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ABSTRACT 

 

 

 As Florida’s population is expanding and greater fluctuations in groundwater levels are 

being recorded, Central Florida has been experiencing a higher frequency of sinkhole occurrences 

than ever before in recorded history.  Sinkholes in Central Florida are formed by a combination of 

bedrock weathering and overburden soil erosion due to the groundwater recharge and are a part of 

Florida’s past and future geology.  The initial stage of a sinkhole is referred to as soil raveling and 

is the most effective time to perform soil improvement measures, such as grouting, to mitigate 

further expansion of a subterranean void. Subsurface exploration tests, commonly implemented 

by geotechnical engineers for site characterization, have been shown to detect these sinkhole 

anomalies even when no signs of subsidence are evident on the ground surface.  Secondary 

geophysical testing has also been proven to detect sinkhole raveling anomalies, but at the expense 

of additional time and money added to the specific project.  In this study, current practices in 

detecting premature sinkholes were expanded upon with a primary focus on Cone Penetrometer 

testing data (CPT).  Cone Penetrometer tests provide valuable high-resolution quantitative 

information regarding the discrete strength characteristics of relatively loose sandy and clayey 

subsoil. CPTs are also much quicker and cleaner to perform when compared to other subsurface 

testing procedures (e.g. Standard penetration tests). Therefore, CPTs were chosen for this study to 

understand how they can be implemented to assess risk of future sinkhole collapse, or other karst 

construction concerns, in Central Florida specific soils.  By implementing the findings presented 

in this report, Geotechnical engineers and contractors in central Florida will be able to practically 

evaluate the size and severity of potential forming sinkhole without the use of additional 
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subsurface geophysical testing.  The results of this study hope to eliminate extraneous testing costs, 

as well as maximize the efficiency of estimating mitigation products and procedures required all 

while still ensuring a safe design in Central Florida’s highly karst areas. 
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CHAPTER 1: INTRODUCTION 

1.1 Problem Statement 

Sinkholes risk assessment is no simple task and many times these events occur with only 

minutes of warning before the ground gives way.  Central Florida sinkholes are a culmination of 

soil instability, geological formation and degradation, and hydrological extreme events and are 

more frequent in times following severe drought (Tihansky, 1999). Due to this combination of 

factors, exact sinkhole collapse processes are difficult to predict.  

Subsurface exploration techniques such as standard penetration tests (SPTs) and cone 

penetrometer testing (CPTs) are commonly implemented in central Florida by geotechnical 

engineers for site characterization and to aid in foundation design for the structure or roadway 

design. These initial geotechnical tests have shown to be a viable way of predicting the initial 

formation of a sinkhole, called raveling. However, once these subsurface anomalies have been 

detected, secondary geophysical testing such as ground penetrating radar (GPR) and electro-

resistivity mapping (ER) are commonly employed for further analysis of the potential risk of 

sinkhole formation at that specific site.  Although these geophysical tests have been proven to 

detect subterranean voids (Bullock & Dillman, 2003), they have severe limitations in certain types 

of soils and loose resolution at deeper depths. Geophysical testing usually requires a specialized 

contractor and additional time for project completion which will add to the project costs and may 

not always be feasible for smaller scale projects. 

With these disadvantages, there is an apparent need for further investigation of how the 

initial subsurface testing techniques (SPTs and CPTs) can be used to detect and assess potential 

sinkhole collapse risk for sites in central Florida. An in-depth study of testing data from actual 
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sinkhole sites was compared to sites suggesting sinkhole activity yet show no signs of subsidence 

on the ground surface.  Also, through data processing, the severity of potential forming 

subterranean void can be estimated.  Cone penetrometer testing was the primary method used to 

collect subsurface soil data in this study due to its high resolution of quantifiable data with depth. 

However, these data processing techniques can also be implemented for SPTs.  

1.2 Research Objectives 

 The objectives of this research are to identify and establish trends in initial subsurface 

testing data which may suggest sinkhole formation. The results of this research can then be 

simplified through risk-charts, which can then help geotechnical engineers better understand the 

severity of potential sinkhole collapse on the specific site basis. By correlating these results to 

other sinkhole collapse factors, such as recharge rates or precipitation data, a more accurate 

assessment of sinkhole risk can then be performed. This research hopes to bridge the gap between 

the geomorphology study of sinkholes and the practicality of designing infrastructure in karst 

terrain, creating a better understanding of sinkhole risk from the geotechnical engineers’ 

perspective.  

1.3 Organization of Thesis 

The chapters of this thesis are organized and described as follows: 

 Chapter 1: Introduction   -   This chapter describes the project problem statement, 

description, methodology for conducting this project, and research scope. This chapter also 

presents a brief overview of Florida’s geology and formation which is quintessential in 

understand the mechanism and formation of sinkholes found in central Florida.  
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 Chapter 2: Literature Review   -   This chapter reviews in greater detail the existing 

literature of karst terrain, Florida geology and hydrology, and classification of sinkhole 

types in central Florida. Also, reviewed in this chapter is the history and development Cone 

Penetrometer testing in geotechnical engineering. The current sinkhole mitigation 

techniques utilized by geotechnical engineer both before and after collapse 

 Chapter 3: Methodology and discussion regarding the author’s current research in 

identifying potential zones of sinkhole formation using Cone Penetration testing. Also 

discussed are methods on how to determine the severity of internal erosion (sinkhole 

formation).  

 Chapter 4: Evaluation and assessment of sinkhole hazard using additional techniques 

formulated from the study presented in chapter 3. These additional techniques include point 

based, 2D profiling, and index comparison and contouring. A case study of sinkhole risk 

assessment using these tools is also performed for a specific project site in central Florida.  

 Chapter 5: Summary and Conclusion – This chapter includes a summary of the project as 

well as discussion of limitations and plans for future research in this field. 
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CHAPTER 2: LITERATURE REVIEW 

2.1 Karst Terrain 

Geologically speaking, the Florida Peninsula is a relatively juvenile land mass. However, 

its formation process has consisted of many environmental changes contributing to its unique 

geology and consequent geotechnical engineering concerns. With each varying ice age, the 

landmass which we now call Florida has emerged and been submerged below the sea level. During 

times of submergence, shallow warm-water coral reefs form and die, depositing varying levels of 

calcium and magnesium carbonate on the sea floor. Meanwhile, ancient rivers rooted in the 

Appalachian Mountains, flow south and deposit alluvial sediment over the submerged Florida 

peninsula, creating deltas and salt marshes over.  

As the sea level slowly recedes and the exposed Florida peninsula expands, varying sand 

deposits created from wave erosion start to accumulate over the carbonate deposits and alluvial 

sediment. Over time, the marine and river deposited matter, now with increased stresses from the 

sandy overburden, lithify to form carbonate-based sedimentary rock such as limestone, dolostone, 

and coquina. Repetition of this process, as the sea levels rise and fall, expose and conceal these 

layers of growing carbonate rock. In some areas, water traveling along the ground surface erodes 

the protective sandy overburden and river deposits (now consolidated into impermeable clay). The 

exposed carbonate rock experiences weathering both physically and chemically by the slightly 

acidic surface water. Cavities form within the soluble carbonate rock, and as the geological cycle 

repeats itself, water becomes trapped within the buried rock like a sponge. This process leads to 

the formation of what is known as Karst topography or terrain.  
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Although karst terrain can be found in many areas of the world (i.e the Kraṧki rob¸ a large 

limestone plateau located Slovenia in which the word “karst” is derived from), Florida’s case of 

karst unique in fact that it creates the Floridan aquifer system (FAS). The fine-grained soil 

deposited by rivers and marine sediment, over time, compressed into a layer of silt and clay laying 

directly over the porous bedrock. This formation is known to geologists as the Hawthorne 

formation. Compared to the cavity ridden bedrock below it, the Hawthorne formation is widely 

considered ‘impermeable’ and it acts as an impedance for infiltrating groundwater. The result is a 

dual aquifer system: an unconfined, or surficial, aquifer of perched groundwater over the aquitard 

layer, and a confined aquifer located within the pores and cavities of the bedrock formations. The 

vertical travel of surface water through the surficial aquifer and impermeable layer filters the water 

allowing many Floridians to utilize the FAS as a reliable source of clean drinking water. Also, in 

areas where sections of the FAS is exposed near or at the ground surface, the crystal clear 

freshwater flows out of limestone fissures, forming springs. These springs not only create vast 

ecosystems which encourage sustainability of Florida’s endangered species, but also they draw 

tourists in from all over the state/country, boosting the local economies.  

2.2 Karst Features in Central Florida 

Although there are great benefits resulting from karst geology, there are also many hazards. 

Arguably the most well-known geohazard resulting from karst geology are sinkholes.  These 

concentrated instances of severe subsidence can wreak havoc on infrastructure supported on 

shallow foundations. As Florida’s urban areas sprawl out to virgin karst terrain, sinkholes have 

been occurring more frequently and causing more damages than ever before (Florida Office of 

Insurance Regulation, 2010). Although sinkhole formation and mechanism has been thoroughly 
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studied by geologists and hydrologists (Tihansky, 1999) (Wilson & Beck, 1992), there is still a 

strong need for research in the field of sinkhole detection and risk assessment from a geotechnical 

engineering perspective. 

2.2.1 Sinkhole Formation 

2.2.1.1 Dissolution of bedrock 

Most sinkhole occurrences in central Florida originate from the dissolution of the soluble 

limestone bedrock. The composition and height of overburden soils then governs the specific type 

of sinkhole which is most probable to form.  Florida’s bedrock formations consist of varying ages 

of limestone and dolomite; both rocks composed primarily of calcium carbonate (CaCO3). The 

solution process begins as rainwater absorbs a slight amount of carbon dioxide. As water 

percolates, downward through the soil, the groundwater picks up even more carbon dioxide, 

generated by decaying organic matter.  This results in a weak carbonic acid, which attacks the 

limestone as it seeps into fissures and recharges the Floridan aquifer. The following dissolution 

process is summarized in the below chemical equations.    

H2O + CO2 → H2CO3  

(Rainwater absorbs carbon dioxide gas to form carbonic acid) 

H2CO3 + CaCO3 → 2HCO3−(𝑎𝑞) + Ca(𝑎𝑞)2+  

(carbonic acid reacts with limestone and yields dissolved bicarbonate ions and calcium ions) 

 The movement of water vertically through the rock medium follows the most favorable 

pathway, usually following a fissure or fracture. Over time, these pathways dissolve more rapidly 

than the surrounding areas because it carries more water. Because it is now larger, the favored 



7 

 

fissures can transmit water in even greater quantities, therefore self-accelerating the erosion 

process. Because of this process, it is more common to find fewer, yet larger, connected networks 

of cavities within the limestone with competent rock in between (i.e. the “swiss cheese block 

look”), rather than a vast plain of dissolved rock. These connected cavities allow sediment 

transport and erosion of the fine-grained soil above the limestone which is the starting mechanism 

for sinkhole formation.  

2.2.1.2 Erosion of overburden soils 

Due to the varying thickness of cover soils over the soluble bedrocks in central Florida, 

sinkhole formation type and collapse size is dependent on the type and formation of the finer-

grained stratigraphy of the overburden soils. Although some areas in North Florida, where the 

limestone is exposed on the surface, experience rock ceiling collapse sinkholes, Central Florida 

sinkholes are almost always caused by downward migration of soil particles into the cavities within 

the bedrock. The thickness, types, and densities of the overburden soils greatly affect the type of 

sinkhole probable to form as shown in Figure 2-1.  The vertical migration of soil sediment 

downwards into the limestone cavities can be caused by gravity or, expedited by seepage forces 

from groundwater recharging the deeper aquifers.  These areas of higher recharge rates have also 

shown direct correlation to higher sinkhole occurrences (Gray, 1994).  Degrading infrastructure, 

such as utilities lines or even leaking pools, can also play a major role in sinkhole formation; 

speeding up the natural erosive processes.  

The average thickness of overburden soils varies greatly in the central Florida region, as 

presented in Figure 2-1.  Generally, the thicker the overburden soil layer, the less likely a sinkhole 

is to occur.  However, if a sinkhole does form, it is more likely to be much larger in diameter and 
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depth compared to other sinkholes in the state.  This is evident by the numerous relic sinkholes in 

this region (Pink, Area IV, Figure 2-1). An example of such can be found underneath Deep Lake, 

just south of the town of Arcadia, Florida. This near perfect circular lake has been mapped by 

divers and discovered to be over 300 feet deep. The presence of a debris pile and distinct hour-

glass shaped walls also suggests this mysterious lake was formed by a deep cover collapse. The 

type of overburden soils in a certain region play an imperative role in their susceptibility to erosion 

into the limestone voids thusly, affecting the type of sinkhole formed. The next section discusses 

the generalized classifications of sinkholes in Central Florida.  

 

Figure 2-1: Florida Sinkhole type map 

(Source: Department of Natural Resources Bureau of Geology, 1985) 
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2.2.2 Sinkhole Classifications 

Sinkholes can be classified into general categories based on their formation type and typical 

landscape.  These classifications are commonly referenced in engineering and geology literature.  

In Central Florida, where the bedrock is primarily limestone and the overburden soils are majority 

clayey or silty sands to clean sands, there are three general categories of sinkholes: Solution, 

Cover-subsidence, and Cover-collapse.  A report published by the U.S.G.S in cooperation with the 

F.S.R.I., classified sinkholes the following way: (Beck & Sinclair, 1986) 

 

Figure 2-2: a) Solution Sinkhole. b) Cover subsidence sinkhole underneath roadway. 

(Source: FDOT) 

2.2.2.1 Solution Sinkholes 

In areas where limestone is exposed or thinly covered by permeable sands, solution 

sinkholes are most common. These sinkholes generally tend to be smaller in size but more frequent 

and easily triggered by rain events. In Central Florida, solution sinkholes are common just north-

east of Tampa in a geomorphological structure known as the Ocala platform. In this area (Area 1 

a) b) 
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in Figure 2-1) the depth to water table is much greater than the surrounding area, therefore solution 

sinkholes often result in dry karst caves. Figure 2-2a shows a picture of an irregularly shaped 

solution sinkhole in Newberry Florida. This sinkhole formed after a large rain event eroded the 

thinly covered clayey sand into the pores of the underlain limestone. The depth of sinkhole 

measured about 6 feet, but the expanse was only a few feet wide.  Large voids susceptible to 

devastating collapse commonly do not form because subsidence of the thin cover material, if any, 

occurs as the limestone surface dissolves.  Detection of solution sinkholes is nearly impossible 

with subsurface testing since formation can occur relatively quickly during a severe rain event. 

However, during site development, grading and filling can usually trigger these sinkholes, 

allowing contractors to identify and fill before any structure is placed on the sensitive limestone 

area. Because these sinkholes often open into large interconnected cavities within the limestone, 

an isolated solution sinkhole on a site is a seldom occurrence, therefore a thorough due-diligence 

of the surrounding geology should be performed before developing in this area.  

2.2.2.2 Cover-Subsidence Sinkholes 

In areas where the limestone is covered by soil that are relatively non-cohesive and 

permeable, sinkholes develop by subsidence. Individual particles of sand move downwards in 

sequence, replacing the space formerly held by the dissolved limestone; like sand passing through 

an hour-glass. Since the overburden soils are non-cohesive, a structural arch is not able to develop, 

thus a subterranean void cannot fully form. Formation time for cover subsidence sinkholes can 

vary from hundreds of years, to a couple days depending on the overburden thickness and water 

movement within the stratigraphy. These types of sinkholes are most common in the eastern part 

central Florida (Area 2, Figure 2-1). Figure 2-2b shows an example of a cover subsidence sinkhole 
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forming underneath a US27 in Polk County. Much slower than a cover-collapse sinkhole, cover-

subsidence can still result in extensive differential settlement cover large areas. Leaking utility 

lines or poorly design roadway drainage systems can also form cover-subsidence sinkholes by 

washing and eroding away the soil underneath.  

2.2.2.3 Cover-Collapse Sinkholes 

In west-central Florida, the sandy cover becomes gradually more cohesive with depth. A 

dense layer of slightly over-consolidated clayey sand or sandy clay overlaying the limestone 

surface (Hawthorne group) can act as a bridge over a developing cavity.  The cohesion within this 

dense layer can develop and support arching effects with no noticeable signs of settlement on the 

surface.  Once the stability of the soil arch is compromised either by extensive internal erosion, 

additional surcharge surface loading, or extreme seepage forces, a cover-collapse sinkhole will 

form.  

 

Figure 2-3: Photos of devasting cover collapse sinkholes in central Florida 

(Source: FDOT) 
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Cover-collapse sinkholes are generally the most devastating and can collapse with only 

minutes of warning. Figure 2-3 shows two photos of cover-collapse sinkholes occurring in west-

central Florida. SPT borings performed near both collapses showed a thick clay layer overlaying 

the vuggy limestone.  As the limestone cavity grew underneath, the cohesion within the clayey 

sand could hold up the soils above it; like a bridge. Eventually, collapse of the clay layer into the 

cavities occurred, resulting in the “throat” of the sinkhole (apparent in the left photo, highlighted 

by the dashed circle). The sandy sediment above then fails and collapses into the void, creating the 

larger diameter of collapse seen. Secondary collapse can continue as slope failure of the sandy 

soils continues, expanding the overall sinkhole size.  

Although cover-collapse sinkholes provide little time for warning on the surface, the 

forming subterranean void can be detected using various subsurface exploration tests. However, a 

single test encountering an abnormally loose layer of cohesive soils directly above the weathered 

limestone does not necessarily mean a cover-collapse sinkhole is imminent.  The information and 

findings presented in Chapters 3 and 4 of this thesis hope to provide further analysis techniques 

for subsurface testing (specifically CPT) to be used as a tool when evaluating sinkhole risk – 

especially risk of cover-collapse sinkhole formation.  

2.3 Cone Penetration Testing 

Cone penetration testing was developed from the need to quickly determine the strength of 

subsurface soils without the use of large scale, intrusive drilling equipment. Although pushing rods 

into the ground to determine soil strength is a very old practice, the first true static cone 

penetrometer tests were developed in 1931 in the Netherlands by P. Barentsen.  In the early 1980s, 

porewater pressure measurement techniques were incorporated into the standard electric cone 
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penetrometer; allowing a single test to record cone tip resistance (qc), sleeve friction (fs), cone 

inclination (i), temperature and pore water pressure (u) as the probe is pushed through the soil 

strata (Sanglerat, 1972).  These measurements are defined by the following equations (ASTM 

Standard D5778, 2012): 

Cone Tip Resistance:                              𝑞𝑐 = 𝑄𝑐𝐴𝑐  

Sleeve Friction Resistance:                   𝑓𝑠 = 𝑄𝑠𝐴𝑠  

Friction Ratio:                                           𝑅𝑓 = 𝑓𝑠𝑞𝑐 ∗ 100 

Pore water pressure:                              𝑢0 = (𝑧 − 𝑧𝑤) ∗ 𝛾𝑤 

Where:  qc  =  cone resistance (MPa) 

  Qc =  force on cone (kN) 

  Ac  =   cone base area = 10cm2 

  fs   =   sleeve friction resistance (kPa) 

  Qs =  force on friction sleeve element (kN) 

  As  =  area of friction sleeve = 150 cm2 

  Rf  =  friction ratio (%) 

  uo  =   hydrostatic water pressure (kPa) 

  z   =   depth of interest (m) 

  zw =   depth to groundwater table (m) 

  γw=   unit weight of water = 9.81 (kN/m3) 
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When using the electric cone, calibration of the measuring load cells should be performed 

prior to testing. The load cells consist of interconnected strain gauges rigidly attached to the shaft 

of the penetrometer tip.  When a load is applied to the cone or to the friction sleeve, the shaft length 

changes, and gages are subjected to the identical deformation.  The subsequent variation in length 

changes the resistance of the strain gages.  The resistance is measured by applying a constant 

excitation signal to the load cells and recording the output voltage. Calibration is performed by 

taking a “zero” reading to measure the load cell voltage output when no loads are applied and 

when at a constant temperature. This process is imperative before performing penetration and is 

discussed in greater detail by Jean-Louis Riaund and Jerome Miran in their FHWA report (Riaund 

& Miran, 1992). 

Figure 2-4 shows a schematic diagram of the standardized CPTU electric probe with 

location of piezo-element directly behind the cone tip.  The cone probe shown samples data every 

0.78 inches (2 cm) with a typical penetration rate of 0.787 in./s (2 cm/s), allowing the CPT to 

detect discrete soil horizons that would normally be missed using drive samples at specific depth 

intervals.  Because of this accuracy with depth, cone penetrometer soundings are being employed 

with increasing regularity, especially when evaluating site susceptibility of certain geohazards 

such as soil liquefaction, landslides, or karst soil anomalies (Department of Geological Sciences 

& Engineering, 2006).       
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Figure 2-4: Schematic section through a CPTU probe. 

(Source: ASTM D 5778-95) 

2.3.1 CPT - correlations 

A major limitation of CPTs is the inability to obtain soil samples for soil classification when 

stratifying a project site. Many researchers have established strong correlations between the CPT 

soil strength measurements (qc and fs) and SPT blow-count values (N) along with correlations to 

bearing capacity or settlement susceptibility (Meyerhof, 1956) (Douglas & Olsen, 1981) 

(Schmertmann, 1978).  With the adaption of electronic cones – increasing the accuracy and 

reproducibility of the results—current research is being performed to correlate CPT results with 

soil classification and behavior type (Roberston P. , 1990) (2010) (2016).  Using a wide database 

of experimental sites and soils from various geologic ages and formation throughout the world, 

Robertson developed, and is constantly updating, a Soil Behavior type (SBT) chart which 
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𝑄𝑡𝑛 = 𝑞𝑐 − 𝜎𝑣𝑜𝜎𝑣𝑜′  

𝐹𝑟 = [ 𝑓𝑠𝑞𝑐 − 𝜎𝑣𝑜] ∗ 100% 

 

correlates values obtained from CPT (qc, fs and uo) with the most probable type of soil the cone is 

penetrating through.  

 

Figure 2-5: Soil Behavior Type Chart  

(Source: Robertson, 1990) 

 Commercially available CPT data processing software uses these correlations to provide an 

estimated soil stratigraphy in “real-time” as the CPT is being performed.  Robertson’s newest SBT 

update provided a list of case-history sites which were used to create and validate his findings (see 

Table 1) (Robertson, 2016).   

The database of CPT test sites used to empirically create the correlations, shown in Table 1, 

consist of a wide variety of soil types and location.  Although this data shows strong correlation 

with SBT for specific soil types (i.e glacial clays with low organic content), there is an apparent 

absence of data obtained from test sites in karst terrain in the United States.  Figure 2-5 presents a 
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map published by USGS of areas with karst or pseudo-karst geology within the contiguous United 

States.  Each of the test site locations used for SBT validation, presented in Table 1, are also 

presented in Figure 2-5 (represented by red stars).  It is clear from the figure that there is a lack of 

testing data performed in carbonate-based karst geology (represented by the blue colored area); let 

alone in Florida’s unique karst geology which is spread through much of the state.  Because of this 

lack of karst-calibration, CPT data analysis programs which reference the SBT system proposed 

by Robertson may provide inaccurate results when performed in Central Florida.  The largest 

discrepancy between residual soils in Florida’s karst geology and other non-karst geologic 

formations is the strength profile of soils.  Because of the internal erosion and disturbance of sub 

soil layers near the limestone due to groundwater flow in karst areas, residual soils in central 

Florida often follow what is called an inverse soil profile (Sowers, 1996); that is, soil density and 

strength does increase with depth.  Because of this occurrence, further investigation of CPT data 

should be performed in central Florida and analysis should not depend on correlations which are 

calibrated for subsoils formed through other natural processes differentiating from Florida’s 

unique geology. This study present in greater detail the discrepancy between the currently used 

CPT-SBT system and the actual encountered soil type classification – especially in highly variable 

karst soils. 
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Table 1: List of sites used in CPT database Soil behavior type correlation 

Taken from: (Robertson, 2016) 
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Figure 2-6: Karst and geology map in contiguous United States 

(Source: USGS, 2014) 

      Testing sites used for SBT correlation in (Robertson, 2016)  
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2.4 Sinkhole Detection in practice 

Premature sinkhole detection is required to successfully mitigate a forming sinkhole before 

any structural damages occur to infrastructure; limiting the additional costs for repair. Figure 2-5 

presents a theoretical project cost timeline for sinkhole mitigation/repair. In this timeline, we can 

see there is a crucial moment where mitigation becomes repair, causing the cost to increase 

substantially. This moment in time is the sinkhole collapse in a cover-collapse, or severe slope 

failure in a cover-subsidence sinkhole.  Perhaps the largest uncertainty in the sinkhole cost timeline 

is, unfortunately, time itself.  Sinkhole subterranean void growth and collapse is very difficult 

aspect to quantify.  Complete collapse and opening of the sinkhole usually takes only a couple 

minutes or hours, however, the forming void underneath may be a result of hundreds or even 

million years of internal erosion at the rock-soil interface.  Current techniques are being further 

developed to provide an early warning system of sinkhole collapse (Rizzo & Dettman, 2017), 

however the sinkhole risk assessment cannot be fully understood over time unless the rate of 

erosion is characterized. Research in this field is currently underway to estimate groundwater 

seepage forces measured from an array of insitu piezometers at sinkhole site in central Florida (Tu, 

2016). 

2.4.1 Subsurface exploration testing 

A forming sinkhole may be detected using a single test showing very low strength soils at 

a certain depth at which does not agree with the surrounding soils comparable to the expected 

density from its original formation. Initial subsurface exploration tests, such as SPT and CPTs, can 

identify these anomaly soil layers which may suggest a forming sinkhole.  
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Figure 2-7: Conceptual cost timeline for sinkhole mitigation and repair 

 

2.4.1.1 Standard penetration test (SPT) 

SPTs are valuable in sinkhole detection because they can retrieve soil samples (although 

highly disturbed) from any depth. Laboratory testing and soil classification can then be performed 

when estimating the stratigraphy of the subsoil, allowing engineers to better estimate whether soils 

may be suggestive of sinkhole formation. SPTs also provide a penetration resistance data in the 

form of the number of blow counts (N) it takes to advance the sampling tip into the soil by a 140 

lb hammer dropped 30 inches. In extremely loose sands or in soft clays, the drilling rods and 

sampling tip will advance into the soil under the self-weight of the rods or the hammer, without 

any additional forces being applied. These instances are labeled as “weight of hammer” or “weight 

of rod” conditions (WR/WH). When isolated cases of these conditions occur within a site, 

especially at reasonable depth directly above a refusal layer, sinkhole formation may be to blame.  

Further investigation is then commonly performed whether by additional SPTs or by geophysical 
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testing. However, many engineers believe WR/WH conditions may not be completely indicative 

of sinkhole formation because of the inaccuracy of N values at great depths (Edward D. Zisman, 

2013). Figure 2-8 presents example soil boring logs from SPTs performed on the same project site 

in central Florida (Professional Services Industries, Inc. , 2014). The left boring shows a relatively 

normal soil stratigraphy consistent with the expected geology.  The boring log on the right, 

however, encountered a significant region of very weak sandy soils at a depth of 60 feet below 

GSE—as shown by WR and the note that the rod fell from 63.5’ to 78.5’. Another SPT sign of 

problematic loose soils includes the complete loss of drilling fluid (usually bentonite) that is 

circulated during the SPT to keep the bore-hole from collapsing. If loss of circulation occurs 

(denoted by the 100% symbol), that means the drill tip progressed into a soil layer with similar 

characteristics to a void; that is, the soil is so loose that the viscous bentonite mud is able to breach 

and travel through that layer away from the bore-hole. The boring log on the right side of figure 

2-8 presents an anomaly in which further investigation should be performed to ensure against a 

sinkhole hazard.  

2.4.1.2 Cone Penetration Test (CPT) 

CPTs can also be used to detect potential forming sinkhole under the same principle 

discussed above regarding SPTs. However, instead of the blow count value (N) obtained in SPT 

from a dynamic hammer, CPTs record penetration resistance in the form of tip resistance (qc) and 

sleeve friction (fs) by pushing a probe hydraulically at a steady rate. This method, is much more 

accurate at locating discrete horizons or discrepancies in the soil strata since the sampling per depth 

is much higher than that of SPT. However, the inability to obtain soil samples for lab testing or 

visual classification is a major limitation of CPT, especially when using a single test to estimate 
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site stratigraphy or geohazard potential.  Therefore, “ground-truthing” is a common technique used 

when implementing CPTs for subsurface investigation. By conducting a CPT next to a 

conventional sampling boring (such as SPT), the CPT soil strength measurements (qc and fs) can 

be validated with actual soil type and index properties to provide a more accurate stratigraphy 

estimation. This technique is especially important when characterizing subsoil in a site with known 

karst geology. Figure 2-9 presents such an example of ground-truthing where a CPT tip resistance 

curve (qc) with abnormally low values at a depth above the refusal layer, correlates strongly with 

the SPT suggesting sinkhole formation (see WH/WR conditions). The SPT blow count number 

(N) trends strongly correlate with the CPT tip resistance values (qc) trends with depth.  Once 

ground-truthing has been performed, CPTs can be performed throughout the site at a much quicker 

rate than that of SPTs, allowing for an efficient subsurface exploration and characterization 

(Department of Geological Sciences & Engineering, 2006).  
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Figure 2-8: Example SPT boring logs in central Florida 

(Source: Professional Services Industries, 2014) 
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Figure 2-9: Example of “ground-truthing” between CPT qc curve and SPT. 

(Source: Professional Services Industries, 2014) 
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2.4.2 Geophysical testing 

2.4.2.1 Ground Penetrating Radar (GPR) 

Ground Penetrating Radar (GPR) is widely used as a non-intrusive technique to locate 

subterranean anomalies such as buried pipes or abrupt changes in soil density. GPRs emit and 

receive electromagnetic waves (10 to 3000 Mhz) and use the respective time-lag information 

between transmissions to survey and “map” a cross-section of soil.  Although most effective at 

shallower depths, GPRs are being more commonly employed for sinkhole detection as lower-

frequency antennas are being developed to retain resolution at larger depths.  Specialized 

contractors and geophysicists have proven GPR is a functional method to detect a sinkhole 

anomaly (Professional Services Industries, Inc. , 2014), (Bullock & Dillman, 2003) but after 

detection, there is little information that can be obtained from the GPR data. Also, GPR data can 

be very difficult to interpret, especially when attempting to draw conclusions of potential sinkhole 

size or severity from the presented soil map. Figure 2-10 shows such ambiguity in a GPR transect 

plot. From the GPR plot, it is clear there is a localized change of soil density, or type, along the 

investigated tract (notice the coagulation of horizontal layers in the circled section), but there still 

lacks standardized methodology for characterizing the subsoil and correlating GPR results to soil 

strength parameters; severely limiting the GPR as an effective subsoil investigation technique.  

2.4.2.2 Electrical Resistivity Testing (ER) 

Electrical resistivity surveying is a geophysical method in which an electrical current is 

injected into the earth and the subsequent response is measured at the ground surface to determine 

the resistance of the underlying soil. Implanted electrodes read the electrical potential as volts and 

then, using Ohm’s Law, are converted to resistivity values.  Resistivity of earth materials is 
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controlled by several properties including composition, water content, and effective permeability 

(PSI, 2014).  Through inversion modeling of the ER data, a resistance map of the sub soil along 

the investigated tract can be developed.  Like GPR, ER has proven to be able to detect subterranean 

air-filled voids such as abandoned mine shafts (Sheets, 2002), however, the two techniques also 

share in limitations. Interpretation of ER data is a very specialized task and requires extensive 

experience and knowledge of statistical modeling, soil electrical conductivity parameters, local 

geology, and expected soil composition.  Geophysical testing methods, such as GPR and ER, are 

more commonly implemented to identify potential sinkhole zones or anomalies within the karst 

subsoil and are used in conjunction with SPT and CPT for site characterization; never as a lone 

technique.  

 

Figure 2-10: GPR transect of soil cross-section showing a potential sinkhole anomaly 

(Source: PSI, 2014)  



28 

 

CHAPTER 3: IDENTIFICATION OF SINKHOLE RAVELING AND 

DEVELOPMENT OF RAVELING CRITERIA IN CPT DATA 

3.1 Introduction 

Sinkholes have been occurring naturally in Florida for thousands of years.  Much of Central 

Florida’s circular ponds and lakes are attributed to karst geology and some type of sinkhole activity 

over the millennia. As Central Florida’s urban areas expand, greater strains are placed on Florida’s 

fragile aquifer systems from either over farming or potable water usage via deep water wells. 

Consequently, sinkholes have been forming more often and in more inconvenient locations 

creating a sharp increase in sinkhole related insurance claims over the past few years (Florida 

Office of Insurance Regulation 2010). The destructive outcome of sinkholes in central Florida is 

apparent (Figure 3-1) and can the result cause severe risk to the public and cost millions in 

infrastructure damages.  

 

Figure 3-1: Photos of Central Florida sinkhole devastation 

(left: Deltona road collapse 2010; right: Winter Park 1981) 

(Source: FDOT) 
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Sinkholes are a geologic hazard that occur in areas underlain by soluble bedrock. Roughly 

15% of the United States is underlain by rock susceptible to sinkhole development (Sinclair 1986), 

however, the discussion and methodology discussed in this chapter refers to sinkhole occurrence 

in areas with limestone bedrock, which underlays the bulk of Florida’s Peninsula (Lane 1986).  

 In this chapter, the discussion focuses on the methodology of identifying possible 

developing sinkholes using data obtained from cone penetrometer tests performed in areas with 

either recent sinkhole formations or encountered sinkhole anomalies. Through proper data 

collection, processing, filtering, and analysis, a CPT-based raveling chart was developed as a tool 

for engineers to better understand the severity of sinkhole formation when developing in a location 

suggesting karst geology.  

3.2 Raveling Mechanism and Criteria 

Methods of detecting sinkhole anomalies tend to fall within the Geotechnical engineer’s 

scope of work.  Subsurface exploration tests such as Standard Penetration testing (SPT) and Cone 

Penetrometer testing (CPT) are commonly used by geotechnical engineers to determine soil 

engineering parameters at required depths depending on the type of structure being designed.  In 

central Florida-- where the depth to encountered limestone varies greatly-- it is common for 

subsurface exploration tests to be performed completely through the overburden (or soil overlaying 

the bedrock) and terminate when the bed rock is encountered.  This is beneficial for sinkhole 

detection since natural sinkholes in Florida originate at the bedrock-soil interface and propagate 

towards the surface over time (Gray 1994), (Rupert et al. 2004), (Sinclair 1986). The internal 

erosion and migration of the overburden soil into the cracks and cavities of the limestone bed rock 

creates a zone of loose, or disturbed, soil usually found above the weathered limestone interface. 

The main driving mechanism for this internal soil erosion in central Florida soils is vertical 
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groundwater seepage. The Floridan aquifer system (FAS) is a deep semi-confined aquifer which 

underlays most the state. Separating the FAS and the surficial groundwater table aquifer is a group 

of generally impermeable silty and clayey soil known as the Hawthorne formation. In certain areas 

in Central Florida, the Hawthorne formation can vary greatly in thickness and permeability and 

can even be non-existent from the soil strata (Figure 3-2). In these areas, vertical flow of 

groundwater between the surficial and Floridan aquifers is less impeded and the recharge rate 

(infiltration of water into the Floridan aquifer) is high. As shown in the highlighted red section in 

Figure 3-2, these areas coincide with the central Florida region. When cavities in the limestone 

bedrock are abundant, the vertical flow of groundwater between aquifers can cause soil migration 

and further erosion of the cavities. The soil migration and erosion of overburden, overtime, 

expands further into the overburden strata.  This process is known as soil raveling, and is the main 

mechanism of sinkhole formation in central Florida. 

Identifying any possible soil raveling is the primary method of detecting a forming sinkhole 

before any evidence may be present on the ground surface. The sinkhole formation due to the 

process of soil raveling is presented in Figure 3a. Here we see the vuggy, soluble bedrock overlain 

by a relatively thinner confining unit and then undifferentiated sands above that. The breach in the 

confining unit (hawthorne group soils) acts almost like a funnel which magnifies the seepage 

forces in that area, thus causing the concentrated internal erosion. Figure 3-3c presents the raveling 

concept over time, on a magnified scale at the Hawthorne-limestone interface.  It is important to 

note that the raveling erosion does not necessarily form a complete void or subterranean cavern. 

Rather, the soil in that specific area becomes extremely loose and its unit weight drastically 

decreases. This is evident in multiple standard penetration test (SPT) borings performed in 

sinkhole active sites. 
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Figure 3-2: Geologic cross section of Florida Peninsula -- North to South 

Source: (Florida Geological Survey, 2001) 

 

Figure 3-3b presents such a SPT boring showing that at the depth one would expect to find 

the dense to medium dense silty and clayey fine sands of the hawthorn group, the blow counts (N-

value) suggests very loose material as the drill tip begins to fall under its own weight of hammer 

or weight of the rods (WH or WR). However, the split spoon sampler is still able to recover some 

soil samples in these zones, suggesting –although extremely loose and disturbed—there is still 

granular material present in this specific region.  
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(a) Cover collapse sinkhole progression 

(b) SPT boring log suggesting raveling (c) Raveling mechanism over time 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-3: Soil raveling process. 

  

(1) 

(2) 
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3.3 Raveling Index 

First suggested by in 1994 by Foshee and Bixler, the Raveling index (RI) is a tool used by 

many geotechnical engineers in central Florida to evaluate sinkhole risk by using a single CPT or 

SPT boring. The index is defined as the thickness of the raveled soil layer (tr) divided by the depth 

to the top of the encountered raveled zone (dr).  This ratio gives a relative indication of the degree 

of soil erosion taken place in the overburden sandy soil.  The smaller the ratio, the less deterioration 

of soil and the lower the risk of future sinkhole activity.  Raveled soils are identified by abnormally 

low tip resistance values (qc < 10 TSF) encountered above the weathered limestone (Foshee & 

Bixler, 1994). Although RI is a useful tool for understanding and comparing site investigation 

techniques, it is limited from the fact that only qc is input for analysis.  

 

Figure 3-4: Raveling Index example from CPT 
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3.4 Methodology 

The objective of this chapter is to understand how CPTs performed in karst geology in 

central Florida measure soil stiffness parameters such as cone tip resistance, sleeve friction 

resistance, and frictional ratio (qc, fs, and Rf).  The end goal is to develop a processing method 

geotechnical engineers can use when analyzing CPTs performed in central Florida which suggest 

a potential sinkhole anomaly. The popular CPT soil behavior type programs, which correlate CPT 

measurements to soil classifications, are believed to not best represent soil in karst landscapes, 

especially when raveling may be present.  For example, a soil horizon which possesses very low 

penetration resistance may be falsely represented as sensitive fine grained, organic material, or a 

fat clay if classified using the latest SBT procedures presented in Robertson 2016 (see Figure 2-5) 

With hopes to understand and identify trends in how CPTs measure, subsurface data was collected 

from several known sinkhole active sites in central Florida within the same geotechnical and 

hydrogeological conditions.   

3.4.1 Data collection and preparation 

A historical CPT database from central Florida’s active sinkhole project sites was 

graciously provided by FDOT district 5.  The database consisted of subsurface data for 12 

sinkholes occurring in or near central Florida’s highways within the last 15 years. Extensive 

subsurface exploration test data was also provided for the Wekiva Parkway project, showing large 

areas of soft soil anomalies; suggesting possibility of sinkhole formation.  By developing a CPT 

data analysis criteria based on the documented sinkhole site data, a sinkhole risk assessment for 

Wekiva parkway was performed.  These criteria in CPT data was developed using all three CPT 
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data outputs [tip resistance (qc), sleeve friction (fs), and friction ratio (Rf)] to identify severely 

raveled soils; rather than only using qc as a basis for raveling.  

It is important to note that geology in Central Florida, although relatively similar in age 

and lithology, varies greatly over even a couple miles.  For convenience, USGS and FGS have 

characterized Florida into different geologic categories and present the information on color-coded 

maps, called Geologic Maps. These categories are created by grouping soils together based on 

their bedrock age, residual soil formation, depth to bedrock, majority soil types, and permeability. 

Therefore, when comparing residual soil condition data between different project sites, analysis 

only was performed between the sites within the similar geologic formation category near the land 

surface.  Out of the 12 total sinkhole occurrence sites provided by FDOT with CPT data, 3 were 

located within the same geological formation as the Wekiva parkway project.  Figure 3-5 presents 

a map of Central Florida with the three sinkhole sites, the Wekiva parkway site, and the similar 

residual soil geologic formation – the cypress head formation.  

The Cypress head formation (represented by Tc) is composed primarily of siliciclastics and 

occurs only in the Florida peninsula and eastern parts of Georgia.  This formation originates from 

the upper Pliocene epoch (~ 5.3 to 2.5 million years before present) and consists of reddish brown, 

unconsolidated to poorly consolidated, fine to very course, clean to clayey sands (FGS, 2001). The 

cypress head formation is also considered to be very permeable and its sands form part of the 

surficial aquifer system.  In central Florida, the Cypress head formation is underlain by the 

Hawthorne groups (Th) and Ocala limestone formation (To). (Shown in Figure 3-2)      
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Figure 3-5: Map of Central Florida sinkhole sites within Cypresshead formation geology 
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3.4.2 Data processing 

3.4.2.1 Normalization of tip resistance and friction ratio 

Even though we are comparing data obtained in similar geological conditions, the 

suspected raveling zones are located at varying depths above the limestone. To correct for 

overburden stresses, a normalization procedure was performed on all CPTs analyzed. 

Normalization of CPT data to correct for overburden stresses, pore water pressures, and lateral 

earth pressures is a common procedure in CPT-SBT research (Riaund & Miran, 1992) (Robertson, 

2010) (Moss, Seed, & Olsen, 2006).  The normalization equations used in this study follow the 

procedure outlined by Robertson and Wride (1998); presented below: 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝐶𝑜𝑛𝑒 𝑅𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒: 𝑄𝑡𝑛 = (𝑞𝑐 − 𝜎𝑣𝑜𝑃𝑎 ) ( 𝑃𝑎𝜎𝑣𝑜′ )𝑛
 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝐹𝑟𝑖𝑐𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑖𝑜: 𝐹𝑅 = 𝑓𝑠𝑞𝑐 − 𝜎𝑣𝑜 ∗ 100% 

Where qc is the measured cone tip resistance; fs is the measured sleeve friction resistance; Pa is the 

atmospheric pressure in the same units as qc; and 𝜎𝑣𝑜 and 𝜎𝑣𝑜′  are the total and effective overburden 

stresses, respectively.  The value n is the stress exponent and varies from 0.5 in sands to 1.0 in 

clays (Olsen & Malone, 1988).  Since the objective of this research is to simply compare data from 

each site to each other, an assumed value of 0.65 was used for the stress exponent value of n since 

the encountered soils at the four project sites consisted primarily of sands and silty to clayey sands.  

To determine the stress variables, an assumption on soil unit weight must be made. An original 

assumption of γsat = 110 lb/ft3
 for the entire soil column was made, and a sensitivity analysis (see 

chapter 3.6.1) showed the ranges of expected unit weight soils at each site would produce 
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negligible differences in Qtn and Rf in the suspected raveled zones.   It should also be noted that 

the measured sleeve friction value (fs) was not normalized or corrected for overburden stresses.  

Normalization of fs is a highly debated topic and is not well established in the literature.  

Groundwater elevations are also needed prior to applying the Normalization equations to 

determine the effective stress, 𝜎𝑣𝑜′ .  Most groundwater information for each CPT was obtained 

from nearby SPT boring logs; which provided an encountered depth to water table.  If no nearby 

SPT was present, an assumed depth to water table was set as 10 feet; which was congruent with 

the average encountered water table for most analyzed central Florida sites in this study.  

3.4.2.2 Filtering “spikes” 

CPT is an ideal test for sinkhole detection because it can detect the slightest strength change 

in the soil strata during penetration due to the high sampling rate. Also, the CPT records tip 

resistance (qc) and sleeve friction (fs) at a constant rate with depth.  Consequently, this results in 

approximately 140 data points for every ten feet of penetration test. In this study, 125 individual 

CPTs were analyzed; with an average penetration depth of 90 feet.   This results in an immense 

amount of data with an incomprehensible range of scatter (shown in Figure 3-6).  To identify trends 

in the CPT data relating to sinkhole activity only, a simple filtering procedure was performed for 

each test. The procedure listed below was used to limit the amount of qc, fs, and Rf data in obtained 

CPT data: 
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Figure 3-6: SPT-CPT comparison in raveling anomaly with highlighted transitional (yellow) and 

raveling (red) layers   

 

 First, for CPTs performed within proximity to SPT borings suggesting raveling conditions, 

an expected depth-of-raveling was established and only data within that window was kept. 

For most CPTs, this window was around the 50 to 100 feet in depth-mark, although there 

were some outlier CPTs with much shallower or deeper raveling zones. Figure 3-7 shows 

an example of such determination using a nearby SPT to filter the non-sinkhole forming 

soil data out. In this figure, we see specifically how the CPT qc and fs curves show 

similarities between the indication of sinkhole formation provided in the SPT boring log 

(WH/WR, no recover of sample, and 100% loss of circulation). 
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Figure 3-7: Example of SPT- CPT comparison used to filter overburden non-raveled soils 

 

 For CPTs performed without any nearby SPT borings available for validation, the raveled 

soil zone was assumed to be the abnormally low qc values directly above the refusal layer.  

Luckily, the only project sites analyzed which did not have validation SPT borings were 

those which a had a sinkhole collapse occur. Therefore, the assumption that the 

encountered soft soils are indicative of sinkhole activity is validated by the nearby 

collapsed sinkhole.  

 Once the raveled soils were determined, further filtered was performed to account for the 

heterogeneity of the soil.  The goal of this filtering process was to identify the data in 

which only raveled soils is encountered. Even in the raveled soil zones, the penetrating 

cone sensor can push into interbedded planes of harder material such as limestone lenses 

Non-Raveled 

(Filtered out) 

 

Transitional  

(included provisionally) 

 
Raveled  

(included) 
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or phosphates.  Since the penetrating cone sensor is only roughly 1.5 inches in diameter, 

even the slightest inconsistency in material density can skew the qc and fs curves. This is 

even more common in central Florida since the raveling of soil originates within the 

Hawthorne group formation.  This geological formation consists of silty or clayey sand 

interbedded with abundant phosphates minerals; which can range from a couple 

millimeters to a couple inches in diameter.  Any penetration through an intact phosphate 

mineral can create a “spike” in the CPT qc curves within the raveled zone, which may give 

false identification of an actual soil horizon covering more than just a couple millimeters 

spatially.  Therefore, to account for this uncertainty, any abnormal “spikes” in qc measured 

within the raveled zone were filtered out.  The respective sleeve friction and friction ratios 

were also filtered out at that specific depth corresponding to the spikes of qc. Figure 3-8 

provides an example of such qc spikes within the raveling zone.  
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Figure 3-8: Example of CPT qc with "spikes" in raveling zone 

Filtering the CPT data allowed for trends within the qc, fs, and Rf parameters to become 

apparent. This process was performed for each CPT test for corrected values (Qtn & FR) and for 

the measured data (qc, fs, & Rf).  

3.5 Project site Descriptions  

The data filtering and processing techniques discussed in the earlier sections were all 

performed on CPT sounding data obtained from various projects in Central Florida which exhibit 

karst geology. A total of four sites were used in this study due to their similarities in geology and 

CPT data.  Information and data from all four sites were provided by FDOT district 5 and each 

involve a state roadway system with either a recent sinkhole collapse or highly variable soil 

conditions suggesting a potential forming sinkhole.  

Data spikes 

(filtered) 



43 

 

3.5.1 Wekiva Parkway – SR 46 Connector 

Perhaps the most quintessential present example of roadway design within central Florida’s 

karst geology is the currently ongoing Wekiva Parkway Project (expected completion 2022). This 

project will not only be widening, rebuilding, and averting over 15 miles of existing state and 

county roads, but when finished, it will connect and complete central Florida’s beltway around 

downtown Orlando. The planned construction of over 25 miles of toll road will pass through East 

Orange, Lake, and Seminole Counties. Sections of the Wekiva Parkway project cut straight 

through areas with abundant springs, relic sinkholes, and other signs of karst geology. Standard 

geotechnical tests for the roadway showed signs of raveled soils at numerous locations.  Extensive 

subsurface exploration testing was performed in certain areas with low settlement thresholds or 

areas where testing exhibited extensive raveled zones. One of these locations is located just north 

of the Wekiva Springs State Park near State Road 46 in Lake County. Within this specific section 

of roadway, over 94 CPTs were performed with all terminating at refusal layer.  Over 20 SPTs 

were also performed, in this specific ½ mile section of roadway, 11 of which performed adjacent 

to CPTs for ground truthing (an example of such shown in Figure 2-9).  Due to the extensive 

amount of suspected soil raveling encountered, multiple sinkhole mitigation techniques were used 

for this specific project; even though no visible signs of recent sinkhole activity were apparent on 

the ground surface. These methods include: deep soil grout injection to fill the suspected 

subterranean raveled zones, geogrid tension support underneath the roadway to delay subsidence 

if sinkhole collapse does occur, and complete redesign of planned earth embankment to a bridge. 

Where each of these methods were employed, a greater density of CPTs were performed to allow 

for the most efficient design of mitigation type. These mitigation areas are apparent in Figure 3-9, 

where we see clusters of testing points on the layout.  CPT data was grouped during the 
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normalization and filtering procedures by the type of mitigation technique performed for ease of 

processing. 

3.5.2 Deland State Road 15A 

Early January 2016, a sinkhole opened in the north bound lanes of state road 15A, about 

0.5 miles south of U.S highway 17, just north of the central Florida city of Deland.  Once stabilized, 

the sinkhole was measured to be about 18 feet in diameter.  A total of nine CPTs were performed 

around the collapsed zone to measure the extent of any subterranean raveling which may have not 

collapsed.  One of such tests performed lost the penetrating cone sensor when the CPT rods fell 

unexpectedly at a depth of around 12 feet, never to be recovered.   

 

Figure 3-9: Layout of CPTs for Wekiva SR 46 connector project 
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Once another cone sensor was obtained, an additional test nearby was performed –with 

greater precaution of extremely loose material— and recorded a large layer of extremely low 

measured tip resistance (qc) values between 0 and 2 TSF from a depth of 12 feet to around 75 feet. 

This specific CPT suggested a significant amount of the sinkhole void did not contribute the 

collapse on the surface. Therefore, injection grouting was performed for this sink before 

backfilling to protect against future collapse.  The other CPTs performed all showed similar signs 

of encountered loose material directly above the refusal layer located between 90 – 120 feet in 

depth. An SPT performed in this location verified the expected penetration depth for weathered 

limestone was near 100 feet, allowing us to assume the CPTs were terminated at the limestone 

interface.   

3.5.3 US 27 Lake County 

On the evening of February 27, 2008, a sinkhole was found at a construction site on U.S. 

27 about 0.5 miles north of State Road 48, near Leesburg, Florida. The sink opened in a turn lane 

under construction adjacent to the northbound lanes of U.S. 27.  It was approximately four feet in 

diameter and extended about seven feet in depth at an angle.  No utilities were located within the 

proximity of the sink, ruling out formation and collapse caused by leaking pipes. A total of 16 

CPTs were performed around the collapsed zone. One CPT, located closest to the sink, 

encountered a layer of abnormally soft soil conditions between the depths of 16 to 82 feet, directly 

above the refusal layer.  CPTs performed further away from the collapse found significantly better 

soil conditions with the thickness of soft soils only between 0 and 16 feet.  All CPTs performed 

showed similar trends in qc curves with a refusal layer at a depth between 65 and 85 feet with 

varying thicknesses of soft soils directly above. The result of investigation indicated a relatively 
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small area was affected, however stabilization with cement pressure grouting was still performed 

to minimize the risk of future subsidence.   

3.5.4 US 27 Polk County 

On January 11th, 2010, a sink hole opened in the median of US 27 in Polk County, 

approximately 2.6 miles south of state road 60. An initial SPT boring performed in the southbound 

lane just west of the sink showed weight of hammer (WH) conditions in a silty fine sand layer 

from 85 to 120 feet in depth with limestone encountered at 133 feet. An additional SPT boring 

performed in the NB lanes, just east of the sink, showed no WH/WR conditions and limestone was 

encountered at a depth of 100 feet.  An additional six CPTs were also performed around the sink; 

each of which showing varying degrees of soft material directly above the refusal layer between 

110 and 160 feet in depths. All six CPT qc curves showed similar trends when compared to the 

SPT blow count (N) values with respect to depth.  Cement injection grouting was also performed 

to repair sinkhole and lessen the likelihood of future collapse.  

 

 

3.6 Results and Discussion 

3.6.1 Normalizing CPT Data 

Trends in the Qtn data curves were consistent throughout each test: that is, lower values of 

qc encountered at shallower depths resulted in larger values of Qtn, and adversely, lower values of 

qc found at deeper depths resulted in much lower values of Qtn (shown in Figure 3-10) This is 

expected since as depth increases, so will the total and effective stress values. Further trends of 
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normalization data within sinkhole active sites were noticed and discussion of such implications 

to sinkhole detection are presented in Chapter 4 of this thesis. The normalization equations for tip 

resistance and friction ratio require knowledge of soil densities to determine the effective and total 

stresses at each depth increment.  For this study, the assumption of a saturated soil unit weight of 

110 lb/ft3 was used. 

 

 

Figure 3-10: SPT-CPT correlation boring showing effects of normalization in CPT data. 
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A sensitivity analysis was performed to identify the range of calculated Qtn with depth 

when various unit weights are used to determine the needed stress inputs.  Figure 3-11 presents an 

example CPT from the Wekiva parkway project in which Qtn was calculated using three different 

saturated unit weights.  The three saturated unit weights (90, 110, and 130 lb/ft3) represent the 

typically encountered range of soil densities found within the cypresshead formation’s sandy soils.  

Shown in Figure 3-11, the range Qtn corresponding to the range of saturated soil unit weights was 

found to be relatively small in the soil raveling zones. Also, the resulting normalized friction ratio 

(FR) seems to have less of a dependence on soil unit weight at all depths.  

 

Figure 3-11: Effects of estimating unit weight on values of Qtn and FR; focus on suspected 

raveled zone 
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3.6.2 Filtered CPT Data 

The filtering procedure performed on the CPT data greatly decreased the amount of 

unwanted data in the raveling analysis.  Figure 3-12 shows the resulting data histograms before 

and after filtering. A result of normalization within tip resistance is also apparent when comparing 

part (a) and part (b) in Figure 3-12. Within the raveled zones, there is a much higher frequency of 

low Qtn values than in the measured tip resistance values (qc) in the same tests. All three histograms 

show the CPT data performed within these sinkhole sites follow a log-normal distribution. After 

filtering of non-raveled soils, and of any encountered “spikes” in the raveled zone, the typical 

range of qc and Qtn values have shown to be within the values of [2 – 32 TSF] and [0 – 26], 

respectively.  This finding suggests that raveled soils may produce tip resistances (qc) larger than 

10 TSF, which is the current practice for detecting raveled material in central Florida, as suggested 

by Gray (1994). Likewise, an identified range of encountered sleeve friction (fs) values, within 

raveled soils, is shown to be within approximately [-0.5 – 1.0 TSF]; which has yet to be established 

for central Florida soils. 

 By viewing the histograms of data, CPT data parameters can be compared on a more 

precise scale within the raveled soils at known active sinkhole sites.  Comparison between Qtn and 

their respective fs and FR values can be viewed on a scatter plot, shown in Figures 3-13 and 3-14.  

Since the values of Qtn are normalized with encountered depth (z), comparison can be made 

regardless of raveling zone thickness or depth to encountered raveling.  
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(a) Histograms of CPT measured tip resistance (qt) data after filtering 

 
(b) Histograms of CPT normalized tip resistance (Qtn) data after filtering

 
(c) Histograms of CPT measured sleeve friction (fs) data after filtering 

 

Figure 3-12: Effects of normalization and filtering of CPT data at Wekiva Parkway 
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Figures 3-13 and 3-14 show the filtered CPT data obtained from the three verified sinkhole 

sites (left), as well as the filtered CPT data obtained from the suspected sinkhole active site at the 

Wekiva Parkway (right).  From the figures, we see strong comparisons between the collapse site 

data and the Wekiva Parkway data for both Qtn, fs, and FR. The only noticeable discrepancy 

between the Wekiva data and the sinkhole collapse site data is the negative sleeve friction values 

measured at the bridge area within the Wekiva Parkway.  The negative sleeve friction data was 

measured at a certain depth within several CPTs performed close to each other; suggesting it is a 

result of an isolated soil horizon found at the Wekiva Parkway. Further conclusions regarding the 

negative fs values were unclear due to the lack of case histories showing this CPT anomaly in the 

literature. Practicing engineers in central Florida and CPT operators were both uncertain why there 

exists such large layers of negative skin friction values in central Florida. Both agree that it could 

be a result of calibration issue within the cone sensors, but also agree that further investigation 

should be performed to identify if there are any correlations of negative skin friction layers with 

sinkhole formation/raveling. 

 

Figure 3-13: CPT raveled data after filtering at study sites (Qtn vs fs) 
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Figure 3-14: CPT raveled data after filtering at study sites (Qtn vs FR) 

Normalizing the friction ratio for soils with very low tip resistance was determined to problematic 

due to the resultant large number outliers. This result is shown in Figure 3-14 by the large scatter 

of FR values as Qtn approaches zero.  The normalization equation used for friction ratio has the 

measured tip resistance (qc) in the denominator.  Therefore, when qc decreases, the resulting FR 

value will increase, especially when qc is less than one.  These outliers within the FR data never 

encountered within SBT correlation and CPT data normalization literature review.  Therefore, the 

charts developed in this study to identify raveled soils exclude FR values and are only developed 

using Qtn and fs data.  However, the presence of a large-number “spikes” within the normalized 

friction ratio was found to be congruent with SPT data suggesting sinkhole formation; discussed 

in further detail in Chapter 5.  

 The similarity of CPT data between the known raveled soils at the sinkhole active sites and 

the suspected raveling zones within the Wekiva Parkway project allowed the author to combine 

all the sites as whole “raveled data-set”.  Now, out of the 125 total CPTs in which were included 

in this study, 107 show signs of raveling soils which suggest sinkhole activity is being encountered.  
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Therefore, 18 CPTs performed (all at the Wekiva parkway site) did not encounter any soft soil 

anomalies.  These CPTs still showed similar stratigraphy trends within the competent layers of 

soil, however, at depths where the raveling would start, the “safe” CPTs would either hit a refusal 

layer or a layer exhibiting qc values of larger values. Figure 3-15 presents such an example of two 

CPTs performed at Wekiva site with similar curves in the competent soils yet a drastic decrease in 

qc for one of the tests at a depth where the hawthorn group should be encountered (CPT-55). The 

normalized tip resistance and sleeve friction data from the 18 “safe” CPTs was plotted over the 

respective data from the filtered “Raveled” CPTs that from both Wekiva, and sinkhole active sites.  

No filtering was performed on the “safe” CPTs since there was no defined raveling zone within 

these tests.   

 

Figure 3-15: Example of "safe" CPT and "Raveled" CPT qc curves 
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A clear distinction between the two data groups is apparent in both the Normalized tip 

resistance (Qtn) and the sleeve friction (fs) values. The normalized tip resistance data was plotted 

in log scale since most of the data was within the values of 1 to 5. As shown in Figure 3-16, there 

is a significant amount of overlapping scatter between the two groups for fs in the approximate 

range of [0 – 0.5 TSF] and Qtn in the approximate range of [5 -12]. These ranges are believed to 

be data collected in the partially disturbed hawthorn group of soils.  Verified by SPTs and CPTs 

performed at sinkhole collapse sites, it is common to find a transitional zone of partially raveled 

material with decreasing qc values tapering into the raveled zone. This area is believed to be the 

“front lines” of internal erosion and is held intact by residual cohesion forces. Physical sinkhole 

modeling performed in the lab has shown similar results when re-creating a cover-collapse 

sinkhole (Perez, Nam, Chopra, & Sallam, 2017). 

 

Figure 3-16: CPT data scatter from all sites of both raveled and “safe” tests (Qtn vs fs) 

 

0.1

1

10

100

1000

-0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
o

rm
a

li
ze

d
 T

ip
 R

e
si

st
a

n
ce

, Q
tn

Sleeve Friction, fs (TSF)

ALL sites: CPT data Raveled

Safe CPTs



55 

 

Conceptual profile of collapsed 

sinkhole: 

 (1): sinkhole opening 

 (2): debris mound 

 (3): raveled soil “void” 

 (4): partially raveled soils 

 (5): limestone bedrock 

 

Figure 3-17 presents an example CPT performed approximately ten feet north of a collapsed 

sinkhole opening at the US27 Lake County site.  Extremely low resistance soils were encountered 

at a depth of 60 feet with a gradual decrease in qc starting at approximately the 30-foot mark.  A 

conceptual 2D profile of the sinkhole is shown as well in the figure with approximate location of 

CPT performed.  

  

 

Figure 3-17: CPT performed near collapses sinkhole showing raveling stages within the qc curve. 
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3.6.3 CPT-based raveling Chart 

The comparison of raveled and safe CPT data shown in Figure 3-16 was used to develop a 

CPT-based raveling chart for central Florida sites existing within the Cypress head formation of 

residual soils. This chart, shown in Figure 3-18, was developed as a tool to identify potential 

raveled soils from Qtn and fs values obtained from CPT tests.  The category envelope lines were 

created by approximating the ranges of data scatter from the “safe” CPTs and “raveled” CPTs and 

the overlapping section believed to be partially raveled (or transitional) soils.  

 

 

 

Figure 3-18: Proposed raveling chart using CPT data (Qtn vs fs) in cypresshead formation 

(Central Florida) 

1: Raveled soil 

2: Partially raveled soil 

3: Competent soil 

4: Out of range (non-raveled) 

5: Out of range (raveled) 
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CPT data within stage 4 is believed to be non-raveled silty clay soils based on review of 

CPT soil correlation literature (Schmertmann, 1978) (Riaund & Miran, 1992). Stiff, over 

consolidated clayey soils are not encountered in the central Florida geology which the study sites 

were located in. Therefore, no data was obtained within these Qtn, fs ranges. Further investigation 

should be performed in other geologic conditions to better establish a soil type in this category.  

Like stage 4, stage 5 is also out of the range of our data set. Although some negative skin 

friction values were encountered, the exact origin of the negative skin friction could not be 

correlated to sinkhole formation with complete certainty due to the lack consistent data in this 

range.  However, any encounter of significant ranges of negative skin friction values, especially if 

testing in central Florida’s karst regions, should warrant additional investigation to determine if 

the anomalous data is caused by an internal void or by improper cone calibration.    

3.7 Conclusions 

The information presented within this chapter provides an extensive look into the specific 

CPT data collected within known sinkhole active sites and suspected sinkhole active sites.  CPTs 

performed in response to three separate sinkhole occurrences in central Florida were analyzed and 

correlated to a project site, also in central Florida, which had several potential sinkhole anomalies 

identified by subsurface testing.  Although no subsidence or collapse has been detected at the 

Wekiva parkway site, the suspected raveled soils encountered there showed strong resemblance in 

CPT data to the verified raveled soils at the collapsed sinkhole sites.  After normalization and 

filtering of raveled soil CPT data, further conclusions could be established regarding methods to 

identify raveled soils using CPT.  
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A summary of finding from this chapter are as follows: 

 The criteria of identifying raveled soil zones using the CPTs was updated by incorporating 

values of sleeve friction along with tip resistance. Table 2 compares the current practice 

for identifying raveled soils and the proposed raveling identification criteria based on CPT 

data. Further investigation should be performed in other geological formations within 

central Florida to validate these findings.  Also, additional CPTs performed within known 

sinkhole sites should also be incorporated to this study as they occur in the future. 

Correlations between measured and normalized friction ratios can also be established with 

further investigation. 

 A CPT based raveling chart was created from trends in the Qtn and fs values measured 

within raveled soils in Central Florida’s cypresshead soil formation. Plotting scatter CPT 

data of Qtn vs fs values from questionable CPTs performed within this specific geology 

can be used as a tool to identify potential raveled soils. This chart can help assess a risk 

of future sinkhole during site characterization by correlating any soft soils at a potential 

sinkhole site, with those obtained from a site with known sinkhole activity (i.e historical 

collapse)   

Table 2: Summary of current and proposed raveled soil detection criteria using CPT parameters. 

Measured cone 

resistance, qc 

Normalized Cone 

Resistance, Qtn

Measured sleeve 

friction, fs

Foshee & Bixler (1994) Karst Central Florida < 10 TSF - -

This study
 Karst Central Florida 

(cypresshead formation)
-  < 26 < 1.2 TSF

CPT Parameters

Source: Region
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CHAPTER 4: ASSESSMENT OF SINKHOLE HAZARD BY CONE 

PENETRATION TEST 

4.1 Introduction 

The object of this chapter is present techniques of assessing risk of sinkhole formation by 

analysis of CPT data performed in central Florida.  Much of central Florida exhibits signs of karst 

geology in which soluble, porous limestone underlays varying layers of sand and silts.  During the 

subsurface exploration at project sites in central Florida, SPTs and CPTs commonly exhibit layers 

of abnormally loose or soft soil directly above the limestone interface.  As discussed in detail in 

Chapter 2, these soil layers are suspected to be eroded due to soil migration downward into the 

cavities of the bedrock.  This internal erosion is identified as raveling by many engineers in central 

Florida.  CPTs and SPTs performed in and around collapsed sinkholes in the past have shown this 

similar trend in data, suggesting raveling identification could be a method of identifying a forming 

sinkhole before any subsidence may be prevalent on the surface.  However, simply identifying 

areas with soil raveling does not provide enough information for engineers to fully assess the risk 

of sinkhole collapse on a specific site.  In this chapter, specific data analysis tools are presented 

which will allow geotechnical engineers in central Florida to better understand the severity of 

raveling and subsequent sinkhole risk by only using cone penetration data. Such tools discussed 

include both single testing procedures, and group or cluster of CPTs to better understand the 

expanse or shape of problematic soils.  
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4.2 CPT-Based Sinkhole Assessment 

4.2.1 Point-based Method (1D profile) 

The presented in this portion is a method of analyzing a single CPT tip resistance curve to 

identify the severity of encountered soil raveling.  As discussed earlier in this thesis, a 

normalization procedure was imposed on all CPT qc and Rf data to allow for comparison between 

the project sites with different overburden soil thicknesses.  Normalized tip resistance (Qtn) and 

normalized Friction ratio (Fr) were obtained by following the equations below and are both 

corrected for total and effective stresses assumed at the depth data was collected.  Further 

discussion on assumptions and normalization technique can be found in chapter 3.4.2.1.    

Normalized cone resistance,  

𝑄𝑡𝑛 = (𝑞𝑐−𝜎𝑣𝜎𝑣′ )0.65  (1) 

Normalized friction ratio, 

𝐹𝑟 = ( 𝑓𝑠𝑞𝑐−𝜎𝑣) ∗ 100   (2) 

 

 When applying equation (2) to CPTs exhibiting large raveled zones, an obvious anomaly 

was noted within the Fr values within the raveled ranges. As shown in Figure 4-1, the normalized 

friction ratio (FR) curve spikes drastically in CPT-55 at a depth of about 80 feet, whereas the 

measured friction ratio (RF) curve does not.  The “positive to negative” spiking trend remains 

steady until the approximately 110 feet in depth; coincidently the same depth the raveled material 

stops. The reason behind this is noticeable trend can be seen in equation (2).  

 



61 

 

 
 

 
 

Figure 4-1: CPT showing drastic spiking in FR data within raveled zone. 
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At these depths, the total vertical stresses (σv) estimated are larger, or near in value, to the 

measured cone resistance values (qc); thus, creating a negative value for FR.  The change in data 

from positive to negative values, and vice-versa, are then accentuated by the denominator in 

Equation (2) being much smaller than the measured friction ratio so that 𝑞𝑡 − 𝜎𝑣 ≪ 𝑓𝑠.   

 The important thing to note here, is that at a depth, and at a certain measured tip resistance, 

equations (1) and (2) will yield negative values for Qtn and FR, respectively.  If we assume all soil 

stresses are in equilibrium, in theory, the measured tip resistance should not be less than the total 

vertical stress created by the overburden soil column, at that depth.  Although the shearing behavior 

created by the 60° cone tip is not fully understood, we are still able to assume that given a typical 

stress profile of soil, the measured resistance value (qc) should be greater than or equal to some 

unknown function of the summation of the horizontal and vertical insitu stresses; that is 𝑞𝑐 ≥𝑓(𝜎𝑣 + 𝜎ℎ). If these values of normalized tip resistance yield negative values, there is a strong 

possibility that the encountered soil is being eroded and the vertical stresses are being transmitted 

through the soil plane through an arching effect in order to maintain equilibrium.  This conceptual 

phenomenon was proposed by Terzaghi et. al (1943) and detection of such by CPT-qc curves was 

first presented by Schmertmann (1978). Figure 4-2 presents this theory by showing the conceptual 

stress profiles in typical undisturbed soils, and in soil with arching.  Arching will transmit the 

vertical stresses (𝜎𝑣) laterally through the soil, increasing the experienced horizontal stresses (𝜎ℎ) 

directly above the loose zone of soil. Further study into the shearing behavior caused by the cone 

tip would help verify this assumption of stress behavior correlation to qc values.  
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Figure 4-2: Conceptual stress profiles in undisturbed and raveled granular soils with arching 

phenomenon 

 The negative normalized values encountered in CPT-55 (figure 4-1) was not an isolated 

incident, ruling out cone sensor calibration error as a possible source of the anomaly.  When 

looking more closely at the raveled Qtn curve in Figure 4-1, there are some depths in which the 

measured cone tip resistance is approaching zero, but the resulting Qtn value is still positive. The 

current accepted practice of identifying raveled soils is encountering a layer of qc values below or 

near 10 TSF, as suggested by Foshee and Bixler (1994).  This criterion may not yield accurate 

results if the encountered raveled layered is at a shallow depth and may be stiffer than the measured 

values suggest—as shown in the normalization procedure.  

Therefore, by analyzing the normalization equation and observing data trends with depth, 

a critical depth can be determined at which the Qtn equation (1) will yield negative results for 

various values of qc.  The critical depth analysis was performed by first assuming a constant qc 
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value with depth.  Soil saturated unit weights ranging from 110 to 125 lb/ft3 were used to estimate 

the vertical effective and total stresses used in equation (2), and were based on the typically 

encountered values in central Florida residual sandy soil (Professional Services Inc., 2014).  The 

resulting “critical depths” for each input qc value were plotted and trends were quickly developed.  

As expected, the critical envelopes created for each estimated saturated unit weight, followed a 

linear trend, presented in Figure 4-3.  These lines represent the envelope of which the measured qc 

value obtained from CPT, will be yield either a positive or a negative value of Qtn.  Since most qc 

data in the raveled zones are between 0 and 10 TSF, a log-scale was used for the x-axis.  Depth 

was also presented in log-scale then to keep linearity in the envelopes.  

 

Figure 4-3: Critical depth and qc envelopes which will yield negative Qtn values. 
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Figure 4-4: (a) CPT-based raveling severity chart for qc. (b) example of plotted qc curve from 

sinkhole site showing critical depth which cone was lost due to severe raveling. 

 

The updated raveling identification criteria presented in chapter 3.7 of this thesis was used 

to set the qc bounds presented in figure 4-4. The three envelopes for each assumed soil unit weight 

were compressed to form the single red line shown in Figure 4-4. This chart can be used to further 

classify encountered raveled soils based on their severity of raveling.  Over time, the erosion and 

soil grain migration will weaken the overburden soils.  Assuming a steady rate of erosion with 

respect to the many years it may take to form a sinkhole, we can declare that soil showing more 
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when qc is plotted with depth from a single CPT.  Figure 4-4b helps with verification of the 

proposed chart. In this figure, a CPT performed at the Deland 15A sinkhole site is plotted on the 

Raveling Severity chart.  This specific CPT is unique in the fact that the test was terminated 

prematurely due to loss of the cone tip.  During penetration, the cone sensor and pushing rods fell 

abruptly into the ground; not able to ever be recovered. Since this test was performed within 25 

feet of a collapsed sinkhole, the abrupt fall of CPT rods was suspected to be due to penetration 

through the sinkhole void.  However, a subsequent test performed within a few feet of the lost cone 

– and performed with much greater caution—measured resistance values, although extremely 

small, past the depth at which the previous cone was lost.  This suggests that although there is no 

100% air or water void at these depths, the soil within this zone is so raveled that it lacks any 

sufficient strength characteristics.  The cone in the first test was lost at a depth of 42 feet, 

coincidently right as the qc curve crosses the raveling severity envelope (shown in Figure 4-4).  

Although the qc curve crosses the envelope before this point at a depth of approximately 13 feet, 

the curve quickly comes back to the “partial to mild raveling” section of the chart, suggesting that 

the thickness of severe raveling may also be indicative of sinkhole risk. Although strong 

correlation between the proposed raveling severity chart and a “severe” case CPT from an active 

sinkhole site was identified, this chart should still be used with caution as a tool for assessing 

sinkhole potential at central Florida specific sites based on a single CPT-qc curve.   

4.2.2 Area-based method (2D subsurface imaging) 

If many initial CPTs show signs of severe raveling, and especially if the subsurface 

exploration tests are for design of a shallow foundation structure, then additional clusters of CPTs 

may be performed to identify the boundaries of the sinkhole anomaly.  By viewing and comparing 
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clusters of CPT data within relatively proximity to each other, trends in soil stratigraphy can be 

more quickly established over a specific area within a project site.  Since CPTs provide a great 

amount of data with depth, by combining multiple CPTs performed in a line, a high resolution 2D 

profile can be quickly developed to map the encountered bedrock elevations or the 

severity/thicknesses of raveled zones.  Using CPT 2D imaging can also identify the pinnacles and 

“valleys” of the limestone surface, which are believed to be formed due to subterranean 

groundwater erosion and may be related to sinkhole formation.  

In this study, 2D images of suspected sinkhole formations were created for the Wekiva 

parkway project site, presented in chapter 4.4.  The images were developed by first creating 

matrices for each CPT performed in each cluster; consisting of qc versus penetration depth.  A 

MATLAB surface plotting code was then used to create the profiles based on multiple CPTs 

performed on a line.  The surface plot uses linear interpolation between each CPTs’ qc value 

measured at the same depth.  The linear interpolation creates a “staggered” look in the plots and is 

most likely not the most accurate representation of the soil profile.  However, the resulting profiles 

(shown in Chapter 4.4) offer further information on the connectivity of the raveled zone as well as 

trends in over burden soil strengths, that an isolated CPT cannot provide.  Measured tip resistance 

(qc) was used since this technique was only imposed to view trends in soil stratigraphy within a 

certain area of a project site.  If using this technique to compare the severity of raveled zones from 

one site to another, Normalized tip resistance (Qtn) should be implemented instead.    

One of the limitation of CPTs, discussed in earlier chapters, is its inability to penetrate 

through very dense layers.  The maximum density of penetrable soils decreases greatly when 

attempting to push the CPT tip through hard layers directly below a layer of very loose soil (such 
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as raveling).  Structural buckling can occur in the slender pushing rods due to the lack of horizontal 

support within the raveled sections.  Therefore, CPTs are often terminated at the slightest sign of 

drastic increase in qc after the raveled zone is encountered.  This could result in misinterpretation 

of stratigraphy, suggesting the bedrock is starting at a certain elevation when it could just be 

penetrating through a thin layer of dense clay or lime-silts.  Because of this limitation, it is 

imperative that SPTs be performed within the CPT clusters to understand the general stratigraphy 

and soil types within the project site.  For the 2D subsurface profiles created at the Wekiva site 

(chapter 4.4) the CPTs were assumed to terminated at the limestone bedrock, and that the 

encountered bedrock is competent and null of any voids or cavities.  We know this is not the case 

for karst terrain in Central Florida.  However, the main purpose of the 2D profiles are to identify 

trends in the residual fine-grained soils (i.e. raveling), not the bedrock properties.        

4.3 Index for Sinkhole Hazard Assessment 

The proposed charts and methods presented earlier in this thesis provide tools for 

estimating the severity or risk of sinkhole forming soils encountered within a project site.  

However, these procedures lack a quantitative value in which comparison between other project 

sites can occur. Therefore, an investigation of the current, and newly proposed index, system for 

characterizing sinkhole risk in central Florida was performed and discussed upon in the next 

chapters.  These indices were both developed using the measured cone resistance (qc) values and 

stratigraphy estimations from a single CPT. The resulting indices allow geotechnical engineers to 

compare a single point-based CPT test, or when grouped with nearby CPTs, can be mapped to 

pinpoint the expanse of a forming sinkhole on a spatial (latitude vs longitude) map.   
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4.3.1 Raveling index (RI) 

The Raveling Index (RI), suggest by Foshee and Bixler (1994), can be a useful tool to 

evaluate the sinkhole risk by using a CPT.  The index is defined as the thickness of the raveled soil 

layers divided by the depth to the top of the raveled zone. This ratio gives a relative indication of 

the degree of erosion which has occurred in the overburden sandy soils encountered in Central 

Florida.  Raveling index equation is shown below (3) and further details regarding development 

index can be found in chapter 3.3 of this thesis.  

𝑅𝐼 = ( 𝑡𝑟𝑎𝑣𝑒𝑙𝑡𝑜𝑣𝑒𝑟𝑏𝑢𝑟𝑑𝑒𝑛)  (3) 

Although useful, this index has numerous limitations which inhibit its ability to be used for 

a site to site comparison. The two major limitations are presented below: 

 No consideration of qc spikes: Since the Raveling index is a simple ratio of estimated layer 

thicknesses, there is no consideration for the actual average value of qc within the raveled 

zones or the over burden layers.  As shown in chapter 3.4.2.2, raveling soil layers may still 

produce isolated “spikes” in the qc curve as the cone encounters suspended phosphates or 

pockets of denser material.  Although these spikes may not increase the total strength of 

that particularly raveled soil layer by much, the presence of such material still can indicate 

the progression and severity of the raveling phenomena.    

 Not sensitive for depth of encountered raveling: The raveling index provides a value 

correlated to the % of overburden that has been raveled.  Therefore, it is common to get a 

value for RI for a variety of different encountered soil raveling thicknesses which may 

result in various sizes of sinkholes.  For example, an encountered 2-foot-thick raveled zone 

with 10 feet of competent, overburden soils will produce a RI value of 0.2. The resulting 
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sinkhole in this case, if collapse occurs, may only be a few feet in diameter. If another site 

has an encountered raveling zone of 10 feet thick, with 50 feet of overburden soil, the 

resulting RI value will also be 0.2, but resulting sinkhole will most likely be of a much 

greater size.  

With these limitations in mind, a new sinkhole-risk related index was developed to be used in 

congruent with CPTs performed in central Florida.   

4.3.2 Sinkhole Resistance Ratio (SRR) 

A proposed update to the raveling index was developed in the form of a resistance ratio.  

Coined by the authors as the Sinkhole Resistance Ratio (SRR), shown in equation (4); the larger 

the SRR, the less likely there is of sinkhole formation resulting from that CPT performed.  The 

lower the SRR, the more risk there is of sinkhole occurrence within the encountered stratigraphy.  

Sinkhole Resistance Ratio (SRR),  

𝑆𝑅𝑅 = ( 𝑡𝑜𝑣𝑒𝑟𝑡𝑟𝑎𝑣𝑒𝑙) (𝑞𝑜𝑣𝑒𝑟+𝑞𝑟𝑎𝑣𝑒𝑙100𝜎𝑣𝑜′ )  (4) 

Where:  qover  =  Average measured cone resistance in overburden, competent soils (TSF) 

qravel  =  Average measured cone resistance in raveled zone (TSF) 

tover = Depth to encountered raveled zone (i.e. thickness of overburden soil) (ft). 

  travel = Thickness of raveled zone (ft) 

  𝜎𝑣𝑜′  = Effective vertical stress created from overburden soils (TSF) 

To account for the uncertainty of determining the exact depth at which the raveling zone 

may start (i.e the transition or partially raveled soils), the average values for qc are used in analysis 

for over burden and raveled soils.  Stability analysis of subterranean using finite element modeling 
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suggests that an increase in both the overburden soil and the raveled soil strength, will decrease 

the likelihood of collapse. Therefore, both factors are included in the numerator of equation (3). 

Likewise, the larger the competent overburden soil thickness is, the greater possibility of arching 

to support the loose soils underneath, thus delaying the possibility of collapse.  Adversely, the 

larger the encountered raveled thickness, the greater risk of collapse, therefore this term is in the 

denominator.  The vertical effective stress calculated at the top of the raveled zone is meant to 

create a normalization with depth. The values of stress in TSF is relatively small (1 – 3) compared 

to the measured tip resistance values (10 – 300), therefore this parameter has little influence on the 

SRR and is primarily used as a normalization factor.  However, not only is it necessary to create a 

dimensionless SRR number, but the deeper the raveling void is encountered, the greater the 

calculated 𝜎𝑣𝑜′  will be, thus decreasing the value of SRR. Deeper voids have a larger potential of 

forming a large diameter sinkhole on the ground surface, as proven in FEM and in the case history 

of sinkhole occurrences. Figure 4-5 presents an example calculation from a CPT performed at 

US27 Polk county sinkhole.   
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Figure 4-5: Example of how to obtain SRR from CPT. 

 

To obtain the vertical effective stress at variable depths, a correlation equation was used to 

determine the estimated soil saturated unit weight of the stratigraphy at each depth the CPT records 

data. The correlation equation (5) is empirically based and suggested by Robertson and Cabal 

(2010).  Caution should be used when using this correlation to unit weight with regards to the type 

of this equation is calibrated on.   

Saturated soil unit weight: 

𝛾𝑠𝑎𝑡 = 𝛾𝑤[0.27[log(𝑅𝑓)] + 0.36 [log (𝑞𝑐𝑃𝑎)] + 1.236] ∗ 𝐺𝑠2.65  (5) 

𝑆𝑅𝑅 = [(100′40′ ) ∗ (58.3 + 9.9 2.74 ∗ 100 )] 𝑺𝑹𝑹 = 𝟎. 𝟔𝟐𝟐 
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Where: 𝛾𝑤 = unit weight of water [62.4 lb/ft3] 

 Rf = Friction ratio obtained from measured CPT data 

 qc = measured tip resistance (TSF) 

 Pa = atmospheric pressure (TSF) 

 Gs = specific gravity of soil  

Using this correlation equation, we assume quartz-based soil having a specific gravity of 2.65. Also, the 

average atmospheric pressure in Central Florida is approximately 30 mmHg; which corresponds to 0.04 

TSF, used in equation (5).  

 By applying this equation at each depth increment from the CPT data, we can develop 𝛾𝑠𝑎𝑡 vs depth 

charts allowing us to see how soil density changes with depth.  Each CPT from the wekiva parkway site 

was input and unit weight curves were developed, shown in Figure 4-6. Apparent from the figure, there 

exists a large amount of scatter within the CPT tests, however a general trend also can be seen if the outlier 

(spikes) are ignored. This trend is shown by the dotted red line the figure. We see that the estimated 

saturated soil unit weights range from 90 to 130 TSF within the depths of 0 to 60 feet. Then after 

approximately 60 feet in depth, the scatter becomes too large to recognize any trends. As one would expect, 

60 feet is the typical depth at which the raveling soils start, suggesting that equation (5) is not calibrated 

correctly for these disturbed zones.  Shown in the right side of Figure 4-6 is the calculated vertical effective 

stress versus depth.  This plot shows a much more consistent trend within the CPTs at Wekiva, even though 

it was created using the saturated unit weights obtained from equation (5).  However, at approximately 60 

feet in depth, the effective stress of some CPTs remains constant as depth increases, which corresponds 

with the very low values of soil unit weight. A depth to water table of 10 feet was used for calculation of 

the effective vertical stress for each CPT, which is the typical depth provided in the SPT boring logs.   
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Figure 4-6: Soil saturated unit weights calculated using equation (5) and subsequent vertical 

effective stress with depth for Wekiva CPTs. 

 

4.4 Case Study (Wekiva site) 

An assessment of sinkhole formation risk was performed for the Wekiva Parkway SR 46 

connector site, discussed in chapter 3.5.1, using the CPT-based indices and imaging methods 

discussed earlier in this chapter.  The risk assessment was performed on three specific areas within 

the Wekiva site, in which clusters of CPTs were performed and additional mitigation techniques 

were decided upon by FDOT engineers due to indication of raveled soils from the initial subsurface 

exploration.   

0

10

20

30

40

50

60

70

80

90

100

110

0 1000 2000 3000 4000 5000

s‘v (pcf)

FDOT-7 CPT-37 CPT-38 CPT-39 CPT-40 CPT-41 CPT-42 CPT-43

CPT-44 CPT-45 CPT-46 CPT-47 CPT-48 CPT-49 CPT-50 FDOT -5

CPT-8 CPT-9 CPT-10 CPT-11 CPT-29 CPT-30 CPT-31 CPT-32

CPT-33 CPT-34 CPT-35 CPT-36 CPT-6 FDOT-1 CPT-5 CPT-12

0

10

20

30

40

50

60

70

80

90

100

110

70 80 90 100 110 120 130 140

D
e

p
th

 (
ft

)

gsat (pcf)
Wekiva Parkway 𝜎𝑣′  (psf) 



75 

 

 

Figure 4-7: Mitigation zone layout at the Wekiva Parkway study site 

A total of 55 CPTs were used for this assessment and values for Raveling index and the proposed 

Sinkhole Resistance Ratio numbers were calculated and compared for each test. Each CPT was 

performed on virgin ground, prior to any construction of the roadway or bridges shown in the 

Wekiva parkway CPT layouts in this chapter. 2-D profiles of CPT tip resistance values (qc) were 

created at each CPT cluster, to view the estimated expanse of the soft soil anomalies and to 

determine if it fits the characteristics of a forming sinkhole.  The suspected raveling profiles were 

developed using multiple CPTs performed on a line. Distance between the CPTs were determined 

by the given latitude and longitude coordinates of each.  Ground surface elevation of each test was 
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not provided; therefore, the qc profiles are presented as penetration depth in the y-axis.  

Topography maps of the project area show very slight ground surface elevation change, and since 

each test is performed within a spatial distance of less than 300 feet, it is safe to assume any 

elevation change will be relatively small when compared to the penetration depths of each test (60-

120 feet) The three areas analyzed for this case study are presented in Figure 4-7.   

4.4.1 Zone 1 – Geotextile area 

Zone 1 consists of 20 CPTs and 2 SPTs performed for a planned bridge approach single 

lane road next to a small natural pond.  Tests performed within proximity to the water feature have 

the largest layers of suspected raveled soils. The calculated Raveling Indices for this zone ranged 

from 0.11 to 0.92, as shown in Table 3. The resulting SRR numbers for this zone ranged from 5.23 

to 0.34. Two interesting facts arise when comparing the two indices from this zone: One being that 

the CPT corresponding to the largest RI calculated (CPT 45) is different from the CPT 

corresponding to the smallest SRR value (FDOT-5), and two, that there are several instances where 

the calculated RI values are the same number.  This is explained when looking at the qc values for 

the two tests. Although CPT-45 has a thicker raveled zone, the average value for qc in both the 

overburden and the raveled layers are larger than those in FDOT-5. The smaller qc values within 

the raveled zones suggest further progression of internal erosion. The smaller qc values within the 

over burden soils suggests a larger presence of transitional raveling in this layer, or suggests the 

lack of soil arching stresses which would increase the stability of the soft soil underneath. Both 

cases increase the risk of sinkhole formation but are not included in the Raveling Index formula.  

Figure 4-9 shows the subsurface stratification of line R-R’ using the CPT qc values.  From 

this figure, we see a lack of apparent “bowl” shape, usually indicative of a forming sinkhole void.  
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Surface contouring of the calculated RI and SRR values within this zone also does not provide any 

clear indication of concentrated areas with more severe RI or SRR values.  However, the 

encountered soft soil layers do seem to connect in some form, as shown from CPT-40, 42, and 45.  

This information can be used as a tool to establish risk of future sinkhole formation for this project.  

 

 

Figure 4-8: CPT cluster and Profile line for Zone 1. 

R

R’
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Table 3: Zone 1 raveling characteristics from each CPT 

 

 

Figure 4-9: Raveling soil profile for line R-R' under Zone 1. 

Zone 1 - Geogrid Area

CPT Overburden Raveled Overburden Raveled

CPT-45 48.9 45.1 53.24 19.18 1.589 0.92 0.49

FDOT-5 57.3 52.3 46.37 9.46 1.784 0.91 0.34

CPT-10 43.8 21.7 67.42 14.68 1.489 0.49 1.12

CPT-42 51.0 25.1 69.00 15.13 1.682 0.49 1.02

CPT-47 45.0 13.5 66.16 14.94 1.469 0.30 1.85

CPT-49 45.3 13.0 64.72 12.82 1.530 0.29 1.77

CPT-44 47.7 13.1 59.30 11.87 1.555 0.27 1.67

CPT-9 48.4 12.5 50.86 14.96 1.506 0.26 1.70

CPT-8 52.2 11.6 55.34 35.65 1.665 0.22 2.45

CPT-41 50.9 11.3 50.88 15.99 1.594 0.22 1.88

FDOT-7 46.6 10.2 78.23 12.20 1.602 0.22 2.59

CPT-40 48.6 10.0 59.09 17.83 1.583 0.21 2.36

CPT-46 44.0 8.7 50.16 11.65 1.456 0.20 2.14

CPT-50 45.0 8.4 80.17 12.71 1.512 0.19 3.30

CPT-43 47.4 8.5 51.43 13.75 1.534 0.18 2.36

CPT-39 43.5 7.7 76.90 14.66 1.486 0.18 3.47

CPT-37 44.3 6.1 46.66 14.81 1.436 0.14 3.12

CPT-11 54.0 6.7 70.70 14.67 1.699 0.12 4.03

CPT-38 45.3 5.1 74.73 14.63 1.531 0.11 5.20

CPT-48 42.8 4.6 59.23 23.25 1.466 0.11 5.23

Measured q c  (TSF) average RI           

[4]  

SRR         

[5]

σv'            

(TSF)

Thickness (ft)

CPT-37 CPT-40 CPT-42 CPT-48 CPT-10CPT-45CPT-8

qc (TSF)
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4.4.2 Zone 2 – Grouted area 

 

Figure 4-10: CPT cluster and profile line for Zone 2. 

A total of 12 CPTs were performed within approximately 0.27 acres surrounding a SPT 

boring (DB-2) that showed extensive ranges of WR conditions.  Many CPTs within this cluster 

showed large zones of raveling, with concentration of worst case tests in the center.  Because of 

the encountered raveling and the planned heavy-traffic lanes above, cement grouting was 

performed to mitigate future sinkhole collapse. 

Analysis of this zone suggests that grouting was a necessary precaution. Not only are there 

severe values of RI and SRR within this cluster, but grouping and imaging of CPT test data shows 

G G’
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a “bowl” shape of limestone bedrock, suggestive of a sinkhole void (Figure 4-11). Surface 

contouring of both RI and SRR strongly correlate with Figure 4-11, showing that the “worst-case” 

soft-soil anomalies are located within the center of the cluster and become less severe as it expands 

radially away (presented in Figure 4-12).  Also, shown in Figure 4-11 is an increase in qc measured 

in the overburden soils above the thickest raveled zone (see dashed ellipse). This increase in qc 

may be an indication of soil arching occurring out of plane of the figure. Although not certain, this 

trend is apparent in many subsurface profiles where the CPT encounters relatively thick layers of 

very low tip resistant soils.  

 

Table 4: Zone 2 raveling characteristics from each CPT 

Zone 2 - Grouted Area

CPT Overburden Raveled Overburden Raveled

FDOT-1 52.49 42.65 85.83 7.45 1.711 0.81 0.67

CPT-33 55.61 41.01 105.36 32.39 1.716 0.74 1.09

CPT-31 49.05 22.64 77.98 17.53 1.720 0.46 1.20

CPT-5 46.75 21.16 81.18 21.80 1.723 0.45 1.32

CPT-30 41.83 16.73 68.25 14.95 1.727 0.40 1.20

CPT-6 53.31 18.54 71.59 16.27 1.730 0.35 1.46

CPT-35 49.87 15.42 76.38 21.41 1.733 0.31 1.82

CPT-34 50.36 15.42 62.04 9.23 1.737 0.31 1.34

CPT-29 50.52 10.18 72.60 13.36 1.740 0.20 2.45

CPT-32 47.24 8.37 65.79 15.66 1.743 0.18 2.64

CPT-12 51.51 8.86 83.36 21.43 1.746 0.17 3.49

CPT-36 54.63 9.35 63.21 18.24 1.750 0.17 2.72

Thickness (ft) RI           

[4]  

SRR         

[5]

σv'            

(TSF)

Measured q c  (TSF) average
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Figure 4-11: Raveling soil profile for line G-G' under Zone 2 

 

Figure 4-12: Surface contouring of SRR from Zone 2 CPTs 

CPT-5 CPT-31 FDOT-1 CPT-34 CPT-12

qc (TSF)

G G’
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4.4.3 Zone 3 – Bridge area  

 

 

Figure 4-13: CPT cluster and profile lines for Zone 3 

 

Zone 3 consists of a cluster of 23 CPTs and 4 SPTs performed in an area with a planned 

bridge approach earth embankment. Due to the extensive raveling encountered in these tests, the 

original earth embankment design was changed to a single-span bridge, supported on a deep pile 

foundation. After grouting the anomaly in zone 2 had significantly exceeded the estimated costs, 

A

A’
C’

C
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FDOT engineers came to the conclusions that a complete redesign of this bridge approach would 

be the most economical and safest solution.  

Table 5 shows the raveling characteristics and calculated values of RI and SRR for each 

CPT within zone 3.  Similar trends can be identified in this zone that were noticed in the previous 

2 zones assessed.  The raveling indices range from 0.92 to 0.11 and the general decreasing trend 

of RI seem to correlate with the increasing SRR values (as shown in Table 5). However, in this 

zone, there are several cases where a CPT produces a SRR value of much less concern than the 

respective RI produces. Such an example can be seen in CPT 1-4. The RI calculated for this test 

is 0.39, which is above the average for this zone. The respective SRR calculated, however, is 3.70, 

which is clearly does not follow the trend of increasing SRR as RI increases (seen in the color 

representation of cells [4] and [5]. Much like zone 1, this is because the measured tip resistance 

values in CPT 1-4 are larger than other tests with the same encountered raveling thicknesses (i.e. 

CPT-62).  

Two created subsurface qc profiles from Zone 3 area presented in Figures 4-14 and 4-15.  

Figure 4-14 is the representation under line A-A, and shows the most significant change in 

encountered limestone depth and raveled soil severity.  Figure 4-15 is the subsurface profile under 

line C-C’, and shows much less variation in soil stratigraphy, although only approximately 90 feet 

away from line A-A’.  This large variation in encountered soil strength and stratigraphy is the 

perfect example of why a thorough site investigation is needed for projects within Karst Terrain.   
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Table 5: Zone 3 raveling characteristics from each CPT. 

Zone 3 - Bridge Area

CPT Overburden Raveled Overburden Raveled

CPT-51a 55.94 51.67 99.35 13.60 1.86 0.92 0.66

FDOT-8 68.41 54.46 134.51 25.84 2.14 0.80 0.94

CPT-23 67.42 46.26 129.55 14.13 2.17 0.69 0.96

CPT-55 72.83 40.69 121.94 9.60 2.41 0.56 0.98

CPT 1-1 44.78 21.82 133.22 21.22 1.37 0.49 2.31

CPT 1-2 51.67 21.66 82.42 19.79 1.73 0.42 1.41

CPT-62 37.73 14.93 128.55 16.62 1.40 0.40 2.62

CPT 1-4 43.14 16.74 165.77 26.43 1.34 0.39 3.70

CPT 1-6 43.80 15.26 86.73 13.72 1.36 0.35 2.12

CPT-24 42.32 13.95 112.70 18.80 1.34 0.33 2.98

CPT-53 48.72 14.60 95.80 8.01 1.65 0.30 2.11

CPT 1-3 54.30 16.24 115.59 33.92 1.74 0.30 2.87

CPT 1-7 35.76 9.68 119.11 17.17 1.42 0.27 3.55

CPT-58 37.57 9.35 112.64 17.72 1.33 0.25 3.95

CPT-54 39.21 9.51 122.96 21.39 1.43 0.24 4.15

CPT-61 42.65 10.01 104.91 10.93 1.48 0.23 3.32

CPT-52 58.23 12.31 104.48 14.68 1.95 0.21 2.88

CPT-18 50.52 9.68 80.84 24.81 1.69 0.19 3.26

CPT-56 65.94 12.14 129.68 25.32 2.23 0.18 3.78

CPT-22 52.49 7.71 88.80 27.30 1.70 0.15 4.64

CPT-60 51.02 7.21 115.04 17.54 1.73 0.14 5.42

CPT-57 42.32 4.76 123.07 13.62 1.49 0.11 8.13

CPT-59 58.23 6.40 100.86 22.35 1.94 0.11 5.77

Thickness (ft) Measured q c  (TSF) average σv'            

(TSF)

RI           

[4]  

SRR         

[5]
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Figure 4-14: Raveling soil profile for line A-A' under zone 3 

 

Figure 4-15: Raveling soil profile for line C-C’ under zone 3 

  

CPT-54 CPT-53 CPT-22 CPT-52 CPT-56 FDOT-8 CPT-51a

qc (TSF)

qc (TSF)

CPT-62 CPT-61 CPT 1-1 CPT-60 CPT-59
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4.5 Conclusions 

This chapter presented specific tools which can be used to analyze CPT results for 

assessment of sinkhole risk. The point based method can be used to estimate how severe the 

encountered raveling is and how much soil may simulate a void.  This technique requires 

assumptions of soil unit weight to correct the measured qc and Rf for overburden stresses.  The 

theory of soil arching stresses is also applied to this analysis; assuming the granular material above 

the void forms a structural arch to transmit the overburden stresses around the weaker layer. 

Although many assumptions were needed for development of the CPT-based raveling severity 

chart, the resulting chart predicted with great accuracy the depth at which a CPT sensor fell of the 

cone rods due to the extremely low-resistance soils it was penetrating through.   

Subsurface imaging was also presented as a tool for sinkhole risk assessment by viewing 

multiple CPTs along a profile line in a suspected sinkhole anomaly.  This technique can help 

identify areas with large variation in soil stratigraphy and resistance values which suggests the 

encountered soil in that area may be disturbed from its original formation.  Although only basic 

linear interpolation was performed for the subsurface profiling in this study, trends in the limestone 

interface and the raveled soils can still be identified and used to estimate the expanse of 

subterranean anomaly.  These profiles can then be accumulated for each area to approximate the 

best mitigation technique or to estimate the amount of mitigation needed to safely cover the 

problematic soils. 

Also in this chapter an update to the currently used Raveled Index was proposed. The 

coined “sinkhole resistance ratio” includes the influence of tip resistance values with the 

encountered thicknesses of the raveled and the competent overburden soils from CPTs.           
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Figure 4-16: Box and whisker plots comparing SRR and RI values for raveled, collapse, and 

“safe” CPTs performed at both Wekiva and the central Florida collapse sites. 

 

 

Figure 4-17: Histograms comparing SRR and RI values for raveled CPTs performed at Wekiva 

project 

The resulting index value provides the relative resistance to sinkhole formation from each 

CPT; that is, the higher the SRR, the less risk of sinkhole formation from the single CPT.  The two 

indices were compared for all CPTs at both the Wekiva parkway project and the sinkhole collapse 

study sites, shown in Figure 4-16.  When comparing the two groups of data, it is apparent that the 
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sinkhole collapse site indices are more severe than those at calculated from the Wekiva CPT 

raveled and “safe” data.  This is expected since, despite the evidence of raveled soil, no collapse 

or subsidence has been recorded at the Wekiva parkway study site.  The box and whisker plots in 

Figure 4-16 also suggests that the SRR index better represents the risk of sinkhole due to raveling 

collapse since upper and lower quartiles of data in the “safe” SRR values does not coincide with 

same range from the CPTs within the collapse sites. Adversely, the box and whisker plots showing 

the Raveling Indices from collapse and “safe” CPTs shows a large overlap of data between the 

two. Figure 4-17 shows a comparison of SRR and RI values at wekiva from the raveled CPTs in a 

frequency histogram chart.  Although limited by the number of CPTs and subsequent values for 

each index (55 tests), we see that the SRR histograms seem to be more normally distributed.  The 

distribution of SRR values will allow for a more accurate confidence interval to be set in future 

works, creating a method of comparing future CPT tests which may be performed at or near the 

Wekiva parkway project.  
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CHAPTER 5: SUMMARY AND CONCLUSIONS 

As discussed in the previous chapters, the work performed in this thesis was aimed in 

addressing sinkhole detection and risk assessment in central Florida’s karst terrain. Particularly, 

the main interest was to produce and evaluate methods in which CPTs can be implemented to 

better understand the risk, or severity, of any subterranean sinkhole formation.  These techniques 

can provide central Florida engineers a valuable tool when assessing sinkhole formation risk 

during site characterization or when determining what type of mitigation action should be 

performed for soil improvement—if any at all.  

The following is a summary of the methodology and resulting assessment tools presented 

throughout the study. 

In the literature review, central Florida’s geologic history and resulting characteristics are 

explained.  The review also includes an extensive description on the mechanism and formation 

of the different types of sinkholes commonly found in the central Florida region.  A brief 

background on Cone Penetration Testing is also presented with focus on the lack of current 

research performed on CPT data within Karst terrain.  CPTs, when used properly in conjunction 

with SPTs, are a much more reliable and quicker test and can aid in site characterization while 

decreasing the time needed for drilling.  Although severely limited by soil density, CPTs are ideal 

for detecting discrete soil horizons in central Florida’s silty and clayey fine sand over burden.  

The ability to detect slight changes in soil density with depth allow for a more accurate 

representation of soil stratigraphy from each test. Further analysis can then be performed to 

estimate the encountered soil type using SBT charts produced by past and current researchers.  

These charts, however, should be used in caution especially when testing in residual soils 
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underlain by karst bedrock with large amounts of groundwater flow.  The assumption that soil 

density increases with depth is not always the case in karst landscapes due to the internal erosion 

of overburden soils from the natural recharge of water into the deeper aquifers. That is why this 

study aims to develop methods to identify the eroded (raveled) soils which may cause potential 

excessive settlement or collapse in the future.   

Within chapter 3, the raveling mechanism and criteria is explained in detail. Also, briefly 

presented in this chapter is the current method used by Central Florida engineers to evaluate the 

potential of sinkhole formation from a single CPT qc curve; termed the raveled index by Foshee 

and Bixler in 1994.  The methodology of collecting and preparing the CPT data in this study is 

presented as well as a description of the geology of the four sites studied.  Since comparison 

between different sites is needed for this study, a normalization procedure was presented and 

followed based on the current CPT research literature.  The normalization of measured tip 

resistance values (Qtn) correct for overburden stresses, allowing raveled soils encountered at 

varying depths to be compared to one another.  Also presented was a method of normalizing 

friction ratio (FR) and the subsequent “spiking” anomalies found when doing so in raveled soils, 

inhibiting data analysis of such FR values.  Therefore, measured sleeve friction (fs) values were 

used to develop an updated criterion of raveled soils based on the measured characteristics from 

known sinkhole sites.  The results of filtering and correlating the CPT database of sinkhole active 

sites within similar geologic formation is summarized in the CPT-based raveling chart (Figure 3-

18). This chart can be used to identify CPTs which encounter significant layers of raveled soils.  

By plotting all the CPT data on the proposed raveling chart, engineers can see how much of the 

subsurface soil is raveled and use this information to establish a hazard potential of sinkhole. 
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Another subsequent finding from the CPT sinkhole database processing is the strong correlation 

of negative sleeve friction values in raveled material.  Although not fully characterized by this 

study, this finding should be further investigated to determine the exact cause, and resulting 

meaning, of any measured negative sleeve friction values obtained at depths where raveling is 

suspected to be occurring. 

Chapter 4 presents several additional tools which can be used to analyze CPTs and aid in 

characterizing sinkhole potential.  Techniques include a 1D assessment using a single CPT, a 2D 

subsurface profiling system to view any subterranean raveling formations as well as identify soil 

stratigraphy which may be indicative of sinkhole formation, and two indices which can be 

calculated to compare several CPTs within the same site or within various sites.   

The 1D assessment uses the same normalization equation presented in chapter 3 to correct 

for the vertical effective stresses.  Based on the assumption that the granular soil is in equilibrium, 

the measured tip resistance from CPT (qc) should be greater than the effective vertical and 

horizontal stresses. Therefore, when the resulting normalized tip resistance values (Qtn) is 

negative, then that means the soil penetration resistance is smaller than the effective vertical stress 

felt at that depth within. This occurrence can be explained by the theory of soil arching in granular 

material first presented by Terzaghi in 1943.  Soil arching occurs when granular material above 

a void transmits the vertical stresses horizontally through the soil around the void. This occurrence 

creates an increase in horizontal stress above the void, then an inverse profile of decreasing 

horizontal stress as the depth within the void increases. A chart was developed based on this 

principle to create a relationship between measured tip resistance values (qc) and their 

corresponding critical depths at which the vertical stresses created from the overburden soils 
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would be a larger value.  This chart (Figure 4-4) can be used to further characterize any 

encountered raveled soils using the criteria mentioned in the previous chapter.  The 

characterization of raveled material using the 1D technique was validated by not only SPT borings 

showing severe signs of raveling, but also a case when a CPT probe fell off the pushing rods due 

to the lack of support underneath the penetrated soil.  This CPT was performed within feet of a 

collapsed sinkhole, therefore the drastic decrease in tip resistance was concluded to be due to the 

severely raveled soils in which caused the nearby cover collapse sinkhole.   

Further assessment tools for sinkhole risk presented in chapter 4 are two indices which 

provide a quantifiable way of comparing soil raveling per test or per site.  These indices can then 

be correlated to sinkhole formation risk with further investigation of possible sinkhole mechanism 

parameters (i.e groundwater recharge rates). Limitations of the current Raveling Index are 

presented in this section and details on how to update the index is cumulated to what was coined 

as the Sinkhole Resistance Ratio. The SRR provides a relative value for resistance against 

sinkhole formation from that particularly tested CPT qc-curve.  Unlike the raveling index, the 

SRR is a function of the average tip resistance within the overburden and the raveling soils.  The 

SRR formula was developed by modeling underground voids using FEM, and by comparing 

results of physical sinkhole formation modeling, to determine what soil parameters are the most 

crucial to sinkhole stability collapse. It was determined that an increase in the strength of both the 

raveled and the overburden soil will increase the stability of the underground void.  Also, the 

deeper void is encountered, the larger the resulting collapse would be if stability is breached. 

These findings are reflected in the SRR formula (page 70).   
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A complete assessment using the previously discussed tools was then performed to view 

and characterize the sinkhole anomalies encountered within three zones at the Wekiva Parkway 

SR 46 connector project.  Although sinkhole mitigation techniques were already performed at 

these locations, the presented assessment helps to validate the suspected sinkhole anomalies as 

well as the procedures used for mitigation.  Resulting indices calculated from the active sinkhole 

collapse sites can then be compared to new sites in karst geology to help establish a risk of future 

sinkhole.  A comparison of RI and SRR values between the Wekiva parkway and the central 

Florida sinkhole sites suggests that the sinkhole activity encountered at the Wekiva parkway site 

is not as severe as the initial mitigation procedures may infer.  This finding is based strictly on 

the encountered soil stratigraphy with no hydrogeological factors included in the evaluation. As 

mentioned in chapter 1, sinkhole risk is a multidisciplinary field and cannot be fully characterized 

by viewing a single aspect. An additional investigation on groundwater movement is currently 

underway to characterize sinkhole risk based on groundwater movement data to be incorporated 

with the CPT-based risk assessment procedures.  However, the results from this study still can 

aid when estimating the current sinkhole risk for a project site in Central Florida.   



94 

 

5.1 Limitations 

Limitations encountered while performing this study include: 

1. Cone penetration testing data collected was performed over a 7-year span. Therefore, 

proper calibration of the cone or validation of the testing procedure could not be verified 

by the researchers.  

2. Survey elevations were not provided for each CPT; therefore, all data was presented as 

penetration depth and assumptions of constant ground elevation had to be made when 

creating the 2D subsurface images.  

3. Detailed descriptions of the sinkhole collapse sites were not provided. This includes lack 

of information regarding: exact location of every CPT and SPT performed with respect to 

the sinkhole; specifics regarding the sinkhole repair procedure performed at each site; and 

other general details such exact sinkhole coordinates, precipitation data, exact size and 

depth of formed sinkhole.  

4. More SPT borings can provide a stronger verification of suspected raveled zones. Although 

results were well correlated with the sinkhole occurrence sites, CPTs cannot provide an 

actual soil sample, used to verify loose raveled sand, therefore CPT analysis should always 

include ATLEAST one SPT for ground truthing.  

5. CPT-based raveling chart is calibrated only for one geologic formation in Central Florida. 

Although this formation spreads through the majority of the urbanized areas within central 

Florida, further investigation should be performed in other geologic formations to either 

validate, or update, this study’s results.   
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5.2 Recommendations for Future Research 

The following recommendation may be useful for future studies: 

1. CPTs equipped with a piezocone (CPTu) may provide valuable information on stratigraphy 

within karst geology. Sinkhole formation is strongly related to recharge rate and 

groundwater flow through soil, therefore CPTu testing may provide valuable information 

regarding raveling severity and subsequent sinkhole risk for site characterization. 

2. Laboratory testing using a CPT cone with controlled soil types and densities can help 

calibrate or validate the results of this study. Especially for the normalization protocol and 

to test the theory of soil arching stresses being detected in the CPT qc data.  

3. CPTs performed over a span of time in the same spot may add valuable information 

regarding rate of erosion and growth of sinkhole formation.  The resulting subsurface 

images and raveling and resistance ratios can then be viewed over time to estimate 

progression and better establish a risk of potential sinkhole collapse.  

4. Analysis of additional types of subsurface testing, or modifications of CPT, may be worth 

investigating for further means of identifying and characterizing premature sinkhole 

raveling zones.  Such tests include: pressure-meter tests (PMTs), dilatometer tests, or CPTs 

equipped with soil grain-size viewing cameras. These tests may be able to further verify 

the loose/disturbed hawthorn group of soils by performing soil strength tests at static 

depths. 

5. Monitoring of groundwater trends within sinkhole active sites can better characterize the 

rate of erosion or seepage forces which induce raveling of the sandy residual soils. 

Laboratory tests to determine the critical shear stress causing soil particle detachment 
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should be performed on undisturbed soil samples to establish the sites susceptibility to 

sinkhole formation.  This investigation will aid in creating a database of sinkhole soil 

properties throughout central Florida.  
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