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ABSTRACT 
Chronic ethanol exposure results in neuroadaptations that drive the progression 

of an alcohol use disorder (AUD). One such driving force is alcohol-induced 
neurodegeneration. Neuroinflammation has been proposed as a mechanism underlying 
this damage. Although neuroinflammation is a physiological response to damage, 
overactivation of its pathways can lead to neurodegeneration. A hallmark indicator of 
neuroinflammation is microglial activation, but microglial activation is a heterogeneous 
continuum of phenotypes that can promote or inhibit neuroinflammation. Furthermore 
acute microglial activation is necessary to restore homeostasis, but prolonged activation 
can exacerbate damage.  The diversity of microglia makes both the level and timecourse 
of activation vital to understanding their role in damage and/or recovery. The current set 
of experiments examines the effects of ethanol on microglia within the hippocampus and 
entorhinal cortex in a binge model of alcohol-induced neurodegeneration. In the first set 
of experiments, the phenotype of microglia activation was assessed using Raivich’s 5-
stages of activation that separates pro- and anti-inflammatory forms of microglia. 
Morphological and functional assessments suggest that ethanol does not elicit classical 
microglial activation but instead induces partially activated microglia. In the second set of 
experiments, the earliest signs of microglial activation were determined to understand 
the initiation of microglial activation. Experiments indicated that activation occurred 
subsequent to previous evidence of neuronal damage; however, activation was 
accompanied by a loss of microglia and the discovery of dystrophic microglia. The final 
set of experiments examined whether alcohol-induced partial activation of microglia 
would show a differential response with further alcohol exposure. Experiments showed 
that animals previously exposed to ethanol showed a greater response to a second 
ethanol insult. Overall, these studies suggest that although alcohol may initially interrupt 
the normal microglia response, during abstinence from ethanol a partial activation 
phenotype appears that may contribute to recovery.  Once activated, however, data 
suggest that these microglia are primed and upon subsequent exposure show an 
increased response. This heterogeneous microglial response with respect to time does 
not necessarily reflect a neuroinflammatory response that would be neurodegenerative 
but does imply that chronic ethanol consumption affects the normal neuroimmune 
system.   
 

KEYWORDS: microglia activation, alcohol use disorder, neurodegeneration, binge 

ethanol exposure, neuroinflammation 
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INTRODUCTION 

Alcohol Use Disorders 

Alcohol Use Disorders: Understanding the Problem 

Alcohols are a group of organic compounds that have a hydroxyl functional group 

bound to a carbon atom. Due to ethanol’s use in beverages, however, the two carbon 

chain alcohol has a notoriety that makes the term ethanol or ethyl alcohol (CH3CH2OH) 

synonymous with alcohol in the common vernacular.  Consuming alcohol is a common 

socially accepted pastime, but habitual drunkenness or alcoholism is a problem that 

affects numerous aspects of society including but not limited to public health, the 

economy, and public safety (Schomerus et al. 2011).  Alcoholism has officially been 

defined as a diagnosable medical condition or disease in the United States since 1980 

with the production of the third edition of the Diagnostics and Statistics Manual of Mental 

Disorders (DSM; Hasin et al. 1996).  Prior to the DSM III, alcoholism was only 

categorized as a personality disorder (Nathan 1991), but the World Health Organization 

removed alcoholism from a personality disorder in 1967 prior to its acceptance in the 

DSM (NIAAA 1995).  The distinction between a personality disorder and a mental 

disease is important because the connotation of disease implies that alcoholism is more 

than just a behavioral problem and that treatment with pharmacotherapeutic 

interventions is appropriate (White et al. 2002).  

The term alcoholism, although universally used to refer to habitual drunkenness, is 

actually an outdated term and was originally coined to refer to alcohol poisoning around 

1850 by Magnus Huss, a Swedish professor of medicine (Lesch et al. 1990; Marcet 

1860). In the DSM-IV, the American Psychological Association (APA) categorizes 

problems associated with alcohol misuse into two groups, alcohol abuse and alcohol 

dependence. Alcohol abuse and dependence fall under the umbrella term alcohol use 
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disorders (AUDs; American Psychiatric Association 2000). The two categories are 

defined by the same characteristics (Table 1.1), but alcohol abuse is defined as 

displaying one trait in a 12-month period whereas dependence requires possessing at 

least three traits within a 12-month period. These traits are very similar to other 

definitions of addiction including the development of tolerance, showing signs of 

withdrawal, and preoccupation with the drug of choice (American Psychiatric Association 

2000).  Other academic bodies such as WHO have similar definitions regarding alcohol 

abuse included in the International Classification of Diseases (ICD). The ICD differs in 

that it includes compulsivity as a characteristic which is absent in the DSM criteria, but 

both the DSM-IV and the ICD traits used to define AUDs have been validated in 

independent correlation studies predicting alcohol related problems within the general 

population (Grant et al. 2007). The development of these guidelines allows for diagnosis 

by clinicians, gives clear definitions for academic research, and most importantly, 

provides the general population with a way of understanding the boundaries between 

social and problematic drinking.  

Table 1.1 Traits of Alcohol Abuse/Dependence 

Traits Characterized by: 

Tolerance 
 Increased amounts of alcohol required to achieve intoxication  
 Diminished effects of the same amount of alcohol over time 

Withdrawal 

 Onset of characteristic withdrawal syndrome for alcohol 
including moderate symptoms like anxiety, and headache or 
more severe symptoms like seizure and fever.  

 Drinking to relieve withdrawal symptoms 

Impaired Control 
 Persistent desire/unsuccessful efforts to curb drinking 
 Drinking more or for a longer period than intended 

Preoccupation 
 Increased time spent in activities necessary to obtain/use 

alcohol or to recover from the effects of drinking 

Continued Use 
Despite 

Problems 

 Foregoing/reducing important social, occupational, or 
recreational activities because of drinking 

 Ignoring persistent/recurrent physical or psychological 
problem that is likely to be caused or exacerbated by drinking 

Table 1.1 Traits of an AUD as defined by the DSM-IV (Adapted from (American 

Psychiatric Association 2000; Hasin et al. 1996))  
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Despite these long standing institutional classifications, the societal debate whether 

alcoholism is a treatable disease or simply an inherent character flaw persists today 

(Schomerus et al. 2011).  This debate continues in the face of overwhelming evidence 

showing altered brain function and structure in alcoholics, which suggest that habitual 

drunkenness or alcoholism fundamentally changes the neurobiology of individuals 

(Gunzerath et al. 2011).  The perception that alcoholism is not a disease is slowly 

changing, but increasing the public and scientific communities’ knowledge of the 

biological effects of alcoholism assists in advocacy efforts to accept alcoholism as a 

disease (Pescosolido et al. 2010).  Furthermore, an understanding of alcoholism as a 

mental disease promotes treatment seeking by individuals who suffer from alcoholism as 

well as inclines counselors and clinicians to encourage the use of pharmacotherapies 

(Abraham et al. 2009; Schomerus et al. 2011). 

Using the DSM- IV criteria for diagnosis (Table 1.1) , epidemiological studies show 

that in the United States AUDs are a common problem with over 8.5% of Americans 

fitting the diagnostic criteria within the last twelve months (Grant et al. 2004).  This 

statistic is even more drastic when considering the lifetime prevalence of AUDs as 

almost 50% of men and nearly 25% of women at some point in their life could be 

diagnosed with having an AUD (Goldstein et al. 2012).  This high prevalence makes 

AUDs a societal problem rather than just an individual issue.  More than half of the 

United States population has a friend or close relative who currently has or previously 

suffered from an AUD (Dawson and Grant 1998).  Problems associated with alcohol 

misuse are not unique to the United States of America as many other nations face 

similar issues with alcohol misuse (Bloomfield et al. 2003; Grittner et al. 2012).  Even 

individuals who choose to completely abstain from alcohol consumption and are 

fortunate enough to not have direct social ties to anyone with an AUD are still affected 
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by the rampant use and abuse of alcohol. For example, in 2006, problems associated 

with alcohol cost the United States approximately $223.5 billion meaning that it cost 

each individual approximately $746 per year regardless of their choice to abstain or drink 

(Bouchery et al. 2011). This exorbitant amount includes costs associated with lost 

productivity, healthcare issues, criminal justice procedures, property damage, and many 

other contributing factors (Bouchery et al. 2011).  

The majority of these problems stem from binge drinking (Bouchery et al. 2011).  

Binge drinking is defined as five or more drinks for a male or four or more drinks for a 

female in a two hour period that results in a blood ethanol concentration (BEC) of at 

least 0.08% (NIAAA 2004).  A drink consists of one-half US fluid ounces of pure ethanol  

which roughly equates to a bottle of beer, one mixed drink, or a glass of wine (Miller et 

al. 1991).  Clear definitions of what constitutes both a drink and the behavioral outcomes 

associated with a particular number of drinks are vital for the public to be able to predict 

intoxication behaviors and consider the associated consequences.  Fortunately, the 

popular media as well as colleges across the nation understand the prevalence of 

alcohol abuse and have published this data in multiple formats for the general population 

(McCoppin 2012; O'Callaghan 2009); however, people continue to underestimate the 

size of a drink, which results in higher alcohol consumption than intended and therefore 

higher BECs (White et al. 2003).   

The pattern of drinking is crucial as it is a better predictor of both BECs and the 

associated problematic outcomes than the type of drink or the lifetime quantity of 

drinking (Bobak et al. 2004).  For example, although an individual who drinks a nightly 

shot of alcohol will consume the same lifetime quantity of alcohol as someone who 

abstains during the week but chooses to drink seven beers every Saturday night, the 

individual drinking seven beers has a greater likelihood of suffering consequences from 
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the acute effects of intoxication due to higher BECs. These consequences are varied but 

include things like poor decision-making (George et al. 2005), risky sexual behavior 

(Stappenbeck et al. 2013), and a tendency to be involved in violent crimes as either the 

perpetrator or the victim (Boles and Miotto 2003). Table 1.2 shows the effects of different 

BECs on intoxication behaviors that underlie the consequences of acute alcohol 

intoxication.  For example, impaired judgment at BECs above 50mg/dL would be 

associated with poor decision-making.  The legal limit in most states 80mg/dL was set 

based on the relationship between BEC and consequces such as the impairments in 

motor function seen at above a 0.08 that can lead to increased vehicular accidents 

(Villaveces et al. 2003; Whetten-Goldstein et al. 2000). Although other factors can 

influence BECs such as sex, genetic differences in alcohol metabolism, and body mass 

index (Koob and Le Moal 2006),  the number of drinks is the most common predictor 

used to understand intoxication and has been shown to be associated with the greater 

risks and alcohol-related problems (Fillmore and Jude 2011; Koob and Le Moal 2006). 

 Table 1.2 Outcomes Associated with Different BECs 

BEC 
(mg/dL) 

BEC (%) 
Number of 

Drinks 
Outcomes 

10-50 0.01-0.05 1-2 
Increased sociability; talkativeness; 
disinhibition; anxiolytic; euphoria 

50-150  0.05-0.15 2-5 
Significant disinhibition; impaired judgment 
cognitive and motor function, sedation 

150-200 0.15-0.20 5-6 
Major motor impairments; slurred speech; 
delayed reaction time 

200-300 0.20- 0.30 6-9 
Hypnotic effects; stuporous but conscious 
behavior 

300+ 0.30+ 9+ Anesthesia; coma; death 

Table 1.2 Outcomes associated with various BECs and the number of drinks to achieve 

the range for a 140 pound male. The second column shows the more commonly used 

blood alcohol percent by law enforcement and the media (Adapted from (Koob and Le 

Moal 2006) )  
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Although acute intoxication may lead to some of the societal problems from alcohol 

misuse, continual episodes of excessive drinking and its corresponding high BECs 

results in more permanent changes to organ systems.  These biological effects caused 

by alcohol are considered causative in at least 30 diseases and may make individuals 

more susceptible to countless others (Rehm 2011; Room et al. 2005). Moreover, these 

biological changes promote the development of dependence by creating traits like 

tolerance through alterations of alcohol metabolism or the perception of the drug 

rewarding effect of alcohol in the central nervous system (CNS; Djordjevic et al. 1998; 

Gilpin and Koob 2008).  

Alcohol Use Disorders: Alcohol as a Reward 

The euphoria associated with a drug or the “high” is one of the central mechanisms 

by which drugs, including ethanol, are rewarding (Koob and Le Moal 2001). This high 

occurs due to changes in neurotransmission particularly in the “feel good” 

neurotransmitters, dopamine and serotonin (Gilpin and Koob 2008). The rewarding 

affects of alcohol can occur at low concentrations as shown in Table 1.2 (Boileau et al. 

2003). However, repetitive use of drugs of abuse can cause neuroplastic changes that 

alter the normal hedonic systems of neurotransmission (Der-Avakian and Markou 2012).  

In prolonged periods without the drug in the system, the neuroplastic changes lead to a 

feeling of dysphoria or a “low” leading to a sense of craving for the drug (Der-Avakian 

and Markou 2012; Markou et al. 1998).   

Alcohol can also be rewarding due to its anxiolytic effects (Wallner et al. 2003; 

Wallner et al. 2006). Many people consume ethanol for its soothing effects, but similar to 

chronic ethanol’s effects on hedonic systems, repeated exposure alters the 

neurotransmitter systems associated with anxiety causing neuroplastic changes that 

produce hyperexcitability (Engin et al. 2012). Addiction, in this instance AUDs, is 
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therefore driven by both the rewarding (euphoric and anxiolytic) effects of intoxication 

and the agitating (dysphoric and anxiogenic) effects caused by ethanol (Koob and Le 

Moal 2001; Koob and Volkow 2010; Lingford-Hughes et al. 2010). This introduction will 

cover how neurodegeneration from chronic alcohol exposure can affect cognition and 

indirectly affect the rewarding characteristics of alcohol as these studies are intended to 

find novel targets to reduced alcohol brain damage.  However, the current AUD 

therapies have direct actions on ethanol reward by altering neurotransmitter systems 

and will be discussed first. 

Alcohol Use Disorders: Ethanol Pharmacology  

The rewarding effects of alcohol are due to ethanol’s neuropharmacological actions, 

but chronic use alters these systems such that the absence of the drug leads to 

dysphoria (Clapp et al. 2008). While some drugs of abuse are known to bind to a specific 

receptor disrupting hedonic pathways of neurotransmission, alcohol pharmacology is 

more complex due to its physical and chemical properties (Vengeliene et al. 2008). For 

example, one theory is that ethanol, as a small, amphiphilic molecule, can displace 

water preferentially due to its attraction to both hydrophobic and hydrophilic targets 

(Klemm 1998). The displacement of water can then affect the confirmation state of 

receptors making alcohol an allosteric effector of various neurotransmitter systems 

(Klemm 1990).  The multitude of ethanol effects on various neurobiological substrates 

makes a full review of alcohol pharmacology within this dissertation impossible; 

therefore, this brief synopsis will focus on the major effects of ethanol’s rewarding effects 

by discussing the cholinergic and opioid systems as it relates to euphoria as well as the 

balance of GABAergic and glutamatergic systems as it relates to the anxiolytic effects of 

alcohol. Furthermore, these systems were chosen because the majority of the current 
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pharmacotherapy interventions for AUDs or alcohol withdrawal target these systems. 

Each system and the respective drug that targets the system will be discussed briefly. 

Cholinergic System & Varenicline 

Acute ethanol can change the binding of endogenous acetylcholine, particularly to 

the nicotinic acetylcholine receptors (nAChR; Cardoso et al. 1999; Zuo et al. 2004).  

nAChR's are ionotropic receptors consisting of a single, pentameric transmembrane 

channel. The composition of the pentamer alters the alcohol effects on nAChR (Cardoso 

et al. 1999; Narahashi et al. 1999; Zuo et al. 2002). At low concentrations, alcohol acts 

as co-agonist enhancing cholinergic binding in receptors with α2 and α4 subunits 

(Marszalec et al. 1999). This increased ligand binding and ethanol’s ability to stabilize 

the open channel state enhances the influx of Na+ depolarizing cells, increases the 

probability of an action potential propagation, and results in the increased release of 

neurotransmitters (Forman and Zhou 1999).  Acute ethanol’s effects on the cholinergic 

system, particularly on the α4β2 subtype, can therefore increase dopaminergic signaling 

and create a sense of euphoria (Blomqvist et al. 2002; Borghese et al. 2003; 

McGranahan et al. 2011).  The transient, increased dopamine concentration created by 

ethanol’s action on nAChR is only one way that alcohol is rewarding (Soderpalm et al. 

2009).   

Because of ethanol’s effects on the cholinergic system, varenicline, a partial agonist 

of the α4β2 nAChR subtype, has been proposed as a drug of interest for AUDs. 

Varenicline can reduce alcohol consumption and seeking but is not yet approved by the 

US Food and Drug Administration (FDA) for the treatment of AUDs (Mitchell et al. 2012; 

Steensland et al. 2007). Its actions are thought to be associated with reduced euphoria 

caused by acute alcohol intoxication through the reduction of the cholinergic effects on 

dopamine release (Ericson et al. 2009; Hendrickson et al. 2010).  
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Opioid System & Naltrexone 
The euphoria associated with ethanol use is not only caused by alcohol’s action 

on the cholinergic system but can also be linked to its effects on the opioid system 

(Vengeliene et al. 2008).  The endogenous opioid system consists of a group of G 

protein-coupled receptors (GPCR's) and their associated ligands like dynorphins, 

enkephalins, and endorphins (Bodnar 2012).  Acute ethanol stimulates the release of 

opioid peptides, especially β-endorphin (Gianoulakis 2001; Warren and Hewitt 2010).   

This increase in endogenous opioids has a euphoric effect due to the opiate systems 

relationship to the dopaminergic system (Gianoulakis 2001; Spanagel et al. 1990).  

However, the effects of chronic ethanol exposure are not as clear, but some reports 

indicate alcohol increases µ-opioid receptors as a compensatory mechanism of chronic 

alcohol’s effect to reduce the binding of endogenous opioids to receptors (Djouma and 

Lawrence 2002).  

The effects of ethanol on the opioid system mean that manipulating the system 

affects the rewarding capacity of alcohol.  Naltrexone is a µ-opioid receptor antagonist 

that is indicated for AUD treatment by the FDA.  The efficacy of naltrexone is due to its 

ability to antagonize the µ-opioid receptor and therefore reduce the effects of alcohol-

induced increased β-endorphin (Littleton and Zieglgansberger 2003; Ray et al. 2010). 

The reduction in endogenous opiates reduces the ethanol-induced dopaminergic 

increase and euphoric effects of alcohol (Kato 2008; Valenta et al. 2013). Naltrexone 

has shown some efficacy in AUD treatments by increasing drug abstinence and/or 

reducing the number of drinks (Lee et al. 2012; Pettinati et al. 2011).    

Glutamatergic System & Acamprosate 

As stated earlier, ethanol can also be rewarding outside of the euphoric high due 

to its sedative or anxiolytic effects. Some of the anxiolytic effects are associated with 

ethanol’s pharmacological actions within the glutamate system, the major excitatory 
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system (Tsai and Coyle 1998). Although alcohol can affect various types of glutamate 

receptors, studies on the effects of alcohol on the glutamatergic system generally focus 

on the N-methyl-D-aspartate receptor (NMDAR). The focus on the NMDAR stems from 

research showing that low doses of alcohol inhibit NMDA-activated Ca2+ calcium influx 

(Lovinger et al. 1989).  The reduction in excitation from ethanol’s effects on the NMDAR 

system underlies the anxiolytic effects of acute alcohol exposure (Tsai and Coyle 1998). 

Chronic exposure, however, causes upregulation of the NMDARs on the cell surface of 

neurons (Sheela Rani and Ticku 2006). This upregulation of NMDARs can cause a state 

of hyperexcitation when ethanol is acutely withdrawn and is associated with severe 

withdrawal symptoms like seizures and convulsions (Hoffman 1995; Tsai and Coyle 

1998). Moreover, the neuroplastic changes induced by chronic ethanol exposure in 

NMDAR activity and expression make the system more sensitive to glutamate 

(Vengeliene et al. 2008). Alcohol’s effects on the glutamatergic system will be revisited 

later in this dissertation as it also considered a source of neuronal damage. 

Acamprosate is an FDA approved therapy that targets the effects of ethanol on 

the glutamatergic system. It is the most readily prescribed treatment for alcoholism 

although its use is still relatively low (Mark et al. 2009). As a weak partial agonist of 

NMDAR, acamprosate reduces the dysphoria in alcohol withdrawal by attenuating 

hyper- glutamatergic signaling (Mann et al. 2008; Umhau et al. 2010). A reduction in the 

negative affects associated with alcohol deprivation afforded by acamprosate is thought 

to reduce relapse and make it useful in the treatment of AUDs (Heilig and Egli 2006).  

 

GABAergic System & Benzodiazepines 

Ethanol not only depresses the major excitatory neurotransmitter system, but 

also enhances the transmission of the major inhibitory neurotransmitter, γ-aminobutyric 

acid (GABA; Vengeliene et al. 2008). Ethanol’s allosteric effects on the GABAA receptor 
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in conjunction with its glutamatergic effects play a large role in the anxiolytic state 

associated alcohol (Koob 2004; Tsai and Coyle 1998). Like the other neurotransmitter 

systems, alcohol has the ability to affect various subtypes of GABA receptors, but it has 

particular actions on the GABAA receptor (Kumar et al. 2009; Lobo and Harris 2008).  

GABAA receptors are ligand gated ion channels but, being inhibitory, are responsible for 

the efflux of the anion Cl- when activated (Spitzer 2010).  Low doses of ethanol, increase 

the binding of GABA to its receptor through an allosteric mechanism,  but 

electrophysiology studies have shown that high, but physiologically relevant 

concentrations of ethanol can also have direct effects on the GABA receptor in the 

absence of GABA (Aguayo et al. 2002). Regardless of whether alcohol allosterically 

alters the receptor or directly acts as a ligand, the anion influx hyperpolarizes neurons so 

that there is a reduction in synaptic transmission. The depressed synaptic transmission 

state is associated with the rewarding, sedative hypnotic properties of alcohol (Koob 

2004). However, chronic ethanol exposure causes an internalization of GABA receptors 

and reduces the ability of agonists to bind (Golovko et al. 2002). The resulting reduced 

GABAergic tone is thought to lead to a state of hyperexcitability and anxiogenic effects 

of alcohol withdrawal (Golovko et al. 2002; Koob 2004).  

To reduce this hyperexcitation state, benzodiazepines, GABAA agonists, have 

been used effectively for years to reduce acute alcohol withdrawal symptoms (Doble 

1999; Mayo-Smith 1997; Ntais et al. 2005). However, benzodiazepines are not approved 

as an FDA treatment for AUDs as they ameliorate acute withdrawal effects but do not 

necessarily affect the rewarding effects of alcohol (Ntais et al. 2005). Although alcohol 

causes neuroplastic changes in GABAergic system, benzodiazepines, unlike the 

aforementioned medications, are not effective in reducing alcohol intake because they 

do not change the actual perception of alcohol but rather treat a symptom. 
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Disulfiram 

Not all drugs used for AUD therapy have been based on changes in 

neurobiology.  Disulfiram is also an FDA approved drug for AUDs whose action is mainly 

based on inhibiting the metabolism of alcohol within the liver. Disulfiram inhibition of the 

enzyme acetaldehyde dehydrogenase causes a buildup of an ethanol metabolite, 

acetaldehyde (Jorgensen et al. 2011). Increases in acetaldehyde cause nausea, 

headaches, and various other negative reactions so that drinking ethanol produces an 

immediate aversive effect (Barth and Malcolm 2010). Although disulfiram has been 

shown to have some neurobiological effects on reward and craving (Barth and Malcolm 

2010; Grant and Dawson 1998), its aversive nature makes patient compliance and 

therefore clinical utility within AUDs problematic (Jorgensen et al. 2011). Like 

benzodiazepines, disulfiram’s main effects are not on the addictive effects of alcohol; 

however, varenicline, naltrexone, and acamprosate use within AUD therapy are great 

examples of how determining chronic ethanol’s neuroplastic changes associated with 

the progression of addiction led to treatment options (Chou et al. 1998).  Unfortunately, 

the efficacy of these drugs in the general population is still low and suggests that 

alternatives therapeutic targets need to be discovered. 

Alcohol Use Disorders: Neurodegeneration & Cognitive Deficits 

Not only does excessive alcohol consumption alter functional aspects of the brain 

like neurotransmission that can drive AUD development, it can also result in more global 

structural changes through cellular damage (Crews and Nixon 2009; Harper 2009). The 

use of therapies that target the neuroadaptations in neurotransmission caused by 

chronic ethanol exposure suggests that, as another neuroplastic change, alcohol-

induced neurodegeneration may also be a potential target for AUD therapies. Currently, 

no FDA approved drug specifically targets alcohol-induced brain damage (Wang et al. 
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2010).  Although alcohol-induced neurodegeneration can be associated with thiamine 

deficiency, alcoholic brain damage, as discussed herein, will refer only to damage 

independent of nutritional deficiency and not Wernicke-Korsakoff’s syndrome (Thomson 

et al. 2012).  Furthermore, the focus will be on brain damage that occurs from AUDs as 

opposed to the neuronal loss that may endure from prenatal exposure as seen in fetal 

alcohol spectrum disorders (FASD; Klintsova et al. 2007; Lewis et al. 2012; West and 

Goodlett 1990).   

Scientific debates regarding alcohol-induced brain damage have a long history but were 

initially based on deficits in cognition seen in alcoholics due to methodological limitations 

(Freund 1973; Freund and Walker 1971).  The first quantitative study looking at alcohol 

related brain damage in humans showed a reduction in weights of alcoholic individuals’ 

brains compared to social drinkers (Harper and Blumbergs 1982). However, with the 

advent of new techniques such as magnetic resonance imaging (MRI), studies have 

been able to show more specific brain regions within alcoholics that have reduced 

volume compared with moderate, social drinkers (Pfefferbaum et al. 1992; Pfefferbaum 

et al. 1995; Sullivan et al. 1995; Zahr et al. 2011).  This damage includes a loss of both 

cortical grey and white matter resulting in thinner gyri and increased sulci and lateral 

ventricles in alcoholics (Mann et al. 2001; Pfefferbaum et al. 1992; Pfefferbaum et al. 

1995). Post-mortem examinations of the brains of alcoholics concur with MRI findings 

showing reductions in volume and/or neuronal cell number of various regions (Agartz et 

al. 1999; Phillips et al. 1987). These regions include the cerebellum (Baker 1999; Phillips 

et al. 1987; Sullivan et al. 2010), hippocampus (Agartz et al. 1999; Beresford et al. 2006; 

Sullivan et al. 1995), corpus callosum (Pfefferbaum 1996; Pfefferbaum and Sullivan 

2002), and cortical regions especially the frontal lobe (Pfefferbaum et al. 1992; 

Pfefferbaum et al. 1997). Others, however, have not seen differences in the 
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hippocampus of alcoholics (Harper 1998), but the majority of studies indicate volume 

loss or damage .  It is important to denote that neurodegeneration does not necessarily 

occur in all individuals that drink, but instead, alcohol-induced brain damage correlates 

with chronic, excessive ethanol consumption levels and particularly binge drinking (Hunt 

1993; Lisdahl et al. 2013). 

Although neurodegeneration is not directly related to the rewarding effects of alcohol 

pharmacologically, neuronal damage can indirectly affect feelings of reward as well as 

alter other behavioral attributes associated with AUD development and addiction (Crews 

and Boettiger 2009; Kelley and Mittleman 1999; Koob and Le Moal 1997). 

Neurodegeneration within a specific brain region as well as damage to the integrity of its 

circuits can be correlated to decline in behaviors associated with that region (Alfonso-

Loeches and Guerri 2011; Zahr et al. 2011). For example, damage seen in the frontal 

cortex of the mesocorticolimbic pathway has been associated with poor executive 

function (Bechara 2005; Dawson and Grant 1998; Medina et al. 2008; Pfefferbaum et al. 

1997). Damage to this region caused by ethanol is also thought to be the cause of 

increased impulsivity observed in alcoholics in tasks like delayed discounting procedures 

(Crews and Boettiger 2009; Petry 2001). Decreased executive function and increased 

impulsivity leads to the poor decision making concerning alcohol and may be one of the 

reasons that alcoholics have problems with drug preoccupation (Crews 2008; Gilpin and 

Koob 2008; Parsons 1993). 

Neurodegeneration-induced behavioral deficits can promote a “spiral of addiction” 

(Crews 1999; Koob and Le Moal 1997). The spiral of addiction involves the promotion of 

alcohol intake by various factors that influence one another in a cyclical pattern. For 

example, an individual who starts off drinking moderate volumes of ethanol may 

progressively consume more ethanol due to drug tolerance. Tolerance to ethanol can 
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develop from various biological changes including increased drug metabolism 

(Djordjevic et al. 1998), altered alcohol neuropharmacology (Vengeliene et al. 2008), 

and behavioral adaptations that allow for normal functioning during intoxication (Vogel-

Sprott 1997).  Regardless of the type of tolerance, the result is increased ethanol 

consumption which can cause neurodegeneration in the frontal lobes (Pfefferbaum et al. 

1992; Sullivan et al. 1995). Neurodegeneration then compromises the ability of the 

alcoholic individual to make good decisions regarding ethanol consumption (Crews et al. 

2005).  This theory highlights how the structural neuroplastic changes in just one region 

of the brain caused by excessive alcohol consumption can promote alcohol abuse.  

 Herein, the focus will be on neurodegeneration within the hippocampus and the 

entorhinal cortex.  The hippocampus is important for learning and memory and has been 

postulated to have a role in drug addiction by its control of drug-dependent memories 

and influence on the prefrontal cortex (Hyman et al. 2006; Nixon et al. 2011).  The 

hippocampus is connected with frontal cortical regions by glutamatergic efferent 

neurons, so hippocampal damage can also affect behaviors associated with the frontal 

lobe (Godsil et al. 2013). Because the entorhinal cortex and the hippocampus are highly 

interconnected (Burwell and Amaral 1998), damage to in the entorhinal cortex also 

affects hippocampal integrity and contributes to cognitive deficits (Bott et al. 2013; 

Harich et al. 2008). The hippocampus and entorhinal cortex were chosen as 

compromised hippocampal integrity in alcoholics has been proposed to underlie 

behavioral deficits observed in executive function as well as working memory (Beresford 

et al. 2006; Chanraud et al. 2010).  Furthermore, the model used in this dissertation has 

repeatedly produced damage in both the entorhinal cortex and the hippocampus across 

many labs (Collins et al. 1996; Kelso et al. 2011; Obernier et al. 2002a).   
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Alcohol Use Disorders: Models of Alcohol-Induced Neurodegeneration 

 Many models of alcohol exposure exist due to the complex nature of the 

contributing factors of AUD progression. People drink for a variety of reasons; therefore, 

no single model is enough to fully understand alcoholism. Herein, only the subset of in 

vivo rodent models that produce alcohol-induced neurodegeneration are discussed, but 

reviews are available that discuss models that examine other aspects of alcoholism such 

as the rewarding effects and the behavioral effects of intoxication (Crabbe et al. 2011; 

Ripley and Stephens 2011). Models that specifically elicit alcohol-induced 

neurodegeneration are necessary in order to understand the mechanisms that lead to 

brain damage in alcoholics and can therefore participate in the progression of AUDs by 

contributing to the spiral of addiction previously described.  Unfortunately, most animals 

do not voluntarily consume ethanol at the high concentrations associated with 

neurodegeneration. Some labs circumvent this problem by using in vitro studies that 

expose neuronal and/or glial tissue cultures to different concentrations and durations of 

ethanol that cause neuronal damage or evidence of stress (Fernandez-Lizarbe et al. 

2009; Prendergast et al. 2004).  However, animal models have to use forced ethanol 

exposure to study the phenomenon of alcohol-induced neuronal loss (Crews et al. 2004; 

Crews and Nixon 2009).  These categories fall under four basic categories of ethanol 

exposure: injections, vapor exposure, chronic feeding, or intragastric gavage. 

Importantly, these models mimic damage in brain regions and the cognitive deficits seen 

in alcoholic patients. Intragastric gavage will be the method used throughout the work 

presented herein but other methods will be discussed briefly subsequently.  

 Intraperitoneal (ip) injections of ethanol can produce evidence of 

neurodegeneration. In studies using this model, animals received 3g/kg of ethanol via ip 

injections for two consecutive days with two day gaps without injections over a two week 

or month long period (Lundqvist et al. 1995; Pascual et al. 2007). This intermittent 
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pattern over at least a two week period causes damage in the cerebellum, hippocampus, 

and neocortex (Lundqvist et al. 1995; Pascual et al. 2007). Neurodegeneration in this 

particular model appears to be dependent upon repeated cycling of high BECs and 

withdrawal phases (Lundqvist et al. 1995; Lundqvist et al. 1994).  This neuronal damage 

also causes cognitive problems including persistent alterations in the hippocampal 

associated task of object recognition (Barker and Warburton 2011; Pascual et al. 2007). 

The ip route of ethanol administration is problematic as it does not necessarily mimic 

alcohol kinetics associated with the typical oral route of alcohol administration in the 

human population which makes translating results from these studies difficult 

(Adalsteinsson et al. 2006; Iwaniec and Turner 2013). 

 Similar to the ip injections, there are problems with the face validity associated of 

alcohol vapor inhalation models of AUDs (Mattucci-Schiavone and Ferko 1986; Ripley 

and Stephens 2011).  Although there have been recent reports in the popular media of a 

trend of alcohol inhalation (Sifferlin 2013), drinking oral ethanol is still by far the most 

common route of intoxication.  Vapor studies vary on the dose, duration, and pattern of 

ethanol exposure (Gilpin et al. 2008), but the derivation with chronic intermittent vapor 

exposure has shown evidence of neurodegeneration in the hippocampus (Ehlers et al. 

2013). The vapor model of alcohol-induced neurodegeneration not only alters the 

cognitive abilities directly associated with brain damage but also has behavioral 

correlates associated with other traits of alcoholism including increased self-

administration (Gilpin et al. 2009; O'Dell et al. 2004). Despite having some behavioral 

attributes of an AUD, bypassing the normal metabolic pathways of ethanol makes the 

vapor inhalation models problematic as inhaling alcohol produces different behavioral 

outcomes than oral administration (Mattucci-Schiavone and Ferko 1986). 
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 The last two model types that will be discussed have better face validity in that 

they both at least use an oral route of ethanol administration which is most similar to the 

human condition (Bell et al. 2012). Chronic feeding models rely on self-administration 

over months whereas the intragastric gavage uses forced intubation over a relatively 

short timeline. In the chronic feeding models, ethanol is the only source of fluid in 

drinking water but not food (Rintala et al. 1997). The chronic feeding models produce 

damage in the cerebellum, hippocampus, as well as peripheral neuropathy (Cohen et al. 

2007; Mellion et al. 2013; Walker et al. 1980). Intragastric gavage models shows similar 

damage but can be done over the course of a few days in rats or about a week in mice 

making them less time intensive than the chronic feeding model (Collins et al. 1996; 

Crews 2008; Hayes et al. 2013; Kelso et al. 2011; Qin and Crews 2012a; Qin and Crews 

2012b).  

These experiments use a modified version of the Majchrowicz model which 

exposes rats to alcohol over a four-day period (Majchrowicz 1975). The Majchrowicz 

model has been chosen to as it mimics the multiple days of binge drinking seen in 

human alcoholics (Faingold 2008; Tomsovic 1974). It also produces BECs comparable 

to a subset of alcoholics with higher tolerance that are functional at BECs well above 

300mg/dL due to years of alcohol (Cartlidge and Redmond 1990; Urso et al. 1981). 

Chronic feeding models have lower BECs that may not reflect the alcohol concentrations 

seen in tolerant alcoholics (Cohen et al. 2007; Mellion et al. 2013). Furthermore, this 

model produces other traits characteristic of AUDs including tolerance and withdrawal 

(Table 1.1; Crews and Nixon 2009; Crews 2008). Because tolerance varies among 

individuals, the Majchrowicz model mimics the human condition and tailors the dose 

based on behavior unlike other models of alcohol-induced neurodegeneration 

(Majchrowicz 1975; Penland et al. 2001).  Specifics about the procedures of the 
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Majchrowicz model will be described in the methods section of chapter two, but 

importantly, it is used here because it produces characteristics traits of AUDs, is a model 

of binge drinking, and causes neurodegeneration (Crews and Nixon 2009; Crews 2008). 

Because all of these aspects of ethanol consumption contribute to AUD progression, the 

Majchrowicz model represents a valid paradigm for understanding alcohol abuse. 

  

Alcohol Use Disorders: Mechanisms of Alcohol-Induced Neurodegeneration 

Animal models of alcohol-induced neurodegeneration in conjunction with studies of 

human alcoholics have increased the understanding of alcoholic brain damage and led 

to four general proposed mechanisms of neuronal loss: glutamate excitotoxicity, reduced 

neurogenesis, oxidative stress, and neuroinflammation.  Glutamate excitotoxicity 

involves excess levels of glutamate or increased sensitivity of glutamate receptors that 

leads to excessive Ca2+  influx, neuronal dysfunction and neurodegeneration 

(Ankarcrona et al. 1995; Lau and Tymianski 2010).  During intoxication, ethanol acts as 

an NMDA antagonist, but as previously stated, chronic ethanol exposure causes an 

upregulation and supersensitivity of NMDA receptors (Chandler et al. 1993a; Chandler et 

al. 1993b; Hoffman 1995).  In vivo studies also suggest that the upregulation and 

supersensitivity of NMDA receptor results in excess glutamate in the system during 

withdrawal (Dahchour and De Witte 2003; Grant et al. 1990).  Moreover, NMDA receptor 

antagonists like acamprosate and MK-801 reduce ethanol withdrawal-induced 

glutamatergic spikes and neurotoxicity (Dahchour et al. 1998; De Witte et al. 2005; 

Mayer et al. 2002; Prendergast et al. 2004). Together, these studies suggest that 

glutamate excitotoxicity is a factor in alcohol-induced neurodegeneration, perhaps 

specifically due to ethanol withdrawal.   
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A second proposed mechanism of alcohol-induced neurodegeneration is decreased 

adult neurogenesis (Nixon and Crews 2002). Unlike the glutamate excitotoxicity role of 

degeneration which focuses on cell death from alcohol withdrawal, alcohol-induced 

decreases in neurogenesis are seen during intoxication in the absence of withdrawal 

(Crews and Nixon 2009; Nixon 2006). In the mammalian postnatal brain, neurogenesis 

constitutively occurs in the hippocampal subgranular zone of the dentate gyrus (DG) as 

well as in the subventricular zone of the lateral ventricles (Altman and Das 1965; 

Doetsch et al. 1999; Eriksson et al. 1998).  Neurogenesis is a process that can be 

divided into four components: proliferation, differentiation, migration/integration, and 

survival (Gage 2000).  Reductions in neural progenitor cell proliferation and the long-

term survival of newborn cells have specifically been observed in the Majchrowicz model 

used within these experiments, and studies using vapor exposure concur (Morris et al. 

2010a; Nixon and Crews 2002; Richardson et al. 2009). Reduced cell proliferation and 

neuronal cell survival have both been seen in other neurodegenerative diseases with 

cognitive deficits (Marxreiter et al. 2013; Ransome et al. 2012) and provide another 

mechanism by which alcohol abuse could lead to neuronal cell loss (Nixon 2006; Nixon 

and Morris 2008).  

Oxidative stress, specifically an increase in reactive oxygen species (ROS) and the 

depletion of antioxidant defenses, is associated with neuronal cell death in a variety of 

neurodegenerative diseases including Alzheimer’s and Parkinson’s disease (Reynolds et 

al. 2007). ROS production can cause mitochondrial dysfunction and lead to cellular loss 

(O'Rourke et al. 2005). Postmortem studies of alcoholic brains indicate there are 

increases in enzymes associated with ROS production (Qin and Crews 2012b). Models 

of alcoholic brain damage including the Majchrowicz model concur with findings in 

alcoholics showing increases in nicotinamide adenine dinucleotide phosphate (NADPH) 
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oxidase and cyclooxygenase-2 (COX-2) which resulted in tissue damage by producing 

free radicals (Knapp and Crews 1999; Qin and Crews 2012a; Qin and Crews 2012b; 

Reynolds et al. 2007). Alternatively, alcohol-induced oxidative stress can be due to ROS 

produced directly by the metabolism of ethanol at high BECs.  Cytochrome P450 2E1 

(CYP2E1) preferentially metabolizes alcohol within certain brain regions causing an 

increase in ROS production (Haorah et al. 2005; Haorah et al. 2008; Ronis et al. 1993). 

Furthermore, chronic ethanol exposure induces CYP2E1 protein levels, mRNA 

expression, and activity (Heit et al. 2013; Zhong et al. 2012). Increased ROS production 

further promotes an environment of oxidative stress by causing mitochondrial 

dysfunction (Nixon et al. 2009; Reddy et al. 2013).  

Although glutamate excitotoxicity disrupted neurogenesis, and oxidative stress were 

discussed as separate causative factors of degeneration, in reality they can contribute to 

each other’s pathological pathways and likely act in conjunction to lead to 

neurodegeneration pathways. The final proposed mechanism of ethanol-induced brain 

damage, neuroinflammation, will be discussed in more detail as it is a focus of this series 

of experiments. Moreover, the influence of the neuroimmune system, specifically 

microglia, within each of the other proposed mechanisms of neurodegeneration will also 

be discussed. 

Neuroinflammation 

Inflammation is the biological response to noxious stimuli such as invading 

pathogens, foreign chemicals, or cellular damage.  In the periphery, the inflammatory 

response is characterized by five basic components caused by intracellular immune 

signaling events (feelings of pain, flushing, swelling, heat, and a subsequent functional 

deficit; Graeber et al. 2011).  Inflammation is the result of an immune response which 

includes both innate and adaptive immunity.  It was originally hypothesized that the 
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blood brain barrier (BBB) made the CNS an immune impervious system because of the 

lack of rejection of xenografts by rat brain (Murphy and Sturm 1923).  However, the 

discovery of the innate immune cell, microglia, and their phagocytic capacity within the 

CNS completely changed this view (Neuwelt and Clark 1978; Penfield 1925).  As the 

innate immune cell, microglial activation alone is often referred to as neuroinflammation, 

but the heterogeneous nature of microglia makes equating neuroinflammation solely to 

microglial activation problematic (Carson et al. 2007; Carson et al. 2006).  A more 

encompassing, appropriate definition of neuroinflammation incorporates a complex 

system consisting of three distinct processes: disruption of the blood-brain barrier, 

infiltration of T and B lymphocytes, and activation of microglia/macrophages (Carson et 

al. 2006; Hickey 2001).  

The initial discovery of the BBB came in 1885 when it was observed that the injection 

of dye into the circulatory system did not result in staining of brain tissue (de Vries et al. 

1997). Since this initial observation, the actual composition of the BBB has been 

elucidated.  The BBB is a complex system of endothelial cells, astrocytic end feet, 

perivascular macrophages, and the basal lamina that acts as a barrier separating 

circulating blood from the brain (Pachter et al. 2003).  Disruption of this protecting 

cellular network is a key component of neuroinflammation as the BBB acts to separate 

the CNS from various immunomodulators (Hickey 2001).  The BBB can be disrupted by 

mechanical injury such as in traumatic brain injury (Readnower et al. 2010) or by 

chemical agents that alter the integrity of cells or transporters (Haorah et al. 2007a; 

Haorah et al. 2005). 

When the BBB is disrupted, small lymphocytes from the peripheral system can then 

enter the parenchyma (Fritz et al. 2000). This infiltration initiates the adaptive immune 

response involving two basic types of lymphocytes: T cells and B cells.  T helper cells, 
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cluster of differentiation (CD) 4+, recognize major histocompatibility complex (MHC) 

class II found on antigen-presenting, activated microglia (Gutcher and Becher 2007; 

Wraith and Nicholson 2012; Xu and Ling 1994).   Upon presentation of antigens by 

MHC-II molecules, T helper cells become activated and begin to proliferate and secrete 

autocrines attracting cytotoxic T cells (CD 8+; Wraith and Nicholson 2012).  Cytotoxic T 

cells bind to MHC-I on the damaged cell and secrete various cytotoxins including 

perforins and granulysin that leads to cell death (Whitmire 2011).  B-cells also mobilize 

in response to pathogens and bind to T helper cells because of the MHC-II present on B 

cells (Montecino-Rodriguez and Dorshkind 2006).  These cells form an interface known 

as the immunological synapse that connects the adaptive immune B and T cells with 

innate immune antigen-presenting cells like activated microglia/macrophages (Davis et 

al. 1999).  The cells within this synapse work in concert with one another to elicit a true 

neuroinflammatory event and lead to cell death through downstream cell signaling 

pathways (Chakraborty et al. 2010). Although various cells participate in both the innate 

and adaptive immune system, the focus of this work is on microglia; therefore microglia 

and their role in neuroinflammation and within the neuroimmune system will be 

discussed in greater detail. 

Microglia 

 Microglia are a type of glia or non-neuronal cell within the CNS.  The term 

microglia literally means “small glue”: “small” as in the relative size of microglia 

compared with other glial cells and “glue” because glial cells were originally thought to 

hold neurons together (Dermietzel and Spray 1998).  However, microglia play a more 

dynamic role in neuronal homeostasis than simply gluing neurons together (Allen and 

Barres 2009).  Microglia differ from other glial cells such as oligodendrocytes and 

astrocytes in their origin, morphology and function.  Microglia are derived from 
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hematopoietic cells from precursors that eventually have a macrophage fate rather than 

neuronal precursor cells (Saijo and Glass 2012; Vilhardt 2005).  The origin of microglia 

makes them uniquely suited to act as an indicator of neuroinflammatory activity.  The 

term indicator was chosen because, as stated earlier, microglial activation alone is not 

synonymous with neuroinflammation (Hickey 2001).  Moreover, both the morphology 

and function of microglia are diverse, which will be discussed subsequently.  

Microglia: Pro versus Anti-Inflammatory State 

Microglia become activated in response to various stimuli including neuronal 

damage, noxious agents, astrocytic secretion, and even more minute neuronal 

environmental cues like alterations in ion concentrations; however the microglial 

activation varies or is heterogeneous based on the intensity or type of damage as well 

as the duration of the insult (Harting et al. 2008; Lai and Todd 2008).  Microglia display 

heterogeneity in their morphology, cytokine secretions, and cell surface proteins (Carson 

et al. 2007).  Distinctions in these attributes are used to categorize microglia in an 

attempt to understand their function within the CNS under pathological conditions.  

Although the names used within each classification system are different, the basic 

premise of all of the classification systems is that microglia are either proinflammatory or 

anti-inflammatory.  For example, Heuschling and colleagues use the terms M1 and M2 

to differentiate between pro and anti-inflammatory microglia (Mantovani et al. 2002; 

Michelucci et al. 2009); whereas, others have simply used the terms classical or 

partial/alternative activation to describe the heterogeneity of microglial activation (De 

Simone et al. 2004; McClain et al. 2011).  In chapter two, these terms will be broken 

down even further to reflect the continuum of phenotypes within the proinflammatory and 

anti-inflammatory states (Raivich et al. 1999a; Raivich et al. 1999b). 
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In normal, non-pathologic conditions, microglia are in a quiescent state often 

referred to as “resting.”  The term “resting” microglia is a misnomer as quiescent 

microglia are not actually without function.  They are constantly surveying their 

environment, responding to minute changes within the neuronal milieu (Nimmerjahn et 

al. 2005).  Quiescent microglia have ramified branches from their cell bodies that are 

used to survey their environment (Fishman and Savitt 1989; Raivich et al. 1999a), but 

activation by noxious stimuli (i.e. cellular damage, ROS, etc.) alters the morphology of 

microglia (Brown and Neher 2010; Kettenmann et al. 2011).  Resting ramified microglia 

transform to a “bushy” morphology (Figure 1.1).  This bushy shape is characterized by 

the branches/projections thickening and retracting as well as an enlargement of the cell 

body (Abraham and Lazar 2000; Morioka et al. 1991; Nimmerjahn et al. 2005).  Bushy 

shaped microglia are often called the partially activated or M2 microglia (Karperien et al. 

2013; Raivich et al. 1999a).  Upon further or more intense perturbation, the cell becomes 

rounded in shape as it loses thickened processes and pseudopodia used for motility.  

Amoeboid microglia are the “classically” defined stage of activated microglia (Figure 1.1; 

Raivich et al. 1999a).  

Figure 1.1 Morphological Diversity of Microglia 

 

Figure 1.1 Depictions of morphological heterogeneity within microglia activation 

continuum (adapted from Nimmerjahn et al. 2005). 
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Because microglial activation is truly a continuum of states, a change in 

microglial shape alone is not enough to determine whether a cell is pro-versus anti-

inflammatory.  However, changes in the proteins expressed within the cell accompany 

the morphological metamorphosis.  These alterations in protein expression reflect a 

change in the function of the microglia.  For example, complement receptor 3 (CR3) is 

an integrin present in all microglia, but its expression is upregulated as a result of 

chemokines secreted by damaged cells (Akiyama and McGeer 1990; Newton and Hogg 

1998).  Increased CR3 expression helps microglial cells adhere and anchor to damaged 

cells as a step in the phagocytic process (Akiyama and McGeer 1990; Hynes 1992; 

Newton and Hogg 1998).  Moreover, phagocytosis of damaged cells also alters microglia 

protein expression.  When microglia internalize or engulf damaged cells, internal 

proteases (e.g. cathespin S and L) degrade the damaged cell’s proteins into MHC-II and 

the complex is expressed on the cell surface of microglia (Gresser et al. 2001; Nakanishi 

2003).  Antigen-presenting microglia are a key component of neuroinflammation and the 

immune synapse as discussed previously. Expression of MHC-II changes the 

classification of the microglia to a more proinflammatory state (Nakanishi 2003; Xu and 

Ling 1994) .   

 Changes in microglia morphology and proteins expressed results in 

corresponding alterations in secreted cytokines and growth factors that further reflect the 

function of the cell within the neuronal environment as pro- or anti-inflammatory.  For 

instance, partially activated microglia secrete the anti-inflammatory cytokine interleukin-

10 (IL-10) which can suppress other neuroinflammatory factors (Braat et al. 2006; 

Michelucci et al. 2009). IL-10 suppresses the production of proinflammatory factors by 

preventing the activation of nuclear factor kappa-light chain enhancer of activated B cells 

(NF-κB; Correa et al. 2010; Heyen et al. 2000). NF-κB is a transcription factor that is 
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both activated by and induces the neuroimmune response in a canonical pathway 

(Kaltschmidt et al. 2005; Vallabhapurapu and Karin 2009).  On the other end of the 

spectrum, when microglia become fully or classically activated, they secrete 

proinflammatory cytokines like tumor necrosis factor-alpha (TNF-α). Unlike IL-10, TNF-α  

increases the production of NF-κB as well as members of the caspase family which 

elicits cascades that promote an inflammatory environment (Gaur and Aggarwal 2003). 

Altogether, morphological differences coupled with changes in proteins expressed and 

cytokines secreted can be used to assess the function and role of microglia under 

pathological conditions.  Markers used within this dissertation to assess the state of 

microglia are presented in figure 1.2. 

Figure 1.2 Pro- and Anti-inflammatory Microglial Markers 

 

Figure 1.2 Selected markers used within to characterize microglia. Those markers that 

do not directly indicate pro- or anti-inflammation are placed in the middle. 

 

Microglia: Acute versus Chronic Activation 

Although proinflammatory microglia are generally thought to be associated with 

neuroinflammatory-induced neurodegeneration, the timing of activation and the duration 

of activation also plays a major role in whether microglia contribute to 

neurodegeneration.  Proinflammatory microglial activation does not always result in 
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excess damage but can also be associated with recovery.  An early, immediate 

activation of microglia is necessary for recovery. For example, acute microglial activation 

has been described as participating in “housekeeping” (Nimmerjahn et al. 2005) and 

“nursing” (Streit 2002b) in the CNS.  Activated microglia migrate to damaged areas, and 

depending on the level of activation, they begin to secrete neurotrophic factors (nurse) or 

remove debris (housekeep; Petersen and Dailey 2004; Takayama and Ueda 2005). This 

migration is triggered by chemokines released by damaged neurons and by macrophage 

colony stimulating factor (MCSF) released by other microglia (Davalos et al. 2005; Gao 

and Ji 2010; Raivich et al. 1991).  MCSF can also promote the proliferation of microglia 

in response to damage (Carrier et al. 2004; Kloss et al. 1997). This response increases 

the microglia in the area that are supporting damaged cells and removing neurons 

beyond repair (Carson et al. 2007). 

However, the chronic activation of microglia is associated with neuronal loss and 

has been proposed as a mechanism within various neurodegenerative diseases (Amor 

et al. 2010). For example, in traumatic brain injury, microglial activation persists well 

after the initial focal brain injury and causes secondary damage outside of the original 

mechanical injury (Lenzlinger et al. 2001; Ramlackhansingh et al. 2011). While 

differences in the type of activation can affect the contributions of microglia to 

neurodegeneration, the timing and duration of microglial activation is just as important to 

understand whether these pro- and anti-inflammatory roles are indicative of 

neurodegeneration or are participating in recovery from damage. 
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Microglia: Glutamate Excitotoxicity, Oxidative Stress, & Neurogenesis 

Glutamate Excitotoxicity 

Not only are microglia indicators of potential neuroinflammation, but microglia 

also have roles in the other proposed mechanisms of ethanol brain damage: glutamate 

excitotoxicity, oxidative stress, and reduced neurogenesis.  The excessive glutamate 

levels that mediate glutamate excitotoxicity occur because of both increased release as 

well as decreased uptake.  Microglia have the capacity to affect both processes that 

control glutamate excitotoxicity.  For example, TNF-α secreted by activated microglia 

can initiate the release of glutamate from microglia cells (Takeuchi et al. 2006; Yin et al. 

2012).  Microglial release of glutamate could contribute to glutamate excitotoxic alcohol-

induced neurodegeneration.  However, activated microglial cells also upregulate their 

expression of the glutamate transporter 1 (GLT-1; Persson et al. 2005; van Landeghem 

et al. 2001). GLT-1 uptakes glutamate into the microglial cell where it can be recycled by 

glutamine synthetase (Aschner 2000; Chretien et al. 2002). Glutamate uptake and 

degradation by glia would be neuroprotective by reducing the levels of glutamate in the 

synapse (Gras et al. 2003).  

Oxidative Stress 

Microglia are both sources of ROS and are activated by increased ROS 

production. CR3, previously discussed for its role in phagocytosis, has been shown to be 

upregulated by ROS indicating that microglia activation is sensitive to oxidative stress 

(Roy et al. 2008).  Activated microglia can then be a source of ROS by releasing 

superoxide, hydrogen peroxide, hydroxyl free radicals from NADPH oxidase phagocytic 

reactions (Block et al. 2007; Reynolds et al. 2007). This release of ROS, like so many 

other facets of microglia activation, is also directed by proinflammatory cytokines like 

TNF-α (Smith et al. 2012).  The role of microglia within oxidative stress further implicates 

microglia activation as a potential source of neurodegeneration. 
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Neurogenesis 

The heterogeneity of microglial activation is reflected in its effects on 

neurogenesis also (Kohman and Rhodes 2013; Morrens et al. 2012). The balance of 

microglia-derived cytokines and growth factors can regulate of adult hippocampal 

neurogenesis (Ekdahl et al. 2009). Specifically, the type of cytokines secreted by 

microglia affects neurogenesis (Butovsky et al. 2006; Ekdahl et al. 2009). When fully or 

classically activated, microglia secrete proinflammatory cytokines that are generally 

associated with reductions in normal adult neurogenesis (Ekdahl et al. 2003; Monje et al. 

2003). These reductions in neurogenesis can occur due to various effects on 

neurogenesis. For example when interleukin 6 (IL-6), a proinflammatory cytokine, is 

produced, it results in decreased proliferation (Vallieres et al. 2002); whereas other 

proinflammatory cytokines such as interferon gamma (IFN-γ) can dysregulate 

differentiation, changing the fate of newborn cells from neuronal to astrocytic (Walter et 

al. 2011; Yong et al. 1991). On the other end of the continuum, microglial activation is 

necessary for reactive neurogenesis in response to neuronal damage (Deboy et al. 

2006; Wainwright et al. 2009). In an adrenalectomy model of reactive neurogenesis, 

blocking transforming growth factor-beta (TGF-β) receptors reduced neurogenesis 

(Battista et al. 2006) whereas increases in IL-10 enhanced neurogenesis (Kiyota et al. 

2012).   

As previously described, microglia have the propensity to affect various 

mechanisms of alcohol-induced neurodegeneration as well as recovery. Figure 1.3 

depicts the ways in which microglia could be involved in recovery mechanisms. The 

complex nature of microglia makes understanding the characteristics of microglia 

following ethanol exposure of distinct interest. This dissertation focuses on the pro- or 

anti-inflammatory state of microglia as well as the initiation and duration of activation as 

an indicator of its role in alcohol-induced damage and/or recovery.  
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Figure 1.3 Potential roles of microglia in alcohol-induced damage and recovery 

 

Figure 1.3 Examples of the duality of microglia in promoting recovery mechanisms 

(green arrows) and contributing to neuronal damage (red arrows) 

 

Alcohol & Neuroimmune System 

Alcohol modulates the immune system of various organ systems including but 

not limited to the respiratory, musculoskeletal, and digestive system. Whether alcohol is 

an immunosuppressant or immunoactivating agent varies within each system (Molina et 

al. 2010). The digestive system, specifically the liver has been a major focus of studies 

examining the effects of alcohol on inflammation and the immune system. This focus is 

mainly due to the common occurrence of liver cirrhosis in alcoholics (Beier and McClain 

2010; Wang et al. 2012b). Studies looking at alcoholic liver cirrhosis have shown the 

effects of alcohol on monocytes in the periphery. Monocytes isolated from the blood of 
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alcoholics have greater basal expression of proinflammatory cytokines as well as react 

more robustly to challenges with lipopolysaccharide (LPS; Barve et al. 2006; McClain 

and Cohen 1989). The fact that microglia are the monocytes of the CNS suggests that 

microglia likely would also be affected by chronic ethanol exposure.  

Initially few studies examined microglia as it was originally proposed that alcohol-

induced brain damage was too low and chronic to perturb microglia (Streit 1994). 

However, recent trends have shown a marked increase in the literature exploring the 

neuroimmune system in alcohol and drug abuse (Coller and Hutchinson 2012; Cui et al. 

2011). The brains of human alcoholics have shown some indices of microglial activation. 

Increases in the microglial secreted protein monocyte chemoattractant protein (MCP-1) 

were seen in various regions of the mesolimbic pathway including the ventral tegmental 

area, the substantia nigra, the amygdala, and importantly for this work, the hippocampus 

(He and Crews 2008). As the name implies, MCP-1 is a chemokine that causes the 

congregation of monocytes and T cells by initializing the motility of microglia/ 

macrophages (Carr et al. 1994; Hinojosa et al. 2011). Accompanying the increase in the 

MCP-1 were increases in markers of microglia activation (He and Crews 2008). 

However, neither microglial activation nor attraction by MCP-1 within an area is enough 

to indicate a proinflammatory state nor causation between microglia activation and AUD 

associated neurodegeneration (Hickey 2001; Hinojosa et al. 2011).  These results 

however do imply that chronic ethanol exposure affects the neuroimmune system. 

Studies of postmortem brains of alcoholic agree with studies looking at microglial 

activation that the neuroimmune system is altered within AUDs, but chronic alcohol 

consumption causes dysregulation of the NF-κB system (Okvist et al. 2007). Chronic 

ethanol exposure down regulated mRNA levels associated with the innate immune 

system as well as decreased NF-κB binding to DNA within the prefrontal cortex (Liu et 
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al. 2006; Okvist et al. 2007). While these studies done on the brains of postmortem 

alcoholics do not agree on the direction of the effects of alcohol on potential 

neuroinflammatory signaling, together, they indicate that chronic alcohol exposure 

results in neuroadaptations that alter the normal neuroimmune function.  

To truly appreciate alcohol’s modulatory effects on the neuroimmune system 

requires AUD models. The vast majority of the work looking at alcohol’s influence on the 

neuroimmune system has been done in vitro or in rodent models of AUDs examining the 

effects of alcohol on immune gene responses, BBB disruption, astrocytic activation, and 

finally microglial modulation. In vitro studies using organotypic hippocampal-entorhinal 

cortex cultured brain slices and animal models have confirmed results seen in human 

alcoholics showing modulation of the NF-κB system (Crews et al. 2006a; Zou and Crews 

2010). However, these studies only show an upregulation of NF-κB as well as increased 

binding (Crews et al. 2011; Zou and Crews 2010). This effect differs from observations in 

the brains of human alcoholics where genes within the NF-κB were both up and down 

regulated (Okvist et al. 2007; Zou and Crews 2010). The differences measured are not 

surprising given the transient nature of many responses in the immune system including 

NF-κB upregulation (Cechetto 2001). Many in vitro studies look at the effects of alcohol 

on the neuroimmune system during ethanol exposure. However, alcohol abuse is driven 

by phasic patterns of use including periods of intoxication, acute withdrawal, and 

abstinence (Heilig et al. 2010). Studying the effects of the ethanol on the neuroimmune 

system during these different periods gives a fuller view of how neuroinflammation may 

be involved with damage. Moreover, AUD models, including the Majchrowicz model, 

indicate that neurodegeneration can occur during intoxication and in abstinence making 

studying neuroimmune changes in a timeline crucial. 
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Disruption of the BBB is a major component of a neuroinflammatory response 

(Hickey 2001). The increase in MCP-1 seen in the brains of post-mortem human 

alcoholics is of interest not only due to its role in attracting glial cells but also because 

MCP-1 is associated with the breakdown of the BBB (Stamatovic et al. 2003; Stamatovic 

et al. 2005). However, despite increases in MCP-1, no direct evidence of BBB disruption 

within human alcoholics exists. In vitro models using human epithelial cells to mimic the 

BBB have found damage to the cells indicative of BBB disruption. In these models, 

ethanol disrupts proteins associated with tight junctions as well as indirectly causes 

endothelial cell through ROS production both of which can lead to BBB disruption 

(Haorah et al. 2007a; Haorah et al. 2005; Haorah et al. 2007b). The integrity of the BBB 

is vital to controlling inflammatory events and compromising it is just one more possible 

cause of damage (Russo et al. 2011). The integrity of the BBB will be examined in 

experiments presented in chapter two. 

In vitro and in vivo models of AUD studies have consistently shown changes in 

glial cells and their function in response to ethanol. Although the focus of this 

dissertation is the effects of ethanol on microglia, astrocytes play a major role in 

neuroimmune function and therefore cannot be ignored (Dong and Benveniste 2001). 

Both in vitro and in vivo models have shown that astrocytes are affected by ethanol 

exposure but results differ based on whether ethanol is present in the culture or animal, 

respectively (DeVito et al. 2000; Franke et al. 1997; Kane et al. 1996; Kelso et al. 2011). 

For example, during abstinence glial fibrillary acidic protein (GFAP), an 

immunohistochemical marker of astrocytes, is upregulated indicating that astrocytes are 

activated in recovery from ethanol (Hayes et al. 2013; Kelso et al. 2011), but in vitro 

studies suggest that ethanol would inhibit the proliferation of astrocytes during 

intoxication (Kane et al. 1996). Furthermore, ethanol’s effects on astrocytes have been 
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implicated in other problems associated with chronic ethanol use that would affect the 

neuroimmune system and/or mechanisms of neurodegeneration including disruptions of 

the BBB (Abdul Muneer et al. 2011), glutamate excitotoxicity (Miguel-Hidalgo 2006; Wu 

et al. 2011), and ROS production (Gonthier et al. 1997; Jin et al. 2013). The astrocytic 

contribution to the neuroimmune reaction is important, but these studies focused on 

microglia. 

Alcohol & Neuroimmune System: Microglia Activation 

Much like the effects of ethanol on astrocytes, various models of alcohol abuse 

agree that microglia are activated following ethanol exposure (Kelso et al. 2011; McClain 

et al. 2011; Ward et al. 2009a; Zhao et al. 2013), but the phenotype, initiation, and 

duration of microglia activation within these models is not as clear. Some have 

discussed microglial activation as initiating a neuroinflammatory response that leads to 

neurodegeneration (Crews et al. 2011; He et al. 2005; Qin and Crews 2012a; Qin and 

Crews 2012b; Qin et al. 2008). The majority of the “neuroinflammation driving AUD 

neurodegeneration” studies looks at the neuroimmune response during intoxication and 

do not consider immune response as a necessary function to restore homeostasis. The 

duration and timing of microglial activation is just as important as the type of activation. 

For example, the Crews lab has indicated that increases in TNF-α concentrations 

following ethanol exposure maybe a causative factor in neurodegeneration (Crews et al. 

2006b; Qin et al. 2008), but acute increases in proinflammatory cytokines can actually 

promote neuroprotection (Song et al. 2013; Turrin and Rivest 2006).  Furthermore, 

studies in other models of alcohol-induced neurodegeneration have not observed 

proinflammatory cytokines either during intoxication or in abstinence and suggest that 

microglial activation may be involved with recovery (McClain et al. 2011; Zahr et al. 

2010a).  Similar to controversies regarding cytokines induced by ethanol exposure, 
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some studies have described more classical signs activation of microglia looking at the 

proteins expressed such as increases in MHC-II (Ward et al. 2009a) and phagocytic 

activity (Zhao et al. 2013), while others have only seen evidence of low grade partial 

activation (McClain et al. 2011; Nixon et al. 2008).  

The level of activation is not the only point of contingency regarding ethanol’s 

effect on microglia as the source of activation is not clear.  Studies looking at astrocytic 

and microglial cultures suggest that the toll like receptor 4 (TLR4) cell signaling cascade 

can be directly induced by ethanol (Blanco et al. 2005; Fernandez-Lizarbe et al. 2013; 

Fernandez-Lizarbe et al. 2009). It has been proposed that ethanol modulates TLR4 

signaling by modulating lipids within the cell membrane of glial cells (Blanco et al. 2008; 

Fernandez-Lizarbe et al. 2013; Fernandez-Lizarbe et al. 2008). Direct ethanol induction 

of TLR4 signaling would suggest that microglia activation is the result of an inflammatory 

response of astrocytes. However, others using in vivo models suggest that microglial 

and astrocytic activation occurs as a result of neuronal damage and is subsequent to 

neurodegeneration (Kelso et al. 2011; McClain et al. 2011). The chronological order of 

events indirectly implies causation and is a crucial aspect of understanding the role of 

microglial activation within AUDs. If microglia are activated prior to neurodegeneration, it 

implies that the neuroimmune response may mediate neuronal damage. However, if 

microglia activation is a consequence of damaged cells, the neuroimmune response 

may initiate as a recovery mechanism. Both the type of microglial activation and the 

chronology of evidence of activation and degeneration will be determined in experiments 

presented in chapters two and three. 

Alcohol & Neuroimmune System: Microglial Priming 

One of the key contributing factors of the theory that chronic alcohol consumption 

causes neurodegeneration through a microglial associated neuroinflammatory response 
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is that the microglial response is exacerbated or perpetuated by influences from the 

systemic system (Crews 2012; Cunningham 2013; de la Monte et al. 2009).  The basic 

premise of this theory is that chronic ethanol exposure disrupts the BBB and allows the 

infiltration of peripheral immunomodulators such as activated peripheral macrophages 

and their associated cytokines that then alter microglia activation and the neuroimmune 

signaling (Crews 2012; Crews et al. 2011). Studies have shown that persistent activation 

of microglia following an initial damaging event can impact the neuroimmune system by 

modulating secondary or future microglial responses to other immune challenges (Dilger 

and Johnson 2008; Norden and Godbout 2013). This phenomenon has been referred to 

as microglial priming and has been shown to affect the neuroimmune response for 

extended periods. Primed microglia exhibit a more robust proinflammatory response 

upon secondary activation. For instance, early-life infection in rodents caused microglial 

to be activated (Bilbo and Schwarz 2009). This microglial activation persisted into 

adulthood to a lower degree than the initial adolescent response; however, upon 

subsequent immunological challenge, primed microglia produced higher levels of 

proinflammatory cytokines compared with microglia from rodents without an early life 

infection.   This exacerbated response months after the initial damaging event resulted in 

deficits in neurogenesis as well as cognition (Bilbo and Schwarz 2009; Bland et al. 2010; 

Williamson et al. 2011). In support of this phenomenon in AUDs, studies show that prior 

ethanol exposure exacerbates the microglial response to LPS and 

polyinosinic:polycytidylic acid (Poly IC; Qin and Crews 2012a; Qin et al. 2008). Both LPS 

and Poly IC at the doses used produce a robust immune response, which complicates 

the interpretation of these studies (Qin and Crews 2012a; Qin et al. 2008). In chapter 

four, the ability of ethanol alone to act as a “secondary hit” to a primed response will be 

considered. Determining if ethanol alone exacerbates microglia activation is important as 
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alcohol-induced neurodegeneration is seen independent of liver cirrhosis, the 

hypothesized source of systemic inflammation (Harper and Matsumoto 2005; Zahr et al. 

2009).  
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Project Overview 

Neuroplastic changes that occur from chronic alcohol consumption are one potential 

underlying event in the progression of an AUD. One such neuronal consequence is 

neurodegeneration in the corticolimbic pathway. Understanding the mechanisms that 

lead to neuronal damage may partially shed light on the progression of AUD 

development.  The current dissertation examines neuroinflammation as a potential 

mechanism of alcohol-induced neurodegeneration, specifically by investigating the 

effects of ethanol on microglia. A rat model of an AUD known to cause 

neurodegeneration was used to determine the phenotype and persistence of microglia 

activation from varying durations of ethanol exposure. The overarching hypothesis for 

this project is that alcohol exposure elicits a differential response on microglia 

depending on the duration of ethanol exposure as well as whether activation is 

measured during intoxication or abstinence.   

 

Aim 1: Determine the phenotype of microglia reactivity following binge ethanol exposure 

(Chapter 2).  

We hypothesize that binge ethanol exposure induces low-grade, partial microglia 

activation. The phenotype of activation will be determined following ethanol exposure 

examining proteins expressed within microglia using autoradiography and 

immunohistochemistry to examine. The microglial phenotype will also be assessed using 

ELISAs to look at cytokine expression. 

 

Aim 2. Determine the earliest indices of microglial activation in the Majchrowicz model of 

an AUD (Chapter 3). 

We hypothesize that the initial microglial response will occur subsequent to days 

of ethanol exposure previously shown to cause neurodegeneration. [3H]-PK-11195,  a 



40 

 

sensitive microglial activation marker, will be used to determine the earliest indices of 

microglial activation, and microglial cell counts will be used to ensure that measurements 

of [3H]-PK-11195 are based on activation and not changes in cell number. 

 

Aim 3. Determine if alcohol-induced microglia reactivity following the Majchrowicz model 

is “primed” (Chapter 4). 

We hypothesize that a second binge ethanol exposure will potentiate the 

microglia response seen after binge ethanol exposure and produce classical signs of 

activation. Microglial activation phenotype will be determined following a second ethanol 

exposure using immunohistochemistry to look at the markers indicative of pro- versus 

anti-inflammation, whereas ELISAs will be used to assess function by looking at cytokine 

expression. 
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Chapter 2: Microglial activation is not equivalent to neuroinflammation in alcohol-
induced neurodegeneration: the importance of microglia phenotype 

INTRODUCTION 

Whether microglial activation is the cause or consequence of neurodegeneration 

is a hotly debated topic in studies of neurodegenerative disease.  Although not 

traditionally classified as a neurodegenerative disease due to its preventable nature, 

AUDs and specifically the characteristic excessive consumption of alcohol, result in 

corticolimbic neurodegeneration that underlies a variety of cognitive deficits in alcoholics 

(Crews and Nixon 2009; Obernier et al. 2002a; Pfefferbaum et al. 1992; Sullivan et al. 

1995).   As alcohol-induced neurodegeneration is thought to be a critical step in the 

development of an AUD (Crews and Boettiger 2009; Crews et al. 1999; Koob and Le 

Moal 1997), understanding how excessive alcohol consumption results in neuronal loss 

is crucial for the development of prevention and treatment strategies.  It has been 

hypothesized that alcohol-induced neuroinflammation directly contributes to 

neurodegeneration and the development of AUDs (Crews et al. 2011).  

Neuroinflammation has been inferred from the upregulation of a variety of 

proinflammatory genes and cytokines involved in the innate immune system (Crews et 

al. 2006b; He and Crews 2008; Knapp and Crews 1999; Qin et al. 2008).  For example, 

chronic ethanol exposure induces innate immune signaling cascades through activation 

of the proinflammatory transcription factor, NF-κB (Crews et al. 2006b; Crews et al. 
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2011; Valles et al. 2004).  Others have shown that a variety of proinflammatory signals 

are associated with increased ethanol drinking and preference (Blednov et al. 2012) and 

that peripheral inflammation promotes increases in voluntary ethanol intake whereas 

anti-inflammatory administration reduces its consumption (Agrawal et al. 2011; Blednov 

et al. 2011).  However, remarkably little is known about the effects of alcohol on 

microglia, the primary mediators of the innate immune system in the brain. 

Microglial activation, the process in which microglia alter their morphology and 

functionally differentiate in response to changes in their environment, was traditionally 

described as proinflammatory and cytotoxic (Kreutzberg 1996).  In normal, non-

pathologic conditions microglia are generally in a quiescent state often referred to as 

“resting.”  Quiescent microglia, however, are not truly resting; their highly ramified 

morphology reflects their constant surveying of the surrounding environment (Fishman 

and Savitt 1989; Nimmerjahn et al. 2005).  For many neurodegenerative disorders, 

activated microglia are a hallmark of neuroinflammation (Banati et al. 1993; Block and 

Hong 2005; Colton and Gilbert 1987; Woodroofe et al. 1991).  However, more recent 

work demonstrates that it is not just whether microglia are activated, but more 

importantly their phenotype during activation (Carson et al. 2007; Colton and Wilcock 

2010; Kreutzberg 1996; Raivich et al. 1999b).  Various terms have been used to 

describe a perceived dichotomy in microglial phenotype including M1 versus M2, 

classical versus alternative and classical versus partial activation.  However, all classify 

microglia into one of two categories when it is a spectrum of phenotypes or behaviors 

that exist.  For example, microglia phenotype varies with the type of insult, the extent of 

damage, and the time of recovery post injury, which makes it necessary to thoroughly 

examine phenotypic hallmarks within a disease before inferring their role in 

neuroinflammation (Harting et al. 2008; Lai and Todd 2008; Saijo and Glass 2012).  
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Application of the idea of graded levels of activation allows for investigation of a potential 

spectrum of phenotypes.  As such, Raivich defines 5 levels of microglial activation or 

phenotypes (Table 2.1): resting (stage 0), alert (stage 1), homing (stage 2), phagocytic 

(stage 3a) and bystander activation (stage 3b), which can be differentiated by both 

morphology and cytokine and/or growth factor upregulation (Raivich et al. 1999a).  For 

example, amoeboid morphology and expression of proinflammatory factors such as 

TNF-, IL-1ß, prostaglandins, superoxides and nitric oxide, characterize the highest 

level of activation whereas microglia in lower grades of activation release 

neuroprotective factors such as IL-10, TGF-ß, and neurotrophins and have a more 

ramified morphology (Block and Hong 2005; Raivich et al. 1999b).  Furthermore, 

although fully activated microglia are one component of classical inflammation, 

observation of “activated” microglia alone is not equivalent to nor very informative about 

the inflammation state (Graeber et al. 2011).  Therefore, determining the phenotype of 

microglia in injury is necessary to understand their role as cytotoxic or neuroprotective 

and whether they are truly neuroinflammatory (Colton and Wilcock 2010; Kreutzberg 

1996; Vilhardt 2005). 

A role for cytotoxic microglia in alcohol-induced brain damage has been 

suggested since the 1990s, however direct evidence of alcohol-induced full or classical 

microglia activation has yet to be described.  The lack of classical signs of activation led 

some to suggest that the damage in alcoholism is “too chronic” (Streit 1994) or too low 

level to affect microglia (Kalehua et al. 1992); however, there is evidence of some level 

of activation in both animal models and human postmortem alcoholic brain.  For 

example, early work showed an upregulation in the microglial marker, [3H]-PK-11195, 

binding months after alcohol exposure in a four-day binge model of alcoholic 

neurodegeneration (Obernier et al. 2002b).  Later, an unexpected discovery of microglial 



44 

 

proliferation was found in this same model (Nixon et al. 2008).  More recently, 

upregulation of various microglial markers have been described in animal models 

(McClain et al. 2011), and even led some to conclude that excessive alcohol exposure 

produces “neuroinflammation” (Qin et al. 2008; Ward et al. 2009b).  Importantly, 

although evidence of microglial activation has been observed in human alcoholic brain 

samples, the phenotype of these alcohol-activated microglia has yet to be described 

(Crews et al. 2006b; Crews et al. 2011; He and Crews 2008).  Unfortunately, the 

pervasive theme of these and other papers is that the observation of any marker of 

activation is equivalent to neuroinflammation. The assessment of single markers of 

activation is not sufficient to characterize the activation phenotype of microglia and as 

discussed above, not indicative of inflammation (Colton and Wilcock 2010). 

Table 2.1 Microglia Heterogeneity 

  Microglial 
Characteristics 

Morphology and Markers Cytokines 

Stage 0 Normal-Ramified Morphology: long ramified processes  

Stage 1 Alert:  thicker 
processes 

Less ramified, thicker processes; OX-42 TGF-ß1 

Stage 2 Homing, Proliferation Bushy; Proliferation markers  IL-10 

Stage 3a Clustered phagocytes Amoeboid; possible MHC-I, ED-1 
(CD68) 

IL-6, TNF-α  

Stage 3b  Bystander activation;  
Lymphocyte binding 

MHC-I, Lower ICAM than 3a IFN- 

Table 2.1 Microglial activation can be differentiated based on morphology and marker 

expression (derived from Raivich et al., 1999a). The cytokines denoted are indicative of 

a change in expression. For example, microglia characterized as 3a will still express IL-

10 but in addition will secrete proinflammatory cytokines such as IL-6 at higher 

concentrations.   An immune response can occur independent of activation and may be 

observed in Stages 1 – 3 as evidenced by increased MHC-II (OX-6).   

 

The current experiments examine how ethanol exposure, in a well-established 

model of an AUD that includes significant alcohol-induced neurodegeneration, affects 
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microglia within the context of classical definitions of inflammation.  Specifically, 

inflammation is defined as a “multicellular process characterized by changes in the 

vasculature and infiltration of mobile cells.” (p. 3800; Graeber et al., 2011).  This study 

uses an extensive assessment of immunohistochemical, morphological, and functional 

indices of microglial activation in order to determine their phenotype in the hippocampus 

and entorhinal cortex, regions consistently damaged in this binge paradigm (Collins et al. 

1996; Obernier et al. 2002a).  Alcohol’s effect on  the integrity of the BBB was also 

examined, as macrophage and/or lymphocyte infiltration is a defining phenomenon in 

inflammation (Hickey 2001). 

 

MATERIALS AND METHODS 

Alcohol Administration Model 

Rats were subjected to a four-day binge model of alcohol exposure modified from 

Majchrowicz (1975).  This model is designed to mimic the high blood alcohol levels of 

pattern binge drinkers (Hunt 1993; Tomsovic 1974) and was chosen for its well-

documented neurodegeneration profile (Crews 1999; Kelso et al. 2011).  All procedures 

performed were in accordance with the University of Kentucky Institutional Animal Care 

and Use Committee and aligned with the Guidelines for the Care and Use of Laboratory 

Animals (NRC, 1996).  A total of 214 adult male Sprague-Dawley rats (Charles River 

Laboratories, Raleigh, NC) were used across all experiments.  Animals were 275-300g 

upon arrival and single-housed in a University of Kentucky AALAC accredited vivarium 

with a 12h light:dark cycle and had ad libitum food and water access unless otherwise 

noted.  Rats were allowed to acclimate to the vivarium for five days but were handled for 

three days before the binge began to reduce anxiety associated with handling. 
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Rats were divided into two groups of comparable weights and received either 

ethanol (25% w/v) or control diet (isocaloric amounts of dextrose) in Vanilla Ensure 

Plus®.  Diet was given every 8h for 4 days via intragastric gavage.  During the four days 

of diet administration, chow was removed and returned 8h after the last dose.  Initially, 

each rat received a 5g/kg dose of ethanol with subsequent doses titrated based on 

intoxication behavior according to a 6-point scale modified from Majchrowicz (1975) but 

identical to previously published methods (Morris et al., 2010b; Nixon and Crews, 2004).  

For example, an animal that simply seems ataxic would receive more ethanol than one 

that who has lost its righting reflex (Table 2.2).  Ethanol animals with intoxication scores 

of four or greater were given 2mL of water to avoid dehydration. Control animals 

received the average volume given to the ethanol group to control for neuroplastic 

changes associated with caloric intake (Gillette-Guyonnet and Vellas 2008; Loncarevic-

Vasiljkovic et al. 2012). 

Table 2.2 Intoxication Scale 

Intoxication Score Behavioral Attributes Ethanol Dose (g/kg) 

0 Normal animal 5 

1 Hypoactive, mildly ataxic 4 

2 Ataxic, elevated abdomen 3 

3 
Ataxic, absence of abdominal elevation, 
delayed righting reflex 

2 

4 
Loss of righting reflex,  retain eye blink 
reflex 

1 

5 
Loss of righting reflex, loss of eye blink 
reflex 

0 

Table 2.2 Animals CNS depression (intoxication) was scored based on behavioral 

attributes to determine the appropriate ethanol dose.  
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Ninety minutes after the seventh session of ethanol dosing, tail blood samples 

were collected. This time point represents the peak intoxication profiles from intragastric 

gavage studies in rats (Kelly et al. 1987; Livy et al. 2003).  Samples were centrifuged for 

5 min at 1800g to separate plasma from red blood cells and stored at -20˚C to avoid 

sample degradation. BECs were determined from 5μL of supernatant serum using an 

AM1 Alcohol Analyser (Analox, London, UK). Each sample was run in triplicates 

calibrated against a 300mg/dL external standard and the average expressed as mg/dL. 

The AM1 Alcohol Analyser works by measuring the oxygen consumption in the oxidation 

of alcohol to acetaldehyde and hydrogen peroxide (Analox 2007).  

Ten hours following the last dose of ethanol, withdrawal was observed for 30 

minutes every hour for 16 intervals.  Withdrawal behaviors were scored based on a 

scale modified from Majchrowicz (Majchrowicz 1975; Penland et al. 2001) but identical 

to that reported previously (Table 2.3; Morris et al., 2010b).  Because microglia respond 

quickly to changes in homeostasis (Davalos et al., 2005; Nimmerjahn et al., 2005) but 

also have the capacity for persisting memory (Bilbo and Schwarz, 2009; Bland et al., 

2010; Williamson et al., 2011) this study examines microglial changes immediately 

following ethanol exposure through 28 days of abstinence.  Therefore, rats were 

euthanized at various timepoints within this range following binge treatment: T0 (e.g. 0 

days after the last dose, specifically within hours), T1, T2, T4, T7, and T28. 
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Table 2.3 Withdrawal Scale 

Withdrawal Score Behavioral Attribute 

1.0 Hyperactivity 

1.4 Tail Tremor 

1.6 Tail Spasm 

2.0 Caudal Tremor 

2.2 Tip Toe Arch 

2.4 Splayed Limbs 

2.6 General Tremor 

3.0 Head Tremor 

3.2 Induced Running 

3.4 Wet Dog Shakes 

3.6 Chattering teeth 

3.8 Spontaneous Convulsions 

4.0 Death 

Table 2.3 Animals’ behavior was scored based on a modified scale of withdrawal 

symptoms (Majchrowicz, 1975; Penland et al., 2001). 

Autoradiography 

Autoradiography was conducted as described in previous reports (Kelso et al., 

2006; Sparks and Pauly, 1999).  Rats were rapidly decapitated and extracted brains 

were immediately frozen in isopentane and sliced at 16µm with a cryostat.  Two controls 

were euthanized at each time point and pooled into a single control group for 

comparison with ethanol treated groups (Readnower et al., 2010).  Sections were 

mounted in a 1 in 8 series on glass slides so that every eighth section was used and 

stored at -80˚C until processing.  Slides were thawed and incubated in 50mM Tris HCl 

(pH=7.4) buffer with 1nM [3H]-PK-11195 (PerkinElmer, Boston, MA) for 2h followed by a 

series of washes in 50mM Tris HCl.  [3H]-PK11195 specifically binds to the mitochondrial 

translocator protein 18kDa (TSPO), a protein that is highly upregulated in activated 

microglia and is associated with cholesterol transport (Kelso et al. 2009; Stephenson et 

al. 1995; Veiga et al. 2007).  Similar to other studies of microglial activation after brain 

insult, autoradiographic localization of TSPO was used in this study because of its high 

sensitivity to detect activated microglia (Benavides et al. 2001; Readnower et al. 2010).   
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After drying, the slides were exposed to BioMax film (Kodak, Rochester, NY) for 

6 weeks.  The film was developed with GBX developer (Kodak) and analyzed using 

ImageJ (Scion Imaging; Frederick, Maryland) to determine the relative binding levels by 

optical density.  Sections between approximately between Bregma -2.50mm and -

4.00mm, which included both the hippocampus and entorhinal cortex, were quantified 

(Paxinos and Watson, 2009). 

Immunohistochemistry  

Rats were overdosed with anesthetic (Nembutal® 100mg/kg; ip) and 

transcardially perfused with 0.1M phosphate buffered saline (PBS, pH=7.4) followed by 

4% paraformaldehyde in PBS.  Brains were extracted, postfixed in paraformaldehyde for 

24 hours (ED-1, OX-6, Iba-1, and IgG) or 1 hour (OX-42), and sectioned coronally at 

40µm using a vibrating microtome (Leica VT1000S; Wetzlar, Germany).  Sections were 

collected in a 1:12 series and stored in cryoprotectant at -20˚C until processing so that 

every twelfth section was stained for each antibody of interest.  Free floating tissue was 

washed in tris buffered saline (TBS, pH=7.5) and endogenous peroxidases quenched 

with 0.6% H2O2 in TBS.  Following additional washes, sections were blocked for 

nonspecific binding (TBS, 0.1% triton X-100, and 3% horse or goat serum), and then 

incubated overnight in primary antibody at 4˚C as follows: mouse anti-OX-6 (1:500, 

Serotec, Raleigh, NC), mouse anti-ED-1 (1:500; Serotec), rabbit anti-Iba-1 (1:1000, 

Wako, Richmond, VA), or mouse anti-OX-42 (1:1000; Serotec) 

Primaries were chosen for their specificity for activated microglia phenotypes 

(Table 2.1).  The Iba-1 antibody recognizes a 17kDa EF hand protein that is similar in 

structure to other calcium binding proteins such as calmodulin (Heizmann and Hunziker 

1991; Imai et al. 1996; Ito et al. 1998).  Iba-1 is used to mark all microglia, but it is 

upregulated during activation as it is associated with the release of cytokines, adhesion, 
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and proliferation (Donato 1999; Donato 2003; Hwang et al. 2006).  The OX-42 antibody 

is also constitutively expressed in all macrophages and recognizes CR3 or CD11b 

(Robinson et al., 1986).  Upregulation of this receptor is one of the first indices of 

activation as microglia prepare to adhere to damaged cells (Hynes, 1992; Morioka et al., 

1992).  Unlike Iba-1 and OX-42, ED-1 and OX-6 are not expressed in all microglia.  The 

ED-1 antibody, also known as anti-CD68, recognizes a glycoprotein on the lysosomal 

membrane of macrophages and microglia that is indicative of phagocytic activity (Bauer 

et al., 1994; Damoiseaux et al., 1994).  ED-1 is typically used to determine the presence 

of classically or fully activated phagocytic microglia (Graeber and Streit 2009; O'Keefe et 

al. 2002; Raivich et al. 1999a). The OX-6 antibody recognizes MHC-II associated with 

induction of T-helper cells (O'Keefe et al., 2002; Raivich et al., 1999a).  Although OX-6 is 

also associated with the recruitment of phagocytes and is considered a hallmark of an 

immune response (Kaur and Ling 1992; McGeer et al. 1993), recent work suggests that 

it may also be expressed in partially activated microglia (Colton and Wilcock, 2010).  

Microglia exhibit weak antigen-presenting capabilities, but many neuroinflammatory 

reactions involve the upregulation of microglial MHC-II (Zhang et al. 2011). 

Methods for the application of secondary antibody (biotinylated horse anti-

mouse, rat adsorbed, or biotinylated goat anti-rabbit, Vector Laboratories, Burlingame, 

CA), avidin-biotin-peroxidase complex (ABC Elite Kit, Vector Laboratories) and 

chromagen, nickel-enhanced 3,3’-diaminobenzidine tetrahydrochloride (DAB; 

Polysciences, Warrington, PA), were identical for all primary antibodies and followed 

previously published methods (McClain et al., 2011). 

To determine if infiltration of macrophages and lymphocytes could occur in this 

model, BBB impairment was examined.  Tissue was incubated in biotinylated rabbit anti-

rat IgG for 2 hours followed by detection with ABC and the chromagen DAB 
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(Rabchevsky et al. 1999; Schmidt-Kastner et al. 1993).  The IgG antibody is a marker of 

immunoglobulin G.  With an intact BBB, immunoglobulins would remain in the peripheral 

system due to a lack of transport mechanisms (Triguero et al. 1989); thus, the presence 

of IgG in the brain parenchyma indicates BBB disruption.  Following the final wash, all 

stained sections were mounted onto glass slides and dried before being coverslipped 

with Cytoseal® (Stephens Scientific, Wayne, NJ). 

Quantification 

All sections were coded to ensure the experimenter was blinded to treatment 

conditions during quantification.  All analyses were conducted on an Olympus BX-51 

microscope (Olympus, Center Valley, PA), with motorized stage (Prior, Rockland, MA), 

microcator and DP70 digital camera (Olympus).  OX-42 immunoreactivity was analyzed 

using Visiomorph image analysis program (Visiomorph, Hørsholm, Denmark).  Using a 

10x objective lens, regions of interest were drawn around the hippocampal subregions 

and the entorhinal cortex approximately between Bregma -2.50mm and -4.00mm as 

determined by Paxinos (Paxinos and Watson, 2009).  Immunoreactivity was determined 

by optical density and the percent area of staining was obtained.  Images were run in a 

batch process, and immunoreactivity was calculated and expressed as percent control. 

Sections in the same stereotaxic regions were assessed qualitatively for the presence of 

ED-1, OX-6 and IgG using a 10x objective. 

Iba-1+ cells were quantified in the entorhinal cortex by an image analysis system.  

Multi-panel images containing the entire entorhinal cortex were collected using 

Visiopharm image capturing software approximately between Bregma -2.30mm and -

4.50mm (Paxinos and Watson, 2009).  For each image, the number of Iba-1+ cells was 

determined by Image Pro Plus software based upon both the size and immunoreactivity.   

This program has been shown to be comparable to the alternative method of visual 
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counts when immunoreactive cells are distinct from background (Francisco et al. 2004). 

The number of cells per section was averaged and expressed as Iba-1+ cells/section. 

Hippocampal Iba-1+ cells were estimated by unbiased stereological methods, the 

optical fractionator, using the newCAST Stereology System (Visiopharm, Hoersholm, 

Denmark) installed on a Dell Precision 380 workstation coupled to the microscope.  

Following parameters similar to previous reports (Long et al. 1998), the DG, cornu 

amonis(CA)2/3, and CA1 regions of the dorsal hippocampus approximately between 

Bregma -2.30mm and -4.50mm as determined by Paxinos (Paxinos and Watson, 2009) 

were separately traced at 100x magnification.  Section thickness was assessed at 600x 

using a 60x oil immersion lens and was averaged from three measurements taken at 

different locations within each region.  The DG and CA2/3 were randomly sampled using 

a 70µm x 70µm counting frame with a 250µm x,y step length.  The CA1 was randomly 

sampled using the same size counting frame and a 400µm x,y step length.  After tissue 

processing, section thickness was approximately 24 µm, therefore, a dissector height of 

20um with 2µm guard zones.  Total Iba-1+ microglia in each region of interest was 

calculated using the following equation (West et al., 1991): 

      
 

   
 
 

   
 
 

   
 

where Q is the number of cells counted, asf is the area sampling fraction (the counting 

frame: x,y step length ratio), tsf is the thickness sampling fraction (dissector height: 

section thickness ratio), and ssf is the section sampling fraction (the fraction of sections 

examined).  For all stereological quantifications, coefficient of error ranged from 0.008 to 

0.039 and averaged 0.021 ± 0.001. A coefficient of error less than 0.05 is considered 

adequate (Gundersen et al. 1999). 
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Enzyme Linked Immunosorbent Assay 

Rats were rapidly decapitated and the brain immediately extracted.  The 

hippocampus and entorhinal cortex were dissected on ice, snap frozen on dry ice, and 

stored at -80˚C until assayed.  Thawed tissue was manually homogenized in an ice-cold 

lysis buffer (1mL of buffer/50mg of tissue; pH=7.4).  All reagents used in the lysis buffer 

were purchased from Sigma (St. Louis, MO) unless otherwise noted.  It consisted of 

25mM HEPES, 0.1% 3-[(3-cholamidopropyl) dimethyl-ammonio]1-propanesulfonate, 

1.3mM EDTA, 1mM EGTA, 10 µg/ml aprotinin, 10µg/ml leupeptin, 5mM MgCl2 (Fisher, 

Fairlawn, New Jersey), 10 µg/ml pepstatin (Fluka, Milwaukee, WI), and 1mM PMSF 

(Fluka; Rabuffetti et al., 2000).  Homogenates were centrifuged at 20,000 x g for 15 

minutes at 4oC and the supernatant stored at -80˚C.  Total protein content was 

determined using a Pierce BCA Protein Assay Kit (Thermo Scientific, Rockford, IL).  

Cytokine protein content was determined with an ELISA kit according to the 

manufacturer’s instructions for rat TNF- (Invitrogen product #KRC3011C, Camarillo, 

CA),  IL-10 (Invitrogen product #KRC0101), IL-6 (R&D Systems product #R6000B, 

Minneapolis, MN), or TGF-β (Invitrogen product #KAC1688).  All samples, standards, 

and positive controls were run in duplicate so that all tissue for one time point fit on one 

plate to reduce potential variability.  Absorbance was measured at 450nm on a DXT880 

Multimode Detector plate reader (Beckman Coulter, Brea, CA).The cytokine protein 

concentration was divided by the total protein concentration obtained in the BCA assay 

to correct for differences in tissue volume.  Protein concentration is reported as pg of 

cytokine/ mg of protein. 
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Statistical Analyses 

Data were analyzed and graphed using Prism Version 5.04 (GraphPad Software, 

Inc. La Jolla, Ca). All data are reported as the mean ± standard error of the mean and 

analyses considered significantly different if p<0.05.  Behavioral scores were analyzed 

with a Kruskal Wallis test and BECs, autoradiography, OX-42, cytokine expression, and 

cell counts were analyzed by ANOVA with post-hoc tests as appropriate.  Each region of 

the hippocampus or entorhinal cortex is considered independent and therefore was 

analyzed separately. 

 

RESULTS 

Animal Model Data 

Intoxication parameters across all experiments were similar as shown in Table 

2.4.  The overall mean intoxication score for all ethanol animals was 1.9 ± 0.1 on the 6-

point Majchrowicz scale, which indicates that all animals were, on average, “ataxic” 

immediately before dosing.  This level of intoxication resulted in an overall mean dose of 

9.2 ± 0.3 g/kg/day of ethanol and a BEC of 354.0 ± 7.5 mg/dL for all animals used.  

These parameters are similar to those reported in past studies with this model (Morris et 

al., 2010a; Nixon and Crews, 2004) and similar to that observed in voluntary 

consumption (Bell et al. 2009).  Neither the Kruskal – Wallis (intoxication behavior) nor 

one-way ANOVAs (dose, BEC) showed differences in any intoxication parameter 

between ethanol groups at different time points. 
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Table 2.4 Experiment One Animal Model Data 

Experiment 
Group 

Intoxication 
behavior 

(0–5 scale) 

Dose 
(g/kg/day) 

BEC 
(mg/dl) 

Autoradiography T0 (n=6) 1.8 ± 0.3 9.7 ± 1.3 318.0 ± 14.5 

T2 (n=6) 1.8 ± 0.3 9.8 ± 1.4 304.8 ± 18.4 

T4 (n=6) 1.8 ± 0.3 9.4 ± 1.6 336.2 ±19.7 

T7 (n=6) 1.8 ± 0.3 9.7 ± 1.4 345.1 ± 25.5 

Immunohistochemistry T0 (n=7-8) 2.0 ± 0.3 9.1 ±1.2 361.5 ± 17.2 

T2 (n=6) 1.9 ± 0.3 8.8 ± 1.5 286.7 ± 25.1 

T4 (n=6) 1.7 ± 0.3 9.3 ± 1.5 ** 

T7 (n=7) 1.7 ± 0.2 9.8 ± 1.3 365.8 ± 36.4 

T28 (n=7-8) 2.0 ± 0.3 9.1 ± 1.6 332.9 ±26.0 

ELISA T0 (n=8) 1.9 ± 0.3 9.3 ± 0.9 331.3 ±23.3 

T1 (n=8) 2.1 ± 0.3 8.6 ± 1.3 401.5 ± 20.3 

T2 (n=7) 2.1 ± 0.3 8.8 ± 1.3 411.3 ± 14.5 

T4 (n=7) 2.2 ± 0.3 8.3 ± 1.6 400.5 ± 33.8 

T7 (n=7) 2.3 ± 0.3 8.3 ± 1.7 365.8 ± 36.4 

Table 2.4 Measures of various Intoxication parameters of the Majchrowicz model are 

statistically similar between time points among all experiments. **BECs from this group 

are omitted due to Analox malfunction but commonalities between behavioral 

intoxication measurement and dose suggest that the BECs should be comparable.  

[3H]-PK-11195 autoradiography reveals early activation of microglia 

Binding of the TSPO ligand, [3H]-PK-11195, was measured by optical density at 

T0, T2, T4, and T7.  Control levels of binding at each time point were not statistically 

different and therefore were pooled into a single control group (Readnower et al., 2010).  

As shown in representative images, ethanol treated animals have increased binding 

throughout the brain compared with controls (Figure 2.1).  Specifically, one way 

ANOVAs showed a significant main effect of diet in each region of the hippocampus: 

CA1 [F(4,27) =14.93, p<0.0001], CA2/3 [F(4,27) =14.93, p<0.0001], and DG [F(4,27) =12.88, 

p<0.0001], as well as in entorhinal cortex [F(4,27) =9.08, p<0.0001].  Post-hoc Tukey’s 

tests confirmed a significant increase (p<0.05) in the density of [3H]-PK-11195 binding in 

each ethanol treated time point compared to controls in all regions examined (Figure 

2.1). 
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Figure 2.1 Increased [3H]-PK-11195 following EtOH Exposure 

 

Figure 2.1. [3H]-PK-11195 upregulation following 4-day binge exposure. Representative 

false color autoradiographs depicting [3H]-PK-11195 binding are shown for (A) controls 

(n = 8; black bars) as well as (B) ethanol (grey bars) at T0 (n = 6), (C) T2 (n = 6), and (D) 

T7 (n = 6). The legend in the top right corner shows how the false color reflects the 

intensity of binding. Quantitative analysis of the extent of binding are graphed for the (E) 

CA1, (F) CA2/3, (G) DG, and (H) entorhinal cortex. *p < 0.05. 
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Immunohistochemical markers of microglia indicate partial activation phenotype 

In order to see the earliest signs of activation, we examined OX-42 expression 

immediately after the last dose of alcohol (T0; rats are still intoxicated) and in a separate 

group after four weeks of abstinence (T28).  OX-42 positive cells were apparent in both 

ethanol and control tissue which is consistent with its constitutive expression (Akiyama 

and McGeer, 1990).  However, there was a visibly distinct increase in immunoreactivity 

at T0, reflecting a reduction in the ramification but a thickening of the processes in the 

ethanol animals compared with the controls (Figure 2.2).  Two-way ANOVAs indicated a 

significant interaction between treatment and time point in the CA1 [F(1,25) =5.81, 

p=0.0236], CA2/3 [F(1,26) =5.71, p=0.0244] DG [F(1,25) =5.90, p=0.0227] fields, as well as 

in entorhinal cortex [F(1,25) =4.65, p=0.0409].  Planned post-hoc t-tests indicated a 

significant increase after ethanol exposure in all regions at T0: CA1 [t(12) =2.39, 

p=0.0345], CA2/3 [t(12) =2.23, p=0.0453], DG [t(12) =2.35, p=0.0367] and entorhinal cortex 

[t(12) =2.21, p=0.0472].  Although the contrast between ethanol and controls was not as 

distinct at T28, ethanol animals maintained a significant increase compared with controls 

in all regions except the DG: CA1 [t(13) =2.45, p=0.0288], CA2/3 [t(13) =2.25, p=0.0427], 

and entorhinal cortex [t(13) =4.80, p=0.0003]. 

The ED-1 antibody was used to recognize phagocytic microglia (Graeber and 

Streit, 2009), whereas the OX-6 antibody was used to visualize the upregulation of 

MHC-II.  Neither ethanol nor control animals had ED-1 nor OX-6 positive cells within the 

parenchyma of the hippocampus or entorhinal cortex at T0, T2, T4, T7, or T28 (Figure 

2.3).  However, ED-1 and OX-6 positive cells were visible in blood vessels and along the 

meninges in both control and ethanol treated animals (Figure 2.3), similar to that 

previously reported in this model (McClain et al., 2011; Nixon et al., 2008).  Thus, four-

day ethanol treatment failed to induce phagocytic-stage microglia or increased MHC-II in 

the brain parenchyma at any time point. 
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Figure 2.2 CD11b (OX-42) upregulation following 4-day binge exposure. 

 

Figure 2.2. CD11b is upregulated in the hippocampus and entorhinal cortex at T0 as 

shown in representative photomicrographs in rats exposed to binge (C, F) ethanol (T0: 

n = 8; T28: n = 8; grey bars) compared to (A, E) controls (T0: n = 7; T28: n = 7; black 

bars). Higher magnification of microglia seen in the hippocampus is shown for both (H) 

control and (I) ethanol. Quantifications of OX-42 immunoreactivity for the subregions of 

the hippocampus were significantly different: (B) CA1, (D), CA2/3, and (G) DG as well as 

the (J) entorhinal cortex. Scale bar in C = 500 μm; F = 300 μm; J = 10 μm. *p < 0.05. 
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Figure 2.3 No OX-6 or ED-1 Positive Microglia 

 

Figure 2.3. ED-1 was not visible in the (A–D) hippocampus or (E–H) entorhinal cortex as 

seen in representative photomicrographs for (A, E) controls (T2: n = 7; T7: n = 8) or (B, 

C, F, G) ethanol (T2: n = 6;T7: n = 7) rats. No OX-6 positive cells were visualized in the 

(I-K) hippocampus or (M-O) entorhinal cortex as seen in representative images for (I, M) 

controls or ethanol rats at (J,K, N, O. Phagocytic and immune responsive macrophages 

were visible in the blood vessels as seen in insets of (C) ED-1 and (J) OX-6, 

respectively. ED-1 and immunopositive cells were visible in the (D, H, L, P) positive 

control tissue from a rat treated with kainic acid. RF = rhinal fissure. Scale bar = 150 μm. 
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Microglia proliferation results in increased number 

We have previously shown that microglia proliferate two days after a four-day 

alcohol binge (McClain et al., 2011; Nixon et al., 2008); therefore stereological estimates 

of Iba-1-positive microglia were conducted at seven (T7) and twenty eight (T28) days 

following the last ethanol dose in the hippocampus.  The total number of microglia was 

increased in the hippocampus of ethanol treated animals compared with controls seven 

days after ethanol exposure (T7; Figure 2.4).  Two-way ANOVAs indicated a significant 

main effect of diet (CA1 [F(1,23) =14.39 p=0.0009], CA2/3 [F(1,23) =12.14 p=0.0020], DG 

[F(1,23) =12.16 p=0.0020]), time (DG [F(1,23) =10.88 p=0.0031]), and a significant 

interaction between diet and time in the CA1 [F(1,23) =4.37 p=0.0477], and DG [F(1,23) 

=13.32 p=0.0013].  Planned post-hoc t-tests indicated a significant increase after ethanol 

exposure in all regions of the hippocampus at T7: CA1 [t(10) =3.22, p=0.0092], CA2/3 [t(10) 

=2.28, p=0.0457], and DG [t(10) =5.038, p=0.0005]  However, by T28, the number of 

hippocampal microglia returns to control levels in all regions except the CA2/3 [t(13) 

=2.66, p=0.0195].  In the entorhinal cortex, microglial cell number was estimated by an 

automated cell count, where no change was seen in the number of microglia between 

ethanol (586.5±55.4 microglia/section, n=7) and control animals (623.3±26.7 

microglia/section, n=7) at T7, therefore no further time point was examined. 
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Figure 2.4 Increase in microglia number following 4-day binge exposure  

 

Figure 2.4. Stereological estimates indicate an increase in the number of microglia in 

ethanol treated animals (n = 7; grey bars) compared with control (n = 8; black bars) at T7 

in the (A) CA1 (B) CA2/CA3, and (C) DG. This increase persists twenty-eight days later 

in the (B) CA2/3 in ethanols (n = 7) compared with controls (n = 7). There was no 

difference in cell counts determined by image analysis between ethanols and controls at 

T7 in the (D) entorhinal cortex. *p < 0.05. 
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Cytokine expression also suggests low grade activation phenotype 

In order to assess the functional state of microglia, cytokine levels were assayed 

via ELISA.  Increases in the proinflammatory cytokines IL-6 and TNF-α , are associated 

with classically activated microglia, but not partially activated microglia, and can be used 

to differentiate the two phenotypes of microglia (Table 2.1).  IL-6 is a proinflammatory 

cytokine secreted by activated microglia in response to brain injury but can also act in an  

autocrine function to stimulate surrounding microglia into a phagocytic state (Chiang et 

al. 1994; Woodroofe et al. 1991).  Two-way ANOVA’s showed a main effect of time in 

the hippocampus [F(4,59) =8.18, p<0.0001], but Bonferroni corrected post-hoc t-tests 

showed no statistical difference between ethanol and control animals in the region.  

However in the entorhinal cortex, two-way ANOVA indicated a significant main effect of 

diet [F(1,54) =7.13 p=0.01], time [F(4,54) =2.88 p=0.03], and a significant interaction 

between  diet and time point [F(4,54) =4.72 p=.002] (Figure 2.5).  Bonferroni corrected 

post-hoc t-tests show a significant 36% decrease [t(11) =3.97, p=0.011] in IL-6 in ethanol 

animals compared to controls in the entorhinal cortex at T2.  Taken together, these 

results indicate that inhibition of basal IL-6 expression occurs after ethanol withdrawal in 

a temporally and regionally specific manner.  In addition to IL-6, TNF-α  is a 

proinflammatory cytokine expressed by fully activated microglia and increased after 

many forms of injury (Vitarbo et al., 2004).  Two-way ANOVA of the hippocampus 

showed a main effect of time [F(4,63) =20.77, p<0.0001], but there was no statistical 

differences between ethanol and control animals after Bonferroni corrected post-hoc t-

tests.  Despite significant main effects of both diet [F(1,54) =4.77 p=0.03], time [F(4,59) 

=8.86 p<.0001] in the entorhinal cortex, Bonferroni corrected post-hoc t-tests indicated 

no difference between ethanol and control animal at any time point.  This lack of TNF-α  
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upregulation in brain is consistent with previous reports in rats (Ehrlich et al., 2012; 

McClain et al., 2011; Zahr et al., 2010), but not mice (Qin et al., 2008). 

Figure 2.5 No Increased proinflammatory cytokine expression in the 4-day binge. 

 

Figure 2.5. Concentrations of (A, B) IL-6, (C, D) TNF-α  were determined by ELISA in 

both the hippocampus (A, C) and entorhinal cortex (B, D). A 36% decrease of IL-6 was 

measured in the (B) entorhinal cortex at T2 in ethanol animals (n = 7; black bars) 

[175 pg/mg ± 8.9] compared to controls (n = 7; grey bars) [272 pg/mg ± 21.2]; however, 

no change in TNF-α  was seen in either the (E) hippocampus or the (F) entorhinal 

cortex. *p < 0.05. 



64 

 

Basal expressions of TNF-α and IL-6 were not increased following four-day ethanol 

exposure, suggesting the lack of a proinflammatory response.  Therefore, we examined 

the effects of ethanol on the growth factor, TGF-β, as well as IL-10, an anti-inflammatory 

cytokine (Fiorentino et al. 1991; Polazzi et al. 2009).  A significant interaction between 

diet and time point was shown in the hippocampus using a two-way ANOVA of TGF-β 

[F(4,53) =4.20 p=0.005]. Bonferroni corrected post-hoc t-tests revealed a significant 26% 

increase [t(11) =2.673, p=0.0434] in TGF-β in ethanol animals compared to controls at T7 

(Figure 2.6). Despite a significant main effect of time point in the entorhinal cortex [F(4,47) 

=18.65 p<0.0001], no difference in TGF-β was observed between ethanol and control 

treated animals.  In the hippocampus, a two-way ANOVA of IL-10 concentrations 

indicated a main effect of time point [F(4,59) =6.71 p=0.0002], plus a significant interaction 

between treatment and time point [F(4,64) =3.24, p=0.01].  Bonferroni corrected post-hoc 

t-tests revealed a significant 26% increase [t(11) =3.97, p=0.011] in IL-10 in ethanol 

animals compared to controls in the hippocampus at T7 (Figure 2.6).  A two-way ANOVA 

showed no statistically significant main effects or interaction between diet and time point 

in the entorhinal cortex indicating no significant difference in the mean protein 

concentration between ethanol treated animals and controls (Figure 2.6).  
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Figure 2.6 Increased TGF-β and IL-10 expression after 7 days of abstinence. 

 

Figure 2.6 Concentrations of (A, B) TGF-β (C, D) IL-10 were determined by ELISA in 

both the hippocampus (A, C) and entorhinal cortex (B, D). An increase in both (A) TGF-β 

(38%) (C) IL-10 (26%) was seen in ethanol animals (n = 6,7 respectively; grey bars) 

compared with controls (n = 7; black bars) in the hippocampus at T7. *p < 0.05. 
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BBB remains intact following four-day binge ethanol exposure 

In order to assess, whether the BBB is possibly breached by four-day binge ethanol 

exposure, we examined the penetration of IgG molecules during intoxication and at T2.  

Penetration of IgG into the parenchyma was observed in the ventral hypothalamus 

around the 3rd ventricle, a region known to lack an intact BBB under physiological 

conditions (Schmidt and Grady 1993).  However, qualitative analysis of IgG 

immunoreactivity between Bregma -2.30mm and -4.50mm (Paxinos and Watson, 2009) 

showed that both ethanol and control animals had few, if any IgG positive cells or 

diffusion in the parenchyma of either the hippocampus or entorhinal cortex at T0 or T2 

(Figure 2.7).  Therefore, the BBB does not appear to be breached in this model. 

Figure 2.7 No disruption in the BBB. 

 Figure 2.7 There is no disruption in the BBB following ethanol as there is little to no IgG 

staining in either the (B, C, F, G) ethanol (T0: n = 8; T2: n = 6) or (A,E) control (T0 n = 6; 

T2 n = 7) compared with a (D,H) kainate positive control. Scale bar = 400 μm. 
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DISCUSSION 

Microglia take on a variety of phenotypes, which can be used to predict the cell’s role 

in brain insult or neurodegenerative disease.  The major finding of this work is that both 

morphological and functional evidence from these experiments support the conclusion 

that binge ethanol exposure does not classically activate microglia and is consistent with 

definitions of partial activation.  The lack of classically activated microglia therefore does 

not meet the criteria for classical definitions of inflammation.  Of Raivich’s five levels of 

microglial activation (Raivich et al., 1999a), these data support that four-day binge 

ethanol exposure only appears to activate cells up to stage 2.  A step-wise progression 

is noted beginning while the animals are intoxicated (T0) where stage 1 (Table 2.1) or 

low level “alert” activation begins to occur and persists for at least twenty eight days 

according to [3H]-PK-11195 autoradiography for the TSPO receptor and OX-42 (CR3) 

immunoreactivity.  Both markers are upregulated during and after four-day binge alcohol 

exposure.  In addition, the morphology of OX-42 positive cells in ethanol-exposed brains 

supports that microglia are “alert” and “homing” as they appear less ramified with thicker, 

bushier processes (Figure 2.2).  A stage 2 level of activation, or “proliferation and 

homing,” was suggested previously with the observation of proliferating microglia (Nixon 

et al., 2008).  That microglia proliferate and home to sites of damage is further supported 

by the increased numbers of Iba-1+ microglia observed at T7 in all regions of the 

hippocampus, which persists in the CA2/3 at T28 (Figure 2.4).  Importantly, the highest 

indices of activation, proliferation and increased number, are observed well after the 

peak of alcohol-induced cell death during intoxication (Crews 2000; Kelso et al. 2011), 

which suggests that alcohol-induced microglial activation is a consequence of alcohol-

induced cell death. 

However, neither TSPO nor CR3 upregulation indicates the level of activation.  

Therefore, in order to determine microglia phenotype, more classical markers of full 
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activation were evaluated.  Neither OX-6 nor ED-1 were detected in the brain 

parenchyma, which indicates that few, if any, microglia have been activated to either a 

phagocytic or bystander activation state (Kato et al. 1995).  Indeed, with the addition of 

these data, ED-1 has been exhaustively examined following four-day binge ethanol 

exposure, the most acutely damaging model of an AUD, and at no time point examined 

have ED-1-positive cells ever been found inside the brain parenchyma (McClain et al., 

2011; Nixon et al., 2008).  Therefore, morphology, number and marker data converge to 

support that microglia are only partially activated, specically to at least stage 2 in the 

hippocampus and to stage 1 in the entorhinal cortex. 

Activated microglia not only change morphologically but also functionally as they 

secrete cytokines and growth factors that may impact the surrounding environment.  

Similarly, these cytokines can have either damaging or protective/reparative effects 

depending on the phenotype or level of microglial activation (Raivich et al. 1999a; 

Suzumura et al. 2006).  Therefore, we examined key cytokines at critical time points of 

previously reported cellular events following four-day binge exposure.  Cytokine 

expression following binge ethanol exposure also indicated that microglia are only 

partially activated.  Proinflammatory TNF-α  was not changed at any time point, IL-6 was 

selectively decreased at T2 in entorhinal cortex, the time of microglial proliferation, 

whereas anti-inflammatory cytokines, IL-10 and TGF-β, which can be secreted by 

alert/homing microglia, were selectively increased at T7 in the hippocampus.  Partially 

activated microglia secrete both TGF-β and IL-10, and are known to suppress microglia 

activation and subsequent neuronal damage (Ledeboer et al. 2000; Sharma et al. 2011; 

Spittau et al. 2012).  The increase IL-10 and TGF-β seven days after ethanol exposure 

(T7) in the hippocampus comes after significant neuronal damage in this region and, 

intriguingly, coincides with reactive neurogenesis (Kelso et al., 2011 Nixon and Crews, 
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2004; Obernier et al., 2002a).  However, TNF-α and IL-6, released in the highest levels 

of activation, were not increased at any time point in either the hippocampus or 

entorhinal cortex (Bethea et al. 1999; Stoll et al. 2000).  The lack of effect on TNF-α  is 

consistent with recent reports from multiple laboratories that TNF-α  is not increased in 

rats following excessive alcohol exposure (Ehrlich et al., 2012; McClain et al., 2011; Zahr 

et al., 2010), though conflicts with reports in mice (Alfonso-Loeches et al. 2010; Qin and 

Crews 2012a; Qin et al. 2008).  It is important to note that the source of these cytokines 

was not determined in the present study or the cited reports as reactive astrocytes also 

secrete many of the same cytokines (Lau and Yu 2001).  Astrocytes are activated in the 

four-day binge model used and other alcohol models, though in a more delayed time 

course than that observed for microglia (Kelso et al., 2011). Because of the overlap in 

microglia and astroglia activation at T7 in this model, it is impossible to definitively link 

microglia activation with the secretion of particular cytokines. An important future 

discovery will be to show the cellular source of these cytokines in vivo.  In summary, 

cytokine expression patterns following four-day binge alcohol exposure are consistent 

with that observed in immunohistochemical and morphological analyses – microglia 

phenotype is not one of classical activation, but merely partial activation.   

The activation state of microglia is critical to understanding their role in alcoholic 

neuropathology.  Microglia progress stepwise through these various phenotypes, each of 

which is predictive of the cell’s role in homeostasis/neuroprotection versus 

neurodegeneration (Raivich et al. 1999a; Schwartz et al. 2006; Vilhardt 2005).  Although 

the concept of a graded state of activation (phenotype) has resolved the debate as to 

whether microglia are “good” or “bad,” each insult still results in a distinct response 

(Harting et al., 2008; Lai and Todd, 2008; Saijo and Glass, 2012).  Even various patterns 

of alcohol intake produce a distinct response. As shown here, four-day binge ethanol 
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exposure, which is an acutely damaging event compared to more chronic models, only 

produces partially activated microglia.  Partially activated or low level phenotypes are 

more closely associated with roles in homeostasis and neuroprotection and therefore 

alcohol-activated microglia may be playing a role in neuroprotection, repair, or in the 

hippocampal DG, regeneration (Battista et al. 2006; Engelsberg et al. 2004).  Although it 

may seem surprising that a brain insult as severe as high blood alcohol concentrations 

and alcohol-induced neurodegeneration, does not result in an overt, phagocytic level of 

reactive microgliosis, not all types of brain injury result in a full phagocytic, i.e. classical, 

microglial response (Graeber et al. 1998).  Indeed, a recent report details phagocytosis 

independent of fully activated microglia (Sierra et al. 2010) and multiple reports show 

that partially activated microglia are necessary in neuroprotection and axonal 

regeneration (Shokouhi et al. 2010; Wainwright et al. 2009).   

Intriguingly, intermittent exposure to ethanol results in evidence of more classically 

activated microglia such as TLR4 upregulation (Alfonso-Loeches et al. 2010; Fernandez-

Lizarbe et al. 2009).  Greater levels of activation with intermittent exposure models leads 

us to speculate that the initial exposure may serve as a priming stimulus to microglia 

such that subsequent exposures result in over-response as seen in other 

neurodegenerative disease models (Bilbo and Schwarz 2009; Perry et al. 2003).  The 

concept of microglia priming would explain why more classic-like activation is observed 

with multiple exposures or multiple intoxication/withdrawal cycles as that used by Qin 

(Qin et al., 2008), as opposed to our single cycle of prolonged intoxication then 

withdrawal and why the pattern of drinking is more associated with gliosis than the level 

of consumption (Riikonen et al. 2002).  Unfortunately, these and other data support that 

microglia remain “primed” or partially activated for long periods of time after exposure.  

For example, [3H]-PK-11195 remains upregulated months after alcohol exposure 
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(Obernier et al. 2002b; Syapin and Alkana 1988) and the number of microglia remains 

increased at least a month after the binge in some regions (Figure 2.4).  The long-term 

persistence of some level of activation supports the theory that cells could be “primed” 

by the initial damaging binge exposure.  Furthermore, repeated cycling could also 

change the microglia response to secondary neuroimmunomodulators such as systemic 

inflammation (Qin et al., 2008; Zahr et al., 2010) which could be crucial when 

considering the large number alcoholics have systemic inflammation associated with 

liver disease (Polednak 2012; Seth et al. 2011; Wang et al. 2012b).  This observation is 

important clinically as human binges tend to occur in an episodic nature and binge-

pattern drinkers have a greater likelihood of neurodegeneration (Hunt, 1993).  Thus, our 

data is consistent with the idea that an initial “hit” of binge-induced damage appears to 

partially activate microglia as a consequence of damage, but if this partial activation 

primes microglia, secondary “hits” or binge exposure could “polarize” or result in a more 

classical activation phenotype and/or inflammation. Although this study did not address 

polarization of microglia, nor the specific definitions associated with alternative or M2 

activation, this could be a logical next step of the current work.   A defining hallmark of 

classical inflammation is a compromised BBB, which, based on an examination of IgG 

expression, is not evident in the four-day binge model, the most severe of AUD models.  

Indeed, these data agree with evidence from less acutely damaging but longer term, 

chronic models of exposure such as 12-month 20% ethanol in the drinking water (Ehrlich 

et al., 2012). Other alcohol models, that have enhanced proinflammatory cytokine 

expression, do show BBB disruption, further supporting the theory that BBB disruption is 

necessary for a true neuroinflammatory event (Abdul Muneer et al. 2012).  Importantly, 

the lack of evidence for a BBB compromise in this model strongly supports that classical 

inflammation does not occur with four-day binge exposure.  Although this is only one 
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model of an AUD, the well-defined cell death and degeneration profile coupled with data 

reported here does not indicate that classical inflammation drives alcohol-induced brain 

damage or that inflammation, according to classical definitions, occurs at all in this 

model.   

The timecourse of expression of these various microglial markers and cytokine 

effects coupled with published timecourses of alcohol-induced cell death in this model 

(Crews et al., 2000; Kelso et al., 2011) support that alcohol-induced microglia activation 

is a consequence, not a cause of alcohol neurotoxicity.  Alcohol-induced partial 

activation suggests a beneficial role of microglia in this model of an AUD, especially as 

no reports to date have observed fully activated, phagocytic microglia in brains from 

alcoholics.  Indeed, if you remove microglia in many forms of neurodegeneration, 

worsened outcomes occur (Wainwright et al., 2009).  Microglia have diverse roles in 

homeostasis, including newly defined roles in synaptic plasticity and neurotransmission 

(Tremblay and Majewska 2011) and it is not known, nor revealed by these data, how 

partial activation might affect their homeostatic actions in synaptic plasticity.  Intriguingly, 

the lack of phagocytic microglia could have implications for synaptic pruning and 

remodeling, especially in ongoing neurogenesis in the DG (Tremblay and Majewska, 

2011).  Thus, the inflammation hypothesis of AUD and targeting microglia in the 

treatment of AUDs must be considered with caution.  Neuroinflammatory responses 

alone do not lead to AUDs and many of the reported microglial activation markers are 

expressed in the beneficial partially activated or acquired deactivated microglia that help 

to resolve and repair damage (Colton and Wilcock, 2010).  Thus, it is not just that these 

microglia are activated by excessive alcohol exposure; the critical information is their 

phenotype.  Therefore, these data do not rule out a role for microglia in AUDs, but do not 

support a direct relationship between alcohol, microglial activation and inflammation 
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driven neurotoxicity.   Careful consideration of these various current and previous 

studies, however, suggest that this partial activation phenotype  could be consistent with 

a “primed” state such that repeated bouts of damaging, excessive alcohol intake, which 

is consistent with binge-benders in AUDs, may eventually result in highly or classically 

activated microglia and a proinflammatory state.  The immediacy of microglial activation 

during alcohol intoxication, which was observed here, suggests that controlling the 

activation state of microglia during ethanol exposure may be a potential therapeutic 

target for AUDs.  If microglia can be limited to only partial activation, perhaps they may 

be beneficial to endogenous repair systems after alcohol-induced neurodegeneration. 
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Chapter 3: Early evidence of microglial activation in an alcohol-induced 
neurodegeneration model 

INTRODUCTION 

Excessive consumption of ethanol, one of the key characteristics of an AUD, can 

result in neurodegeneration in the corticolimbic pathway of human alcoholics and has 

been associated with a variety of cognitive deficits (Beresford et al. 2006; Parada et al. 

2011; Pfefferbaum et al. 1992; Sullivan et al. 1995).  In fact, alcohol-induced cognitive 

impairments are the second leading cause of dementia, behind only Alzheimer’s 

Disease (Eckardt and Martin 1986).  One mechanism that has been proposed to cause 

alcohol-induced neurodegeneration is neuroinflammation (Crews 2012).  This 

mechanism has been inferred from the brains of post-mortem alcoholics that have 

increased microglial activation (He and Crews 2008) as well as modulations of 

transcriptions factors associated with innate immune gene induction like NF-kB (Okvist 

et al. 2007). However, recent studies using the Majchrowicz model of an AUD, which 

consistently shows alcohol-induced neurodegeneration (Collins et al. 1996; Kelso et al. 

2011; Obernier et al. 2002b), have proposed that microglial activation following this 

exposure is not inflammatory but alternatively has a beneficial phenotype that may be 

involved in homeostatic mechanisms (Marshall et al. 2013; McClain et al. 2011; Zahr et 

al. 2010a). Furthermore, studies using the Majchrowicz AUD model suggest that 

microglial activation is in response to neuronal damage and not the cause (Marshall et 

al. 2013; McClain et al. 2011). These studies focused on alcohol microglial effects in 

snapshots during recovery following the four-day binge model; however, it has been 

shown that alcohol-induced brain damage occurs earlier during the binge exposure 

(Hayes et al. 2013; Obernier et al. 2002a). Because microglia respond quickly to 

environmental perturbation (Nimmerjahn et al. 2005), it is perceivable that microglial 

activation would occur concurrently with neurodegeneration and well before the end of 
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the four-day binge paradigm. Furthermore if microglia activation is a driving force of 

neurodegeneration in this model, microglia activation would occur before evidence of cell 

death seen after just two days of exposure (Hayes et al. 2013; Obernier et al. 2002a). 

This study examines how early this activation occurs within the Majchrowicz AUD model.  

Determining the immediacy of microglial activation is an important factor in 

understanding their role within AUDs and alcohol-induced neurodegeneration.  Early, 

immediate activation and neuroinflammation are necessary defense mechanisms in 

response to damage. Acute microglial activation has been described as vital for 

“housekeeping” (Nimmerjahn et al. 2005) and “nursing” (Streit 2002b) in the CNS. If 

microglia are not responding after immediate signs of damage, it could indicate that 

microglial function is compromised. Furthermore, modulation of neuroinflammatory 

pathways has been proposed as a potential therapeutic for alcohol-induced brain 

damage (Crews 2008), and other neurodegenerative disorders have shown determining 

the timing of immune modulation is crucial for therapeutic outcomes (Ceulemans et al. 

2010; Kriz 2006).  

The current studies examine the immediacy of the microglial response using [3H]-

PK11195 binding, a sensitive marker of microglial activation. [3H]-PK11195 binding was 

measured following various durations of ethanol exposure.  Stereological estimates of 

microglia cell numbers were used to help interpret [3H]-PK11195 binding results as 

densitometric analysis can be convoluted by changes in cell number.  

MATERIALS AND METHODS 

Experimental Model of an AUD 

 All included procedures were approved by the University of Kentucky Institutional 

Animal Care and Use Committee as well as Guidelines for the Care and Use of 

Laboratory Animals (NRC, 1996). Male Sprague-Dawley rats (n=51; Charles River 
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Laboratories, Raleigh, NC) arrived at 275-300g and were allowed five days for 

acclimation to single housing conditions in a University of Kentucky AALAC accredited 

vivarium with a 12h light:dark cycle. During the acclimation period, animals were handled 

for three days and had ad libitum access to food and water. 

 Rats were divided into three groups and subjected to a modified version of the 

Majchrowicz model of an AUD for either 1, 2, or 4 days (Hayes et al. 2013; Majchrowicz 

1975; Morris et al. 2010b). This model has previously been described in chapter two, 

and the binge methods used in these experiments were identical outside of the number 

of days of exposure.  Rats were euthanized within hours of the last dose of ethanol or 

control diet. BECs were determined from blood taken following the last dose of ethanol 

for animals exposed to one or two days of ethanol but following the seventh dose of 

alcohol for animals with four days of exposure as described in chapter two.  Samples 

were centrifuged to obtain serum and stored at -20˚C. BECs were determined from 

triplicate runs of serum using an AM1 Alcohol Analyser with a 300mg/dL external 

standard for calibration (Analox, London, UK). The average BECs were reported as 

mg/dL. 

Autoradiography 

Changes in the expression of the mitochondrial translocator protein 18kDa 

(TSPO) were measured using densitometric analysis of [3H]-PK11195 binding. This 

radioligand was used to assess microglial activation following one or two days of ethanol 

because of its high sensitivity in determining activation (Benavides et al., 2001; 

Readnower et al., 2010). Autoradiography was conducted as described in previously  

(Kelso et al. 2006; Sparks and Pauly 1999) and are identical to chapter two that showed 

upregulation of TSPO after four days of exposure in this model (Marshall et al. 2013). 

However, the control animals in these studies were not collapsed for analysis. The 
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relative binding was determined using ImageJ software and expressed as percent 

control. 

Immunohistochemistry 

Immunohistochemical techniques were similar to that previously reported 

(Marshall et al. 2013; McClain et al. 2011). Rat euthanization, brain extraction, and 

tissue treatments were identical to that stated in chapter two.  Every twelfth section was 

used in an immunohistochemical staining process using an antibody against Wako, 

Richmond, VA).  This Iba-1 antibody recognizes a calcium binding protein that is 

specifically found in microglia (Heizmann and Hunziker, 1991; Imai et al., 1996; Ito et al., 

1998). Iba-1 is present in microglia regardless of phenotype but is upregulated upon 

activation (Donato, 1999; Donato, 2003; Hwang et al., 2006). Immunohistochemical 

procedures were identical to that previously described in chapter two. Tissue was 

mounted onto slides and coverslipped using Cytoseal® (Stephens Scientific, Wayne, 

NJ). 

Quantification of Iba-1 Cells 

 Slides were coded so that experimenters were blinded to the treatment group 

during quantification. Unbiased stereological methods were used to estimate the number 

of Iba-1+ cells in the subregions of the hippocampus using the newCAST Stereology 

System (Visiopharm, Hoersholm, Denmark) installed on a Dell Precision 380 workstation 

coupled to an Olympus BX-51 microscope (Olympus, Center Valley, PA).  The 

stereological methods used were identical to our previous report (Marshall et al. 2013) 

as described in chapter two. For all stereological quantifications, coefficient of error 

ranged from 0.010 to 0.037 and averaged 0.023 ± 0.001 (Gundersen et al., 1999). 

Image Pro Plus, an image analysis system that has been shown to be a valid 

alternative method for determining cell number (Francisco et al. 2004), was used to 
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quantify Iba-1+ cells in the entorhinal cortex (Marshall et al. 2013). The methods used 

were identical to that reported in chapter two. The number of cells in each section was 

averaged and expressed as Iba-1+ cells/section . 

During stereological estimates, the appearance of dystrophic microglia was noted 

in the molecular layer of the DG. Dystrophic microglia have a distinct morphology 

compared with other microglial phenotypes. Dystrophic microglia have cytorrhexis or 

cytoplasmic fragmentation as well as beaded processes (Streit et al. 2009).   Therefore, 

the number of dystrophic microglia was determined within the molecular layer of the DG 

where this phenomenon was initially observed. Microglia were characterized as being 

dystrophic if they possessed fragmented cell bodies and had the appearance of beaded 

processes (Streit et al. 2004b). Dorsal hippocampal sections stained with Iba-1 between 

Bregma -2.30mm and -4.50mm were examined for the dystrophic characteristics. Profile 

counting methodology was performed using a 60x oil immersion lens due to the 

infrequency and inhomogeneous distribution of these cells (Morris et al. 2010a; Popken 

and Farel 1997). Counts are expressed as cells/section. 

Enzyme Linked Immunosorbent Assay 

Because our previous studies indicate that microglia are not classically activated 

in this model, only brain derived neurotrophic factor (BDNF) was assessed after four 

days of ethanol exposure.  Although not exclusively secreted by microglia, enhanced 

BDNF expression by microglia can afford neuroprotection while decreases are 

associated with neuronal loss (Liao et al. 2012). The hippocampus was selected as 

BDNF has been previously shown to be more susceptible to alcohol-induced effects on 

neurotrophic factors than the entorhinal (Miller 2004; Miller and Mooney 2004). 

Furthermore, BDNF is highly concentrated in the hippocampus compared with other 
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brain regions (Phillips et al. 1990). Tissue processing for ELISA assays was identical to 

chapter two. 

BDNF content was determined using a Millipore ELISA kit (Billerica, MA; product 

#CYT306) in accordance with the instructions provided. The total protein concentration 

was determined using a Pierce BCA Protein Assay Kit (Thermo Scientific, Rockford, IL).  

Samples were run in duplicate for both the ELISA and BCA and absorbance was 

measured at 450nm or 595nm, respectively, using a DXT880 Multimode Detector plate 

reader (Beckman Coulter, Brea, CA). Concentrations were calculated using the line of 

best fit from corresponding standards and are expressed as pg of cytokine/mg of protein. 

Statistical Analysis 

Prism Version 5.04 (GraphPad Software, Inc. La Jolla, Ca) was used for all 

statistical analyses. Behavioral intoxication scores were analyzed with a Kruskal Wallis 

test followed with Dunn’s multiple comparison test, but BECs and ethanol dose per day 

were analyzed using a one-way ANOVA followed by Tukey’s post-hoc test if significance 

was determined by one-way ANOVA. Two-way ANOVAs were used for analysis of [3H]-

PK11195 binding, Iba-1+ cell number, and dystrophic microglia number. Post-hoc 

Bonferroni corrected t-tests were used following two-way ANOVAs if a main effect or 

significant interaction was found. Planned post-hoc t-tests were chosen as the 

comparison of interest was mainly the effect of ethanol diet on measured parameters. 

Entorhinal cortex and each region of the hippocampus were analyzed separately for [3H]-

PK11195 binding and Iba-1+ cell number. BDNF concentrations were compared using a 

two-tailed, unpaired t-test.  All data sets were expressed as mean ± standard error of the 

mean and analyses considered significantly different if p<0.05 
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RESULTS 

Animal model data 

BECs were similar among all groups despite variations in binge ethanol exposure 

duration as shown in Table 3.1. The average BEC for all animals was 344.5 ± 10.2 

mg/dL and is comparable to what has been shown previously with this model (Marshall 

et al. 2013; Morris et al. 2010b). However, the Kruskal Wallis, revealed significant a 

difference in intoxication behavior variance [H(4) =16.67, p=0.0022]. Dunn’s post-hoc 

analysis of behavioral score revealed a significantly lower behavioral score for animals 

exposed to ethanol for one day versus four.  Accordingly, As dose is dependent upon 

the intoxication behavioral score, the average administered daily ethanol dose was also 

significantly different as shown using a one-way ANOVA [F(4,28) =13.21, p<0.0001]. 

Bonferroni post-hoc analysis of the average dose per day revealed that animals with 

only one day of exposure received significantly more ethanol per day than either the two 

or four-day exposed rats. Differences in average daily dose and intoxication behavior 

were expected as variations in the duration of ethanol exposure have been previously 

shown to affect these parameters (Hayes et al. 2013).  

Table 3.1 Experiment Two Animal Model Data 

Experiment 

Days of 

Binge 

Exposure 

Intoxication 

behavior 

(0–5 scale) 

Dose 

(g/kg/day) 

BEC 

(mg/dl) 

Autoradiography 
One (n=5) 0.5± 0.1* 13.4 ± 0.4* 304.1 ± 19.0 

Two (n=5) 1.6 ± 0.1 10.3 ± 0.3 384.8 ± 25.9 

Immunohistochemistry 
Two (n=8) 1.7 ± 0.2 9.9 ± 0.5 300 ± 18.6 

Four (n=7) 2.2 ± 0.2 9.0 ± 1.2 364.8 ± 23.0 

ELISA Four (n=7) 1.8 ± 0.1 9.6 ± 0.4 371.3 ± 10.4 

Table 3.1 No statistical difference in BEC’s were observed despite differences in the 

intoxication behavior and dose per day in animals that only received one day of ethanol 

exposure. *p<0.05 
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Two days of EtOH exposure results in microglial activation 

Binding of [3H]-PK11195 after autoradiography was only measured after one and 

two days of ethanol exposure as it has been previously shown that [3H]-PK11195 is 

increased after four days of ethanol exposure (Marshall et al. 2013). No difference was 

apparent after either one or two days of exposure in binding of the radioligand [3H]-

PK11195 in the CA1, DG, or entorhinal cortex compared with controls (Figure 3.1); 

however, a main effect of diet was observed in the binding of [3H]-PK11195 in the  CA2/3 

region of the hippocampus [F(1,16) =9.43, p=0.0069]. No significant differences were seen 

in CA2/3 after one day of exposure, but post-hoc t-tests indicated a significant binding 

increase of approximate 20% after two days of ethanol exposure [t(8) =4.88, p=0.0018].  

Ethanol decreases the number of microglia 

 The total number of microglia was decreased across multiple regions of the 

hippocampus of ethanol treated animals compared with controls after both two and four 

days of ethanol exposure (Figure 3.2). Two-way ANOVAs indicated a significant main 

effect of diet in the CA1 [F(1,26) =24.49 p<0.0001], CA2/3 [F(1,26) =16.38 p=0.0004], DG 

[F(1,23) =43.03 p<0.0001], entorhinal cortex [F(1,26) =4.64 p=0.0406], and a significant 

interaction between diet and time in the CA2/3 [F(1,26) =5.98 p=0.0216]. Planned post-hoc 

t-tests indicated a significant decrease in microglia number after ethanol exposure in all 

regions of the hippocampus and the entorhinal cortex after four days of ethanol 

exposure: CA1 [t(12) =3.18, p=0.0158], CA2/3 [t(12) =3.41, p=0.0104], DG [t(12) =4.70, 

p=0.0010], and entorhinal cortex [t(12) =2.83, p=0.0302]. However, only microglia number 

within the CA1 [t(14) =4.79, p=0.0006] and DG [t(14) =4.53, p=0.0010] were decreased 

following two days of ethanol exposure (Figure 3.2). 
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Figure 3.1 Increased [3H]-PK-11195 following EtOH Exposure 

 

Figure 3.1. Representative false color autoradiographs depicting [3H]-PK-11195 binding 

are shown for (A) controls (n = 5; black bars) as well as ethanol (grey bars) after (B) one 

day of exposure (n=5) or (C) two (n = 6). The legend in the top right corner shows how 

the false color reflects the intensity of binding.  Quantitative analysis of the extent of 

binding are graphed for the (D) CA1, (E) CA2/3, (F) DG, and (G) entorhinal cortex. An 

increase in binding was seen after two days of exposure in both the CA2/3 region as well 

as the DG. *p < 0.05. 
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Figure 3.2 Decrease in microglia number during intoxication 

 

Figure 3.2. Stereological estimates indicate a decrease in the number of microglia in 

ethanol treated animals (n = 7; grey bars) compared with control (n = 7; black bars) after 

four days of exposure in the (A) CA1 (B) CA2/CA3, and (C) DG. Automated cell counts 

within also indicated a decrease in microglia number in the (D) entorhinal cortex. This 

decrease can be seen after two days of exposure in the (A) CA1 and (C) DG in ethanols 

(n = 8) compared with controls (n = 8). *p<0.05. 

 

Microglia with the unexpected dystrophic morphology were observed in the DG 

molecular. These oddly shaped cells were quantified using profile counts. Dystrophic 

microglia, which have been shown to be associated with microglial cell death, were 

increased following both two and four days of ethanol exposure in the molecular layer of 

the DG (Figure 3.3). Two-way ANOVAs indicated a significant main effect of diet F(1,25) 

=16.46 p=0.0004] and time F(1,25) =8.91 p=0.0063]. Importantly, planned post-hoc t-tests 
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indicated a significant increase in dystrophic microglia after ethanol exposure after two 

[t(13) =3.37, p=0.0102] and four [t(12) =2.67, p=0.0406] days of exposure. 

 

Figure 3.3 Increase in dystrophic microglia during intoxication 

 

Figure 3.3. Dystrophic microglia in (A,C) ethanol treated animals are indicated by arrows 

in representative images. Panel A depict the atypical morphology associated with 

dystrophic microglia. The arrow points directly at the fragmented cell body with the 

beaded process. Panel C shows the juxtaposition of a dystrophic microglia to a resting, 

quiescent cell with typical morphology. Profile counts indicate an increase in the number 

of (B) dystrophic microglia in ethanol treated animals (n = 7) compared with controls 

after two (n=8) and four days (n=7) of exposure in the molecular layer of the DG. * 

p<0.05 

* 

* 
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Neurotrophic Factor Decreased by Ethanol Exposure 

The loss of microglia was accompanied by a decrease in the concentration of 

BDNF after four days of ethanol exposure in the hippocampus (Figure 3.4) according to 

t-test [t(10) =4.22, p=0.0018]. 

Figure 3.4 Decreased in BDNF following 4 Days of Ethanol Exposure 

 

Figure 3.4 Concentrations of BDNF were determined by ELISA in the hippocampus. 

There was a 31% decrease in BDNF in ethanol treated animals (n = 7; grey bar) 

compared with controls (n = 5; black bars). *p < 0.05. 

 

DISCUSSION 

Neuroinflammation has been suggested as source of alcohol-induced damage, 

but the model of alcohol-induced neurodegeneration used in this report induces low-

grade, anti-inflammatory microglial activation that is subsequent to neurodegeneration 

(Marshall et al. 2013; McClain et al. 2011). This report shows that activation occurs after 

just two days of ethanol exposure as evidenced by the upregulation of the sensitive 

microglial activation marker, [3H]-PK11195. Although this change is slight (20%) 
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compared to four days (250%) of exposure (Marshall et al. 2013), it is still significant.  

This one and two day exposure model has recently been shown to cause 

neurodegeneration in both the hippocampus and the entorhinal cortex (Hayes et al. 

2013). Whereas neurodegeneration begins after just a single day exposure of ethanol 

(Hayes et al. 2013), we have shown here that the microglial response is detectable after 

two days of exposure.  The small increase in activation as well as the chronological 

order of activation and neuronal damage suggests that microglia activation is a response 

to the initial neurodegeneration induced by alcohol exposure as has been previously 

proposed (Marshall et al. 2013). Because four days of ethanol exposure does not elicit 

classical signs of activation like phagocytosis or expression of MHC-II (Marshall et al. 

2013), it can be inferred that upregulation of  [3H]-PK11195 after two days causes 

microglia to be partially or alternative activation as well, albeit not specifically 

characterized in this report. This study is the first in vivo study to show that such an 

acute exposure causes microglial activation, but the evidence concurs with in vitro 

studies showing activation with acute exposure (Bell-Temin et al. 2013).  

One criticism of densitometric analysis is the inability to determine if measured 

differences are due to an increase in numbers of cell expressing the ligand or a change 

in the protein expression profile. Therefore, the number of microglia was quantified by 

stereology (hippocampus) or automated cell counts (entorhinal cortex).  Both two and 

four days of binge ethanol exposure caused a decrease in the number of Iba-1+ cells. 

This finding concurs with human studies that showed a reduction in the number of 

microglia in the hippocampus of human alcoholics (Korbo 1999) but not with others that 

showed increases in other brain regions (He and Crews 2008).  The decrease in the 

number of microglia observed indicates that the increases in [3H]-PK11195 reported after 
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two days of ethanol exposure here and after four days of exposure in chapter two are 

due to increased activation of microglia.  

The reduction in microglia found in regions with alcohol-induced 

neurodegeneration is surprising because the normal function of microglia is to migrate to 

areas of damage (Noda and Suzumura 2012).  Upon activation, microglia can proliferate 

and begin to secrete cytokines that attract other microglia. A reduction in microglial seen 

in both the hippocampus and entorhinal cortex may be indicative of dysfunction as 

microglial migration to areas of damage is a key component of their function (Damani et 

al. 2010; Tremblay et al. 2013), but the methods used herein cannot directly contribute 

the reduction in number to a problem with motility as microglia may directly cause glial 

damage (Korbo 1999).  However, a loss of microglia has been shown to exacerbate 

damage and represents an alternative mechanism by which alcohol-induced microglia 

activity may contribute to neurodegeneration (Streit et al. 2009; Wainwright et al. 2009). 

The idea that microglial dysfunction can contribute to neurodegeneration is a 

fairly recent concept (Streit et al. 2009; Streit and Xue 2009). While chronic, over-

activation of microglia has repeatedly been proposed as a mechanism for 

neurodegeneration in various disease states (Lull and Block 2010). The vast effects of 

microglia mean that the loss of the homeostatic and recovery functions afforded by 

microglia can also lead to neurodegeneration (Streit et al. 2009).  The pathways that 

lead to neurodegeneration caused by a loss of homeostatic mechanisms afforded by 

microglia has not been as widely studied as the chronic over-activation pathways, but in 

models of Alzheimer’s Disease and aging has been characterized by either microglial 

motility impairment (Damani et al. 2010)  or the appearance of dystrophic or senescent 

microglia (Streit et al. 2004b). 
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Concurrent with the loss of microglia is the increase in the appearance of 

dystrophic microglia in the molecular layer of the DG. Increased dystrophic, also known 

as senescent, microglia have been proposed as a mechanism of neurodegeneration and 

dementia in aging studies as microglia have a distinct role in neurotrophic support both 

in pathological and nonpathological conditions (Streit et al. 2009). For example, following 

neuronal injury the brain may recover by increasing neurogenesis (Nixon and Morris 

2008).  Increased senescent microglia may disrupt this recovery mechanism as 

microglia are involved at various levels within reactive neurogenesis including 

proliferation (Morgan et al. 2004), differentiation (Cacci et al. 2008), and neuronal 

survival through secretion of neurotrophic factors (Kohman and Rhodes 2013; Nakajima 

et al. 2001; Yoneyama et al. 2011).  Alternatively, microglia can act to remove cellular 

debris from degenerating cells, which also aids in the recovery from brain damage (Czeh 

et al. 2011; Tremblay et al. 2013).  Even in quiescence without any pathological 

condition, microglia act as alarm systems constantly surveying the neuronal environment 

and using their ramified branch projections to probe for any abnormalities in the 

parenchyma (Nimmerjahn et al. 2005). The loss of any of these microglial properties of 

mechanisms makes the increase in the number of dystrophic microglia coupled with a 

loss in the number of a critical concern in normal neuronal function and/or response to 

damage. 

Given that the microglial response seen after binge ethanol exposure appears to 

be partial activation which is associated with neurotrophic support, the decreases in 

BDNF seen herein may potentially be due to the dysfunction of microglia. The normal 

response of microglia following neuronal injury and activation is to upregulate production 

of BDNF (Miwa et al. 1997; Nakajima et al. 2001). However, because BDNF is a 

secreted protein produced by astrocytes, neurons, and endothelial cells (Bejot et al. 
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2011), this study cannot directly tie the decrease in BDNF solely to microglial function.  

Alcohol-induced deficits in microglia number and increased senescence may be partially 

responsible for decreased BDNF concentrations.  Decreased BDNF during intoxication 

found here agrees with previous reports on the effect of ethanol on hippocampal BDNF 

in vapor inhalation models of an AUD (Tapia-Arancibia et al. 2001) as well as the 

decreased levels seen in the serum of human alcoholics (Davis 2008; Joe et al. 2007). 

BDNF is associated with the survival of neurons following proliferation (Lee and Son 

2009; Lee et al. 2002; Loeliger et al. 2008). Intriguingly, the deficits in BDNF occur 

simultaneously with the reduction of cell survival of newly proliferated cells previously 

reported in this model (Nixon and Crews 2002).  Together reduced newborn cell survival 

and BDNF levels further alludes to a potential role of microglia dysfunction within 

alcohol-induced neurodegeneration.  

These results altogether show that microglia become activated early within the 

Majchrowicz AUD model, but likely in response to alcohol-induced neurodegeneration 

given the low-nature of activation as well as the chronological order of activation and 

neuronal cell death. This early activation, however, is concurrent with signs of microglial 

loss and the appearance of dystrophic microglia. The loss of the neuroprotective function 

of microglia during intoxication may serve as a potential source of neurodegeneration by 

inhibiting recovery.  A direct relationship between the effects of alcohol on microglia and 

neurodegeneration is still yet to be elucidated, but interpretations of the data included 

herein provide an alternative view on how microglia may be involved with alcohol-

induced neurodegeneration. It has become increasingly evident that multiple 

neurobiological systems are involved with alcohol brain damage (Crews and Nixon 2009; 

Kruman et al. 2012), but the loss of neuroprotection/homeostatic functions of microglia 

could further cause deterioration in an already vulnerable system.  Rescuing microglia 
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loss during intoxication through pharmacological agents may provide a valid, novel 

therapeutic option for reduction of alcohol-induced neurodegeneration. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Copyright © S. Alex Marshall   



91 

 

Chapter 4: Ethanol can potentiate the primed microglial response in an alcohol-
induced neurodegeneration model 

INTRODUCTION 

Chronic, excessive consumption of alcohol can result in neurodegeneration 

(Crews and Nixon 2009; Pfefferbaum et al. 1992; Zahr et al. 2011). This 

neurodegeneration and its associated cognitive deficits are thought to play a role in the 

development of an AUD (Crews and Boettiger 2009; Koob and Le Moal 1997). 

Understanding how this neurodegeneration occurs may provide a therapeutic target for 

the treatment of AUDs.  Recently, it has been proposed that microglial activation is a 

potential mechanism that causes neurodegeneration in individuals who suffer from an 

AUD (Crews et al. 2011; Qin et al. 2013). Evidence in the brain of human alcoholics 

suggest that excessive alcohol consumption leads to microglial activation (He and Crews 

2008; He et al. 2005), but whether this activation is causative in alcohol-induced 

neurodegeneration is currently debatable. This debate is due in part to variations in the 

level of microglial activation among AUD models with brain damage (Qin et al. 2008; 

Zahr et al. 2010a). In neurodegenerative diseases where microglial activation has been 

shown to be a driving mechanism in neuronal cell loss (Block and Hong 2005; Brown 

and Neher 2010; Smith et al. 2012), microglia are fully activated over a long period of 

time secreting proinflammatory factors and undergoing uncontrolled phagocytosis 

(Brown and Neher 2010; Fricker et al. 2012; Streit et al. 2004a). While some AUD 

models indicate proinflammatory microglia (Qin and Crews 2012a; Qin et al. 2008; Ward 

et al. 2009a), others report a more low-grade level of activation that may be beneficial or 

neuroprotective (Marshall et al. 2013; McClain et al. 2011; Zahr et al. 2010a). Two 

reasons that have been proposed for the discrepancies across models in microglial 

activation are (1) intermittent versus sustained intoxication within a model as well as (2) 
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the presence or lack of systemic immune influences (Marshall et al. 2013; Zahr et al. 

2010a).  

The Majchrowicz AUD model is a model with high BECs that likely do not fall 

below intoxication (Morris et al. 2010b). This model also has an intact BBB that prevents 

systemic immune influences on microglia (Marshall et al. 2013). Likewise, this model has 

recently been reported as inducing low-grade microglial activation rather than 

proinflammatory microglia (McClain et al. 2011). Although the Majchrowicz model 

produced evidence of low-grade activation, microglial activation and increases in cell 

number were shown to be persistent and lasted at least a month after the last dose of 

ethanol (Marshall et al. 2013; Obernier et al. 2002b). Persisting, low-level activation can 

alter the neuroimmune system such that future neuroimmunomodulators have an 

exacerbated or potentiated response (Bilbo and Schwarz 2009; Bland et al. 2010). A 

potentiated response can change microglial from a low-grade, neurotrophic state to the 

more classical activation phenotype associated with neuronal damage (Lewis 2012; 

Norden and Godbout 2013). This phenomenon is known as microglial priming and is an 

alternative explanation for the discrepancy in the level of activation seen between AUD 

models (Dilger and Johnson 2008; Marshall et al. 2013; McClain et al. 2011; Norden and 

Godbout 2013). Alcohol exposure may prime microglia so that subsequent insulting 

exposures or intermittent bingeing act as secondary neuroimmune modulators that then 

alter the microglial response.  

Ethanol’s ability to act as a priming agent and exacerbate the neuroimmune 

response of stimuli that mimic systemic infection has already been shown (Qin and 

Crews 2012a; Qin et al. 2008; Qin et al. 2013). The current study determines whether 

ethanol exposure alone can act as both the priming agent and secondary neuroimmune 

modulator by giving a secondary “hit” or binge exposure.  Individuals suffering from an 
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AUD binge drink in a more episodic fashion and show signs of alcohol-induced 

neurodegeneration in the absence of systemic influences (Epstein et al. 2004; Hunt 

1993; Paradis et al. 2009).  This drinking pattern makes understanding the nature of 

secondary exposure vital to a full view of the effects of microglia in neurodegeneration. If 

ethanol alone potentiates the microglial response, it could be indicative of a feed-

forward/back process such that repeated exposure causes a loop of activation and elicits 

a microglial response that is more proinflammatory and damaging in nature (Crews et al. 

2011).  

The current experiments examine how repeated ethanol exposure affects 

microglia.  Specifically, this study uses both functional and morphological indices to 

determine the level of microglial activation in the hippocampus and entorhinal cortex, 

regions damaged in this binge paradigm (Collins et al. 1996; Kelso et al. 2011; Obernier 

2002).  The level of activation was assessed to determine if ethanol alone could 

potentiate the microglial response and switch the low-grade phenotype elicited by the 

Majchrowicz model to a more classical activation state with repeated exposure. 

 

MATERIALS AND METHODS 

Alcohol Administration Model 

A total of 33 adult male Sprague-Dawley rats (Table 4.1; Charles River 

Laboratories, Raleigh, NC) were used in these experiments. Procedures performed were 

approved by the University of Kentucky Institutional Animal Care and Use Committee 

and were within the Guidelines for the Care and Use of Laboratory Animals (NRC 1996).  

Animals were 275-300g upon arrival and were pair-housed in a University of Kentucky 

AALAC accredited vivarium with a 12h light:dark cycle. Rats were allowed to acclimate 

to the vivarium for two days followed by three days of handling before any 
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experimentation. During this acclimation period, animals had ad libitum food and water 

access.   

Rats were divided into four groups of comparable weights. As shown in Table 

4.1, three of the four groups were subjected to a modified version of the Majchrowicz 

AUD model.  This model has previously been described in chapter two, and the binge 

methods used in these experiments were identical. Animals underwent the four-day 

Majchrowicz AUD paradigm with intragastric gavage and were then given seven days of 

recovery with ad libitum access to food and water. A seven day recovery period was 

chosen because it has previously been shown that microglial activation is elevated to 

consistent levels for a week after ethanol exposure (Marshall et al. 2013).  Furthermore, 

seven days allowed animals to regain body mass loss during intubation procedures. 

Following the recovery period the Majchrowicz binge model was repeated giving either 

ethanol or control diet (see Table 4.1 for details). The entire treatment period was fifteen 

days, only eight of which included intragastric gavage exposure. A separate group had 

ad libitum access throughout all periods. For all groups, body weights were assessed 

daily during the binge procedures. The percent weight difference was calculated 

comparing weights at the start and end of the 15-day treatment period. 

To determine BECs, tail blood was collected ninety minutes after the seventh 

session of ethanol dosing during the first binge exposure (Binge 1) and at euthanization 

(Binge 2) within hours of the final dose. Samples were centrifuged for 5 min at 1800g to 

separate plasma from red blood cells and immediately stored at -20˚C to avoid sample 

degradation. BECs were determined using 5μL of supernatant serum an AM1 Alcohol 

Analyser (Analox, London, UK). Each sample was run in triplicates that were calibrated 

against a 300mg/dL external standard. The average of these runs was calculated and 

expressed in mg/dL.  
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Table 4.1 Treatment Summary 

Group  Binge1 
(4 Days) 

Recovery 
(7 Days) 

Binge 2 
 (4 Days) 

Ad libitum (n=4) N/A 

Ad libitum food and 
water access 

N/A 

Con/Con (n=10) Control Diet Control Diet 

Con/EtOH (n=11) Control Diet Ethanol Diet 

EtOH/EtOH (n=8) Ethanol Diet Ethanol Diet 

Table 4.1. Animals were divided into four groups. The first group, ad libitum, was allowed 

access to food and water throughout all treatment periods. All other groups had four 

days of intragastric gavage 3 times a day, a seven-day recovery period, and then a 

second treatment period of intragastric gavage. Groups are labeled based on their 

treatment such that the Con/Con and EtOH/EtOH group received either control (Con) or 

ethanol (EtOH) diet, respectively, during both treatment periods, but the Con/EtOH 

group of animals first received control diet and then EtOH diet in the second treatment 

period. 

Figure 4.1 A Timeline of Animal Treatment 

 

 Figure 4.1 A timeline of the binge treatment, recovery, and blood collections that 

animals underwent. 

 

Rats were euthanized within hours of their final treatment by rapid decapitation. 

Brains were extracted and dissected into two hemispheres on ice. The left hemisphere 

was fixed by immersion in 4% paraformaldehyde in PB (pH=7.4) and used in 

immunohistochemistry experiments. The right hemisphere, however, was further 

dissected such that the hippocampus and entorhinal cortex were removed. Extracted 

regions were snap frozen on dry ice for use in cytokine analysis using ELISA.    
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Immunohistochemistry  

The left hemisphere was sectioned and underwent immunohistochemical 

processing identical to the treatment of brains described in previous reports as well as in 

chapter two (Marshall et al. 2013). However due to changes in how the brain was 

processed (i.e. no perfusions), tissue was incubated in primary antibodies at 4˚C as 

follows: mouse anti-OX-6 (1:500, Serotec, Raleigh, NC), mouse anti-ED-1 (1:500; 

Serotec), rabbit anti-Iba-1 (1:1000, Wako, Richmond, VA), or mouse anti-OX-42 (1:1000; 

Serotec). Primaries were chosen for their specificity for microglia phenotypes as 

described in chapter 2 (Table 2.1).  Methods for the application of secondary antibody 

(biotinylated horse anti-mouse, rat adsorbed, or biotinylated goat anti-rabbit, Vector 

Laboratories, Burlingame, CA), avidin-biotin-peroxidase complex (ABC Elite Kit, Vector 

Laboratories) and chromagen, DAB (Polysciences, Warrington, PA), were identical for all 

primary antibodies and followed previously published methods as well as in chapter two 

(Marshall et al. 2013; McClain et al. 2011).  Following the final wash, all stained sections 

were mounted onto glass slides and dried before being coverslipped with Cytoseal® 

(Stephens Scientific, Wayne, NJ).  

 

Quantification 

Slides were coded to ensure the experimenter was blinded to treatment 

conditions during quantification.  OX-42 quantification and qualitative assessments of 

ED-1, and OX-6 were identical to methods described in chapter two and previously 

reported (Marshall et al. 2013). OX-42 results were averaged and expressed as percent 

control. 

Iba-1+ cells were quantified in the entorhinal cortex by an automated counting 

system, Image Pro Plus 6.3 (Media Cybernetics, Rockville, MD) as previously described; 

however,  images containing the entire entorhinal cortex were collected at 6.4x between 
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using SPOT Advanced™ (SPOT Imaging Solutions, Sterling Heights, MI).  The number 

of cells per section was averaged and expressed as Iba-1+ cells/section. 

Iba-1+ cells within the subregions of the hippocampus were estimated by 

unbiased stereological methods as described in previous chapters and were identical to 

previously published reports (Marshall et al. 2013). For all stereological quantifications, 

coefficient of error ranged from 0.011 to 0.039 and averaged 0.023 ± 0.001 

Enzyme Linked Immunosorbent Assay 

Tissue collected for ELISA studies was manually homogenized in an ice-cold 

lysis buffer (1mL of buffer/50mg of tissue; pH=7.4). The buffer and homogenate 

preparation was consistent with other reports as detailed in previous chapters (Marshall 

et al. 2013; Rabuffetti et al. 2000).  Cytokine protein content in the hippocampus and 

entorhinal cortex was determined with an ELISA kit according to the manufacturer’s 

instructions for TNF- (Invitrogen product #KRC3011C, Camarillo, CA) and IL-10( 

Invitrogen product #KRC0101).  These two cytokines were used to understand the pro or 

anti-inflammatory nature of microglia, respectively. However, BDNF was only measured 

in the hippocampus (Billerica, MA; product #CYT306).  Testing only one hemisphere 

resulted in a limited sample so only these cytokines or growth factors were assessed.  

All samples and standards were run in duplicate.  Absorbance was measured at 450nm 

for ELISA or at 595nm for the BCA assay on a DXT880 Multimode Detector plate reader 

(Beckman Coulter, Brea, CA). The cytokine protein concentration was divided by the 

total protein concentration obtained in the BCA assay to correct for differences in tissue 

volume and reported as pg of cytokine/ mg of protein. 

Statistical Analyses 

The data were analyzed and graphed using Prism Version 5.04 (GraphPad 

Software, Inc. La Jolla, Ca) and reported as the mean ± standard error of the mean. 
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Analyses were considered significantly different if p<0.05.  Behavioral scores were 

analyzed with a Kruskal Wallis test. All other parametric analyses were analyzed using a 

one-way ANOVA with post-hoc Tukey’s multiple comparison tests to compare between 

groups if an effect of treatment was observed. Where appropriate, each region of the 

hippocampus or entorhinal cortex was considered independent and therefore analyzed 

separately. To address the potential additive effects of ethanol, correlation analyses 

were conducted looking at the relationship of microglial markers of activation and the 

animal model data.  Correlation analyses also were conducted comparing cytokine 

concentration to immunohistochemical measures of microglia since cytokines 

measurements and immunohistochemical quantifications were done within the same 

animal.  Analysis of immunohistochemical results and ELISA data also allowed for a 

better interpretation of the source of cytokines. Correlations were only run within the 

Con/EtOH or EtOH/EtOH group if post-hoc analyses showed a significant difference to 

control groups. Spearman analyses were used for intoxication behavior scores as they 

are nonparametric, while Pearson’s analyses were used for all other factors (i.e. percent 

weight difference, BEC, etc.).  

 

RESULTS 

Animal Treatment Data 

Although the Vanilla Ensure Plus® diet is considered nutritionally complete, 

percent difference in weight was calculated to assess whether restricted caloric intake 

affected microglia activation (Loncarevic-Vasiljkovic et al. 2012; Tu et al. 2012). One-

way ANOVA indicated that treatment differentially affected percent weight change [F(2,24) 

=4.235, p=0.0266] (Table 4.2). Tukey’s post-hoc analysis showed that the percent 

weight change differed between all the groups that had intragastric gavage (Con/Con, 
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Con/EtOH, and EtOH/EtOH) compared with the ad libitum group. Importantly, post-hoc 

tests showed no difference between the weight change in the Con/EtOH and 

EtOH/EtOH groups.  For the analysis of binge subject data, each binge period per group 

was considered independently such that data for animals that received ethanol twice 

were analyzed as separate entities. For example, BECs from Binge 1 and 2 for the 

EtOH/EtOH were analyzed as separate data points.  No differences were detected in 

either intoxication score (grand mean=1.6 ± 0.1) or in BECs (grand mean=399.8 ± 12.4 

mg/dL) for any of the treatment periods or groups (Table 4.3). However, one-way 

ANOVA analysis revealed differences in the average dose per day [F(2,24) =4.235, 

p=0.0266]. A post-hoc Tukey’s test indicated a significant difference in the dose per day 

during Binge 2 comparing the EtOH/EtOH and Con/EtOH rats (Table 4.3).  

 

Table 4.2 Percent Body Weight Change 

Group 
Percent Weight 

Change 

Ad libitum (n=4) +25.2% ± 1.7 

Con/Con (n=10) +1.0% ± 1.4$ 

Con/EtOH (n=11) -6.6% ± 2.1* 

EtOH/EtOH (n=8) -8.7% ± 1.7* 

Table 4.2 The percent weight change was calculated for each treatment group. *p < 0.05 

compared to ad libitum and Con/Con group; $p<0.05 compared to ad libitum group only. 
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Table 4.3 Experiment Three Animal Model Data 

Group 
Intoxication 

behavior 
(0–5 scale) 

Dose Per Day 
(g/kg/day) 

BEC 
(mg/dl) 

Con/EtOH 1.8 ± 0.1 9.6 ± 0.2 422.2 ± 21.1 

EtOH/EtOH Binge 1 1.7 ± 0.1 9.9 ± 0.4 378.7 ± 17.7 

EtOH/EtOH Binge 2 1.3 ± 0.2 11.0 ± 0.5# 390.3 ± 24.02 

Table 4.3 Measures of various intoxication parameters of the Majchrowicz model are 

statistically similar between all treatment groups excluding the dose per day given to 

EtOH/EtOH animals during the second treatment compared with the dose per day given 

to the Con/EtOH group. Since all other parameters are similar, it is not likely that the 

dose per day affected any other outcome measures. #p < 0.05 compared to Con/EtOH. 

OX-42 immunoreactivity increased by EtOH exposure 

OX-42 expression was examined to determine whether microglia were further or 

differentially activated following secondary binge exposure.  OX-42 positive cells were 

apparent in all treatment groups, which is consistent with its constitutive expression in all 

types of microglia (Akiyama and McGeer 1990).  However, there was a visibly distinct 

increase in immunoreactivity in ethanol treated animals and an apparent morphological 

change indicated by a reduction in the ramification but a thickening of the processes in 

the ethanol animals compared with the controls (Figure 4.2, A-F).  One-way ANOVAs 

indicated a significant effect of treatment in the CA1 [F(3,29) =16.81, p<0.0001], CA2/3 

[F(3,29) =18.34, p<0.0001], and DG [F(3,29) =14.43, p<0.0001] fields, as well as in the 

entorhinal cortex [F(3,28) =19.01, p<0.0001].  As expected based on the data detailed in 

chapter two, Post-hoc Tukey’s tests indicated a significant increase in OX-42 density in 

all ethanol treated groups’ in all regions compared with the control or ad libitum group. 

Importantly, the EtOH/EtOH group showed greater immunoreactivity than Con/EtOH in 

all regions except the DG. Moreover, no difference in staining was observed between ad 

libitum animals and the Con/Con group. Correlation analyses of binge model measure 

with OX-42 immunoreactivity were run within the EtOH/EtOH and Con/EtOH group 

(Table 4.4). 
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Figure 4.2 Increased OX-42 immunoreactivity following EtOH Exposure
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Figure 4.2. CD11b is upregulated in the hippocampus and entorhinal cortex as shown in 
representative photomicrographs of the (A-C) hippocampal DG and the (D-F) entorhinal 
cortex for (B,E) Con/EtOH (C, F) and EtOH/EtOH group compared to (A, D) controls. 
Analysis of OX-42 immunoreactivity indicated the EtOH/EtOH group had significantly 
more staining than the Con/EtOH group in the: (G) CA1, (H), CA2/3, and (I) DG as well 
as the (J) entorhinal cortex. Scale bars=200 μm. *p < 0.05 compared to ad libitum and 
Con/Con group; #p< 0.05 compared to Con/EtOH. 

Table 4.4 OX-42 Immunoreactivity Correlation Analyses 

Group Region Parameter 
Correlation 
Coefficient 

P-value 

EtOH/EtOH-
Hippocampus 

Intoxication behavior S=0.523 0.20 

Dose/Day P= -0.053 0.90 

Total Dose P= -.0267 0.52 

BEC P=-0.572 0.13 

Percent Weight Loss P=0.249 0.55 

Iba-1+ Cells P= 0.539 0.17 

EtOH/EtOH-
Entorhinal Cortex 

Intoxication behavior S=0.371 0.36 

Dose/Day P= -0.456 0.30 

Total Dose P= -0.575 0.18 

BEC P=0.032 0.94 

Percent Weight Loss P=0.319 0.46 

Con/EtOH-
Hippocampus 

Intoxication behavior S=0.433 0.21 

Dose/Day P= -0.321 0.37 

BEC P=0.424 0.22 

Percent Weight Loss P=-0.222 0.54 

Con/EtOH-Entorhinal 
Cortex 

Intoxication behavior S=0.628 0.06 

Dose/Day P= -0.488 0.15 

BEC P=-0.082 0.82 

Percent Weight Loss P=0.029 0.94 

 Table 4.4 No significant correlations were found between OX-42 immunoreactivity and 

animal model data or cell number. 

Lack of ED-1 or OX-6 positive cells 

The ED-1 antibody was used to recognize phagocytic microglia, whereas OX-6 

was used to visualize the upregulation of MHC-II (Graeber and Streit 2009; Raivich et al. 

1999a).  No groups appeared to have an upregulation of ED-1 (Figure 4.3) or OX-6 

(Figure 4.4) positive cells within the hippocampus or entorhinal cortex.  There was, 

however, one EtOH/EtOH treated animal that several OX-6 cells within the more 

posterior regions of the hippocampus and entorhinal cortex (Figure 4.4 D, H).  The 

animal with increased OX-6 cells was not an outlier for any intoxication parameter 
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including BEC, intoxication behavior, or ethanol dose per day. Interestingly, the 

morphology of these cells still appeared to be characteristic of the low grade, partial 

activation state of microglia.  ED-1 and OX-6 positive cells were visible in blood vessels, 

the hippocampal fissure, and along the meninges in all treatment groups (Figure 4.3; 

4.4) similar to that previously reported following binge ethanol exposure (Marshall et al. 

2013; Nixon et al. 2008).  Thus, repeated exposure of ethanol treatment failed to 

significantly induce phagocytic-stage microglia or increase MHC-II in the brain 

parenchyma. 

 

Figure 4.3 Lack of ED-1 Positive Cells 

 

Figure 4.3. ED-1 was not visible in the parenchyma of the (A–C) hippocampus or (D–F) 

entorhinal cortex as seen in representative photomicrographs in (A, D) controls, (B,E) 

Con/EtOH (C, F) or EtOH/EtOH group. ED-1 positive cells could be seen along the blood 

vessels as shown in the inset of B. Scale bars=200 μm. 

  



104 

 

Figure 4.4 Lack of OX-6 Positive Cells 
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Figure 4.4. No OX-6 positive cells were visualized regardless of treatment in the majority 

of animals as seen in representative photomicrographs of the (A-C) hippocampus or (E-

H) entorhinal cortex in (A, E) controls, (B,F) Con/EtOH (C, G) or EtOH/EtOH group. 

However, OX-6 positive cells could be seen along blood vessels as shown in the inset of 

B. One EtOH/EtOH animal showed upregulation of OX-6 in both the (D) hippocampus 

and (H) entorhinal cortex. Scale bars= 200 μm. 

Differential effects of treatment on number of microglia 

Stereology and automated cell counts were used to determine whether repeated 

ethanol exposure affects the number of microglia during exposure (Figure 4.5).  One-

way ANOVAs indicated a significant effect of treatment in the CA1 [F(3,29) =161.6, 

p<0.0001], CA2/3 [F(3,29) =17.99, p<0.0001], DG [F(3,29) =69.98, p<0.0001] fields, as well 

as in entorhinal cortex [F(3,28) =6.78, p=0.0014].  Post-hoc Tukey’s tests indicated a 

significant increase in the number of Iba-1+ cells in all subregions of the hippocampus in 

the EtOH/EtOH group compared with all other groups. However, in the entorhinal cortex 

microglia cells in the EtOH/EtOH group were decreased compared to the ad libitum and 

control groups but was similar to the number seen in Con/EtOH treated animals (Figure 

4.5). Consistent with data discussed in chapter 3, Tukey’s multiple comparison tests 

showed that Con/EtOH rats had decreased Iba-1+ cells in all regions measured 

compared to Con/Con and ad libitum groups (Figure 4.5). Because the number of 

microglia can affect immunoreactivity, an analysis of the number of microglia compared 

with OX-42 immunoreactivity was run, but no significant relationship was determined 

(Table 4.4) 
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Figure 4.5 Differential effects of Repeated Exposure on the number of Microglia 

Figure 4.5. Stereological estimates indicate an increase in the number of microglia in the 

EtOH/EtOH group in the (A) CA1 (B) CA2/CA3, and (C) DG compared with all other 

treatment groups. However, the number of microglia in the Con/EtOH group was 

consistently decreased throughout the hippocampus. In the (D) entorhinal cortex, 

microglia cells were decreased in both the Con/EtOH and EtOH/EtOH treated groups 

compared to both the ad libitum and Con/Con groups.  *p < 0.05 compared to ad libitum 

and Con/Con group; # p < 0.05 compared to Con/EtOH. 
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Increased TNF-α in EtOH/EtOH group 

ELISAs were used to assess the functional state of microglia, specifically the 

anti-inflammatory cytokine, IL-10, and the proinflammatory cytokine TNF-α. Consistent 

with results in chapter two, no changes were seen in IL-10 during intoxication in either 

the hippocampus or the entorhinal cortex in the Con/EtOH or EtOH/EtOH groups (Figure 

4.5). However, a one-way ANOVA on TNF-α concentrations indicated a significant effect 

of treatment in the hippocampus [F(3,28) =4.658, p=0.0092] but not the entorhinal cortex.  

Post-hoc Tukey’s tests indicated a significant increase in TNF-α in the hippocampus in 

the EtOH/EtOH group compared with all other groups (Figure 4.6). The distribution of 

TNF-α concentrations observed in the EtOH/EtOH group did not fit a normal distribution 

and appeared to be bimodal. Correlation analyses of binge parameters as well as 

immunohistochemical results were run within the EtOH/EtOH group to further probe the 

bimodal distribution of the TNF-α concentrations within the hippocampus (Table 4.5). 

BECs correlated with TNF-α  concentration [P(8) =0.807, p=.0155] (Table 4.5; Figure 4.7). 
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Figure 4.6 Increased TNF-α  in EtOH/EtOH group 

Figure 4.6. Concentrations of (A, B) IL-10 and (C, D) TNF-α  were determined by ELISA 

in both the hippocampus (A, C) and entorhinal cortex (B, D). No change in IL-10 was 

measured in either the hippocampus or entorhinal cortex, but at least a 2.7 fold increase 

in TNF- α was measured in the (C) hippocampus in the EtOH/EtOH group compared 

with all other groups. No change in TNF-α was seen in (D) entorhinal cortex. *p < 0.05 

compared to all groups. 
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Table 4.5 Select Hippocampal Cytokine and Growth Factor Correlation Analyses 

Cytokine 
Parameter 

Correlation 
Coefficient 

P-value 

TNF-α - EtOH/EtOH Intoxication behavior S=0.371 0.36 

Dose/Day P= -0.544 0.16 

Total Dose P= -.3545 0.39 

BEC P=0.807 0.02* 

Percent Weight Loss P=0.610 0.11 

OX-42 
immunoreactivity 

P= -0.139 0.74 

Iba-1+ Cells P= -0.372 0.36 

BDNF-Con/EtOH Intoxication behavior S= -0.421 0.23 

Dose/Day P=0.166 0.65 

BEC P=0.166 0.64 

Percent Weight Loss P=0.395 0.26 

OX-42 
immunoreactivity 

P=0.253 0.48 

Iba-1+ Cells P=0.835 0.003* 

BDNF-EtOH/EtOH Intoxication behavior S=0.216 0.62 

Dose/Day P= -0.149 0.73 

Total Dose P= -0.144 0.73 

BEC P= 0.298 0.47 

Percent Weight Loss P= -0.473 0.24 

OX-42 
immunoreactivity 

P= -0.254 0.54 

Iba-1+ Cells P=0.224 0.59 

 Table 4.5 Correlations were used to examine the relationship between cytokines versus 

immunohistochemical markers of microglial response and animal model data. TNF-α and 

BECs in the EtOH/EtOH group as well as the number of microglia and BDNF in the 

Con/EtOH group, both were correlated significantly. 
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Figure 4.7 TNF-α  and BEC Correlation of EtOH/EtOH group 
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Figure 4.7 A positive correlation was observed between BEC and TNF-α concentration. 

Animals with BECs over 400mg/dL appear to have an increase in TNF-α.  

 

Differential effects of treatment on BDNF concentrations 

BDNF concentrations were assessed as a quick measure of the health of the 

neuronal environment in the hippocampus as BDNF is associated with neuronal cell 

survival (Lipsky and Marini 2007; Loeliger et al. 2008). A one-way ANOVA of BDNF 

concentrations indicated a significant effect of treatment in the hippocampus [F(3,28) 

=19.00, p<0.0001].  Post-hoc Tukey’s tests indicated a 20% increase in BDNF 

concentration in the hippocampus in the EtOH/EtOH compared with all other groups 

(Figure 4.8). Consistent with data presented in chapter three (Figure 3.4), Tukey’s test 

indicated Con/EtOH rats had decreased concentrations of BDNF compared to both the 

Con/Con and ad libitum group (Figure 4.8). Correlations between binge animal model 

data as well as markers of microglial activation were run versus BDNF concentrations for 

both the Con/EtOH and EtOH/EtOH group (Table 4.4). The estimated total number of 
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microglia [P(10) =0.835, p=.003] was correlated to BDNF concentrations only in the 

Con/EtOH group (Table 4.5; Figure 4.9). 

Figure 4.8 Differential effects of Ethanol Exposure duration on BDNF 

 

Figure 4.8 Concentrations of BDNF were determined by ELISA in the hippocampus. 

BDNF was decreased by approximately 15% in Con/EtOH treated animals compared 

with Con/Con or ad libitum groups but increased by 20% of in the EtOH/EtOH groups. 

*p < 0.05 in relation to ad libitum and Con/Con group; # p < 0.05 in relation to Con/EtOH. 
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Figure 4.9 BDNF and Stereological Estimates Correlation of Con/EtOH group 
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Figure 4.9 A positive correlation was observed between hippocampal estimates of 

microglia number and BDNF concentrations in the Con/EtOH. A decline in the number of 

microglia cells was related to decreases in BDNF concentrations. 

 

DISCUSSION 

During abstinence, the Majchrowicz model of alcohol-induced neurodegeneration 

results in microglia that are partially activated. Partially activated microglia can be 

involved in recovery mechanisms, but an alternative interpretation of partial microglial 

activation is that the microglia are primed.  The studies herein further develop our 

understanding of what may occur within the alcoholic population by examining the 

effects of repeated binge exposure in a rodent model. Two criticisms of Majchrowicz 

model is that animals have prolonged periods of intoxication and that it’s just one 

exposure period whereas human alcoholics drink in a more episodic nature such that 

there are periods of high BECs with but also periods of abstinence (Harford et al. 2005; 

Hunt 1993; White et al. 2006). Therefore, these experiments tested whether the partially 

activated microglia previously observed following four days of ethanol exposure were 
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primed and could be potentiated by a second insult of ethanol exposure. Increased OX-

42 immunoreactivity as well as differential TNF-α production in the EtOH/EtOH group 

compared to the Con/EtOH group supports the major finding of these studies that a 

subsequent binge exposure can potentiate alcohol-induced microglial activation. Given 

that people often drink in an episodic binge pattern, potentiation in this model, with just 

two exposure experiences, suggests that chronic alcohol exposure may lead to even 

more dynamic microglial activation over time.  

The first evidence of this differential response observed here was increased 

immunoreactivity of the OX-42 antibody.  Ethanol exposure has been shown previously 

to cause increased OX-42 staining (Fernandez-Lizarbe et al. 2009; Marshall et al. 2013; 

Zhao et al. 2013). This study confirms those findings but furthers that work by showing 

that a second hit of binge ethanol exposure further increases OX-42 immunoreactivity. 

Increased OX-42 immunoreactivity is indicative of an upregulation of the CR3 receptor 

which can lead to increased phagocytic activity (Hynes 1992; Morioka et al. 1992; 

Robinson et al. 1986). Because the switch from low-grade activation to classical 

activation is CR3 dependent (Ramaglia et al. 2012), the differentially increased 

upregulation of CR3 caused by secondary ethanol exposure in the EtOH/EtOH group 

indicated that more classical signs of activation would also be present. However, despite 

the potentiation of the CR3 receptor density, no changes in ED-1 or OX-6 staining were 

seen following the second binge. The lack of ED-1 upregulation concurs with many other 

studies that do not show signs of phagocytosis following ethanol exposure (Marshall et 

al. 2013; McClain et al. 2011; Nixon et al. 2008). However, one recent  but controversial 

report, due to the lack of animal recovery and mortality, has shown that more chronic 

ethanol exposure results in phagocytic, classical activation of microglia (Zhao et al. 

2013). Furthermore, the OX-6 positive cells seen in one EtOH/EtOH animal, while an 



114 

 

anomaly in this study, may be a sign of a progression of activation from a low-grade to a 

more classical activation state as seen in other models with more prolonged intermittent 

exposure (Ward et al. 2009a).   

 Microglial activation not only causes changes in receptor density but also affects 

secreted cytokines (Carson et al. 2007), therefore hallmark pro- and anti-inflammatory 

cytokines were measured to understand the type of microglial activation associated with 

a second binge ethanol exposure. No change in IL-10 concentration was caused by 

ethanol exposure in either group within the hippocampus or entorhinal cortex.  The lack 

of IL-10 response concurs with data presented in chapter two that during intoxication 

anti-inflammatory cytokines are not changed (Figure 2.6; Marshall et al. 2013). That 

same report showed an increase in IL-10 following seven days of abstinence (Marshall 

et al. 2013). Whether the normalized levels of IL-10 reported here are caused by 

secondary ethanol exposure or a byproduct of a transient increase in anti-inflammatory 

cytokines cannot be answered by the current experiments. However, the normalized 

levels of IL-10 does indicate that primed microglia progress are not secreting anti-

inflammatory cytokines. Instead an increase in TNF-α, secreted by proinflammatory 

microglia, was seen in the EtOH/EtOH group compared with all other groups in the 

hippocampus. Although the methods used cannot directly tie changes in TNF-α 

concentration to microglia, the change in the cytokine profile, at minimum, suggests a 

proinflammatory state within the hippocampus caused by secondary ethanol exposure. 

An increased proinflammatory state may be reflective of the primed state of microglia 

observed following secondary ethanol exposure. 

The differences in dose per day among the ethanol treated animals did not 

appear to have an effect as correlative studies looking at dose per day did not have an 

effect on microglia markers in either the Con/EtOH or EtOH/EtOH group.  Moreover, the 
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total dose given to the EtOH/EtOH animals did not correlate to increases in any markers 

of microglial activation. This lack of correlation suggests the potentiation in OX-42 

immunoreactivity in the EtOH/EtOH group were not due to a simple additive effect of 

alcohol.  Correlation studies were also used to examine the upregulation of TNF-α 

observed in some but not all animals. Although upregulation of the CR3 receptor is 

associated with increased activation and the observed increase in microglia number 

could affect basal cytokine levels, the increase in TNF-α levels were not associated with 

either parameter. BECs, however, did have a significant relationship to TNF-α levels. 

The mechanism by which BECs could influence TNF-α expression was not determined 

in these studies, but higher BECs can alter the way ethanol is metabolized. At higher 

BEC, ethanol is metabolized within the brain more readily by CYP2E1 which is an 

alternative mechanism of increased ROS production in alcoholics (Haorah et al. 2008; 

Ronis et al. 1993; Zhong et al. 2012). An increase in ROS production caused by ethanol 

metabolism could also explain differences seen between these data and others that 

show more robust classical activation of microglia (Qin and Crews 2012b).   

Data presented in chapter three showed that intoxication caused a decrease in 

microglia number. Similar to data described in chapter three, the Con/EtOH group had 

decreased numbers of microglia. This reduction may be due to degeneration or loss of 

microglia and dysfunction in both the hippocampus and entorhinal cortex.  However, 

these experiments were conducted to determine whether primed microglia were still 

susceptible to the decreases associated with intoxication with a second binge event.  

The EtOH/EtOH group actually showed an elevated number of microglia within the 

hippocampus compared with the control groups and Con/EtOH animals.  These data 

agree with increased microglia numbers seen in human alcoholics (He and Crews 2008).  

However, interpreting these data is complicated by the fact microglia begin to proliferate 
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in the hippocampus 48 hours after the last dose of ethanol (McClain et al. 2011; Nixon et 

al. 2008). This proliferation results in increased microglia at the time that the second 

binge paradigm began (Marshall et al. 2013), but the lack of decrease does allude to the 

idea that primed microglia may not be as susceptible to microglial dysfunction or 

degeneration.  Unlike in the hippocampus, microglia proliferation in the entorhinal cortex 

does not cause an increase in cell number at the time in which the second exposure 

starts (Marshall et al. 2013). The similar number of microglia observed among the 

Con/EtOH and EtOH/EtOH group in the entorhinal cortex indicates that despite having a 

more robust response (increased OX-42) that microglia are still susceptible to the 

damaging effects of alcohol during intoxication. The differential susceptibility of brain 

regions may be due to differences in the type of activation between the two regions as 

the hippocampus was shown to have more classical signs of activation (TNF-α). 

Increases in microglia, such as the sustained increase in hippocampal microglia 

observed in the EtOH/EtOH group, have been described as causative in increased 

neuroinflammatory activity in other neurodegenerative disorders (Frank-Cannon et al. 

2009).  Importantly, increased microglia in the hippocampus support the theory that 

repeated ethanol exposure causes a differential response in microglia primed by 

previous exposure.  

A more chronic model of alcohol exposure using intragastric exposure also 

suggests that microglia classical signs of activation, but there is controversy regarding 

interpretations of the data due to the health of animals and their lack of recovery from 

the binge model (Zhao et al. 2013). The intragastric gavage method used in this model 

can be stressful to animals and results in weight loss due to caloric restriction (Balcombe 

et al. 2004; Sharrett-Field et al. 2013a). Both stress and reduced caloric intake can alter 

microglial activation (Loncarevic-Vasiljkovic et al. 2012; Sugama 2009; Sugama et al. 
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2009). To confirm that changes in microglial activation and cell number were due to 

ethanol and not other factors associated with the repeated gavage, a group with ad 

libitum access to food and water was assessed and compared with the Con/Con group.  

The measures of activation used to assess the microglia were not different in any aspect 

between the ad libitum group and the Con/Con group despite the weight loss caused by 

intragastric gavage. Furthermore, weight loss did not correlate with any measure of 

microglial activation and is therefore probably not a factor in the changes between 

Con/EtOH or EtOH/EtOH animals.  

 Upregulation of indices of microglial activation and number coincide with changes 

in the concentration of the growth factor, BDNF.  The pattern seen in hippocampal BDNF 

alterations mimics the changes seen in microglia cell number and activation. In the 

Con/EtOH group, BDNF was decreased as cell number decreased; however when 

microglia are more activated and numbers are increased, EtOH/EtOH treated animals 

had an increase in BDNF concentration. Increases in BDNF may promote cell survival 

(Lipsky and Marini 2007; Loeliger et al. 2008). Because BDNF is secreted by astrocytes, 

neurons, and other cells within the CNS (Bejot et al. 2011; Lau and Yu 2001), the 

methods used cannot definitively state that changes in BDNF concentrations are due to 

microglia. However, in the Con/EtOH the number of microglia was positively correlated 

to BDNF concentration. The correlation between microglia loss and BDNF reduction 

supports the idea that microglial dysfunction and subsequent loss of trophic factors is a 

concern in alcoholic brain damage. The lack of correlation in the EtOH/EtOH group may 

be due to increased TNF-α concentration on the release of BDNF from astrocytes, as 

astrocytes are also more reactive in abstinence from alcohol exposure (Kelso et al. 

2011; Saha et al. 2006). Regardless of the source, this increased BDNF indicates that 



118 

 

both in proinflammatory cytokines and proneurogenic growth factors are present within 

the milieu of the hippocampus after a second binge ethanol treatment. 

Whether the alcohol-induced microglial activation shown within affords 

neuroprotection or leads to increased damage cannot be determined from these studies. 

At a glance, it would appear that increased microglial activation especially with increased 

secretions of TNF-α  would be detrimental to the neuronal environment as shown in 

other neurodegenerative diseases (Block and Hong 2005). However, an acute initial 

microglial response is necessary for recovery and the removal of neuronal debris 

(Badoer 2010; Nimmerjahn et al. 2005; Streit 2005). The loss of microglia during 

intoxication was discussed in chapter 3 and was purported to be associated with a loss 

of homeostatic properties of microglia; however, in the hippocampus microglia number 

remain elevated in response to damage.  This elevation in cell number may suggest that 

microglia are actually responding more appropriately to the alcohol-induced brain 

damage. Moreover, studies with more chronic binge alcohol exposure produced 

phagocytic microglia and proinflammatory cytokines that were transient and present 

mainly during intoxication (Zhao et al. 2013). The transient nature of this response 

indicates that microglia are actually responding appropriately to neuronal damage. If the 

upregulation of TNF-α seen in the EtOH//EtOH group is only transient it would indicate 

that response of microglia is only induced by neuronal injury and that activation occurs 

as a rehabilitative event to restore homeostasis. For example, as described earlier, 

acute TNF-α upregulation can induce BDNF production in astrocytes and therein afford 

neuroprotection (Saha et al. 2006).  

The potentiated microglia activation seen in this double binge AUD model 

suggests that the microglial response can be altered by ethanol alone. Whether this 

increased response causes microglia to respond more appropriately to noxious stimuli or 
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if it makes the brain more susceptible to ongoing neuroinflammation cannot be 

determined by these experiments. However, because microglia have the capacity to 

maintain low grade activation for extensive periods following alcohol exposure (Marshall 

et al. 2013; Obernier et al. 2002b), the episodic nature of binge drinking may lead to a 

cycle of repeated priming activity within individuals suffering from an AUD. Furthermore, 

instances of systemic inflammation and ROS production may act to perturb already 

primed microglia (Cunningham 2013; Cunningham et al. 2005). These data do not 

conclusively indicate microglial activation as a source of alcohol-induced 

neurodegeneration, but this study does show that repeated ethanol exposure potentiates 

microglial activity. The primed, persistent nature of microglia following alcohol-induced 

neurodegeneration observed in this model may still be a source of neurodegeneration in 

human alcoholics especially when other neuroimmunomodulatory factors are present 

and the AUD is more chronic in nature.  
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OVERALL CONCLUSIONS 

Review 

Alcoholism is a chronic disease, which permeates various aspects of society. 

Chronic ethanol exposure leads to neuroplastic changes that drive the development of 

an AUD. Elucidating these neurobiological changes has led to the development of 

therapies that ameliorate craving and/or the rewarding effects of alcohol, but currently no 

therapies specifically treat the neurodegeneration caused by excessive alcohol 

consumption. Alcohol-induced neurodegeneration is associated with cognitive deficits 

that compromise the executive function and the working memory. These cognitive 

deficits caused by neuronal loss can perpetuate the seeking of alcohol and therefore 

have been hypothesized as contributing to the development of an AUD (Crews 2012; 

Crews et al. 2011). Like other neuroadaptations within AUDs, elucidating the 

mechanisms that lead to alcohol-induced neurodegeneration may be a novel therapeutic 

target for the treatment of alcoholism.  

 Neuroinflammation is a key factor in many neurodegenerative diseases like 

Alzheimer’s and Parkinson’s Diseases and recently has been proposed as a mechanism 

of alcohol-induced neurodegeneration. The current understanding of alcohol’s effects on 

the neuroimmune system in alcoholics does not definitively indicate that 

neuroinflammation occurs within AUDs; however, they do suggest that alcohol alters the  

neuroimmune system. One such effect is the activation of microglia. Microglial activation 

has long been considered a hallmark of neuroinflammation, but understanding the 

dynamic nature of microglia within the context of a disease is crucial to understanding 

how they may be involved with neurodegeneration and/or homeostatic recovery 

mechanisms. Therefore, these studies examined microglial activation within an AUD 

model of alcohol-induced neurodegeneration looking at both the initiation and level of 
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activation as well as the ability of persisting microglia activation to exacerbate the 

neuroinflammatory events. 

 

Aim 1: Determine the phenotype of microglia reactivity following binge ethanol exposure 

in the Majchrowicz model of an AUD (Chapter 2).  

The hypothesis that binge ethanol exposure induces low-grade microglia 

activation was supported by experiments herein. Increased expression of CR3 (OX-42) 

and TSPO as well as anti-inflammatory cytokines without an increased immunoreactivity 

of ED-1 or OX-6 suggest that acute binge ethanol exposure does not elicit classically 

activated microglia but shows signs of partial activation. Specifically, our data indicates 

that microglia are elicited to stage2b of the Raivich scale. The lack of classically 

activated microglia in conjunction with no BBB disruption therefore does not meet the 

criteria for neuroinflammation.   

 

Aim 2. Determine the earliest indices of microglial activation in the Majchrowicz model of 

an AUD (Chapter 3). 

The hypothesis that the initial microglial response occurs subsequent to 

indications of neurodegeneration was supported by increased binding of [3H]-PK-11195 

after two but not one days of exposure. Albeit not a part of the original hypothesis goals, 

an unexpected discovery of decreased microglia number and evidence of dystrophy 

suggests a type of microglial dysfunction in a second population despite activation in 

some microglia. 

 

Aim 3. Determine if alcohol-induced microglia reactivity following the Majchrowicz model 

is “primed” (Chapter 4). 
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The hypothesis that a second binge exposure would potentiate the microglia 

response seen in recovery from the Majchrowicz model was supported, but not robustly.  

However, functional and immunohistochemical assessments of activation differed on 

whether the potentiation induced classical signs of activation. OX-42 immunoreactivity 

was more robust following two binge ethanol exposures paradigms than with a single 

binge paradigm, but neither ED-1 nor OX-6 was increased by secondary binge ethanol 

exposure. However, ELISA studies showed that TNF-α was increased only after the 

second binge treatment. This change in response suggests that the initial response of 

microglia in the Majchrowicz model is primed.    

Discussion 

The purpose of this dissertation was to investigate the effects of ethanol on 

microglia within the context of an AUD model known to cause neurodegeneration. To 

synthesize the findings within this dissertation within a larger scheme, the effects of 

ethanol on microglia will be considered within either the context of intoxication or 

abstinence. Microglial responses were studied with an emphasis on the phenotype of 

microglial activation and the initiation and duration of activation.  Together these 

characteristics of microglial activation can be used to infer the contributions of microglia 

in alcohol-induced brain damage. The data reported here suggest at least three states of 

microglia that may contribute to either brain damage or recovery from damage: 

dysfunctional, neurotrophic, and primed.  

 Microglial Dysfunction 

In chapters two and three, the data showing increases in CR3 and/or TSPO 

without signs of classical activation agree that microglia are activated to a low-grade 

state in response to alcohol-induced neuronal damage.  This alternative activation state 

of microglia is not indicative of the classical pathways of microglia leading to 



123 

 

neurodegeneration (Carson et al. 2007).  However, the reductions in the number of 

microglia and the appearance of dystrophic microglia reported in chapter three indicate 

that despite microglial activation that a subset of microglial cells is dying.  As previously 

discussed, these findings suggest that binge ethanol exposure could disrupt the normal 

function of the neuroimmune system.  Following damage, microglia provide immediate 

neuronal support by promoting anti-inflammatory mechanisms, secreting neurotrophic 

factors, and/or through proinflammatory activation removing cellular debris (Streit 

2002a).  The reduction in the number and/or function microglia could affect these 

recovery mechanisms afforded by microglia and be a source of damage.  This 

hypothesis is an alternative source of neurodegeneration to the typically described 

neuroinflammatory pathways that are thought to be associated with alcohol abuse 

(Crews 2012; Crews et al. 2011; Streit et al. 2009). While this dissertation does not 

specifically look into the mechanisms by which dysfunction of microglia may cause 

neurodegeneration, the role of microglia in neurogenesis and glutamate reuptake are at 

least two ways in which a dysfunctional neuroimmune response could lead to alcohol-

induced neurodegeneration.  

It has been shown that a deficiency in microglia disrupts neurogenic processes 

and reduces recovery from neuronal damage (Wainwright et al. 2009).  Activated 

microglia migrate following neuronal damage and secrete cytokines and growth factors 

associated with supporting the neurogenic niche in the hippocampus (Neumann et al. 

2006). However in this AUD model, the hippocampal microglia “nursing” response to 

increase neurotrophic factors such as IL-10 and TGF-β was not observed immediately in 

conjunction with signs of neurodegeneration (Hayes et al. 2013; Streit 2002a; Takayama 

and Ueda 2005).  The reduction in microglia and the lack of neurotrophic support seen 

herein during acute intoxication may be involved with the interruption of neurogenic seen 
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during intoxication (Morris et al. 2010a; Nixon and Crews 2002).  In particular, decreased 

levels of BDNF seen during intoxication would decrease newly born cell survival and 

provides indirect evidence of the potential role of microglia in the reduction of adult 

neurogenesis observed in this AUD model (Lipsky and Marini 2007; Loeliger et al. 2008; 

Mitchell 1999). 

The relationship between microglia and glutamate concentration was not 

examined in this study but represents another way in which a reduction in microglia 

number could potentially affect neuroadaptations seen following alcohol exposure.  

Activated microglia upregulate GLT-1 leading to the amelioration of excessive glutamate 

levels (Persson et al. 2005; van Landeghem et al. 2001). However, the reduction in 

microglia number in damaged regions may be a source of disrupted uptake of glutamate. 

Since alcohol withdrawal is associated with excess glutamate concentrations, the 

transient decrease in microglia number observed during intoxication in chapter three 

may be a factor in glutamate excitotoxicity.  Specifically, the idea that alcohol prevents 

microglial reuptake of glutamates provides further alludes that the loss of microglial may 

be a source of neurodegeneration (Gras et al. 2003).  Activated astrocytes have been 

shown to increase their glutamate uptake in response to ethanol exposure (Miguel-

Hidalgo 2006; Mulholland et al. 2009; Smith 1997), but the potential role of microglia in 

recovery from glutamate excitotoxicity caused by ethanol exposure remains elusive. 

Neurotrophic Microglial  

Fortunately, neuronal deficits caused by binge alcohol exposure are partially 

recovered during abstinence (Zahr et al. 2010b).  This recovery in the hippocampus is 

thought to be afforded in part to reactive neurogenesis (Crews and Nixon 2009; Nixon 

and Crews 2004; Zahr et al. 2010b).  Intriguingly, the level of microglia activation 

observed during abstinence in chapter two suggests that microglia may participate in 
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recovery during abstinence by promoting neurogenesis (Kohman and Rhodes 2013; 

Varnum and Ikezu 2012).  The increase in the proneurogenic cytokines IL-10 and TGF-β 

reported in chapter two occurs concurrently with evidence of neuroprogenitor cell 

proliferation (McClain et al. 2013; Nixon and Crews 2004).  However, coincident timing 

alone is not enough to distinctly determine whether these cytokines are involved with 

neuronal proliferation or the survival of neurons, but evidence from other fields with 

reactive neurogenesis suggest that such anti-inflammatory cytokines promote the 

survival and or proliferation of newly populated cells (Battista et al. 2006; Ekdahl et al. 

2009; Kiyota et al. 2012).  A direct relationship between partially activated microglia and 

reactive neurogenesis in this AUD model is a point of interest and should be considered 

in the future studies.  

Primed Microglia 

Partially activated microglia can also be primed and exacerbate the 

neuroimmune response upon subsequent insults (Bilbo and Schwarz 2009; Norden and 

Godbout 2013).  The potential of partially activated microglia to exacerbate the 

neuroimmune reaction is particularly of concern given the enduring nature of microglial 

activation. As described in chapter two, CR3 (OX-42) was upregulated for at least 

twenty-eight days ethanol exposure (Marshall et al. 2013). Independent studies agree 

that ethanol-induced microglial activation persists into protracted abstinence (Obernier et 

al. 2002b).  This prolonged activation of microglia led to the studies performed in chapter 

four determining whether the microglia response was primed and would react differently 

to other immunological stimuli.  Using ethanol as both the initial and secondary 

neuroimmunomodulator, data collected suggested that alcohol exposure does result in a 

primed state of microglia such that chronic alcohol exposure may result in more robust 

responses over time. These studies do not indicate whether this potentiated 
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neuroimmune response endures into abstinence and would truly create an environment 

of chronic neuroinflammatory state. Chronic microglial activation would perpetuate 

neurodegenerative cell signaling cascades.  However, examinations of microglia 

following repeated bouts of binge treatment imply that the proinflammatory state is only 

transient (Zhao et al. 2013).  The transient proinflammatory response observed following 

repeated binge paradigms may actually be involved in homeostasis by removal of 

cellular debris as phagocytic microglia were seen in other models or by inducing 

neurotrophic factor release from other cell types.   

Although these studies show specifically that ethanol alone can exacerbate a 

primed microglial response, others have shown that alcohol-induced microglial activation 

can be exacerbated by systemic inflammation (Qin et al. 2008). It is important in 

considering the implications of the alcohol-induced primed microglia state seen herein 

that the systemic immune system can exert effects on the CNS neuroimmune response 

making it more susceptible to damage (Drake et al. 2011; Murray et al. 2013).  This 

influence would be particularly critical in complicated alcoholics who may have liver 

damage or a comprised BBB (Crews et al. 2011; Qin et al. 2008; Qin et al. 2013). If 

immune challenge in the peripheral organ systems initiated an immune response, 

alcohol-induced primed microglia may surmount a response in the absence of neuronal 

damage. This response to noxious stimuli from the periphery may then cause damage to 

healthy tissue.  

Alcohol-Induced Microglial Neuroadaptation 

The differential response of microglia with respect to duration of exposure as well 

as in abstinence or intoxication is comparable to other neuroadaptations having 

differential outcomes with acute versus chronic exposure and with intoxication versus 

withdrawal/abstinence (Vengeliene et al. 2008). For example, whereas acute ethanol 
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inhibits the glutamate receptor, chronic ethanol causes neuroplastic changes that result 

in an increase in glutamatergic signaling over time (Vengeliene et al. 2008). Likewise, 

the data presented imply that acute alcohol intoxication initially inhibits or at least 

disrupts normal neuroimmune function, but chronic ethanol exposure results in a more 

proinflammatory response. Figure 5.1 summarizes the response of microglia seen 

within. The differential response between acute and chronic ethanol exposure aligns with 

the idea that ethanol causes neuroplastic changes in the neuroimmune system. Because 

ameliorating alcohol-induced neuroadaptations has proven to be effective in treating 

AUDs, so may controlling the neuroimmune response of alcoholics may afford 

neuroprotection. The neuroimmune system and particularly microglial activation remains 

a target of interest in reducing the neurodegeneration associated with AUDs. 
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Figure 5.1 Microglial Morphology & Function in an AUD Model 
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Figure 5.1 A depiction of the microglial response seen within these studies. Binge 

treatment inhibited microglial function, but during abstinence microglia become partially 

activated and secrete neurotrophic factor. The persisting, primed nature of this activation 

however exacerbates microglia activation by a second exposure.  Blue represents 

dystrophic microglia, thickened cells represent a morphological or protein expression 

change, thickened green cells represent the emergence of anti-inflammatory cytokines, 

and thickened red cells represent the secretion of proinflammatory cytokines.  

Limitations & Future Studies 

One of the limitations of these studies was the inability to directly tie the changes 

in microglia response to recovery. In chapter two, the data set suggests that microglia 

would be involved in recovery during abstinence by promoting neurogenesis. In order to 

directly look at this relationship would require knocking down or inhibiting the microglial 

response.  However, pharmacological treatments for inhibiting partially activated 

microglia are limited as therapies are generally directed at inhibiting classical, full 

activation of microglia or at promoting the alternative activation. For example, standard 

neuroimmunomodulators such as non-steroidal anti-inflammatory drugs and minocycline 

both target proinflammatory microglia and can promote the alternative activation state 

(Kobayashi et al. 2013; Lee et al. 2010; Wang et al. 2012a). Moreover, these agents 

have not been shown to reduce partial activation. However, one way to determine to 

whether partially activated microglia observed in abstinence from alcohol exposure are 

involved with reactive neurogenesis in vivo is to use an alternative model with transgenic 

CCR3 deficient mice such as used in the facial axotomy model (Wainwright et al. 2009).  

The facial axotomy model has shown that axonal regeneration is dependent upon the 

function of microglia using these mice. As such CCR3 deficient mice may be a useful 

tool in understanding the contributions of microglia to reactive neurogenesis, but this 
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model would require elucidating a new timeline of neuronal and glial events that has 

already been done in the rat model. 

A different mechanism by which microglia may afford neuroprotection is the 

upregulation of GLT1 and the removal of glutamate (Persson et al. 2005; van 

Landeghem et al. 2001). This theory deserves exploration but may not be feasible in the 

current model as glutamate excitotoxicity has not been observed in the Majchrowicz 

model (Rudolph et al. 1997).  

 Another limitation of these studies is that naive animals are given a bolus of 

ethanol in adulthood.  This type of ethanol exposure does not necessarily reflect the 

human condition as people generally experiment with lower concentrations of ethanol 

during adolescence before consuming the neurotoxic levels used within these 

experiments (Guilamo-Ramos et al. 2004; Nixon and McClain 2010). While the perfect 

model of alcoholism would include preconditioning with lower concentrations prior to the 

bolus, the model of alcohol-induced degeneration use in these studies do at least reflect 

the response of microglia to alcohol-induced neuronal damage.  Furthermore, even 

moderate concentrations of alcohol result in modulations to the neuroimmune system 

with in vivo with chronic exposure (Ehrlich et al. 2012) and even acutely in culture 

(Collins et al. 2010; Fernandez-Lizarbe et al. 2008). The ability of ethanol to affect this 

system at lower concentrations suggests that in the development of an AUD 

experimentation with ethanol would also result in a microglial response that may 

progress and play a role in the neuroadaptations within the neuroimmune response.  

 All of these studies were done in males despite the fact that AUD-associated 

neurodegeneration is also seen in females. While alcohol-induced degeneration may be 

more prevalent in males, females actually are thought to be more susceptible to damage 

(Hommer 2003; Prendergast 2004; Sharrett-Field et al. 2013b). The model used in these 
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studies does not show differential damage between male and female rats, but others 

have shown increased susceptibility in the neuroimmune response to alcohol in models 

of AUDs (Alfonso-Loeches et al. 2013). Understanding the role of microglial activation in 

female rats would further our understanding of the neuroimmune response and its 

relationship to neurodegeneration and recovery in the human population. 

Final Comments 

The current dissertation work delineates the response of microglia to ethanol 

exposure in the most comprehensive manner to date looking at the level of activation 

over a timecourse in an AUD model. The results indicate that the microglial response 

changes with respect to the duration of exposure as well as whether the observation is 

during intoxication or abstinence. While initial intoxication may suppress or disrupt the 

neuroimmune response, during abstinence the microglia response recovers. The 

phenotype of activations suggests that the microglia would be neurotrophic to the 

environment. However, a second binge exacerbates the microglial response due to the 

persisting primed microglia from the initial alcohol insult. These data support the idea 

that the function of microglia are affected by alcohol and that repeated exposure may 

cause a neuroplastic change in the microglial response. Pharmacological interventions 

that promote the neurotrophic mechanisms of microglia while simultaneously limiting 

their detrimental effects may prove efficacious in recovery from alcohol-induced 

neurodegeneration.  
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