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ABSTRACT 

 

As traffic and congestion increase, so does the likelihood of collisions. The solution to 

this problem is usually through a rehabilitation process with two primary options: (1) 

widening/expansion of existing roadway and bridges and (2) complete replacement (new 

construction) of roadway and bridges. The first option is the most feasible and cost-effective. 

While roadway widening/expansion pose minimal issues, the same cannot be said of bridge 

widening. An existing bridge presents a multitude of challenges during the planning and design 

phases, during construction, and throughout the structure’s service life. Special attention is 

required in both the design and detailing of the widening in order to minimize construction and 

maintenance problems.  

The primary objective of this dissertation is to present a better understanding of structural 

behavior and capacity by studying an existing widened structure: a bridge that has been in 

service for over 40 years (constructed in 1972 and widened in 2002). The load demand on this 

bridge has doubled over the years. Consequently, the widened structural system is composed of 

four-span continuous prestressed concrete bridge segments. 

To better understand the widened 2002 bridge used in this study, an initial comparative 

analysis was performed, comparing the original 1972 bridge and the 2002 widened bridge. This 

comparative analysis included a determination of bridge capacity, distribution factors, and 

load-rating factors using current American Association of State Highway and Transportation 

Officials (AASHTO) Load and Resistance Factor Design (LRFD) Specifications design codes. 

However, the original codes used for the two bridges should also be noted, as follows: (1) the 
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AASHTO Load Factor Design (LFD) Code was used for the original bridge; and (2) a 

combination of the AASHTO LFD and AASHTO LRFD Specifications were used for the 

existing widened bridge. Linear three-dimensional finite element models were developed for 

both bridges to obtain the maximum moment and shear values with varying HL-93 load cases for 

these analyses. 

To develop models that describe the possible existing condition of the 2002 widened 

bridge, a nonlinear model of one of the critical members in the structure was developed by 

changing the most critical parameters. The critical parameters are categorized as material 

properties and prestress losses. Sensitivity studies were conducted using parametric models for 

simulations with moving loads for the different load cases using the HL-93 truck.  

The load-rating and reliability indexes were computed for all the cases under different 

loading conditions. The parameters that have the most influence on load rating and reliability are 

also presented in the analyses. The information generated from these analyses can be used for 

better–focused visual inspection and widened bridge load rating criteria, and can also be used for 

developing a long–term widening structural monitoring plan. Additionally, this study will be 

used as a benchmark for future studies, and to establish a procedure and methodology for future 

bridge widening projects. 
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CHAPTER ONE: INTRODUCTION 

A high-quality transportation network is vital to a top performing economy. Investments by 

previous generations of Americans – from the Erie Canal in 1807, to the Transcontinental 

Railroad in 1869, to the Interstate Highway System in the 1950s and 1960s – were instrumental 

in putting the country on a path for sustained economic growth, productivity increases, an 

unrivalled national market for good and services, and international competitiveness. But today, 

current estimates indicate that America’s transportation infrastructure is not keeping pace with 

demands or the needs of our growing economy, for today or for future generations – An 

Economic Analysis of Transportation Infrastructure Investment (A report prepared by the 

National Economic Council and the President’s Council of Economic Advisers – July 2014) [1]. 

 

With over 600,000 bridges in the U.S., as documented in the National Bridge Inventory 

(NBI), it is very clear that they are a major component in the civil infrastructure system, and are 

ranked as such; they are the backbone of the U.S. infrastructure system. People and vehicles use 

bridges every day, allowing them to pass over obstacles such as bodies of water, valleys, or other 

roads in congested areas. And as stated above, bridges are part of the country’s infrastructure 

system, contributing to economic growth or decline. For example, in a regional economy, a new 

bridge can bring prosperity, while an older damaged or collapsed bridge can cause severe 

adverse impacts such as detours, re-routings and traffic jams, which increase the cost of 

transportation (through time delays, extra fuel and more driving time). Consequently, bridges 

become a sustaining commodity which, also requires production and inventory control 

(maintenance and prevention inventory). Therefore, in the field of civil engineering, bridges are 

critical structures. They must work under extremely difficult conditions, including heavy daily 
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loads and harsh weather conditions.  

Although there is a consensus in admitting the importance of infrastructure systems, with 

614,387 bridges across the nation many drastically in need of repair or replacement -- we can see 

that the future picture for bridges in the United States is not bright. The most recent report 

published this year by the American Society of Civil Engineers (ASCE) issued a report card for 

America's infrastructure, giving it a grade of C+ for bridges. Below is a summary of the report’s 

findings on the status of bridges in the U.S. 

“The U.S. has 614,387 bridges, almost four in 10 of which are 50 years or older. 56,007 – 

9.1% - of the nation’s bridges were structurally deficient in 2016; and on average there were 188 

million trips across a structurally deficient bridge each day. While the number of bridges that are 

in such poor condition as to be considered structurally deficient is decreasing, the average age 

of America’s bridges keeps going up, and many of the nation’s bridges are approaching the end 

of their design life. The most recent estimate puts the nation’s backlog of bridge rehabilitation 

needs at $123 billion.” [2] 

This information proves that if we do not have effective methods for inspection and 

maintenance of the nation’s bridges, the goal for eliminating the deficient bridges will never be 

accomplished, because the budget is always limited. Just as detecting and repairing initial 

damage (including cracks, rusted members, and loss of sections in structures) will cost much less 

than replacing girders, supports or other main components, so the cost of widening bridges to 

reduce traffic congestion and collision will be less than completely replacing the structure. Thus, 

one of the most cost-effective approaches for addressing aged aging bridges with limited funds is 

bridge widening. 
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The primary objective of this research work is to present a study to better understand the 

structural behavior and capacity of a bridge that has been in service for over 40 years. The 

original bridge was constructed in 1972 and was widened in 2002.       

Preliminary investigation between the original bridge (hereafter referred to as the 1972 

bridge) and the existing widened bridge (hereafter referred to as the 2002 bridge) will involve a 

3D model to capture structural demand (shear and flexure) for different loads and capacity for 

resistance analysis along with distribution factors and load ratings.  

A detailed finite–element model of the structure is developed and various possible 

conditions are simulated to bound the existing condition, since there is only very limited 

experimental data (no access to data). The parameters are selected based on evaluation of the 

entire structure. These parameters exhibit uncertainty, and the structural response is also sensitive 

to variations of these parameters. Models will also be used to determine the load-carrying 

capacity of the widened structure for the initial and current load demand. Verification of 

analytical results with special codes considerations for widened structures will also be examined, 

as well as the investigation of the load rating and reliability of the widened structure at the time 

of initial and current load demands. A comparison of the reliability of the current structure with 

the target reliability index will also be considered. Results and discussions are included for the 

various analyses. The final chapter includes conclusions and recommendations for future 

research. This research will provide comparative evaluation of a bridge load-carrying capacity in 

a more thorough manner, along with an understanding of ultimate load levels and reliability 

based nonlinear analysis. 
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Structural Concept 

 

As stated earlier, the original bridge used for this research was constructed in 1972. It has 

an east-west orientation with two lanes in each direction. Both the eastbound and the westbound 

bridge have four spans, with lengths 37.0, 60.3, 60.3 and 37.0 ft. (11.3, 18.4, 18.4 and 11.3 m), 

and an out-to-out width of 43.3 ft. (13.2 m). The four-span bridge is supported by three piers 

where the girders with half-inch diameter and 270 kips per-square-inch low relaxation strands 

are supported on elastometric bearings. The girders have a compressive strength of 6 kips 

per-square-inch, and the 7-inch (177.8 mm) supporting deck slab that forms a composite with the 

girder has a compressive strength of 4.5 kips per-square-inch. A combination of AASHTO Type 

II and Type III girders was used for this bridge. The shorter spans (1 & 4) have both Type II and 

Type III girders, whereas the longer spans (2 & 3) have all Type III. The bridge was modeled 

with 844, 3090 and 120 tendon, shell and support elements, respectively. The model had 4,242 

joints, 19 restraints and 1,185 constraints. A summary of the model components is provided in 

Table 1, and the model is shown in Figure 1. The cross-sections of the bridge spans, illustrating 

the girder configurations, are shown in Figure 2.  

 

Table 1: 1972 Model Components Summary 

Model Components Quantity 

Joints 4242 

Restraints 19 

Frame/Cable/Tendon Elements 844 

Shell Elements 3090 

Link/Support Elements 120 

Constraints/Welds 1185 
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Figure 1: Model of Original Bridge 

 

Figure 2: Bridge Cross Section at Mid – Span  



 

6 

 

Due to increase in traffic there was an initiative to widen the original 1972 bridges in 

2002. Improvements included converting mainline toll plazas and tolled ramps to include 

Express Lanes, and adding cash and receipt lanes. The projects also resulted in additional 

through-lanes, expanded interchanges, aesthetically pleasing sound walls, decorative bridge 

columns and pylons, planter walls, and landscaping [3]. 

The widening involved adding two new through-lanes between the two original bridges 

and connecting them with the bridges, as shown in the “before and after” model illustration in 

Figure 3.  

 

Figure 3: Model Illustration of Bridge Widening 

 

The widening, which maintained the same bridge length of 196.5 ft. (59.9 m), had a new 

roadway and deck, with edge-to-edge widths of 110.9 ft. (33.8 m) and 117.1 ft. (35.7 m), 

respectively [4]. The prestressed concrete girder-widened bridge, with concrete cast–in–place 

deck and monolithic concrete wearing surface, was widened in the median as well as the right 
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(east–bound) side, to accommodate three lanes each way (eastbound and westbound). Figure 4 

and Figure 5 present detailed schematics top view, as well as cross–sections, to illustrate the 

widening process. A summary of the model components is provided in Table 2. 

 

Figure 4: Top View Schematics of Widening 

 

Table 2: 2002 Model Components Summary   

Model Components Quantity 

Joints 11881 

Restraints 161 

Frame/Cable/Tendon Elements 2348 

Shell Elements 8736 

Link/Support Elements 336 

Constraints/Welds 4176 
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Figure 5: Model Components & Cross – Section of Widened Bridge 

 

The bridge chosen for this research was unique in the sense that it fit the criteria for the 

analysis and investigation required for the performance of a prestressed beam before and after 

widening. Some of the key components include; 

- An existing bridge that was widened (1972 – 2002). 

- A widening process and procedure falls into the two widening conditions considered in this 

research (see Fundamental Concepts in Bridge Widening – Chapter 2).  

- Geometry & Materials 

o Straight (no skew) 

o Prestressed beams 

Pre-tensioning  

 

The AASHTO (American Association of State Highway and Transportation Officials) 

I-beam and bulb I-beam are commonly used in the State of Florida and other states as well. The 

use of ASTM A416, Grade 270, low-relaxation, straight, prestressing strands is preferred for the 
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design of prestressed beams. 

Typically, the Florida bridge beams are pre – tensioned (prestressed) compared to post – 

tensioned beams. Prestressed, pre-tensioned, tendons are tensioned by a jack without any 

concrete.  Then, concrete is poured, allowed to set and bond, at which time the ends are cut and 

the beam becomes instantly stressed by the tendons.  Service loads can then be applied. Pre – 

tensioning is normally performed at precasting plants, where a precasting stressing bed of a 

long-reinforced concrete slab is cast on the ground with vertical anchor bulkheads or walls at its 

ends. The steel strands are stretched and anchored to the vertical walls, which are designed to 

resist the large eccentric prestressing forces.  

Prestressed, post-tensioned, tendons are tensioned by a jack after the concrete has already 

cured (but a duct is installed such that the concrete is unbonded to the prestressing), at which 

time the tendons are tensioned by means of a hydraulic jack, and the beam becomes 

stressed.  Grout may or may not then infill the ducts.  Grouting should typically be performed, 

to minimize the chance of a single tendon rupture causing catastrophic failure of the 

member.  Service loads can then be applied [5].  

Post-tensioning is a method of reinforcing (strengthening) concrete or other materials 

with high-strength steel strands or bars, typically referred to as tendons. The two main types of 

post tensioning consist of unbonded and bonded tendons.  

An unbonded tendon is one in which the prestressing steel is not actually bonded to the 

concrete that surrounds it except at the anchorages. In bonded systems, two or more strands are 

inserted into a metal or plastic duct that is embedded in the concrete.  The strands are stressed 

with a large, multi-strand jack and anchored in a common anchorage device.  The duct is then 
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filled with a cementitious grout that provides corrosion protection to the strand and bonds the 

tendon to the concrete surrounding the duct [6]. 

Research has also shown that partially prestressed concrete beams with bonded tendons 

provide better behavior than those of unbonded tendons such as increase ductility, initial stiffness 

and the ultimate deflection up to 265%, 13% and 199% respectively. Additionally, increasing the 

nominal compressive strength from 72 to 97 MPa for bonded prestressed beams led to a slight 

increase in the ultimate and cracking loads by 4% and 18% respectively whereas increasing the 

nominal compressive strength from 72 to 97 MPa for unbonded prestressed beams decreased the 

maximum deflections at the failure loads by 16% and 23% respectively [7]. 

Consequently, pre – tensioned bridge beams can have some of the strands bonded and 

deboned. Strand debonding in a pretensioned prestressed beam is similar to the bar curtailment 

technique usually used in reinforced concrete beams. Both methods incorporate the intermediate 

anchorage technique, which induces high stress concentrations at the point of bar cutoff in 

reinforced concrete members or strand debonding in pretensioned beams. This may cause an 

adverse effect on the ultimate strength of the beam.  

A research on strand debonding in pretensioned beams mainly at the ends where moment 

is not critical revealed the following results; 

- Strand debonding reduces flexure – shear cracking capacity of pretensioned beams 

compared to that of fully bonded members. 

- The debonded strands developed the required prestressing force at the point load. 
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- Strand development length specified by the ACI/AASHTO codes for fully bonded strands 

is not adequate if web – shear cracking penetrates the transfer length of the strand, or if 

flexure – shear cracking occurs within the current full anchorage length ld of the strand.  

- Adequate anchorage length for the prestressing strand in pretensioned beams is of critical 

importance in reaching the full ultimate capacity both in flexure and shear. 

-  The flexure and shear design of both bonded and debonded pretensioned I – beams, where 

the flexural capacity controls, based on current ACI/AASHTO design provisions would be 

adequate if the fully bonded strands in the member have anchorage length of a least 1.7 ld.  

- The findings from this study indicate that the degree of conservatism decreases as the 

percentage of debonding increases. It is recommended that no more than 67% of the 

strands be debonded. The current limit of 50% was shown to be conservative provided the 

anchorage length of the fully bonded strand is at least 1.7 1 ld, with ld based on current 

ACI/AASHTO requirements [8]. 

The pre-tensioned beams have a parabolic soffit, or haunched beam profile. The  

haunched beam profile was developed for camber control. The bottom edges of the Type II 

prestressed beams are chamfered ¾” at sides and 1 ½” by 1 ½” continuous wood chamfer at ends 

(typical). The bottom edges of the other types of prestressed beams were chamfered ¾” at sides 

and 1 ½” by 1 ½” continuous wood block out at ends (typical).        

In typical pre-tensioned beams, the tendons are straight but can be harped or draped to match the 

dead load moment.   

 



 

12 

 

Design Specifications 

 

The moment demand for a girder depends on the magnitude and location of the imposed 

loads and on the properties of the bridge. The design moment in the girder will vary with girder 

spacing, span, flexural stiffness, torsional stiffness, and on the properties of the deck and 

diaphragms [10]. To simplify the design process, many bridge codes, such as the AASHTO Load 

and Resistance Factor Design (LRFD) Specifications (1998), the AASHTO Standard 

Specifications (1996), and the Ontario Highway Bridge Design Code (1992), treat the 

longitudinal and transverse effects of wheel loads as uncoupled phenomena. The design live-load 

moment caused by a truck (or lane of traffic) is first estimated by obtaining the maximum truck 

(or lane of traffic) moment on a single girder. A designer then obtains the design moments for 

each girder by multiplying the maximum single girder moment by a factor, which is usually 

referred to as the live-load distribution factor [10]. 

Live load distribution is important for the design of new bridges, as well as for the 

evaluation of existing bridges, and has been the basis for design in the United States for over 

seven decades. The AASHTO Standard Specifications for Highway Bridges have contained live 

load distribution factors since 1931. The early values were based on the work done by 

Westergaard (1930) and Newmark (1948), but the factors were modified as new research results 

became available. For a bridge constructed with a concrete deck on prestressed concrete girders 

and carrying two or more lanes of traffic, the current distribution factor (AASHTO 1996) is S/5.5, 

where S is the girder spacing in feet. This factor, multiplied by the moment on a single girder, 

caused by one line of wheels, gives the girder design moment. The applicability of the 
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procedures in the Standard Specifications is limited by the fact that they were developed 

considering only non-skewed, simply supported bridges. Piecemeal code changes over the years 

have also created inconsistencies [11]. In 1994, AASHTO adopted the LRFD Bridge Design 

Specifications (AASHTO 1994) as an alternative to the Standard Specifications. The LRFD 

expressions for live-load distribution are based on the results of a parameter study by Zokaie et al. 

[12], which considered variations in girder spacing, girder stiffness, span length, skew, and slab 

stiffness. The resulting LFRD expressions account for many parameters that were neglected 

previously, including skew. Per Zokaie et al., the LRFD code distribution factors lie within 5% of 

the distribution factors calculated with detailed finite-element models. 

The finite-element models used to develop the AASHTO LRFD (1994) code equations 

were detailed, but the models did not include all the components of a typical bridge. For example, 

Zokaie et al. considered the effects of diaphragms in a pilot study but not in the main parameter 

study. In addition, the factor that Zokaie et al. proposed to account for girder continuity was not 

included in the LRFD Specifications. Consequently, the LRFD code expressions are based on the 

results of analyses for HS20 loading of simply supported bridges without lifts, intermediate 

diaphragms, or end diaphragms. 

The AASHTO LRFD equations for the distribution factors are more accurate than those 

provided in the Standard Specifications [12]. However, Chen and Aswad [13] found that the 

LRFD code distribution factors can be uneconomically conservative for bridges with large 

span-to depth ratios. Based on the results of finite-element analysis, Chen and Aswad found that 

this conservatism could be as much as 23% for interior beams and 12% for exterior beams [13]. 

A reduction in the conservatism of the code would lead to more economical bridge designs. 
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Further research was needed to evaluate the accuracy of the code live-load distribution 

factors and to quantify the effects of parameters not considered in the codes or most previous 

analyses. 

The AASHTO Standard Specifications and AASHTO LRFD Specifications contain 

simplified methods currently used to compute live load effects. The National Cooperative 

Highway Research Program (NCHRP) is one program that develops LRFD equations which 

have been used in modern design.  

These equations include limited ranges of applicability that, when exceeded, require a 

refined analysis to be used. The ranges of applicability and complexity of the equations have 

been viewed by some as weaknesses since their adoption into the LRFD specifications. NCHRP 

recently developed an even simpler live load distribution factor equations for moment and shear 

to replace those in the current LRFD specifications. These equations are expected to be 

straightforward to apply and easily understood and yield results comparable to rigorous analysis 

results. NCHRP used rigorous analysis as the basis for establishing the target distribution factors 

for their research; which helped their research team to better delineate the effects (i.e., 

contributions) of multiple-vehicle presence, of variability associated with the simplified analysis, 

and of the calibration (tuning the simple method to better match the rigorous results) [14]. 

Usually the parametric analyses are based on the application of a single point load in the 

investigation of shear. However, such a load configuration does not realistically appear in 

practice. Thus, to confirm shear capacity, loads on a selection of model beams are applied 

representative of vehicular traffic. 

Consequently, research by Eamon et al., [11] showed that for every analysis (two legal 
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Michigan vehicle configurations applied to the FEA bridge model), moment failure occurred at a 

load level much below that required for a shear failure (i.e. development of shear cracks). It was 

also not possible to fail the beams in shear (before a moment failure) using reasonable vehicle 

configurations. Thus, as expected, typical vehicle configurations on a reasonably designed and 

undamaged prestressed concrete beam will generally result in moment failures rather than shear 

failures, especially for longer vehicles and spans [16]. 

For the original bridge used in this research, the 1966 specifications and special 

provisions for the State of Florida Department of Transportation Standard Specifications for 

Road and Bridge Construction was used. The design code used was in accordance with the 1969 

Edition of the AASHO Standard Specifications for Highway Bridges with approved revisions. 

The loading truck was an HS 20 – 44 (Modified for Military Loading as required). However, the 

Florida Department of Transportation (FDOT) Structures Design Guidelines which makes 

provision for mixed coding for the bridge widening was used for the widened bridge as is 

elaborated in this section under “Condition Assessment.” 

 

Inspection and Maintenance Practice 

 

In general, regular maintenance and inspections are performed on the study bridge, since 

it is part of the Florida Department of Transportation (FDOT) bridge network.  Engineering 

technicians perform visual inspections on a biennial basis. Through its Office of Maintenance, 

Structure Operations and Bridge Inspection, FDOT manages consultant contracts to inspect local 

government bridges.  Participation in the local government bridge inspection program is 



 

16 

 

voluntary on the part of the local governments, but does not relieve them of their responsibility 

to inspect, maintain, impose and enforce weight restrictions, repair, rehabilitate, or replace the 

bridges in their jurisdictions.  The Federal Highway Administration (FHWA) holds FDOT 

administratively responsible for ensuring that all qualified bridges in the state are inspected and 

load-rated in accordance with state statutes and federal codes.  In addition, FDOT is required to 

report to FHWA that all publicly-owned bridges are inspected in accordance with these 

standards. 

Sample inspection methods for protecting public safety and safeguarding the public’s 

investment in bridge structures are listed below:   

1. Visual Inspection.   

2. Non-destructive Testing.   

3. Material Sampling (Coring, removal and testing).  

During the initial inspection of a structure, the bridge inventory data is verified in the 

field to reflect the “as built” conditions.  Before making subsequent inspections, the previous 

bridge inspection reports and the bridge record file are reviewed. 

Visual Inspections being the most common methods requires that dirt and debris be 

removed to permit visual observation and precise measurements.  Careful visual inspection is 

supplemented with appropriate special equipment and techniques.  Usually the use of mirrors is 

employed to increase visual access to many bridge components.  Tools and equipment needed 

for the inspection of bridges vary with the type of inspection being made.  Refer to the current 

FHWA Bridge Inspector’s Reference Manual, for a list of equipment that may be used for 

inspection.  Sketches, photographs and video cameras are used as required to record significant 



 

17 

 

or unusual details. The procedures for “visual inspections” are outlined as follows; 

1. Sequence –  Whenever practical, inspection should proceed from substructure to 

superstructure to deck.  The cause of superstructure and deck deficiencies may be 

more apparent if the substructure was inspected initially.  

2. Thoroughness – All surface areas of each bridge member must be examined.  To 

ensure that no surface is overlooked, each inspection team should develop a standard 

and methodical order for examining the surfaces of each member.  The minimum 

distance the inspector needs to be from each surface varies depending on what is being 

inspected and the condition of the structure.  Typically, items such as bearing areas, 

fatigue prone details, areas where debris accumulates and other areas known to be 

prone to deterioration should be inspected at arm’s length.  Areas like mid span 

portions of prestressed girder bridges in good condition can typically be inspected from 

the ground.   As the condition of the structure worsens, the effort required for the 

inspection will increase. 

3. Completeness – Inspection of all components of the bridge during every inspection.  If, 

for any reason, a specific component or member cannot be inspected, it must be noted 

in the bridge inspection report.  Features that are not of a structural nature, such as 

approach guard rails, lighting, and signs should also be inspected since they have a 

significant impact on bridge performance and public safety.  The elements listed in the 

bridge inspection report should be used as a guide to assure complete inspections.  

There are also items that are incidental to the elements that need to be inspected.  
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4. Discovery of Serious Safety Concerns – When critical deficiencies are discovered 

which pose a definite threat to public safety, the inspection team leader shall initiate 

actions to correct these deficiencies.  In extreme cases when the structure is in 

imminent danger of collapse, the inspector shall close the bridge to traffic.  The 

district structures maintenance engineer shall be notified immediately of the critical 

deficiency, and the following steps shall be taken: 

a.  Coordinate the traffic restrictions for public safety.  

b.  Visit the site to evaluate the critical deficiency.  During this phase personnel, 

may be brought to the site to aid in the evaluation of the critical deficiency.  

c. Determine the action to correct the critical deficiency. 

5. Questionable Conditions – During the inspection, conditions may be encountered 

which require evaluation beyond the knowledge and experience of the bridge inspector.  

When this occurs, engineers from the district structures maintenance office shall visit 

the site and personally examine the situation before determining the course of action. 

The district structures maintenance engineer shall determine if experts from the district, 

the central office, the state materials office, universities, federal agencies, or other state 

agencies need to be consulted to aid in evaluating the questionable conditions.  

Non-destructive testing (NDT) can be used to augment or supplement visual inspection.  

Generally, NDT is not practical for large scale use on a bridge unless a defect has first 

been detected by visual means.  NDT can be used to highlight or define the extent of the 

defect.  

Since most types of NDT require special equipment, and detailed instructions to perform 
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the various tests, and correctly interpret the results, it is essential to have the NDT performed and 

interpreted by qualified personnel.  

Last but not the least, material sampling (destructive testing) must be done.  Destructive 

testing can be used in evaluating bridge materials.  This requires taking samples from the 

various bridge components.  Samples from low-stress areas of steel beams can help the 

engineer determine the type and strength of the steel.  Taking samples out of concrete members 

can be useful for identifying hidden defects, as well as determining the strength of the concrete.  

Taking small samples from timber members using an incremental boring may be performed, but 

the hole should be plugged with a treated wood plug, or by some other suitable method, 

afterward.  

Destructive testing is not usually recommended, except in cases where it is necessary to 

evaluate the structure before major rehabilitation, or to determine material properties for analysis.  

It is imperative that sample holes be patched or plugged to prevent future deterioration. 

Consequently, a bridge inspection could lead to a more thorough and detailed structural 

investigation. The purpose, notification and preliminary actions for such an investigation are 

described below;  

- Purpose - When a failure or condition threatening structural integrity is discovered on a 

bridge, culvert, overhead sign, high-mast light pole, retaining wall, mast arm traffic 

signal, or other significant structure, the failure or condition shall be investigated to 

determine its cause.  Based on the investigation, action can be taken to prevent future 

similar failures or conditions.  



 

20 

 

- Notification - The district structures maintenance engineer must be notified when a 

failure or near failure occurs.  When possible, the failed structure should not be moved 

removed until an investigation can be performed.  When traffic or safety concerns 

dictate immediate removal of the failed structure, it should be stored where it will be 

available for future investigation.  

- Preliminary Actions - The initial phase of the investigation should be a documentation of 

the condition.  Extensive videos, photographs, sketches and measurements should be 

used to document the failed structure.  During the preliminary phase of the 

investigation, the district structures maintenance engineer will notify the following: 

1. State maintenance office  

2. District structures design office  

3. District general counsel, if the incident involves the public 

As stated earlier, each bridge is to be inspected at regular intervals, with no interval 

exceeding 24 months.  An inspection will not be delinquent if it is conducted in the month it is 

due. If a bridge is inspected after the month it is due, the reason must be documented in the 

communications section of the bridge record file, and in the inspection notes section of the 

bridge management system. 

 

Service Life and Life – Cycle  

 

The AASHTO LRFD Specifications provides these definitions:  

Service Life — “The period that the bridge is expected to be in operation.” 

Design Life — “Period on which the statistical derivation of transient loads is based: 75 
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years for these Specifications.” 

Since service life involves consideration of many environmental, design, materials, and 

construction factors, the LRFD definition of design life obviously does not represent a basis for 

service life. Accordingly, the AASHTO LRFD Specifications does not recommend any specific 

period for service life [15]. 

AASHTO specification provisions not being able to predict or approximate the length of 

service life is an obvious obstacle to the implementation of extended service life for bridge 

projects in the United States. Development of specific service life recommendations for bridges 

would probably involve an effort by the AASHTO Subcommittee on Bridges and Structures and 

the Federal Highway Administration, extending over several years. 

The most problematic component of life-cycle calculations may be maintenance costs. 

Nearly all states experience chronic deficiencies in the amount of funding available for 

maintenance. The lack of adequate maintenance funding may be a significant factor contributing 

to the structural deficiency of bridges. Proper maintenance is essential to achieving extended 

service life, as well as a sustainable bridge infrastructure [15]. 

Design options that have been used to extend service life include:  

1. Use of high-performance concrete (HPC) to reduce permeability.  

2. Pretensioning and/or post-tensioning to control or eliminate cracking.  

3. Minimizing the use of expansion joints and bearings. (Integral bridges should be used 

where feasible.) 

4. Use of integral deck overlays on precast concrete segmental bridges in aggressive 

environments. 
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There is a sense of urgency in the United States for achieving the goals of extended 

service life and a sustainable bridge infrastructure. However, reaching these goals involves 

incorporating details in the design process necessary for extended service life, as well as 

providing consistent funding necessary for bridge maintenance. Probabilistic, performance-based 

durability design of concrete structures is now available. Extended service life of major bridges 

is recommended, even if some marginal increase in initial cost is required. Service life of 150 

years is recommended for major urban bridges or bridges on critical highways. Eventually, 

extended service life is recommended for application to all bridges. Development of an 

AASHTO specification with specific service life periods would be beneficial to bridge 

infrastructure sustainability in the United States. 

Considering the complexities of the design and the uncertainty associated with the 

materials -- including their initial and time-dependent properties, the changes in loading from 

design values, as well as the comprehensive bridge maintenance and inspection programs -- there 

is no simple answer to the question of how long the bridge will last, or how that service life will 

be affected by certain maintenance activities or future changes in loading.  However, this could 

be relevant information that the bridge owner could use to make better decisions and business 

plans.  

Life-cycle cost analysis (LCCA) is an engineering economic analysis tool used to 

compare the relative merit of competing project alternatives. The Federal Highway 

Administration (FHWA) defines five major steps in the LCCA process [20], as listed below:   

1. Establish design alternatives  

2. Determine activity time  
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3. Estimate activity costs (agency and user)  

4. Compute the life-cycle costs  

5. Analyze the results  

By considering all owner costs over a finite time, the LCCA can help the owner make 

objective business decisions about new construction and maintenance. Transit infrastructure 

continually ages, while population and load demands increase.  These events precipitate the 

need for maintenance or improvement projects coupled with the use of objective information 

derived from analytical simulations, along with experimental data.   

The analytical investigation in this research can provide information to the first step of 

the process, which is outlined by FHWA.  The analytical investigation may also increase 

knowledge about the effects of increased loads on an existing bridge and provide better 

decision-making. Information used to determine a conventional bridge condition rating comes 

from visual inspections and load ratings based on design assumptions [15]. Design assumptions 

are based on simplified models of resistance and load effects.  It is widely understood that 

engineers try to make conservative assumptions when uncertainty in these assumptions exists.   

Consequently, the first analysis of an aging civil infrastructure system may be based on 

conservative assumptions to facilitate a rapid design [15]. This research may demonstrate 

additional capacity, in which case the bridge condition rating would be improved.  

 

Increased Loads and Load Effects 

 

State Road 408 – SR 408 (Spessard L. Holland East-West Expressway) is the backbone 
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of the Central Florida Expressway Authority’s 109-mile network. The 22-mile toll road runs 

east-west, connecting Ocoee from Florida’s Turnpike in west Orange County to SR 50 (Colonial 

Drive) east of Alafaya Trail near the University of Central Florida in east Orange County. At its 

peak, more than 164,000 vehicles a day travel the 408 as it crosses downtown Orlando.  

The bridge used in this research is one of the bridges that constitute the 109 network. The 

loads on this bridge have increased significantly from those assumed in the original design as is 

shown in Table 3 provided by the Tallahassee Democrat part of the USA Today Network [18]. 

Table 3: Traffic Data on Research Bridge 

Year Built 1973 

Average Daily Traffic (Year) 65,000 (2014) with 14% of truck traffic 

  Year Reconstructed 2005 

Future Average Daily Traffic (Year) 112,775 (2036) 

 

The finite element models developed may be used to determine if the bridge has the 

capacity to handle these increased loads. 

 

Objectives & Motivation 

 

A key motivation to this research is a new major project involving a 21-mile expansion 

roadway and bridge improvements, including direct access to the express lanes and a few bridge 

widenings (Figure 6). One of the bridges to be widened on this project was chosen for analysis in 

this research.  
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Figure 6: I – 4 Ultimate Project showing potential bridge widenings 

 

Consequently, considering the key points indicated in the problem statement, the 

objectives of the research are defined as follows:  

- Provide a better understanding of the capacity and performance of a widened bridge. 

- Provide a better understanding of the bridge widening current design code and practices. 

- Provide a better understanding of the load-rating process for widened bridges. 

- Explore changes in bridge dynamics before and after widening. 

- Conduct a reliability analysis before and after widening. 

- Conduct a nonlinear analysis for load-carrying capacity 
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This research will provide a better understanding of the capacity and performance of a 

widened bridge by exploring and modeling uncertainties with a finite element model, which will 

be quantified in terms of load-rating and reliability, and by studying the live-load distribution 

factors for the bridge before and after widening. Additionally, a nonlinear finite element 

reliability analysis that provides analytical reliability indices to be compared against design code 

reliability indices for widened bridges will be investigated.  

The results will then be compared with the current state-of-practice index using a case 

study of a widened bridge in Florida. Thus, the goal of this analytical investigation of prestressed 

beam bridge performance before and after widening is to provide a better understanding of 

load-rating and reliability. 

Additionally, the motivation for this research stems from general bridge practice 

involvement and experience, which has led to the opportunity of improving current 

bridge-widening practices through introduction of an effective bridge-widening framework, as 

well as a contribution to the widening specification approach (Inspection and Load-Rating). 

 

Methodology, Scope, and Tasks 

 

An analytical investigation is a comprehensive parametric study (a series of simulations 

where one or more parameters of the problem are varied to investigate the sensitivity of the 

solution to the parameters) conducted to investigate the range of validity of a concept and to 

identify combinations of key parameters essential to ensure adequate performance under certain 
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conditions. 

The process in this analytical investigation consists of generating a benchmark finite 

element model (FEM) and calibrating that model using existing results. The results from the 

calibrated model are then used to rate the condition of the bridge or investigate new loadings. 

The process will also include a comprehensive association and comparison of existing results, 

data, and established code values and estimates. 

 Since the structure under investigation was a widening of an original structure, the 

original structure is also investigated in this research. Design assumptions are based on 

simplified models of resistance and load effects.  Sensitivity studies are conducted to identify 

critical parameters and   are verified by comparison with other analyses. The verification 

process optimizes the model in terms of the critical parameters. After verification, the FEM may 

be used for simulation of existing or proposed loads, damage, retrofit, or improvement schemes.  

Results from the simulations may be combined with resistance calculations to determine load 

ratings. A reliability analysis can give an objective measure of structural reliability and 

probability of failure.  

The state-of-practice approach to an analytical investigation of bridges commonly 

involves research teams, with each researcher focused on one or more subdivided portions of the 

study, such as FEM development, experimental design and data processing, model calibration, 

and/or simulations and rating.  These processes can take researchers many years to complete on 

the various aspects of the bridge.  

The scope of this research study is to generate a four-span continuous prestressed 

bridge finite element model that is representative of the original structure before and after 
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widening.  In developing the FEM, boundary conditions, modal analysis, and dynamic behavior 

are considered.  The FEM is used for simulations of different vehicle loads.  AASHTO load 

ratings are conducted and examined for future widening.  Reliability analyses are performed to 

identify a reliability index, and recommendations for experimental verification are presented.  

Study tasks include the following:  

1. Literature search  

2. Bridge segment selection for analysis  

3. FEA software evaluation and acquisition  

4. Preliminary models and benchmark studies  

5. Model visualization  

6. Four-span FEM development  

7. Critical parameter identification and bounding  

8. Eigenvalue analysis and parameter sensitivity studies  

9. Simulations, load ratings, and reliability analysis 

For these objectives to be fulfilled, a roadmap is constructed explaining the main steps of 

the research framework, as shown in Figure 7. 
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Figure 7: Investigation Framework for Bridge – Widening Analysis 

 

The framework proposed in this study is expected to be implemented broadly because of its 

simple and inexpensive deployment in real life on bridge type structures. The broad implementation 

of the framework with this new approach to bridge widening criteria conditions could be of use to 

both inspectors and owners. 

 

Novelty and Long-Term Vision of the Research 

 

After a thorough literature search, it can be stated that further work is required at all 

stages of the bridge-widening process and implementation. This research, which aims to provide 
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a better understanding of the bridge-widening process and the suggested methods for analysis 

and investigation, is undertaken in three stages. The first stage is the capacity and performance 

analysis, which focuses on the linear analysis investigation of the bridge before and after 

widening. The second stage is the nonlinear analysis of a component of the widened bridge. 

Finally, the third stage is a reliability analysis of the bridge before and after widening.  

Overall, the schematic shown below (Figure 8) highlights the contribution of this 

research. 

 

Figure 8: Research Contribution Focus Flow Chart 

 

Current widening practice requires that the existing bridge under investigation for 

widening be load-rated using design codes and trucks that were initially used for designing if the 

bridge did not rate using current codes and trucks. This research will highlight the results of 

using the same and current code for load-rating analysis of the bridge before and after widening. 

Also, the capacity of a bridge and its components are usually underestimated or unpredictable, 

due to either a linear investigation or analysis. In this research, a nonlinear analysis aids in 

closely approximating the actual capacity of a component in the bridge system.  
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CHAPTER TWO: LITERATURE REVIEW AND FUNDAMENTAL 
CONCEPTS 

Condition Assessment 

 

Current widening methods and application are assumed to satisfy conditions without 

knowing the exact capacity of both the existing and pre-existing conditions (i.e., what is the 

capacity of the existing bridge? and what is the capacity of the widened bridge?) Critical 

inconsistencies can arise from several sources: (1) mixed used of design codes, (2) little or no 

knowledge of capacity and response performance between the original and widened bridge, (3) 

uncertainties (e.g., component level, system level, design and construction) and (4) rating and 

reliability computation. 

AASHTO-LRFD codes achieve uniform reliability for the design components; whereas, 

when the LRFD limit states are calibrated against previous AASHTO design requirements to 

achieve component proportions, uniform reliability is not achieved. However, during widening, 

these codes (previous and current) are used interchangeably. 

The FDOT Structures Design Guidelines (2014) make provision for this mixed coding, as 

follows; 

A. Before preparing widening or rehabilitation plans, review the inspection report and the 

existing load rating. If the existing load rating is inaccurate, or was performed using an 

older method (e.g., Allowable Stress or Load Factor), perform a new LRFR load rating. If 

any LRFR design inventory or any FL120 Permit rating factors are less than 1.0, 

calculate rating factors using LFR (MBE Section 6, Part B). If any LRFR or LFR 
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inventory load-rating factors are less than 1.0, a revised load rating may be performed 

using one of the additional procedures in C.1, C.2, C.3, or C.4 to obtain a satisfactory 

rating. If any LFR inventory rating factors remain less than 1.0, replacement or 

strengthening is required, unless a Design Variation is approved (see section B below). 

Calculate ratings for all concrete box girders (segmental) using only LRFR (MBE Section 

6, Part A). 

B. Design of bridge widening or rehabilitation projects must be done in accordance with 

SDG 7.3, and load rating must be done in accordance with SDG 1.7. Do not isolate and 

evaluate the widened portion of the bridge separately from the rest of the bridge. After 

preparing widening or rehabilitation plans, if any LRFR design inventory or any FL 120 

permit rating factors (MBE Section 6, Part A) are less than 1.0, calculate rating factors 

using LFR (MBE Section 6, Part B). If any LFR inventory rating factors remain less than 

1.0, replacement or strengthening is required, unless a Design Variation is approved. If 

any LRFR or LFR inventory load-rating factors are less than 1.0, a revised load rating 

may be performed using one of the additional procedures in C.1, C.2, C.3, or C.4 to 

obtain a satisfactory rating. 

C. Additional procedures may be performed to obtain a satisfactory inventory load rating. 

Only one of the following is allowed per rating factor:  

i. Approximate Method of Analysis: When using LRFD approximate 

methods of structural analysis and live-load distribution factors, a rating 

factor of 0.95 may be rounded up to 1.0 for the existing portion of the 

bridge.  
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ii. Refined Method of Analysis: Refined methods of structural analyses 

(e.g., using finite elements) may be performed to establish an enhanced 

live-load distribution factor and improved load rating. For continuous 

post-tensioned concrete bridges, a more sophisticated, time-dependent 

construction analysis is required to determine overall longitudinal effects 

from permanent loads.  

iii. Shear Capacity - Segmental Concrete Box Girder - Crack Angle 

(LRFD [5.8.6]): To calculate a crack angle more accurately than the 

assumed 45-degree angle used in LRFD, use the procedure found in 

Appendix B of "Volume 10 Load Rating Post-Tensioned Concrete 

Segmental Bridges" (dated Oct. 8, 2004) found on the Structures Design 

Office website [17]. 

The design summary is provided in the flow chart presented in Figure 9.  
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Figure 9: Widening/Rehabilitation Load – Rating Flow Chart Illustrating Mixed Coding 

 

While there are no effective methods of determining the capacity and performance of 

existing bridges, there is relatively no knowledge to compare the capacity and performance of 

the original (existing) bridge with the widened bridge as is illustrated here in Figure 10.  

The inability to adequately load rate a widened bridge stems from the initial complexity 

of computing the response of a bridge to live loads.  
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Figure 10: Existing and Widened Bridge for Capacity and Performance Analysis 

 

In Andrew Sonnenberg’s paper presented at the 2014 Small Bridges Conference, he 

explains the concept of assessing bridge load capacities by theoretical analysis which he breaks 

into two main methods: a generic assessment, and using the rating equation. The generic 

assessments, are economically low in cost and a good initial estimate for an asset owner in the 

absence of complete load-rating information [18].  

And he elaborates on the second option, which is the rating equation where one is 

provided a rating equation that can be used to assess structures and determine a structures rating 

factor for a nominated rating vehicle. The rating factor is obtained by calculating the theoretical 

capacity of a structure and the design actions for the nominated rating vehicle. 

In retrospect, researchers see the best and most effective option for determining the 

capacity and performance of a bridge (existing or widened) to be through reliability and load 

ratings. 

Load ratings are a reasonable deterministic approach designed mostly to assess the safety 
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of a bridge and to determine the strength and allowable load on a bridge. The methodology 

examines the appropriate failure modes, which is consistent among different bridges, and it 

makes sense. However, these load ratings have some limitations that can be overcome using a 

reliability analysis.  

The standard AASHTO HS-20 truck is a good conservative and deterministic 

representation of the typical truck on the highway. However, it does not account for the 

cumulative effect of many trucks passing over the bridge over a period of time. Using the HS-20 

truck, equivalent load ratings for different failure modes do not achieve equivalent levels of 

safety. Load ratings do not consider redundancy in a structure or correlation between failure 

modes. A system reliability analysis will consider both. There are some very good probabilistic 

live-load models available. A reliability analysis overcomes all the listed limitations of the 

load-rating approach and produces a consistent level of safety for various failure modes, per 

Estes, et al. [19], and is in the right direction of determining the capacity and performance of a 

bridge.   

In general, reliability-based structural performance indicators reflect the uncertainty in 

load, resistance, and modeling. However, they do not account for the outcome of a failure event 

in terms of economic losses.  

Currently, the load rating is the method used by state DOTs for evaluating the safety and 

serviceability of existing bridges in the United States. In general, load rating of a bridge is 

evaluated when a maintenance, improvement work, change in strength of members, or addition 

of dead load alters the condition or capacity of the structure. The AASHTO-LRFD specifications 

provide code provisions for prescribing an acceptable and uniform safety level for the design of 
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bridge components. Once a bridge is designed and placed in service, the AASHTO Manual for 

Condition Evaluation of Bridges provides provisions for determining the safety and 

serviceability of existing bridge components. Rating for the bridge system is taken as the 

minimum of the component ratings. If viewed from a broad perspective, methods used in the 

state-of-the-practice condition evaluation of bridges at discrete time intervals, and in the 

state-of-the-art probability-based life prediction, share common goals and principles. This 

dissertation briefly describes a study conducted on the rating and system reliability-based 

lifetime evaluation of several existing bridges within a bridge network, including prestressed 

concrete, reinforced concrete, steel-rolled beam, and steel plate girder bridges. The approach is 

explained using a representative prestressed concrete girder bridge. Emphasis is placed on the 

interaction between rating and reliability results, to relate the developed approach to current 

practice in bridge rating and evaluation. The results provide a sound basis for further 

improvement of bridge management systems, based on system performance requirements, per 

Akgul, et al. [20]. 

Accumulation of research in the field of bridge evaluation based on structural reliability 

justifies the consideration of reliability index as the primary measure of safety for bridges. 

Furthermore, the lifetime bridge evaluation techniques are being based primarily on reliability 

methods. Currently, bridge safety is measured in terms of the rating factor, which reflects the 

live-load capacity of the structure. To investigate the reliability index of an existing bridge, and 

to consider its relation to the rating factor, an in-depth investigation of the interaction between 

these two safety measures for different limit states of different bridge types is desirable.  

The paper by Akgul, et al [20]  presents the results of a study in which the interaction 
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between rating and reliability of a group of 14 bridges in an existing bridge network was 

investigated. This investigation is based on advanced methods to evaluate the reliability of each 

bridge in the network. Rating factors for different bridge groups are identified based on bridge 

type, and bridge groups are compared based on mean group rating factor. Bridge rating and 

reliability are quantified when each bridge starts its service life. The bridge rating factor and the 

reliability index are evaluated for various limit states belonging to different member types within 

the bridge network. A correlation study between bridge rating factor and reliability index of 

different bridge types in an existing network reveals interesting results, per Akgul, et al. [20]. 

Consequently, in addition to mixed coding, unknown capacity and response performance 

are the uncertainties that are a major missing component in the knowledge gap. The uncertainties 

that can be encountered during a bridge-widening project range from component level and 

system level, to design and construction. A bridge-widening study is usually done prior to this 

process and will include, but not be limited to, examining new and existing structures, dead and 

live-load deflections, temperature movements, prestress deflection and shortening, and 

settlements.  

 

Structural Modeling & Analysis 

 

The analytical investigation begins with structural modeling.  The state-of-practice 

approach to structural modeling is based on practical implementation of discrete finite element 

analysis methods, using conventional PC hardware and software to generate models that will 

accurately and completely simulate the following: 
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1. Three-dimensional (3D) geometry of critical regions and elements  

2. Boundary conditions  

3. Critical mechanisms of external loading 

Recent advances in PC hardware and software have made modeling and simulation a 

feasible and efficient approach.  After a nominal 3D FEM of the bridge has been generated, the 

dynamic response of the bridge is simulated to help define a comprehensive validated system.  

Mode shapes, natural frequencies, and modal contribution coefficients are computed by the 

preliminary finite element simulation, and are used to validate the efficiency and accuracy of the 

model behavior. Determining the natural frequencies provides the proper frequency bandwidth 

for a given bridge.  This knowledge is used to configure the bandwidth of the data acquisition 

system to capture the necessary modes.  

The nominal FEM represents the actual structure with limited accuracy, because of 

possible damage, deterioration, or structural details that behave differently than the design 

assumptions. Thus, the nominal model needs to be calibrated to more accurately simulate the 

existing data or available study and inspection results.   

   The critical parameters of the model are adjusted in a step-by-step process so that the 

analysis results match the measured static and dynamic response data. The comparisons of 

analytical and available design calculations and estimations give an indication of the accuracy of 

the model during calibration.  

Simulations and Load Rating 

 

In most cases, the final deliverable in the analytical investigation process of bridge 
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inspection is a bridge rating factor meeting a code criteria or specification. The calibrated FEM is 

used to simulate loading conditions, and the resulting load effects are recorded and analyzed to 

arrive at the bridge rating factors.  There are several advantages to rating the bridge based on 

calibrated finite element results, versus static load testing. First, the FEM can rapidly produce 

reliable results for rating the bridge under many types of loading. In addition to the truck used for 

the test, standard AASHTO, FHWA, and state loading conditions can be generated for the rating 

procedure.  A second advantage is that the rating is based on the global response of the entire 

bridge, rather than the local response at strain gauge locations.  Ratings based on strain data rely 

upon the assumption that the strain gauges capture all critical behaviors.  A third advantage is 

that calibrated finite element models can be used with damage identification technology to locate 

possible localized defects and failures in the bridge that go unnoticed during visual inspections 

and truck load testing. A fourth advantage of the using the FEM-based rating is that should an 

improvement or retrofit of the structure be required, engineers can use the calibrated model to 

quickly evaluate the alternatives [21].  

To emphasize, the state-of-practice approach to analytical investigation of major 

bridges commonly involves multiple researchers and even multiple research teams, with different 

researchers focused on one or more subdivided portions of the study, such as FEM development, 

experimental design and data processing, model correlation, and/or simulations and load rating.   

Model Updating 

 

Finite element modeling gives a detailed description of the physical and modal 

characteristics of a bridge. It is desirable to measure the dynamic properties of new and existing 



 

41 

 

bridges to better understand their dynamic behavior under normal traffic loads and extreme loads, 

such as those caused by seismic events or high wind.  Dynamic properties of interest include 

resonant frequencies, mode shapes, and modal damping.  These measured properties can be 

used to update numerical models of the bridge so that the models better reflect the actual 

boundary conditions and as-built structural connectivity.  Knowledge of the dynamic properties 

can be used to assess the effects of traffic loading on the fatigue life of the structure, and to 

determine dynamic load factors for these structures [22]. 

A three-dimensional dynamic FEM was developed for the Tsing Ma long suspension 

bridge in Hong Kong.  Modal analyses were carried out to determine natural frequencies and 

mode shapes of lateral, vertical, torsional, and longitudinal vibrations of the bridge and to 

investigate the dynamic interaction between the vibrational modes, between the main span and 

side span, and between the deck, cables, and towers.  The natural frequencies and mode shapes 

obtained by the numerical analysis were compared with experimental results and found to be in 

good agreement [23]. 

The combination of numerical modeling and full-scale measurement provides a 

comprehensive understanding of the behavior and properties of the Tsing Ma Bridge.  The 

validated FEM, computed dynamic characteristics, and the dynamic interactions between bridge 

elements can serve as topics for future studies on the long-term monitoring, or for aerodynamic 

analysis of the Tsing Ma Bridge [23]. 

Model updating has developed into a practical and applicable technology in recent 

years.  Zhang, et al. provides an excellent review of literature describing the historical 

development of model updating methods [24].  For a complex structure with many degrees of 
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indeterminacy, model updating is difficult because it involves uncertainties in many parameters, 

such as material properties, geometric properties, and boundary and continuity conditions.  

Manual calibration of the FEM should take advantage of existing knowledge from the owner, as 

well as knowledge of field experiments, analytical modeling, prediction and simulation of bridge 

response, and uncertainty associated with different types of experimental data. A flow chart that 

shows a procedure for manual FEM calibration using modal analysis is given in Aktan, et al. 

[25]. 

There are generally two approaches for updating the finite element model of a structure, 

depending on whether the system matrices or the structural parameters are selected for updating 

[26].  

The method of system matrix updating seeks changes in stiffness and/or mass matrices 

by solving a system of matrix equations.  This approach cannot handle the situation whereby 

the changes in mass and stiffness matrices are coupled together.  The parametric updating 

method typically involves using the sensitivity of the parameters to find their changes [27].  

This sensitivity-based parametric updating approach has the advantage of identifying 

parameters that can directly affect the dynamic characteristics of the structure. Additionally, by 

employing this method, one may acquire an immediate physical interpretation of the updated 

results.  For these reasons, the updating method is chosen in the Kap Shui Mun cable-stayed 

bridge study [28].  

Zhang, et al. describe an improved sensitivity-based parameter updating method used 

for model updating of the Kap Shui Mun cable-stayed bridge.  This method is based on the 

eigenvalue sensitivity to some selected structural parameters that are assumed to be bounded 
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within some prescribed regions, per the degrees of uncertainty and variation existing in the 

parameters, together with engineering judgment.  The changes of the chosen parameters are 

found by solving a quadratic programming problem.  A comprehensive procedure for 

sensitivity-based model updating is given in the paper referenced [28] 

Assumptions and considerations associated with the Kap Shui Mun bridge study 

include the following:  

1. The structural parameters are grouped into major components of the structural 

system, including the deck, towers, connections, and boundary conditions.  

2. The cross-section of the composite deck is described by equivalent homogeneous 

properties and a single spine passing through the shear centers of the deck.  

3. The deck/tower connections, deck/pier connections, and boundary conditions are 

modeled using one elastic spring along each translational and rotational direction.  

A total of seventeen modes, with a frequency range between 0.4 and 2.2 Hz, are selected 

for matching between analytical and experimental results. Thirty-one structural parameters are 

selected for updating, based on a comprehensive eigenvalue sensitivity study.  It was found that, 

in general, the frequencies calculated from the updated model are closer to the measured values 

when compared to those calculated from the initial model.  A similar result is seen even for 

those modes that are not included in the original updating process. The results seem to suggest 

that it is possible to update the FEM so that the natural frequencies are reasonably close to the 

measured ones.  However, there is not sufficient evidence to indicate that the updated structural 

parameters are, or are close to, the actual values.  At best, the updated model can be considered 

a plausible candidate to represent the real structure. Because the number of structural parameters 
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considered is larger than the number of modes, multiple sets of parameters that satisfy the 

optimality objectives may exist.  The non-unique nature of the solution is an important issue 

that needs to be addressed in a future study [28].        

The modal assurance criterion (MAC) is an objective method to quantify the 

correlation between mode shapes [22]. The MAC may be used to compare mode shapes 

measured during different tests, or to compare experimental and analytical results.  The MAC 

makes use of the orthogonality properties of the mode shapes.  If the modes are identical, a 

scalar value of one is calculated by the MAC. 

Finite – Element Analysis 

 

Dating back to the 1940s, since its discovery the finite element method (FEM) continues 

to be the predominant strategy employed by engineers to conduct structural analysis. The 

numerical technique for finding approximate solutions to boundary value problems for partial 

differential equations basically subdivides a large problem into smaller parts, called finite 

elements. This is also referred to as finite element analysis (FEA). 

Until recently, only linear models were used to analyze structural systems composed of 

complex materials such as reinforced concrete. However, recently, researchers have employed 

many variations of the constitutive representations of the concrete component, reinforcement, 

and the nature of their interaction. A comprehensive summary by Darwin of 24 finite element 

model studies of reinforced concrete from 1985 to 1991 illustrates the wide range of options 

available to perform an accurate analysis [29] 

The Computers and Structures, Inc. Bridge (CSiBridge) software used for the linear 
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analysis in this research implements a parametric object-based modeling approach when 

developing analytical bridge systems [30]. 

Per NCHRP, when using the finite element method, slab-on-girder bridges can effectively 

be modeled as beam/frame and shell elements. The use of shell elements to model girder bridges 

yields good results, and are also used to validate grillage models [13]. A shell is a three- or 

four-node area object used to model membrane and plate-bending behavior. Shell objects are 

useful for simulating floor, wall, and bridge deck systems. Shells may be homogeneous or 

layered throughout their thickness. 

For this analysis, the CSiBridge software will be used to determine moment and shear 

values using area objects, and all lanes will be defined. The following are the general steps to be 

used for analyzing a structure using CSiBridge [31]: 

- Geometry (input nodes coordinates, defined members and connections) 

- Boundary conditions/ joint restraints (fixed, free, roller, pin or partially restrained with a 

specified spring constant) 

- Material property (elastic modulus, Poisson’s ratio, shear modulus, damping data, 

thermal properties and time-dependent properties such as creep and shrinkage) 

- Loads and load cases 

- Stress-strain relationship 

- Analysis of the model based on analysis cases  

The bridge superstructure is idealized as a two-dimensional system. The main girders and 

the ends diaphragm beams are modeled as space frame elements with six DOFs at each node. 

The bridge deck is modeled as quadrilateral shell elements with six DOFs at each node. The 
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center of gravity of the slab coincides with the girders center of gravity therefore, the girders’ 

properties are transformed to the deck center of gravity. The bridge supports consist of hinges at 

one end of the girders and rollers at the other end [32]. 

 

Finite – Element Methods for Concrete Structures 

 

Prestressed concrete designs have been widely used for buildings, bridges, tanks, offshore  

oil platforms, nuclear containment vessels, and many other structures.  The design of these 

structures must satisfy requirements for safety, serviceability, and fatigue.  While this can be  

accomplished with approximate or empirical procedures prescribed in codes, it is desirable to  

have refined analytical models and methods available which can trace the structural response of  

these structures throughout their service load history, under increasing loads and through elastic,  

cracking, inelastic, and ultimate ranges [33]. These refined analytical methods may be used to 

study the effects of important parameters in a systematic way, to test and improve the design 

codes; or they may be used directly in the analysis and design of complex structures. Many 

advances have occurred in recent decades with respect to the finite element analysis of reinforced 

and prestressed concrete structures.  Three alternative approaches are used for modeling 

reinforcement.  These are the discrete model, embedded model, and smeared model [34].  

In the discrete model, first suggested by the authors Ngo and Scordelis, reinforcing 

bars are modeled using special elements connected to concrete through fictitious springs 

representing the bond.  The boundaries of the concrete elements follow the reinforcing bar to 

achieve common nodes (DOFs).  The discrete representation is the only way to account for 
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bond slip and dowel action directly.  The main disadvantage is that the concrete element mesh 

patterns are restricted by the location of the reinforcement, and mesh refinement can be difficult 

[33]. The number of concrete elements and DOFs is increased, thereby increasing computational 

effort [35]. 

Embedded models allow an independent choice of concrete mesh.  The same type of 

elements with the same number of nodes and DOFs are used for both concrete and steel.  The 

stiffness matrix and internal force vector for the steel element are obtained containing only the 

contributions of the reinforcing bar.  Bond slip and dowel action can only be modeled implicitly 

by modifying the constitutive relations for concrete or steel [35].   

In the smeared model the reinforcement is characterized by smearing the reinforcing 

bar to thin layers of mechanically equivalent thickness within a concrete element.  Assuming a 

perfect bond between concrete and steel, the constitutive relations are derived using composite 

theory.  The smeared model accurately represents only uniformly distributed reinforcing bars 

[35]. 

The discrete model is the most general.  It is the only model that uses conventional 

1D elements to represent reinforcement, and the only model which can account for bond slip and  

dowel action directly.  Different material properties for reinforcement, and different bond  

conditions at different nodes, can be directly and independently represented.  The disadvantage 

to the basic discrete model is that the concrete mesh geometry depends on the reinforcement 

mesh [21].   

To allow independent choice of the concrete mesh, authors El-Mezaini and Citipitioglu 

propose a special isoparametric element with movable edge nodes [34].  Reinforcing elements 
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are modeled independent of the concrete mesh.  Reinforcing bars are commonly modeled as 

truss or cable elements [35]. The edge nodes of the concrete elements are moved to the points 

where the reinforcing layers intersect the edges of concrete elements.  The concrete nodes are 

connected to the steel nodes.   

El-Mezaini and Citipitioglu also presented a technique for the discrete representation 

of bonded, unbonded, and partially bonded tendons.  The reinforcement nodes are constrained, 

depending upon the bonding assumptions.  For the bonded case, the concrete and steel nodes 

occupy the same location and are assigned the same DOFs.  The steel and concrete nodes are 

fully coupled, and no slip is allowed.  For the unbonded case, the concrete and steel nodes are 

coupled in the direction perpendicular to the reinforcement axis, but are independent in the 

direction along the reinforcement axis.  The concrete and steel have the same DOFs in the 

perpendicular direction and different DOFs in the tangent direction.  Relative motion can occur, 

and the tangent direction is known as the slip degree of freedom.  Partial bond is the most 

general method.  The slip DOFs are controlled using a prescribed slip law, such as fictitious 

springs.  The required bond model is represented by assigning appropriate properties to the 

fictitious springs [34].   

This is the most general case, because all bond conditions can be represented by proper 

selection of spring properties.  For example, a very stiff spring may represent perfect bond, 

whereas a very soft spring represents no bond.  Any bond in-between can be represented.  

In the partially bonded method, linear or nonlinear bond models can be used to represent friction 

and slip.  Linear or nonlinear material properties may be used for concrete and steel.   

Scordelis presents a unified numerical procedure for the material and geometric nonlinear  
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analysis of various types of reinforced and prestressed concrete structures, including planar or 

three-dimensional rigid frames composed of 1D elements; panels or slabs composed of 2D 

triangular or quadrilateral flat finite elements; thin shells composed of 2D flat or curved finite 

elements or axisymmetric thin-shell elements; and solids made up of 3D solid finite elements or 

axisymmetric solid elements. Time-dependent effects, due to load history, temperature, creep, 

shrinkage and aging of the concrete, and relaxation of the prestressing steel, may be included in 

the analysis.  This work by Scordelis is based on the discrete model for reinforcement [33].  

While nonlinear slip models and material properties for prestressed and reinforced 

concrete structures are available in the literature, the practical implementation of finite element 

methods may not require these advanced techniques.  Elastic behavior is generally accepted as a 

valid assumption for analysis of prestressed concrete structures under service loads and 

reinforced concrete elements up to cracking, as proposed by El-Mezaini and Citipitioglu [34]. 

The elastic behavior concept is the approach adopted by the software used for linear 

analysis in this research. 

Fundamental Concepts in Bridge Widening 

 

A bridge widening which is defined as an increase of bridge deck width or modifications 

to the sidewalk or barrier rails of an existing bridge resulting in significant mass increase or 

structural component changes immediately reveals some design and construction challenges 

(structural component). It should also be noted here that bridge widening is a rehabilitation 

process defined as a “major” rehabilitation. The definition of bridge widening and its 

classification are illustrated in Figure 11, Figure 12 and Figure 13 below.  
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Figure 11: The Bridge Structure 

 

Figure 12: The Rehabilitation Structure 

 

Figure 13: Bridge Widening Classification 
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As, it is also explained under “Bridge Widening Application,” the increase of bridge deck 

width can be dependent (increasing deck width of an existing bridge directly) or independent (a 

completely new bridge adjacent to or over the existing bridge, using separate foundation, piles, 

beams and caps). Bridge widening projects are common, due to the increase in traffic and safety 

demands on existing routes. The different bridge-widening options are summarized in Table 4, 

and are illustrated in Figure 14, Figure 15, Figure 16, Figure 17 and Figure 18.  

 

Table 4: Bridge Widening Options 

Option Description 

I 

Inside Widenings (Existing Bridge Expansion) – Typically in a 
twin bridge where widening is initiated towards the median to 
accommodate future increase in traffic. 

II 

Inside and Outside Widening (Existing Bridge Expansion) – This 
is like Option I, but includes outside widening since an inside 
widening only cannot and may not accommodate the traffic 
demand (maybe multiple lanes are required). 

III 

Bridge Heightening – Typically, when it is not feasible to widen 
both inside and outside of a bridge, the only alternative maybe an 
overhead bridge (heightened bridge) over the existing bridge that 
may share the same space in reference foundation. 

IV 

One – side Widenings (New Bridge Expansion) – Typically when 
a widening is required that does not satisfy widening conditions 
(same girders), a completely new bridge adjacent to the existing 
bridge could be used (for trucks, pedestrian, bus, bicycle etc.). 

V 
Inside and Outside Widening (New Bridge Expansion) – This is 
similar to Option IV but widening is on both sides. 
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Figure 14: Option I – Ext. Bridge Widening Exp. (Inside Widening) 

 

Figure 15: Option II – Ext. Bridge Widening Exp. (Inside and Outside Widening) 

 

Figure 16: Option III – Bridge Ht. (Proposed Bridge Ht. over Ext. Bridge) 

 

Figure 17: Option IV – One – Side Widening (New Bridge Expansion) 

 

 

Figure 18: Option V – Inside & Outside Widening (New Bridge Expansion) 
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In general, a bridge widening begins with a careful study of relative movement between 

the new and existing structure. Dead-load and live-load deflections (both short- and long-term), 

temperature movements, prestress deflection and shortening, settlement, seismic movement, 

basic structure continuity, and stability, are all factors that must be evaluated to provide a 

widening that is structurally compatible with the existing bridge. The bridge widening process 

requires, but is not limited to, the following: 

Existing Plans  

Reviewing the existing plans is the first step in every bridge-widening consideration, 

which will include basic information concerning geometrics provided by the District’s 

Department of Transportation (DOT), the inspection records available in the Bridge Inspection 

Records Information System (BIRIS), the Structures Replacement and Improvement Needs 

(STRAIN) report, and any additional information that can be obtained from the Area Bridge 

Maintenance Engineer (ABME). Additional information that can be obtained during this stage 

can include as-built construction drawings, photo logs from the Division of Traffic Operations 

(which maintains recent photos detailing approach rail, bridge rail, terrain and most likely deck 

overlays), and roadway as-built plans from the Document Retrieval System (DRS), which may 

include retaining walls, culverts and other roadway facilities information.   

Preliminary Evaluation 

The next step in this process is a preliminary evaluation of the bridge’s substructure.  

This evaluation may also include a preliminary site investigation utilizing information from the 

following: a Preliminary Report from the Preliminary Investigations Branch (PI), and a 

preliminary foundation report obtained from the Geotechnical Services, which will contain 



 

54 

 

evaluations of subsurface conditions based on as-built data and preliminary boring data.  

Structural Adequacy and Capacity 

Once the above information is obtained, the capacity of the existing structure (bridge) is 

analyzed to see if it meets load-carrying capacity and current standards. 

Load-Carrying Capacity for Strengthening or Replacement Requirements 

- Moment and shear capacity of the girders capable of supporting the proposed design and 

overload vehicle loads. 

- Capacity of the diaphragms to determine the adequacy of supporting the superstructure 

dead load in the process of replacing bridge bearings. 

- Substructure components to determine the adequacy for both current and proposed 

vehicular live loads. 

- Bridge bearings capacity to support new design loads. 

- Functioning expansion joints to accommodate the bridge deck movement for the new 

design loads. 

Current Standards 

- Hydraulic – Bridge widening over water requires the development of a new hydraulic 

study to be approved by the Structure Hydraulics Branch and Structure Maintenance and 

Investigations. This study is to determine the degree of scour (degradation potential) 

which may increase, due to widening. 

- Safety – Existing structures (bridges) which are proposed to be widened, but do not meet 

current geometric standards (safety deficient), are reported to the District’s DOT for an 

alternative rehabilitation approach. 
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- Seismic – Where applicable, seismic evaluation will require consulting the Office of 

Earthquake Engineering (OEE), since a large number of factors are to be considered in a 

widening. 

- Live Load – The American Association of State Highway and Transportation Officials 

(AASHTO) LRFD Bridge Design Specifications, in conjunction with the state’s 

department of transportation, is used to assess the bridge rating and posting criteria for 

the design live load. The only exception for a limitation of the bridge’s live load is when 

the limitation is directed by the Office of Structure Maintenance and Investigations [15].  

Typically, in order to provide safe access and meet the needs of all users in a cost-effective 

manner, it is necessary to both widen the deck overhangs as much as practically possible and 

optimize the usable deck width by reconfiguring the traffic lanes. Usually bridge widening is 

done on both sides of the bridge, as previously illustrated in Figures 15 and 16. 

 

Prestressed Concrete Bridges 

 

In the 1930s, Eugène Freyssinet invented prestressed concrete. High-tensile steel cables 

were substituted for the bars. These cables were tensioned by jacks and were then locked to the 

concrete. Thus, they compressed the concrete, ridding it of its cracks, improving both its 

appearance and its resistance to deterioration. The cables could be designed to counter the 

deflections of beams and slabs, allowing much more slender structures to be built. As the cables 

were some four times stronger than the bars, many fewer were necessary, reducing the 

congestion within the beams, making them quicker to build and less labor-intensive. Most 
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concrete bridges, except for small or isolated structures, now use prestressing. It is also being 

used ever more widely in buildings where the very thin flat slabs it allows afford minimum 

interference to services and, in some circumstances, make it possible to increase the number of 

floors within a defined envelope [36]. 

The design of prestressed concrete bridge girders has changed significantly over the past 

several decades. Specifically, the design procedure to calculate the shear capacity of bridge 

girders that was used 40 years ago is very different than the procedures recommended in the 

current AASHTO LRFD Specifications.  Thus, many bridge girders that were built 40 years ago 

do not meet current design standards and, in some cases, warrant replacement due to insufficient 

calculated shear capacity.  However, despite this insufficient calculated capacity, these bridge 

girders have been found to function adequately in service with minimal signs of distress.   

When the Utah Department of Transportation (UDOT) decided to replace the bridge at 

4500 South (SR – 266) that serves southbound I-215 in Salt Lake City, it was one of the first 

accelerated bridge construction replacement projects in Utah, the existing bridge provided an 

opportunity to investigate the ultimate shear capacity of precast, prestressed bridge girders built 

during this era. The original bridge was built as a four-span superstructure with an overall 

roadway width of approximately 77 feet.  The bridge had a significant change in elevation 

which resulted in water and de-icing salts running down the length of the bridge.  Each span 

was constructed with a fixed support on one end and an expansion joint on the other, which 

allowed water and salt to enter the expansion joint and resulted in corrosion at the ends of the 

prestressed concrete girders.    

Due to the corrosion and the insufficient calculated shear capacity, UDOT asked 
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researchers at Utah State University to determine the ultimate capacity of the girders, and to 

investigate strengthening procedures. To meet the objectives of the project, eight AASHTO Type 

2 girders were salvaged during the demolition and shipped to the Systems, Materials and 

Structural Health (SMASH) Laboratory at Utah State University.  Six girders were salvaged 

from one bridge, and the last two girders were salvaged from a separate bridge.  Girders 1 

through 6 had an in-service span length of 22-ft., 3-in. and girders 7 and 8 had an in-service span 

length of 34.5 ft.   

The girders were simply supported and loaded at 48 inches (d + 1-ft) from the supports, 

with a single point load.  Upon investigation, the shear reinforcement was found to consist of 

number-4 bars at a spacing of 21 inches on center.  Material tests determined that the vertical 

stirrups were made of 33-ksi steel, and the prestressing strand was 250-ksi stress-relieved strand.  

Baseline ultimate shear capacities were obtained by applying a vertical load at a distance “d” 

from the face of the support.  Subsequently, carbon fiber reinforced polymers that were donated 

by the chemical company BASF were applied to the remaining girders in five different 

configurations.  The retrofitted girders were then tested similarly to the baseline tests, so that 

direct comparisons could be made.  The measured data from the testing girders and the 

subsequent analyses lead to the following conclusions and recommendations: 

1. The average measured shear capacities for girders 1 through 6, and 7 and 8, 

respectively, were 163.56 kips and 261.50 kips.  

2. The measured capacities for the two groups of girders were compared with the 

calculated capacities, per procedures outlined in the AASHTO LRFD Specifications 
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(2007) and the ACI 318 guidelines (2005).  In general, the measured girder 

capacities were larger than any of the calculated values. 

3.  The strut-and-tie method was determined to provide the best estimate of the shear 

capacity of the girders.  For girders 1 through 6, the strut-and-tie produced an 

ultimate shear capacity of 138.56 kips, which is 84.72% of the average measured 

value.  For girders 7 and 8, the strut-and-tie method resulted in an ultimate shear 

capacity of 258.7 kips, which was 98.93% of the average measured value. 

4.  The AASHTO LRFD and ACI methods for calculating shear capacity were much 

more conservative in comparison to the strut-and-tie methodology.  The AASHTO 

LRFD general method predicted a shear capacity of 82.27 kips and 100.28 kips, 

which was 50.3% and 38.3% of the measured capacity for girders 1 through 6 and 

girders 7 through 8, respectively.  The ACI-318 simplified method predicted a shear 

capacity of 101.74 kips and 131.09 kips, which was 62.2% and 50.1% of the 

measured capacity, for girders 1 through 6 and girders 7 through 8, respectively. 

5. The experimental strengthening program consisted of load testing of five different 

CFRP reinforcement configurations.  The CFRP reinforcement was found to 

increase the shear capacity of the AASHTO I-shaped prestressed girders. The 

magnitude of the increased shear capacity was found to be highly dependent on the 

CFRP reinforcement configuration and anchorage system.  The application of the 

CFRP reinforcement resulted in larger deflections before failure. Based on the 

recorded strain measurements, it was concluded that the CFRP fabric was not 

overstressed at failure, and the primary failure mode was debonding.  
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6. While five CFRP configurations were evaluated, the configuration on Girders 5 and 

8, which consisted of vertical stirrups and a horizontal strip placed over the vertical 

stirrups for anchorage, was found to produce the largest consistent increase in shear 

capacity. This configuration was also the easiest to apply, and can be credited for its 

consistency. The four tests on girders 5 and 8 produced an average increased shear 

capacity of 55.70 kips.  

7. Two analytical methods were evaluated to determine the most accurate methodology 

in determining the increased shear capacity of prestressed concrete I girders 

reinforced with CFRP.  The ACI method was found to be the most accurate in 

predicting the increased shear capacity of the AASHTO prestressed I-shaped girders 

tested in this research [9].  

The above analysis and results shows how conservative the AASHTO LRFD can be in 

evaluating the capacity of structural elements.  
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CHAPTER THREE: PRELIMINARY MODEL DEVELOPMENT 

A full four-span continuous model was developed for this study; but before starting, 

consideration was given as to which segment to model, and what software to use. 

1. Original bridge constructed in 1972 (Two lanes both ways, east and west) 

2. Existing bridge reconstructed in 2002 (original 1972 bridge widened: three lanes both 

ways, east and west)  

Additionally, it was important to understand the geometric and analytical details of the 

bridge system on a smaller scale before attempting the full four-span model.  Model 

visualization included the process of discovering the bridge history through drawings, structural 

calculations, interviews, observation, and other methods.  The existing drawings became the 

geometric basis for the finite element models. Benchmark studies were conducted to acquaint the 

author with the software, as well as to try different approaches to modeling aspects of the 

bridges.   

Bridge Segment Selection 

 

There are approximately 40 AASHTO Type II and III girders in the original bridge and 

56 in the reconstructed widened bridge system (both – ways, east and west). It is important to 

think critically about which segment to model in order to provide maximum benefit at minimum 

cost, and with minimum impact to system operations. Thus, the following criteria are adapted in 

selecting the representative segment(s).    
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Primary Selection Criteria 

 

The segment should be representative and significant, such that it (1) provides an 

important link in the bridge system, (2) sees significant loads, and (3) has significant (long) beam 

spans. This means that we can reduce the long-span (60 ft., 3 in.) interior and exterior span 

segments within the beam segments, as shown in the red-dotted rectangle in Figure 19, and 

consider the oldest segments in the system as most significant, as shown in Figure 20. 

 

Figure 19: Bridge Plan indicating significant segment 
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 Spans 1& 4  

Spans 2 & 3 

Figure 20: Bridge Cross – Section indicating New and Existing Girders  

 

The segment should be representative, in that many other segments in the fleet share the 

same dimensions, loading, materials, and other design features. The present study is expected to 

provide insight into the structural behavior of the bridge systems, and to serve as a baseline to 
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establish methodology for analytical investigation of the bridge systems. With the bridge 

considered for this research having no skews, it serves a reasonable baseline, with curved spans 

(skews) recommended for future studies. 

 

 

Secondary Selection Criteria 

 

Boundary conditions should be considered – curved approach will affect behavior on a 

straight span and hence only straight segments with straight approaches are considered.  

Existing documentation is a final consideration as the availability of design 

documentation facilitates the development of the finite element model and provides insight into 

the thinking of the original design engineers.  Fortunately, the segments in the system have 

excellent documentation in the form of design drawings and calculations documenting the design 

methodology. 

 

Software Considerations 

 

Finite-element software was chosen by considering a variety of constraints and objectives.  

The first requirement was the ability of the software to accurately represent structural behavior, 

especially geometric and material nonlinearity as well as bridge response. Usability in practice 

was considered, and an attempt was made to balance this consideration with advanced analysis 

capabilities (usability in research).  These two goals conflict in some ways; more advanced 
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analysis capabilities may be provided by software that is prohibitively difficult to learn, such that 

it would never be implemented in professional practice.  It is intended in this research to 

establish a benchmark for an analytical investigation, such that this approach may be adopted by 

practicing engineers using conventional software under conventional constraints of project 

schedules and limited budgets.  

Consequently, as discussed in the literature review, a complicate approach is not required 

for this analysis hence the software should not be prohibitively complicated. Since the elastic 

behavior is generally accepted as a valid assumption for analysis of prestressed concrete 

structures under service loads a software within these constraints should be capable and 

acceptable.  

CSi Bridge by Computers and Structures, Inc. (Berkeley, CA) and Nonlinear Analysis 

Program (NAP) [46] were chosen for this research.  CSi bridge meets the previously defined 

goals and objectives; it is widely used in practice and has robust analysis capabilities, except 

material nonlinearity, which will be accommodated by NAP. 

CSiBridge has the capability to permute all the possible vehicular loading patterns once a 

set of lanes is defined. First, the entire bridge response due to a single lane loaded, without the 

application of the Multiple Presence Factor (MPF), can be easily obtained by arbitrarily defining 

a lane of any width within the bridge. Then, lane configurations that would generate the 

maximum shear and moment effects would be defined, and the MPF would be defined. The cases 

where one lane is loaded are important for fatigue design; in addition, the cases where one lane is 

loaded may control the cases where two lanes are loaded. Therefore, the cases where one lane is 

loaded are separated from the permutation and are defined, based on a single lane of the whole 
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bridge width [31]. 

 

The NAP software models the cross–section of the member to be investigated, 

incorporating the elements and materials. Figure 21 shows the simplified structure of NAP, and 

Figure 22 shows the defined base classes (element, section and material).  

 

Figure 21: Simplified Structure (NAP) 
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Figure 22: NAP Classes 

 

The architecture of the NAP input files is reminiscent of FEDEASlab. The front matter 

defines the problem title that appears on the screen and in the output file. This can be any text 

string, and has no impact on the solution process [37]. 

 At this point, the Matlab – based interpreter which translate the high – level commands 

into low – level machine instructions construct the functions added in the file, and it serves as a 

convenient platform for making a single input file that can take on a variety of possible 
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realizations. NAP also allows the use of existing templates without creating new models or codes 

from scratch (file tweaking versus new file creation).  

A key advantage of NAP is its capability of solving both linear and nonlinear problems. 

This allows for a benchmark analysis using its linear capabilities with different linear software 

like CSi Bridge.  

Preliminary Models and Benchmark Studies 

 

It is useful to develop several models of simpler structural systems, or systems with 

adequate analyzed information and results, before attempting to model the actual models one 

intends to analyze or investigate, like the four–span bridges before and after widening.  

Benchmark studies help verify accuracy of the software, acquaint the author with intricacies of 

the software, and assess the sensitivity of model outputs to various model parameters.   

A finite-element model was developed for a structural bridge system with known 

experimental results and analyzed data.  Special attention was paid to the incorporation of 

material properties, bridge modeling tools, moving-load analysis, and prestressing tools.  There 

is ongoing evaluation inaccuracy, due to the unknown assumptions made by the authors of the 

benchmark model, as well as the tools and software used, which may include modeling, user, 

software, discretization, or numerical error.  Preliminary model development is a parallel effort 

with model visualization.  Details of the benchmark model incorporated in this research by 

Lubin Gao are presented here. The benchmark bridge to be modeled is an existing bridge, which 

was analyzed by the author, and is part of his textbook [38]. 
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Benchmark Background Information and Input  

 

The benchmark bridge is an example problem (Example 7.3) from the author’s text - 

Load Rating Highway Bridges in accordance with Load and Resistance Factor Rating Method.   

The structural condition for the 1980 bridge is as follows; 

o From the most current inspection, Superstructure Condition Rating (SI & A Item 

59) is 6.  

o The section loss is minimal. 

o There is no shear distress noted. 

o The thickness of overlay was field-measured/verified. 

 

The bridge characteristics and data are provided below, along with accompanying 

illustrations (see Figure 23, Figure 24, Figure 25, Figure 26 and Figure 27). 

- A three-span simple span continuous precast, prestressed concrete AASHTO Type V 

girder bridge. 

- Only an interior girder is rated for the design load, HL- 93. 

o Straight alignment without skew (similar to bridge for analysis/research) 

o Span length: Each span is 100 ft (Three Spans). 

o Four (4) AASHTO/PCI Type V precast PC I girders spaced at 8 ft. 

o Depth of concrete deck: 8 in.  

o Overhang width: 3 ft. 

o Out-to-out width of the concrete deck: 30 ft. 
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o Curb-to-curb width of the concrete deck: 27 ft. 

o Overlay: 2 ½ inches  

 

Figure 23: Benchmark Bridge – Framing Plan 

 

Figure 24: Benchmark Bridge Typical Cross Section 

 

Figure 25: Benchmark AASHTO Type V Girder Section Dimensions & Properties 

 

The strand profile with 44 strands, provided in eight layers deflected at 0.3 points, are 
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also provided here, including the composite section properties shown in Table 5.  Benchmark 

material properties are shown in Table 6. 

 

Table 5: Benchmark Composite Section Properties 

Section 
Composite Section (n=EB/ED = 1.225) 

A Ybot Ix Sbot 

# (in2) (in) (in3) (in4) 

Composite 1640 45.4 1000006.8 22048.2 

 

 

Figure 26: Benchmark Strand Layout 

 

Table 6: Summary – Benchmark Material Properties 

Benchmark - Material Properties 

Prestressing Steel Girder Deck 

Type 
0.5" Dia. Grade 270 

Low Relaxation 

Type Precast I Type Conc. - Composite 

Comp. Strength 6 ksi Comp. Strength 4 ksi 

Yield Strength 240 ksi Initial Strength 4.5 ksi Unit Weight 0.15 kcf 

Tensile Strength 270 ksi Unit Weight 0.15 kcf 

  Modulus of 

Elasticity 28,500 ksi 

Modulus of 

Elasticity 4415 ksi 

Modulus of 

Elasticity 3605 ksi 
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Figure 27: Benchmark Analytical Investigation Flow Chart 

 

 

Benchmark Three – Span Model 

 

Working with the finite element software, related documentation, and technical support 

personnel, an observation was made that shell elements would be a good choice to represent the 

concrete girders of the bridge.  Shell elements have the advantage over frame elements of 

representing local behavior.  Although bridge models are often developed with frame elements 

with equivalent cross-sections representing the deck, the goal in this study was to develop 

additional resolution to capture local behavior at the connections [48]. 

A detailed benchmark study was undertaken to understand the details of bridge analysis  

in CSiBridge.  Shell elements are chosen for meshing the bridge deck.  

A few figures are presented here for a better understanding of the model process.  Figure 

28 shows the three-span continuous precast prestressed concrete AASHTO Type V girder bridge.  

Undulating prestressing tendons are defined within the deck shown in Figure 29.   
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Figure 28: Benchmark Continuous Three – Span Model  

 

Figure 29: Benchmark Model – Tendons  

 

The model cross – section is also shown in Figure 30 which illustrates subsequent loads 

which must be predefined as CSi Bridge considers these loads (barrier and wearing surface) as 

non – composite external loads. These loads are therefore modeled as line loads, which are 

analyzed and shown in Table 7 with their respective line action positions. 
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Figure 30: Benchmark Cross – Section Model & Line Loads 

 

Table 7: Benchmark Line Load Analysis 

 

 

Figure 31 and Figure 32 show the bridge response/force output from CSi Bridge for dead 

and live load analysis envelopes.  The bridge object response feature is a powerful tool in CSi 

Bridge that calculates resultant load effects by integrating forces at sections along the length of 

the bridge object (Computers and Structures Inc. 2015).  The moment envelope indicates 

minimum and maximum values from the moving load analysis. A sample of a loading case is 

also shown here in Figure 33 with its respective live load distribution factors.  

Left Ext. 3

Int. 1 11

Int. 2 19

Right Ext. 27

Int. 1 11

Int. 2 19

Barrier Modeling

Line Load Points (ft) 

Ref. Left Edge Bridge 
Girder

Wearing Surface Modeling

Girder
Line Load Points (ft) 

Ref. Left Edge Bridge 

Component Weight (klf) Qty Total Wt. (klf) # Girders Weight/Girder (klf)

Barrier 0.335 2 0.67 4 0.1675

Component Thickness (in) Conc. Wt. (kcf) Beam Sp. (ft) Wt./Int. Girders (klf) # Int. Girders

Wearing Surface 0.335 0.15 8 0.25 2

Therefore, Line Load = 0.168 klf applied @ girder centers - 3, 11, 19, & 27 ft resp. from deck edge.

Therefore, Line Load = 0.25 klf applied @ Int. girder centers - 11 & 19 ft resp. from deck edge.
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 Figure 31: Benchmark Study Dead – Load Moment & Shear Envelopes 

 

 

Figure 32: Benchmark Study Live – Load Moment & Shear Envelopes 
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Figure 33: Benchmark Live – Load Distribution Factors Schematics 

 

The first span, which is symmetrical to the other two spans, was used in comparing the 

textbook dead-loads analysis for both shear and moment, as shown in Figure 34, Figure 35 and 

Figure 36. The first span gives good dead-loads analysis results, with a 1% to 5% variation in 

both moment and shear, as also illustrated in Figure 34 and Figure 35. 
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Figure 34: Benchmark Single – Span Moment Comparison 

 

 

Figure 35: Benchmark Single – Span Shear Comparison 
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Max. Moment Loc. Max. Moment (K - ft) Max. Shear Loc. Max. Shear (K ) 
Source (ft) Girder Deck (ft) Girder Deck 
Benchmark 49.8 1371.2 1036.4 0 , 100 55.1 41.7 
FE Model 49.5  *2401.7 0 , 100  *102.4 
*Composite section used in modeling (Deck + Girder) 

Figure 36: Benchmark Single – Span Maximum Points  

 

 

  

 

Benchmark Modal Analysis 

 

Eigenvalue analysis (modal analysis) which determines the undamped free-vibration 

mode shapes and frequencies of a given structural system was performed on the benchmark 

bridge. Additionally, the analysis provides the effect of a modeled structure by examining its 

responses (static and dynamic), flexibility and stiffness, and behavior (global versus local). 

Figure 37 illustrates the effects of a dynamic analysis, as well as the expected modes for a typical 

modeled bridge structure.  

In CSiBridge, eigenvalue analysis involves the solution of the generalized eigenvalue 

problem:  [𝐾 − Ω2𝑀]Φ = 0 

Where; 

K = the stiffness matrix,  

M = the diagonal mass matrix,  

Ω2 = the diagonal matrix of eigenvalues, and  

Φ = the matrix of corresponding eigenvectors, or mode shapes  
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In this research, to determine the structure’s natural characteristics (modes, shapes, 

frequencies, etc.) or physical characteristics (capacity, resistance, etc.), a modal analysis was 

performed on the finite-element model to verify its natural frequencies and dynamic responses. 

  

 

Figure 37: Dynamic Analysis Effects & Modes 

 

The modal analysis case for the benchmark model is defined such that it uses the stiffness 

at the end of a nonlinear case, accounting for the P-delta effects of the prestress, which also 

restrains the end supports, thus producing the expected vertical bending first mode. The restraint 

which prevents motion in the x and y direction (hence creating a fixed connection) is illustrated 

in the segment shown in Figure 38 (dashed red circles).  
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Figure 38: Benchmark End – Connection for Modal Analysis 

 

The frequencies and mode-shape vectors provide the best global indications of 

structural condition and behavior.  Results of the modal analysis may be used to plan a 

field-verification plan or long-term monitoring program; and in this case, verification checks of 

the software’s capabilities. For the benchmark model, the following characteristic responses are 

identified: 

1. Vertical beam bending 

2. Lateral beam bending 

3. Torsion 

The eigenvalue analysis of the benchmark model in CSiBridge gives natural frequencies in 

the range from 5.177 Hz to 19.058 Hz for the first 20 modes of the nominal model. Examples of 

the first 10 modes are illustrated in Figure 39. 
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Figure 39: Benchmark Eigen Value Analysis First Modes 

 

 

Appendix A contains tables with frequencies, along with graphical representations and 

text descriptions of mode shapes for 16 modes. 

 

Benchmark Discussion 

 

The benchmark results validate the modeled FEM, as well as the software. The moment, 

shear-load and live-load envelopes were similar to those provided in the textbook, as well as 

capacity, live-load distribution factors and load-rating values, which will be discussed in detail in 

later chapters. Consequently, the modal analysis results showed frequencies within the range of 

magnitude of similar bridges.  
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CHAPTER FOUR: FOUR – SPAN FINITE – ELEMENT MODEL (1972) 

Introduction 

 

A finite element model for the four-span bridge structure is developed as an extension of 

the benchmark studies (Figure 40 showing the plan and three – dimensional views).  Shell 

elements are used to represent the prestressed concrete girders. Frame elements with 

nonprismatic cross sections represent columns. The twenty precast beams and associated 

pre-tensioning were developed and updated with the CSi Bridge Design Module.  

The subsequent sections detail certain assumptions and choices made in developing the 

full four-span continuous model. 

 

 

 

Figure 40: Four – Span Continuous Bridge FEM 
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Superstructure 

 

The superstructure refers to the section of the bridge receiving vehicular live loads, 

principally the precast haunched beams and their associated prestressing elements.  While many 

aspects of developing the beam, model have already been discussed, additional items specific to 

implementation of the full model in CSi Bridge are included in subsequent sections. 

 

Beams 

The beam geometry and meshing were developed using the CSi Bridge design module.  

Shell elements were chosen to represent the beams for reasons discussed in the previous chapter, 

especially to develop the resolution and smoothness required to capture local behavior at the 

connections.  Shell elements give results at their neutral axis, which can then be integrated by  

the software to give resultant forces and moments at a section of interest.   

The prestressed beam section is selected from the programs data file. The cross-section 

of the selected beam is shown here (Figure 41).  
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Figure 41: Beam Cross – Section Pre-defined in Program 

The beams are meshed by the bridge design module into reasonable segment lengths.  

An automatic sub-mesh is also assigned which essentially doubles the resolution of the beam 

models.  No shell is longer than 60 in, which follows the recommended guidelines, to limit the 

aspect ratio.  

Prestressing 

Two bridge objects were defined in the bridge design module, representing the two sets 

of prestressed beams (Type II & Type III) in the 1972 model in the four–span continuous bridge. 

Spans 1 and 4 consist of the same configuration, while spans 2 and 3 have similar configurations, 

but different from spans 1 and 4. Figure 42 below shows the two bridge objects for the stated 

configurations. 
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Figure 42: Bridge Object Definitions 

 

A single tendon (with the combined area of all the tendons) is placed at the centroid of 

the tendon group, and debonded portions of the tendon are accounted for by not modeling the 

portion of tendon that lies within the debonded region. 

The fundamental difference between the bonded pretensioning strands and the bonded 
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post-tensioning tendons in the bridge is that the pretensioning strands were pulled and set at the 

plant before the surrounding concrete cures.   

Many researchers and professionals choose to neglect the effect of the prestress force 

on global structural behavior.  However, because the prestress force is such an integral and 

important structural feature in the continuous bridge, the present study considers the effect of the 

prestress force (and, consequently, prestress loss) on static and dynamic structural behavior.   

The resulting stiffness is used as the basis for all static and dynamic analyses.  The P-Delta 

effect of the prestress force (axial compression) has the effect of reducing the effective stiffness 

of the beams in lateral and vertical bending.  The prestress loss parameters are very important to 

the behavior of the structural model.  The prestress loss parameters are defined and discussed in 

subsequent sections. 

Columns 

The precast columns are modeled in CSiBridge as frame elements with non-prismatic 

cross-sections.  Non-prismatic cross-sections may be defined for which the properties vary 

along the element length.  The variation of bending stiffness may be linear, parabolic, or cubic 

over each segment.  The axial, shear, torsional, mass, and weight properties all vary linearly 

over each segment (Computers and Structures Inc., 2015).   

The concrete unit weight is taken as 150 pcf from the original structural calculations, 

and Poisson’s ratio is taken as 0.2.  The concrete modulus of elasticity, Ec, is an important 

parameter with significant variability.  Treatment of Ec is discussed in subsequent sections.  

The column frame elements are discretized to mesh with the bearing shell elements. 

Rigid links are used to connect the column frame nodes to the centers of the clusters of the 
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defined bearings.   

The precast columns are rigidly connected to pile caps with grouted pipes.  The pile 

caps develop the rigidity of the steel pile foundations.  All the columns are considered fixed at 

the base for the finite element model. 

 

Model Parameters 

Technically, all possible parameters relating to the geometric, elastic, and inertial 

properties, as well as boundary and continuity conditions, should be considered for sensitivity 

studies and model verification [28].  However, if too many parameters (as compared to the 

number of measurements available) are considered, the possibility of obtaining an unreliable 

updated model may increase [40].  

In the process of developing the benchmark studies and full four-span FEM, the critical  

model parameters are noted.  Special attention is paid to parameters representing material 

properties, prestressing force/loss, boundary conditions, and bridge continuity condition over the 

columns.  Some model parameters, such as the length of a beam or the unit weight of concrete, 

are well-characterized and deterministic.  Other parameters, such as the prestress loss or 

concrete stiffness parameters, have significant uncertainty with their characterization. Different 

assumptions for these parameters are possible and, in some cases, these assumptions are critical 

to the behavior of the structural model.  

In developing the benchmark model and full four-span models, key parameters were 

identified that significantly affect the structural response.  The finite element model is used for 

static load analysis, including moving loads as well as eigenvalue modal analysis.  The free 
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vibration modes and frequencies depend on global parameters, including material stiffness, 

prestress loss, and boundary and continuity conditions.  Deflection, moment, and shear from 

static analysis are sensitive to these parameters as well. 

 

Concrete Modulus of Elasticity 

The critical material property for analysis is the concrete stiffness, represented by the 

modulus of elasticity, Ec. In CSiBridge, the concrete stiffness is controlled through the modulus 

of elasticity. Additional specified components include the shear modulus and Poisson’s ratio. 

These are shown in the material properties dialogue box (Material Property Data) in Figure 43. 

 

 

Figure 43: Material Property Data 
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In some engineering materials, such as steel, strength and the stress-strain relationships 

are independent of the rate and duration of loading, at least within the usual ranges of 

rate-of-stress, temperature, and other variables. In contrast, effect of the rate of loading on the 

behavior of concrete is significant.  The main reason for this is that concrete creeps under load, 

while steel does not exhibit creep under conditions prevailing in buildings, bridges, and similar 

structures [41]. When calculating deformations, a reduced modulus is used for long-term load 

(dead load).  There is no way to simultaneously represent the reduced stiffness induced by 

long-term loads and the greater stiffness for live-load response in one FEM.  Instead, an attempt 

is made to come up with reasonable values for effective stiffness, which adequately represents 

the dynamic behavior and moving-load response, but also considers the dead-load influence.  It 

is expected that the appropriate effective concrete modulus for use in the FEM lies somewhere 

between the instantaneous modulus for live load and the reduced modulus for long-term load.  

Many expressions are given for the modulus of elasticity.  There are expressions for the 

instantaneous modulus, as well as expressions that consider long-term loads and curing processes.  

Many expressions for the concrete modulus were adapted from academic and technical 

publications [32], [42], [43], [41], [44] and used to establish lower- and upper-bound values.  A 

reasonable nominal value was selected using judgment, and was based on assumptions in the 

original calculations.  Expressions for instantaneous and long-term modulus are generally given 

in terms of the compressive strength, f’c. Results of the long-term modulus of elasticity (Ec) and 

concrete compressive strength (fc’) analysis are presented in Figure 44 and Figure 45, with 

detailed computation presented in Appendix D.  
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Figure 44: Plot of Long – Term Modulus of Elasticity Aging 

 

 

Figure 45: Plot of Long – Term Concrete Compressive Strength Aging 
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Prestress Loss  

It is well-established that the initial prestressing force applied to a concrete element 

undergoes a progressive process of reduction.  Reduction of the prestressing force can be 

grouped into two categories (also see Figure 46): 

1. immediate elastic loss during fabrication and construction, including elastic shortening of 

the concrete, anchorage losses, and frictional losses (post-tensioning only); and 

2. time-dependent losses such as creep, shrinkage, and those due to temperature effects and 

steel relaxation.   

 

Figure 46: Prestress Losses Analysis Map 

 

An exact determination of these losses is not feasible because of the many interrelated factors, 

as well as imprecise understanding of their values [43]. Empirical methods for estimating losses 

are adapted [43], including the author’s (Nawy) presentation of AASHTO and PTI methods.  

Appendix E gives the full set of prestress loss calculations. The loss parameters are constant over 

the length of the bridge, except for the wobble coefficient, which influences the prestress loss 

linearly, from zero effect at the jacking end to full effect at the anchored end.  
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The prestress loss parameters are divided into elastic shortening stress, creep stress,  

shrinkage stress, and steel relaxation stress, in addition to curvature and wobble coefficient for  

friction, and anchorage set slip. CSiBridge adds the stress losses algebraically (Computers and  

Structures Inc., 2015), so it makes no difference how we split up the losses among the categories  

of elastic shortening, creep, shrinkage, and steel relaxation stress loss. 

 Using the lump sum of time–dependent losses methodology (LRFD Article 5.9.5.3), 

the effective prestress after losses was estimated over a long–term period by incorporating the 

modulus of elasticity and compressive strength losses estimated in the previous section. The 

results for long–term elastic shortening and its corresponding effective prestress are provided in 

Figure 47 and Figure 48, with detailed analysis presented in Appendix E.  

 

Figure 47: Plot of Long – Term Elastic Shortening Losses 
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Figure 48: Plot of Long – Term Effective Prestress 

 

Boundary Conditions 

The main boundary conditions were developed at the supports for the two main cases, 

the eigenvalue analysis, and the capacity and live-load analysis. The conditions for the abutments 

and end bents, were incorporate in the foundation springs. The foundation springs were fixed in 

the translation vertical, translation normal to skew and rotation about line along skew directions 

and free in the translation along skew, rotation about vertical and rotation about line normal to 

skew directions. 
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Objective 

 

In the absence of experimental data, the analytical investigation will focus on the model 

(FEM) which will be used for calibration and the results used for the analysis in the section 

below. The process will also include a comprehensive association and comparison of existing 

results. 

 The original 1972 bridge was modeled in this research, since the structure under 

investigation (the 2002 bridge) was widened from the 1972 bridge. Understanding the behavior 

and characteristics of this bridge will facilitate the variation and comparison of the existing 

structure (the 2002 Bridge).  

The finite-element model for the four-span bridge structure (developed as an extension of  

the benchmark studies) will be used for the following studies, with their results presented in the 

respective chapters: 

- Modal Analysis and Parameter Sensitivity (Chapter 6) 

- Live-Load Distribution Factors Analysis (Chapter 7) 

- Simulations and Load Ratings (Chapter 8) 

- Modal Analysis and Loading Ratings Correlations (Chapter 9) 

- Load Rating and Reliability Analysis (Chapter 10) 

- Nonlinear Simulation and Reliability Analysis (Chapter 11) 

 

It should be noted that for consistency, close approximation of reliability analysis results; 

and with a focus of component versus system investigation, a single span (consisting of critical 
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components) will be used in chapters 10 and 11.  

System reliability is a major concept in reliability analysis, because individual limit-state 

functions are assembled together in a system model. The failure conditions are determined by the 

system model, since failure of one or two members may not be important due to redundancy. On the 

other hand, there may be critical components (flexure/critical), which must stay intact for the 

structural integrity of the whole system.  Since individual girder components have been 

investigated through live-load distribution factors and load-ratings analysis, it will be appropriate 

in this case to focus on the component reliability analysis, which is also less complex compared 

to a system reliability analysis. The single span to be used for the component reliability analysis 

is shown in Figure 49. This section is equivalent to spans 2 and 3 in the main structure, which are 

of equal lengths (60 ft., 3 in.), as illustrated in Figure 50. 

 

Figure 49: Single – Span 1972 Bridge Model 
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Figure 50: 1972 Bridge Single – Span Illustration 

 

Discussion 

 

Since aging is a key factor in modeling and analyzing this bridge, it was very important 

to identify the critical parameters to be incorporated into the model. The modulus of elasticity 

and prestress losses were two critical parameters that affect older bridge components, and were 

investigated very carefully. Results from these analyses show a rapid loss for the first 30 years, 

and a minimal, steady loss after the first 30 years. These losses will be incorporated in the FEM 

during aging sensitivity analysis, as well as in the widened bridge model to replicate the existing 

(2002) bridge.   
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CHAPTER FIVE: FOUR – SPAN FINITE ELEMENT MODEL (2002) 

Introduction 

 

A finite-element model for the four-span widened bridge structure is developed as an 

extension of both the benchmark studies and the four–span original 1972 bridge (see Figure 51).  

Shell elements are used to represent the prestressed concrete girders. Frame elements with 

non-prismatic cross-sections represent columns. The 20 precast beams and associated 

pre-tensioning were developed and updated with the CSiBridge Design Module.  

 

Figure 51: Four – Span Continuous Widened FEM 

 

 

While the widening connection was not modeled for the four-span continuous bridge unit, 

the components at the connection were carefully examined.  To understand the connection, one 

must consider the construction process.  

Widened decks are typically constructed to match both an existing bridge deck and 

theoretical grades generated for the outside edge of the widened deck. Field personnel generally 

develop deck contours for widening. The widening process described here is very specific to the 
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bridge chosen for this research, the original 1972 bridge that was reconstructed (widened) in 

2002. 

The following analysis and calculations are carefully made in sections before detailed 

planning schematics are executed; 

- Section I: Geometry 

- Section II: Elevations 

- Section III: Superstructure Design  

o Deck 

o Beam 

o Bearing 

- Section IV: Substructure Design 

o End Bent 

o Piers 

o Foundation Design 

- Section V: Retaining Wall Design 

- Section VI: Aesthetic Documents 

 

Upon completion of the above calculations, the schematics and detailed planning and 

drawings are in effect. Since the bridge chosen to be analyzed undergoes an inside as well as 

outside widening, the steps taken here will follow the procedure and process of an inside and 

outside widening criteria.  

One of the steps is an examination of the cross–section of the bridge to be widened, with the 



 

98 

 

proposed cross-section to match both the existing bridge deck and the proposed deck.  

In their paper Du et al. [45] point out several issues regarding the common practice of 

widening bridges, in which a new bridge deck is constructed alongside an existing bridge deck, 

and an in situ concrete stitch (also called stitching slab) is cast between the existing and new 

decks to provide a monolithic connection and continuous riding surface; but no issues regarding 

load transfers from the deck to its members, which is key to this research, was mentioned. In this 

paper, engineering issues concerning bridge widening are addressed, and finite-element 

method-related grillage theory is used to investigate the effect of shrinkage and creep differences 

between existing and new bridge decks on the internal forces of the structures. The influence of 

settlement in the substructure of new bridges on widened structures is also investigated. Possible 

improvement of concrete materials used for connecting existing and new bridge decks is 

discussed. Thus, it is suggested that the connection time interval between existing and new 

bridge decks should be determined if possible, to minimize the shrinkage and creep effect. Some 

feasible measures to enhance the integrity of the widened bridge are also proposed. This is to 

support the argument that load transfers between the bridge deck and its components were not 

hindered because the connection was not modeled. Figure 52 demonstrates a typical 

bridge-widening connection. 
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Figure 52: Bridge – Widening Connection 

 

 

 Additionally, it should be noted that the existing bridge girders (1972 Bridge) were 

modeled to incorporate a reduction in their modulus of elasticity, based on the concrete bound 

stiffness analysis to replicate their condition and characteristics when the bridge was widened. 

The existing bridge girders in the widened bridge are shown in Figure 53, along with the 

corresponding targeted bridge girders focused on in this research.
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Figure 53: Existing and Targeted Girder in Widened Bridge 

 

Objective 

 

The focus of this research is the behavior and performance of the widened bridge, with 

emphasis in the following areas: 

- Capacity after widening, which investigates the following: 

o ultimate flexure and shear,  

o live-load distribution factors, 

o load ratings, and 

o reliability 
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- Interaction between new and existing members, which investigates the following:  

o modal analysis and  

o sensitivity analysis 

 

Like the 1972 bridge model, the 2002 widened bridge was modeled in the absence of 

experimental data; therefore, the analytical investigation will focus on the FEM model, which 

will be used for calibration. The results will be used for the analysis in the chapter sections listed 

below. The process will also include a comprehensive association and comparing of existing 

results. 

 Understanding the behavior and characteristics of the 2002 widened bridge will 

facilitate variation and comparison to the original 1972 bridge. 

The finite-element model for the 2002 widened four-span bridge, developed as an 

extension of both the benchmark and 1972 bridge studies, will be used for the following studies 

(along with their results) in the chapters noted: 

- Modal Analysis and Parameter Sensitivity (Chapter 6) 

- Live-Load Distribution Factors Analysis (Chapter 7) 

- Simulations and Load Ratings (Chapter 8) 

- Modal Analysis and Loading Ratings Correlations (Chapter 9) 

- Load Rating and Reliability Analysis (Chapter 10) 

- Nonlinear Simulation and Reliability Analysis (Chapter 11) 

Consequently, it should be noted that for consistency, close approximation of reliability 

analysis results will be used in chapters 10 and 11, and as shown in Figure 54. These results will 



 

102 

 

focus on component versus system investigation of a single span (consisting of critical 

components) on the widened bridge. This section is equivalent to spans 2 and 3 in the widened 

structure, which are of equal lengths (60 ft., 3 in.), as illustrated in Figure 55.  

 

 

Figure 54: Single – Span 2002 Widened Bridge 

 

 

Figure 55: 2002 Widened Bridge Single – Span Illustration 
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Discussion 

 

The aging parameters previously estimated will be incorporated in this model and its 

analysis. The modulus of elasticity and prestress losses were the two critical parameters 

identified, and will be assigned to the existing members in the model. Additionally, the 

parameters will be varied for different age stages for future prediction of the bridge capacity and 

its members. For example, an initial investigation immediately after widening might suggest that 

the new members in the bridge system will have no loss; however, the existing members will be 

affected by a 30-year loss, and must be incorporated in the model accordingly. This can be done 

for ages 5, 10, 15, 20 years, etc. after the bridge widening, which means that while the new 

members will be 5, 10, 15, or 20 years old, their existing counterparts will be 35, 40, 45 or 50 

years old. The specific losses will be assigned to the members, per their respective ages. Figure 

56 illustrates the schematics and aging progression of the widened bridge, per the individual 

components. 

 

 

Figure 56: Aging Progression Schematics of Widened Bridge Members 
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CHAPTER SIX: MODAL ANALYSIS AND PARAMETER SENSITIVITY 

Introduction 

 

As stated earlier (under “Benchmark: Modal Analysis” in Chapter Three), the dynamic 

characteristics (modes shapes, frequencies, etc.) and physical characteristics (capacity, resistance, 

etc.) of a bridge structure were obtained numerically in the absence of experimental analysis. Thus, 

a modal analysis performed on the finite-element model is developed and evaluated for the initial 

validation of the structure, as well as verification of its dynamic behavior and responses.  

Modal analysis is used to measure the impact of parameter variations on the vibration 

characteristics of a bridge by incrementally changing one parameter at a time, neglecting any 

cross-sensitivities.  The frequencies and mode shape vectors are global indicators of structural 

condition and structural behavior [46].  Results of the modal analysis may be used to plan a 

field-verification plan or long-term monitoring program. When dynamic responses obtained from 

field monitoring studies, finite element models (FEMs) can be updated and calibrated. A flow 

chart that shows a procedure for manual FEM calibration, using modal analysis, is given in the 

literature by Aktan [25].  

Selection of Modes 

 

Zhang [32] gives practical recommendations for selection of relevant modes. In the case 

of long-span bridge response to wind excitation, inclusion of the lowest vertical dominant, 

horizontal-dominant, and torsional-dominant deck modes is recommended.  The response of the 
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bridge can be quite accurately spanned by the lower modes.  For seismic response prediction, 

those modes dominated by motions of the towers or piers should also be considered. In the areas of 

structural health monitoring and damage detection, it is found that higher modes are more sensitive 

to local damage.  Indeed, it would be ideal to match as many modes as possible between the 

measurement and FEM predictions.  However, it does not seem logical to include higher modes 

that cannot be obtained reliably from either the measurement or the FEM analysis.  

For the present study, enough modes will be reported, such that all the characteristic 

responses are represented.  For the four-span continuous bridge, the following characteristic 

responses are identified: 

1. vertical beam bending,  

2. lateral beam bending and  

3. torsion. 

 

Results 

 

Eigenvalue analysis of the bridge using CSiBridge program gives natural frequencies in 

the range from 6.680 Hz to 14.775 Hz, and 10.735 Hz to 15.403 Hz, for the first 16 modes of the 

nominal model for the original 1972 bridge and widened 2002 bridge, respectively.  In general, 

the mode shapes of the bridge could be classified as exhibiting lateral beam bending, vertical beam 

bending, and torsion.  Example behaviors are shown graphically in Figure 57 and Figure 58, with 

complete modes presented in Appendix A. 
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Figure 57: Modal Behavior of 1972 Bridge 

 

 

Figure 58: Modal Behavior of 2002 Widened Bridge  
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Discussion 

 

The results demonstrate significant stiffness shift between the two bridges (original 

1972 bridge and 2002 widened bridge). The first mode frequency varies by more than 4.00 Hz, 

with frequencies of 6.680 Hz and 10.735 Hz for the 1972 and 2002 bridges, respectively. The 2002 

widened bridge also seems to exhibit a local behavior, as compared to the original 1972 bridge, 

which behaves globally. These behaviors are observed in their respective first modes, with the 

whole system in the 1972 bridge having a dynamic global response, while only part of the system 

in the 2002 widened bridge reacts to the vibration of the system. It should also be noted that the 

section of the 2002 widened bridge responding to the vibration constitutes more of the existing old 

members in the original bridge.  Consequently, we can add that the condition of the bridge also 

has significant effect on the dynamic response. It requires much more energy to overcome the 

torsion resistance; so, we see the first torsional mode occur at a much higher frequency in the 1972 

bridge during the fourth mode at a frequency of 7.04 Hz, and completely absent in the 2002 

widened bridge. Also, not only are torsional modes absent in the 2002 widened bridge, but the 

second lateral mode in the 1972 bridge is also completely absent, leaving vertical bending modes 

to control and dominate all the modes in the 2002 widened bridge.   

It is interesting to note that the above analysis and results are an indication of increased 

stiffness between the time when the original bridge was built in 1972 and when it was widened in 

2002, thus indicating that more stiffness is introduced in the bridge system after widening. 

It is recommended that comprehensive modal testing be pursued for a more objective 

and comprehensive model calibration and validation, which could also include field investigation 
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and testing. 
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CHAPTER SEVEN: LIVE LOAD DISTRIBUTION FACTORS ANALYSIS 

The finite-element models developed in this study are intended to represent the conditions 

of both the original 1972 bridge and the existing bridge that was widened in 2002. The live-load 

moments are the results of the FEM models. However, the live-load distribution factors were 

estimated in a spreadsheet as a function of the moment of the entire structure, divided by the 

subsequent individual girder moments, as illustrated in the sample sketch in Figure 59.   

 

Figure 59: Live Load Distribution Factors Analysis Illustration 

 

Live-load distribution factors are typically how bridges are analyzed for design.  These 

distribution factors result in a simple approximate analysis of bridge superstructures.  Live-load 

distribution factors separate the transverse and longitudinal distribution of force effects in the 

superstructure.  Live-load force effects are assumed to be distributed transversely, by 

proportioning the design lanes to individual girders through the application of distribution factors.  

The force effects are subsequently distributed longitudinally between the supports, through the 

one-dimensional (1-D) structural analysis over the length of the girders.    

In simplifying the design process, distribution factors minimize potential modeling errors.  
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They reduce the necessity of modeling the entire bridge from a two-dimensional (2-D) or 

three-dimensional (3-D) analysis to a 1-D analysis of a girder. 

 

Benchmark Live Load Distribution Factors 

 

Since the benchmark bridge was designed per LRFD requirements (and hence, 

LRFR-rated), this model was also designed per LRFD requirements and, as stated previously, the 

concept of using the single-girder moment, divided by the moment of the entire structure, was used. 

The results of the hand calculations using MathCAD are detailed in Appendix B, and are 

summarized on Table 8.  

 

Table 8: Benchmark Hand Calculations for Distribution Factors 

 

The results of the live-load distribution factors for the benchmark bridge (for three 



 

111 

 

different moment-loading cases and a shear-loading case) are shown in the drawings in Figure 60 

and on Table 9. These results are shown with code-estimated distribution, so the margin between 

the model distribution factors and the code can be observed.  
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Figure 60: Benchmark Live Load Distribution Factors 

 

Table 9: Moment & Shear Controlling Live Load Distribution Factors 

 

 

1972 and 2002 Live Load Distribution Factors 

 

Since the original 1972 bridge was constructed using LFR ratings, and since current codes 

require that such bridges be assessed by the same ratings, the LFR analysis is considered and evaluated 

in this research. Similarly, a hand-calculation analysis was done for both the LFD and LRFD for the 

FEM LRFD

Moment 0.489 0.692

Shear 0.669 0.814

HL93
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1972 and 2002 bridges. A detailed analysis appears in Appendix B, and the results are shown on Table 

10. 

Table 10: 1972 and 2002 Bridge Hand Calculations for Distribution Factors 

 

 

 

Numerous loading cases were investigated for the critical position for each girder within 

the system. The distribution factors for the 1972 bridge are shown here in Figure 61 and Figure 

62 for both moment and shear and their respective controlling factors summarized on Table 11. 
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Figure 61: 1972 Bridge Live Load Distribution Factors (Moment) 

 

Figure 62: 1972 Bridge Live Load Distribution Factors (Shear) 
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Table 11: Moment and Shear Controlling Live Load Distribution Factors (1972 Bridge) 

      

Consequently, the process was applied to the 2002 bridge. Figure 63 shows the critical case 

assessment and selection. Figure 64 and Figure 65 show the distribution factors results for both 

moment and shear, and a summary of the controlling live-load distribution factors is provided on 

Table 12. 

 

Figure 63: Critical Case Selection for Targeted Components 

FEM LFD FEM LRFD

Moment 0.715 0.841 0.716 0.877

Shear 0.899 0.841 0.742 0.901

HS20 HL93
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Figure 64: 2002 Bridge Live Load Distribution Factors (Moment) 

 

Figure 65: 2002 Bridge Live Load Distribution Factors (Shear) 
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Table 12: Moment and Shear Controlling Live – Load Distribution Factors (2002 Bridge) 

 

Discussion 

 

The live-load distribution factors derived from the model analysis, compared to both the 

previous and current codes, range from 18% to 33%, and from 1% to 18% for both moment and 

shear, respectively, as shown on Table 13 and Table 14. The graphs shown in Figure 66 and Figure 

67 illustrate the variations between the AASHTO and FEM live-load distribution factors for an 

HL-93 truck, for both moment and shear. 

 

Table 13: Moment Live – Load Distribution Factors Analysis 

 

 

Table 14: Shear Live – Load Distribution Factors Analysis 

 

FEM LFD FEM LRFD

Moment 0.651 0.841 0.592 0.877

Shear 0.934 0.841 0.895 0.901

HS20 HL93

AASHTO FEM

Benchmark 0.692 0.489 29.3

1972 0.877 0.716 18.4

2002 0.877 0.592 32.5

Live Load Distribution Factors (HL - 93 Truck)
Bridge Diff. %

AASHTO FEM

Benchmark 0.814 0.669 17.8

1972 0.901 0.742 17.6

2002 0.901 0.895 0.7

Bridge
Live Load Distribution Factors (HL - 93 Truck)

Diff. %
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Figure 66: Moment Live – Load Distribution Factors Comparison 

 

 

Figure 67: Shear Live – Load Distribution Factors Comparison 
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The close variation of the shear live-load distribution factors between AASHTO and the 

FEM is an indication of how critical shear analysis can be in any case. It is also observed that the 

wider the spans, the closer the variation.  

However, there seems to be a wide variation between the moment live-load distribution 

factors for AASHTO and the FEM, which can be addressed. One possible explanation of this 

variation in the redistribution of mid-span moment live-load could be the continuity conditions 

assumed in the FEM. Whereas, there is some flexural resistance offered by the column and 

crosshead in the FEM, the AASHTO analysis may have assumed pin supports at the ends and 

rollers between spans of the bridge.  
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CHAPTER EIGHT: SIMULATIONS AND LOAD RATING (FULL BRIDGE) 

Objective 

 

In this chapter, simulations and load-rating results will be presented for the benchmark, 

1972 and 2002 bridges, following the AASHTO LFR and LRFR methodology.  Resistance 

calculations are based on the AASHTO LRFD method, which includes analysis outlined in the 

benchmark study. The objective is to investigate the variations in the load ratings of the bridge 

before and after widening, which in this case implies investigating and load rating the 1972 bridge 

model (before widening) and the 2002 bridge model (after widening). The benchmark load rating 

will once again be used as verification by comparing the FEM results with those provided in the 

text. 

Simulations 

 

Simulations are conducted using the benchmark model and the two parametric 1972 and 

2002 models.  Load effects are derived from the FEM output.  Critical limit states are 

identified as well as trends in the data and the physical meaning of the results. 

 

Load Rating 

 

Load rating, which measures the bridge live-load capacity, is analyzed next in this section. 

It should be noted that the rating for the bridge system is taken as the minimum of the component 
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ratings. Although the two key focus areas in load rating include operating level (the maximum 

permissible live-load that can be placed on the bridge) and inventory level (the load that can safely 

use the bridge for an indefinite period), the initial focus will be on the operating level.  

Since the research bridge has a very high likelihood of future widening, only the current 

acceptable truck (HL-93) will be used for the load-rating analysis. This approach allows 

assessment of the current components in the bridge for future provisions and its capacity. The 

equation for load rating is also discussed here; but it should be emphasized that the goal and 

objective for a component to be considered competent (in the sense of capacity) is for it to have a 

value greater than, or equal to, 1. This also shows the correlation between load rating and the 

capacity of a component. The load-rating assessment procedure is illustrated in Figure 68.   
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Figure 68: Load Rating Flow Chart 

 

The AASHTO Load and Resistance Factor Rating (LRFR) and the Load Factor Rating 

(LFR) Manual prescribe three methods for evaluating the safe maximum live-load capacity of 

bridges (LRFR 6.1.6). It should be noted that in LRFR, “Inventory” and “Operating” ratings are 

defined in terms of associated reliability indices (β = 3.5 INV, β = 2.5 OPR) [58], as follows:  

1. load and resistance factor rating of bridges,  

2. load rating by load testing, and  

3. safety evaluation using structural reliability methods for special cases.  
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The load and factor rating is given generally as: 𝑅𝐹 = 𝐶−𝐴1∗𝐷𝐴2∗𝐿∗𝐺𝐷𝐹∗(1+𝐼)  

Where; 

 RF = rating factor 

 C = capacity (Nominal member resistance – R) 

 A1 = Factor for Dead Loads 

 A2 = Factor for Live Loads 

 L = Live Load Effect on member 

 GDF = Girder Distribution Factor 

 I = Impact Factor to use with the Live Load Effect 

The load and resistance factor rating is given generally as LRFR Eq. (6-1): 𝑅𝐹 = 𝐶−𝛾𝐷𝐶∗𝐷𝐶−𝛾𝐷𝑊∗𝐷𝑊±𝛾𝑃∗𝑃𝛾𝐿𝐿∗(𝐿𝐿+𝐼𝑀)                              

Where; 

 RF = rating factor 

 C = capacity (Nominal member resistance – R) 

 DC = LRFD Load Factor for structural components and attachments  

 DW = LRFD Load Factor for wearing surfaces and utilities 

 P = LRFD Load Factor for permanent loads other than dead loads 

 LL = Evaluation live load factor 

 DC = Dead load effect due to structural components and attachments 
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 DW = Dead load effect due to wearing surface and utilities 

 P = Permanent loads other than dead loads 

 L = Live load effect 

 IM = Dynamics Load Allowance 

 

This rating factor indicates reserve live-load capacity.  It may be simplified conceptually 

as the capacity minus dead-load demand, all over live-load demand.  If there is no reserve 

live-load capacity, then the rating factor is 1.0.  Additional live-load capacity is indicated by 

rating factors greater than 1.0.  The AASHTO load rating is a global expression of capacity, 

limited by the critical behavior [59]. 

Load rating will be developed per the AAHSTO LRFR methodology.  For design load 

rating of concrete structures, the LRFR Manual prescribes the following limit states for load rating 

(LRFR 6.5.4.1): “The Strength I load combinations shall be checked for reinforced concrete 

components.  The Strength I and Service III load combinations shall be checked for prestressed 

components.”   

Regarding fatigue, the commentary (C6.5.4.1) states: “Fatigue is not a concern until 

cracking is initiated.  Hence, prestressed components need not be routinely checked for fatigue.”  

Design vs. Load Rating 

 

Bridge design and rating, though similar in overall approach, differ in important aspects. 

Bridge ratings generally require the engineer to consider a wider range of variables than is typical 

in bridge design.  Design may adopt a conservative reliability index and require comprehensive 
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serviceability and durability checks.  In rating, the target reliability is reduced and application of 

the serviceability limit states is done on a more selective basis.  The added costs of 

overly-conservative evaluation standards can be prohibitive as load restrictions, rehabilitation, and 

replacement become increasingly necessary [47]. 

The rating procedures presented in the AASHTO Manual for Condition Evaluation and 

Load and Resistance Factor Rating (LRFR) of Highway Bridges [47] are intended to reflect a 

balance between safety and economics.  As such, a lower target reliability than design has been 

chosen for load rating at the strength limit state.  While the LRFD Code calibration reported βT = 

3.5, the LRFR Manual adopts a reduced target reliability index, βT of approximately 2.5, calibrated 

to past AASHTO operating level load rating.  This value was chosen to reflect the reduced 

exposure period, consideration of site realities, and the economic considerations of rating vs. 

design [58].  The reduced target reliability is reflected in the reduced live-load factor for 

Design-Load Rating at the Operating Level for the Strength I Limit State, γLL = 1.35 [LRFR 

6.4.3.2.2], βT = 2.5.  This may be compared with the LRFD Code Strength I live load factor, γLL = 

1.75 [LRFD Table 3.4.1-1], βT = 3.5. 

Relationship between Load Rating and Reliability 

 

For probabilistic design specifications, such as the LRFD Code, the rating factor and 

reliability should be highly correlated, because a target reliability index, βT, is used to calibrate the 

design and rating factors. While relationships between reliability and rating form the basis of load 

and resistance factors for bridge components (elements), very good correlation has also been 

demonstrated between rating factors and reliability indices for bridge systems [20]. To compare 
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ratings against predicted reliability over the life of the bridges in a network, the authors Akgul and 

Frangopol [48] calculated rating values and reliabilities over the lifetime, in a continuous manner, 

based on deterioration and live-load models.  Resulting relationships between ratings and 

reliabilities of existing bridges in a network can be used to determine optimum maintenance 

strategies at the network level. 

Benchmark Verification 

 

Before proceeding with the full set of rating calculations for the 1972 and 2002 bridge 

parametric models, there was an attempt to verify the results of the calculations for critical load 

effects and resistance in the nominal model.  The most effective way to verify the calculations 

was to compare them to the benchmark model analysis provided by the author Lubin Gao [38]. 

Figure 69 shows the FEM model rating of 2.59, compared to 2.79 from the text. This verified the 

proximity of the model to be used for the ratings of the bridges under investigation (1972 and 2002 

bridges).  

 

Figure 69: Benchmark Critical Component Rating 
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1972 Bridge Load Rating Under Aging 

 

Following the benchmark verification load rating, the 1972 was load rated by incorporating 

the aging effects discussed in previous chapters (modulus of elasticity and prestress losses). Both 

HS-20 and HL-93 trucks were used to load rate the 1972 bridge. The idea here was that, since the 

1972 bridge was designed using the HS-20 truck, its rating results can give us an idea of what its 

ratings will be if the HS-20 truck were to be used for its rating this present day. It should be noted 

that the code makes provision for earlier bridges designed using the HS-20 truck to also be rated 

today (present times) using the HS-20 truck, if unable to rate using the current HL-93 truck. Also, 

using the HL-93 truck provides a variation and justification of the bridge capacity, depending on 

whether it rates or not.   

 

Results 

 

A full set of calculations, using the nominal model to find load ratings, is given in 

Appendix F.  The calculations are performed using PTC Mathcad Prime 3.0 (Mathsoft 

Engineering and Education, Inc., 2015).  Once the calculations are laid out for the nominal model, 

the software facilitates rapid adaptation of the calculations for the parametric models by changing 

the appropriate inputs.  The figures shown here illustrate the ratings for the components in their 

worst-case loading, and since the 1972 bridge was originally designed using the HS-20 truck, the 

bridge was evaluated using both HS-20 and HL-93 trucks. Figure 70 shows the load ratings of both 

trucks for the members. 
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Figure 70: 1972 Bridge Load Ratings 

 

The load ratings results observed from the 1972 bridge show the variation in the HS-20 

truck versus the HL-93 truck. The HS-20 truck shows higher rating compared to the HL-93 truck, 

which is an indication of previous standards and codes not meeting current requirements and 

standards. The result of the load ratings for the 2002 bridge is discussed in the following 

chapters. 
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CHAPTER NINE: MODAL ANALYSIS AND LOAD RATINGS 

Introduction 

 

The benchmark bridge, the original four-span 1972 bridge, and the widened 2002 bridge 

were analyzed and examined to explore a correlation between eigenvalue analysis (modal 

analysis), which determines the undamped free-vibration mode shapes and frequencies of a given 

structural system, and load rating, which measures the bridge live-load capacity. 

The eigenvalue analysis and load ratings for both single trucks and double trucks (i.e., 

those towing two trailers in tandem) acting on the central line of the bridge system, with maximum 

effect on the interior girder, was first performed on the benchmark bridge, as shown in Figure 71. 

A similar analysis was then performed on both the original 1972 bridge and the 2002 widened 

bridge, as shown in Figure 72 and Figure 73, respectively. Similar concurrent modes from the 

eigenvalue analysis were selected for the correlation analysis in this research.  

 

Figure 71: Benchmark Bridge Dynamic Modes and Load Ratings 
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Figure 72: 1972 Bridge Dynamic Modes and Load Ratings (aging not considered) 

 

 

Figure 73: 2002 Bridge Dynamic Modes and Load Ratings 
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Two sets of analyses were performed for this study; 

1. Load ratings versus eigen values plots for all three structures (benchmark, 1972 and 

2002 bridges). 

2. Load ratings versus eigen values plots for 1972 and 2002 bridges only. 

 

Results 

 

It should be noted that CSiBridge assigns a rating of 10 to all members in the system during 

analysis that are not affected by the effects of the assigned lane and truck. For the first set of 

analyses, similar repeating modes were selected for each structure. The load ratings for both single 

and double trucks were determined for each case, and a scattered plot for all three structures was 

produced, as shown in Figure 74. 
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Figure 74: Plot of Loading Ratings Versus Eigen Values (All Structures) 

 

It should be noted that the benchmark (BM) scattered plots do not have a direct correlation 

with the 1972 and 2002 bridges, due to their different configurations (span lengths and width).  

Consequently, the second set of analyses was performed with the same conditions as in the 

first set. The correlation analysis will focus on the 1972 and 2002 bridges, since they are of similar 

geometry and characteristics. Since there is a direct correlation between these bridges, it will 

facilitate the eigenvalues analysis and load ratings correlation investigation to be established.  
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Initial results from the eigenvalue analysis show signs of increasing strength and stiffness 

as the frequencies increase from 6.68 Hz for the 1972 bridge to 10.73 Hz for the widened 2002 

bridge. Similarly, the load ratings (interior member single-truck ratings) increase from 2.40 for the 

1972 bridge to 6.30 for the widened 2002 bridge.  

The above observation resulted in the correlation investigation between the eigenvalues 

and load ratings. The results of this investigation are presented on Table 15.  

 

Table 15: Eigen Values and Load Ratings Results 

 

Bridge 
Load Ratings* Frequency (Hz) 

RF – Diff.** Mode – Diff.*** 
1 Truck 2 Trucks 1st Mode 2nd Mode 

1972 2.40 1.39 6.68 6.879 1.01 0.199 

2002 6.30 3.73 10.735 11.162 2.57 0.427 

*Load Ratings of Interior Member 

**Load Rating difference between single and double trucks. 

***Frequency difference between first and second modes  

 

The following situations were considered as part of this investigation (Load Rating = RF 

& Eigen Values = EV); 

- 1972 (Single Truck RF & 1st Mode EV) versus 2002 (Single Truck RF & 1st Mode EV) 

- 1972 (Double Trucks RF & 1st Mode EV) versus 2002 (Double Trucks RF & 1st Mode EV) 

- 1972 (Single Truck RF & 2nd Mode EV) versus 2002 (Single Truck RF & 2nd Mode EV) 

- 1972 (Double Trucks RF & 2nd Mode EV) versus 2002 (Double Trucks RF & 2nd Mode 

EV) 

- 1972 [RF – Difference (Truck 1 – Truck 2) & EV – Difference (2nd Mode – 1st Mode)] 

versus 2002 [RF – Difference (Truck 1 – Truck 2) & EV – Difference (2nd Mode – 1st 

Mode)] 

 

The results for these analyses are shown in Figure 75 and Figure 76. 
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Figure 75: Plot of Load Ratings Versus Eigen Values (1972 and 2002 Bridges) 

 

 

 

 

Figure 76: Plot of Load Ratings and Eigen Value Differences (1972 and 2002 Bridges) 
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Discussion 

 

 

From the plot for all three structures, it is observed that a much wider spread in the 

benchmark points, followed by the 1972 and 2002 bridges, respectively. This spread can be 

attributed to the structures components and stiffness. It should also be noted that the benchmark 

bridge constitutes Type V girders, while the 1972 and 2002 bridges have Type II & III girders; 

however, the 2002 widened bridge appears to be much stiffer than the 1972 bridge.  

It is seen that there is an increase in eigenvalue and load rating points between the 1972 and 

2002 bridges, with the 2002 bridge having the peak points. Consequently, the analysis for only the 

1972 and 2002 bridges shows a correlation between the two. It is observed that the essential mode 

from the eigenvalue analysis and a single-truck load rating dominate all the cases, which also 

shows that while the first mode is critical to the system (structure), a single-truck load rating is 

equally as important. (If a system cannot handle a single truck, this can be a critical issue.)  

Consequently, the order of investigation importance and criticality (i.e., an investigation of 

the order of importance) can be drawn from the plot, as follows: 

1. 1 truck and 1st mode 

2. 1 truck and 2nd mode 

3. 2 trucks and 1st mode 

4. 2 trucks and 2nd mode 

In other words, during an eigenvalue and load-rating investigation, case 1 above should be 

analyzed first, followed by cases 2, 3 and 4. A simple eigenvalue and load-rating flow chart can be 
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developed for this exploration, as shown Figure 77. 

 

Figure 77: Load Rating & Eigen Value Analysis Flow Chart 

  



 

138 

 

CHAPTER TEN: LOAD RATING AND RELIABILITY ANALYSIS 
(SINGLE SPAN) 

Simulations are conducted using a single span system to capture the critical sections 

within the system and to prevent evaluating and analyzing the whole system which could lead to 

a complicated system reliability analysis versus a more reliable component reliability analysis. 

Introduction 

 

Reliability Index and Probability of Failure 

 

Calibration of the current AASHTO LRFD Bridge Design Specifications (LRFD Code) is  

based on a reliability analysis procedure [56], [57]. Structural performance is measured in terms 

of the reliability or probability of failure.  In the context, of reliability analysis, failure is 

defined as the realization of one of several predefined limit states [52]. An alternative method for 

expressing probability of failure is to use the reliability index, β.  For normally distributed 

random variables R and Q, it can be shown that the probability of failure is related to the 

reliability index as follows, Pf = Φ(−β).  If the random variables are all normally distributed and 

uncorrelated, then this relationship between β and Pf is exact for a linear limit state function (in 

the sense that  and Pf are related).  Otherwise, this expression provides only an approximate 

means of relating the probability of failure to the reliability index, β.  The reliability index is a 

common metric used to quantify how close a design code or specification is in achieving its 

objective [57]. 

The LRFD Code provisions are formulated such that new structures will have a 
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consistent and uniform safety level.  The basic design formula is:  

ΣγiQi⋅<Φ Rn 

Where;  

Qi = nominal load effect i  

γi = load factor i  

Rn = nominal resistance  

Φ = resistance factor 

 

In the LRFD Code calibration, load and resistance are treated as random variables and 

are described by bias factors (λ) and coefficients of variation (V).  Resistance factors, φ, are  

calculated so that the structural reliability is close to the target value βT = 3.5 [56].  

The expression for the reliability index, β, shown here in Figure 78 is used assuming a 

linear limit state function [57]:  

 

Figure 78: Reliability Index Equation 



 

140 

 

This expression must be adapted for the current study, considering load effects and 

resistance in bending.  The limit state function is developed in terms of resistance and load 

effects for the AASHTO Strength I limit state:  

g(MRes, MDL, MLL) = MRes – MDL - MLL 

where;  

MRes = nominal moment resistance (Mn) 

MDL = dead load effect  

MLL = live load effect (MLL_IM) impact included 

The corresponding reliability index is:  

 𝛽 = 𝜇𝑅−𝜇𝐷𝐿−𝜇𝐿𝐿√𝜎𝑅2+𝜎𝐷𝐿2+𝜎𝐿𝐿2        (1) 

 

Where  and are the means and standard deviations for the resistance, dead load, and live load, 

respectively.  

The limit-state functions are valid if the uncertainties (structure strength/capacity or 

loads etc.) are incorporated in the failure probability of the structure.  Statistical parameters for 

load and resistance tend to be given in terms of load effects [50], and are available for the present 

study. A full set of reliability analysis calculations can be found in Appendix F, Load Rating and 

Reliability Analyses. 

 For the nonlinear limit-state functions, an approximate answer is obtained by linearizing 

the nonlinear function using a Taylor series expansion [50]. The result is the equation shown 

below: 
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𝑔(𝑋1, 𝑋2, … , 𝑋𝑛) ≈ 𝑔(µ𝑥𝑖∗, µ𝑥2∗, … , µ𝑥𝑛∗ ) + ∑(𝑋𝑖 − µ𝑥𝑖∗) 𝜕𝑔𝜕𝑋𝑖 |𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝑑 𝑎𝑡 (𝑥1∗ ,𝑥2∗ ,…,𝑥𝑛∗ )𝑛
𝑖=1  

An approximate solution expression for the reliability index, β, is shown here [57]; 𝛽 = 𝑔(𝜇𝑥1,𝜇𝑥2,…,𝜇𝑥𝑛)√∑ (𝑎𝑖𝜎𝑥𝑖)2𝑛𝑖=1                       (2)                      

Where; 

 𝑎𝑖 = 𝜕𝑔𝜕𝑋𝑖 |𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝑑 𝑎𝑡 𝑚𝑒𝑎𝑛 𝑣𝑎𝑙𝑢𝑒𝑠 

 

The reliability index defined in the above equation is called a first-order, second – 

moment, mean value reliability index where the derivation attributes are as follows; 

 first order: using first – order terms in the Taylor series expansion; 

 second moment: only means and variances are needed (mean value because the Taylor 

series expansion is about the mean values). 

  

A full set of reliability analysis calculations (nonlinear) can be found in Appendix F, Load 

Rating and Reliability Analyses. 

 

 

Simulations, Load Rating and Reliability 

 

Once adequate reliability is demonstrated for the resistance calculations and FEM outputs, 

loading simulations are performed with the two parametric FEMs developed and described in 

previous chapters.  The critical-load effects for dead load and live load were extracted from the 
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finite element analysis results at critical locations.   

Load ratings following the AASHTO LRFR (AASHTO 2010) methodology were 

calculated, and a reliability analysis was performed.  The reliability index, β, was calculated and, 

assuming normal distribution of random variables, the equivalent probability of failure, Pf was 

found. 

For the reliability analysis, a single span of the bridge, which contains the critical members was 

examined. From the test cases and recommendations by the author Nowak, the following 

assumptions were made for the reliability analysis: 

- Targeted members only within the bridge single-span system 

- Nominal loads to be used (dead, wearing surface and live loads). 

 

Table 16 shows the bias and variation constants used for the analysis in this research taken 

from Nowak and Collins [50], statistical parameters for load and resistance tables. 

 

Table 16: Statistical Parameters for Load and Resistance 
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*Statistical Parameters for Load & Resistance – Reliability of Structures (Nowak & Collins) 

Benchmark 

 

A hand calculation using MathCAD Prime 3.0 software was used to estimate the load 

ratings, reliability index, and probability of failure for a single and multiple HL-93 trucks. The 

results of the calculations are presented in Appendix F and on Table 17. 

 

Table 17: Hand Calculation Load Rating and Reliability Results for Single and Multiple HL93 

 

  

   

Similarly, the single-span 1972 bridge was modeled, and an analysis of the load ratings, 

reliability indices, and probability of failure was performed on the critical interior member. Figure 

79 shows the lane assignments, models (and their respective load ratings), reliability indices, and 

probability of failures for single and multiple HL-93 truck loadings. 

 



 

144 

 

 

Figure 79: 1972 Single Span Bridge for Load Ratings and Reliability Analysis 

 

 

  

Discussion 

 

From the above results, a comparison of the hand calculations and FEM results for the load 

ratings and reliability analysis indices were established for both single and multiple HL-93 trucks. 

Figure 80 shows a comparison of the results from both the hand calculations and the FEM of the 

single span system. 
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Figure 80: Hand Calculations and FEM Comparison 

 

The difference between the two analyses were within the range of 0.16 (RF Multiple 

Trucks: Hand Calculations = 1.23 and FEM = 1.39) and 0.63 (RF Single Truck: Hand Calculations 

= 1.74 and FEM = 2.37). The difference between the two analyses, although close enough to 

justify use of the FEM for further analysis, could stem from a complete bridge system used in the 

FEM, versus the component used in the hand calculations, with an estimated effective length of the 

contribution deck weight on the component girder. 

 

Sensitivity – Load Rating & Reliability Analysis 

 

Introduction 

 

A sensitivity analysis was performed on single span of the 2002 widened bridge by 
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incorporating aging and materials property losses. Three cases were examined for the sensitivity 

analysis, as follows: 

- Case I: system with no losses. 

- Case II: long-term losses (30 years or more), including time-dependent properties such as 

creep, shrinkage, tendon relaxation and Young’s Modulus (E) of all the members.  

- Case III: differential losses for new and old girders (0-29 years and 30 + years, 

respectively), including time-dependent properties such as creep, shrinkage, tendon 

relaxation and Young’s Modulus (E) for selected members (i.e., original members from the 

1972 bridge which remain in the widened 2002 bridge). 

 

Results 

 

Results for Case I of the sensitivity analysis, with no losses in material properties, are 

shown in Figure 81, which includes the load ratings, reliability index, and probability of failure. 

The analysis focuses on a member within the system that was part of the original 1972 bridge, and 

which remained in the 2002 bridge widening. 

 

Figure 81: Case I – Sensitivity Analysis (No Losses) 
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For Cases II & III (with material property losses), an elastic modulus time-dependent 

analysis and a prestress loss analysis were performed using the “Approximate Lump Sum of 

Time–Dependent Losses” approach (LRFD Article 5.9.5.3). This approach for standard precast, 

pretensioned members (subject to normal loading and environmental conditions) and pretensioned 

members (with low relaxation strands) considers the long-term prestress loss due to creep of 

concrete, shrinkage of concrete, and relaxation of steel.  A detailed analysis of both modulus of 

elasticity and prestress losses is provided in Appendix D. 

 Following the analysis and time-dependent material property, the results for both cases 

are illustrated in Figure 82 and Figure 83, respectively. 

 

  

Figure 82: Case II – Sensitivity Analysis (Losses – All Members) 
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Figure 83: Case III: Sensitivity Analysis (Losses – Selected Members) 

 

 

 

Discussion 

 

 
The goal to examine these three cases is to establish a long-term correlation among members in 

a widened bridge, since there is a combination of both old and new components. The results can be 

broken into two main components: 

1. aging rating consistency and 

2. load-carrying capacity consistency. 

Cases I and II reveal that, with everything remaining the same, the system can carry its 

adequate loads, as is expected of a new bridge; and in 30 years, the bridge shows the same targeted 

member carrying its loads (HL-93). However, the decrease and the percentage difference in rating 

should be noted. Table 19 shows that as the system ages, the loading capacity is reduced. Also, the 
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variation in capacity between Case I and Case II (with respect to single and double truck loadings) 

also gets closer as the bridges age. As an example, there was a 1.04 rating difference between the 

targeted member rating of one and two trucks, but this gap is reduced 30 years later to 0.65. As 

shown in Table 18, the aging difference for one truck at 0 years, versus one truck for 30 years, is 

0.98; and the aging difference for two trucks at 0 years, versus two trucks at 30 years, is 0.59. 

 

Table 18: Case I & II Load – Rating Summary Chart 

Case Age (Yrs) 

# 

Truck RF Load Diff. Aging Diff. 

I 0 
1 2.56 

1.04 
1 Truck (0 years) 

0.98 
2 1.52 1 Truck (30 years) 

II 30 
1 1.58 

0.65 
2 Trucks (0 years) 

0.59 
2 0.93 2 Truck (30 years) 

 

In Case III, where there is a combination of old and new members (as shown in Figure 89 

previously), a similar pattern is observed. The new member has a margin of 0.39, while the old 

member has a margin of 0.05. This is an indication that, at some point, the ratings will be 

approximately equal for both old and new members. Table 19 shows the correlation between the 

old and new members in the system. 

 

Table 19: Case III Load Rating Summary Chart 

Girder Age (Yrs.) RF Aging Diff. 

New 0 1.67 
0.39 

New 30 1.28 

Old 30 0.85 
0.05 

Old 60 0.80 
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CHAPTER ELEVEN: NONLINEAR SIMULATION & RELIABILITY 
ANALYSIS 

 

Introduction 

 

 

A nonlinear analysis is very critical to this research, as the linear analysis alone does not 

reveal the ultimate capacities of the components within the system. Consequently, the Nonlinear 

Analysis Program (NAP) [37], described earlier in chapter three, is employed in this research. 

The nonlinear analysis simulation and sensitivity analysis will focus on the critical 

members within the systems. The nonlinear analysis tool allows for nonlinear loading, varying 

boundary conditions and material characteristic variations. These in turn imply that NAP is 

adequate for both material and loading sensitivity analysis. 

Model 

 

 

The initial stage of the nonlinear modeling is to identify and model the critical component 

(i.e., section) of the bridge that will be a close replicate of the members. Since the span lengths of 

both the 1972 and 2002 bridges did not change, the critical section identified will be the same in 

both cases. In this case the section is an interior member within the long span of the bridge, as seen 

in previous linear analyses. Therefore, the initial modeling process begins with the boundary 

conditions, elements, and connectivity considerations.        



 

151 

 

A cross–section of the critical component/section is shown in Figure 90. The effective 

width of the deck carried by the section is first estimated before constructing the composite cross–

section. Appendix F provides a detailed computation for the effective width estimate. 

The model is discretized to have a replicate load effect similar to the actual member by 

defining deck/girder elements and prestress truss elements. These two components are connected 

by rigid elements to form the composite beam illustrated in Figure 84, which also gives a detailed 

description of all the components, elements, nodes, cross section and applied loading cases. 

 

 

Figure 84: Detailed Schematics of Nonlinear Model 

 

The modeling strategy includes using 1D macro elements that are based on the differential 

equations for the component resultant forces. Due to the discretization of the elements/nodes, the 

displacement formulation is adopted. Based on the assumption that plane sections remain plane, 
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the prestress effect cannot be fully modeled; hence the need to go with the rigid links to offset the 

physical location of the tendons and (potentially) allow them to move relative to the 

cross-sectional strains. Also, it should be mentioned that debonding of the strands (slipping) was 

not considered. 

Benchmark 

 

A hand calculated analysis was used as a benchmark verification for the NAP model.  

Similar geometry and material properties were considered for close approximations and 

comparisons. Details of the hand calculations and the results from the NAP model used for the 

analysis are presented in Appendix F. The unfactored load ratings for both the hand calculations 

and NAP are shown on Table 20. The results between the hand calculations and the NAP model 

were close enough for the NAP model to be used for further analysis and investigation. 

 

Table 20: Benchmark Results and Comparison 

Case Unfactored Load Rating 

Hand Calculations 2.381 

NAP 2.584 

 

Analysis 

 

The model in NAP was set – up to have two loading cases as shown in Figure 84.  

- Case I: Live Load carrying load points with three nodes for the axle of the HL93 truck 

(8kips, 32kips, 32kips). 
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- Case II: Capacity single load point node. 

The analysis will also include the following test and sensitivity analysis study with 

similar boundary conditions (Pin – Pin connections); 

1. Load Rating and Reliability Analysis – Linear Limit State Function 

2. Load Rating, Reliability and Sensitivity Analysis – Nonlinear Limit State Function 

Loading cases I & II were first performed to attain the live load moments due to a single 

HL39 truck and the capacity of the beam model. Results from this analysis will be used for the 

Linear Limit State Function reliability analysis and load ratings. Consequently, a sensitivity 

analysis is performed on the following random variables to attain variation for the nonlinear limit 

state analysis. The random variables identified in this case are the area of prestress steel (Aps), 

prestressing tendon (fps) and the applied load effect (Q). The detailed variability analysis is 

presented in Appendix F. 

A variability analysis was also performed to establish the correlation among the random 

variables since the normal random variable is the most important distribution in structural 

reliability theory. The general concept follows the analogy that if for example D (demand) and R 

(resistance or capacity) are normally distributed with means D and R with standard deviations 

D and R respectively, their limit state function g will be normally distributed for a linear limit 

state function. The variability plots showing the normal distribution curves for the linear, 

nonlinear and limit state functions are presented in Appendix F.  

A virtual loading test is also performed by increasing the axle loads of the HL-93 truck by a 

factor of 0.5, as shown in Figure 85, and load-rating the corresponding cases. Three load-rating 

scenarios were performed to investigate the correlation and capacity of the nonlinear model, per 
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the AASHTO and FEM live-load distribution factors (Table 21 – distribution factors used for 

single and multiple lanes) and the un-factored load as obtained directly from the capacity analysis. 

 

Figure 85: Virtual Loading Schematics 

 

 

Table 21: Single and Multiple Lanes Distribution Factors (AASHTO/FEM) 

AASHTO (Single) 0.555 

AASHTO (Multi.) 0.768 

FEM (Single) 0.546 

FEM (Multi.) 0.716 

 

Results 

 

The results from NAP used for both linear and nonlinear analysis are shown in Table 22 

and Table 23 respectively. Table 22 shows the nominal values used for the linear state function 

analysis and Table 23 shows the variation in the random variables used for the nonlinear limit 

state function analysis. For the variation in the dead load analysis for both the linear and 
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nonlinear limit state functions, the self-weight for the system was used for the capacity analysis 

and the slab thickness varied for the variation. Detailed dead load (self-weight) analysis is 

presented in the “Nonlinear Load Rating & Reliability Analysis” MathCAD File in Appendix F. 

 

Table 22: Nominal Parameters Load Analysis Results 

NAP - Run 1 Nominal Values Live Load (1) Capacity (2) 

Area (Aps) 2.45 10890 28940 

Prestress (fps) 250 10890 28940 

Live Load (Q)  8 + 32 + 32 = 72 10890 28940 

 

Table 23: Variable Parameters Load Analysis Results 

 

 

The reliability indices for both the linear and nonlinear limit state functions are shown in 

Table 24. The details used for this analysis including bias and coefficient variation assumptions 

are presented in Appendix F under the “Linear Load Rating & Reliability Analysis” and 

“Nonlinear Load Rating & Reliability Analysis” MathCAD spreadsheets respectively.  

  

NAP - Run 2 Variable Area Live Load (1) Capacity (2) NAP - Run 3 Variable Area Live Load (1) Capacity (2)

Area (Aps) 2.44 10910 28870 Area (Aps) 2.46 10860 28760

Prestress  (fps ) 250 10910 28870 Prestress  (fps ) 250 10860 28760

Live Load (Q)  8 + 32 + 32 = 72 10910 28870 Live Load (Q)  8 + 32 + 32 = 72 10860 28760

NAP - Run 4 Variable Prestress Live Load (1) Capacity (2) NAP - Run 5 Variable Prestress Live Load (1) Capacity (2)

Area (Aps) 2.45 11070 28680 Area (Aps) 2.45 10700 29070

Prestress  (fps ) 240 11070 28680 Prestress  (fps ) 260 10700 29070

Live Load (Q)  8 + 32 + 32 = 72 11070 28680 Live Load (Q)  8 + 32 + 32 = 72 10700 29070

NAP - Run 6 Variable Live Load Live Load (1) Capacity (2) NAP - Run 7 Variable Live Load Live Load (1) Capacity (2)

Area (Aps) 2.45 10850 28940 Area (Aps) 2.45 10920 28940

Prestress  (fps ) 250 10850 28940 Prestress  (fps ) 250 10920 28940

Live Load (Q) 7.9 + 31.9 + 31.9 = 71.7 10850 28940 Live Load (Q) 8.1 + 32.1+ 32.1 = 72.3 10920 28940
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Table 24: Linear and Nonlinear Limit State Function Reliability Indices 

Case Reliability Index () 

Linear Limit State Function 6.202 

Nonlinear Limit State Function 4.368 

 

It should be noted that the result from the hand calculated linear analysis showed a rating 

of 5.696 compared to 6.202 from the NAP model which are also close. 

 

The results for the virtual load test is also presented here in Table 25 and Figure 86 with 

the detailed computation also presented in Appendix F. 

Table 25: Virtual Load Rating Results 

Load 

Factors Axle -1 Axle -2 Axle -3 Moment (k-in) RF  RF - AASHTO RF - FEM 

1.0 8 32 32 10700 2.62 4.72 4.80 

1.5 12 48 48 14830 1.89 2.46 2.64 

2.0 16 64 64 18920 1.48 1.93 2.07 

2.5 20 80 80 22950 1.22 1.59 1.71 

3.0 24 96 96 27060 1.04 1.35 1.45 

3.5 28 112 112 FAIL  ---  ---  --- 
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Figure 86: Virtual Load Testing Plots 

 

 

Discussion 

 

 

 

The nonlinear analysis performed on the critical section investigates the capacity of the section 

beyond the linear state, and shows the variation between its linear and nonlinear state limitations. 

This analysis clearly shows (by capacity, load ratings and reliability analysis) that the identified 

critical component/section within the system is far from critical. Although the reliability index 

during the linear limit state analysis was slightly higher 6.202 based on the assumption that the 

random variables are all normally distributed and uncorrelated, the nonlinear limit state function 

which considers the variabilities in the random variables showed only a difference of 1.834 in 
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reliability index (4.368). It should be noted that the linear limit state function does not use the 

distribution information about the variable and the limit state function g( ) is linearized at the 

mean values of the Xi variables. If g( ) is non-linear, neglecting of higher order term in Taylor 

series expansion introduces significant error in the calculation of reliability index (errors are not 

solely attributed to the first – order expansion). However, the nonlinear limit state function can 

obtain an approximate answer by linearizing the nonlinear function using a Taylor series 

expansion (about the mean values).  

The modeled section shows results greater than its linear capacity as shown in the virtual 

loading analysis with a capacity loading of three times the truck live – load capacity. The 

incremental loads in NAP to determine the section’s behavior under both normal and anticipated 

peak load conditions to identify the maximum operating capacity showed rating factors ranging 

between 4.80 to 1.45 before failure. 
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CONCLUSIONS AND RECOMMENDATIONS 

Highlights 

 

- Dynamic performance of a bridge before and after widening. 

- Re-distribution of live loads of a bridge before and after widening. 

- Linear capacity assessment through load ratings of a bridge before and after widening. 

- Reliability assessment of a bridge before and after widening. 

- Nonlinear capacity assessment through load ratings of a bridge before and after widening. 

 

Details 

 

Detailed finite element models (linear and nonlinear) were developed to represent the 

original 1972 single-span bridge and the widened 2002 bridge, a four-span continuous structure. 

Four–span continuous models were used for the linear analysis investigation for the dynamic 

behaviors of the modeled bridge structures, and their respective global and local behaviors were 

observed. Live-load distribution factor and load-rating analyses were also conducted, using 

several moving-load combinations and standard trucks (HS-20 and HL-93) with the linear model. 

The linear and nonlinear single-span models were used to investigate critical components within 

the system, and load-rating and reliability calculations were performed.  

It was important to develop procedures for verification and validation of the analysis. 

Benchmark studies were conducted to validate finite-element models with well-established 
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solutions. Critical modeling features were incorporated in a few simpler benchmark studies before 

the single-span 1972 and full four-span widened 2002 models were developed. It is encouraging 

that the FEM-predicted load effects for the modeled bridge were close to the textbook results. This 

verifies the model, software and accompanying analysis in a qualitative sense. A comprehensive 

test plan (or monitoring program) to capture frequencies, mode shapes, and deflections is 

recommended for objective validation of the FEM. This can lead to model calibration using 

experimental data and an objective understanding of the measured structural behavior. 

The dynamic behavior was evaluated with respect to continuity conditions. Eigenvalue 

analysis in CSiBridge gives natural frequencies in the range of 5.18 Hz to 12.28 Hz, 6.68 Hz to 

12.32 Hz and 10.74 Hz to 12.88 Hz for the first 10 modes of the benchmark, 1972 and 2002 bridge 

nominal models, respectively. The mode shapes of the bridges were categorized in terms of pure 

modal behaviors, including lateral beam bending, vertical beam bending, and torsion. The 

boundary condition has significant effect on the longitudinal modes, and dramatically increases 

the energy required to achieve the first longitudinal mode. The eigenvalue analysis is the first 

indication of the stiffness and strength increase in a widened bridge structure. 

 Live-load distribution factors, which determine the maximum number of loaded lanes 

that an individual girder of the superstructure will be expected to carry, was evaluated next. This 

investigation was important to this research, not only to verify any conservativeness, but also to 

understand the distributions between the original and widened bridges. The controlling moment 

live-load distribution factors (LLDF) for the 1972 and 2002 bridges were 0.716 and 0.592, 

respectively. These factors were based on the FEM, using the HL-93 truck. The controlling 

moment LLDF (using the AASHTO LRFD code) is 0.877 for both bridges. While these results 
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indicate the decrease in distribution factors for widened bridges, they also show the 

conservativeness in the code. Similarly, the HS-20 trucks showed controlling moment LLDF of 

0.715 and 0.651 for the 1972 and 2002 bridges, respectively, and FEM of 0.841 for both bridges, 

using the AASHTO LFD code. The load ratings which measure the bridge live-load capacity were 

also evaluated. The HS-20 and HL-93 trucks used for the LLDF analysis were also employed for 

the full 1972 Bridge model. The 1972 bridge model showed with aging showed less than 

acceptable load rating especially under HL93 truck loading, which was not the design load for the 

original bridge. However, the ratings for the widened 2002 bridge model increased, which shows 

the increased load carrying capacity of the widened bridge.  

 For a better understanding of the load rating and reliability analysis correlation, a 

single-span model was developed for both the 1972 and 2002 bridges. These models are the longer 

spans within the structure and contain the critical component (interior beam). A linear FEM was 

developed for both bridges, and a nonlinear model to replicate the critical member was created. 

The 1972 and 2002 bridges rated at 2.37 and 2.56, respectively, for a single truck, and had 

reliability indices of 6.17 and 6.54, respectively. For multiple trucks, their respective ratings and 

reliability indices were RF = 1.39, β = 3.93 (1972 bridge) and RF = 1.52, β = 4.41 (2002 bridge). 

Since the widened 2002 bridge has a combination of old and new members, a sensitivity (aging) 

analysis was performed on the model. The model was first investigated assuming a 30-year aging 

for all the members in order to establish a benchmark. The investigated material properties used 

for the aging process include the modulus of elasticity (Ec) and prestress losses. The rating and 

reliability indices for a targeted member were RF = 1.58 and β = 4.28 (single truck) and RF = 0.93 

and β = 1.98 (multiple trucks). With these benchmark values, the 2002 bridge model (with the 
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combination of both old and new members) was investigated.  

 The first case with the new member at zero years and the old member at 30 years showed 

load ratings and reliability indices as RF = 1.67 and β = 4.88 (new) and RF = 0.85 and β = 1.58 

(old). The second case with the new member at 30 years and the old member at 60 years showed 

load ratings and reliability indices as RF = 1.28 and β = 3.49 (new) and RF = 0.80 and β = 1.24 

(old). The results show the correlation of both old and new members in the widened bridge. For the 

nonlinear model, the linear limit state function produced reliability indices of β = 6.202 and β = 

4.368 for the nonlinear limit state function with similar boundary conditions. 

 Finally, a virtual load-test analysis to determine the ultimate capacity of the girders using 

the nonlinear model was performed by means of incrementally increasing the applied axle loads. 

The ratings showed a 3.5 times factor of the axle loads (8 x 3.5= 28 kips, 32 x 3.5 = 112 kips, and 

32 x 3.5 = 112 kips) for load ratings greater than 1. The results for this loading were RF = 1.04 (no 

LLDF), RF = 1.35 (AASHTO LLDF) and RF = 1.45 (FEM LLDF).  

 In conclusion, the following characteristics were immediately observed for a widened 

bridge: increased overall capacity, lower distribution factors, and higher ratings and reliability 

indices. Additionally, it was also observed that a member within the system may be highly 

underestimated if analyzed linearly. The information generated from these analyses can be 

considered for better understanding the load rating improvement for widened bridges.  
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APPENDIX A: FREQUENCIES AND MODE SHAPES 
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Benchmark Bridge Modes 
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Figure 87: Benchmark Modes 
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1972 Bridge Modes 
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Figure 88: 1972 Bridge Modes 
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2002 Bridge Modes 
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Figure 89: 2002 Bridge Modes 
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APPENDIX B: LIVE LOAD DISTRIBUTION FACTORS ANALYSIS 
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APPENDIX C: CAPACITY ANALYSIS 
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APPENDIX D: MODULUS OF ELASTICITY ANALYSIS 
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APPENDIX E: PRESTRESS LOSS ANALYSIS 
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APPENDIX F: LOAD RATING & RELIABILITY ANALYSIS 
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NAP Nonlinear Variability Analysis 

 

 

Area 

 

Prestress 

 

Live Load 

 

NAP - Run 1 Nominal Values Live Load (1) Capacity (2)

Area (Aps) 2.45

Prestress (fps) 250

Live Load (Q)  8 + 32 + 32 = 72
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Results 

Live Load (when LOAD TYPE  = 1) 

 

Capacity (when LOAD TYPE = 2) 

 

NAP - Run 1 Nominal Values Live Load (1) Capacity (2) 
Area (Aps) 2.45 10890 28940 

Prestress (fps) 250 10890 28940 

Live Load (Q) 8 + 32 + 32 = 72 10890 28940 



 

217 

 

NAP - Run 2 Variable Area Live Load (1) Capacity (2) 
Area (Aps) 2.44 

  Prestress (fps) 250 

  Live Load (Q) 8 + 32 + 32 = 72 

   

 

Live Load/Capacity Plots 

  

 

 

NAP - Run 2 Variable Area Live Load (1) Capacity (2) 
Area (Aps) 2.44 10910 28870 

Prestress (fps) 250 10910 28870 

Live Load (Q) 8 + 32 + 32 = 72 10910 28870 
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NAP - Run 3 Variable Area Live Load (1) Capacity (2) 
Area (Aps) 2.46 

  Prestress (fps) 250 

  Live Load (Q) 8 + 32 + 32 = 72 

   

 

Live Load/Capacity Plots 

 

 

NAP - Run 3 Variable Area Live Load (1) Capacity (2) 
Area (Aps) 2.46 10860 28810 

Prestress (fps) 250 10860 28810 

Live Load (Q) 8 + 32 + 32 = 72 10860 28810 
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NAP - Run 4 Variable Prestress Live Load (1) Capacity (2) 
Area (Aps) 2.45 

  Prestress (fps) 240 

  Live Load (Q) 8 + 32 + 32 = 72 

   

 

Live Load/Capacity Plots 

 

 

NAP - Run 4 Variable Prestress Live Load (1) Capacity (2) 
Area (Aps) 2.45 11070 28680 

Prestress (fps) 240 11070 28680 

Live Load (Q) 8 + 32 + 32 = 72 11070 28680 
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NAP - Run 5 Variable Prestress Live Load (1) Capacity (2) 
Area (Aps) 2.45 

  Prestress (fps) 260 

  Live Load (Q) 8 + 32 + 32 = 72 

   

 

Live Load/Capacity Plots 

 

 

NAP - Run 5 Variable Prestress Live Load (1) Capacity (2) 
Area (Aps) 2.45 10700 29070 

Prestress (fps) 260 10700 29070 

Live Load (Q) 8 + 32 + 32 = 72 10700 29070 
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NAP - Run 6 Variable Live Load Live Load (1) Capacity (2) 
Area (Aps) 2.45 

  Prestress (fps) 250 

  Live Load (Q) 7.9 + 31.9 + 31.9 = 71.7 

   

 

 

Live Load/Capacity Plots 

 

 

NAP - Run 6 Variable Live Load LiveLoad (1) Capacity (2) 
Area (Aps) 2.45 10850 28940 

Prestress (fps) 250 10850 28940 

Live Load (Q) 7.9 + 31.9 + 31.9 = 71.7 10850 28940 
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NAP - Run 7 Variable Live Load Live Load (1) Capacity (2) 
Area (Aps) 2.45 

  Prestress (fps) 250 

  Live Load (Q) 8.1 + 32.1+ 32.1 = 72.3 

   

 

 

Live Load/Capacity Plots 

 

 

NAP - Run 7 Variable Live Load Live Load (1) Capacity (2) 
Area (Aps) 2.45 10920 28940 

Prestress (fps) 250 10920 28940 

Live Load (Q) 8.1 + 32.1+ 32.1 = 72.3 10920 28940 

 



 

223 

 

 

LIST OF REFERENCES 

 

[1]   National Economic Council, An Economic Analysis of Transportation Infrastructure 
Investment, Washington DC: The White House, 2014.   

[2]   American Society of Civil Engineers, Report Card for America's Infrastructure, ASCE, 
2017.. 

[3]   Central Florida Expressway Authority Authority, "Central Florida Expressway Authority," 
Central Florida Expressway Authority, 16 June 2015. [Online]. Available: 
https://www.cfxway.com/TravelersExpressways/Expressways/CurrentExpressways/40
8EastWestExpressway/ConstructionProjects/tabid/348/Article/73/sr-408-widening-initi
ative.aspx. [Accessed 20 August 2016].. 

[4]   National Bridge Inventory Data, "UglyBridges.com," National Bridge Inventory 
Information, 18 January 2016. [Online]. Available: http://uglybridges.com/1085616. 
[Accessed 18 January 2017]. 

[5]   Hooke, R. "As The Extension, So The Force," 15 December 2016. [Online]. Available: 
http://utsv.net/prestressed-concrete/pre-tensioning-vs-post-tensioning. [Accessed 5 
December 2016]. 

[6]   Post Tensioning Institute, "What is post - tensioning," PTI, Arizona, 2000. 
[7]   Hussien, O. F., Elafandy, T. H. K, Abdelrahman A. A., Abdel Baky S.A. and Nasr, E. A., 

"Behavior of bonded and unbonded prestressed normal and high strength concrete 
beams," Housing and Building National Research Center (HBRC) Journal, vol. 8, no. 
1, pp. 239 - 251, 2012. 

[8]   Abdalla O. A., Ramirez J. A., and Lee R. H., "Strand Debonding in Pretensioned Beams - 
Precast Prestressed Concrete Bridge Girders with Debonded Strands," Indiana 
Department of Transportation, Indiana, 1993. 

[9]   California Departartment of Transportation (Caltrans), "Bridge Design Specifications," 
Caltrans, California, 2000.  

[10]  Florida Department of Transportation, "Bridge Load Rating Manual," FDOT, Florida, 
2015. 

[11]  Zokaie T. A. and Imbsen R., "Distribution of wheel loads on highway bridges," 
Transportation Research Board, Washington D.C., 1991. 

[12]  Chen Y. and Aswad A., "Stretching span capability of prestressed concrete bridges under 
AASHTO LRFD," Journal of Bridge Engineering, vol. 3, no. 1, pp. 112 - 120, 1996. 

[13]  Dennis M., "Simplified Live Load Distribution Factor Equations," National Cooperative 
Highway Research Program (NCHRP report 5920), Washington D. C. , 2007. 

[14]  Eamon Christopher D., Parra - Montesinos Gustavo and Chehab Alaa, "Evaluation of 
Prestressed Concrete Beams In Shear," Michigan Department of Transportation, 



 

224 

 

Michigan, 2014. 
[15]  AASHTO, "LRFD Bridge Design Specifications," American Association of State Highway 

and Transportation Officials, Washington D.C., 2012. 
[16]  The Democrat, "Tallahassee Democrat," USA Today Network, 10 December 2015. 

[Online]. Available: 
http://data.tallahassee.com/bridge/florida/orange/sr-408-orange-blossom-trail/12-75023
8/. [Accessed 15 December 2016]. 

[17]  Florida Department of Transportation, "Bridge and Other Structures Inspection and 
Reporting," Department of Transportation, Florida, 2014. 

[18]  Sonnenberg A., "Load Capacity Assessment of Bridges," Small Bridges Conference 2014, 
Sydney Australia, 2014. 

[19]  Estes C. A., and Frangopol M. D., "Load Rating versus Reliability Analysis," Journal of 
Structural Engineering , vol. 1, no. 1, p. 1, 2005.   

[20]  F. Akgul and F. M. D. and, "Rating and Reliability of Existing Bridges in a Network," 
Journal of Bridge Engineering, vol. 8, no. 1, pp. 383 - 393, 2003.  

[21]  R. Z. Shmerling, "Structural Condition Assessment of Prestressed Concrete Transit 
Guideways," University of Central Florida, Orlando, 2005. 

[22]  C. R. Farrar and G. H. I. and James, "Identification of Dynamic Properties from Ambient 
Vibration Measurements," Pacific Conference on Earthquake Engineering, Melbourne, 
1995. 

[23]  Y. L. K. J. M. Xu and W. S. and Zhang, "Vibration Studies of Tsing Ma Suspension 
Bridge," Journal of Bridge Engineering, vol. 1, no. 1, pp. 149 - 156, 1997.  

[24]  Q. W. Zhang, T. T. P. Chang and C. C. and Chang, "Finite - Element Model Updating for 
the Kap Shui Mun Cable - Stayed Bridge," Journal of Bridge Engineering, vol. 4, no. 
6, pp. 285 - 293, 2001.  

[25]  E. Aktan, N. Catbas and A. a. Z. Z. Turer, "Structural Identification: Analytical Aspects," 
Journal of Structural Engineering , vol. 1, no. 1, pp. 817 - 829, 1998.  

[26]  A. Berman, "Validity of Improved Mathematical Models: A Commentary," 16th 
International Modal Analysis Conference , Schenectady, 1998. 

[27]  M. I. Friswell and J. E. and Mottershead, "Finite Element Model Updating in Structural 
Dynamics," Kluwer Academic, Boston, 1995. 

[28]  Q. W. Zhang and T. Y. P. a. C. C. C. Chang, "Finite - Element Model Updating for the Kap 
Shui Mun Cable - Stayed Bridge," Journal of Bridge Engineering, vol. 4, no. 6, pp. 
285 - 293, 2001.  

[29]  M. R. Biggs, F. W. Barton, J. P. Gomez, P. J. Massarelli and W. T. and Mckeel, "Finite 
Element Modeling and Analysis of Reinforced Concrete Bridge Decks," Virginia 
Transportation Research Council - U.S. Department of Transportation Federal 
Highway Administration, Virginia, 2000. 

[30]  C. K. Base, "CSi Bridge," Computers and Structures, Inc., 10 June 2014. [Online]. 
Available: https://wiki.csiamerica.com/display/csibridge/Home . [Accessed 10 June 



 

225 

 

2015]. 
[31]  Caltrans, "Bridge Design Practice," California Department of Transportation, California, 

2015. 
[32]  AASHTO, "LRFD Bridge Design Specifications," American Association of State Highway 

and Transportation Officials, Washington D.C., 2004. 
[33]  A. C. Scordelis, "Computer Models for Nonlinear Analysis of Reinforced and Prestressed 

Concrete Structures," PCI Journal, vol. 1, no. 1, pp. 116 - 135, 1984.  

[34]  N. El-Mezaini and E. and Citipitioglu, "Finite Element Analysis of Prestressed and 
Reinforced Concrete Structures," Journal of Structural Engineering , vol. 10, no. 117, 
pp. 2851 - 2864, 1991.  

[35]  M. Arafa and G. and Mehlhorn, "Nonlinear Finite Element Analysis of Concrete Structures 
with a Special Model," Computational Modeling of Concrete Structures, vol. 1, no. 1, 
pp. 777 - 786, 1998.  

[36]  R. Benaim, The Design of Prestressed Concrete Bridges - Concepts and Principles, New 
York: Taylor & Francis, 2008.  

[37]  K. Mackie, Nonlinear Analysis Program, Orlando: University of Central Florida, 2010.  

[38]  L. Gao, Load Rating Highway Bridges - Load and Resistance Factor Rating Method, 
Denver: Outskirts Press Inc., 2013.  

[39]  C. A. Banchik and H. and Jasper, "Riding High in Las Vegas," Civil Engineering, vol. 3, 
no. 73, p. 68, 2001.  

[40]  K. D. Hjelmstad and M. R. and Banan, "On Building Finite Element Models of Structures 
from Modal Response," Earthquake Engineering and Structural Dynamics , vol. 1, no. 
24, pp. 53 - 67, 1995.  

[41]  A. H. Nilson, D. Darwin and C. W. and Dolan, Design of Concrete Structures, New York: 
McGraw Hill Higher Education, 2004.  

[42]  R. M. a. P. J. A. Barker, Design of Highway Bridges, New York: John Wiley & Sons Inc., 
1997.  

[43]  E. G. Nawy, Prestressed Concrete: A Fundamental Approach, Upper Saddle River: Pearson 
Education, 2010.  

[44]  A. C. Institute, "Building Code Requirements for Structural Concrete (ACI 318 - 02)," 
American Concrete Institute, Farmington Hills, 2002. 

[45]  J. Du, Y. Wang, W. Zuo and S. Yuan, "Investigation of engineering issues in bridge 
Widening," in Mechanic Automation and Control Engineering (MACE), 2010 
International Conference, 2010.  

[46]  F. N. Catbas and A. E. and Aktan, "Condition and Damage Assessment: Issues and some 
promising indices," Journal of Structural Engineering, vol. 8, no. 128, pp. 1026 - 
1036, 2002.  

[47]  AASHTO, "Manual for Condition Evaluation and Load and Resistance Factor Rating 
(LRFR) of Highway Bridges," American Association of State Highway and 
Transportation Officials, Washington D.C., 2005. 



 

226 

 

[48]  F. Akgul and M. D. and Frangopol, "Bridge Rating and Reliability Correlation: 
Comprehensive Study for Different Bridge Types," Journal of Structural Engineering , 
vol. 130, no. 1, pp. 1063 - 1074, 2004.  

[49]  A. S. Nowak, "Calibration of LRFD Bridge Code," Journal of Structural Engineering, vol. 
8, no. 121, pp. 1245 - 1251, 1995.  

[50]  A. S. Nowak and K. R. and Collins, Reliability of Structures, New York: CRC Press, 
Taylor & Francis Group, 2013.  

[51]  American Society of Civil Engineers, Report Card for America's Infrastructure, ASCE, 
2013. 

[52]  California Departartment of Transportation (Caltrans), "Bridge Design Specifications," 
Caltrans, California, 2000. 

[53]  Barr Paul, Halling Marv, Petty Dave and Osborn Perry, "Shear Capacity of In - Service 
Prestressed Concrete Bridge Girders," Utah Department of Transportation Research 
Division, Utah, 2010. 

[54]  Cliff F., "Service Life and Sustainability of Concrete Bridges," ASPIRE, Oregon, 2009. 
[55]  Beatty T. L., "Life - Cycle Cost Analysis Primer," Federal Highway Administration Office 

of Asset Management, Washington DC, 2002. 
[56]  FDOT, "Structures Design Guidelines," Florida Department of Transportation - Structures 

Design Engineers, Florida, 2016. 
[57]  Aktan E., Chase S., Inman, D., and Pines, D., "Monitoring and Managing the Health of 

Infrastructure Systems," Proceeding of the 2001 SPIE Conference on Health 
Monitoring of Highway Transportation Infrastructure, Irvine, 2001. 

[58]  D. Saydam, M. D. Frangopol and Y. and Doug, "Assessment of Risk Using Bridge Element 
Condition Rating," Journal of Infrastructure Systems, vol. 19, no. 1, pp. 252 - 265, 
2013.  

[59]  D. Ngo and A. C. and Scordelis, "Finite Element Analysis of Reinforced Concrete Beams," 
ACI Journal, vol. 3, no. 64, pp. 152 - 163, 1967.  

[60]  DOT, "Notes to Designers for Prestressed Girders," Idaho Department of Transportation, 
Idaho, 2015. 

[61]  C. &. S. Inc., "CSi Bridge," Computers & Structures Inc., 1 January 2017. [Online]. 
Available: https://www.csiamerica.com/products/csibridge . [Accessed 22 January 
2017]. 

[62]  C. S. Cai and M. and Shahawy, "Understanding Capacity Rating of Bridges from Load 
Tests," ASCE Practice Periodical on Structural Design and Construction, vol. 4, no. 8, 
pp. 209 - 216, 2003.  

[63]  S. C. D. o. Transportation, Structural Analysis and Evaluation, South Carolina: SCDOT, 
2006.  

 

 


	An Analytical Investigation of Prestressed Beam Bridge Performance Before and After Widening
	STARS Citation

	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ACRONYMS
	LIST OF VARIABLES
	CHAPTER ONE: INTRODUCTION
	Structural Concept
	Pre-tensioning
	Design Specifications

	Inspection and Maintenance Practice
	Service Life and Life – Cycle
	Increased Loads and Load Effects

	Objectives & Motivation
	Methodology, Scope, and Tasks
	Novelty and Long-Term Vision of the Research

	CHAPTER TWO: LITERATURE REVIEW AND FUNDAMENTAL CONCEPTS
	Condition Assessment
	Structural Modeling & Analysis
	Simulations and Load Rating
	Model Updating
	Finite – Element Analysis
	Finite – Element Methods for Concrete Structures
	Fundamental Concepts in Bridge Widening
	Prestressed Concrete Bridges

	CHAPTER THREE: PRELIMINARY MODEL DEVELOPMENT
	Bridge Segment Selection
	Primary Selection Criteria
	Secondary Selection Criteria

	Software Considerations
	Preliminary Models and Benchmark Studies
	Benchmark Background Information and Input
	Benchmark Three – Span Model
	Benchmark Modal Analysis
	Benchmark Discussion


	CHAPTER FOUR: FOUR – SPAN FINITE – ELEMENT MODEL (1972)
	Introduction
	Superstructure
	Beams
	Prestressing
	Columns
	Model Parameters
	Concrete Modulus of Elasticity
	Prestress Loss
	Boundary Conditions


	Objective
	Discussion

	CHAPTER FIVE: FOUR – SPAN FINITE ELEMENT MODEL (2002)
	Introduction
	Objective
	Discussion

	CHAPTER SIX: MODAL ANALYSIS AND PARAMETER SENSITIVITY
	Introduction
	Selection of Modes
	Results
	Discussion

	CHAPTER SEVEN: LIVE LOAD DISTRIBUTION FACTORS ANALYSIS
	Benchmark Live Load Distribution Factors
	1972 and 2002 Live Load Distribution Factors
	Discussion

	CHAPTER EIGHT: SIMULATIONS AND LOAD RATING (FULL BRIDGE)
	Objective
	Simulations
	Load Rating
	Design vs. Load Rating
	Relationship between Load Rating and Reliability
	Benchmark Verification
	1972 Bridge Load Rating Under Aging
	Results

	CHAPTER NINE: MODAL ANALYSIS AND LOAD RATINGS
	Introduction
	Results
	Discussion

	CHAPTER TEN: LOAD RATING AND RELIABILITY ANALYSIS (SINGLE SPAN)
	Introduction
	Reliability Index and Probability of Failure
	Simulations, Load Rating and Reliability
	Benchmark
	Discussion

	Sensitivity – Load Rating & Reliability Analysis
	Introduction
	Results
	Discussion


	CHAPTER ELEVEN: NONLINEAR SIMULATION & RELIABILITY ANALYSIS
	Introduction
	Model
	Benchmark
	Analysis
	Results
	Discussion

	CONCLUSIONS AND RECOMMENDATIONS
	Highlights
	Details

	APPENDIX A: FREQUENCIES AND MODE SHAPES
	APPENDIX B: LIVE LOAD DISTRIBUTION FACTORS ANALYSIS
	APPENDIX C: CAPACITY ANALYSIS
	APPENDIX D: MODULUS OF ELASTICITY ANALYSIS
	APPENDIX E: PRESTRESS LOSS ANALYSIS
	APPENDIX F: LOAD RATING & RELIABILITY ANALYSIS
	LIST OF REFERENCES

