Reproducing Kernel Hilbert Space (RKHS) associated to k.

Based on the above theorem, for any PDS kernel k, there exist an associated mapping φ, which is

usually referred to as the feature mapping, and an associated Reproducing Kernel Hilbert Space

(RKHS) H, which is usually referred to as the feature space. By applying the feature mapping on

the training data xi’s, Problem (2.18) now becomes

max
α

N∑
i=1

αi −
1

2

N∑
i=1

N∑
j=1

αiαjyiyj〈φ(xi), φ(xj)〉H

s.t.
N∑
i=1

αiyi = 0

0 ≤ αi ≤ C, i = 1, · · · , N.

(2.21)

where the inner product 〈φ(xi), φ(xj)〉H is computed in the RKHS H. Since the RKHS H usu-

ally has a higher dimension than the input space X , and may be infinite dimensional, the inner

product may be intractable, if computed directly. However, since k(xi,xj) = 〈φ(xi), φ(xj)〉H,

we can substitute the inner product with kernel computation. Therefore, Problem (2.21) is further
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transformed to

max
α
α′1− 1

2
α′Y KY α

s.t. α′y = 0

0 � α � C1.

(2.22)

where K is the kernel matrix evaluated on the training set. A major advantage of the above

kernelized SVM formulation is that it brings non-linearity into the linear SVM model. This can be

more clearly observed via the corresponding primal formulation

min
w,b

‖w‖2
H

2
+ C

N∑
i=1

Lhinge(yi(〈w, φ(xi)〉H + b)) (2.23)

where w ∈ H, ‖w‖H ,
√
〈w,w〉H. It is not difficult to see that, the kernelized SVM trains the

linear SVM in the RKHS H, which is potentially non-linear in the original input space X , due

to the non-linear feature mapping φ. By appropriately choosing the kernel function k (thus the

feature mapping φ and the RKHS H), it is possible that the training data in the feature space H

is better distributed, compared to that in the original input space X , so that a better classification

performance can be expected. A concrete example that justifies this argument is given in Figure

5.2 of [71]. Some commonly used kernel functions are listed in Table 2.1. Usually, the kernel

parameters, e.g., σ in the Gaussian kernel, are selected via cross-validation.

Generalization Bound for SVM

Before discussing the generalization bound for SVM, we first present the following proposition,

which was introduced as the first part of Proposition 12 in [52].
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Table 2.1: Commonly used kernel functions

Kernel Name Mathematical Expression

Linear Kernel 〈x1,x2〉

Polynomial Kernel (〈x1,x2〉+ c)d

Gaussian Kernel exp(‖x1−x2‖2
2σ2 )

Sigmoid Kernel tanh (κ〈x1,x2〉 − δ)

Proposition 1 (Proposition 12, [52]). Let A ⊆ X , and let f, g : A 7→ R be two functions. For any

σ > 0, there must exist a τ > 0, such that the following two problems are equivalent

min
x∈A

f(x) + σg(x) (2.24)

min
x∈A,g(x)≤τ

f(x) (2.25)

Based on the above proposition, we immediately have that, for any C, there must exist a r > 0,

such that the soft-margin SVM problem (2.23) is equivalent to

min
w,b

N∑
i=1

Lhinge(yi(〈w, φ(xi)〉H + b))

s.t. ‖w‖2
H ≤ r2

(2.26)

Therefore, the essence of SVM is to seek a function f : H → R, parametrized with w ∈ H and
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b ∈ R, from the HS

F = {x 7→ 〈w, φ(x)〉H + b : ‖w‖2
H ≤ r2, b ∈ R} (2.27)

by minimizing the empirical hinge loss. Given the loss function and HS of the SVM formulation,

we are ready to present its generalization bound.

Theorem 4. Let {(xi, yi)},xi ∈ X , yi ∈ Y = {1,−1}, i = 1, · · · , N be a set of training data that

are drawn identically and independently from a probability distribution P (X, Y ). Let the HS F

be defined as F , {x 7→ 〈w, φ(x)〉H + b : ‖w‖2
H ≤ r2, b ∈ R}, where H is a RKHS associated

with a kernel function k. Then, for any δ > 0, with probability at least 1− δ, each of the following

holds for all f ∈ F:

er(f) ≤ êrLhinge(f) + R̂(F) +

√
9 ln 1

δ

2N

≤ êrLhinge(f) +
2r

N

√
tr(K) +

√
9 ln 1

δ

2N

(2.28)

whereK is the kernel matrix calculated by k on the training set.

According to Theorem 4, it is clear that the generalization error of SVM is upper-bounded by

the empirical hinge loss, the ERC, and a constant term. It is important to note that, the last two

terms decreases to 0 when the number of training samples N goes to infinity. This means that,

the more training samples we have, the closer the generalization error is to the empirical loss,

and thus we can more accurately estimate the generalization error based on the empirical loss.

Besides, since a tighter generalization bound means a potentially smaller expected error, the above

bound indicates that as the number of training data increases, a higher classification accuracy is
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likely to be achieved. Further more, if we assume that k(x,x) = 1,∀x ∈ X , then the ERC is

upper-bounded by 2r√
N

. In this case, the last two terms decrease in a speed of order O( 1√
N

).

Based on the above generalization bound, heuristically, we want r to be small, which decreases

the value of the ERC. However, as we stated before, this choice shrinks the size of HS F , thus

there may not exist a function f ∈ F that gives small empirical hinge loss. Clearly, it is crucial to

carefully choose r, which is equivalently to selecting the parameter C in the SVM model.

Finally, we point out that the ERC of F equals the ERC of the following HS:

F ′ = {x 7→ 〈w, φ(x)〉H : ‖w‖2
H ≤ r2} (2.29)

where the difference between F and F ′ is that, in F ′, the bias b is equal to 0. Such an equal value

of ERC between these two HSs can be directly observed from the proof of Theorem 4, which is

given in the appendix. Therefore, when considering the HS, it is a common practice to omit b. In

this dissertation, we follow the same convention.

Multiple Kernel Learning

Kernel methods [86] play an important role in machine learning. By implicitly mapping samples

from the original space into a potentially infinite-dimensional feature space, it is hoped that samples

are appropriately distributed in the feature space, such that kernel machines, like SVM, could

perform better in the feature space than in the original space. As introduced before, an elegant

property that kernel methods have is that, the inner product in the feature space, which may not be

feasible to calculate due to potential infinite dimensionality of the feature space, can be calculated

directly via a kernel function. Furthermore, kernel methods are able to bring non-linearity to a
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linear model, due to the potential non-linearity of the feature mapping φ. Since the feature mapping

φ, and thus the RKHSH, is implicitly defined via the kernel function, it is important to choose the

kernel appropriately for a given task.

A traditional approach for kernel selection is cross-validation. The “optimal” kernel function is

chosen from a set of pre-selected kernel functions based on the performance on the validation set:

the one that leads to the best performance (e.g., classification accuracy for classification problems)

on the validation set is used. However, there are a few disadvantages to this strategy. For example,

it requires training of the model on each candidate kernel function, which significantly increases

computational cost. Also, the selected kernel function is limited in the set of pre-selected kernel

functions, which may not contain good candidates at all.

In recent years, substantial effort has been devoted on how to learn the kernel function (or equiv-

alently, kernel matrix) from the available data, thus cross-validation over a collection of kernel

functions can be avoided. Some kernel learning methods include Kernel Target Alignment [87],

MKL [55], optimal neighborhood kernel [61], etc. Out of the abundant achievements in kernel

learning methods, MKL is one of the most popular strategies, since it is easy to interpret, relatively

simple to optimize, and is well studied theoretically. In this section, we give an introduction to

MKL, which is an important building block of this research.

Formulation

MKL and cross-validation for kernel selection share the commonality that they both require a set

of pre-specified kernel functions, say k1, · · · , kM . However, unlike cross-validation, MKL linearly

combine the M kernel functions with coefficients θ = [θ1, · · · , θM ]′: k =
∑M

m=1 θmkm, where the

coefficients are learned during the training stage. Therefore, the kernel function is selected during

training in a data-driven manner, instead of depending on the validation set. It is worth to mention
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that, although there are MKL models that consider non-linearly combined kernel functions, such

as [25], such methods are usually more complicated, and difficult to optimize and analyze, without

significant benefit on generalization performance. Therefore, in this research, we focus on the

MKL approaches that linearly combine the pre-specified kernel functions.

For different MKL formulations, various types of constraints may be added to θ. As an example,

one of the most widely utilized constraint is the Lp-norm constraint [52], which gives the so-called

Lp-norm MKL model. Its feasible region Ω(θ) is defined as Ω(θ) , {θ : θ � 0, ‖θ‖p ≤ 1}

with p ≥ 1 selected a priori. Therefore, the candidate kernel functions are all possible linear

combinations of the pre-selected kernel functions, when the coefficients are in the feasible region

Ω(θ). This formulates a much richer space of candidate kernel functions, compared to cross-

validation, which only considers each single kernel functions k1, · · · , kM .

Suppose that each of the M kernel functions are associated to a feature mapping φ1, · · · , φM ,

where φm : X → Hm,m = 1, · · · ,M and Hm is a RKHS that is implicitly determined by km.

Then, we can easily observe the following relation:

k(xi,xj) =
M∑
i=1

θmkm(xi,xj)

=
M∑
i=1

θm〈φm(xi), φm(xj)〉Hm

= 〈φ(xi), φ(xj)〉Hθ

(2.30)

where φ : X → Hθ,Hθ , H1×· · ·×HM and φ(x) , (
√
θ1φ1(x), · · · ,

√
θMφM(x)). Therefore,

in essence, by linearly combining multiple kernel functions, MKL constructs a new RKHS Hθ,

which is the direct product of the M RKHSs that are defined by the pre-selected kernel functions.

Given a linear model, such as SVM, instead of training it in the original space X , we can now train
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it in the feature space Hθ, which, parametrized by θ, is also learned in the training stage. Below

we introduce the SVM-based MKL formulation.

Let w , (
√
θ1w1, · · · ,

√
θMwM) ∈ Hθ, where wm ∈ Hm, ∀m = 1, · · · ,M , the SVM-based

MKL method is a simple variation of the original SVM model:

min
w,b,θ∈Ω(θ)

‖w‖2
Hθ

2
+ C

N∑
i=1

Lhinge(yi(〈w, φ(xi)〉Hθ
+ b)) (2.31)

Note that, here, θ is optimized in the feasible region Ω(θ) such that the objective function is

minimized. However, one disadvantage of this model is that it is not jointly convex with respect to

all the variables. This is because that neither the norm nor the inner product term is jointly convex

with respect to w and θ, as shown below:

‖w‖2
Hθ

,
M∑
m=1

θm‖wm‖2
Hm (2.32)

〈w, φ(xi)〉Hθ
=

M∑
m=1

θm〈wm, φm(xi)〉Hm (2.33)

Therefore, directly optimizing Problem (2.31) may converge to a local minimum, which is less pre-

ferred. The remedy to this issue is simple: By applying the variable change wm ← wmθm,∀m =

1, · · · ,M , we reach the following model

min
w,b,θ∈Ω(θ)

M∑
m=1

‖wm‖2
Hm

2θm
+ C

N∑
i=1

Lhinge(yi(
M∑
m=1

〈wm, φm(xi)〉Hm + b)) (2.34)

which is jointly convex with respect to all variables.
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Besides the convexity, another advantage of Problem (2.34) is that it is easy to solve by using

block-coordinate descent method. To be more concrete, it is convenient to split the variables into

two groups, namely {w, b} as a group and θ as another, and then alternate the optimization with

respect to one block of variables with the other block fixed. When θ is fixed, Problem (2.34) is

simply an SVM problem, which has the following dual form:

max
α
α′1− 1

2
α′Y (

M∑
m=1

θmKm)Y α

s.t. α′y = 0

0 � α � C1

(2.35)

where α , [α1, · · · , αN ]′, y , [y1, · · · , yN ]′, Y , diag(y) ∈ RN×N , and the diag function maps

the vector y to a diagonal matrix Y , whose diagonal elements are given by y. Km ∈ RN×N is the

kernel matrix calculated by the kernel function km on the training set.

Compared to the original SVM dual formulation (2.22), we observe that Problem (2.35) is the

same as Problem (2.22), except the kernel matrix is substituted by the linear combination of the M

kernel matrices; therefore it can be efficiently solved via SVM solver, such as LIBSVM [18].

On the other hand, when {w, b} is fixed, optimization on θ is simply the following problem:

min
θ∈Ω(θ)

M∑
m=1

‖wm‖2
Hm

2θm
(2.36)

while it is straightforward to prove that ‖wm‖2
Hm = α′Y KmY α. This problem is usually easy

to solve. Take the most commonly encountered Lp-norm MKL as an example, Ω(θ) is defined as

Ω(θ) , {θ : θ � 0, ‖θ‖p ≤ 1} with p ≥ 1. In this scenario, the following theorem tells us that
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Problem (2.36) has closed-form solution.

Theorem 5 (Lemma 2, [57]). For q ∈ [1
2
, 1), θ ∈ RN , c ∈ RN , c � 0 and c 6= 0, we have

min
θ∈Ω(θ)

c′θ−1 = (
N∑
n=1

cqn)
1
q (2.37)

with Ω(θ) , {θ : θ � 0, ‖θ‖p ≤ 1}, p , q
1−q , and the optimal θ∗ can be calculated as follows:

λ∗ =

(
c

(
∑M

m=1 c
q
m)

1
q

)1−q

(2.38)

To summarize, the algorithm for solving Problem (2.34) involves iterating over two simple steps:

An SVM problem and a minimization problem with closed-form solution.

Multiple Kernel Learning as a Min-Max Problem

The classical SVM-based MKL problem (2.34) can be converted to an equivalent min-max prob-

lem, which is of particular interest. This is achieved by simply applying the Lagrangian multiplier

method to Problem (2.34) on variables {w, b}, which gives the following min-max problem:

min
θ∈Ω(θ)

max
α
α′1− 1

2
α′Y (

M∑
m=1

θmKm)Y α

s.t. α′y = 0

0 � α � C1

(2.39)

Compared to the original primal domain formulation (2.34), the above dual domain min-max for-

mulation has the following characteristics:
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First, the principal of MKL is clearly shown in Problem (2.39): The difference between traditional

single kernel learning and MKL is that, MKL linearly combine theM pre-selected kernel functions

(thus matrices), and the combination coefficients are learned during the training stage. This is not

directly observed from the primal domain formulation (2.34).

Second, compared to the primal formulation, it is more straightforward to formulate different vari-

ations of MKL models in the dual domain. For example, given the dual formulation of the Kernel

Ridge Regression (KRR) model

max
α

α′(2y − λα)−α′Kα (2.40)

it is easy to incorporate MKL with KRR in the dual domain by simply substituting the kernel matrix

with linear combination of multiple kernel matrices, which gives the following formulation,

min
θ∈Ω(θ)

max
α

α′(2y − λα)−α′(
M∑
m=1

θmKm)α (2.41)

while it is more mathematically involved to formulate the above problem in the primal domain. To

give another example, the optimal neighborhood kernel method was proposed in [61]:

min
K

max
α
α′1− 1

2
α′Y KY α+ ρ‖K −K0‖2

F

s.t. 0 � α � C1, α′y = 0,

K � 0

(2.42)

It is straightforward to incorporate MKL with the above model, which gives the following min-max
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problem

min
θ∈Ω(θ)

max
α
α′1− 1

2
α′Y (

M∑
m=1

θmKm)Y α+ ρ‖
M∑
m=1

θmKm −K0‖2
F

s.t. 0 � α � C1, α′y = 0

(2.43)

while it is not immediately clear how to formulate its corresponding primal problem.

Albeit the above mentioned advantages of min-max MKL formulations, a common drawback of

these models is that they are usually difficult to optimize, and it is not uncommon to require model-

specific complicated algorithms to solve the min-max problems. This is even more true, when

MTL is combined with MKL, which is called MT-MKL and is discussed later. Such disadvantage

inspired us to develop a general purpose algorithm to solve the most min-max MKL, kernel-based

MTL and MT-MKL problems. This algorithm is introduced in Chapter 5.

Generalization Bound of SVM-based Lp-norm Multiple Kernel Learning

Based on the discussion of the generalization bound of SVM, it can be observed from Prob-

lem (2.31) that the HS of MKL is

F = {x 7→ 〈w, φ(x)〉Hθ
: ‖w‖2

Hθ
≤ r2,θ ∈ Ω(θ)} (2.44)
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Therefore, the ERC of the HS F is given as

R̂(F) =
2

N
Eσ

{
sup

‖w‖Hθ
≤r,θ∈Ω(θ)

N∑
i=1

σi〈w, φ(xi)〉Hθ

}

≤ 2

N
Eσ

{
sup

‖w‖Hθ
≤r,θ∈Ω(θ)

‖w‖Hθ
‖

N∑
i=1

σiφ(xi)‖Hθ

}

=
2r

N
Eσ

{
sup
θ∈Ω(θ)

‖
N∑
i=1

σiφ(xi)‖Hθ

}

=
2r

N
Eσ

 sup
θ∈Ω(θ)

(
σ′

(
M∑
m=1

θmKm

)
σ

) 1
2



(2.45)

Consider the most commonly encountered case, the Lp-norm MKL, we have Ω(θ) , {θ : θ �

0, ‖θ‖p ≤ 1} with p ≥ 1. By letting u , [u1, · · · , uM ]′, um , σ′Kmσ,∀m = 1, · · · ,M , and

p∗ ≥ 1 such that 1
p

+ 1
p∗

= 1, the ERC can be further upper bounded as follows:

R̂(F) ≤ 2r

N
Eσ

{
sup
θ∈Ω(θ)

(θ′u)
1
2

}

≤ 2r

N
Eσ

{
sup
θ∈Ω(θ)

(‖θ‖p‖u‖p∗)
1
2

}

=
2r

N
Eσ

{
‖u‖

1
2
p∗

}
≤ 2r

N

{
M∑
m=1

Eσ (σ′Kmσ)
p∗

} 1
2p∗

=
2r

N


M∑
m=1

Eσ

∥∥∥∥∥
N∑
i=1

σiφ(xi)

∥∥∥∥∥
2p∗

Hθ


1

2p∗

≤ 2r

N

{
M∑
m=1

(2p∗tr(Km))p
∗

} 1
2p∗

=
2r

N

√
2p∗‖tr(Km)Mm=1‖p∗

(2.46)
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where the second inequality is based on Hölder’s inequality, the third inequality is based on

Jensen’s inequality, and the last inequality is based on the following theorem:

Theorem 6. Let x1, · · · ,xn ∈ H, then we have that

Eσ‖
n∑
i=1

σixi‖p ≤ (p
n∑
i=1

‖xi‖2)
p
2 (2.47)

for any p ≥ 1, where σi’s are the Rademacher-distributed random variables.

For 1 ≤ p < 2, the above result can be simply proved using Lyapunov’s inequality. When p ≥ 2,

the lemma can be proved by using Proposition 3.3.1 and 3.4.1 in [54].

It can be seen from (2.46) that the key ingredient of the upper bound of the ERC is the value of p and

the trace of the kernel matrices. If we assume that km(xi,xi) ≤ 1,∀m = 1, · · · ,M, i = 1, · · · , N ,

then we have that

R̂(F) ≤ 2r

N

√
2p∗M

1
p∗ (2.48)

which is minimized with respect to p when p∗ = lnM . This gives the following bound of the ERC

R̂(F) ≤ 2r

N

√
2e lnM (2.49)

Clearly, the optimal bound of the ERC is of order O(
√

lnM
N

), which increases very slowly with

respect to M , the number of kernel functions. Therefore, by increasing the number of kernel

functions, we significantly increased the volume of the space of candidate kernel functions, thus

we may be able to find better kernel function with much smaller empirical loss êr(f). At the same
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time, conducting MKL has only a minor effect on increasing the generalization bound, thus the

generalization error er(f) can be upper-bounded by a small value, and therefore, guarantee a good

generalization performance.

Multi-Task Learning

The concept of learning multiple tasks simultaneously is inspired from the learning process of

human being:

“A child trained from birth on a single, isolated, complex task – and nothing else – would be

unlikely to learn it. If you were trained from birth to play tennis – and nothing else – you would

probably not learn tennis. Instead, you learn to play tennis in a world that tasks you to learn many

other things. You also learn to walk, to run, to jump, to exercise, to grasp, to throw, to swing,

to recognize objects, to predict trajectories, to rest, to talk, to study, to practice, etc. These tasks

are not all the same: running in tennis is different from running on a track, yet they are related.

Perhaps the similarities between the thousands of tasks you learn are what enable you to learn any

one of them – including tennis.”

The above description is cited from [17], which for the first time introduced the concept of MTL,

based on artificial neural networks. Since then, many research works have been devoted to MTL,

and a large amount of MTL models have been developed. It has been shown that, indeed, in

many scenarios, learning multiple related tasks simultaneously can be advantageous, i.e., better

generalization performance can be achieved, compared to learning each task separately. This fact

has been also verified in many real world applications, such as stock selection, web search ranking,

medical diagnosis, computer vision, etc. Besides, several researchers tried to theoretically explain

the benefits and good performance of MTL, in order to achieve a better understanding of MTL.
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These research works derive and analyze the generalization bound for MTL HSs, and show the

advantage of MTL in terms of sample complexity. A solid theoretical foundation of MTL is gained

because of these research works.

Due to the good generalization performance, wide applicability, and sound theoretical foundation,

MTL has been becoming an active research area for two decades. In this section, we give an

introduction to MTL, and a literature review is given in Chapter 3.

Formulation

The inception of MTL methods started with the invention of artificial neural network-based model,

as proposed in [16]. Given T tasks that can be learned separately via T individual neural networks,

the MTL method learns the tasks simultaneously by sharing the hidden layer amongst tasks, as

shown in Figure 2.2.

It is not difficult to see that MTL is an inductive transfer method: The information that is gained

by training each task is transfered to the other tasks via the shared hidden layer. It is hoped that,

by sharing the feature representation in the hidden layer, tasks can be benefited by the training of

other tasks, so that better generalization performance can be achieved for each task, compared to

the independent training method.

In general, MTL models can be formulated as follows:

Given a model featured with a function f : X → Y and a set of training data {xi, yi}, i =

1, · · · , N , the Regularization-Loss framework considers the following optimization problem:

min
f

R(f) + C
N∑
i=1

L(f(xi), yi) (2.50)
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(a) Four single tasks that are learned separately via neural networks

(b) Four tasks that are learned simultaneously via neural net-
works with shared hidden layer

Figure 2.2: Multi-Task Learning via neural networks

One important property of R(f) is to prevent over-fitting: Based on Proposition 1, the appearance

of the regularizer controls the capacity of the HS F = {f : R(f) ≤ r}, such that the ERC

of the HS is not too large, which, according to Theorem 1 and Theorem 2, is critical for good

generalization performance. Without the regularizer, we may get a function f that provides very

small empirical loss, but deteriorated generalization performance, due to the large value of the

ERC term. On the other hand, L : Y × Y → R is the loss function that measures the degree
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of disagreement between f(x) and the true label y. Obviously, many classical machine learning

models fall into this framework, including SVM, ridge regression [83], One-class SVM [85],

Support Vector Domain Description (SVDD) [92], etc.

Given T tasks, unlike the single task scenario, which contains only one function f , in this case,

we have a vector of functions f , [f1, · · · , fT ]′, where each individual function ft corresponds

to the t-th task. Besides, we are provided with a set of training data for the T tasks: {xit, yit} ∈

X × Y , i = 1, · · · , Nt, t = 1, · · · , T , where Nt is the number of training samples of the t-th task,

and it is assumed that the training data from the t-th task are drawn identically and independently

from a probability distribution Pt(X, Y ). Based on this setting, the general MTL framework can

be defined as

min
f

R(f) + C
T∑
t=1

Nt∑
i=1

L(f(xit), y
i
t) (2.51)

In order to learn the T functions simultaneously, while at the same time encourages information

sharing and inductive transfer, it is necessary for the model to capture the underlying commonality

and to allow information sharing among the T tasks, which is usually achieved by careful design

of the regularizer.

To give a concrete example, assume we have a linear model ft(x) , 〈wt,x〉, t = 1, · · · , T . Then,

the authors in [31] proposed the following MTL model by assuming that the weight vectorwt’s of

all tasks are close to their mean vector w̄ , 1
T

∑T
t=1wt:

min
w

T∑
t=1

‖wt − w̄‖+ C

T∑
t=1

Nt∑
i=1

L(ft(x
i
t), y

i
t) (2.52)

wherew is the collection of all the weight vectors (w1, · · · ,wT ). Clearly, in this MTL model, the
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prior assumption of the T tasks is adapted to Problem (2.52) via using this specifically designed

regularizer.

To give another example, in [72], the authors assumed that all tasks share a common feature repre-

sentation, by proposing the following MTL model:

min
w

D∑
d=1

‖wd‖p + C

T∑
t=1

Nt∑
i=1

L(ft(x
i
t), y

i
t) (2.53)

where wd is the d-th row of the matrix W , [w1, · · · ,wt]. In Problem (2.53), the Lp − L1-

norm group-lasso type regularizer encourages sparsity on the vector [‖w1‖p, · · · , ‖wD‖p], thus is

able to generate a certain amount of all-zero rows for W . In other words, the common feature

representation amongst all tasks learned by Problem (2.53) is characterized by the rows whose

elements are not all zero.

One advantage of the general MTL formulation (2.51) is that, the regularizer and/or loss term

are usually flexible enough to be designed to capture different forms of task relationships, with

the above two models as examples. This flexibility has lead to a fruitful of MTL models, which

we refer the readers to Chapter 3 for a literature review. Also, similar to MKL, when the hinge

loss function is used, the optimization of the corresponding MTL models are usually able to be

split into sub-problems, some of which can take advantage of existing efficient SVM solvers.

Therefore, the efficiency of the optimization algorithm can be significantly improved. This is

also true when considering certain types of regression problems, such as ridge regression-based

MTL models, where the closed-form solution to the ridge regression problem may be used as part

of the algorithm.
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Multi-Task Multiple Kernel Learning

The MKL method has been proved to be successful in alleviating the burden of kernel selection and

providing richer space of candidate kernel functions, which is able to generate better generalization

performance for kernel machines. Such a success inspired researchers to combine the advantage

of MKL with MTL, which is therefore called MT-MKL. Clearly, such a combination brings all

advantages to the MT-MKL framework, which is able to boost the model performance by capturing

the relationship between tasks, while at the same time automatically learns a good kernel function

from a rich candidate space.

To formulate a MT-MKL model, a straightforward way is to directly adapt the linear Regularization-

Loss framework, and let each wt , (
√
θ1w

1
t , · · · ,

√
θMw

M
t ) ∈ Hθ, where, similar to the single

task MKL,wm
t ∈ Hm,Hθ , H1 × · · · × HM is the RKHS that is associated with kernel function

k =
∑M

m=1 θmkm. Given training set {xit, yit} ∈ X ×Y , i = 1, · · · , Nt, t = 1, · · · , T from T tasks,

and M pre-selected kernel functions km,m = 1, · · · ,M , a simple MT-MKL framework can be

formulated as follows:

min
w,θ

R(w) + C
T∑
t=1

Nt∑
i=1

L(〈wt, φ(xit)〉Hθ
, yit)

s.t. wt ∈ Hθ, t = 1, · · · , T

θ ∈ Ω(θ)

(2.54)

where, same as before, w , (w1, · · · ,wT ). Clearly, the feature mapping φ : X → Hθ is also

associated with the kernel function k. It is worth pointing out that, although quite a different

formulation to Problem (2.53), the above MT-MKL framework is also a method that encourages

all tasks to share the same feature spaceH. This is because the same kernel function k is employed
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across tasks, therefore data from all tasks are pre-processed by the same feature mapping φ. This

is analogous to the neural networks-based MTL model, which is introduced in Figure 2.2, where

data from all tasks are pre-processed by the same matrixW , which is given by the inter-connection

from the input layer to the shared hidden layer.

To give a more concrete MT-MKL model, a typical SVM-based MT-MKL can be formulated as

follows:

min
w,b,θ

T∑
t=1

‖wt‖2
Hθ

2
+ C

T∑
t=1

Nt∑
i=1

Lhinge(y
i
t(〈wt, φ(xit)〉Hθ + bt))

s.t. wt ∈ Hθ, t = 1, · · · , T

θ ∈ Ω(θ)

(2.55)

Similar to the single task MKL scenario, in the above problem,

‖wt‖2
Hθ

,
M∑
m=1

θm‖wm
t ‖2
Hm (2.56)

〈wt, φ(xit)〉Hθ
=

M∑
m=1

θm〈wm
t , φm(xit)〉Hm (2.57)

both of which are not jointly convex with respect to w and θ. Again, we can equivalently transfer

Problem (2.55) to a convex problem by applying variable change wm
t ← wm

t θm:

min
w,b,θ

T∑
t=1

M∑
m=1

‖wm
t ‖2
Hm

2θm
+ C

T∑
t=1

Nt∑
i=1

Lhinge(y
i
t(

M∑
m=1

〈wm
t , φm(xit)〉Hm + bt))

s.t. θ ∈ Ω(θ)

(2.58)
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whose dual formulation is given as

min
θ

max
α

T∑
t=1

(αt
′1− 1

2
αt
′Y t(

M∑
m=1

θmK
m
t )Y tαt)

s.t. 0 � αt � C1, αt
′yt = 0, t = 1, · · · , T

θ ∈ Ω(θ)

(2.59)

where theKt
m is the kernel matrix calculated by the kernel function km on the training samples of

the t-th task, i.e., the (i, j)-th element of Kt
m is computed as km(xti,x

t
j). It can be more clearly

observed from the above dual problem that this SVM-based MT-MKL formulation forces all task

to share the same kernel function k =
∑M

m=1 θmkm, which is equivalent to sharing the same feature

space.

Although a common kernel function for all tasks is a straightforward method for information shar-

ing, many other MT-MKL models have been proposed differently. For example, in [79], a L1−Lq

Group-lasso type regularizer with q ≥ 1 is employed:

min
w,b

M∑
m=1

(
T∑
t=1

‖wm
t ‖

q
Hm)1/q + C

T∑
t=1

Nt∑
i=1

Lhinge(y
i
t(

M∑
m=1

〈wm
t , φm(xit)〉Hm + bt)) (2.60)

This regularizer is able to bring sparsity at the kernel level, and different levels of task-wise sparsity

can be achieved when q is assigned to different values. Its corresponding dual formulation is shown
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as follows:

min
γ

max
α

T∑
t=1

(αt
′1− 1

2
αt
′Y t(

M∑
m=1

γmt K
m
t )Y tαt)

s.t. 0 � αt � C1, αt
′yt = 0, t = 1, · · · , T

γ � 0,
M∑
m=1

[
T∑
t=1

(γmt )1/s]s ≤ 1

(2.61)

where s , 2−q
q

. Admittedly, the above dual formulation reveals more insight about this model.

It can be seen that, compared to (2.59), instead of using a common kernel function across tasks,

the above model uses a task-independent kernel function, i.e., kt ,
∑M

m=1 γ
m
t k

m
t . However, the

mixed-norm constraint on γmt ’s prevents the kernel functions of all tasks to become completely

independent, thus the relation between tasks is built via the kernel functions.

In the previous section, we emphasized the benefits of the min-max MKL dual formulations. Sim-

ilarly, MT-MKL models also enjoy the advantages of their corresponding min-max dual counter-

parts, which can be clearly seen from the above example: In Problem (2.61), we easily observe that

this model utilizes task-independent kernel functions, which is not an obvious fact in the primal

formulation (2.60). Additionally and arguably more importantly, in the dual domain, it is easy to

modify the model for different needs, e.g., allow tasks to partially share the same kernel by letting

kt ,
∑M

m=1(ζm + γmt )kmt , which is not obvious how to formulate in the primal domain.

On the other hand, similar to MKL, an obstacle that prevents people from using advanced MT-MKL

models, which are usually formulated as min-max problems, is that it is usually difficult to derive

appropriate algorithm to solve these min-max problems. It is common that each MT-MKL model

is featured with an algorithm that is tailored for the corresponding model, and most of these algo-

rithms are not only complicated, but also hard to understand and implement. Therefore, it leaves
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the users almost impossible to compare several different models, due to the algorithmic complex-

ity. Therefore, as stated in the previous section, such difficulties inspired us to develop a general

purpose, easy-to-implement algorithm to solve most MKL, kernel-based MTL and MT-MKL prob-

lems in the dual domain. This algorithm is introduced in Chapter 5.

Generalization Bound

As stated at the beginning of this section, MTL has been shown to be advantageous in many real

world application problems by providing better generalization performance. At the same time, a

large number of MTL models have been developed with different prior assumptions about task

relationships. However, while the efficacy of the MTL learning paradigm has been demonstrated,

it is crucial to understand the reason of its good performance. As introduced in the previous

sections, since the generalization bound serves as an important tool in revealing the capability

(in terms of generalization performance) of machine learning models, many MTL research works

have been focused on this direction. In the following, we introduce a general result, which not only

explains the efficacy of MTL paradigm, but also serves as a foundation of other research on MTL

generalization bound.

Theorem 7. Let {xit, yit} ∈ X × Y , i = 1, · · · , N, t = 1, · · · , T be a set of training data, and

the data of the t-th task are drawn identically and independently from the probability distribution

Pt(X, Y ). Let F be the HS of RT -valued functions f , [f1, · · · fT ]′, with ft : X 7→ R. Suppose

that L : R 7→ [0, 1] be a fixed Lipschitz continuous loss function with Lipschitz constant γ and

dominates the 0/1 loss function 1(−∞,0](·). Then, for any δ > 0, with probability at least 1 − δ,

each of the following holds for all f ∈ F

er(f) ≤ êrL(f) +
1

γ
R̂(F) +

√
9 log 2

δ

2TN
(2.62)
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er(f) ≤ êrL(f) +
1

γ
R(F) +

√
log 2

δ

2TN
(2.63)

The MTL expected error is defined as

er(f) ,
1

T

T∑
t=1

E(Xt,Yt){1(−∞,0](Ytft(Xt))} (2.64)

where (Xt, Yt) ∼ Pt(X, Y ), and the corresponding MTL empirical loss is defined as

êrL(f) ,
1

TN

T∑
t=1

N∑
i=1

L(yitft(x
i
t)) (2.65)

Finally, R̂(F) and R(F) are the ERC and RC for MTL problems correspondingly, defined as

R̂(F) , Eσ{sup
f∈F

2

TN

T∑
t=1

N∑
i=1

σitft(x
i
t)} (2.66)

R(F) , ExEσ{sup
f∈F

2

TN

T∑
t=1

N∑
i=1

σitft(x
i
t)} (2.67)

where the σit’s are i.i.d. Bernoulli
(

1
2

)
random variables with sample space {−1,+1}.

The above theorem, which can be simply proved based on Theorem 16 and 17 of [65], is an

extension of Theorem 2 to the MTL setting. Note that it is a slightly more general than Theorem

18 of [65], since the latter one only considered the margin loss instead of a general loss function

L. It is worth to mention that, in this theorem, we assumed equal number of training samples for
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all tasks. This assumption is made only to keep the notations uncluttered, without preventing it

from being generalized to unequal number of training samples across tasks. For similar reason, the

range of the loss function L is assumed to be upper bounded by 1. Finally, we only focus on the

ERC-based bound, since the RC is distribution-dependent, and is difficult to calculate or estimate.

In this research, we stick with these assumptions without further reiteration.

The above theorem reveals the following insights: The difference between the generalization error

and the empirical loss is upper bounded by the last two terms in (2.62). Importantly, the last term

is of order O(
√

1
TN

). Therefore, as the number of tasks increases, the number of training samples

needed from each task can be significantly decreased. If similar property is held in the ERC term,

then we are able to get even lower generalization bound value by increasing the number of tasks.

Therefore, it not only explains why MTL models usually achieve better performance than single-

task approaches, but also indicates that we need to carefully choose the HS F , so that the ERC

term decreases fast when T increases.

Admittedly, in some cases where the tasks are “irrelevant” to each other, training them simulta-

neously with information being shared across tasks may cause large the empirical loss êrL(f)

and deteriorates the generalization performance of each task, a phenomenon that is referred to as

“negative transfer”. In this case, MTL may be less beneficial. Therefore, it is necessary to either

carefully choose tasks to avoid negative transfer, or develop powerful MTL models that are able to

recognize irrelevant tasks and train them independently.

During the past decade, many researchers have devoted to calculating or upper bounding the ERC

term of different HSs. These theoretical research works not only delivered useful insights about the

corresponding MTL HSs, but also inspired the invention of better HSs with lower generalization

bound values and MTL models with better generalization performance, including the first part of

works in this dissertation, which are introduced in Chapter 4.
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In the next chapter, we give a literature review to MTL, including research works on generalization

bound, models and algorithms.
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CHAPTER 3: LITERATURE REVIEW

Generalization Bound

The first work that systematically discussed the generalization performance of MTL paradigm

appeared in [9]. Although the generalization bounds derived in this paper are based on the concept

of “covering number”, thus are of combinatorial nature and potentially loose, it revealed the fact

that it is beneficial to conduct MTL paradigm in terms of sample complexity. On the other hand,

modern MTL theoretical research is based on the Rademacher complexity, majorly because of its

tightness. Given a MTL model

min
f

R(f) + C
T∑
t=1

N∑
i=1

L(ft(x
i
t), y

i
t) (3.1)

the corresponding HS is

F , {f = [f1, · · · , fT ]′ : R(f) ≤ r} (3.2)

For different the regularizers, various Rademacher complexity-based generalization bounds have

been studied.

In [66], the authors considered a simple linear model, where ft(x) = 〈wt,x〉, wt ∈ Rm, and two

different HSs, namely

F , {x→ [〈w1,x〉, · · · , 〈wT ,x〉]′ :
‖A

1
2W ‖2√
m

≤ B} (3.3)
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and

F , {x→ [〈w1,x〉, · · · , 〈wT ,x〉]′ :
‖W ‖q√

m
≤ B} (3.4)

where W = [w1, · · · ,wT ], A is any positive definite operator in Rm, 1 ≤ q ≤ 4
3
, and B is set

to control the capacity of the HSs. In the first HS, if A = I , the identity matrix, then it degrades

to independent learning. Therefore, in order to conduct MTL, meaningful configuration of A is

required. For example, as the authors pointed out, when A , L + ηI , where L is the Laplacian

on a graph of m vertices and η > 0, the HS corresponds to the graph regularization model [30].

On the other hand, in (3.4), W q , (
∑M

l=1 ‖wl‖q)
1
q , where wl is the l-th row of W . In this case,

since q is close to 1, it encourages sparse rows for the matrix W , which forces tasks to share the

same subspace, characterized by the non-zero rows ofW .

In [47], a more general class of functions is studied. Similar to the previous work, linear functions

parametrized by the weights wt’s are assumed. Then, the authors considered the following HS

F , {x→ [〈w1,x〉, · · · , 〈wT ,x〉]′ : F (W ) ≤ Fmax} (3.5)

where the function F (·) is β-strongly convex with respect to a norm ‖ · ‖, a condition that is

satisfied in many situations, including when F (W ) = ‖W ‖1,1, ‖W ‖1,2, ‖W ‖2,1 and ‖W ‖2,2. In

these different cases, sparsity of W in the row level and (or) the column level may be achieved,

depending which one of the four functions is used.
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Different to [47], in [68], the authors defined the following norm

‖w‖M , inf{
∑
M∈M

‖vM‖ : vM ∈ H,
∑
M∈M

MvM = w} (3.6)

where w is the collection of w1, · · · ,wT , M is an almost countable set of symmetric bounded

linear operators onH. Then, the authors discussed the generalization bound based on the HS

F , {x→ [〈w1,x〉, · · · , 〈wT ,x〉]′ : ‖w‖M ≤ 1} (3.7)

Since the above defined norm covers several widely used regularizers, such as Lasso, Group-

Lasso, weighted Group-Lasso, etc., the generalization bound that is derived by the authors is also

applicable to many Regularization-Loss methods.

Finally, in [75], the authors specifically considered the trace norm regularization, due to its capa-

bility in minimizing the rank of the weight matrix, and the existence of efficient algorithms [41]

[46] [74] [29]. The HS is given as

F , {x→ [〈w1,x〉, · · · , 〈wT ,x〉]′ : tr((W ′W )
1
2 ≤ B

√
T} (3.8)

For the theoretical works that are reviewed above, the task relationships are captured via the regu-

larizer R(f). In this way, information learned by each task is shared to the other ones.

On the other hand, another angle of applying information sharing amongst tasks is to pre-process

the data from all tasks by a common processor, and subsequently, a linear model is learned based

on the processed data. One typical model that follows this approach is the neural networks-based
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method that is introduced in [16] and Figure 2.2; some other examples include the ones proposed

in [4, 30, 6, 21, 53, 40].

One application of this learning framework is subspace learning, where data of each task are pro-

jected to a common subspace by an operator A, and then thewt’s are learned in that subspace. An-

other particularly straightforward and useful adaptation of this framework is kernel-based MTL. In

this situation, the role of the operator A is assumed by the non-linear feature mapping φ associated

with the kernel function that is chosen by the user. In this case, all data are pre-processed by a

common kernel function, which is pre-selected or learned during the training phase, while thewt’s

are then learned in the corresponding RKHS.

In [4], the authors assumed that each task t is featured with the linear mapping ft(x) = 〈ut,Φ(x)〉

+〈vt,ΘΨ(x)〉, where ut ∈ Rm and vt ∈ Rn are the weights associated to the linear model of t-th

task, and Φ : X 7→ Rm, Ψ : X 7→ Rp are two pre-selected feature mappings. Finally, the matrix

Θ ∈ Rn×p is learned during the training stage. Then, the author considered the following HS

F , {x→ {〈ut,Φ(x)〉+ 〈vt,ΘΨ(x)〉}Tt=1 :

‖ut‖2 ≤
A

supx ‖Φ(x)‖2

, ‖vt‖2 ≤
B

supx ‖Ψ(x)‖2

, t = 1, · · · , T,ΘΘ′ = I}
(3.9)

where the constantsA andB are used to control the capacity of the HS. It is not difficult to see that,

in this HS, data are simultaneously pre-processed by the two feature mappings, Φ and Ψ. Besides,

tasks are connected via the common matrix Θ, without which all tasks will be independent to each

other.

Another work that discussed the generalization bound of this category of MTL approaches is given

in [65]. For a set A of bounded self-adjoint linear operators on X and T linear functions with
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weights wt’s, the HS is given as

F = {x 7→ [〈w1, Ax〉, · · · , 〈wT , Ax〉]′ : ‖wt‖2 ≤ R, t = 1, · · · , T, A ∈ A} (3.10)

Clearly, in this HS, data are pre-processed by the operator A to a common space, as explained

above. By either cleverly choosing A beforehand or by learning A ∈ A, it is expected that a

tighter generalization bound can be attained compared to learning each task independently. It is

straightforward to see that pre-selecting A beforehand is a special case of learning A ∈ A, i.e.,

pre-selecting A is equivalent to A = {A}.

However, as introduced in Chapter 1, the research of generalization bound on this type of MTL

methods only covers very limited situations, primarily due to two drawbacks of the work in [65]

and [4]: First, neither of these two papers include the MTL models where a common kernel func-

tion is learned for all tasks, e.g., the MT-MKL models, since the feature mappings that considered

in these two papers are all assumed to be linear. Second, both of these two papers unnecessarily

set all the task weights to be constrained in norm balls, whose radii are the same. However, letting

each task have its own radius for the corresponding norm-ball constraint yields a more flexible HS,

and, in practice, may lead to an improved generalization bound and performance.

Such limitations inspired us to generalize the HS F , particularly for kernel-based multi-task clas-

sification problems, by considering the common operator φ (which is associated with a kernel

function) for all tasks and by imposing norm-ball constraints with different radii for each task that

are learned during the training process, instead of being chosen prior to training, as discussed in

Chapter 4.
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Models

Although started as a neural network-based learning algorithm, MTL has been widely studied

based on many machine learning frameworks, such as Gaussian process [13] [12] [96] [102],

probabilistic model [99] [106] [103] [118], metric learning [73], etc. Most of the MTL models

are formulated based as the minimization of Regularization-Loss problems (2.51), given T linear

functions ft with weights wt, t = 1, · · · , T , as discussed in Chapter 2. In this section, we give a

literature review to MTL models.

Exploring Task Relationship

A fundamental assumption for MTL is that there exist some underlying relations between all (or

some) tasks. Therefore, one crucial objective that MTL models should achieve is to capture such

relations. For most previous research works, this is accomplished by making a priori assumptions

for task relationships, and implement these assumptions in the objective function, by specifying

the corresponding regularizers and loss functions. On the other hand, some other paper developed

MTL models that are able to learn task relationships automatically. This sub-section reviews both

of the two types of MTL models.

In [31], the authors assumed that all task weights wt’s to be close to their mean vector w̄ ,

1
T

∑T
t=1wt, by letting the regularizer to be

R(f) ,
T∑
t=1

‖wt − w̄‖2 (3.11)

This idea is generalized in [115], which assumed a clustered structure amongst tasks, and each

task weight is close to the cluster center, instead of the global average of all task weights. In their
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model, the regularizer is specified as

R(f) ,
J∑
j=1

∑
t∈Gj

‖wt − w̄j‖2 (3.12)

where Gj is the set of indices of tasks that belong to the j-th cluster, and w̄j is the j-th cluster

mean. A similar task clustering strategy is also studied in [114], which assumes the clustered

structure appears on the feature level across tasks. In this paper, function weight for each task is

decomposed into two components wt , ut + vt, and the feature level clustering is achieve via a

specially defined regularizer on the matrix U , [u1, · · · ,uT ]:

‖U‖clus ,
D∑
d=1

∑
t1<t2

|udt1 − u
d
t2
| (3.13)

where U , {udt }, d = 1, · · · , D, t = 1, · · · , T . For each feature d, the above norm encourages

close distance between udt1 and udt2 , which leads to clustered structure for each feature.

The above weight decomposition trick has been adapted in several other papers. In [113], it is

assumed that each task weight is composed with a vector w0, which is common across tasks, and

a task specific element vt, i.e., wt , w0 + vt. With the following regularizer

R(f) ,
λ1

T

T∑
t=1

‖vt‖2 + λ2‖w0‖2 (3.14)

the shared structure amongst tasks is able to be captured by w0.

In [36], the task weight wt is decomposed in the same way as [114]. However, such a decomposi-

tion is utilized for detecting the “outlier tasks”, i.e., tasks that are considered not dissimilar to the
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other tasks. This outlier task detection is implemented by the regularizer

R(f) , λ1‖U‖2,1 + λ2‖V ′‖2,1 (3.15)

where the above L2 − L1-norm regularizer is defined as ‖U‖2,1 ,
∑D

d=1 ‖ud‖2, and ud is the

d-th row of the matrix U . Obviously, the first term ‖U‖2,1 encourages shared feature represen-

tation among tasks, given by the non-zero rows of U . Also, the second term ‖V ′‖2,1 encourages

sparsity in the column level of V , thus the tasks that correspond to all-zero columns of V share

the common feature representation given by U , while the other tasks are identified as outliers and

are characterized by their own feature representation, which is given by the combination of U and

V . This task outlier identification method by utilizing the ‖V ′‖2,1 regularizer is also employed in

[22]. However, instead of ‖U‖2,1, the authors in [22] proposed the using of trace norm (or nuclear

norm) on U , i.e., ‖U‖∗ , trace(
√
U ′U), in order to encourage a low-rank matrix, thus a low

dimensional feature space.

In [4], such a decomposition is not performed on the task weight level, instead, it is the task

function decomposed into two parts. Given a training sample x, the t-th task function value is

evaluated as

ft(x) , 〈ut,Φ(x)〉+ 〈vt,ΘΨ(x)〉 (3.16)

where, Φ and Ψ are two feature mappings, and Θ is shared across tasks, thus the tasks are assumed

to be related via this common matrix. The MTL model in this paper is further studied in [21] by

providing a convex relaxation of this approach.

Similar to [22], the authors in [53] considered learning multiple tasks with outlier tasks being
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aware: It is assumed the existence of K latent basis tasks, parametrized by lk, and each observed

task is represented as linear combination of the latent tasks, i.e., wt ,
∑K

k=1 sklk, or, W = LS,

where L ∈ Rd×K , S ∈ RK×T . Then, the authors introduced ‖S‖1,1 regularizer for outlier task

detection, similar to (3.15). On the other hand, the ‖L‖∗ regularizer is introduced to promote a

low-dimensional feature space. This method is further studied theoretically and extended to the

context of transfer learning in [67].

In [116], T regression tasks that are assumed to be similar to each other are considered. The

following regularizer is introduced in order to preserve the smoothness between tasks:

R(f) ,
T−1∑
t=1

‖wt −wt+1‖2
2 (3.17)

As another similar work, in [49], the authors assumed the availability of a task network, which

represents the relatedness between tasks. Then, the distance between weights of the similar tasks

are minimized, by proposing the following constraints on the weights

‖wik −wjk‖ ≤ ρ, ∀k = 1, · · · , K (3.18)

where K is the number of edges in the network, and ik and jk are the indices of the two tasks

connected by the edge.

Unlike the previous approach, which assumes the task relation is known a priori, in [32], the

authors proposed a model to extract the task relation during the training stage, instead of set prior
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to training. The following regularizer is invented to learn the task relation

R(f) , λ1‖W ‖1,1 +
λ2

2
trace(WΩ−1W ′) (3.19)

where the matrix Ω ∈ RT×T , which is learned during the training phase, represents the relation-

ship between tasks. This approach is also studied in [111] and [112], and is incorporated with

the boosting algorithm in [110]. As a similar approach, the authors of [81] proposed an online

algorithm to solve the MTL problem with the task relationship matrix A. This is achieved via the

regularizer w′A⊗w, where w is the concatenation of all task weights wt’s, A⊗ , A
⊗
I , and

A ∈ RT×T .

On the other hand, the method proposed in [7] is designed to capture the structures between the

features, which are shared across tasks, by introducing a matrix D ∈ RT×T and employing the

following regularizer

R(f) , trace(F (D)WW ′) (3.20)

where D = UΛU ′ is the eigen-value decomposition of matrix D, Λ , diag(λ1, · · · , λD) is the

diagonal matrix with the eigen-values ofD being the diagonal elements, F (D) , UF (Λ)U ′, and

F (Λ) , diag(f(λ1), · · · , f(λD)).

Finally, task relationship is learned in a different manner in [48]. In this work, G task groups are

assumed, and each task is considered belong to one of the G groups. For each group g, a diagonal

matrix Qg ∈ RT×T is learned during the training stage, indicating the group assignment of each
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task. Specifically, if task t belongs to group g, thenQg(t, t) = 1, otherwise 0. With the regularizer

R(f) ,
G∑
g=1

‖WQg‖∗ (3.21)

and constraint
∑G

g=1Qg = I , the weight matrix W and group assignment matrices Qg’s are

learned simultaneously during training.

Feature Learning

Information sharing is critical for learning multiple tasks simultaneously, otherwise it is equivalent

to learning each task independently. One most straightforward and heavily studied method for

information sharing is to let tasks (partially) share a common feature representation. In this sub-

section, we review the MTL models that fall into this category.

The most commonly utilized feature learning method is to employ the L2 − L1-norm regularizer

on the weight matrixW . As a typical example, in [5], the L2 − L1-norm regularizer is utilized:

R(f) , ‖W ‖2,1 ,
D∑
d=1

‖wd‖2 (3.22)

where wd is the d-th row of the matrix W , and D is the number of features. By conducting the

L1-norm on the row level ofW , it is expected that most rows to be all-zero vectors, and therefore,

the non-zero rows construct a low-dimensional feature space that is shared for all tasks. Due to the

simplicity and efficacy of this regularizer, it has been studied in many other works, including [64]

[62] [72] [104] [101].
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In [42], the authors proposed a “dirty” MTL model, i.e., a combination of two regularizers is used,

instead of employing only one regularizer, which is referred to “clean” model by the authors. In

this paper, instead of using the L2 − L1-norm regularizer, the authors switched to the L∞ − L1-

norm to encourage sparsity in the row level ofW for feature learning. Besides, to further promote

sparse feature representation, a L1−L1-norm regularizer is added for element-wise sparsity inW ,

resulting in the following regularizer

R(f) , λ1‖W ‖1,1 + λ2‖W ‖∞,1 (3.23)

Besides [42], the learning with L∞ − L1-norm is also studied in [59] [23].

Similar to [42], a combination of L1−L1-norm and L2−L1-norm regularizer is considered in [100]

for simultaneous row level and element-wise sparsity onW , and an online algorithm is derived to

solve the optimization problem. A similar problem that also uses L1−L1-norm and L2−L1-norm

regularizer for regression problems is studied in [76], with an Iteratively Reweighted Least Square

algorithm proposed to solve the optimization problem.

In [37], the L2 − L1-norm regularizer is combined with the Frobenious norm, in order to control

the capacity of the matrixW . The proposed MTL model is used to solve the multi-task Calibrated

Multivariate Regression (CMR) problem, which, unlike regular regression problems that uses L2

loss function, a L1 loss is utilized. Similarly, the addition of the L2 − L1-norm and the trace

norm regularizer is studied in [22], in order to learn a low-rank weight matrix W , or, in other

words, a low dimensional feature space that is shared across tasks. The learning with trace norm

regularization is also discussed in [46] [74] [29].

Although the L1 − L1-norm regularizer is powerful in inducing sparsity on W , other attempts for

better sparsity property have been studied. In [35], the so-called capped-L1 − L1 regularization is
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thoroughly studied, which is defined as

R(f) ,
D∑
d=1

min(‖wd‖1, θ) (3.24)

This regularizer prevents the L1-norm of each row of W from being larger than the pre-defined

parameter θ, thus potentially leads to sparser structure on the row level of W . This regularizer is

also systematically studied in [108] and [109].

As another attempt for sparsity inducing feature learning MTL method, the authors in [20] decom-

posed the weight matrixW toU and V , and conducted L0-norm regularizer, i.e., the total number

of non-zero elements, on V , for sparsity promotion. Besides, the constraint rank(U ) ≤ λ leads to

a low dimensional feature space.

In [117], the authors argued that in some cases, such as when tasks are not all relevant to each

other, it may not be appropriate to let tasks to share the same feature representation. To promote

partial feature sharing, the authors proposed the so-called “exclusive lasso” regularizer

R(f) ,
D∑
d=1

(
T∑
t=1

|wdt |)2 (3.25)

which, in essence, is a L1 − L2-norm regularizer, on the weight matrix W . Such a regularizer

encourages sparsity in the task level for each feature.

Finally, as a different strategy, the authors in [80] tries to improve the performance of the MTL

model by adding S unrelated auxiliary tasks, whose weights are represented as vs, s = 1, · · · , S.

Then the authors designed a sophisticated regularizer forW and V , so thatW and V don’t share

feature representation. By validating with a series of experimentals, it is shown in this paper that
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such a MTL setting, with the help of the auxiliary tasks, is beneficial in terms of generalization

performance.

Kernel-based MTL and MT-MKL

Theoretically, most MTL approaches can be extended to the corresponding non-linear models

by applying the representer theorem in a RKHS. However, in many cases, simply adapting the

representer theorem to kernelize the MTL models may lead to optimization problems that are

difficult to solve. Therefore, many research works have focused on deriving kernel-based methods

tailored for MTL, instead of simply adapting the representer theorem.

In [70], the learning of T linear functions is modeled as the problem of learning the vector-valued

function f : X → RT , while the matrix-valued kernel function is utilized to kernelize the MTL

models. Similarly, such kernel function is adapted in [28], by specifying the kernel function to be

a product between scalar-valued kernel function (called input kernel) and a positive semi-definite

matrix (referred to as the output kernel), which is learned during the training stage. Therefore,

the function f is learned via the learning of the output kernel. This model is not only kernelized

by the matrix-valued kernel function, but also able to capture the task relationship by learning the

output kernel. The theory of using matrix-valued kernel function in kernelization of MTL methods

is thoroughly studied in [15].

In [60], the authors constructed the “multi-task finite rank kernels” based on the operator-valued

kernel function, a general extension of matrix-valued kernel function. Several basic properties of

the multi-task finite rank kernels are established, and, the usefulness is demonstrated. Besides,

the authors specifically discussed polynomial kernel, which has been shown to be very powerful,

and proved that any continuous kernel function can be uniformly approximated by the polynomial

kernel function, which is a very interesting result.
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On the other hand, in [30], the authors defined a type of kernel function specifically for MTL prob-

lems. Given task t1, t2 and training datax1, x2, a kernel function is defined as k((x1, t1), (x2, t2)) ,

x′1B
′
t1
Bt2x2, whereBti is the feature mapping matrix for the ti’s task. Based on this definition of

kernel function, a Regularization-Loss MTL framework is studied. This kernelization strategy is

further studied by [89], where a general MTL framework is proposed for regression problems.

Instead of defining kernel functions specifically for MTL problems, as the methods described

above, in many scenarios, regular real-valued kernel function is utilized. In [90], the proposed

MTL model tries to capture the commonality between tasks and the task specific characteristics.

Based on the representer theorem, this is achieved by defining the function ft in the RKHS as

ft(x) , α′KxC + β′tKxJt (3.26)

where α ∈ RNT and βt ∈ RN , t = 1, · · · , T are variables to be learned during the training

stage, and KxC , [k(x,x1
1), · · · , k(x,xNT )]′ ∈ RNT , KxJt , [k(x,x1

t ), · · · , k(x,xNt )]′ ∈ RN .

Clearly, the commonality between tasks is captured by the first term, while the task specific char-

acteristics is extracted via the second term.

On the other hand, as a more commonly utilized kernelization method, the training samples are

pre-mapped to a RKHSH via a feature mapping φ, which is associated to a kernel function k, and

a linear model is learned in the feature spaceH:

min
f

R(f) + C
T∑
t=1

N∑
i=1

L(ft(φ(xit)), y
i
t) (3.27)

Such kernelization method is followed in [104] [2] [31] [49].

58



More importantly, the above mentioned method has been widely used in the research of MT-MKL.

One simple example, which is the MT-MKL model based on the SVM, is introduced in (2.55).

Besides, several previous MT-MKL works have been proposed following this direction.

In [1], similar to the non-kernelized methods that are introduced before, a Group-lasso type regu-

larzer is utilized in a MT-MKL context:

R(f) , (
T∑
t

(
M∑
m=1

‖wm
t ‖2)2q)1/q (3.28)

However, the difference between this work and the other ones is that, in this case, the weights

wm
t ’s are members of the RKHSHm, which is associated with a kernel function km. A similar but

more sophisticated work is given in [43]. Also, as introduced in (2.60), the work in [79] utilized an

L1 − Lq regularizer with q ≥ 1, which brings sparsity in the kernel level, such that only a subset

of the M kernels are active, which are multiplied by a non-zero coefficient.

While these models are built in the primal domain, on the other hand, some other MT-MKL works

directly formulate the model in the dual domain. Similar to the L2-norm MKL method [51], in

[82], the authors proposed a MT-MKL model, where all tasks share a common kernel function,

which is learned in a L2-norm MKL manner. However, in some cases, forcing all tasks to share

the same kernel function may not be appropriate, especially when outlier tasks exist. Therefore,

in [91], the authors proposed a model, which allows partial sharing of kernel function, by letting

kt ,
∑M

m=1(ξm+γmt )kmt . Besides, a MT-MKL model that allows both feature and kernel selection

is proposed in [44] and then extended in [45], based on the maximum entropy principle.

Finally, most previous MTL works minimize an average of the T task objectives. However the

authors in [57] argued that such an averaged objective function only leads to a specific point on the

Pareto-Front of the corresponding Multi-Objective Optimization (MOO) problem. Clearly, such a
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Pareto point does not necessarily lead to the best generalization performance for each task. There-

fore, an MT-MKL model that minimizes a Lp-norm of the T task objectives, named “Pareto-Path

MTL”, is proposed. Such a model is able to traverse a path on the Pareto-Front of the corre-

sponding MOO problem, and has been shown to be advantages in most scenarios, compared to the

averaged objective. This paper was further extended to a “Conic MTL” in [56], where the conic

combination of the task objectives are optimized. The generalization bound for the Conic MTL

model was derived. It was proved that, in most cases, the tightest generalization bound was not

achieved by the averaged MTL model, thus justified the benefits of considering Conic MTL against

averaged MTL.

Algorithms

One serious difficulty that prevents people from using MTL methods, especially kernel-based MTL

and MT-MKL is that, it is not usually easy to develop practical algorithm to solve the corresponding

optimization problems. In previous research, while some papers ignore the algorithm implemen-

tation of their proposed methods, several other papers tried to develop optimization algorithms

specifically to their models. This section reviews these algorithms without describing their details.

The authors in [104] proposed a kernel-based MTL model in the primal domain, where an Acceler-

ated Proximal Gradient method is utlized to solve their problem. The authors of [91] formulated a

framework, where individual tasks utilize their own task-specific space in conjunction with a shared

space component, while the balance between these two components is controlled via weights. An

exchange method algorithm is proposed to solve the resulting min-max problem. In [1], a Group-

Lasso regularizer on SVM weights is considered that yields coefficient sparsity within a group

of tasks and non-sparse regularization across groups. The resulting problem is solved in the dual

domain via a mirror descent-based algorithm. A variation of this algorithm is used in solving the
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formulation that is proposed in [43]. In [79], the Group-Lasso regularizer is generalized to Lp−Lq

regularization and two problems are addressed, one being convex and the other one non-convex.

For each of the two formulations, a specialized algorithm is proposed. Finally, maximum entropy

discrimination is employed in [44] and extended in [45] to construct a MT-MKL framework, while

a sequential quadratic programming algorithm is proposed specifically to solve their model.

For example, the early work in [55] suggests a MKL formulation with trace constraints over the

linearly combined kernels, which is further transformed into a solvable Semi-Definite Program-

ming (SDP) problem. Simple-MKL [78] proposes a MKL formulation with L1-norm constrained

coefficients. In each iteration of the algorithm, it solves an SVM problem by taking advantage

of an existing efficient SVM solver and the coefficients are updated based on a gradient-based

scheme. Similar algorithm is also applied in [97]. In [51], an L2-norm constraint is applied to

the linear combination coefficients and the proposed min-max formulation is transformed into a

Semi-Infinite Programming (SIP) problem, which is then solved via a cutting plane algorithm.

Moreover, two algorithms are proposed in [50] to solve the Lp-MKL formulation, where the co-

efficient constraint is generalized to an Lp-norm constraint. The relationship between the latter

Lp-MKL formulation and one that entails a Group-Lasso regularizer is pointed out in [98], which

utilizes a block coordinate descent algorithm to solve the problem in the primal domain. Besides

MKL-based SVM models, Cortes et al. [24] proposed a MKL formulation for KRR[83]. Cast as

a min-max problem, it is solved via an interpolated iterative algorithm, which takes advantage of

the closed-form solution of KRR and the kernel coefficients.

The algorithmic difficulty of both single-task and multi-task MKL problems not only brought a

large amount of algorithms, most of which are tailored for specific problems, but also lead to model

selection issues. For people who want to compare different models, a large amount of sophisti-

cated algorithms may need to be implemented. Also, for researchers who proposed new models, it

is usually an additional burden to develop algorithms for solving the corresponding models. Ob-
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serving these issues, in Chapter 5, we solve these problems by proposing a general framework,

which covers most single-task and multi-task MKL problems. More importantly, we propose an

easy-to-implement algorithm to solve this general framework, thus solves all formulations that are

covered by the proposed framework.
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CHAPTER 4: NEW HYPOTHESIS SPACES, GENERALIZATION

BOUNDS AND MODELS

The research on generalization bound for MTL HSs (thus models) provides theoretical justifica-

tion of learning multiple tasks simultaneously with shared information, as introduced in Chapter 2.

Also, by studying the generalization bounds for specific HS, useful insights of the performance of

the corresponding models can be drawn from the bound. In a better scenario, studying generaliza-

tion bound of HSs may inspire the invention of new HSs, whose generalization bounds are tighter,

and the performance of corresponding models are potentially better.

In order to conduct inductive transfer by training multiple tasks simultaneously, as reviewed in

Chapter 3, there are two widely used techniques for information sharing amongst tasks: One is

to apply specifically designed regularizers, which usually capture the prior assumptions of the

underlying task relationships; another one is to pre-map data from all tasks to a (partially) common

feature space by a feature mapping, which is pre-selected or learned during the training stage,

followed by the learning of all tasks in the (partially) common feature space.

Although the research of generalization bound for the first information sharing strategy has re-

ceived a fruitful of accomplishments, the second one has largely been omitted. As discussed in

Chapter 3, the two papers follow this line of research only considered very limited cases: First,

none of the two works considered the case of a non-linear feature mapping, which may be learned

during training, an important scenario for kernel-based MTL. Second, the two papers constrained

the weight wt of each task in a norm-ball with the same radius, i.e.‖wt‖2 ≤ R, ∀t = 1, · · · , T .

This setting unnecessarily bereaves the flexibility of the HS, and, as we will show in this chapter,

lead to a much looser generalization bound, which potentially deteriorate the performance of MTL

models that based on this HS.
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Inspired by the above observation, in this chapter, we propose two new HSs, one for single kernel

MTL and another one for MT-MKL, which are generalization of previous HS (3.10). More im-

portantly, we derive the generalization bounds for the two HSs, followed by an analysis of each

bound. We show that, indeed, by introducing the flexibility of the norm-ball constraint, tighter gen-

eralization bound can be achieved, which indicates that the corresponding model may enjoy better

generalization performance. Such an observation directly inspired us to propose a MTL model,

which is also introduced in this chapter, based on the proposed HSs.

Hypothesis Spaces

Given T tasks, where each task features a linear function in the RKHSH, i.e., ft(x) , 〈wt, φ(x)〉H,

we propose the following HS for kernel-based MTL

Fs , {x 7→ [〈w1, φ(x)〉H, · · · , 〈wT , φ(x)〉H]′ : ‖wt‖2
H ≤ (λt)

2R,λ ∈ Ωs(λ)} (4.1)

where the radius parameters λt’s are selected in the feasible region Ωs(λ) , {λ � 0, ‖λ‖s ≤

1, s ≥ 1}, φ : X → H is the feature mapping associated to a kernel function k : X ×X → R, and

H is the corresponding RKHS. Also, we propose the following HS for MT-MKL

Fs,r , {x 7→ [〈w1, φ(x)〉Hθ
, · · · , 〈wT , φ(x)〉Hθ

]′ :

‖wt‖2
Hθ
≤ (λt)

2R,λ ∈ Ωs(λ), φ ∈ Ωr(φ)}
(4.2)

where, instead of letting φ begin fixed before training, it is selected from the feasible region

Ωr(φ) = {φ : φ = (
√
θ1φ1, · · · ,

√
θMφM),θ � 0, ‖θ‖r ≤ 1, r ≥ 1}, φm : X → Hm, φ(x) ∈ Hθ,

Hθ = H1 × · · · × HM is the RKHS that corresponds to the kernel function k ,
∑M

m=1 θmkm,
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φm : X → Hm is the m-th feature mapping is associated to the manually selected kernel function

km : X × X → R.

It is not difficult to see that, in the first HS, Fs possesses a fixed, pre-selected feature mapping φ,

while in the second HS, the feature mapping φ is learned via the MKL approach, as introduced

in Equation (2.30). Besides, in both of the two HSs, each task weight wt is constrained in the

norm-ball, whose size is parametrized by λt, instead of forcing the same radius for all norm-ball

constraints, which is the case in [4] and [65]. Obviously, by setting λt = 1,∀t = 1, · · · , T , Fs

degrades to the equal-radius HS, which is the case of [65].

In the following, we derive the ERC-based generalization bound for Fs, which is introduced in

Theorem 7. Then, we demonstrate that the ERC is monotonically increasing with s, which implies

that the lowest ERC value is achieved, when s = 1. We then provide an upper bound for the ERC

of Fs, which also monotonically increases with respect to s. Besides, we illustrate that, the equal-

radius HS, which is introduced in [65], is a special case of our proposed HS Fs, when s → +∞.

Therefore, due to the monotonicity of the generalization bound ofFs, we conclude that the HS with

equal radius for all norm-ball constraints is the worst, in terms of the tightness of generalization

bound, which indicates potential worse performance for models that are based on this HS. In fact,

in the optimal case (s = 1), we achieve a generalization bound of orderO(
√

log T
T

), which decreases

quickly with respect to T . On the other hand, when s → +∞, the bound does not decrease with

T , thus, does not take advantage of the learning with multiple tasks and is less preferred.

We then derive the generalization bound for the HS Fs,r, which still features a bound of order

O(
√

log T
T

) when s = 1, as in the single-kernel setting. Additionally, if M kernel functions are

involved, the bound is of order O(
√

logM), which has been proven to be the best bound that can

be obtained in single-task multi-kernel classification [26]. Therefore, this optimal the bound is also

preserved in the MT-MKL case.
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Fixed Feature Mapping

Let {xit, yit} ∈ X × {−1, 1} , i = 1, · · · , N be the training sample drawn identically and inde-

pendently from the probability distribution Pt(X, Y ), t = 1, · · · , T . Let H be a RKHS associated

with the kernel function k(·, ·) : X × X 7→ R, whose corresponding feature mapping is denoted

by φ : X 7→ H. In what follows we give the theoretical analysis of our HS Fs.

Theoretical Results

Before digging into our theoretical results, we first give the following definition for duality map-

ping, which will be used later:

(·)∗ : a 7→ a∗ ,


a
a−1

, ∀a 6= 1

+∞, a = 1
(4.3)

Based on the definition of ERC for MTL, it is straightforward to see that

R̂(Fs) = Eσ{ sup
f∈Fs

2

TN

T∑
t=1

N∑
i=1

σitft(x
i
t)} (4.4)

According to Theorem 7, in order to derive the generalization bound for Fs, it is needed to calcu-

late, or, at least upper bound, the above ERC term. The next lemma provides an equivalent form

of Equation (4.4), which not only facilitates the proof of the upper bound of R̂(Fs), but also helps

the proof of other important properties of Fs that are shown in Theorem 8 and Theorem 9.

Lemma 2. Let σt , [σ1
t , · · · , σNt ]′, ut ,

√
σt′Ktσt, where Kt is the kernel matrix that consists
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of elements k(xit,x
j
t), u , [u1, · · · , uT ]′. Then ∀s ≥ 1

R̂(Fs) =
2

TN

√
REσ{‖u‖s∗} (4.5)

Given Equation (4.5), the following theorem illustrates that R̂(Fs) is monotonically increasing

with respect to s.

Theorem 8. R̂(Fs) is monotonically increasing with respect to s.

The above theorem clearly unveils the fact that, in order to get a potentially tight generalization

bound, a small value of s is desired, and the tightest bound is likely to be achieved when s = 1.

As a tight generalization bound potentially leads to better generalization performance, the above

theorem serves as a guide for the selection of the parameter s.

Define F̃ , {x 7→ [〈w1, φ(x)〉H, · · · , 〈wT , φ(x)〉H]′ : ‖wt‖2
H ≤ R}, which is the HS that is

given in [65] under kernelized MTL setting, then F̃ is the HS with equal radius for each ‖wt‖2.

This is the special case of Fs with all λt’s equal to 1.

Theorem 9. R̂(F̃) = R̂(F+∞).

The above result, in conjunction with Theorem 8, implies that the HS F̃ , which sets equal radii for

all wt’s, is the least preferred, since it has the largest ERC value. This fact can be also observed

from another angle: Since 0 ≤ λt ≤ 1,∀t = 1, · · · , T , the volume of Fs is smaller than that

of F̃ . Therefore, it is destined that the ERC of F̃ is always larger than that of Fs. In other

words, our proposed HS Fs receives a lower value of ERC by shrinking its volume. As described

in Chapter 2, decreasing the capacity of the HS may lead to increased empirical error êr(f),

which can potentially deteriorates the generalization performance. However, we will show via

experiments that this is rarely encountered.
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Next, as described above, in order to derive the generalization bound for Fs, we need to compute,

or, at least find an upper bound for R̂(Fs). The following theorem addresses this requisite.

Theorem 10. Let Fs be as defined in Equation (4.1), and let ρ , 2 lnT . Assume that ∀x ∈ X ,

k(x,x) = 〈φ(x), φ(x)〉 ≤ 1. Then the ERC is bounded as follows:

R̂(Fs) ≤
2

T
√
N

√
τRT

2
s∗ (4.6)

where τ , (max {s, ρ∗})∗.

Analysis

Based on Theorem 10, in this sub-section, we point out several useful insights that are captured by

the ERC bound.

First of all, as Theorem 8 indicates that the ERC value of Fs is monotonically increasing with s,

for a potentially tight ERC bound, it is expected that the bound is also monotonically increasing

with s. It is not difficult to see that this property is preserved in our ERC bound.

As s → +∞, Fs degrades to F̃ . In this case, our ERC bound becomes R̂(F+∞) ≤ 2
√

R
N

.

One immediate observation is that the bound is of order O(
√

1
N

). If it was not a surprise that F̃

maintains the largest ERC value because of its largest volume, it is a useful insight that its ERC

bound does not decrease with respect to T . This fact implies that its real ERC value may decrease

with T very slowly, or, if the bound is tight enough, the real ERC value may not decrease with T

either. In other words, such MTL HS is not able to take advantage of multiple tasks; it is similar to

learning each task independently.
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Besides, it is worth to mention that the ERC bound 2
√

R
N

matches the bound that is given in [65].

This is because of the following relation between F̃ and the HS of [65], F , that is introduced in

Equation (3.10): First, let the operator A in F be the identity operator, and then let x in F be an

element ofH, i.e.let x in F be φ(x) in F̃ . Then F becomes F̃ . In other words, F is a special case

of F̃ .

When s decreases, a better generalization bound can be achieved, compared to when s → +∞.

For finite s, the bound for Fs is of order O( 1

T
1
s

√
1
N

), which is obviously more preferred over the

aforementioned O( 1√
N

) bound, as it asymptotically decreases with increasing number of tasks.

Furthermore, when s = ρ∗, R̂(Fρ∗) ≤ 2
T
√
N

√
2eR log T . Here we achieve a bound of order

O(
√

log T
T

), which decreases faster with increasing T compared to the bound, when s > ρ∗. Finally,

when s = 1, R̂(F1) ≤ 2
T
√
N

√
2R log T . While also being of order O(

√
log T
T

), in this case, it

features a smaller constant compared to the bound of R̂(Fρ∗). In fact, due to the monotonicity of

the bound that is given in (4.6), the tightest bound is obtained when s = 1.

Based on the above analysis, we conclude that, theoretically, when s = 1, we can expect to achieve

the best generalization performance for the corresponding MTL model, while the performance po-

tentially deteriorates as s increases its value. Therefore, the generalization bound not only reveals

underlying insights for the HS (thus the MTL models that adapt Fs as their HS), but also pro-

posed a suggestion for model selection: The smaller s it is, the better model performance may be

achieved.

Learning the Feature Mapping

In this section, we consider the MTL HS Fs,r, where the feature mapping φ is selected during the

training stage via an MKL approach. In particular, we will assume that φ = (
√
θ1φ1, · · · ,

√
θMφM)
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∈ Hθ = H1 × · · · × HM , where each φm : X 7→ Hm is selected before training, and φ ∈ Ωr(φ),

Ωr(φ) = {φ : φ = (
√
θ1φ1, · · · ,

√
θMφM),θ � 0, ‖θ‖r ≤ 1, r ≥ 1}. In the next sub-section, we

give theoretical analysis of the HS Fs,r.

Theoretical Results

Based on the definition of ERC for MTL, it is straightforward to see that

R̂(Fs,r) = Eσ{ sup
f∈Fs,r

2

TN

T∑
t=1

N∑
i=1

σitft(x
i
t)} (4.7)

Similar to the previous section, it is needed to upper bound the above ERC term. The next lemma

provides two equivalent forms of Equation (4.7), which not only facilitates the proof of the upper

bound of R̂(Fs,r), but also help the proof other important properties of Fs,r that are shown in

Theorem 11 and Theorem 12.

Lemma 3. Let σt , [σ1
t , · · · , σNt ]′, umt , σ′tK

m
t σt, ut , [u1

t , · · · , uMt ]′, vm ,
∑T

t=1 λtσ
′
tK

m
t αt,

v , [v1, · · · , vM ]′, whereKm
t is the kernel matrix that contains elements km(xit,x

j
t). Then ∀s ≥ 1

and r ≥ 1,

R̂(Fs,r) =
2

TN

√
REσ{ sup

θ∈Ωr(θ)

T∑
t=1

(θ′ut)
s∗
2 }

1
s∗ =

2

TN
Eσ{ sup

λ∈Ωs(λ),α∈Ω(α)

‖v‖r∗} (4.8)

where Ωr(θ) , {θ : θ � 0, ‖θ‖r ≤ 1}, and Ω(α) , {αt : σt
′Km

t αt ≤ R, ∀t}.

Leveraging from Equation (4.8), the following theorem illustrates that R̂(Fs,r) is monotonically

increasing with respect to s.

Theorem 11. R̂(Fs,r) is monotonically increasing with respect to s.
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Again, the preference to small s value is clearly indicated by the above theorem, and when s = 1,

the smallest ERC value can be achieved. It potentially leads to the tightest generalization bound,

and the best generalization performance.

Define F̃r , {x 7→ (〈w1, φ(x)〉Hθ
, · · · , 〈wT , φ(x)〉Hθ

)′ : ‖wt‖2
Hθ
≤ R, φ ∈ Ωr(φ)}, then the

HS F̃ is extended to a MT-MKL setting, in order to compare the proposed HS and the one features

norm-ball constraints with equal radius.

Theorem 12. R̂(F̃r) = R̂(F+∞,r).

This, again, indicates that the tightest generalization bound is obtained, when s = 1, as is the case

for single kernel MKL. Also, the HS that constraints the wt’s within equal radius norm balls is

therefore the least preferred. Similar to the previous discussion, in order to estimate the expected

classification error, one has to calculate the quantity of the ERC, or at least upper bound it. Due

to the difficulty of calculating the precise value, in the following, we provide an upper bound on

R̂(Fs,r).

Theorem 13. Let Fs,r be as defined in Equation (4.2). Assume that ∀x ∈ X , m = 1, · · · ,M ,

km(x,x) = 〈φm(x), φm(x)〉Hm ≤ 1. The ERC can be bounded as follows:

R̂(Fs,r) ≤
2

T
√
N

√
Rs∗T

2
s∗Mmax{ 1

r∗ ,
2
s∗ } (4.9)

The above theorem is valid for any r ≥ 1 and s ≥ 1. However, due to its generality, it is not tight

enough in some cases. In the following corollary, we provide refinement of the above bound under

two specific situations:
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Corollary 1. Under the conditions that are given in Theorem 13, we have

R̂(Fs,r) ≤
2

T
√
N

√
τRT

2
s∗M

1
r∗ if r∗ ≤ lnT

R̂(Fs,r) ≤
2

T
√
N

√
τRT

2
s∗M

2
τ if r∗ ≥ lnMT

(4.10)

∀s ≥ 1, where τ , (max {s, ρ∗})∗, and

ρ ,

 2 lnT, r∗ ≤ lnT

2 lnMT, r∗ ≥ lnMT
(4.11)

Analysis

Once again, to unveil the insights of the MT-MKL HS, it is needed to analyze the ERC bounds that

are given in Theorem 13 and Corollary 1.

First of all, we analyze the bound that is given in (4.9), which is a general result ∀s ≥ 1, r ≥ 1.

Clearly, for fixed r, (4.9) gives a bound of order O( 1

T
1
s
). Therefore, it is not difficult to see that

s → +∞ is the least preferred, since it is the same as independent learning and does not take

advantage of the appearance of multiple tasks. This conclusion is the same as the single kernel

scenario, as discussed in the previous section. Moreover, based on (4.9), ∀r ≥ 1, R̂(F1,r)’s bound

is of order O(
√
M

1
r∗ ). Compared to the O(

√
M

1
r∗ min(dlnMe, dr∗e)) bound, which is given in

[52], our bound for MT-MKL is tighter.

When r∗ ≥ lnMT , the monotonicity with respect to s is preserved in the ERC bound that is given

in (4.10). When s = ρ∗, R̂(Fρ∗,r) ≤ 2
T
√
N

√
2eR lnMT . This gives a O(

√
lnMT
T

) bound. Since

it has been proved that the best obtainable bound in a single-task multiple kernel classification
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setting is of order O(
√

lnM) [26], this logarithmic bound is preserved in our proposed HS in

the MT-MKL context. When s = 1, R̂(F1,r) ≤ 2
T
√
N

√
2RM

1
lnMT lnMT . Since it is true that

M
1

lnMT ≤ e,∀M ≥ 1, T ≥ 1, this bound is even tighter than the one obtained, when s = ρ∗.

When r∗ ≤ lnT , similar to the previous case, the monotonicity is preserved. Differently, in this

bound, when s = ρ∗, R̂(Fρ∗,r) ≤ 2
T
√
N

√
2eRM

1
r∗ lnT . This gives a O(

√
M

1
r∗ lnT
T

) bound. When

s = 1, R̂(F1,r) ≤ 2
T
√
N

√
2RM

1
r∗ lnT . Clearly, it further decreases the bound by a constant factor

e.

To compare the above analyzed optimum bounds, when r∗ ≥ lnMT , a better bound with respect

to M is achieved, i.e., O(
√

lnM) versus O(
√
M

1
r∗ ). On the other hand, with regards to T , even

though a O(
√

lnT
T

) bound is reached in both cases, when r∗ ≤ lnT , a lower constant is obtained.

Therefore, there is a trade-off exist on the tightness of bound, induced by the number of tasks and

number of kernels. In practice, we usually have a much larger number of tasks T , compared to the

number of kernel functions M . Therefore, it is more important to set the parameter value r such

that the generalization bound can be benefited the most from the large number of tasks, where the

increasing of the bound value caused by M can therefore be compensated.

To finally point out the benefit of the proposed HS for MT-MKL, we note that the corresponding

generalization bound not only preserves the optimal O(
√

lnM) bound encountered in single-task

MKL, but also preserves the optimal O(
√

lnT
T

) bound encountered in the single-kernel MTL case,

which was given in the previous section. This fact indicates a potentially good design of Fs,r.

New Models for Kernel-based MTL and MT-MKL

The previous sections demonstrated the benefits of our proposed HSs, in terms of tighter gener-

alization bound. It is of interest to verify that the advantageous HS is indeed beneficial in prac-
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tical application, by testing the generalization performance of the corresponding MTL model. In

this section, a new kernel-based MTL model is proposed, by adapting Fs as its HS. Besides, a

MT-MKL model is also developed, with Fs,r being assigned as its HS.

Clearly, due to the structure of Fs, the corresponding MTL model can be easily formulated as

follows:

min
w,λ

T∑
t=1

N∑
i=1

L(〈wt, φ(xit)〉H, yit)

s.t. ‖wt‖2
H ≤ λ2

tR, t = 1, · · · , T

λ ∈ Ωs(λ)

(4.12)

and the corresponding MT-MKL model can be formulated similarly.

However, in practice, it is not quite straightforward to figure out how to solve the above optimiza-

tion problem, and it will not be a surprise that the corresponding MT-MKL model is even more

difficult to optimize.

In order to tackle this problem,in the next theorem, we show the relation between our HSs and the

ones that are given by the Group-Lasso type regularizer. We conclude that an equivalence exists

between our HSs and the ones that utilize Group-lasso type regularizer, which is a key property in

facilitating the proposal of easy-to-solve MTL models, based on our HSs.

Theorem 14. The HS Fs is equivalent to

FGLs , {x 7→ [〈w1, φ(x)〉H, · · · , 〈wT , φ(x)〉H]′ : (
T∑
t=1

‖wt‖sH)
2
s ≤ R} (4.13)
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Similarly, Fs,r is equivalent to

FGLs,r , {x 7→ [〈w1, φ(x)〉Hθ
, · · · , 〈wT , φ(x)〉Hθ

]′ : (
T∑
t=1

‖wt‖sHθ
)
2
s ≤ R,θ ∈ Ωr(θ)} (4.14)

Based on the above theorem and Proposition 1, we immediately reach the following kernel-based

MTL formulation, whose HS is given as Fs:

min
w

(
T∑
t=1

(
‖wt‖2

H
2

)
s
2 )

2
s + C

T∑
t=1

N∑
i=1

L(〈wt, φ(xit)〉H, yit) (4.15)

Similarly, the MT-MKL formulation can be written as follows:

min
w,θ∈Ωr(θ)

(
T∑
t=1

(
‖wt‖2

Hθ

2
)
s
2 )

2
s + C

T∑
t=1

N∑
i=1

L(〈wt, φ(xit)〉Hθ
, yit) (4.16)

In the following sub-sections, we discuss in detail the models on classification problems, where

the hinge loss is utilized, and thus leads to SVM-based formulations.

MTL Formulation

Before digging into the proposed MTL formulation, we first introduce the following theorem,

which is provided in [57].
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Theorem 15. Let p ≥ 1, λ, g ∈ RT such that g � 0, but g 6= 0. Also, let q , p
p−1

. Then,

max
λ∈B̄λ,q

λ′g = ν(g)p = ‖g‖p (4.17)

Furthermore, a solution to the previously stated maximization problem is given as

λ∗ =


( g
‖g‖p

)p−1 if p > 1

1 if p = 1

(4.18)

Now, given a set of training samples {xit, yit} ∈ X × {−1, 1}, i = 1, · · · , N, t = 1, · · · , T and

fixed feature mapping φ : X 7→ H, our model in a SVM-based context for classification problems

is given as follows:

min
w,b

(
T∑
t=1

(
‖wt‖2

H
2

)
s
2 )

2
s + C

T∑
t=1

N∑
i=1

Lhinge(y
i
t(〈wt, φ(xit)〉H + bt)) (4.19)

Obviously, based on the discussions above, we are aware that Fs is the HS of (4.19). This mini-

mization problem is generally difficult to solve. However, with a simple transform, it can be easily

optimized.

First, note that, based on Theorem 5, when 1 ≤ s ≤ 2, Problem (4.19) is equivalent to

min
w,b,λ

T∑
t=1

‖wt‖2
H

2λt
+ C

T∑
t=1

N∑
i=1

Lhinge(y
i
t(〈wt, φ(xit)〉H + bt))

s.t. λ � 0, ‖λ‖ s
2−s
≤ 1

(4.20)
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which can be easily solved via block coordinate descent method, with {w, b} as a group and λ

as another. Specifically, when λ is fixed, minimizing with respect to {w, b} is simply solving

T independent SVM problems, where efficient solver can be applied, such as LIBSVM [18]. On

the other hand, when optimizing with respect to λ with {w, b} fixed, the closed-form solution is

already provided in Theorem 5.

When s > 2, according to Theorem 15, (4.19) is equivalent to

min
w,b

max
λ

T∑
t=1

λt‖wt‖2

2
+ C

T∑
t=1

N∑
i=1

Lhinge(y
i
t(〈wt, φ(xit)〉H + bt))

s.t. λ � 0, ‖λ‖ s
s−2
≤ 1

(4.21)

The order of the min and max operation can be changed in the above min-max problem. This

is because that the above problem is convex-concave, and the feasible region is compact [88].

Therefore, we have

max
λ

min
w,b

T∑
t=1

λt‖wt‖2

2
+ C

T∑
t=1

N∑
i=1

Lhinge(y
i
t(〈wt, φ(xit)〉H + bt))

s.t. λ � 0, ‖λ‖ s
s−2
≤ 1

(4.22)

The above problem can be further transfered to the following equivalent maximization problem,

by calculating the dual form of the inner SVM problem:

max
α,λ

T∑
t=1

λt(αt
′1− 1

2
αt
′Y tKtY tαt)

s.t. 0 � αt �
C

λt
1, αt

′yt = 0, ∀t = 1, · · · , T

λ � 0, ‖λ‖ s
s−2
≤ 1

(4.23)
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where Y t , diag(y1
t , · · · , yNt ) and Kt is the kernel matrix calculated based on the training data

from the t-th task. Similar to the previous case, here, group coordinate descent can be utilized to

solve (4.23), with λ as a group, which has closed-form solution based on Theorem 15, and α as

another group, leading to solving T SVM problems.

MT-MKL Formulation

In order to propose a MT-MKL model in a SVM-based classification context, Problem (4.16) is

customized to the following model by utilizing the hinge loss:

min
w,b,θ∈Ωr(θ)

(
T∑
t=1

(
‖wt‖2

Hθ

2
)
s
2 )

2
s + C

T∑
t=1

N∑
i=1

Lhinge(y
i
t(〈wt, φ(xit)〉Hθ

+ bt))

s.t. θ � 0, ‖θ‖r ≤ 1

(4.24)

Similar to the previous argument, Fs,r serves as the HS of the above formulation. To solve the

above problem, when 1 ≤ s ≤ 2, a similar block coordinate descent can be utilized. To be

concrete, in this case, the above problem is equivalent to

min
w,b,λ,θ

T∑
t=1

M∑
m=1

‖wm
t ‖2
Hm

2λtθm
+ C

T∑
t=1

N∑
i=1

Lhinge(y
i
t(

M∑
m=1

〈wm
t , φm(xit)〉Hm + bt))

s.t. θ � 0, ‖θ‖r ≤ 1

λ � 0, ‖λ‖ s
2−s
≤ 1

(4.25)

When λ and θ are fixed, optimizing with respect to {w, b} involves solving T SVM problems,

whose kernel function is given by k =
∑M

m=1 θmkm. On the other hand, optimizing with respect

to both λ and θ enjoys closed-form solution, again, as given in Theorem 5.
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In the case of s > 2, with the help of Theorem 15, Problem (4.24) is equivalent to the following

min-max problem:

min
w,b,θ

max
λ

T∑
t=1

M∑
m=1

λt‖wm
t ‖2
Hm

2θm
+ C

T∑
t=1

N∑
i=1

Lhinge(y
i
t(

M∑
m=1

〈wm
t , φm(xit)〉Hm + bt))

s.t. θ � 0, ‖θ‖r ≤ 1

λ � 0, ‖λ‖ s
s−2
≤ 1

(4.26)

which, similar to the single kernel case, can be equivalently transformed to the dual domain, yield-

ing

min
θ

max
α,λ

T∑
t=1

(αt
′1− 1

2λt
αt
′Y t(

M∑
m=1

θmK
m
t )Y tαt)

s.t. 0 � αt � C1, αt
′yt = 0, ∀t

λ � 0, ‖λ‖ s
s−2
≤ 1

θ � 0, ‖θ‖r ≤ 1

(4.27)

However, different to the single kernel case, which is formulated as a maximization problem

and enjoys a simple group coordinate descent algorithm, the above min-max problem cannot be

similarly solved by group gradient descent method. In fact, many MKL and MT-MKL models

have been formulated similarly as min-max problems, which are not easy to solve. As discussed

in Chapter 2 and Chapter 3, such a difficulty severely hindered the research and application of

MT-MKL, since in most cases new algorithms have to be invented for new models, and practition-

ers need to interpret and implement several sophisticated algorithms in order to compare various

models. This fact inspired us to propose a general framework, which encompasses many MKL and
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MT-MKL dual formulations. Then, we will propose an algorithm for solving the framework, thus

is able to solve most MKL and MT-MKL formulations, without need to develop and implement

one algorithm for each model. The framework and algorithm is introduced in the next chapter.

It is worth to note that, the single kernel MTL model (4.19) is a special case of the above MT-MKL

model (4.24): Problem (4.24) degrades to Problem (4.19), when M = 1. The trade-off between

these two methods is obvious: For the single kernel model, it features a very simple and straight-

forward algorithm, as described before. However, in this case, there is a potential need for kernel

selection via cross-validation, which requires an additional validation data set and computational

effort. Clearly, in the case that the optimal kernel function is known a priori, or, the candidate set

of the kernel function is small, this single kernel formulation is preferred. On the other hand, for

the MT-MKL model (4.24), the kernel function is automatically generated via the MKL scheme,

therefore saves the computation effort for kernel selection, as in the single kernel scenario. Besides,

potentially better kernel function can be generated via the MKL scheme, due to the richer space for

kernel selection. This brings higher classification accuracy to the MT-MKL model. However, the

MT-MKL model requires the investigation of a new algorithm, which is a little more complicated

than that of Problem (4.19). Therefore, this model is preferred, when it is not sure which kernel

function to use, and when a potentially better generalization performance is highly desired, even

though studying and implementing the new algorithm is required.

Other related works

Prior to delving into the next major contribution of our research, which is a general purpose model

framework and algorithm for both single-task and multi-task MKL problems, in this section, we

discuss the relation between our proposed contents and four closely related papers.
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First, we discuss [1] and [79]. Both of these two research works consider the Group-Lasso type

regularizer to achieve different level of sparsity. Specifically, [1] considered the following regular-

izer

(
n∑
j=1

(

nj∑
k=1

‖wjk‖)s)
2
s , s ≥ 2 (4.28)

where the weights of each of the n groups is processed via aL1-norm (i.e.the inner summation), and

the Ls norm regularizer is used for group level regularization. This regularizer can be customized

to the scenario of MT-MKL, by equating wjk to wm
t , yielding

(
T∑
t=1

(
M∑
m=1

‖wm
t ‖)s)

2
s , s ≥ 2 (4.29)

Compare the above regularizer with the one that defined in FGLs,r , we see the following difference:

In FGLs,r , instead of applying an L1-norm, we used
∑M

m=1
‖wmt ‖2
θm

, where θm is learned during the

training from the feasible region Ωr(θ). Therefore, our regularizer subsumes MT-MKL with a

common kernel function, a feature that is not allowed in (4.29).

In [79], the following regularizer is considered by the authors:

M∑
m=1

(
T∑
t=1

‖wm
t ‖q)

p
q , 0 ≤ p ≤ 1, q ≥ 1 (4.30)

There exist two major differences between (4.30) and the regularizer that is defined in FGLs,r . First,

in (4.30), the wm
t ’s that corresponds to the same kernel function is considered as a group, while

FGLs,r treats each task as a group. Therefore, the order of the double summation is different between

these two regularizers. Second, again, the MT-MKL with common kernel function setting is not
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included in (4.30), due to the same reason that is stated above.

In the following, we discuss the difference between our work and the two theoretical works [68]

and [47]. We first state following the regularizer that is considered in [68], which is introduced in

Chapter 3:

‖w‖M , inf{
∑
M∈M

‖vM‖ : vM ∈ H,
∑
M∈M

MvM = w} (4.31)

whereM is an almost countable set of symmetric bounded linear operators on H. It is worth to

note that, a specific regularizer needs to be either summation of several norms, or the infimum of

such a summation over a feasible region, in order for it to be covered by this general expression

(4.31). For our regularizer (
∑T

t=1 ‖wt‖s)
2
s , if attention is paid on the power outside the summation,

it is not difficult to observe that it is not summation of norms. Also, it is not clear if it can be

represented by an infimum expression. Therefore, (4.31) neither subsumes the regularizer that is

given in FGLs , nor the one in FGLs,r . Besides, one advantage of our ERC bounds is that, it shows

a clear relation between the bound and both the number of tasks T and number of kernels M .

Besides, based on our analysis, it is clearly to see that the logarithmic bound can be achieved.

These are not the results that can be easily drawn from the bound that is derived in (4.31), even

though our regularizers can be case as special cases of (4.31).

In [47], the authors considered the following hypothesis space

F , {x→ [〈w1,x〉, · · · , 〈wT ,x〉]′ : F (W ) ≤ Fmax} (4.32)

where the function F is β-strongly convex with respect to a norm ‖ · ‖, a condition that is satisfied

in many situations, including when F (W ) = ‖W ‖1,1, ‖W ‖1,2, ‖W ‖2,1 and ‖W ‖2,2. However,
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their work is very limited, since it is assume W ∈ Rm×n. On the other hand, we assume our wt’s

be an element of a RKHS, which can be potentially infinite-dimensional. Also, their regularizer

cannot be applied to the MT-MKL scenario (see the one that introduced in (4.24)), where kernel

combination coefficient θ is learned during training, which is emphasized by our work.
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CHAPTER 5: A GENERAL PURPOSE FRAMEWORK AND

ALGORITHM

Solving MKL problems has been an algorithmic difficulty for a long time. Usually, for models that

are formulated in the primal domain, a block coordinate descent algorithm is the most frequently

used. However, as introduced in Chapter 2, not all MKL formulations can be easily modeled in

the primal domain; moreover, creating models directly in the dual domain is usually more straight-

forward: For example, it is easy to formulate the optimal-neighbor MKL problem, as given in

Problem (2.43), in the dual domain, whose primal formulation is not trivially easy to create. This

is even more true, when MT-MKL problems are considered. As an example, models with kernels

that are partially shared across tasks can be easily formulated in the dual domain, which is not very

straightforward to model in the primal domain.

However, dual formulations for single-task MKL and MT-MKL problems are, in the most cases,

in the form of min-max optimization problem, which is by itself a difficult problem to solve. This

problem is also encountered in our proposed MT-MKL model (4.27). We believe that such an

algorithmic difficulty hinders both research progress and practical usage of single-task MKL and

MT-MKL. In the research perspective, it is usually a pain for researchers to develop new algorithms

for their models, especially when the research is originally focused on model formulation, instead

of algorithms. In the practical perspective, it is a nightmare for users, who want to use single-task

MKL and MT-MKL models, to understand complicated algorithms. This is even worse, when

people want to compare different models, in which case several algorithms have to be interpreted

and implemented.

Observing these issues, in this chapter, we propose a general framework for single-task MKL

and MT-MKL problems in the dual domain, which covers most existing (and potentially many
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future) models and our proposed MT-MKL model (4.27). Then, we develop an easy-to-implement

algorithm to solve this framework, thus solves all formulations that are covered by our framework,

including Problem (4.27). In this chapter, we discuss the framework and algorithm in detail.

Framework

Given a set of training data {xi, yi} ∈ X × Y , i = 1, · · · , N , consider a kernelized supervised

learning problem, parametrized by α, which is given in the following form

max
α∈Ω(α)

ḡ(α,K) (5.1)

where K is the kernel matrix, calculated by the kernel function k on the training set. Also, we

assume that the function ḡ has a finite maximum, a finite number of local maxima with respect to

α in the feasible set Ω(α) ⊂ Rn, and is affine with respect to the individual entries ofK.

It is not difficult to see that, several widely encountered machine learning models satisfy the above

listed requirements, including the SVM, KRR, SVDD [92] and One-Class SVM [85], to mention

a few major ones. In the following, we list their objective functions and feasible regions, in order

to demonstrate how these models fit into the general optimization problem (5.1):

ḡSVM(α,K) , α′1− 1

2
α′Y KY α, (5.2)

with Ω(α) , {α ∈ Rn : 0 � α � C1,α′y = 0}
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ḡKRR(α,K) , 2α′y −α′(λI +K)α, (5.3)

with Ω(α) , Rn

ḡSVDD(α,K) , α′k −α′Kα, (5.4)

with Ω(α) , {α ∈ Rn : 0 � α � C1,α′1 = 0}

ḡOCSVM(α,K) , −α′Kα, (5.5)

with Ω(α) , {α ∈ Rn : 0 � α � 1

νl
1,α′1 = 0}

In the above examples, y , [y1, · · · , yn]′ is the target vector, k , [k(x1,x1), · · · , k(xn,xn)]′,

Y , diag(y1, · · · , yn), and 1 is the all-ones vector with appropriate dimension.

To extend Problem (5.1) to a MTL setting, we assume that we have T such tasks. Then, the dual

domain MT-MKL framework can be formulated as follows:

min
θ∈Ψ(θ)

max
a∈Ω(a)

T∑
t=1

ḡ(αt,
M∑
m=1

θmt K
m
t ) (5.6)

where Ψ(θ) denotes the feasible region of θ.

Due to the generality of the above framework, it covers several existing single-task MKL model

and MT-MKL models. To give an example, in the single-task MKL scenario, i.e., when T = 1, it
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covers the popular Lp-norm MKL model [50] by letting

ḡ(α,
M∑
m=1

θmKm) , α′1− 1

2
α′Y (

M∑
m=1

θmKm)Y α (5.7)

with Ω(α) , {α ∈ Rn : 0 � α � C1,α′y = 0} and Ψ(θ) = {θ : ‖θ‖p ≤ 1,θ � 0}.

Clearly, in the above setting, with p = 2, the L2-norm MKL method [51] is also covered by the

above framework.

In the scenario of MT-MKL, the model that allows partially shared kernel function, which is intro-

duced in [91], can be specified by our framework as follows:

ḡ(αt,
M∑
m=1

θmt K
m
t ) , α′t1−

1

2
α′tY t(

M∑
m=1

θmt K
m
t )Y tαt (5.8)

with Ω(α) , {αt ∈ Rn : 0 � αt � C1,α′ty = 0,∀t = 1, · · · , T} and Ψ(θ) = {θ : θmt =

ζm + γmt , ζm ≥ 0, γmt ≥ 0,
∑M

m=1 θ
m
t = 1,

∑M
m=1

∑T
t=1 γ

m
t ≤ β}.

Therefore, the two special models of the above setting, namely the Common Space (CS) and In-

dependent Space (IS) MT-MKL models, are also covered by our framework. To be more concrete,

the CS model can be achieved by letting θmt = ζm,∀t = 1, · · · , T,m = 1, · · · ,M , so that all

tasks share a common kernel function, which is parametrized by the ζm’s. On the other hand, the

IS model is simply obtained by letting θt = [θ1
t , · · · , θMt ]′, where each task occupies its own ker-

nel function. Of course, in both cases, appropriate feasible region should be added to the kernel

coefficients.

As mentioned before, one objective of developing the above framework is to let it cover our pre-
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viously proposed MT-MKL model Problem (4.27), which features the HS Fs,r. Then, by devel-

oping a simple algorithm that solve the framework, the originally complicated Problem (4.27) can

therefore be easily solved. To see how Problem (4.27) is a special case of Problem (5.6), first, a

simple variable change for Problem (4.27) is needed to prevent conflicted notation: βt ← αt, ∀t =

1, · · · , T , i.e., Problem (4.27) now becomes

min
θ

max
β,λ

T∑
t=1

(βt
′1− 1

2λt
βt
′Y t(

M∑
m=1

θmK
m
t )Y tβt)

s.t. 0 � βt � C1, βt
′yt = 0, ∀t

λ � 0, ‖λ‖ s
s−2
≤ 1

θ � 0, ‖θ‖r ≤ 1

(5.9)

Then, define αt , [β′t, λt]
′, we easily see the above problem is a special case of Problem (5.6)

with the following specification:

ḡ(αt,
M∑
m=1

θmt K
m
t ) , βt

′1− 1

2λt
βt
′Y t(

M∑
m=1

θmK
m
t )Y tβt (5.10)

with Ω(α) , {βt ∈ Rn : 0 � βt � C1,β′ty = 0,∀t = 1, · · · , T,λ � 0, ‖λ‖ s
s−2
≤ 1} and

Ψ(θ) = {θ : θ � 0, ‖θ‖r ≤ 1}.

Clearly, due to the generality of the proposed framework, it is highly beneficial to develop an

algorithm to solve it. In this case, it will be able to solve all the models that are covered by

the framework. This algorithm is introduced in the following sections. In the next section, we first

convert Problem (5.6) to an equivalent SIP problem, followed by showing the equivalence between

general SIP problems and Exact Penalty Function (EPF)-based problems. The latter result will

allow us to cast Problem (5.6) as an EPF-based problem, which can be easily solved.

88



Exact Penalty Function Method

The proposed framework, which is given as a min-max problem (5.6), is not generally easy to

solve. To conquer this problem, we first equivalently transform Problem (5.6) to the following

epigraph problem:

min
ω∈R,θ∈Ψ(θ)

ω

s.t.
T∑
t=1

ḡ(αt,
M∑
m=1

θmt K
m
t ) ≤ ω, ∀a ∈ Ω(a).

(5.11)

At the first glance, such an equivalent transformation is not very helpful, since the above SIP

problem is still not easy to solve. However, as will be shown next, a general SIP problem can

be equivalently solved by solving the corresponding EPF-based problem [95]. Then, we will pro-

pose a simple and easy-to-implement algorithm for solving the EPF-based problem, based on our

MT-MKL framework. As a result, this algorithm will be able to solve the proposed framework

(5.6).

Next, before delving into the algorithm, we introduce the relation between the general SIP problem

and the corresponding EPF-based problem.

General SIP problem

Assume f , g, lu’s and rv’s are continuously differentiable functions. Consider the general SIP
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problem

min
x∈Rn

f(x)

s.t. g(a,x) ≤ 0, ∀a ∈ Ω(a);

lu(x) = 0, u = 1, · · · , U ;

rv(x) ≤ 0, v = 1, · · · , V.

(5.12)

Clearly, Problem (5.11) is a general SIP problem, since it is a a special case of Problem (5.12).

This can be observed by defining x , [ω,θ′]′, a , [α′1, · · · ,α′T ]′, f(x) , ω, g(a,x) ,∑T
t=1 ḡ(αt,

∑M
m=1 θ

m
t K

m
t )− ω, and letting the constraints lu’s and rv’s define Ψ(θ).

EPF-based problem

Given a fixed x and η > 0, assume there are N(x) local maxima of g(a,x), denoted as a∗i ∈

Ω(a), i = 1, · · · , N(x). Assume that the a∗i ’s satisfy g(a∗i ,x) ≥ −η, and g(a∗i ,x) 6= g(a∗j ,x),

∀a∗i ,a∗j ∈ Ω(a). Let this set of local maxima be denoted as E(x) , {a∗i }
N(x)
i=1 , and I(x) ,

{1, 2, . . . , N(x)} be the index set. Obviously, for different x, the local maxima will be different.

Therefore, each a∗i is implicitly depend on x. If we assume that the Implicit Function Theorem

conditions hold, then there is a function ai of x, such that a∗i = ai(x). Then, by defining hi(x) ,

g(ai(x),x), the EPF P (x) that is introduced in [95] is defined in a neighborhood of x:

P (x) = f(x) + ν
∑
i∈I(x)

hi(x)+ (5.13)

where ν > 0 and hi(x)+ = max{0, hi(x)}.
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Based on the EPF P (x), the EPF-based optimization problem can be developed:

min
x∈Rn

P (x)

s.t. lu(x) = 0, ∀u; rv(x) ≤ 0,∀v.
(5.14)

The next theorem shows the relation between Problem (5.12) and Problem (5.14): Problem (5.12)

can be solved by solving Problem (5.14).

Theorem 16. Let f , g, lu’s and rv’s in Problem (5.12) and Problem (5.14) be continuously dif-

ferentiable, and let the EPF function P (x) be defined as Equation (5.13). Suppose for fixed x,

there are finite number of as ∈ Ω(a), s = 1, · · · , S, such that g(as,x) = 0. If x̂ is in the feasible

region of Problem (5.12) and solves Problem (5.14), then x̂ is a Karush-Kuhn-Tucker (KKT) point

of Problem (5.12).

The above theorem illustrated that, although the general SIP problem (5.12) is complicated due to

its infinite constraint g(a,x) ≤ 0,∀a ∈ Ω(a), it can be equivalently solved by solving the EPF-

based problem (5.14), which is easier to optimize, since the absence of the infinite constraint. As

our proposed MT-MKL framework (5.11) is a general SIP problem, the above theorem immedi-

ately provides a way to simplify our framework, by transforming it to the corresponding EPF-based

problem, which turns out having a simple and easy-to-implement algorithm. This algorithm is in-

troduced in the next section.

Algorithm

Before introducing the algorithm, we re-emphasize that the general SIP problem can be specialized

to our proposed framework 5.11, by letting x , [ω,θ′]′, a , [α′1, · · · ,α′T ]′, f(x) , ω, g(a,x) ,
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∑T
t=1 ḡ(αt,

∑M
m=1 θ

m
t K

m
t )−ω, and letting the constraints lu’s and rv’s define Ψ(θ). In this section,

we solve the corresponding EPF-based problem in this MT-MKL context.

The EPF-based Problem (5.14) is generally solved via a descent method, which is introduced in

[95]. Specifically, given x(k) in the k-th iteration, x(k+1) = x(k) + ε(k)d(k), given the descent direc-

tion d(k). The convergence of such an algorithm for solving the EPF-based problem is provided in

[95]: the sequence {x(k)} converges to the KKT point of Problem (5.12), as long as the following

conditions are satisfied: First, ν is large enough. Second, the step length ε is small enough. Third,

f and g are doubly-differentiable functions with bounded second-order derivatives. These three

conditions are not difficult to be satisifed. First, we will prove that, for our proposed framework,

the first condition is satisfied as long as ν > 1. Second, it is not difficult to choose the step length

ε(k) in the k-th iteration, as will be described later. Finally, the last condition is satisfied in many

frequently encountered models, such as the ones that we listed from (5.2) to (5.5).

According to the above description, it is clear that, in the k-th iteration, given x(k), which is θ(k)

and ω(k) in our problem, two crucial components should be calculated, namely the set of local

maxima E(x(k)), and the descent direction d(k). It is straightforward to calculate E(x(k)), which

involves solving the maximization problem

max
a∈Ω(a)

∑
t

ḡ(αt,
∑
m

θ
m,(k)
t Km

t ) (5.15)

When the above maximization problem is concave, there is only one local maxima, which is there-

fore easy to find. On the other hand, if it is not concave, it will be more involved to find all local

maxima. Fortunately, for many frequently used models, the above problem is concave, such as the

ones that are listed from (5.2) to (5.5).

On the other hand, the next theorem shows how to find the descent direction d(k), which is the key
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step that makes our algorithm simple and easy to implement.

Theorem 17. Let ḡ(α,K) be affine with respect to the individual entries of K. Suppose it has a

finite maximum and a finite number of local maxima with respect to α in the feasible set Ω(α).

Let lu’s and rv’s be continuous and differentiable. Let E(x) and I(x) as defined in Section 5, and

a
(k)
i , [α

(k)′

1,i , · · · ,α
(k)′

T,i ]′ ∈ E(x(k)), i ∈ I(x(k)) = {1, · · · , N(x(k))}. Consider the following

N(x(k)) problems, ∀ i ∈ I(x(k)):

min
θ

T∑
t=1

ḡ(α
(k)
t,i ,

M∑
m=1

θmt K
m
t )

s.t. lu(x) = 0,∀u; rv(x) ≤ 0, ∀v.

(5.16)

Let θ̂i, which consists of all elements θ̂mt,i’s, be the solution to the i-th problem. Also, let i0 =

arg mini∈I(x(k)) maxj∈I(x(k))

∑T
t=1 ḡ(α

(k)
t,j ,
∑M

m=1 θ̂
m
t,iK

m
t ) and ω̂ = mini∈I(x(k)) maxj∈I(x(k))

∑T
t=1

ḡ(α
(k)
t,j ,
∑M

m=1 θ̂
m
t,iK

m
t ). Finally, let x̂ = [ω̂, θ̂

′
i0

]′. Then, d(k) = x̂− x(k) is a descent direction for

the EPF-based Problem (5.14) when ν > 1.

In the case of ḡ being concave with respect to α, as stated above, only one maxima exists, i.e.,

N(x(k)) = 1. This leads to an even simpler way to find the descent direction d(k), which is

introduced in the next corollary.

Corollary 2. Let ḡ(α,K) be affine with respect to the individual entries ofK and is concave with

respect to α. Let lu’s and rv’s be continuous and differentiable. Let E(x) and I(x) as defined in

Section 5, and a(k) , [α
(k)′

1 , · · · ,α(k)′

T ]′ ∈ E(x(k)). Consider the problem

min
θ

T∑
t=1

ḡ(α
(k)
t ,

M∑
m=1

θmt K
m
t )

s.t. lu(x) = 0,∀u; rv(x) ≤ 0, ∀v.

(5.17)
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Denote θ̂ be the solution to the above problem and ω̂ ,
∑T

t=1 ḡ(α
(k)
t ,
∑M

m=1 θ̂
m
t K

m
t ). Let x̂ ,

[ω̂, θ̂
′
]′. Then, d(k) = x̂ − x(k) is a descent direction for the EPF-based Problem (5.14) when

ν > 1.

The above discussion is summarized in Algorithm 1. Note that it only focuses on the case when

ḡ is concave with respect to α, since it is the most commonly encountered setting in single-task

MKL and MT-MKL.

Algorithm 1 Algorithm for solving Problem (5.14)
Choose M kernel functions and calculate the kernel matrices Km

t . Randomly initialize θ0 � 0
and θ ∈ Ψ(θ). Initialize η and ε0 to small positive values. k ← 0.
while not converged do
a(k) ← arg maxa∈Ω(a)

∑
t ḡ(αt,

∑
m θ

m,(k)
t Km

t )

θ̂
(k)
← solve Problem (5.17) given a(k)

ω̂(k) ←
∑

t ḡ(α
(k)
t ,
∑

m θ̂
m,(k)
t Km

t )

θ(k+1) ← θ(k) + ε(k)(θ̂
(k)
− θ(k))

ω(k+1) ← ω(k) + ε(k)(ω̂(k) − ω(k))
k ← k + 1

end while

To choose the step length ε(k) in the k-th iteration, as suggested in [95], one method is to select ε(k)

be the largest element in the set {1, β, β2, · · · }, for some 0 < β < 1, such that

[P (x(k) + ε(k)d(k))− P (x(k))]/ε(k)G(k) ≥ σ (5.18)

where P is the EPF, which is defined in Problem (5.14), σ is some constant that satisfies 0 < σ < 1,

and G(k) is the directional derivative of P with respect to x in the k-th step. It is not difficult to
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show that

G(k) = f(x̂(k)) + ν g(a(k), x̂(k))+

− f(x(k))− ν g(a(k),x(k))+.

(5.19)

where x̂(k) = [ω̂(k), θ̂
(k)′

]′ and x(k) = [ω(k),θ(k)′ ]′.

For the case of ḡ begin non-concave with respect to α, the calculation of G(k) is slightly more

complicated. Since this is a situation that is rarely encountered in practice, the discussion of

calculating G(k) is therefore introduced in the proof of Theorem 17 in the Appendix.

Analysis

In this sub-section, we emphasize several advantages of the above proposed algorithm.

First, one benefit of the proposed framework (5.6) is that, it is very general, and therefore covers

many single-task MKL and MT-MKL models, and any other optimization problems that are special

cases of the framework. This is majorly due to the relatively mild constraints on the function ḡ,

which are introduced at the beginning of this chapter. It is worth to note that there is even no

need for ḡ to be concave with respect to α. As a result, the proposed algorithm is able to solve a

wide range of models, and largely solves the algorithmic difficulty of current single-task MKL and

MT-MKL research, as discussed in Chapter 3.

Secondly, in the first step of each iteration of the algorithm, it is needed to solve a maximization

problem. Such a problem is usually very easy to solve. In a commonly encountered situation,

where the feasible region of each αt is independent with each other, this problem can be separated

into T independent maximization problems. As a concrete example, for the MT-MKL model that
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is proposed in [91] and discussed in (5.8), T independent SVM problems should be solved in

this step. This can be done efficiently, due to the availability of efficient SVM solvers, such as

LIBSVM [18]. On the other hand, in a more complicated scenario, for the MT-MKL model that

we developed in Chapter 4 and discussed in (5.10), the maximization problem is also not difficult

to solve; it can be optimized with a block-coordinate descent algorithm with β as a group and λ

as another: When λ is fixed and optimize with respect to β, again, T SVM problems are involved;

when β is fixed, optimizing with respect to λ has a closed-form solution, based on Theorem 5. It is

easy to verify the simplicity of this step by adapting existing kernel machines with our framework.

Thirdly, in the second step of each iteration of our algorithm, a minimization problem is involved.

Compared to the maximization step that is discussed above, such a minimization problem is even

easier to optimize, in many common encountered scenarios. Since ḡ is affine with respect to the

individual entries of the kernel matrix, in essence, this step is solving the following problem:

min
θ
c′θ

s.t. lu(x) = 0,∀u; rv(x) ≤ 0,∀v.
(5.20)

where c is the coefficient vector. For many existing models, the constraints of the above problem

are set so that a closed-form solution exists. One obvious example is our proposed model (4.27),

which, when solved via our proposed algorithm, has closed-form solution in this step, due to

Theorem 15. With the same reason, the closed-form solution also exists for the Lp-norm MKL

model, if solved by our algorithm. As a more complicated example, the model that is proposed in
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[91] involves the following minimization problem in this step:

min
θ
c′θ

s.t. θmt = ζm + γmt , ζm ≥ 0, γmt ≥ 0,∀m, t;
M∑
m=1

θmt = 1, ∀t;
M∑
m=1

T∑
t=1

γmt ≤ β.

(5.21)

At the first glance, the above problem is difficult to solve. However, if a block coordinate descent

algorithm is utilized with ζ = [ζ1, · · · , ζM ] as a group and γ = [γ1
′, · · · ,γT ′]′ as another, in each

step, closed-form solution exist.

The following proposition provides closed-form solutions for a variety of constraints on θ, which

covers most existing models.

Proposition 2. Let c , [c1, · · · , cn]′ ∈ Rn be the concatenation of T vectors c1 ∈ Rn1 , · · · , cT ∈

RnT with
∑T

t=1 nt = n. Suppose for t = 1, · · · , T , each ct has at least one negative element.

Similarly, let θ , [θ1, · · · , θn] ∈ Rn be the concatenation of θ1 ∈ Rn1 , · · · ,θT ∈ RnT . The

optimization problem

min
θ∈Rn

c′θ

s.t. θ � 0, (
T∑
t=1

‖θt‖qp)1/q ≤ a

(5.22)
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has closed-form solution



θ̂t = σt(c̃t)r

‖c̃t‖rr+1
, ∀t, p > 1, q > 1

θ̂t = a(c̃t)r

‖c̃t‖rr+1
[t = t0], ∀t, p > 1, q = 1

θ̂ = a(c∗)s

‖c∗‖ss+1
, p = 1, q > 1

θ̂ = aej, p = 1, q = 1

(5.23)

where σt =
a‖c̃t‖sr+1

(
∑T
t=1 ‖c̃t‖

s+1
r+1)1/q

, [t = t0] = 1 if t = t0 and 0 otherwise, t0 = arg mint {‖c̃t‖r+1},

r , 1
p−1

, s , 1
q−1

, c̃t is a vector with elements [max{−cmt , 0}]Mm=1 and (c̃t)
r denotes element-wise

exponentiation of vectors. In the third branch of (5.23), c∗ is concatenation of c∗t , ct ◦ eitt , t =

1, · · · , T , where ◦ is element-wise multiplication of vectors. Here eitt ∈ Rnt is a vector, whose

it-th entry is 1, while the remaining are 0, and it = arg mini{cit}. Similarly, in the last branch of

(5.23), ej is an all-0 vector except the j-th entry is 1, and j = arg mini{ci}. Finally, if ∃ t such

that ct � 0, then θ̂t = 0.

When ḡ is not concave with respect to α, as long as its number of local maxima is finite, i.e.,

N(x(k)) < +∞, in this step, we only need to solve N(x(k)) problems that are in the form of

Problem (5.17). This is not difficult, since Problem (5.17) is, in most cases, easy to optimize, as

analyzed above.
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CHAPTER 6: EXPERIMENTS

In Chapter 4, we proposed a pair of new HSs, one for the single kernel MTL problems, and an-

other one for the MT-MKL scenario. We in Chapter 4 concluded that, the ERC of each HS is

monotonically increasing with respect to s, and so is the corresponding ERC bound. This im-

portant observation provides a useful guidance for model selection: a small value of s leads to

lower ERC value, and potentially gives better generalization performance. In order to verify the

monotonicity of the ERCs and their bounds, and to investigate the tightness of the bound, in this

chapter, we adapt real world data sets, and calculate the ERC values (via a Monte Carlo simulation)

and the corresponding bounds based on the data sets. It is expected that both the ERC values and

the bounds to increase, when s increases. Besides, we evaluate the performance of our proposed

models (4.19) and (4.24), in order to see if the small value of s is actually able to generate better

generalization performance. Finally, to verify the quality of the proposed model (therefore the HS),

we employ a series of data sets, and compare our model with several other widely used MT-MKL

formulations.

Evaluation of Monotonicity

In this section, we conduct the first part of the experiments, which is aimed to verify the monotonic-

ity of the ERC values of the proposed HSs, the corresponding ERC bounds, and the generalization

performance of the proposed models. Besides, by observing the difference between the ERCs and

the bounds, we can investigate the tightness of the bounds.

As analyzed in Chapter 4, the actual ERC values of Fs and Fs,r cannot be calculated, primarily

due to the difficulty of computing the expectation over the Rademacher random variable σ (see
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Equation (4.5) and Equation (4.8)). Instead, we approximate the expectation term by conducting

Monte Carlo simulation, by drawing D = 104 samples of the σ’s independently and identically

from a uniform distribution on the hyper-cube {−1, 1}N . Given a sample of σ and a pre-selected

kernel function, R̂(Fs) is calculated via Equation (4.5). On the other hand, the computation of

R̂(Fs,r) based on the first equation of (4.8), is a little bit more sophisticated. This is because

that, given a sample of σ, a maximization problem is involved, which is even non-concave when

1 ≤ s < 2. Since there is no efficient algorithm that guarantees global maximum convergence for

non-conave maximization problem, we omitted the case of 1 ≤ s < 2. Instead, for R̂(Fs,r), we

only consider the case when s ≥ 2, due to the pleasant concavity of the maximization problem,

which is solved via CVX [38] [39].

To perform the experiment, a real-world data set is employed. This Letter data set is formulated

with a collection of handwritten letters, where each letter is represented by 8×16 pixels. Therefore,

each sample is formulated by a 128 dimensional feature vector. Eight tasks are involved in this data

set, where each task is a binary classification problem: ‘C’ versus ‘E’, ‘G’ versus ‘Y’, ‘M’ versus

‘N’, ‘A’ versus ‘G’, ‘I’ versus ‘J’, ‘A’ versus ‘O’, ‘F’ versus ‘T’ and ‘H’ versus ‘N’. For each

class, 100 samples are used in this experiment. Gaussian kernel with spread parameter equals 27,

since this kernel gives the best classification performance on the corresponding model (4.19). For

the MT-MKL HS, nine kernel functions are involved, including the Gaussian kernel function with

spreads {2−7, 2−5, 2−3, 2−1, 20, 21, 23, 25, 27}. Finally, R is set to 1.

The evaluation of the ERC value and the corresponding ERC bound, in both single kernel MKL

and MT-MKL cases, are shown in Figure 6.1. Several observations can be drawn from the figures.

First, it is clear that, for both of the two HSs, the ERC and the corresponding ERC bound are

monotonically increasing with respect to s. This result verified our theoretical analysis, which

is given in Chapter 4. Second, for Fs, it can be seen that the ERC bound, which is derived in

Chapter 4, is very tight, since it matches the real ERC value with only a small gap for all s ≥ 1.
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Figure 6.1: Comparison between Monte Carlo-estimated ERCs and our derived bounds using the
Letter data set. 104 σt samples were used for Monte Carlo estimation. We sampled 100 data for
each letter and used 9 kernel functions in multiple kernel scenario.
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On the other hand, although the ERC bound for Fs,r is relatively loose, for most s, it is still very

tight, when s is small, a more preferred scenario. Therefore, this set of experiments demonstrated

the good quality of our theoretical analysis in Chapter 4.

Next, we adapt the same data set to train the models that are proposed in Chapter 4, namely Prob-

lem (4.19) and Problem (4.24), in order to see the relation between the generalization performance

and the value of s. Kernel selection for the single kernel model is performed via cross-validation.

On the other hand, as a convention of MKL models, for the MT-MKL formulation, besides the

nine Gaussian kernel functions, we added two other kernel functions, namely the linear kernel

and the 2nd-order polynomial kernel. For the regularization parameter C, it is also chosen via

cross-validation. Besides, the training set is randomly drawn from the original data set, with three

different sizes, i.e., 10%, 20% and 50% of the original data set are used for training, where the

original data set contains 400 samples for each class of each task. When s > 2, the MT-MKL

problem is solved via the general purpose algorithm that we developed in Chapter 5, while the

MT-MKL model with 1 ≤ s ≤ 2 and the single kernel MTL can be easily solved by the block

coordinate descent algorithm, as discussed in Chapter 4. Finally, for each value of s, we report the

averaged classification accuracy, with 20 runs on randomly drawn training set. The experimental

results are reported in Figure 6.2.

It can be seen from Figure 6.2 that, clearly, the averaged classification accuracy generally mono-

tonically decreases with respect to s, in both the single kernel MTL and the MT-MKL scenario.

This is expected, because the ERC value in both cases increases with s, which potentially leads to

an increasing generalization bound. Therefore, it is not a surprise that the deteriorated performance

is achieved, when s is large. On the other hand, it is of interest to see that, in many experiments,

the best performance is not obtained when s = 1, but slightly larger than s. This phenomenon is

explained as follows:
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(a) Single kernel MTL model
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(b) MT-MKL model

Figure 6.2: Experimental results on the Letter data set with different sizes of the training set. The
training set consists with 10%, 20% and 50% of the original data set. Averaged classification
accuracy over 20 runs on randomly drawn training samples are reported.
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When s = 1, although the lowest ERC value is obtained, a much larger empirical error is achieved,

compared to the empirical error that corresponds to the optimal s. As explained in Chapter 2, this

is due to the small volume of the HS. As a result, the generalization bound for s = 1 has a larger

value, which explains the slightly lower classification accuracy. This can be simply verified. For

example, when 50% of the data are used for training, the averaged empirical error over 20 runs for

the single kernel model is 0.0195, when s = 1, which is much larger than the case of s = 2, where

the empirical error is as small as 0.0025.

Comparison with Other Methods

In this section, we experimentally examine the performance of the proposed MT-MKL model

(4.24), by comparing it with 6 other popular MT-MKL models on a few real world application

data sets. We omit the single-kernel model, since it is simply a special case of the MT-MKL

formulation.

The first model that we compare with is the Conic MTL method [56].

min
w∈Ω(w)

T∑
t=1

λtf(wt,xt,yt) (6.1)

with λt > 0,∀t = 1, · · · , T . It features a conic combination of the T task objective functions,

instead of using the most commonly applied Average MTL, which averages the objective functions.

The authors derived the generalization bound of the Conic MTL framework, and proposed the
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following formulation, which selects the coefficients that minimizes the generalization bound:

min
w,b,λ,θ

T∑
t=1

λt(
M∑
m=1

‖wm
t ‖2
Hm

2θm
+ C

N∑
i=1

M∑
m=1

Lhinge(y
i
t(〈wm

t , φm(xit)〉Hm + bt)))

s.t. θ ∈ Ω(θ),
T∑
t=1

1

λt
≤ a,1 ≺ λ ≺ rλ1.

(6.2)

In this experiment, we specify the feasible region of θ to feature a Lp-norm MKL, i.e., Ω(θ) =

{θ : θ � 0, ‖θ‖p ≤ 1}.

Another similar formulation, called Pareto-Path MTL [57], is also compared with our model. The

spirit of Pareto-Path MTL is the same as Conic MTL, which is to minimize the non-averaged

objective function of the T tasks. Therefore, the model is designed to minimize the Lp-(pseudo)

norm of the T objectives:

min
w∈Ω(w)

(
T∑
t=1

f(wt,xt,yt)
p)

1
p (6.3)

with p > 0. It is proved that, by varying p, the solution of the above optimization problem features

a series of points on the Pareto-Front of the corresponding Multi-Objective Optimization problem.

In our experiment, similar to Problem (6.2), we specify f to be the SVM objective with a Lp-norm

MKL setting.

The third model that we compare with is the one that is proposed in [91]. Different to many

commonly encountered MT-MKL models, this formulation does not force all tasks to share the

same kernel function. Instead, the kernel function is comprised with both a common kernel across

tasks and a task specific kernel. With such a setting, it is able to reduce the effect of “negative

transfer”, when outlier tasks exist, by letting them to be trained on the feature space that is not
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shared with the other tasks. This model is formulated as follows:

min
θ

max
α

T∑
t=1

(αt
′1− 1

2
αt
′Y t(

M∑
m=1

θmt K
m
t )Y tαt)

s.t. 0 � αt � C1, αt
′yt = 0, t = 1, · · · , T

θmt = ξm + γmt , ξm ≥ 0, γmt ≥ 0,m = 1, · · · ,M, t = 1, · · · , T
M∑
m=1

θmt = 1,∀t = 1, · · · , T,
M∑
m=1

T∑
t=1

γmt ≤ β

(6.4)

The fourth method that we compare with is the so-called Sparse MTL, which is originally proposed

in [79]:

min
w

M∑
m=1

(
T∑
t=1

‖wm
t ‖

q
Hm)p/q + C

T∑
t=1

N∑
i=1

Lhinge(y
i
t(

M∑
m=1

〈wm
t , φm(xit)〉Hm + bt)) (6.5)

with 0 < p ≤ 1 and 1 ≤ q ≤ 2. By setting different values of p and q, task level or kernel level

sparsity can be achieved for the wm
t ’s.

The fifth model involves the most straightforward and commonly encountered MT-MKL model

with averaged objective function over the T task objectives:

min
w,b,θ

T∑
t=1

‖wt‖2
Hθ

2
+ C

T∑
t=1

Nt∑
i=1

Lhinge(y
i
t(〈wt, φ(xit)〉Hθ + bt))

s.t. wt ∈ Hθ, t = 1, · · · , T

θ ∈ Ω(θ)

(6.6)

Again, the Lp-norm MKL setting is employed, to be consistent with the other formulations that we

compare with.
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The last model serves as a baseline approach, where each task is trained independently via a single-

task MKL model, as shown below:

min
w,b,θ∈Ω(θ)

‖w‖2
Hθ

2
+ C

N∑
i=1

Lhinge(yi(〈w, φ(xi)〉Hθ
+ b)) (6.7)

The above formulation is trained and tested on each task independently. Since any MT-MKL

model should take advantage of the existence of multiple tasks, it is expected that the baseline

should obtain the worst generalization performance in the most experiments.

Besides the Letter data set that is employed for the experiments in the last section, 5 more real

world application data sets are used for this set of comparison.

The MNIST1 and USPS2 are two widely used handwritten digit recognition data sets. Each one

contains a collection of handwritten digit images, from “0” to “9”. For these two data sets, each

digit is represented by a series pixel values, which are concatenated into a feature vector. There-

fore, for the MNIST data set, each sample is a 784 dimensional feature vector, while the samples

from the USPS data set are 256 dimensional. As 10-class classification problems, each data set is

manually converted to 45 binary classification tasks via a one-versus-one strategy.

The Wall-Following Robot Navigation data set, or Robot in short, is collected by University of

California in Irvine (UCI) Machine Learning Repository [33]. It is aimed to determine the move

of the robot, given its location. Four classes are involved, namely “Move-Forward”, “Slight-Right-

Turn”, “Sharp-Right-Turn” and “Slight-Left-Turn”. Each entry is consisted with 4 features, which

describe the position of the robot. In order to adapt this multi-class data set in our MTL, setting, a

one-versus-one strategy is employed to cast the data set to 6 binary classification tasks.

1Available at: http://yann.lecun.com/exdb/mnist/
2Available at: http://www.cs.nyu.edu/˜roweis/data.html

107

http://yann.lecun.com/exdb/mnist/
http://www.cs.nyu.edu/~roweis/data.html


The Vehicle data set, which is also collected by the UCI Machine Learning Repository, contains

a collection of vehicle images. Each image, after performing feature extraction, is represented

by a 18 dimensional feature vector. The objective of this data set is to correctly classify each

vehicle image to one of the four classes, namely “4 Opel”, “SAAB”, “Bus” and “Van”. Similar to

MNIST and USPS, this 4-class classification problem is also converted to a MTL problem, by the

one-versus-one technique.

Finally, the Landmine3 data set contains 29 binary classification tasks. Each task is aimed to detect

landmines in a specific region, given radar images. Specifically, tasks 1−15 corresponds to regions

that are relatively highly foliated, and the other 14 tasks correspond to bare earth or desert regions.

Each radar image, after performing feature extraction, is represented by a 9 dimensional feature

vector. The characteristics of each data set is summarized in Table 6.1.

Table 6.1: Characteristics of the Data Sets

Data Set # Attributes # Tasks # Samples for Each Task

Letter 128 8 397
MNIST 784 45 200
USPS 256 45 200
Robot 4 6 500

Vehicle 18 6 423
Landmine 9 29 62

Note that for each data set, the number of samples for each task that is reported in Table 6.1 is an

averaged number. For the Letter, Vehicle and Landmine data sets, the number of samples for each

task varies slightly.

In order to thoroughly examine the performance of each model with variable sizes of training set,

3Available at: http://people.ee.duke.edu/˜lcarin/LandmineData.zip
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similar to the previous experiments, 10%, 20% and 50% of the original data sets are used for

training. One exception is the Landmine data set; one of the 29 tasks contains only 30 samples,

which is too few, if only 10% of them are used for training. Therefore, for the case of 10% training

data, we did not experiment on the Landmine data set.

The averaged classification accuracy, with 20 runs on randomly drawn training set, is recorded

and reported. All hyper-parameters are selected via the cross-validation method. When s > 2,

our model is solved by the general purpose algorithm that is proposed in Chapter 5, and when

1 ≤ s ≤ 2, it is optimized via the block coordinate descent algorithm, as discussed in Chapter 4.

The experimental results are reported in Table 6.2 - Table 6.4.

In order to test the statistical significance of the differences between the results of our method

and that of the other six methods, we utilized the t-test to compare the mean accuracies with a

significant level of α = 0.05. In each of the three tables, the underlined number represents a

statistical significant worse result, compared to that of our method. Besides, in the last row of each

table, we report the s value that gives the highest averaged classification accuracy for our model.

Table 6.2: Experimental Results with 10% Data for Training

Letter MNIST USPS Robot Vehicle

Conic MTL 83.00 93.59 94.61 95.83 80.10

Pareto-Path MTL 83.95 89.30 90.22 95.07 80.05

Tang’s Method 80.86 92.37 93.20 93.93 78.47

Sparse MTL 83.00 93.48 94.52 94.69 79.28

Average MTL 81.45 88.80 90.11 95.16 79.77

Baseline Method 81.33 88.71 89.02 95.54 78.01

Our Method 83.50 93.33 94.37 96.11 82.23

Optimal s 1.5 1.5 1.3 2.0 2.0
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Table 6.3: Experimental Results with 20% Data for Training

Letter MNIST USPS Robot Vehicle Landmine

Conic MTL 87.13 96.08 97.44 97.11 84.69 70.18

Pareto-Path MTL 87.51 95.02 96.26 96.11 85.33 69.59

Tang’s Method 82.95 95.94 97.37 96.36 83.98 66.60

Sparse MTL 87.09 95.96 97.53 96.56 84.44 68.89

Average MTL 86.42 94.95 96.25 95.90 85.22 67.24

Baseline Method 86.39 94.81 96.17 95.75 84.37 66.64

Our Method 86.57 95.74 97.39 97.08 86.89 72.58

Optimal s 1.7 1.7 1.7 2.0 2.0 1.0

Table 6.4: Experimental Results with 50% Data for Training

Letter MNIST USPS Robot Vehicle Landmine

Conic MTL 90.47 97.44 98.98 98.41 89.90 78.26

Pareto-Path MTL 90.61 96.92 98.51 96.80 88.04 77.42

Tang’s Method 84.87 97.47 98.96 97.21 88.13 76.08

Sparse MTL 90.65 97.53 98.98 98.09 88.57 75.82

Average MTL 90.01 96.98 98.59 96.59 87.93 76.96

Baseline Method 89.80 97.04 98.49 96.31 87.64 76.29

Our Method 89.54 97.33 98.89 98.25 90.60 77.99

Optimal s 1.7 1.9 1.9 1.5 2.0 2.0

Several observations can be drawn from these three tables. First, it can be seen that our proposed

method outperforms the other models in the most experiments. In fact, the advantageous is even

statistically significant, in many scenarios. Such a result verified the benefit of our model and the

HSs, which are introduced in Chapter 4.
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Secondly, it is worth to point out that compared to the Conic MTL and Pareto-Path MTL meth-

ods, our method is very competitive, and in some experiments, even a statistically significantly

better result is obtained by our model. This is an unexpected result, because both of these two

formulations are based on non-averaged objective functions, which search a large region of the

Pareto-Front of the corresponding Multi-Objective Optimization problems. On the other hand, our

method minimizes the average of the T empirical losses (see 4.12), which leads to a specific point

on the Pareto-Front. This surprising result reflects the good design of our proposed HS. It is also

expected that, with an improvement on the design of the HSs for Conic MTL and Pareto-Path

MTL, better generalization performance may be obtained by these two models.

Thirdly, it is of interest to see that, although the six MTL methods are advantages in most cases,

compared to the baseline model, their advantages become less and less obvious, when the number

of training data increases. This phenomenon not only matches theoretical analysis, but also is

intuitively straightforward. Theoretically, the last term of the MTL generalization bound (2.62)

decreases with respect to T andN in an order ofO(
√

1
TN

). Assuming the ERC term also decreases

with T andN , a common property for most MTL models, we immediately see that, whenN is very

large, the effect of T in decreasing the generalization bound is less obvious, compared to when N

is relatively small. Therefore, it is not a surprise that the MTL models are less beneficial, when

the number of training samples is large. This is also intuitively straightforward: Each task can

be independently trained well enough, as long as there is a sufficient amount of data for training.

Therefore, in this case, if trained with a MTL method, there is very limited improvement can be

done, even though there is shared information provided by the other tasks.

Finally, as analyzed in Chapter 4, for our method, a small value of s should provide high clas-

sification accuracy. This statement is not only verified in the previous section on the Letter data

set, but also in Table 6.2 - Table 6.4: We see that the optimal s is always around the value of 1.5.

Such a consistent result convincingly demonstrated the power and value of theoretical analysis in
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helping practical application, specifically in terms of model selection: Instead of having to conduct

cross-validation with respect to s over the range of [1,+∞), it is confidently safe to set s around

1.5, or, at least shrink the range of cross-validation to as small as [1, 2].
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CHAPTER 7: CONCLUSION

MTL is an inductive transfer machine learning paradigm that seeks improvements of generalization

performance for each task, by intentionally building the model in an information sharing manner.

It is hoped that the training of each task can be benefited from the information that is shared by

the other tasks. Previously, one of the most widely utilized information sharing approach is to

map the data from all tasks to a (partially) shared common feature space. Any kernel-based MTL

formulation with (partially) common kernel function, and, especially the MT-MKL method, falls

into this category.

Although an important class of MTL methods, its theoretical studies, in terms of the research of its

generalization bound, has been largely limited to a small range of HSs. The HSs that are considered

in the previous two works did not include kernel-based MTL and MT-MKL. Besides, they both

unnecessarily set all the task weights to be constrained in norm balls, whose radii are the same.

This inflexibility in the radius size directly lead to poor performance of the corresponding MTL

models, as have been shown earlier.

Besides, in the practical perspective of MT-MKL, one problem that exists in previous research

is that, it is usually difficult to develop practical algorithm to solve the corresponding MT-MKL

models. Such an algorithmic difficulty not only forces researchers to develop model-specific algo-

rithms, but also requires users to interpret and implement several difficult algorithms, when model

comparison and selection is needed.

This dissertation largely addresses the above two issues for kernel-based MTL and MT-MKL.

Theoretically, we proposed two HSs, one for single-kernel MTL, and another one for MT-MKL.

The same kernel function is utilized for all tasks, so that the data from all tasks are mapped to

a shared feature space. Besides, each task weight is constrained in a norm-ball, whose radius is
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learned during the training phase. After theoretical analysis of the ERCs of these two HSs, we

showed their monotonicity with respect to the parameter s. This important result serves as a guide

for model selection: A small value of s is preferred, since it produces a small ERC value, and thus,

a potentially small generalization bound, which leads to better generalization performance. As a

byproduct, we demonstrated that the equal radii HS, which is introduced in previous research, is

only the worst special case of our HSs, since it gives the largest ERC value, and may produces

deteriorated generalization performance.

By deriving the upper bound of the ERC terms, several useful insights regarding the HSs can be

clearly observed. Specifically, for the single-kernel MTL HS, we have shown that, in the worst

case, when s → +∞, the ERC bound does not decrease with T , which reveals the fact that, such

a setting does not take advantage of the existence of multiple tasks and is similar to independent

learning of each task. On the other hand, in the best scenario, when s is close to 1, the optimal

O(
√

log T
T

) bound is achieved, which decreases with T in a fast speed. Similar conclusion is drawn

from the ERC bound of the MT-MKL HS. Moreover, it is shown that the proposed MT-MKL HS

not only preserves the optimal O(
√

logM) bound encountered in single-task MKL, but also pre-

serves the optimal O(
√

log T
T

) bound encountered in the single-kernel MTL case. This fact indicates

a good design of the HS.

Inspired by the appealing properties of the HSs, corresponding models are proposed. Experiments

based on the models verified the above arguments: Indeed, the best performance is always achieved

when s is of small value, and when s increases, the generalization performance deteriorates. A

series of comparison with other popular MT-MKL models further demonstrated the strength of our

models and HSs: Our model outperforms the other ones in most experiments, and the advantage is

usually statistically significant.

In order to tackle the algorithm issue for MT-MKL, we first propose a general framework for
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kernel-based MTL models in the dual domain, which features a min-max optimization problem.

We show that, the framework not only covers our proposed MT-MKL model, but also embraces a

large amount of existing MT-MKL models as special cases. Besides, when only one task is con-

sidered, the framework degrades to a general MKL formulation, which also covers many existing

single-task MKL models. Then, we developed a general purpose algorithm to solve the framework,

which therefore solves all the models that are special cases of the framework. We demonstrated

that the algorithm is simple and easy to implement. In each iteration, it contains only two steps,

each of which are usually easy to solve, either by existing efficient software packages, such as

LIBSVM, or by deriving and utilizing closed-form solutions.
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APPENDIX: PROOFS OF THEORETICAL RESULTS
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Proof to Theorem 2

Let zi , (xi, yi), and g(zi) , L(yif(xi)), based on Theorem 1, we immediately have

E{L(Y f(X))} ≤ 1

N

N∑
i=1

L(yif(xi)) + R̂(L ◦ F) +

√
9 ln 1

δ

2N
(1)

Then, (2.9) is proved by noticing that L upper-bound the 0/1 loss function and using Lemma 1.

((2.9)) can be similarly proved.

Proof to Theorem 4

We first define the margin loss as below

Lmargin(x) =


0 if γ ≤ x

1− x/γ if 0 ≤ x ≤ γ

1 if x ≤ 0

(2)

By applying Theorem 2, we get

er(f) ≤ êrLmargin(f) +
1

γ
R̂(F) +

√
9 ln 1

δ

2N
(3)

Noticing that the hinge loss upper-bound the margin loss when γ = 1, we proved the first inequality
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of (2.28). To prove the second inequality, we upper bound the ERC R̂(F):

R̂(F) =
2

N
Eσ

{
sup

‖w‖H≤r,b∈R

N∑
i=1

σi(〈w, φ(xi)〉H + b)

}

=
2

N
Eσ

{
sup
‖w‖H≤r

N∑
i=1

σi〈w, φ(xi)〉H

}
+

2

N
Eσ

{
sup
b∈R

N∑
i=1

σib

} (4)

Note that supb∈R
∑N

i=1 σib = (
∑N

i=1 σi) supb∈R b, we have that

Eσ

{
sup
b∈R

N∑
i=1

σib

}
= Eσ

{
(
N∑
i=1

σi) sup
b∈R

b

}
= Eσ

{
N∑
i=1

σi

}
sup
b∈R

b = 0 (5)

since E{σi} = 0. Therefore,

R̂(F) =
2

N
Eσ

{
sup
‖w‖H≤r

N∑
i=1

σi〈w, φ(xi)〉H

}

≤ 2

N
Eσ

{
sup
‖w‖H≤r

‖w‖H ‖
N∑
i=1

σiφ(xi)‖H

}

=
2r

N
Eσ

{
‖

N∑
i=1

σiφ(xi)‖H

}

=
2r

N
Eσ


√√√√ N∑

i=1

N∑
j=1

σiσjk(xi,xj)


≤ 2r

N

√√√√Eσ

{
N∑
i=1

N∑
j=1

σiσjk(xi,xj)

}

=
2r

N

√√√√ N∑
i=1

k(xi,xi)

=
2r

N

√
tr(K)

(6)
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where the first inequality is based on Cauchy-Schwarz inequality, and the second inequality is

application of Jensen’s inequality.

Proof to Lemma 2

First notice that Fs is equivalent to the following HS:

Fs ,{x 7→ (λ1 〈w1, φ(x)〉 , · · · , λT 〈wT , φ(x)〉)′ :

‖wt‖2 ≤ R,λ ∈ Ωs(λ)}
(7)

According to the same reasoning of Equations (1) and (2) in [26], we know that wt =
∑N

i=1

αitφ(xit), and the constraint ‖wt‖2 ≤ R is equivalent to α′tKtαt ≤ R. Therefore, based on the

definition of ERC that is given in Equation (2.6), we have that

R̂(Fs) =
2

TN
Eσ{ sup

αt∈Fs

T∑
t=1

λtσ
′

tKtαt} (8)

where Fs = {αt | α
′
tKtαt ≤ λ2

tR, ∀t;λ ∈ Ωs(λ)}. To solve the maximization problem with

respect to αt, we observe that the T problems are independent and thus can be solved individually.

Based on Cauchy-Schwartz inequality, the optimal αt is achieved when K
1
2
t αt = ctK

1
2
t σt where

ct is a constant.

Substituting this result into each of the T maximization problems, we have the following:

max
ct

ctσ
′

tKtσt

s.t. c2
tσ
′

tKtσt ≤ R

(9)
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Obviously, the optimal ct is obtained when ct =
√

R

σ
′
tKtσt

. Therefore the ERC becomes now

R̂(Fs) =
2

TN
Eσ{ sup

λ∈Ωs(λ)

T∑
t=1

λt

√
σ
′
tKtσtR} (10)

Since s ≥ 1, based on Theorem 15, it is not difficult to get the solution of the maximization

problem with respect to λ, which gives

R̂(Fs) =
2
√
R

TN
Eσ{[

T∑
t=1

(σ
′

tKtσt)
s∗
2 ]

1
s∗ }

=
2
√
R

TN
Eσ{‖u‖s∗}

(11)

Proof to Theorem 8

First note that ∀s1 > s2 ≥ 1, we have that 1 ≤ s∗1 < s∗2, which means ‖u‖s∗1 ≥ ‖u‖s∗2 . Based

on Equation (11), we immediately have R̂(Fs1) ≥ R̂(Fs2). This gives the monotonicity of R̂(Fs)

with respect to s.

Proof to Theorem 9

Similar to the proof to Lemma 2, we write the ERC of F̃ :

R̂(F̃) =
2

TN
Eσ{ sup

αt∈F̃

T∑
t=1

σ
′

tKtαt} (12)
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Optimize with respect to αt gives

R̂(F̃) =
2
√
R

TN
Eσ{

T∑
t=1

√
σ
′
tKtσt} (13)

Based on Lemma 2, we immediately obtain R̂(F̃) = R̂(F+∞).

Proof to Theorem 10

According to Equation (11) and Jensen’s Inequality, we have

R̂(Fs) ≤
2
√
R

TN
(
T∑
t=1

Eσ{(σ
′

tKtσt)
s∗
2 })

1
s∗

=
2
√
R

TN
(
T∑
t=1

Eσ{‖
N∑
i=1

σitφ(xit)‖s
∗

2 })
1
s∗

(14)

Based on Theorem 6, we have that

R̂(Fs) ≤
2
√
R

TN
(
T∑
t=1

(s∗tr(Kt))
s∗
2 )

1
s∗

=
2

TN

√
Rs∗‖tr(Kt)Tt=1‖ s∗

2

(15)

where ‖tr(Kt)
T
t=1‖ s∗

2
denotes the l s∗

2
-norm of vector [tr(K1), · · · , tr(KT )]′. Since we assumed
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that k(x,x) ≤ 1,∀x, we have

R̂(Fs) ≤
2

TN

√√√√Rs∗(
T∑
t=1

N
s∗
2 )

2
s∗

=
2

T
√
N

√
RT

2
s∗ s∗

(16)

Note that this bound can be further improved for the interval s ∈ [1, ρ∗]. To make this improvement,

we first prove that R̂(Fs) ≤ T
1
s′−

1
s R̂(Fs′) for any s′ ≥ s ≥ 1.

R̂(Fs) =
2

TN
Eσ{ sup

λ�0,‖λ‖s≤1

T∑
t=1

λt

√
σ
′
tKtσtR}

≤ 2

TN
Eσ{ sup

λ�0,‖λ‖s′≤T
1
s′ −

1
s

T∑
t=1

λt

√
σ
′
tKtσtR}

=
2

TN
Eσ{ sup

λ�0,‖λ‖s′≤1

T∑
t=1

T
1
s′−

1
sλt

√
σ
′
tKtσtR}

= T
1
s′−

1
s R̂(Fs′)

(17)
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Based on this conclusion, we have that ∀s ∈ [1, ρ∗],

R̂(Fs) ≤ T
1
ρ∗−

1
s R̂(Fρ∗)

= T
1
ρ∗−

1
s

2

TN

√
2eRN log T

= T
1
ρ∗−1+1− 1

s
2

TN

√
2eRN log T

=
T

1
s∗

T
1
ρ

2

TN

√
2eRN log T

=
T

1
s∗

√
e

2

TN

√
2eRN log T

=
2

T
√
N

√
RT

2
s∗ ρ

(18)

Note that this is always less than 2
T
√
N

√
RT

2
s∗ s∗ that is given in (16); ρ∗ is the global minimizer

of the expression in (16) as a function of s. In summary, we have R̂(Fs) ≤ 2
T
√
N

√
RT

2
s∗ ρ when

s ∈ [1, ρ∗], and R̂(Fs) ≤ 2
T
√
N

√
RT

2
s∗ s∗ when s > ρ∗.

Proof to Lemma 3

DefineKt ,
∑M

m=1 θmK
m
t ,∀t, then we can write

R̂(Fs,r) =
2

TN
Eσ{ sup

αt∈Fs,r

T∑
t=1

λtσ
′

tKtαt} (19)

where Fs = {αt | α
′
tKtαt ≤ λ2

tR, ∀t;λ ∈ Ωs(λ);θ ∈ Ωr(θ)}. Then using the similar proof of
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Lemma 2, we have that

R̂(Fs,r) =
2
√
R

TN
Eσ{ sup

θ∈Ωr(θ)

[
T∑
t=1

(σ
′

tKtσt)
s∗
2 ]

1
s∗ }

=
2
√
R

TN
Eσ{ sup

θ∈Ωr(θ)

T∑
t=1

(θ′ut)
s∗
2 }

1
s∗

(20)

This gives the first equation in Equation (4.8). To prove the second equation, we simply optimize

(20) with respect to θ, which directly gives the result.

Proof to Theorem 11

Consider Equation (4.8) and let g(λ) , supα∈Ω(α) ‖v‖r∗ . Then

R̂(Fs,r) =
2

TN
Eσ{ sup

λ∈Ωs(λ)

g(λ)} (21)

Note that ∀1 ≤ s1 < s2, we have the relation Ωs1(λ) ⊆ Ωs2(λ). Therefore, let λ̂1, λ̂2 be

the solution of problems supλ∈Ωs1 (λ) g(λ) and supλ∈Ωs2 (λ) g(λ) correspondingly, we must have

g(λ̂1) ≤ g(λ̂2). This directly implies R̂(Fs1,r) ≤ R̂(Fs2,r).

Proof to Theorem 12

DefineKt ,
∑M

m=1 θmK
m
t ,∀t, then

R̂(F̃r) =
2

TN
Eσ{ sup

αt∈F̃

T∑
t=1

σ
′

tKtαt} (22)
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Fix θ and optimize with respect to αt gives

R̂(F̃r) =
2

TN

√
REσ{ sup

θ∈Ωr(θ)

T∑
t=1

√
θ′ut} (23)

Based on Equation (4.8), we immediately obtain R̂(F̃r) = R̂(F+∞,r).

Proof to Theorem 13

Based on Equation (4.8) and Hölder’s Inequality, let c , max{0, 1
r∗
− 2

s∗
} we have that

R̂(Fs,r) ≤
2

TN

√
REσ{ sup

θ∈Ωr(θ)

T∑
t=1

(‖θ‖r‖ut‖r∗)
s∗
2 }

1
s∗

=
2

TN

√
REσ{

T∑
t=1

‖ut‖
s∗
2
r∗ }

1
s∗

≤ 2

TN

√
RM cEσ{

T∑
t=1

‖ut‖
s∗
2
s∗
2

}
1
s∗

(24)

Applying Jensen’s Inequality, we have that

R̂(Fs,r) ≤
2

TN

√
RM c(

T,M∑
t,m=1

Eσ{(umt )
s∗
2 })

1
s∗

=
2

TN

√
RM c(

T,M∑
t,m=1

Eσ‖
N∑
i=1

σitφm(xit)‖s
∗

2 )
1
s∗

(25)
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Using Theorem 6, we have that

R̂(Fs,r) ≤
2

TN

√
RM cs∗(

T,M∑
t,m=1

(tr(Km
t ))

s∗
2 )

1
s∗ (26)

Since we assume that km(x,x) ≤ 1,∀m,x, we have that

R̂(Fs,r) ≤
2

T
√
N

√
Rs∗T

2
s∗Mmax{ 1

r∗ ,
2
s∗ } (27)

Proof to Corollary 1

First, by following the same proof of R̂(Fs) ≤ T
1
s′−

1
s R̂(Fs′) for any s′ ≥ s ≥ 1, we can directly

obtain the conclusion that R̂(Fs,r) ≤ T
1
s′−

1
s R̂(Fs′,r) for any s′ ≥ s ≥ 1.

When r∗ ≤ log T and s ∈ [1, ρ∗], where ρ = 2 log T , we have that

R̂(Fs,r) ≤ T
1
ρ∗−

1
s R̂(Fρ∗,r)

=
2T

1
s∗

T
√
Ne

√
2eRM

1
r∗ log T

=
2

T
√
N

√
RT

2
s∗ ρM

1
r∗

(28)

When s > ρ∗, obviously, we have R̂(Fs,r) ≤ 2
T
√
N

√
RT

2
s∗ s∗M

1
r∗
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Similarly, for r∗ ≥ logMT and s ∈ [1, ρ∗], where ρ = 2 logMT , we have that

R̂(Fs,r) ≤ T
1
ρ∗−

1
s R̂(Fρ∗,r)

=
T

1
s∗√

T
1

logMT

2

T
√
N

√
2Re logMT

=
2

T
√
N

√
2RT

2
s∗M

1
logMT logMT

=
2

T
√
N

√
RT

2
s∗ ρM

2
ρ

(29)

When s > ρ∗, obviously, we have R̂(Fs,r) ≤ 2
T
√
N

√
RT

2
s∗ s∗M

2
s∗

Proof to Theorem 14

We have already show that the ERC of Fs is

R̂(Fs) =
2

TN
Eσ{sup

α,λ

T∑
t=1

σ′tKtαt} (30)

It is not difficult to see that optimizing the following problem

sup
α,λ

T∑
t=1

σ′tKtαt

s.t. α′tKtαt ≤ λ2
tR

‖λ‖s ≤ 1

(31)

with respect to αt must achieves its optimum at the boundary, i.e., the optimal αt must satisfy
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α′tKαt = λ2
tR. Therefore, Problem (31) can be re-written as

sup
α,λ

T∑
t=1

σ′tKtαt

s.t. α′tKtαt = λ2
tR

‖λ‖s ≤ 1

(32)

Substituting the first constraint into the second one directly leads to the result. The proof regarding

to Fs,r is similar, and therefore we omit it.

Proof to Theorem 16

First, note that if x̂ solves Problem (5.12), then the âs’s with âs ∈ Ω(a)that satisfy g(âs, x̂) = 0

are local maxima of g(a, x̂). According to the assumption, there is a finite number of such âs’s,

which means that the problem has only a finite number of active constraints. We can therefore

provide the KKT necessary condition for x̂ to solve Problem (5.12):

KKT condition for Problem (5.12) Let x̂ solves Problem (5.12); assume there are S âs’s such

that g(âs, x̂) = 0, s = 1, · · · , S. Then, there exist λ̂s, s = 0, · · · , S; ρ̂u, u = 1, · · · , U ; µ̂v,

v = 1, · · · , V , not all zero, such that

λ̂0φj(x̂) +
S∑
s=1

λ̂sψj(âs, x̂) +
U∑
u=1

ρ̂uτu,j(x̂) +
V∑
v=1

µ̂vωv,j(x̂) = 0, j = 1, · · · , n (33)

where φj(x̂), ψj(âs, x̂), τu,j(x̂), ωv,j(x̂) denote ∂f(x)
∂xj
|x=x̂, ∂g(âs,x)

∂xj
|x=x̂, ∂lu(x)

∂xj
|x=x̂, ∂rv(x)

∂xj
|x=x̂

respectively.
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This is a direct extension of the KKT condition of the following standard SIP problem provided in

[95]

min
x∈Rn

f(x)

s.t. g(a,x) ≤ 0, ∀a ∈ Ω(a).

(34)

For the EPF-based Problem (5.14), we can similarly construct the KKT condition:

KKT condition for Problem (5.14) Let x̂ solve Problem (5.14), there exist λ̂′0 and λ̂′s, s ∈

I(x̂); ρ̂′u, u = 1, · · · , U ; µ̂′v, v = 1, · · · , V , not all zero, such that

λ̂′0φj(x̂) +
∑
s∈I(x̂)

λ̂′sψj(âs, x̂) +
U∑
u=1

ρ̂′uτu,j(x̂) +
V∑
v=1

µ̂′vωv,j(x̂) = 0, j = 1, · · · , n (35)

Based on these conditions, we arrive at the conclusion.

Proof to Theorem 17

Before delving into the details, we introduce the sketch of the proof. The proof includes two major

stages. In the first stage, we prove that d(k) = x̂− x(k) is a descent direction if x̂(k) is the solution

to the following problem:

min
x

f(x) + ν
∑

i∈I(xk)

g(a
(k)
i ,x)+

s.t. lu(x) = 0,∀u; rv(x) ≤ 0,∀v.

(36)

Note that since x(k) is given in the k-th iteration and thus is fixed, I(x(k)) and a(k)
i ’s are also fixed.
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In the second stage, we prove that the x̂ described in the theorem is a solution to Problem (36)

when ν > 1.

Stage 1. We need to prove that the directional derivative of the objective function of Problem (36)

is negative, given the direction d(k) = x̂ − x(k). Since we only consider ḡ to be affine in the

individual entries of the kernel matrix, therefore, g(a
(k)
i ,x(k)) could be written as

g(a
(k)
i ,x(k)) =

T∑
t=1

[
M∑
m=1

θ
m,(k)
t (b1

t (a
(k)
i )

′
K̂

m

t + b2
t (a

(k)
i ))]− ω(k) (37)

where b1
t (·) is a vector-valued function, b2

t (·) is a scalar function, K̂
m

t is a vector with elements

km(xit,x
j
t), i, j = 1, · · · , Nt. Define I+(x) = {i ∈ I(x), g(ai,x) > 0}, I0(x) = {i ∈

I(x), g(ai,x) = 0}, I−(x) = {i ∈ I(x), g(ai,x) < 0}, the directional derivative can be cal-

culated as

G(x(k),d(k), ν) = d(k)′φ(x(k)) + ν
∑

i∈I0(x(k))

[d(k)′ψ(a
(k)
i ,x(k))]+

+ ν
∑

i∈I+(x(k))

d(k)′ψ(a
(k)
i ,x(k))

(38)

Let d(k) = x̂− x(k), Hm,(k)
t,i = b1

t (a
(k)
i )′K̂

m

t + b2
t (a

(k)
i ), H(k)

i be the vector with elements Hm,(k)
t,i ,

m = 1, · · · ,M , t = 1, · · · , T . Then, we obtain

G(x(k),d(k), ν) = (ω̂ − ω(k))

+ ν
∑

i∈I0(x(k))

[θ̂
′

H
(k)
i − ω̂ − θ

(k)′H
(k)
i + ω(k)]+

+ ν
∑

i∈I+(x(k))

(θ̂
′

H
(k)
i − ω̂ − θ

(k)′H
(k)
i + ω(k))

(39)
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Note that θ(k)′H
(k)
i − ω(k) = g(a

(k)
i ,x(k)) = 0, when i ∈ I0(x(k)). Then we get

G(x(k),d(k), ν) = f(x̂) + ν
∑

i∈I(x(k))

g(a
(k)
i , x̂)+

− f(x(k))− ν
∑

i∈I(x(k))

g(a
(k)
i ,x(k))+

(40)

Since x̂ minimizes (36), we have that G(x(k),d(k), ν) ≤ 0.

Stage 2. Denote the objective function in (36) as

F (ω,θ) = F (x) = f(x) + ν
∑

i∈I(x(k))

g(a
(k)
i ,x)+ (41)

We first prove that in Problem (36), for ν > 1 and fixed θ, the optimal solution to ω is ω̂ =

maxi∈I(x(k))

∑T
t=1 ḡ(α

(k)
t,i ,
∑M

m=1 θ
m
t K

m
t ), which gives F (ω̂,θ) = ω̂. To justify this is true, first

consider another ω̄ > ω̂. This gives F (ω̄,θ) = ω̄ > ω̂. On the other hand, consider ω̄ < ω̂, then

we have that

F (ω̂,θ)− F (ω̄,θ) = ω̂ − ω̄ − ν
∑

i∈I(x(k))

(
T∑
t=1

ḡ(α
(k)
t,i ,

M∑
m=1

θmt K
m
t )− ω̄)+ (42)

For simplicity, assume ω̄ is such that only one element in the summation over i not zero, then

F (ω̂,θ)− F (ω̄,θ) = ω̂ − ω̄ − ν(ω̂ − ω̄) (43)

Since ν > 1, the above quantity is negative, which gives F (ω̂,θ) < F (ω̄,θ). When ω̄ is such that

more elements in the summation over i are not zero, the rationale is similar. Therefore, we proved
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that for fixed θ, the ω̂ defined above is the optimum.

Based on the above fact, to minimize F (ω,θ), we need find θ such that maxi∈I(x)

∑T
t=1 ḡ(αt,i,∑M

m=1 θ
m
t K

m
t ) is minimized:

min
θ

max
i∈I(x(k)

T∑
t=1

ḡ(α
(k)
t,i ,

M∑
m=1

θmt K
m
t ) (44)

This problem is equivalent to the following:

min
θ

λ

s.t.
T∑
t=1

ḡ(α
(k)
t,i ,

M∑
m=1

θmt K
m
t ) ≤ λ,∀i ∈ I(x(k)).

(45)

Therefore, we only need to solve the
∣∣I(k)

∣∣ problems θ̂i = arg minθ
∑T

t=1 ḡ(α
(k)
t,i ,
∑M

m=1 θ
m
t K

m
t ),

∀i ∈ I(x(k)), and find the one, say θ̂i0 , that minimizes the quantity maxj∈I(x(k)){
∑T

t=1 ḡ(α
(k)
t,j ,∑M

m=1 θ̂
m
t,i0
Km

t )}.

Proof to Proposition 2

The results for p = 1, q = 1 and ct � 0 are obvious. We in the following assume that there is at

least one negative element in each ct. We first prove the result for p > 1, q > 1. In this situation,

the problem can be written as

min
θ∈Rn,σ∈RT

c′θ

s.t. θ � 0, ‖θt‖p = σt, ∀ t; ‖σ‖q ≤ a.

(46)
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Note that the above problem is equivalent to the following:

min
θ∈Rn,σ∈RT

c′θ

s.t. θ � 0, ‖θt‖p ≤ σt, ∀ t; ‖σ‖q ≤ a.

(47)

since the optimum θt for the above problem must achieve on the boundary. The Lagrangian of

Problem (47) is formed as

L =
T∑
t=1

(c′tθt + αt(‖θt‖p − σt)− β′tθt) + γ(‖σ‖q − 1) (48)

where α and β are the Lagrangian multipliers of the inequality constraints. Set its partial derivative

with respect to θt and σ to 0 and add the complementary slackness conditions:



ct + αt‖θt‖1−p
p (θt)

p−1 − βt = 0; ∀t

γ‖σ‖1−q
q σq−1 −α = 0;

αt(‖θt‖p − σt) = 0; ∀t

βmt θ
m
t = 0; ∀m, t

γ(‖σ‖q − 1) = 0.

(49)

Note that α should not be 0, otherwise the minimum of L would be either minus infinity or 0,

which are trivial cases. Therefore, we have

 ‖θt‖p = σt; ∀t

θt = σt[
1
αt

(βt − ct)]
1
p−1 ∀t

(50)
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Considering (49) and that αt > 0, assume σt > 0, we have βmt (βmt − cmt )
1
p−1 = 0, ∀m. Since

βmt ≥ 0, we conclude

 βmt = 0 if cmt ≤ 0

βmt = cmt otherwise.
(51)

So, let c̃t = [c̃1
t , · · · , c̃nt ]′ and c̃mt = βmt − cmt , we get c̃mt = max {−cmt , 0} , ∀m. We end up with

θt = σt(
c̃t
αt

)
1
p−1 ∝ (c̃t)

1
p−1 . Since θt needs to satisfy ‖θt‖p = σt, we normalize (c̃t)

1
p−1 and get

θt = σt
(c̃t)

1
p−1

‖c̃t‖
1
p−1
p
p−1

(52)

Note that in the above derivation, we assumed that σt 6= 0. If σt = 0, we know immediately from

(50) that θt = 0. For σ, with the same logic, we get that (σt)
q−1 ∝ αt = ‖c̃t‖ p

p−1
. Note that the

optimal σ must achieve on the boundary, we get the solution

σt =
a‖ct‖sr+1

(
∑T

t=1 ‖ct‖
s+1
r+1)1/q

. (53)

When q = 1, the above prove for θt is still valid. Therefore, we plug (52) into (47), and get the

following:

min
σ

T∑
t=1

σt‖c̃t‖r+1

s.t. σ > 0,
t∑
t=1

σt ≤ a

(54)

134



Note the constraint σ > 0 is added since σt = ‖θt‖p. Obviously, the optimum σ is σt = a[t = t̃],

where t̃ = arg mint{‖ĉt‖r+1}.

When p = 1, we first optimize with respect to θ. It is not difficult to observe that, by fixing σ, our

problem can be split into T minimization problems:

min
θt
c′tθt

s.t. θt � 0,
Nt∑
i=1

θit ≤ σt

(55)

The solution to the above problem is obviously θ∗t = σte
it
t . Plugging this result into Problem (47)

and optimize with respect to σ, by using the strategy similar to the previous proof, we immediately

get the result.
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