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ABSTRACT OF DISSERTATION 
 

ROLES OF ABCG5 ABCG8 CHOLESTEROL TRANSPORTER IN LIPID 
HOMEOSTASIS 

 
The ABCG5 ABCG8 (G5G8) sterol transporter promotes cholesterol secretion 
into bile and opposes dietary sterol absorption in the small intestine. An 
emerging body of literature suggests that G5G8 links sterol flux to various risk 
factors for metabolic syndrome (MetS) and nonalcoholic fatty liver disease 
(NAFLD). Therapeutic approaches that accelerate G5G8 activity may augment 
reverse cholesterol transport (RCT) and provide beneficial effects in the 
prevention and treatment of cardiovascular and liver disease.  
 
Mice lacking leptin (ob/ob) or its receptor (db/db) are obese, insulin resistant in 
part due to the reduced levels of hepatic G5G8 and biliary cholesterol. The 
underlying mechanisms responsible for the reduced G5G8 protein expression in 
these mice may provide a clue to the drug development for this target. My 
studies show that neither acute leptin replacement nor liver-specific deletion of 
leptin receptor alters G5G8 abundance or biliary cholesterol. Similarly, hepatic 
vagotomy has no effect on G5G8 expression. Conversely, expression of the ER 
chaperone, GRP78, rescues G5G8 in db/db mice.  
 
Previous studies suggest an interdependent relationship between liver and 
intestine for cholesterol elimination. A combination therapy that increases G5G8-
mediated biliary cholesterol secretion and simultaneously reduces intestinal 
absorption is likely to act additively in cholesterol elimination. My studies show 
that treatment with ursodiol (Urso) increases hepatic G5G8 protein and both 
biliary and fecal sterols in a dose-dependent manner. Ezetimibe (EZ), a potent 
inhibitor of intestinal cholesterol absorption, produces an additive and dose-
dependent increase in fecal sterol excretion in the presence of Urso. However, 
the stimulatory effects of both Urso and Urso-EZ are not G5G8-dependent.  
 



  Beyond increasing G5G8 protein expression and biliary cholesterol secretion, my 
studies also show that Urso stimulates ileal FGF15 expression in mice. Our data 
of the stimulated ileal FGF15 expression in LIRKO and reduced hepatic G5G8 
protein levels in Atsb KO mice both indicate the previous unrecognized role of 
FGF15/19 in the regulation of G5G8 and its activity. Indeed, this is subsequently 
confirmed by our results from the direct test of recombinant human FGF19 on 
G5G8. Thus, FGF15/19 may provide an alternative strategy in drug development 
to target G5G8 activity and accelerate cholesterol elimination. 
 
 
KEYWORDS: Reverse cholesterol transport, G5G8, GRP78, Ursodiol, Ezetimibe, 
FGF15/19 
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CHAPTER 1: INTRODUCTION 

 

The metabolic syndrome (MetS) is a constellation of interrelated risk factors 

including obesity, atherogenic dyslipidemia, and elevated blood glucose and 

pressure with insulin resistance as the central source of pathogenesis. This 

symptom identifies individuals at an increased risk for developing type II 

diabetes and cardiovascular disease (CVD), the number one cause of global 

mortality. Patients with MetS have 50-60% higher risk for CVD than those 

without [1]. Thus, MetS is an important risk factor for the incidence and 

mortality of CVD. 

MetS has deleterious effects on many organs, the liver being one of them. There 

is increased evidence that NAFLD is now considered the hepatic manifestation of 

MetS and has been identified as a common feature in patients with the MetS. 

NAFLD involves a spectrum of liver-related disorders that range from simple 

steatosis to steatohepatitis (NASH), fibrosis, and cirrhosis. It is the most common 

liver disease that affects 20%-30% of the US population and hence is increasingly 

recognized as a major contributor to the burden of chronic liver disease world-

wide. MetS and NAFLD appear to have a common pathogenesis, arising from 

insulin resistance and abdominal obesity. Treatment of MetS may have a 

significant impact on progression of NAFLD, and therapeutic approaches 

treating the underlying risk factors of MetS appear to be valid options in treating 

NAFLD/NASH. 
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Given the progressively increasing prevalence and incidence of MetS and 

NAFLD, such conditions have gained worldwide attention and become major 

public health problems that are approaching epidemic proportions globally. The 

general lack of knowledge of pathogenesis prevents us from refining the most 

efficient therapies for individuals with MetS and NAFLD. The major goal of 

clinical management is to reduce the risks for CVD. The prime emphasis is given 

to the effective lifestyle interventions. If lifestyle change is not sufficient, 

pharmacological therapies are incorporated to the regimen. For example, statins 

and ezetimibe (EZ) have been used to target cholesterol synthesis and 

absorption, respectively, to reduce plasma low-density lipoprotein cholesterol 

(LDL-C) and lower the risk of CVD. However, an emerging body of work 

suggests that the flux of cholesterol through lipoproteins is more relevant to 

CVD than their absolute levels in plasma. Consequently, there has been intensely 

increased interest in strategies aimed at enhancing sterol flux from peripheral 

tissues to liver for ultimate excretion into feces, a process termed reverse 

cholesterol transport (RCT). 

A substantial amount of work has been devoted to the conceptual approaches to 

augment RCT by improving cellular cholesterol efflux from peripheral cells, 

enhancing the functionality of circulating high-density lipoprotein (HDL), and 

increasing hepatic uptake of returned cholesterol. Relatively little effort has been 

geared at developing therapeutic approaches to target the final step of RCT. 
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Recent studies suggest that cholesterol taken up by hepatocytes is secreted into 

bile via the apical membrane sterol transporters ABCG5 and ABCG8 (G5G8), 

which form a functional heterodimeric complex that ties the link of sterol flux to 

metabolic disease [2-4]. The goal of this dissertation thesis is to understand the 

mechanisms responsible for the post-transcriptional regulation of G5G8 in vivo 

such that appropriate therapeutics could be employed to accelerate cholesterol 

elimination in the treatment of liver and cardiovascular disease.   

Overview of the metabolic syndrome (MetS) and its hepatic manifestation: 

nonalcoholic fatty liver disease (NAFLD) 

The clustering of several metabolic and pathophysiological cardiovascular risk 

factors (e.g., insulin resistance, abdominal obesity, dyslipidemia, impaired 

glucose tolerance, hypertension) was firstly discussed by Dr. Reaven in his 

Banting lecture in 1998 [5]. He named this clustering Syndrome X and recognized 

it as a multidimensional risk factor for CVD. Since then, this clinical symptom 

has been given different names (e.g., insulin resistance syndrome, metabolic 

syndrome X). It is now widely referred to as MetS in clinical practice.  

The prevalence of MetS ranges largely from less than 10% to 84%, depending on 

the region, composition (e.g., age, sex, and race) of the population studied, and 

the definition and criteria of the syndrome used [6, 7]. But in general, the 

International Diabetes Federation (IDF) estimates that approximately 25% of the 

world’s adult population has MetS [8]. The increasing prevalence of MetS is also 
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associated with the substantial progression of diabetes and CVD. Thus, MetS has 

received a lot of focused attention as a major public health concern. 

Components of metabolic syndrome: underlying and metabolic risk factors 

The MetS encompasses a group of interrelated risk factors that together confers 

an increased risk of type II diabetes and CVD. The components of MetS include 

both underlying and metabolic risk factors [9, 10]. The predominant underlying 

risk factors, which provoke the metabolic risk factors, are thought to be 

abdominal obesity and insulin resistance [5, 11-14]. The major metabolic risk 

factors are mostly widely recognized as atherogenic dyslipidemia, raised plasma 

glucose, and hypertension [9]. 

Underlying risk factors: abdominal obesity and insulin resistance 

The enormous scope of epidemiological research has shed light on the positive 

relationship between obesity and MetS. This is largely based on the possible 

ability of obesity to engender insulin resistance. One theory postulated by 

Reaven and others holds that insulin resistance is the core cause of MetS. Hence, 

this symptom was also widely known as insulin resistance syndrome. However, 

many details of the mechanisms, by which obesity causes systemic insulin 

resistance, have not been adequately elucidated. There is also an explosive 

increase in evidence supporting that insulin resistance is an etiological aspect of 
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obesity. Therefore, the unraveled cause-and-effect relationship between obesity 

and insulin resistance renders both of them the underlying risk factors for MetS. 

Abdominal obesity 

 The National Cholesterol Education Program’s Adult Treatment Panel III report 

(ATP III) considered the “obesity epidemic” as the driving force that underlies 

the rising prevalence of MetS and defined MetS as a clustering of metabolic 

complications of obesity, especially abdominal obesity [14-17]. This statement 

needs to be in agreement with the insulin resistance theory. Abdominal obesity 

(or central obesity, upper-body obesity) is the form of obesity most likely to be 

associated with MetS and contribute to the increased risk of type II diabetes and 

CVD [17-21]. It presents as increased waist circumference in clinical practice. The 

ATP III defined the thresholds of waist circumference for the identification of 

MetS to be 102 cm for men and 88 cm for women, respectively [15].  

The abdominal obesity strongly correlates with insulin resistance. This positive 

correlation is largely due to the dysfunctional adipose tissues. However, the 

underlying mechanisms about fat and insulin resistance in abdominal obesity 

have not been sufficiently articulated. One theory is that the excess upper-body 

fat releases elevated levels of nonesterified fatty acids (NEFA) [22]. The acute 

exposure to unusual high levels of NEFA overloads liver and skeletal muscles 

with lipids [23-25]. This ectopic lipid accumulation in sites other than adipose 
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tissue seemingly supports abdominal obesity as a causal factor for developing 

insulin resistance and increased risk of MetS.  

The adipocyte is now recognized as a secretory cell that has a major endocrine 

function [26, 27]. The adipokine is a collective name given to various peptide 

hormones and protein factors including leptin, adiponectin, tumor necrosis 

factor-alpha (TNFα), interleukin-6 (IL-6), C-reactive protein (CRP), plasminogen 

activator inhibitor-1 (PAI-1), and others that are secreted or synthesized by the 

adipocyte [28-31]. An alternative hypothesized mechanism is that in abdominal 

obesity, the abnormal production of several adipokines by the intra-abdominal 

adipocytes may exert harmful effects to insulin sensitivity and modify risks for 

MetS and CVD. The abnormalities may include increased production of TNFα, 

IL-6, CRP, PAI-1, and at the same time reduced adiponectin levels [32-34].  

Insulin resistance 

Insulin is a critical hormonal regulator of glucose and lipid homeostasis among 

the major insulin-responsive organs including liver, fat, and muscle. It binds to 

and activates the insulin receptor tyrosine kinase, which in turn phosphorylates 

insulin receptor substrate (IRS) proteins (Irs1 and 2) and initiates two branches of 

insulin signaling events [35]. One is the activation of phosphatidylinositol 3-

kinase (PI3K), which mediates insulin’s metabolic effects. The other one is the 

activation of mitogen activated protein (MAP) kinase, which is primarily 

associated with the mitogenic effects of insulin.  
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The action of insulin to reduce plasma glucose results from the suppression of 

gluconeogenesis in liver and the increase of glucose uptake into fat and muscle 

[36, 37]. The phosphorylation of forkhead box protein O1 (FOXO1), a 

transcription factor that mediates insulin actions through PI3K pathway, 

diminishes gluconeogenesis [36]. The action of insulin to promote TG storage is 

derived from multiple mechanisms. In liver, insulin activates the sterol 

regulatory element binding protein (SREBP)-1c, a transcription factor which 

enhances the transcription of genes involved in fatty acid and TG synthesis 

(lipogenesis) [37-40]. The newly synthesized TGs are secreted from liver via very 

low density lipoprotein (VLDL), a lipoprotein that delivers TGs to fat for storage 

and muscle for energy expenditure. In fat, insulin stimulates the differentiation 

of preadipocytes to adipocytes. In mature adipocytes, insulin facilitates the 

uptake of VLDL-derived fatty acids, promotes lipogenesis, and inhibits lipolysis 

[41]. 

Insulin resistance usually refers to a state of reduced responsiveness to the action 

of insulin on glucose uptake, metabolism, or storage. It is not established that 

insulin resistance per se plays a causal role in MetS due to the fact that it is 

difficult to identify a unique role of insulin resistance from a complex interaction 

of many factors. But it is well accepted that insulin resistance in obesity is the 

underlying cause for MetS [42]. Although insulin resistance is pronounced in 

obesity, MetS, and type II diabetes, it is not to say that all of the insulin actions 
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are diminished in individuals with such conditions. For example, while insulin-

stimulated glucose transport and metabolism are decreased in fat and muscle 

and the suppression of gluconeogenesis in liver is impaired, hepatic lipogenesis 

is still sensitive to insulin and is driven to excess by the commentary 

hyperinsulinemia [37]. To dissect the role of insulin resistance in the molecular 

and pathophysiological basis of MetS, Kahn and colleagues generated the liver-

specific insulin receptor knockout (LIKRO) micel, which initiated a discussion 

about the pathogenic paradox in selective versus total insulin resistance in liver. 

Selective insulin resistance is the typical insulin resistance defined clinically in 

terms of the failure of insulin to maintain glucose homeostasis. However, insulin 

continues to activate lipogenesis, producing a combination of hyperglycemia and 

hypertriglyceridemia. These are characteristic features of humans and mice with 

MetS and type II diabetes. The extensively used mouse models of MetS and 

insulin-resistant type II diabetes are ob/ob and db/db mice, due to the lack of leptin 

or its receptor, respectively. Both strains of mice have increased food intake 

attributed to the deficiency of leptin, a neutral hunger suppressant. They are 

massively obese and hyperphagic and exhibit a triad of hyperglycemia, 

hyperinsulinemia, and hypertriglyceridemia [43, 44]. 

Total hepatic insulin resistance refers to a defect in hepatic insulin signaling due 

to the ablation of the hepatic insulin receptor gene. It implies that all processes 

regulated by hepatic insulin signaling become resistance to insulin in parallel 
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with glucose metabolism. Paradoxically, despite hyperglycemia, neither humans 

with insulin receptor mutations nor LIRKO mice manifest hypertriglyceridemia 

or hepatic steatosis [45-48]. This is largely due to that insulin fails to stimulate 

lipogenesis. Based on this paradox, Biddinger and colleagues concluded that 

hepatic steatosis and hypertriglyceridemia are not directly attributed to insulin 

resistance, and should be considered as distinct features contributing to the 

pathogenesis of MetS [49]. However, due to the complex interplay among insulin 

resistance, steatosis, and hypertriglyceridemia, it remains uncertain whether this 

argument is true. 

Another paradox is also associated with the two stages of insulin resistance. The 

complete hepatic insulin resistance in LIRKO mice produces increased biliary 

cholesterol secretion and cholesterol gallstones. This links insulin resistance to 

biliary lipid metabolism. Various features of the selective insulin resistant ob/ob 

and db/db mice also potentiate the risk of gallstone formation. However, they 

manifest paradoxically low biliary cholesterol saturation. This puzzle will be 

particularly addressed in the Chapter 2 of this dissertation.  

Metabolic risk factors 

As stated earlier, the major metabolic risk factors comprise atherogenic 

dyslipidemia, elevated plasma glucose, and hypertension. Each of them conveys 

increased risk of MetS even when only marginally abnormal. Atherogenic 

dyslipidemia consists of a triad of lipoprotein abnormalities implicated as 



10 
 

independent atherogenic factors. These abnormalities include increased plasma 

concentrations of TG and small, dense LDL particles, and decreased high-density 

lipoprotein cholesterol (HDL-C) [50]. The LDL particle size is not corrected with 

the LDL-C, but it shows striking correlations with the TG and HDL-C 

concentrations [51]. Thus, the TG/HDL-C ratio is beneficial for assessing the 

presence of small LDL [51]. As a characteristic feature of obesity and insulin 

resistance, atherogenic dyslipidemia has emerged as a critical risk factor for MetS 

and CVD. Other well established metabolic risk factors are elevated plasma 

glucose and hypertension. Multiple mechanisms have been postulated to explain 

how increased plasma glucose may promote atherosclerosis, but none is 

particularly well established. Regardless, once MetS compounds type II diabetes, 

risk and incidence for CVD events increase further more.  

Clinical outcomes of MetS 

The major clinical outcome of MetS is CVD, the most dreaded complication of 

this disease [1, 52-55]. Reaven and others postulated that insulin resistance is the 

essential cause of MetS [5, 56]. Hence, insulin resistance syndrome was also 

commonly used to name the clustering of risk factors. The majority of people 

with MetS have insulin resistance. Insulin resistance and the compensatory 

hyperinsulinemia predispose to type II diabetes. Thus, individuals with MetS are 

also susceptible to type II diabetes, another major risk factor for CVD [57-59]. 

When type II diabetes emerges, CVD risk rises even more [60]. Beyond CVD and 
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type II diabetes, a variety of other conditions are notably present in individuals 

with MetS; one of them is NAFLD [61-65]. There is increased evidence that 

NAFLD is now considered the hepatic manifestation of MetS and has been 

identified as a common feature in patients with the MetS [63, 64]. Recent studies 

have indicated that NAFLD is also intensely associated with increased risk of 

CVD [66, 67].   

Nonalcoholic fatty liver disease (NAFLD) 

NAFLD involves a wide spectrum of fat-induced liver-related disorders that 

range from relatively benign simple steatosis to NASH with fibrosis and 

scarring, which can further progress to the devastating conditions like cirrhosis 

or eventually hepatocellular carcinoma (HCC) [68]. Steatosis is defined as the 

presence of fat in more than 5%-10% of liver weight. It is usually considered 

benign and reversible, but can progress to NASH. NASH, the most extreme stage 

of NAFLD, is distinguished from steatosis by the features including hepatocyte 

injury, inflammation, and fibrosis [68]. Between 10-29% of individuals diagnosed 

with NASH may develop cirrhosis within 10 years and 4-27% among them may 

develop HCC eventually [68]. NAFLD is a growing health problem with an 

incidence ranging from 17-33% and 5-17% for its more severe expression, NASH 

[69]. It is estimated that NAFLD/NASH will increase medical costs by 26% [70].  

Available data from epidemiological, experimental, and clinical studies support a 

close association between NAFLD and MetS. For example, 90% of subjects with 
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NAFLD have at least one risk factor of MetS, and 33% of them have all the 

features of MetS. In 271 nondiabetic subjects, liver fat content is significantly 

increased in subjects with MetS as compared with those without the syndrome 

[71]. In a prospective observational study containing 4401 apparently healthy 

Japanese, participants diagnosed with MetS have 4 to 11 folds higher risk for 

future NAFLD [72]. Additionally, if NAFLD and MetS coexist, disease regression 

is less likely [72]. In another study containing 16,486 Taiwanese NAFLD patients, 

the presence of severe fatty liver is significantly correlated with the prevalence 

and degree of hypertension, abnormal TG and glucose metabolism, all of which 

are metabolic risk factors for MetS [73]. NAFLD ranging from steatosis to NASH 

might represent another characteristic feature of MetS. Accumulating data 

suggest that MetS and NAFLD seem to share common pathophysiological 

mechanisms, with abdominal obesity and insulin resistance as the key 

pathogenic factors.  

Pathogenesis of NAFLD/NASH 

The majority of NAFLD subjects are obese and insulin resistant. The regulation 

of glucose and lipid metabolism involves a complicated interplay among the 

major metabolic tissues including liver, fat, and muscle. Obesity, insulin 

resistance, inflammation, genetic factors, over-nutrients, and unhealthy lifestyle 

may all paly essential roles in the development of NAFLD. While our knowledge 
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of the pathogenesis of NAFLD has extensively increased over the past two 

decades, many uncertainties remain to be intensely investigated. 

The central mechanisms responsible for NAFLD similar to MetS are thought to 

be abdominal obesity and insulin resistance. The typical site for lipid storage is 

the subcutaneous fat. However, when lipids are accumulated to excess in these 

fat depots, they are likely to be redistributed to other sites for deposit including 

abdominal fat depot and insulin-sensitive tissues such as liver and muscle [74]. 

When the acquisition of lipids within in liver exceeds the normal lipid turnover, 

hepatic steatosis arises. In the state of insulin resistance, principally in the context 

of abdominal obesity and MetS, the possible sources for the pathophysiology of 

hepatic steatosis may include: (1) increased influx of NEFA to liver; (2) increased 

de novo lipogenesis in liver; (3) reduced rate of β-oxidation; and (4) reduced TG 

export from liver in the form of VLDL. The increased influx of NEFA (60%) is 

considered as the largest contributor to steatosis in individuals with NAFLD [75]. 

This is predominantly due to the dietary intake of fat and increased lipolysis 

within abdominal fat. Approximately 25% of the TG accumulated in the liver of 

NAFLD individuals is derived from the de novo lipogenesis. This is mainly due 

to the increased activity of SREBP1c and carbohydrate response element-binding 

protein (ChREBP), both of which regulate the expression of genes involved in the 

lipogenic pathway. TGs are re-packaged within VLDL and exported from liver. 

Each VLDL particle contains only one molecule of apolipoprotein B (apoB), the 
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synthesis of which is a rate-limiting step in VLDL production. Under normal 

condition, insulin targets apoB for intracellular degradation, whereas in the state 

of insulin resistance, the compensated hyperinsulinemia may alter apoB 

synthesis or promote its degradation and thereby decreasing TG export in VLDL 

[76, 77].  

The pathophysiological basis for the transition from steatosis to NASH is 

multifactorial and not fully understood. A “two-hit” theory was firstly 

postulated by Day to explain the NASH pathogenesis [78]. The disequilibrium 

between fat acquisition and removal within hepatocytes causing simple steatosis 

comprises the “first hit”, and the susceptibility of a fatty liver to a separate injury 

(“second hit”) results in inflammation, fibrosis, and apoptosis [78]. A variety of 

factors may be considered the “second hit” and contribute to the pathogenesis of 

NASH, such as oxidative stress, inflammatory cytokine and adipokine alteration, 

mitochondrial dysfunction, fatty acid lipotoxicity, innate immunity, and many 

others [78-84].  

New suspects in the pathogenesis of NAFLD/NASH: Endoplasmic reticulum 

(ER) stress 

Recently, accumulating data have indicated that the endoplasmic reticulum (ER) 

stress plays a crucial role in both the development of steatosis and the 

progression to NASH [85, 86]. ER is a central hub for the synthesis and post-

translational modification of secretory and membrane proteins, lipid 
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biosynthesis, oxidative metabolism, and intracellular calcium homeostasis. 

Newly synthesized proteins in the ER lumen require the assistance of chaperone 

proteins to undergo post-translational modifications such as N-glycosylation and 

disulfide bond formation. The 78-kD glucose-regulated/binding 

immunoglobulin protein (GRP78) is one of the major ER chaperones particularly 

essential to the regulation of ER function due to its role in protein folding and 

assembly, targeting aberrant proteins for degradation, and controlling activation 

of ER stress sensors. When there are metabolic disturbances that compromise ER 

function, such as excessive protein synthesis, accumulation of unfolded or 

misfolded proteins, calcium depletion, or perturbation of redox status, the whole 

organelle enters into a state called “ER stress”.  

As a recovery and adaptation mechanism, the ER responds to ER stress by 

activating a series of signaling pathways, collectively named the unfolded 

protein response (UPR), to adjust to the protein-folding demand and promote 

cell survival and adaptation [87]. Three distinct stress sensors including protein 

kinase RNA-like endoplasmic reticulum kinase (PERK), inositol-requiring 

enzyme 1 (IRE1), and activating transcription factor 6 (ATF6) are well 

characterized to monitor the imbalance between protein load and folding 

capacity within ER (Fig 1.1) [88-90]. Under the normal physiological condition, 

GRP78 binds to the luminal domains of the three transducers remaining them in 
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the inactive state. Upon stress conditions, GRP78 is displaced from PERK, IRE1, 

and ATF6 resulting in their activation.  

Upon dissociation from GRP78, PERK oligomerizes, autophosphorylates, and 

phosphorylates eukaryotic initiation factor 2 alpha (eIF2α) [89]. Phosphorylated 

eIF2α leads to a global repression of mRNA translation and reduced flux of 

protein entering ER to alleviated ER stress [91]. An exception is the activating 

transcription factor 4 (ATF4). It requires eIF2α phosphorylation to enhance its 

mRNA translation to regulate the downstream UPR target genes such as C/EBP 

homologous protein (CHOP) [92]. Upon ER stress conditions, IRE1 dimerizes 

and autophosphorylates to be activated. Activated IRE1 results in splicing of X-

box binding protein 1 (XBP1) mRNA [93, 94]. Spliced XBP1 selectively 

upregulates chaperone proteins such as GRP78 and GRP94 to cope with 

increased protein-folding demand. ATF6 is a membrane bound transcription 

factor. Dissociation of GRP78 from ATF6 leads to its translocation to Golgi where 

it is cleaved by site 1 and site 2 proteases, generating a soluble form of ATF6 [95]. 

Upon entry to the nucleus, this processed form of ATF6 activates UPR target 

genes involved in protein folding and degradation. Postponed or inadequate 

UPR responses to ER stress may produce pathological consequences, including 

abnormal lipid accumulation, insulin resistance, inflammation, and apoptosis, all 

of which play key roles in the pathogenesis of NAFLD. 
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Figure 1.1 A diagram of the initiation of the UPR by unfolded or misfolded 
proteins. GRP78 releases from its binding state of PERK, IRE1, and ATF6 in 
response to the overwhelming accumulation of mal-folded proteins and triggers 
the UPR signaling. Dissociation of GRP78 from PERK results in the 
phosphorylation of eIF2α, which inhibits translation and leads to cell cycle arrest. 
The activated domain of IRE1 results in cleavage of XBP1, while activated ATF6 
is transported to the Golgi, cleaved by site 1 and site 2 proteases to produce an 
active 50kDa form of ATF6. The cleaved XBP1 and the processed form of ATF6 
selectively upregulate chaperone proteins to manage increased protein-folding 
demand.  

 

The activation of ER stress was firstly described by Ozcan and colleagues in the 

livers of both diet-induced and genetic models of NAFLD in the setting of 

obesity [96]. In both models, phosphorylations of PERK and eIF2 as well as 

GRP78 expression were increased indicating activated UPR signaling [96]. Since 

then, these observations have been confirmed in other NAFLD/NASH animal 

models in the presence and absence of obesity [97-99]. Later, several UPR 
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components were reported to be induced in the livers of human subjects with 

NAFLD or NASH [100]. However, the precise contribution of ER stress to the 

development of NAFLD is not fully understood.  

Hepatic steatosis, which is caused by the disequilibrium of lipid accumulation 

and removal as stated earlier, is the first step for the development of NAFLD. It 

is well accepted that a variety of components of the UPR signaling interfere with 

hepatic lipid metabolism by promoting lipogenesis and inhibiting VLDL 

production and secretion [101-108]. Hepatic lipogenesis is also dependent on the 

insulin-stimulated activation of SREBP1c despite the prevailing insulin 

resistance. Thus, ER stress can also indirectly promote hepatic TG accumulation 

by exacerbating insulin resistance. Several mechanisms are seemingly 

responsible for the effect of ER stress on hepatic insulin resistance. For example, 

Ozcan and colleagues have published data showing that ER stress promotes 

hepatic insulin resistance through IRE1α-mediated hyperactivation of c-Jun N-

terminal kinase (JNK) and the serine phosphorylation of insulin receptor 

substrate-1 [96]. Additional support is derived from the PERK-mediated 

phosphorylation of FOXO [109]. Though further mounting evidence also 

indicates the impact of ER stress on insulin resistance, the exact contribution of 

ER stress to insulin resistance in NAFLD is still unclear. Other mechanisms by 

which ER stress potentiate NAFLD may include the production of reactive 

oxygen species (ROS), the activation of JNK, nuclear factor kappa-light-chain-
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enhancer of activated B cells (NF-κB), and CHOP, which are actively involved in 

the inflammatory and apoptotic processes [110].   

Ozcan and colleagues reported that chemical chaperones such as 4-Phenyl 

butyric acid (4-PBA) and tauroursodeoxycholic acid (TUDCA) alleviated ER 

stress both in vitro and in vivo. Administration of such chaperones to ob/ob mice 

alleviated ER stress, resulting in improved insulin sensitivity and glycemia as 

well as a resolution of steatosis [111]. Foufelle and colleagues reported that 

supplementation of chaperone protein GRP78, another approach to alleviate ER 

stress, also restored insulin sensitivity in ob/ob mice. Interestingly, the 

overexpression of GRP78 also inhibited SREBP1c activation, thereby reducing 

lipogenesis and improving the status of steatosis [112].  

New suspects in the pathogenesis of NAFLD/NASH: Free cholesterol (FC) 

The excess hepatic accumulation of lipids, particularly TG, as the key defect in 

NAFLD has been given the most intense investigation. However, two lipidomic 

studies have shown that apart from TGs, free cholesterol (FC) is also intensively 

accumulated in human NAFLD/NASH subjects [113, 114]. Thus, more efforts 

have been made to confirm this finding in different NAFLD/NASH models and 

to investigate the role of FC in the pathogenesis of NAFLD/NASH.  

Cholesterol is a fundamental constituent of mammalian cell membranes and also 

serves as the fuel for the biogenesis of bile acids, vitamin D, and steroid 
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hormones. There are two mechanisms for the body to acquire a sufficient pool of 

cholesterol to maintain its normal function [115]. One is the intestinal absorption 

of dietary cholesterol by Niemann-Pick C1-like 1 (NPC1L1) transporter. 

Cholesterol is transported in the circulation predominantly in the form of 

cholesteryl ester (CE) carried by lipoproteins. Upon absorption, dietary 

cholesterol is transported from the intestine through the circulation within 

chylomicron (CM) and delivered to liver by CE-rich CM remnant (CMR) via 

endocytosis mediated by LDL receptor (LDLR) or LDLR related protein 1 (LRP-

1) (Fig 1.2) [116]. However, in the context of NAFLD, the excess intake of dietary 

cholesterol may act synergistically with fat to facilitate the progression of 

NAFLD to NASH. For example, adding cholesterol to a high-fat (HF) diet in 

C57BL/6J mice leads to significantly more profound hepatosteatosis, 

inflammation, and fibrosis resembling human NASH [117]. Similarly, in LDLR 

deficient mice, adding cholesterol to a HF, high-sucrose diet exacerbates the 

development of insulin resistance and steatosis resulting in NASH [118]. 
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Figure 1.2 Overview of cholesterol metabolism. The body acquires cholesterol 
by two mechanisms including the intestinal absorption of dietary cholesterol and 
the de novo cholesterol biosynthesis. The liver is a central organ in maintaining 
cholesterol homeostasis by balancing de novo cholesterol synthesis and hepatic 
uptake of plasma lipoproteins from the circulation against bile acid synthesis and 
the excretion of hepatic cholesterol and bile acid excretion into bile. C, 
cholesterol; CE, cholesteryl ester; NPC1L1, Niemann-Pick C1-like 1 transporter; 
CM, chylomicron; CMR, chylomicron remnant; HMGCR, 3-hydroxy-3-
methylglutary CoA reductase; VLDL, very low-density lipoprotein; LDL, low-
density lipoprotein; HDL, high-density lipoprotein, CYP7A1, cholesterol 7alpha-
hydroxylase. 

 

The other way for the body to obtain cholesterol is through de novo cholesterol 

synthesis (Fig 1.2). It begins from acetyl-CoA and acetoacetyl-CoA, which are 

converted to 3-hydroxy-3-methylglutary CoA (HMG-CoA) by HMG-CoA 

synthase (HMGCS). The HMG-CoA reductase (HMGCR) subsequently catalyzes 

the irreversible and rate-limiting reaction by converting HMG-CoA to 
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mevalonate and is thus the target of the widely utilized cholesterol-lowing drugs 

collectively termed as the statins. Mevalonate is then converted to isopentenyl 

pyrophosphate (IPP), squalene, lanosterol, and eventually cholesterol.  

The rate of cholesterol biosynthesis is relatively higher in liver, intestine, and 

adrenal glands. It is under tight transcriptional control via SREBP2 [39, 119]. 

SREBP cleavage-activating protein (SCAP), as a sterol sensor and escort protein, 

forms a protein complex with SREBP2. In response to deprivation of sterols, 

SCAP escorts SREBP2 from ER to Golgi where SREBP2 is processed into an 

active transcription factor that upregulates the expression of genes involved in 

cholesterol synthesis, e.g., HMGCR, and uptake, e.g., LDLR. Conversely, excess 

sterols accumulating in the ER membrane result in a conformational change of 

SCAP, which allows it to bind to the insulin-induced gene proteins (Insig1 or 2), 

the ER resident membrane proteins that prevent the SCAP/SREBP complex from 

migrating to the Golgi. Thus, HMGCR is rapidly degraded, resulting in the 

termination of cholesterol synthesis. 

The liver is a central organ in maintaining cholesterol homeostasis by balancing 

de novo cholesterol synthesis and hepatic uptake of plasma lipoproteins from the 

circulation against bile acid synthesis and the excretion of hepatic cholesterol and 

bile acid into bile (Fig 1.2). Newly synthesized cholesterol in liver, as well as 

dietary cholesterol delivered to liver that exceeds the hepatic tolerance, is re-

secreted to the circulation via VLDL. Secreted VLDL is converted to 
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intermediated IDL and further LDL through the hydrolysis action of endothelial 

cell-associated lipoprotein lipase (LPL). Cholesterol in the circulation and 

acquired from peripheral cells particularly macrophages can be returned to liver 

through HDL for biliary and fecal excretion, the whole process of which is 

widely known as reverse cholesterol transport (RCT) [120]. Ultimately, 

cholesterol is secreted into bile as FC or as bile salts following conversion to bile 

acids mediated by cholesterol 7alpha-hydroxylase, a rate-limiting enzyme 

encoded by CYP7A1 [121-123]. 

The disruption of hepatic cholesterol homeostasis by excess FC accumulation has 

been recently appreciated as a possible player in the pathogenesis of 

NAFLD/NASH. For example, in a mouse model of Alström syndrome (Alms1 

mutant or foz/foz mice), an elevation in hepatic FC due to an increase in hepatic 

uptake and a decrease in biliary elimination is thought to play a contributing role 

in the development of NASH [124]. A recent human study also highlighted the 

emerging role of FC in the pathogenesis of NAFLD/NASH by determining the 

expression of SREBP2 and HMGCR in liver [114]. Both SREBP2 and HMGCR 

were overexpressed in subjects with NAFLD compared to those with normal 

liver histology. Furthermore, the expression of SREBP2 was much higher in 

subjects with NASH compared to those with simple steatosis, suggesting that the 

progressive increase in hepatic FC is positively associated with the induction of 

SREBP2 [114].  
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Based on the emerging role of excess FC in the pathogenesis of NAFLD/NASH, 

reducing the intracellular FC levels provides a new therapeutic target for the 

treatment of the disease. In the third chapter of this dissertation, a novel 

pharmacological strategy for the treatment of NAFLD/NASH was proposed and 

tested in vivo to promote the sterol flux into bile and eventually into feces for 

elimination  

Clinical management of MetS and NAFLD 

Given the progressively increasing prevalence and incidence of MetS and 

NAFLD, such conditions have gained worldwide attention and become major 

public health problems that are approaching epidemic proportions globally. 

Intense investigations are still needed to clarify the pathogenesis of MetS and 

NAFLD so as to establish effective treatments for both of them and ultimately 

reduce the risk and incidence of CVD.  

The primary goal of clinical management in patients with MetS and NAFLD is to 

reduce the risk factors for CVD. The first-line intervention is directed toward 

mitigating the modifiable, underlying risk factors through lifestyle change [15]. 

For example, the weight reduction reinforced with regular exercise and diet 

modification decreases the effect of insulin resistance, lowers plasma cholesterol 

and TG, raises HDL-C, and reduces plasma glucose and pressure. If lifestyle 

change doesn’t reach the expected outcome, pharmacological therapies are 

usually incorporated to the regimen.  



25 
 

Insulin resistance, as an underlying cause for MetS and NAFLD, carries 

increased risk of development of diabetes and CVD. Therefore, it as a target has 

caught the imagination of the pharmaceutical industry. Both Metformin and 

insulin sensitizer thiazolidinedione (STZ) have been approved for treatment of 

type II diabetes. They reduce insulin resistance and apparently modify several 

metabolic risk factors [125-129]. However, the heterogeneity of the studies 

conducted to evaluate their efficiency in insulin-resistant NAFLD patients 

prevents us from reaching firm conclusions about their effectiveness at reversing 

the disease and developing standard treatment guidelines [130]. Additionally, 

the clinical trials using these insulin sensitizers to prove reduction of CVD are 

lacking [15].  

The current therapeutic strategies to reduce the risk factors of CVD are aimed 

primarily at lowering plasma LDL-C concentration by using lipid-lowering 

agents. Beyond lifestyle interventions and insulin sensitizers, the lipid-lowering 

drug therapies are also widely employed in the treatment of MetS and NAFLD. 

Statins, which act as HMGCR inhibitors, are effective lipid-lowering agents. They 

reduce cholesterol synthesis, decrease the intracellular cholesterol pool, and 

stimulate the compensatory upregulation of LDLR to lower LDL-C. The 

beneficial effects of statins in lowering LDL-C appear to be particularly 

important for reducing risk of CVD in patients with MetS. Statins have also been 

used in small clinical trials to evaluate the efficacy in NAFLD/NASH [131, 132]. 
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For example, in a small Japanese study including 31 patients with biopsy-proven 

NASH with dyslipidemia, the NASH-related metabolic parameters including 

fibrosis improved with the atorvastatin therapy in some patients. However, up to 

25%of patients had progression of fibrosis over the 2-year period [131]. The 

efficacy of statins for the treatment of NAFLD/NASH is still under debating. 

Many physicians are concerned about the prescription of statins to patients with 

unexplained persistent elevation of liver enzymes or active liver disease. Hence, 

randomized clinical trials of suitable sample size and duration are needed.  

Ezetimibe (EZ), another lipid-lowering drug, inhibits cholesterol absorption by 

selectively binding to the cholesterol transporter NPC1L1 at both hepatocytes 

and enterocytes [133, 134]. It is mainly used as a secondary therapy to statins to 

further reduce LDL-C. EZ has recently been used in the treatment of 

NAFLD/NASH and shown promise in both experimental animal models and 

small clinical trials [135-141]. It reduces insulin resistance and steatosis in both 

rats and mice [136-138]. In a non-obese population, a 6-month treatment of EZ 

reduced plasma alanine aminotransferase (ALT) and cholesterol by 40% and 

10%, respectively [141]. In another 6-month open label, pilot study, EZ 

significantly improved liver histology and other markers of liver disease 

including serum ALT, aspartate aminotransferase (AST), and γ-glutamyl 

transpeptidase [139]. In the largest clinical study to date (n=45) in a Japanese 

population, EZ reduced ALT at 12 months and resulted in modest, but 
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significant reductions in steatosis, ballooning, and other indices of NAFLD by 24 

months [135]. The mechanism by which EZ is thought to provide benefit in 

NAFLD is not fully understood but may be due to the reduced flux of cholesterol 

from the intestine to liver, thereby reducing the inflow of cholesterol to 

hepatocytes [142]. Currently, EZ monotherapy is not indicated in the treatment 

of NAFLD and large controlled clinical trials are needed to confirm its 

effectiveness in patients with NAFLD/NASH. 

Although reducing plasma LDL-C levels by using lipid-lowering drugs 

significantly decreases total mortality from CVD, the protection is not complete 

[143]. In a large proportion of patients, even though LDL-C is intensively 

reduced with statin therapy, low HDL-C still promotes the progression of 

disease [143-146]. An emerging body of work suggests that the flux of cholesterol 

through lipoproteins is more relevant to CVD than their absolute levels in 

plasma. Consequently, there has been intensely increased interest in strategies 

aimed at enhancing cholesterol efflux from peripheral tissues and promoting its 

transport to the liver for excretion.  

Reverse cholesterol transport (RCT): Current and future directions 

The most widely accepted strategy to enhance sterol flux from peripheral tissues 

to liver for ultimate excretion into feces is through the acceleration of a process 

termed reverse cholesterol transport (RCT). HDL is the predominant cholesterol 

acceptor and carrier in RCT. Both liver (70%) and intestine (30%) synthesize the 
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principal protein component of HDL, apoAI, and release it as a lipid-free pre- 

HDL particle to acquire FC exported by ABCA1 from peripheral cells such as 

macrophages [147]. The FC in nascent HDL, as it travels through circulation, is 

subsequently converted to cholesteryl ester by lecithin-cholesterol 

acyltransferase (LCAT), generating a mature form of HDL. The mature HDL then 

transports cholesterol back to the liver for excretion into the bile either as FC or 

bile salts. The uptake of cholesteryl ester from HDL is mediated by a membrane 

protein on hepatocytes, scavenger receptor class B member 1 (SR-BI). SR-BI is 

actively involved in the selective cholesterol uptake and trans-hepatic cholesterol 

elimination. In humans, due to the activity of plasma cholesteryl ester transfer 

protein (CETP), HDL can transfer cholesterol to VLDL and LDL via the 

remodeling action of CETP and eventually deliver cholesterol back to liver 

through LDLR-mediated endocytosis. However, in mice, a species that lacks 

CETP activity, the predominant lipoprotein in RCT is HDL.  

A substantial amount of work has been devoted to the conceptual approaches to 

augment RCT by improving cellular cholesterol efflux from peripheral cells, 

enhancing the functionality of circulating HDL, and increasing hepatic uptake of 

returned cholesterol. Relatively little effort has been geared at developing 

therapeutic approaches to target the final step of RCT.  

ABCG5 ABCG8 (G5G8) in accelerating RCT 
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The terminal hepatic and intestinal components of RCT are often overlooked due 

to their relatively less contribution to the anti-atherosclerotic effect of RCT. 

However, as the discovery of several transporters involved in the final step of 

RCT, there is nevertheless substantial interest in understanding the mechanisms 

that regulate the excretion of cholesterol into bile. Recent studies suggest that 

cholesterol taken up by hepatocytes is secreted into bile via the apical membrane 

sterol transporters ABCG5 and ABCG8 (G5G8) [2-4]. 

ABCG5 (G5) and ABCG8 (G8) are two independent ABC half transporters. They 

are located on chromosome 2P21 adjacent to each other in a head-to-head 

orientation separated by a short intergenic region [148]. This shared intergenic 

promoter contains response elements for a variety of transcriptional factors 

including liver X receptors (LXR) α and β, hepatocyte nuclear receptor 4α 

(HNF4α), GATA transcription factors, orphan nuclear receptor liver receptor 

homolog-1 (LRH-1), thyroid hormone receptor, and FOXO1[149-153]. It also 

ensures the simultaneous expression of both G5 and G8, which is required for the 

heterodimeric protein complex formation and trafficking to the cell surface [154, 

155]. 

The G5G8 heterodimer is formed in the ER in an N-linked glycan dependent 

manner facilitated by the lectin chaperones calnexin and calreticulin [156, 157]. 

Upon formation, it travels through Golgi apparatus and is predominantly 

expressed at the apical surface of hepatocytes in the liver and enterocytes in the 
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small intestine. Overexpression of calreticulin increases the abundance of the 

G5G8 complex at the cell surface, indicating that protein folding and G5G8 

complex formation is a limiting factor that determines G5G8 abundance and 

activity [156].  

G5G8 is the primary mediator of hepatobiliary elimination, accounting for 70% to 

90% of biliary cholesterol secretion [152]. This process requires bile salt micelles 

to effectively mediate cholesterol efflux[158]. In addition, G5G8 also opposes 

phytosterol absorption in the small intestine [148, 152].  

Phytosterols are plant-derived compounds that naturally exist in diet. They share 

an identical ring structure with cholesterol, but differ in the side chain. Both 

cholesterol and phytosterols can be absorbed by NPC1L1 in the small intestine. 

Unlike cholesterol, phytosterols are not suitable substrates for the acetyl-CoA 

acetyltransferease 2 (ACAT2) and hence are not esterified in enterocytes. G5G8 

recognizes the free form of phytosterols and transports them back into the 

intestine lumen for excretion. This coordinated mechanism of G5G8 and ACAT2 

allows the body to proficiently distinguish cholesterol from phytosterols, prevent 

excess cholesterol being absorbed, and ensure low levels of plasma phytosterols 

[159, 160]. Though dietary supplementation of phytosterols has been reported to 

lower LDL-C levels, reduce plaque formation and atherosclerosis in both 

experimental and clinical studies, their overwhelming accumulation in tissues is 

deleterious[161-163].  
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Defects in either G5 or G8 produce Sitosterolemia (OMIM, #210250), a rare 

autosomal recessive disorder characterized by roughly a 50-fold increase in 

plasma concentrations of phytosterols. Patients with Sitosterolemia usually 

present increased intestinal absorption of dietary sterols and a defect in biliary 

sterol secretion, which result in the accumulation of both cholesterol and 

phytosterols in plasma and tissues [164]. The excess accumulation of phytosterols 

contributes to the development of tendon and tuberous xanthomas, 

hypercholesterolemia, atherosclerosis, and premature coronary artery disease.  

A mouse model of Sitosterolemia has been generated and well-studied over the 

past decade, in which mice are homozygous for G5G8 mutations. G5G8 

knockout (KO) mice present strikingly reduced levels of biliary cholesterol. 

While the fractional absorption of phytosterols (e.g., sitosterol, campesterol) is 

significantly increased, that of cholesterol maintains relatively unaltered. Both 

hepatic and plasma sterols are dramatically increased due to the disrupted 

biliary secretion and increased intestinal absorptions. 

As reviewed earlier in this dissertation, obesity and insulin resistance may play a 

central role in the pathogenesis of MetS and NAFLD. ER stress and FC have also 

been recently appreciated as new suspects in the pathogenesis of 

NAFLD/NASH. There is emerging evidence that G5G8 ties the link of sterol flux 

to all these risk factors [165-167]. For example, the absence of G5G8 in mice 

challenged with a phytosterol-free, HF diet results in reduced biliary and fecal 
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cholesterol elimination, accelerated development of obesity and insulin 

resistance, increased accumulation of hepatic lipids in the form of both TG and 

FC, activated ER stress and UPR signaling, and worsening of NAFLD [165].  

Conversely, increasing biliary cholesterol secretion by adenoviral expression of 

G5G8 improves hepatic insulin signaling and restores glycemic control and TG 

metabolism in db/db mice, a heavily used mouse model of MetS and NAFLD 

[167]. These observations indicate that the protective role of G5G8-mediated 

cholesterol flux through the biliary tract promises it as a conceptual target to 

accelerate RCT. Similarly, in LDLR deficient mice, expression of a G5G8 

transgene reduces atherosclerosis, suggesting that therapeutic approaches that 

accelerate G5G8 activity may augment RCT and be beneficial in the prevention 

and treatment of CVD [168, 169]. Although G5G8 has been known to increase 

cholesterol excretion for over a decade, there has been little interest and progress 

in drug development for this target due to that several concerns have not been 

addressed. 

First of all, to develop such an approach, the knowledge of molecular mechanism 

responsible for the regulation of G5G8 function is indispensable. Though the 

main steps involved in G5G8 transcriptional regulation have been elucidated, 

little is known about the mechanisms responsible for the post-transcriptional 

control of G5G8. Both ob/ob and db/db mice present multiple features of MetS and 

NAFLD, such as obesity, insulin resistance, hyperglycemia and 
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hypertriglyceridemia. However, they are paradoxically resistant to the formation 

of cholesterol gallstones when challenged with a lithogenic diet [170]. This is in 

part due to the downregulation of hepatic G5G8 protein and a reduction in 

biliary cholesterol [166, 171-176]. The underlying mechanisms responsible for the 

reduced G5G8 protein expression in these mice may provide a clue to the 

development of effective therapy for the metabolic disease. In Chapter 2, a series 

of mouse models were used to address the potential mechanisms responsible for 

the post-transcriptional regulation of G5G8 in leptin-axis deficient mice.  

Secondly, previous studies suggest an interdependent relationship between liver 

and intestine for cholesterol elimination from the body. The beneficial effects of 

increased biliary cholesterol secretion are opposed by intestinal reabsorption, 

and similarly, the beneficial effects of blocking cholesterol absorption are 

opposed by reduced biliary secretion [167-169]. This suggests that a combination 

therapy that increases biliary cholesterol secretion and simultaneously reduces 

intestinal absorption is likely to act additively in the elimination of cholesterol 

from the body. Combination therapy is usually more effective, especially when 

complementary mechanisms of action are involved. Thus, in Chapter 3, we 

proposed a combined pharmacological approach to accelerate cholesterol 

elimination and tested its efficiency in mouse models. 

Lastly, increasing biliary cholesterol secretion is expected to raise the cholesterol 

saturation index of bile and the risk for cholesterol gallstones. Thus, a 
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pharmaceutical candidate that increases biliary cholesterol secretion but has 

beneficial effect of dissolving cholesterol gallstone would be a viable option. In 

Chapter 3, we found that ursodeoxycholic acid (UDCA), an active 

pharmaceutical ingredient of ursodiol (Urso) is such an option.  

Hepatic cholesterol catabolism: Bile acid synthesis 

G5G8-mediated biliary cholesterol secretion is a direct pathway to excrete excess 

hepatic cholesterol. An alternative pathway for the body to excrete excess 

cholesterol is through cholesterol catabolism by converting cholesterol to bile 

acids. This is exclusively completed in liver. Both of them facilitate the final step 

of RCT. 

Bile acid synthesis not only constitutes a route to consume cholesterol but also 

produces biological detergents important for producing micelles to solubilize 

dietary cholesterol, fats, and necessary nutrients. The conversion of cholesterol to 

bile acids includes both the neutral and acidic pathways initiated via the action 

of CYP7A1 and sterol 27-hydroxylase (CYP27A1), respectively [121-123]. As for 

the neutral or sometimes called the classic pathway, CYP7A1 is the rate-limiting 

enzyme that controls the hydroxylation of cholesterol to 7α-hydroxycholesterol 

[177, 178]. Another critical enzyme that catalyzes the subsequent reaction is sterol 

12-alpha-hydroxylase (CYP8B1). For acidic pathway, the bile acid intermediates 

produced by sterol 27-hydroxylase (CYP27A1) are then participating in the 

reaction catalyzed by 25-hydroxycholesterol 7-alpha-hydroxylase (CYP7B1).  
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Bile acids are conjugated either with glycine or taurine to yield the glycol- or 

tauro-conjugates, respectively. The bile salt export protein (BSEP; ATP-binding 

cassette B11, ABCB11) subsequently transports the glycine or taurine conjugates 

of bile acids into bile. Once bile salts are secreted into intestinal lumen, the 

majority of them (~95%) are reabsorbed via the apical sodium-dependent bile 

transporter (ASBT) into ileal enterocytes. The ileal bile acid-binding protein 

(IBABP) then transports them across the enterocyte cytosol to the basolateral side, 

where bile salts are fluxed into the circulation via the heterodimeric organic 

solute transporter OSTα/OSTβ and eventually returned to hepatocytes by means 

of the sodium sodium (Na+)-taurocholate cotransporting polypeptide (NTCP) 

and the organic anion transporters (OATP). The overall whole cycle is termed the 

enterohepatic recirculation. This recycling mechanism plays an essential role in 

maintaining the circulation pool of bile acids, normal bile flow, thereby 

maintaining the bile acid and cholesterol homeostasis.  

Bile acid homeostasis must be tightly regulated due to the intrinsic toxic feature 

of bile acids. The most widely-studied transcriptional regulator of bile acid 

homeostasis is the farnesoid X receptor (FXR) which is highly expressed in liver 

and intestine [179]. It potently suppresses CYP7A1 through two interrelated 

mechanisms. One is that FXR induces the expression of small heterodimer 

partner (SHP), a transcriptional co-repressor that interacts with two other nuclear 
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receptors: LRH-1 and HNF4α and indirectly binds to the CYP7A1 promotor and 

suppresses its transcription [180-182].  

The other mechanism is through the regulation of fibroblast growth factor (FGF) 

15/19. FGF19 and FGF15 share 53% amino acid identity with each other. FGF19 

in humans has similar tissue expression patterns, physiological functions, and 

pharmacological effects as FGF15 in mice [183-185]. There is definitive evidence 

that FGF15 and FGF19 are orthologous proteins. Hence, we refer to the hormone 

collectively as FGF15/19 unless referring to a specific ortholog. Unlike other 

FGFs that act in an autocrine or paracrine fashion, FGF15/19 has reduced 

heparin affinity that permits it to act as an endocrine hormone. FGF15/19 is 

predominately expressed in the ileum and controlled by FXR. When bile acids 

are (re)absorbed from the intestinal lumen, they act on the FXR/RXR 

heterodimer to induce FGF15/19 expression. The secreted FGF15/19 travels in 

circulation but fails to activate FGF receptors (FGFRs) on its own in liver due to 

the reduced affinity and interaction between FGFs and their receptors. It requires 

the assistant of β-Klotho, a transmembrane protein, which enables the binding of 

FGF15/19 to FGFR4 and functions as a co-receptor to initiate the FGF15/19-

FGFR4 signaling and repress CYP7A1 in liver. It has been reported that in SHP 

KO mice, the FGF15/19-mediated suppression of CYP7A1 is lost [186]. This 

demonstrates that FGF15/19-FGFR4-β-Klotho signaling pathway and the SHP 

repression pathway converges in mediating CYP7A1 transcription.  
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In Chapter 3, we observed that UDCA stimulated the ileal expression of FGF15, 

suppressed CYP7A1 expression, and increased hepatic G5G8 protein expression. 

This underlines FGF15/19 as a post-transcriptional mechanism for G5G8 

regulation. In Chapter 4, seeking evidence in support of this hypothesis, we 

tested the ileal FGF15 in LIRKO mice, which expressed higher levels of G5G8 

protein, as well as the hepatic G5G8 protein expression in Asbt KO mice, which 

had suppressed ileal FGF15 expression. 

Another endocrine action of FGF15/19 in bile acid regulation is to promote 

gallbladder filling at least in part by causing a cyclic adenosine monophosphate 

(cAMP)-dependent relaxation of gallbladder smooth muscle [187]. FGF15-KO, 

FGFR4-KO, and β-Klotho-KO mice all have small or even virtually empty 

gallbladders, while administration of recombinant FGF19 into FGF15-KO mice 

results in a rapid gallbladder filling [187-189]. Interestingly, it has been newly 

discovered that cAMP signaling machinery is responsible for the accelerated 

trafficking of G5G8 to the bile canalicular membrane in response to nutrient 

loading [190]. This further supports that FGF15/19 may be a regulator of G5G8 

and it regulates G5G8 probably through the cAMP signaling. Unraveling the role 

of FGF15/19 in the regulation of G5G8 may provide an alternative strategy in 

drug development to target G5G8 activity and the final step of RCT.  

 

Copyright © Yuhuan Wang 2015 
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CHAPTER 2: THE POST-TRANSCRIPTIOANL REGULATION OF ABCG5 

ABCG8 STEROL TRANSPORTER IN LEPTIN-AXIS DEFICIENT MICE 

 

INTRODUCTION 

The ABCG5 ABCG8 locus encodes a pair of ABC half transporters that form a 

G5G8 complex that promotes the secretion of cholesterol into bile and opposes 

the absorption of dietary sterols in the small intestine [191]. Mutations in either 

ABCG5 or ABCG8 cause Sitosterolemia, a recessive monogenic disorder 

characterized by elevated plasma cholesterol and plant sterols, tendon and 

tuberous xanthomas, and accelerated atherosclerosis [191]. G5G8 deficiency also 

results in reduced cholesterol elimination, exacerbated hepatic insulin resistance, 

and the development of NAFLD in a mouse model of diet-induced obesity [165]. 

Conversely, accelerated biliary cholesterol secretion through G5G8 

overexpression improves glycemic control and hepatic insulin signaling in db/db 

mice [192]. In LDLR deficient mice, expression of a G5G8 transgene reduces 

atherosclerosis, suggesting that therapeutics that accelerate G5G8 activity may be 

beneficial in the prevention and treatment of CVD [168, 169]. 

G5G8 heterodimers are formed in the ER in an N-linked glycan dependent 

manner facilitated by the lectin chaperones calnexin and calreticulin [156, 157]. 

Overexpression of calreticulin increases the abundance of the G5G8 complex at 

the cell surface, indicating that protein folding and G5G8 complex formation is a 
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limiting factor that determines G5G8 abundance and activity [156]. G5G8 

complex formation and trafficking to the cell surface requires simultaneous 

expression of both G5 and G8 [154, 155], which is accomplished by a common 

promoter containing response elements for a number of transcription factors 

including LXR α and β, HNF4α, GATA transcription factors, LRH-1, thyroid 

hormone receptor, and FOXO1 [149-153]. The upregulation of G5G8 by FOXO1 is 

clinically significant because it mechanistically ties an increased risk for 

cholesterol gallstones to a hepatic insulin resistance [193]. Additionally, 

quantitative trait locus mapping has identified Abcg5Abcg8 as a lithogenic locus 

in mice, and polymorphisms in both ABCG5 and ABCG8 have been associated 

with increased risk of cholesterol gallstones in humans [194].  

Mice lacking leptin (ob/ob) or its receptor (db/db) are obese and insulin resistant, 

but are paradoxically resistant to the formation of cholesterol gallstones when 

challenged with a lithogenic diet [170]. Multiple mechanisms appear to 

contribute to this phenotype, including a downregulation of hepatic G5G8 and a 

reduction in biliary cholesterol [166, 171-176]. Leptin replacement in ob/ob mice 

increases hepatic G5G8 and cholesterol concentrations in gallbladder bile, 

suggesting that leptin may directly regulate G5G8 abundance and activity [166, 

175]. However, in the present study, leptin administration in ob/ob mice failed to 

acutely increase hepatic G5G8. In addition, hepatic branch vagotomy failed to 

alter G5G8 in obese mice, indicating that centrally acting leptin was not a direct 
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regulator of G5G8 abundance. Likewise, deletion of hepatic leptin receptors had 

no effect on G5G8. 

Caloric restriction can partially rescue G5G8 and biliary cholesterol 

concentrations in db/db mice, suggesting that other mechanisms secondary to 

obesity may destabilize the G5G8 complex in mice that lack a functional leptin 

axis [166, 195].  Markers of ER stress are elevated in the liver of ob/ob mice and 

are associated with the development of hepatic insulin resistance and fatty liver 

disease [96, 111]. Alleviation of ER stress through the chemical chaperones 4-PBA 

and TUDCA restores insulin signaling and glycemic control [111]. We previously 

reported that TUDCA increases G5G8 in db/db mice; however, it has a virtually 

identical effect in lean C57BL mice in the absence of ER stress [166].  

Furthermore, TUDCA stimulates bile flow and increases biliary cholesterol 

secretion in lean mice presenting no ER stress, suggesting its effects on G5G8 

may be independent of chaperone function [196, 197]. Indeed, TUDCA has a 

number of effects beyond chaperone functions, including opposing 

mitochondrial depolarization, caspase activation, and apoptosis [198-200]. 

Therefore, whether the reduction of hepatic G5G8 in ob/ob and db/db mice is a 

consequence of ER dysfunction remains unclear.   

GRP78 is an ER chaperone and component of UPR. In the face of ER stress, 

induction of GRP78 plays an essential role in promoting protein folding and 

assembly, targeting aberrant protein for degradation, and increasing the folding 
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capacity of ER. Hepatic ER stress also contributes to increased lipogenesis and 

steatosis by promoting the processing of SREBPs [112]. SREBPs are among a 

family of ER membrane proteins that traffic to the Golgi in response to metabolic 

signals and are proteolytically processed to release their respective transcription 

factor domains [39]. Exogenous expression of GRP78 by adenoviral 

administration reduces lipogenesis and steatosis by preventing the unregulated 

trafficking and activation of SREBP1-c [112]. Since ER folding capacity is a 

limiting factor in G5G8 abundance, we tested the hypothesis that adenovirus 

encoding GRP78 (AdGRP78) would restore G5G8 in db/db mice. As predicted, 

G5G8 abundance and biliary cholesterol increased following expression of 

AdGRP78. These results reveal a role for ER stress as a mechanism for reduced 

G5G8 in mice lacking a functional leptin axis.  

MATERIALS AND METHODS 

Chemicals, reagents and antibodies 

General chemicals were purchased from Sigma, immunoblotting reagents from 

Pierce, real-time PCR reagents from Applied Biosystems, mouse recombinant 

leptin from Biomyx Technology (San Diego, CA), and mouse leptin ELISA from 

EMD Millipore. Calnexin and GRP78 antibodies were purchased from Nventa 

(San Diego, CA). The α-tubulin and β-actin antibodies were purchased from Cell 

Signaling and Sigma, respectively. Anti-SR-BI was purchased from Novus. Anti-

ABCA1 antibody was a generous gift from Manson Freeman (Harvard Medical 
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School, Boston, MA). Anti-calreticulin antibody was purchased at Stressgen 

Bioreagents Corp. Total and phospho- PERK antibodies were purchased from 

Cell Signaling Technology. Experiments presented in Figure 2.1 were conducted 

with previously described antibodies directed against G5 and G8 [154, 155]. 

Stocks of the rabbit polyclonal antibody directed against G5 have become limited 

and suitable commercially available sources have not been identified. Therefore, 

we contracted ProSci Inc. (Poway, CA; NIH/OLAW assurance #A4550-01) to 

synthesize a peptide from the N-terminus of the rat ortholog of G5 

(MGELPFLSPEGARGPHINRGSLSSLEC) for antibody development in chickens. 

Antibodies were affinity purified and tested for suitability in western blotting 

and immunofluorescence microscopy applications in mouse and rat livers. The 

chicken anti-G5 polyclonal antibody was used for experiments presented in 

Figures 2.3, 2.4, 2.6, 2.7, and 2.8. 

Animal husbandry 

Male mice lacking functional leptin (ob/ob, stock #000632), and the leptin 

receptor (db/db, stock #000697) on the C57BL/6J background and their lean 

littermate controls were purchased from The Jackson Laboratory (Bar Harbor, 

ME). Upon arrival mice were allowed to acclimatize for a period of 7 days prior 

to initiation of studies. Mice harboring two copies of the floxed leptin receptor 

allele (ObRf/f) were provided by Dr. Jeffrey Friedman (The Rockefeller 

University) and maintained in our colony [201]. Animals were housed in 

individually ventilated cages in a temperature-controlled room with a 14:10 light: 
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dark cycle and provided with enrichment in the form of acrylic huts and nesting 

material. All mice were maintained on standard rodent chow (Harlan Teklad 

2014S).  

Leptin treatment 

Mice lacking leptin (ob/ob, n=3) were injected (i.p.) with either saline or 10 

mg/kg mouse recombinant leptin within 30 min of “lights-on” at 06:00. All mice 

were placed in clean cages with full access to water, but without food. Blood and 

tissues were collected 4, 8, and 16 h following leptin administration. For the 16 h 

time-point, a second injection of leptin was administered at 8 h. Blood leptin 

levels were determined at the time of tissue collection by ELISA. 

Adenoviral mediated hepatic gene expression 

AdGRP78 and a control virus (AdEmpty) were previously reported [112]. 

Adenovirus encoding Cre-recombinase (AdCre) was purchased from Microbix 

Biosystems, Inc. (Mississauga, Ontario, Canada). AdCre, AdGRP78, and 

AdEmpty were amplified in HEK293Q cells and purified on cesium chloride 

gradients as previously described [154]. Purified adenovirus was diluted in 

sterile saline and mice (8-12 weeks) were injected through the tail vein with 

4x1012 particles/kg body weight. Analysis of AdCre injected ObRf/f and wild-

type (ObRWT) mice were conducted two weeks following viral delivery. Analysis 

of control and GRP78 expressing mice was conducted five days following 

infection. 

Immunoblot and Quantitative Real-time PCR 
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Total membrane preparations from liver samples were prepared and proteins 

analyzed by SDS-PAGE (50 μg/lane) and immunoblotting as previously 

described [166]. The signals were quantified by densitometry using ImageJ 

software. Total RNAs were extracted from liver tissue using RNA STAT-60 (Tel-

Test, Inc) and subjected to cDNA synthesis with iScript cDNA Synthesis Kit 

(BIO-RAD, Hercules, CA). To determine relative abundance of transcripts, RT-

PCR was conducted using SYBRGreen as detector on Applied Biosystem 7900HT 

fast-Real Time PCR System (Carlsbad, CA) [165]. Glyceraldehyde 3-phosphate 

dehydrogenase (GAPDH) was used as an internal control for the normalization 

of data in all RT-PCR experiments.  

Plasma and biliary lipid analysis 

Plasma TG concentrations were determined enzymatically using the L-type TG 

M kit. Biliary cholesterol concentrations were determined using the cholesterol E 

kit (Wako Chemicals, Richmond, VA). 

Statistical Analysis 

All statistical analyses were conducted using GraphPad Prism. Data are 

expressed as mean ± SEM. Data were analyzed by two-tailed t-test, one-way 

ANOVA, or two-way ANOVA as indicated in figure legends. Post-hoc 

comparisons were conducted by using Dunnett’s tests for one-way ANOVA and 

Bonferroni post-tests for two-way ANOVA, respectively. Differences were 

considered significant at P < 0.05. 
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RESULTS 

To determine if leptin could acutely increase hepatic G5G8 abundance, we chose 

a 10 mg/kg dose that we previously reported to restore hepatic G5G8 in ob/ob 

mice following seven days of treatment [166]. To ensure that this dose was 

biologically active over the course of our study, we monitored food intake for 

three consecutive days prior to, and following, a single dose of leptin (Fig 2.1A). 

Leptin administration immediately suppressed food intake to levels generally 

observed in wild-type (WT) mice over the first 24 h, indicating that leptin was 

centrally active over the course of our experiment. Interestingly, food intake 

remained significantly suppressed for at least seven days following this single 

dose.  
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Figure 2.1. Leptin acutely suppresses food intake, but fails to restore hepatic 
G5G8 in ob/ob mice. (A) Food intake was monitored for three consecutive days 
in ob/ob mice (n=4). A single dose of leptin (10 mg/kg, ip) was administered 
(Day 0) and food intake monitored for seven additional days. Intake following 
leptin treatment was compared to the three-day pre-treatment mean by one-way 
ANOVA. A Dunnett’s test was used to determine differences from the three-day 
pre-treatment mean (a, p<0.01; b, p<0.05). (B-D) In a second cohort of lean and 
ob/ob mice (n=3), tissues were harvested at 4, 8, and 16 h following the initial 
injection of either saline or leptin. (B) Serum leptin levels at the time of tissue 
collection were determined by ELISA. (C-D) Relative protein abundance was 
determined by densitometry using ImageJ software after normalization to 
calnexin (CNX). Data are mean ± SEM and were analyzed by one-way ANOVA. 
Post-hoc comparisons were conducted using Dunnett’s tests ** p<0.01, 
***p<0.001. 
 

Ob/ob mice were injected with saline or leptin and tissues collected 4, 8, and 16 h 

after administration. For the 16 h time-point, a second injection of leptin was 

administered at 8 h. Blood leptin levels were determined by ELISA at the 

termination of the experiment (Fig 2.1B). Lean control mice had leptin levels of 

1.5 ng/ml, while levels in saline treated ob/ob mice were at the lower limit of 

detection in our assay. Serum leptin in ob/ob mice injected with leptin was 30 

ng/ml at 4 h and declined to 8 ng/ml by 8 h, but increased to 20 ng/ml at 16 h 

following the second injection. While these levels of leptin were substantially 

higher than lean controls, they are typical of obese mice maintained on HF diets 

[202]. Hepatic levels of G5 and G8 were analyzed by immunoblotting (Fig 2.2). 

Densitometric analysis of immunoblots of hepatic G5 and G8 confirmed that G5 

and G8 protein levels were low in ob/ob mice compared to lean littermates (Fig 

2.1C, D). Administration of leptin failed to increase G5 or G8 at 4, 8, or 16 h 
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following the initial injection, indicating that centrally acting leptin had no 

immediate impact on hepatic G5G8 protein. 

 
 
Figure 2.2 G5/G8 protein expression in liver tissues of ob/ob mice and their 
lean controls. Liver tissues of lean and ob/ob mice (n=3) were harvested at 4, 8, 
and 16 h following the initial injection of either saline or leptin. Hepatic levels of 
G5 and G8 were analyzed by immunoblotting. Membrane proteins were also 
blotted for calnexin (CNX) as controls for equal protein loading. 
 
 
As an alternative approach to hormone replacement, hepatic G5G8 was 

examined in obese mice that had undergone hepatic vagotomy to determine if 

vagal mediated effects of chronic, centrally-acting leptin could regulate G5G8 

abundance. Hepatic vagotomy was performed in anesthetized 8-week-old male 

mice on the C57BL/6 background as previously described [203]. Mice were 

allowed to recover, maintained on standard chow diet for one week after 

vagotomy, and then switched to HF diet (Bio-Serv, #F3282) feeding for 10 weeks. 
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At termination, liver tissues were harvested and hepatic levels of G5 and G8 

analyzed by immunoblotting (Fig 2.3). Neither G5 nor G8 protein levels were 

affected by hepatic branch vagotomy, indicating that centrally acting leptin failed 

to regulate hepatic G5G8 via vagal innervation in obese mice.  

 

Figure 2.3 Hepatic branch vagotomy fails to alter the abundance of G5G8 in 
the setting of obesity. Liver tissues of obese mice that had undergone hepatic 
vagotomy (HV) and their sham-operated controls (n = 3) were harvested after 
being maintained on high fat feeding for 10 weeks. (A) Hepatic levels of G5 and 
G8 were analyzed by immunoblotting. (B) Relative protein abundance was 
determined by densitometry using ImageJ software after normalization to β-
actin. Data are mean ± SEM. Differences were determined by two-tailed t-test. 
 
 
Although expression of the long, signaling form of the leptin receptor is low in 

peripheral tissues, a number of studies indicate functions for peripheral leptin 

receptor isoforms [204, 205]. Hepatic leptin receptors from mice harboring floxed 

leptin receptor alleles (ObRf/f) were selectively depleted with AdCre. WT and 
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ObRf/f mice were injected with AdCre and analyzed 2 weeks following treatment 

(Fig 2.4). Commercially available antibodies for leptin receptor proved 

unsatisfactory for hepatic protein level determination. An RT-PCR assay 

detecting all ObR isoforms demonstrated a 70% reduction in hepatic mRNA 

levels (Fig 2.4A). Food intake was not affected over this period and there were no 

differences in body weight (data not shown). Neither G5 nor G8 mRNA or 

protein levels were affected by depletion of hepatic leptin receptors (Fig 2.4A, B). 

Similarly, no changes were observed in biliary cholesterol concentrations (Fig 

2.4C). These results failed to support direct effects of centrally or peripherally 

acting leptin on G5G8 abundance.  
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Figure 2.4 Depletion of hepatic leptin receptors does not reduce G5G8. An 
adenoviral vector encoding Cre recombinase (AdCre) was administered to WT (n 
= 3) and mice harboring two floxed alleles for leptin receptor (ObRf/f, n = 3). (A) 
Hepatic levels of leptin receptor (ObR), G5 and G8 mRNA were quantified by 
RT-PCR. (B) The abundance of hepatic G5 and G8 protein was determined by 
immunoblotting. (C) Biliary cholesterol concentrations were determined by 
colorimetric-enzymatic assay. Data are mean ± SEM. Differences were 
determined by two-tailed t-test ***p<0.001. 
 
 
Expression of the ER chaperone protein GRP78 has been shown to alleviate 

markers of ER stress and reverse key features of the fatty liver phenotype in ob/ob 

mice [112]. The formation and trafficking of the G5G8 heterodimer is critically 

dependent upon the ER calnexin/calreticulin chaperone system. Therefore, we 

tested the hypothesis that elevated expression of GRP78 could restore G5G8 in 

db/db mice. A small cohort of lean mice (n = 3) was also administered AdEmpty 

and AdGRP78 as an additional control. Tissues were harvested 5 days following 

viral administration. AdGRP78 increased hepatic GRP78 compared to mice 

infected with the control virus (Fig 2.5A). Immunoblot analysis demonstrated a 

reduction in phospho-PERK following GRP78 expression, indicating a reduction 

in UPR signaling (Fig 2.5A, B). As previously published in ob/ob mice, expression 

of AdGRP78 reduced expression of SREBP1-c, as well as its target genes 

acetylCoA carboxylase 1 (ACC1) and fatty acid synthase (FAS), in the lipogenic 

pathway (Fig 2.5C). Similarly, plasma TGs and liver to body weight ratios were 

elevated in obese, db/db mice and reduced by elevated GRP78 expression to levels 

observed in lean controls (Fig 2.5D, E). These data confirmed the primary 
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observations previously made in ob/ob mice and extended them to the db/db 

model.  

 

Figure 2.5 AdGRP78 alleviates ER stress, reduces lipogenic gene expression, 
and normalizes plasma TGs and liver weight in db/db mice. Control 
(AdEmpty) and GRP78 (AdGRP78) adenoviral vectors were administered to lean 
(n = 3) and db/db (n = 5 WT and 6 KO) mice. Tissues were harvested for analysis 
5 days following viral expression. (A) GRP78, total and phosphorylated (P-) 
PERK in db/db mice were assessed in hepatic lysates by SDS-PAGE and 
immunoblotting. α-tubulin was used as a loading control. (B) The ratio of 
phosphorylated to total PERK was determined by desitometry using ImageJ. (C) 
The mRNA for lipogenic genes SREBP1-c, acetylCoA carboxylase 1 (ACC1), and 
fatty acid synthase (FAS) was determined by RT-PCR. (D) Plasma TGs and (E) 
liver weight to body weight ratio (LW/BW) were determined in both lean and 
db/db mice. Data are mean ± SEM and were analyzed by two-tailed t-test (B-C) 
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and two-way ANOVA followed by Bonferroni post-tests (D-E) ** p<0.01, 
***p<0.001, ****p<0.0001. 
 

As previously reported in both ob/ob and db/db mice, hepatic G5 protein 

expression was reduced in db/db mice compared with their lean controls (Fig 2.6). 

No difference was observed in the expression of GRP78, calnexin, or calreticulin.  

 

Figure 2.6 Hepatic expression of G5, GRP78, calnexin, and calreticulin in db/db 
mice and their lean controls was determined by immunoblot analysis. 
 
 
In db/db mice, AdGRP78 increased G5 and G8 by 2.2 and 2.4 fold, respectively. 

The increase in G5 and G8 protein occurred in the absence of an increase in 

mRNA encoding either protein, consistent with a mechanism of increased 

efficiency of G5G8 complex formation within the ER (Fig 2.7A, B). An increase in 

protein expression of the ER chaperone calnexin was observed in the absence of 

an increase at its mRNA level (Fig 2.7A, B). Total cholesterol content in 

gallbladder bile was elevated most likely due to increased G5G8 (Fig 2.7C). We 

also observed significant, albeit modest, increases in both mRNA and protein 

expression of SR-BI, which is another contributor to biliary cholesterol secretion 



53 
 

(Fig 2.7A, B) [197, 206, 207]. However, there was no direct relationship between 

SR-BI and G5G8 abundance as shown in SR-BI deficient mice (Fig 2.8).  Protein 

expression of ABCA1 also increased in db/db mice following AdGRP78 treatment 

(Fig 2.7A).  
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Figure 2.7 AdGRP78 increases G5G8 at the protein level and elevates biliary 
cholesterol in db/db mice. (A) Immunoblot analysis of hepatic G5, G8, calnexin, 
SR-BI, and ABCA1. Data were analyzed by densitometry and normalized to α-
tubulin. (B) Levels of G5, G8, calnexin, and SR-BI mRNA were determined by 
RT-PCR.  (C) Total biliary cholesterol was determined by colorimetric-enzymatic 
assays. Data are mean ± SEM (n=5 WT and 6 KO). Differences were determined 
by two-tailed t-test ** p<0.01, ***p<0.001, ****p<0.0001. 
 
 

 
 
Figure 2.8 SR-BI deficiency does not directly affect hepatic G5G8. Liver tissues 
of SR-BI KO mice and their WT littermates were harvested. (A) Hepatic levels of 
G5 and G8 were analyzed by immunoblotting. (B) Relative protein abundance 
was determined by densitometry after normalization to β-actin. 
 
 

DISCUSSION 

The key finding of the present study is that expression of the ER chaperone, 

GRP78, restores hepatic G5G8 in db/db mice, whereas there is no apparent direct 

central or peripheral effect of leptin signaling on the complex. In the context of 

previously published studies that established a role for biliary cholesterol 
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secretion in opposing ER stress, the present study suggests a reciprocal 

relationship between ER function and G5G8-mediated biliary cholesterol 

secretion.  

Leptin signaling 

Leptin replacement reduces food intake and induces weight loss in ob/ob mice. 

Therefore, it is difficult to establish which effects are truly dependent upon 

central or peripheral leptin signaling or are secondary to changes in energy 

balance. We previously reported the restoration of G5G8 in ob/ob mice following 

long-term leptin replacement [166]. While an increase in immunoreactive G5G8 

was observed in pair-fed controls, leptin replacement resulted in a far greater 

increase, suggesting a direct role for leptin signaling as a regulator of hepatic 

G5G8 abundance. In the present study, leptin administration failed to acutely 

increase G5G8 after 4, 8, or 16 h when plasma levels of leptin were more than 

sufficient to mediate the central effects of this hormone. The absence of an effect 

over this period fails to support a role for centrally acting leptin on hepatic G5G8 

abundance. While it is possible that centrally acting leptin may take a greater 

period of time to restore hepatic G5G8, the abundance of G5 and G8 mRNAs 

increase after a 24 h fast in a peroxisome proliferator-activated receptor alpha 

(PPAR)-dependent fashion [195]. Consequently, observations at later time-

points would be confounded by induction of the PPAR-mediated fasting 

response. 
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Long-term stimulation of the hepatic branch of the vagus nerve reduces body 

weight and fat mass in rats [208]. Although effects of leptin in liver have been 

shown to be mediated by vagal stimulation or by hepatic leptin receptors, neither 

pathway appears to regulate hepatic G5G8 abundance [209, 210]. In our studies, 

mice that had undergone hepatic branch vagotomy failed to show any difference 

in hepatic levels of G5G8 compared with their sham-operated controls. Similarly, 

depletion of hepatic leptin receptors also failed to reduce G5G8. While these 

results support a hepatic leptin receptor-independent mechanism for reduced 

G5G8 in db/db and ob/ob mice, this experiment was limited by incomplete ObR 

depletion at the mRNA level and that hepatic leptin receptor depletion could not 

be confirmed at the protein level. 

 

Restoration of G5G8 by AdGRP78 in db/db mice 

The increase in G5G8 following AdGRP78 treatment was consistent with a 

mechanism that includes the improvement of ER folding capacity and greater 

efficiency of G5G8 complex formation within the ER. When expressed 

individually in cells, G5 and G8 have short half-lives and are rapidly degraded 

[155]. Co-expression allows for the formation of G5G8 heterodimers through a 

process that is dependent on the presence of their N-linked glycans and 

interactions with calnexin [157]. In cultured cells, co-expression of either calnexin 

or calreticulin with G5 and G8 increases the appearance of G5G8 at the cell 

surface [156]. It is important to note that GRP78 does not bind either G5 or G8 
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[157]. Therefore, it is unlikely to directly facilitate G5G8 folding. An increase in 

calnexin was also observed and is more likely to account for G5G8 rescue in db/db 

mice (Fig 5A). However, whether the increase in calnexin is required for the 

effect of GRP78 on G5G8 abundance is unknown. Apart from increased G5G8 

complex formation in the ER, other mechanisms that may account for increased 

G5G8 levels include an increase in the rates of translation for each monomer or 

increased stability of the mature, post-Golgi complex. While these alternate 

explanations have not been formally explored, the parallel increase in the 

immature and mature forms of G5 and G8 suggest that post-Golgi complex 

stability was not altered as this would result in selective accumulation of the 

mature form of each protein.  

 

ER function and G5G8 

ER stress is thought to play a causative role in the development of liver 

dysfunction in mice lacking leptin or its receptor and may directly contribute to 

the reduction in G5G8 in db/db mice. However, markers of ER stress are also 

induced in mice following high fat feeding and G5G8 levels are unaffected or 

even increased depending on the lipid composition of the diet [211-213]. While 

these observations were suggestive of a direct effect of leptin signaling on G5G8 

abundance, direct effects of leptin could not be demonstrated.  The reduction in 

G5G8 associated with ER stress in ob/ob and db/db mice may simply be a matter of 

degree. The extent of obesity, steatosis, insulin resistance, and ER dysfunction is 
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generally greater in these mice compared those with an intact leptin axis and 

challenged with various high fat diets. Alternatively, the lack of reduction in 

G5G8 protein in other models may reflect a compensatory increase in G5G8 

transcription that overcomes reduced efficiency of complex formation within the 

ER. In addition, we previously reported that other glycoproteins, including the 

closely related family member ABCG2, were not affected in mice harboring 

defects in leptin or its receptor [166]. Rescue of the complex by AdGRP78 

implicates ER dysfunction as a mechanism contributing to reduced G5G8, but 

what accounts for the selective depletion of G5G8 in db/db and ob/ob mice remains 

unknown. Perhaps G5G8 assembly is particularly sensitive to ER dysfunction. 

Alternatively, there may be some synergistic effect of the absence of leptin 

signaling and fatty liver phenotype on G5G8 abundance.     

We previously reported that the loss of G5G8 increased markers of ER stress in 

HF-fed mice, establishing that biliary cholesterol secretion is essential to 

maintain hepatocyte function [165]. Excess unesterified cellular cholesterol is 

known to induce ER stress in a number of cell types, including hepatocytes [124, 

214, 215]. Conversely, ER stress reduces ABCA1 and SR-BI and impairs 

cholesterol efflux in cultured hepatocytes [216]. Similar to G5G8, AdGRP78 

increased ABCA1 and SR-BI in db/db mice, suggesting that ER dysfunction 

perturbs multiple facets of hepatic sterol metabolism in db/db mice.  Collectively, 

the data support a reciprocal relationship between ER function and cholesterol 



59 
 

metabolism in which disturbances in cholesterol homeostasis contribute to ER 

stress and ER stress contributes to disruptions in cellular cholesterol metabolism.  
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CHAPTER 3. THE COMBINATION OF EZETIMIBE AND URSODIOL 

PROMOTES FECAL STEROL EXCRETION AND REVEALS A G5G8-

INDEPENDENT PATHWAY FOR CHOLESTEROL ELIMINATION 

 

INTRODUCTION 

Elevated cholesterol is an important risk factor for CVD and strategies to 

promote cholesterol elimination have long been employed to reduce the risk of 

atherosclerosis. An emerging body of literature suggests that cholesterol also 

plays an active role in the development of NAFLD and its progression to NASH. 

Adding cholesterol to a HF diet in C57BL/6J mice leads to significantly more 

profound hepatosteatosis, inflammation, and fibrosis resembling human NASH 

[117]. Similarly, in LDLR deficient mice, adding cholesterol to a HF, high-sucrose 

diet exacerbates the development of insulin resistance and steatosis resulting in 

NASH [118]. In a mouse model of Alström syndrome (Alms1 mutant or foz/foz 

mice), an elevation in hepatic FC due to an increase in hepatic uptake and a 

decrease in biliary elimination is thought to play a contributing role in the 

development of liver disease [124]. Strategies that promote hepatic cholesterol 

elimination are likely to have therapeutic benefit in NAFLD. 

The G5G8 heterodimer is the primary mediator of hepatobiliary elimination, 

accounting for 70% to 90% of biliary cholesterol secretion [152]. In addition, it 

also opposes phytosterol absorption in the proximal small intestine [148, 152]. 
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We previously reported that G5G8 plays an essential role in the development of 

diet-induced obesity phenotypes independent of its role in opposing phytosterol 

accumulation. The absence of G5G8 and reduced biliary cholesterol secretion 

resulted in hepatic cholesterol accumulation, acceleration of obesity and insulin 

resistance, and worsening of NAFLD in mice challenged with a plant sterol-free 

(PSF) HF diet [165]. Conversely, increasing biliary cholesterol secretion by 

adenoviral expression of G5G8 restored glycemic control, improved hepatic 

insulin signaling, and lowered plasma TGs in genetically obese, db/db mice [167].  

Increased biliary and fecal sterol elimination following adenoviral G5G8 would 

presumably lower plasma cholesterol levels in db/db mice. However, a significant 

portion of the secreted cholesterol was reabsorbed, resulting in a paradoxical 

increase in plasma cholesterol despite increased biliary output. This effect of 

adenoviral G5G8 can be overcome by co-administration of EZ, a potent inhibitor 

of cholesterol absorption that blocks NPC1L1 activity in the intestine [167, 217]. 

Similar observations were made in atherosclerosis studies in which a G5G8 

transgene expressed in both liver and intestine lowered LDL-C and reduced 

lesion area, whereas a liver specific transgene was ineffective in the absence of 

EZ [168, 169]. These observations indicate an interdependent relationship 

between biliary secretion and intestinal absorption for effective fecal cholesterol 

elimination. Consequently, therapeutic approaches to promote cholesterol 

elimination by targeting the hepatobiliary pathway are likely to be limited by 
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intestinal reabsorption of secreted cholesterol. Thus, a combination therapy that 

increases biliary cholesterol secretion and simultaneously reduces intestinal 

absorption is likely to act additively in the elimination of cholesterol from the 

body.  

While EZ is effective in reducing cholesterol absorption, no currently available 

therapeutics directly target the G5G8 sterol transporter to increase biliary 

cholesterol secretion. However, we previously published that TUDCA increases 

G5G8 and biliary cholesterol in both lean and obese, db/db mice [166]. TUDCA is 

a first pass metabolite of ursodiol (Urso). Studies in mice have shown that 

TUDCA and its unconjugated precursor, Urso, have a number of beneficial 

effects on liver function including alleviation of ER stress, improved insulin 

sensitivity and reduced lipogenesis [111, 166, 218]. However, the effect of Urso 

on increasing G5G8 and promoting biliary secretion of cholesterol has not been 

characterized.  

In the present study, we confirmed that Urso had similar effects on G5G8 as 

TUDCA. Urso increased hepatic G5G8 and dose-dependently accelerated both 

biliary and fecal sterol excretion. We then tested whether an Urso-EZ 

combination treatment would act additively to promote cholesterol elimination. 

We treated mice with a constant dose of Urso or Urso in combination with two 

doses of EZ. EZ produced an additive effect for fecal sterol excretion in the 

presence of Urso. Although biliary and fecal neutral sterols (FNS) were 
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invariably lower in G5G8 KO mice, we observed an increase in FNS following 

Urso alone or Urso-EZ combination treatments. The magnitude of this increase 

was not affected by genotype suggesting that there may be a G5G8-independent 

pathway for cholesterol elimination stimulated by Urso. 

MATERIALS AND METHODS 

Chemicals, reagents and antibodies   

General chemicals were purchased from Sigma, immunoblotting reagents from 

Thermo/Pierce, real-time PCR reagents from Applied Biosystems. 

Tauroursodeoxycholic acid, sodium salt (580549-5GM) was purchased from 

Calbiochem. Ursodiol capsules, USP (NDC 42806-503-01) were purchased from 

Epic Pharma, LLC and Zetia (ezetimibe) tablets (NDC 66582-414-54) from Merck 

& Co., Inc. Urethane, bromodeoxyuridine (BrdU), and the silylation reagent N, 

O-Bis (trimethylsilyl) trifluoroacetamide (BSTFA) were purchased from Sigma-

Aldrich. The chicken anti-G5 polyclonal antibody and the monoclonal antibody 

directed against G8 were previously reported [154, 165]. The β-actin antibody 

was purchased from Sigma. Anti-ABCA1, [26, 26, 26, 27, 27, 27-2H6] cholesterol 

and [5, 6, 22, 23-2H4] sitostanol were generous gifts from Ryan Temel (University 

of Kentucky) [219]. The anti-CD3 monoclonal antibody (clone 145-2C11) was 

purified over protein G beads (Amersham Pharmacia Biotech, Piscataway, NJ). 

Anti-BrdU was purchased from MPL International, Woburn, MA.  

EZ- and/or Urso-supplemented diets 
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Powdered rodent chow diet (T.2018M.15) was purchased from Harlan 

Laboratories. Custom formulated pellet (D10040301) and powdered 

(D10040301M) PSF diets were purchased from Research Diets, Inc. Macronutrient 

composition and sterol content were previously described [165]. There was no 

added cholesterol in the diet. Both Urso and EZ were ground into a fine powder, 

and then thoroughly mixed with control diet (T.2018M.15 or D10040301M) to 

obtain the desired concentrations. Powdered diets were provided to mice in glass 

feeding jars and replaced daily.  

Animal husbandry 

C57BL/6J (Stock #000664) mice were purchased from The Jackson Laboratory 

(Bar Harbor, ME). Mice homozygous for the Abcg5 and Abcg8 mutant alleles 

(KO) and their WT littermates were obtained from heterozygous, trio matings as 

previously described [165]. Mice were housed in individually ventilated cages in 

a temperature-controlled room with a 14:10 light: dark cycle and provided with 

enrichment in the form of acrylic huts, wood chew sticks, and nesting material. 

Mice were adapted to powdered diet for a period of 7 days prior to initiation of 

studies. The diet was then changed to those containing various concentrations of 

Urso and EZ. All animal procedures conform to PHS policies for humane care 

and use of laboratory animals and were approved by the institutional animal 

care and use committee at the University of Kentucky. All surgery was 

performed under anesthesia, and all efforts were made to minimize suffering. 
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Animal experiments 

Male C57BL/6J mice (n=6/group) were fed chow (control), chow supplemented 

with 0.4% TUDCA (w/w), or Urso at concentrations of 0.1%, 0.3%, or 1% (w/w) 

for 7 days. Mice were housed (2 per cage) in individually ventilated cages. Mice 

were placed in clean cages to collect feces for 3 days prior to termination. On the 

final day of the study, mice were transferred to clean cages and fasted for 4 

hours. The bile duct was ligated, and the gallbladder cannulated for basal bile 

collection (30 min) under urethane (1 g/kg body weight) anesthesia. Bile flow 

was determined gravimetrically assuming a density of 1 g/ml. Mice were then 

exsanguinated, and tissues dissected, frozen in liquid nitrogen, and stored at -

80°C until analysis. Details were shown in the experimental outline for Urso 

dose-dependent study (Fig 3.1). 

 

Figure 3.1 Experimental outline for the Urso dose-dependent study. 
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Another cohort of male C57BL/6J mice (n=7) were fed chow (control), chow 

supplemented with 0.3% Urso or 0.3% Urso combined with 0.001% or 0.005% EZ 

for 14 days and were housed individually. Feces, basal bile, and other tissues 

were collected as described above (Fig 3.2).  

Figure 3.2 Experimental outline for the Urso-EZ combination study. 

 

G5G8 KO mice (n=4 both male and female) and their WT littermates (n=6 male 

and 7 female) were weaned between 18 and 21 days onto a pellet PSF diet to 

prevent the development of Sitosterolemia [165]. When maintained on this diet, 

serum levels of phytosterols are less than 10% of those observed in G5G8 KO 

mice maintained on chow diet and do not differ between genotypes (Fig 3.3). 

Prior to initiation of the study, mice were adapted to a powdered PSF (vehicle) 

diet for 7 days. Then, mice were fed a vehicle diet for 10 days (Phase I) followed 

by 0.3% Urso for 7 days (Phase II). All mice were then treated with 0.3% Urso 
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combined with 0.005% EZ for 14 days (Phase III). Feces were collected the final 3 

days of each phase. Blood samples were collected by cheek bleed at the final day 

of each phase. At termination following phase III, basal bile and tissues were 

harvested as described above (Figure 3.4). 

 

Figure 3.3 Serum levels of cholesterol and dietary phytosterols in mice 
maintained on a PSF diet. The concentrations of cholesterol and dietary 
phytosterols in G5G8 KO mice (n=3) and their WT littermates (n=3) were 
simultaneously determined by GC-MS. Serum samples from KO mice 
maintained on standard rodent chow were used as positive controls. Data are 
mean ± SEM. Differences were determined by one-way ANOVA followed by 
Bonferroni post-hoc tests. ***p<0.001, ****p<0.0001. 
 

 

Figure 3.4 Experimental outline for the G5G8-dependent study 

Another cohort of male and female G5G8 KO and WT mice (n=3 for each gender 

and genotype) treated with 0.3% Urso or a PSF vehicle diet for 7 day were used 



68 
 

to measure both fractional cholesterol absorption and intestinal epithelial cell 

sloughing as described with modifications [220, 221]. Mice were individually 

housed and adapted to a powdered PSF (vehicle) diet 7 days prior to the 

experiment in wire bottom cages. Each mouse was gavaged with 50 μl of 

deuterated sterol/stanol-oil mixture. Feces were collected for 3 days after oral 

gavage. To determine the relative rates of intestinal epithelial cell proliferation 

and turnover, each mouse was injected i.p. with 1 mg BrdU 2 hours before tissue 

dissection. Blood samples were collected, and three segments of the small 

intestine were harvested and fixed in 10% neutral buffered formalin for 

immunohistochemistry.  

Immunoblot and Quantitative Real-time PCR 

The preparations of proteins, SDS-PAGE, and immunoblotting were conducted 

as previously described [165, 167]. Total RNAs were extracted from each liver 

using the RNA STAT-60 (Tel-Test, Inc.) and subjected to cDNA synthesis with 

iScript cDNA Synthesis Kit (BIO-RAD, Hercules, CA). To determine relative 

abundance, RT-PCR was conducted using SYBRGreen detector on Applied 

Biosystem 7900HT fast-Real Time PCR System (Carlsbad, CA) [165]. 

Hepatic, serum, and biliary lipid analysis 

Hepatic lipids were extracted by using folch reagents as previously described 

[167]. Total and non-esterified hepatic and serum cholesterol, as well as 

cholesterol and phospholipids in gallbladder bile, were determined using 
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commercial colorimetric-enzymatic assays (Wako Chemicals, Richmond, VA). 

The quantitation of total bile acids in bile was performed enzymatically by 

measuring 3α-hydroxy bile acids as previously described [222]. Serum was 

fractionated by fast protein liquid chromatography (FPLC), and fractions were 

analyzed for total cholesterol content as previously described [165]. The 

concentrations of lathosterol and phytosterols in serum were measured by 

LC/MS/MS and GC-MS, respectively using modifications of previously 

published methods [2, 223-225].  

Fecal Neutral Sterols (FNS) 

FNS were analyzed as previously described with minor modifications [167]. 

Briefly, total feces from the 72-h period were collected, dried at 37 °C, weighed, 

and ground to powder. An aliquot of 0.30 g of feces was placed into a glass tube 

with 2.5 ml of ethanol and 0.5 ml of 10 N NaOH. Lipids were saponified at 72 °C 

in a water-bath for 2 h and extracted (water: ethanol: petroleum ether, 1:1:1, 

v/v/v). 0.12 mg of 5α-cholestane (1 μg/μl) was used as the internal standard. 

Following extraction, the organic phase was dried under nitrogen gas and 

solubilized in hexane. The amount of neutral sterols (cholesterol, coprostanol, 

and cholestanol) was quantified by GC-MS. 

Lathosterol Analysis 

Serum lathosterol concentrations were measured by LC/MS/MS. Lipids and 

sterols were extracted from 10 µl mouse serum by the modified Bligh/Dyer 

method [224]. D7-Lathosterol (10 µl of 100 ng/mL in methanol; Avanti Polar 
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Lipids, Alabaster, Al) was added to serum as internal standard and extracted 

sterols were converted to picolinyl esters by derivatization [225], and 

reconstituted into 300 µl acetonitrile. Lathosterol calibrators (30, 60, 100, 150, 250 

and 500 ng/ml) and quality control samples (50, 125, and 200 ng/ml) were 

prepared in the absence of serum. Processed samples were analyzed immediately 

for lathosterol content by injection (45 µl) onto a Shimadzu Prominence LC 

system coupled to an API 2000 MS/MS through an electrospray ionization 

source (+mode/5500V/500˚C/GS1 at 50/GS2 at 40). The picolinyl esters (PE) of 

D7-lathosterol and of lathosterol, were resolved from the cholesterol-PE (Rt of 

31.2, 32.0, and 34.5 min, respectively) using a Luna C18 (2)-HST analytical column 

(2.5 µ; 100x2 mm) with a guard column (C18; 4x2-mm). The isocratic mobile 

phase (0.25 mL/min) was 96:4 acetonitrile: 10 mM ammonium formate. 

Molecular ion transitions (499.4/376.5 (D7-PE) and 492.5/369.5 (lathosterol-PE) 

m/z) were monitored using voltages optimized from the individual analyte 

infusions in mobile phase. Linear regression analysis (R2=0.9985 with 1/x 

weighting) relating the mass ratios to the area ratios of lathosterol to D7-

lathosterol was performed with Analyst® software (Ver. 1.4.2). Repeated 

processing of pooled control serum indicated adequate reproducibility (avg=90.6 

ng/mL ± 2.2, RSD=2.4%, n=4) of the overall method. Standard and quality 

control samples processed alongside experimental samples, demonstrated 

accuracy of 92.7-109% of nominal values.     

Phytosterol analysis 
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Total cholesterol and phytosterol concentrations in serum were measured by GC-

MS as described with minor modifications [223]. Briefly, 20 µl of serum was 

saponified in 4% sodium hydroxyide/ethanol at 65°C for 2 h after addition of 5α-

cholestane as a quantitative internal standard. Lipids were extracted using 2 ml 

of petroleum ether and the organic fraction from each extract was removed and 

dried under nitrogen. The residual lipids were reconstituted in N, O-Bis 

(trimethylsilyl) trifluoroacetamide (BSTFA, Sigma-Aldrich) and derivatized at 

75°C for 15 min. The samples were fractionated by GC using an HP-5MS 5% 

Phenyl Methyl Siloxane column and quantified by electron ionization-MS 

operating in single-ion-monitoring mode. Each sterol was quantified using ions 

with the following m/z: cholesterol 458; campesterol 472; sitosterol 486. 

Determination of fractional cholesterol absorption 

Fractional absorption of cholesterol was measured as described with 

modifications [220]. Briefly, a mixture containing 8 mg of [26, 26, 26, 27, 27, 27-

2H6] cholesterol and 8 mg of [5, 6, 22, 23-2H4] sitostanol was prepared and 

dissolved in 4 mL of vegetable oil. A single dose of the deuterated sterol/stanol-

oil mixture (50 μl) was gavaged to each mouse. Feces were collected for 3 days 

after oral gavage, pooled, dried, and homogenized. An 80mg aliquot of stool 

from each mouse was saponfied in 4% sodium hydroxyide/ethanol at 65°C for 2 

h after addition of 80 μg of 5α-cholestane as an internal standard. Two milliliters 

of nano-pure water were added, and sterols and stanols were extracted with 2 ml 
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of hexane. Five hundred microliters of organic fraction were dried under 

nitrogen, and the residual sterols and stanols were dissolved in 400 μl of BSTFA 

and reacted at 75°C for 15 min. A 10 μl aliquot of oil mixture was extracted 

following the same procedure as fecal samples. Sterols and stanols were 

separated by GC on an HP-5MS column. Selective ion monitoring was performed 

at m/z 464 for D6-cholesterol, m/z 493 for D4-sitostanol. The fractional 

absorption of cholesterol was calculated using the following equation. 

(
[2H6]cholesterol
[2H4]sitostanol

 dose ratio −  
[2H6]cholesterol
[2H4]sitostanol

 feces ratio)

[2H6]cholesterol
[2H4]sitostanol

 dose ratio

× dose ratioanoll. Selective ion mon 

 

Determination of intestinal epithelial cell sloughing 

The jejunal epithelial cell sloughing was indirectly determined by doing a pulse 

chase experiment using Bromodeoxyuridine (BrdU) as described with 

modifications [221]. Briefly, each mouse was injected i.p. with 1mg BrdU 2 hours 

before killing. Antibodies directed against CD3 were used as positive control to 

stimulate proliferation and cell turnover. A group of 3 WT mice were injected 

with anti-CD3 18 hours before BrdU injection. Detection of nuclei that had 

incorporated BrdU was performed by immuno-histochemistry. The anti-BrdU 

antibody was diluted 1:400 in Powerblock (Dako, Carpinteria, CA). The rat IgG 

ABC kit (Vector Laboratories, Burlingame, CA) and DAB substrate chromagen 
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(DAKO) were used to develop BrdU staining. Images were acquired using an 

Olympus DP71 camera (Tokyo, Japan) and measurements were made using 

ImageJ (NIH, Bethesda, MD). Sections were analyzed by scoring 20 crypts per 

mouse, 3 mice per group. Each crypt unit was scored for BrdU positive cells. 

Villus height and crypt depth were measured as well. The slides were also 

stained with hemotoxylin and eosin (H&E) to visualize the enterocyte histology. 

The scale bar represents 50 microns for BrdU staining and 100 microns for H&E. 

Statistical Analysis 

All statistical analyses were conducted using GraphPad Prism. Data are 

expressed as mean ± SEM. Data shown in Fig 3.5-7 were analyzed by two-tailed 

t-test or one-way ANOVA followed by Dunnett’s post-hoc comparisons. Data 

shown in Fig 3.8-14 were analyzed by one-way ANOVA followed by Bonferroni 

post-hoc tests. Data shown in Fig 3.15-17 were analyzed by a two-way ANOVA 

or a repeated measure two-way ANOVA using genotype and treatment as 

factors. Post-hoc comparisons were made using Bonferroni tests. Differences 

were considered significant at P < 0.05. Where genotype and treatment by sex 

interactions were not significant, data were analyzed independent of sex.  

 

RESULTS 

Urso increases G5G8 and both biliary and FNS in a dose-dependent manner 

To determine if Urso could increase G5G8 and biliary cholesterol secretion and 

elimination, mice were fed chow (control) or chow supplemented with 0.1%, 



74 
 

0.3%, or 1% (w/w) Urso. TUDCA (0.4%, equal molar ratio to 0.3% Urso) was 

used as a positive control as it was previously shown to increase G5G8 and 

biliary cholesterol secretion. The abundance of hepatic G5 and G8 was evaluated 

by immunoblot analysis (Fig 3.5A). Urso increased hepatic G5G8 to a similar 

level at all tested doses. Its effects were equal to, or slightly greater than TUDCA, 

particularly for G8. Biliary cholesterol and FNS were used as indirect measures 

of G5G8 activity. Hepatobiliary cholesterol secretion rates under basal conditions 

were calculated from the product of bile flow and cholesterol concentration. Urso 

dose-dependently increased both biliary cholesterol secretion rates and FNS (Fig 

3.5B-C). Similarly, Urso increased biliary secretions of both phospholipids and 

bile acids in a dose-dependent manner (Fig 3.6). 
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Figure 3.5 Urso increases G5G8 and both biliary and FNS in a dose-dependent 
manner. Male C57BL/6 mice were fed with control, 0.4% TUDCA, or three doses 
of Urso for 7 days. (A) Hepatic levels of ABCG5 and ABCG8 protein expression 
were determined by immunoblotting. Membrane preparations were blotted for 
β-actin as controls. (B) Hepatobiliary cholesterol secretion rates under basal 
conditions. Gallbladder was cannulated and basal bile was collected for 30 min. 
n=6 for each group. (C) FNS was determined by GC-MS. n=3 for each group. 
Data are presented as mean ± SEM. Differences between TUDCA and control 
were determined by two-tailed t-test. Differences between control and three 
doses of Urso were determined by one-way ANOVA followed by Dunnett’s 
tests. *p<0.05, **p<0.01, ***p<0.001. 
 

 

Figure 3.6 Urso increases biliary secretion rates of phospholipids and bile 
acids. Male C57BL/6 mice were fed with control, 0.4%TUDCA, or three doses of 
Urso for 7 days. Hepatobiliary secretion rates of phospholipids (A) and bile acids 
(BAs) (B) under basal conditions. n=6 for each group. Data are presented as mean 
± SEM. Differences between TUDCA and control were determined by two-tailed 
t-test. Differences between control and three doses of Urso were determined by 
one-way ANOVA followed by Dunnett’s tests. *p<0.05, **p<0.01, ***p<0.001. 
 

Urso suppresses bile acid synthesis, but had no effect on cholesterol levels in 

liver or serum. 

Urso had no effect on either serum or hepatic total cholesterol at any of the doses 

examined (Fig 3.7A, B). To determine if the increased FNS was due to increased 

cholesterol synthesis, we measured the mRNA expression level of HMGCR and 
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HMGCS and observed no virtual differences (Fig 3.7C). To investigate the effects 

of Urso on bile acid biosynthesis, the mRNA expression level of CYP7A1, 

CYP8B1, CYP7B1, and CYP27A1 was quantified by RT-PCR (Fig 3.7D). TUDCA 

significantly decreased both CYP7A1 and CYP8B1, but not CYP7B1 and 

CYP27A1 (not shown). Similarly, both CYP7A1 and CYP8B1 decreased in a dose-

dependent manner following Urso treatment. As with TUDCA, Urso had no 

effect on CYP7B1 and CYP27A1 expression levels (not shown).  
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Figure 3.7 Urso suppresses bile acid synthesis, but had no effect on cholesterol 
levels in liver or serum. (A) Total cholesterol concentrations in serum. n=6 for 
each group. (B) Hepatic total cholesterol per gram of wet tissue weight. n=6 for 
each group. The mRNA expression for de novo cholesterol synthetic genes 
HMGCR and HMGCS (C) and bile acid synthetic genes CYP7A1 and CYP8B1 (D) 
was determined by RT-PCR. n=4-5 for each group. Data are mean ± SEM. 
Differences between TUDCA and control were determined by two-tailed t-test. 
Differences between control and three doses of Urso were determined by one-
way ANOVA followed by Dunnett’s tests. *p<0.05, **p<0.01, ***p<0.001. 
 

EZ produces an additive effect for fecal sterol elimination. 

To determine if EZ plays an additive role for accelerating cholesterol elimination, 

we treated mice with 0.3% Urso combined with two doses of EZ for 14 days. As 

with 7-day treatment, 0.3% Urso increased G5G8 protein levels in liver. This 

effect was maintained in the presence of both low- and high-doses of EZ (Fig 

3.8A). The presence of EZ had no effect on biliary secretion rates of cholesterol as 

well as phospholipids and bile acids following 2-weeks of treatment (Fig 3.8B, 

3.9). However, EZ dose-dependently increased FNS in the presence of 0.3% Urso 

(Fig 3.8C). 
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Figure 3.8 EZ produces an additive effect for fecal sterol elimination. Male 
C57BL/6 mice were fed with control, 0.3% Urso, or 0.3% Urso combined with a 
low or high dose of EZ for 14 days. (A) Hepatic levels of ABCG5 and ABCG8 
protein expression were determined by immunoblotting. (B) Hepatobiliary 
cholesterol secretion rates under basal conditions. n=5-7 for each group. (C) FNS 
was determined by GC-MS. n=7 for each group. Data are presented as mean ± 
SEM. Differences were determined by one-way ANOVA followed by Bonferroni 
post-hoc tests. *p<0.05, ****p<0.0001. 
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Figure 3.9 EZ has no additive effect on biliary secretion rates of phospholipids 
and bile acids. Male C57BL/6 mice were fed with control, 0.3% Urso, or 0.3% 
Urso combined with two doses of EZ for 14 days. Hepatobiliary secretion rates of 
phospholipids (A) and bile acids (BAs) (B) under basal conditions. n=5-7 for each 
group. Data are presented as mean ± SEM. Differences were determined by one-
way ANOVA followed by Bonferroni post-hoc tests. 
 

EZ reduces FC in serum, but has no additive effect on the biosynthesis of bile 

acids and cholesterol in liver. 

EZ at a concentration of 0.005% slightly reduced serum total cholesterol. This 

was predominantly due to the significant reduction of FC (Fig 3.10A). No 

differences were observed in hepatic free (not shown) or total cholesterol (Fig 

3.10B). Although there was a tendency towards suppression of cholesterol 

synthetic genes at the mRNA level, none achieved statistical significance (Fig 

3.10C). We confirmed the prominent repression of CYP7A1 and CYP8B1 at the 

mRNA level in mice treated with Urso. EZ had no additional effect on their 

mRNA levels (Fig 3.10D). This effect of Urso is likely due to the stimulation of 

ileal FGF15 which feeds back to repress hepatic bile acid synthesis (Fig 3.11). To 



80 
 

determine if extrahepatic sources might contribute to the increased FNS in 

response to Urso-EZ, we examined the mRNA expression level of HMGCR and 

HMGCS in adrenal glands, epididymal adipose tissues, and jejuna as well as the 

circulating lathosterol, an indicator of whole body cholesterol synthesis (Fig 3.12, 

13) [226]. Urso did not alter the expression level of HMGCR and HMGCS in 

tested tissues. However, the Urso-EZ combination increased HMGCS mRNA 

expression in both adrenal glands and jejuna (Fig 3.12). Circulating levels of 

lathosterol tended to increase, but did not reach statistical significance (Fig 3.13). 
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Figure 3.10 EZ reduces FC in serum, but has no additive effect on the 
biosynthesis of bile acids and cholesterol in liver. (A) Total cholesterol and 
non-esterified cholesterol (FC) were determined by Wako enzymatic-colorimetric 
kits. Cholesterol esters (CE) were calculated from the difference in total and FC. 
n=7 for each group. (B) Hepatic total cholesterol per gram of wet tissue weight. 
n=7 for each group. The mRNA expression for de novo cholesterol synthetic 
genes HMGCR and HMGCS (C) and bile acid synthetic genes CYP7A1 and 
CYP8B1 (D) was determined by RT-PCR. n=6 for each group. Data are mean ± 
SEM. Differences were determined by one-way ANOVA followed by Bonferroni 
post-hoc tests. *p<0.05, ****p<0.0001.  
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Figure 3.11 Urso decreases bile acid synthesis by stimulating ileal FGF15 
expression. The mRNA expression for ileal FGF15 (A) and FXR (B) was 
determined by RT-PCR. n=6 for each group. Data are mean ± SEM. Differences 
were determined by one-way ANOVA followed by Bonferroni post-hoc tests. 
*p<0.05, ***p<0.001. 
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Figure 3.12 EZ increases HMGCS expression in adrenal glands and jejuna. The 
mRNA expression for de novo cholesterol synthetic genes HMGCR and HMGCS 
in adrenal glands (A-B), epididymal adipose tissues (C-D), and jejuna (E-F) was 
determined by RT-PCR. n=6 for each group. Data are mean ± SEM. Differences 
were determined by one-way ANOVA followed by Bonferroni post-hoc tests. 
*p<0.05, **p<0.01.  
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Figure 3.13 EZ has no additive effect on circulating lathosterol levels. Serum 
lathosterol concentrations were determined by LC/MS/MS. Data are mean ± 
SEM. Differences were determined by one-way ANOVA followed by Bonferroni 
post-hoc tests.    
 

EZ reduces intestinal G5G8 and ABCA1. 

With recent studies characterizing trans-intestinal cholesterol excretion (TICE) as 

an alternative route for cholesterol elimination, the role of the intestine has 

regained attention [227]. G5G8 is also abundantly expressed at the intestine to 

oppose cholesterol and phytosterol absorption. Therefore, we measured the 

jejunum expression of G5G8 at both mRNA and protein levels as well as 

intestinal ABCA1, which contributes to intestinal HDL biogenesis [228]. Urso 

alone tended to decrease jejunum G5G8 at the mRNA level, but didn’t reach 

statistical significance (Fig 3.14A, B). However, immunoblot analysis indicated a 

marked reduction in G5G8 protein levels (Fig 3.14E). The combination of 0.005% 

EZ further reduced G5G8 both at mRNA and protein levels. We did not observe 

any change in NPC1L1 at the mRNA level (Fig 3.14C). The combination of Urso 
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and EZ also significantly decreased intestinal ABCA1 at both the mRNA and 

protein levels (Fig 3.14D, E). FPLC fractionation of serum indicated a reduction 

in HDL cholesterol and a modest shift toward smaller HDL particles (Fig 3.14F). 

Thus, the reduction in serum cholesterol concentrations is likely attributed to 

reduced ABCA1 and intestinally-derived HDL. 

 

 

 

Figure 3.14 EZ reduces intestinal G5G8 and ABCA1. (A-D) The mRNA 
expression for jejunum ABCG5, ABCG8, NPC1L1, and ABCA1 was determined 
by RT-PCR. n=6 for each group. (E) Immunoblot analysis of jejunum ABCG5, 
ABCG8, and ABCA1. (F) Serum (60 μl) from 4 mice in each group was 
fractionated by FPLC and analyzed for the distribution of cholesterol among 
lipoproteins. Horizontal bars indicated elution fractions for lipoproteins. Data 
are mean ± SEM. Differences were determined by one-way ANOVA followed by 
Bonferroni post-hoc tests. *p<0.05, **p<0.01 ***p<0.001, ****p<0.0001. 

 

Urso-EZ induced increase in FNS does not require G5G8. 
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To determine the extent to which the effect of Urso and Urso-EZ treatments were 

G5G8 dependent, WT and KO mice were maintained on a control diet, followed 

by Urso (0.3%), and then Urso-EZ (0.3%-0.005%). Each mouse served as its own 

control. 3-day fecal samples and blood were collected at the end of each 

treatment period. G5G8 KO mice presented slightly lower bile flow rates, but 

invariably lower rates of biliary cholesterol secretion (Fig 3.15A-B). In the 

absence of drugs, FNS were reduced by 52% in G5G8 KO mice compared to WT 

littermates (Fig 3.15C). Urso increased FNS in both WT and G5G8 KO mice by 

900% and 700%, respectively (Fig 3.15D). EZ produced a further 2-fold increase 

in both genotypes (Fig 3.15D). Thus, while FNS were invariably lower in G5G8 

KO mice, the drug-induced increase remained largely constant. Differences were 

not observed in serum cholesterol (not shown). 
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Figure 3.15 Urso-EZ induced increase in FNS does not require G5G8. G5G8 KO 
mice (n=4 both sexes) and their WT littermates (n=6 male and 7 female) were 
sequentially fed with control, 0.3% Urso, and 0.3% Urso plus 0.005% EZ for 14 
days. (A-B) Bile flow and biliary cholesterol secretion rates by sex. (C-D) FNS and 
the relative difference in fecal sterol loss normalized to controls. Another cohort 
of male and female KO and WT mice (n=3 of each gender and genotype) were 
fed a PSF diet or 0.3% Urso for 7 days. (E) The fractional cholesterol absorption 
was measured by stable dual isotope method and represented irrespective of sex. 
(F) The relative rates of intestinal epithelial cell proliferation and turnover were 
determined by BrdU staining. Sections were scored, 20 villi/crypts per mouse, 3 
mice per group, and the number of cells proliferating in jejunal crypts was 
determined. Data are expressed as mean ± SEM. Differences were determined by 
two-way ANOVA followed by Bonferroni post-tests (A, B, and E), a repeated 
measure two-way ANOVA using diet and genotype as factors followed by 
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Bonferroni post-hoc tests (C-D), and one-way ANOVA followed by Dunnett’s 
post-hoc comparisons (F). *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001.  
 
 
Possible factors contributing to fecal neutral sterol excretion include intestinal 

cholesterol absorption and epithelial cell sloughing. There was no cholesterol 

added to the PSF diet. Under this condition, fractional cholesterol absorption 

approached 90% in both WT and KO mice (Fig 3.15E). Urso reduced absorption 

in both genotypes. This may reflect the role of G5G8 in cholesterol absorption or 

the dilution of the cholesterol isotope associated with increased biliary 

cholesterol output. Effects were virtually identical in male and female mice (Fig 

3.16).  
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Figure 3.16 No sexual dimorphisms are observed in FNS, the relative 
difference in sterol loss, and cholesterol absorption. G5G8 KO mice (n=4 for 
both sexes) and their WT littermates (n=6 for male and 7 for female) were 
sequentially fed with control, 0.3% Urso, and 0.3% Urso plus 0.005% EZ for 14 
days. (A-B) FNS and the relative difference in fecal sterol loss were represented 
by sex. Another cohort of male and female KO and WT mice (n=3 for each 
gender and genotype) were fed a PSF diet or 0.3% Urso for 7 days. (C) The 
fractional cholesterol absorption was measured by stable dual isotope method 
and represented by sex. Data are expressed as mean ± SEM. Differences were 
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determined by a repeated measure two-way ANOVA using diet and genotype as 
factors followed by Bonferroni post-hoc tests (A-B) and two-way ANOVA 
followed by Bonferroni post-tests (C). *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. 
 

The effects of Urso on intestinal epithelial cell proliferation and turnover are not 

known. To understand Urso’s effect in this process, we performed a BrdU 

incorporation study [221]. Anti-CD3 monoclonal antibody was used as a positive 

control by stimulating T cell-induced epithelial cell proliferation (18 hr) and 

increased crypt depth/villus blunting. In contrast, G5G8 deficiency failed to alter 

epithelial cell responses to Urso (Fig 3.12F, 14). These findings indicate that drug-

induced cholesterol elimination is independent of G5G8.  
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Figure 3.17 Intestinal epithelial cell proliferation and turnover in vehicle and 
0.3% Urso treated WT and G5G8 KO mice. Male KO (n=3) and their WT 
littermates (n=3) were fed a PSF diet or 0.3% Urso for 7 days. Mice were injected 
with BrdU 2 hrs before killing. Antibodies directed against CD3 were injected to 
male WT mice 18 hours prior to BrdU injection. (A) Formalin-fixed jejunal 
sections stained with hematoxylin and eosin (H&E) and immunohistochemistry 
allowed visualization of proliferating cells incorporated with BrdU in 
representatives of each group. Scale bar, 100 microns for H&E; 50 microns for 
BrdU staining. (B-C) Sections were scored, 20 villi/crypts per mouse, 3 mice per 
group. Villus height and crypt depth were determined. Data are mean ± SEM. 
Differences were determined by one-way ANOVA followed by Dunnett’s post-
hoc comparisons. 

 

DISCUSSION 

The major findings of the present study are that Urso increases G5G8 abundance 

and activity in liver and that Urso-EZ acts in an additive fashion to promote fecal 

sterol excretion in mice. While G5G8 is the primary route for biliary cholesterol 

secretion, our studies reveal a G5G8-independent pathway for cholesterol 

elimination stimulated by Urso and Urso-EZ combination treatments. Whether 

this is attributed to other biliary or non-biliary pathways, such as TICE, remains 

to be determined.  

Biliary cholesterol secretion represents an essential step of the RCT process 

which involves the transport of cholesterol from peripheral cells to the liver for 

secretion into bile and subsequent elimination in feces [120]. Accelerating RCT 

has long been a therapeutic goal in the treatment of atherosclerosis [144, 229]. 

However, the role of biliary cholesterol secretion in the development and 

severity of NAFLD is a relatively recent discovery. We have published the only 
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reports detailing G5G8 and biliary cholesterol secretion in the context of NAFLD 

[165, 167]. Consequently, studies to date have not examined accelerated biliary 

secretion as a therapeutic strategy in either preclinical models or humans in the 

treatment of NAFLD. Although G5G8 has been known to increase cholesterol 

excretion for over a decade, there has been little interest in drug development for 

this target. This is mainly because increasing biliary cholesterol secretion is 

expected to raise the cholesterol saturation index of bile and the risk for 

cholesterol gallstones. However, Urso is a hydrophilic bile acid with choleretic, 

cytoprotective, and antiapoptotic properties [230, 231]. It was originally used for 

cholesterol gallstone dissolution mainly because it reduces hydrophobicity of the 

bile acid pool and increases bile flow, two factors that oppose gallstone 

formation. Therefore, increasing G5G8 with Urso to increase biliary cholesterol 

secretion in the absence of increased risk of gallstone formation may be a viable 

therapeutic strategy to accelerate RCT. 

A number of preclinical studies and clinical trials have evaluated either Urso or 

EZ in the treatment of NAFLD or NASH. Results with Urso were mixed. Low-

dose Urso (13-15 mg/kg/day) reduced some markers of inflammation including 

serum alanine transaminase (ALT), but failed to significantly improve NASH in 

two separate studies [232, 233]. High-dose Urso (28-32 mg/kg/day) failed to 

reduce ALT at either 3 or 6 months in one trial (n=12); in a separate trial, high-

dose Urso lowered ALT levels by an average of 40% at 3, 6, 9 and 12 months and 
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normalized ALT values in 25% of patients compared to no reductions or 

normalizations in the placebo group [234, 235]. Although the numbers of studies 

and patients were limited, EZ monotherapy showed promise in the treatment of 

NAFLD. In a 6-month pre-/post treatment open-label trial in 10 patients, EZ 

reduced serum ALT, γ-glutamyl transpeptidase, plasma TGs and hepatic fat, but 

measures of insulin resistance were unchanged [236]. In the largest study to date 

(n=45) in a Japanese population, EZ reduced ALT at 12 months and resulted in 

modest, but significant reductions in steatosis, ballooning, and other indices of 

NAFLD by 24 months [135]. However, neither monotherapy is currently 

indicated in the treatment of NAFLD. The limited benefit may be due to the 

interdependent nature of biliary secretion and intestinal absorption with respect 

to cholesterol elimination. Therefore, a combination therapy that simultaneously 

increases biliary secretion and reduces cholesterol absorption may provide 

greater therapeutic benefit compared to Urso or EZ monotherapies. 

It was expected that Urso-EZ combination treatment would further stimulate 

fecal sterol loss and create a negative sterol balance or “cholesterol drain”. In the 

steady state, the extent of cholesterol loss is directly reflected by the rate of 

cholesterol synthesis. In the present study, no evidence supports an increase in 

whole body cholesterol synthesis except a modest increase in adrenal and jejunal 

HMGCS gene expression. In addition, feeding an Urso-containing diet led to a 

robust repression of hepatic CYP7A1 and CYP8B1. Thus, the observed increase in 
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FNS may reflect diversion of cholesterol away from bile acid synthesis into the 

G5G8 accessible pool, rather than the establishment of a cholesterol drain.  

The mechanism(s) by which Urso simultaneously increases G5G8 and suppresses 

bile acid synthesis is not known. It may be due to the stimulation of ileal FGF15, 

which acts on FGFR4/β-Klotho receptor complexes in liver to repress bile acid 

synthesis [185]. FGF15 also induces the protein synthesis in liver, but the effect of 

FGF15 on G5G8 is not known [185, 237]. Alternatively, recent studies suggest 

that the α5β1- integrin is a sensor for TUDCA that promotes choleresis [238, 239]. 

However, the effect of integrin signaling on G5G8 is not known. Therefore, it 

remains unclear whether the suppression of bile acid synthesis and the 

stimulation of G5G8 in response to Urso utilize common or independent 

mechanisms. If the mechanisms are independent, there may be a therapeutic 

window whereby biliary cholesterol secretion could increase to a greater extent 

than bile acid suppression in order to promote RCT. If not, other therapeutic 

approaches aimed to increase G5G8 and biliary cholesterol secretion would need 

to be developed in combination with EZ to accelerate RCT. However, such an 

approach may increase the risk of gallstone formation.  

Another intriguing observation in our present studies was that Urso and Urso-

EZ similarly increased FNS in G5G8 KO mice as in their WT littermates. This 

could be partially attributed to the most studied non-biliary route, TICE, which 

may account for approximately 33% of total fecal sterol loss in mice and is now 
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considered as an essential alternative route to the hepatobiliary pathway [227]. 

We did not simultaneously measure biliary and intestinal cholesterol secretion in 

our studies, nor did we evaluate to what extent biliary vs. non-biliary pathways 

contribute to the total fecal sterol loss. However, Urso and Urso-EZ in G5G8 

deficient mice may be useful tools in identifying novel biliary and non-biliary 

pathways for cholesterol elimination. 
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CHAPTER 4. ROLE OF FGF15/19 IN THE REGULATION OF ABCG5 ABCG8 

STEROL TRANSPORTER 

 

INTRODUCTION 

FGF15/19 is a metabolic hormone expressed in the enterocytes in the ileal 

segment of the small intestine. It has been recently discovered to play a crucial 

role in the cross-talk between liver and intestine in control of bile acid and 

energy homeostasis [183, 184, 186, 237, 240, 241]. Mouse FGF15 shares 

approximately 50% amino acid identity with its human orthologue, FGF19. 

However, they have similar tissue expression patterns, physiological functions, 

and pharmacological effects in mice [183-185]. One well-characterized action of 

FGF15/19 is to suppress bile acid synthesis [186, 188, 242, 243]. When 

(re)absorbed from the intestinal lumen, bile acids act on the FXR/RXR 

heterodimer to induce FGF15 expression. Secreted FGF15 acts on the liver via its 

receptor complex FGFR4/β-Klotho to repress CYP7A1 expression and bile acid 

synthesis.  

In Chapter 3, we showed that while Urso suppressed the major bile acid 

synthetic genes including CYP7A1 and CYP8B1, it increased expression of G5G8 

predominantly at the protein level in liver [244]. Consistently, both biliary 

cholesterol secretion and fecal neutral sterol output increased [244]. However, 

the mechanism(s) by which Urso simultaneously suppresses bile acid synthesis 

and increases G5G8 is (are) not known. Though Urso was reported to be a weak 
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agonist or even a partial antagonist for FXR, our results demonstrated that ileal 

FGF15 mRNA expression was strikingly increased in response to Urso treatment 

[244-246]. The repression of bile acid synthesis may at least in part be due to the 

stimulation of ileal FGF15, which acts on FGFR4/β-Klotho receptor complexes in 

liver to activate the downstream signaling cascade. Whether FGF15 would 

concurrently have a direct effect on G5G8 is unknown. However, our results 

from Chapter 3 provide very positive evidence. 

Additional evidence also supports the hypothesis that FGF15/19 directly 

regulates G5G8 protein abundance. Beyond suppressing bile acid synthesis, 

FGF15/19 is thought to promote gallbladder filling by increasing cAMP levels 

[187]. Intriguingly, the cAMP signaling machinery has recently been discovered 

to mediate the trafficking of G5G8 to the bile canalicular membrane in response 

to hypernutrition. Administration of a protein kinase A inhibitor decreases G5G8 

protein expression, whereas injection of a cAMP analog transiently increases 

their levels [190].  

In this chapter, two additional mouse models were tested to confirm the positive 

correlation between ileal FGF15 expression and hepatic G5G8 protein 

abundance. One is Asbt KO mouse model. Dawson and coworkers generated the 

Asbt KO mice to decipher the in vivo functions of Asbt in bile acid homeostasis 

[247, 248]. In this mouse model, the disruption of Asbt blocks the apical uptake of 

bile acids, thereby resulting in decreased expression of ileal FGF15 and reduced 
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entry of bile acids into enterohepatic cycling, both of which are thought to 

contribute to increased bile acid synthesis. However, the protein expression of 

hepatic G5G8 has never been tested. The other one is LIRKO mouse model, in 

which hepatic G5G8 protein levels and biliary cholesterol secretion are elevated. 

However, the ileal FGF15 expression has never been reported.  

Then the hypothesis was directly tested by determining the G5G8 protein 

abundance and biliary cholesterol secretion in mice administered with 

recombinant human FGF19. As predicted, FGF19 elevated G5G8 protein levels 

specifically in liver not in intestine. It also increased biliary cholesterol secretion 

in the absence of increasing the cholesterol saturation index (CSI). This is likely 

due to the proportional increase in the biliary secretion rates of both 

phospholipids and bile acids.  

MATERIALS AND METHODS 

Chemicals, reagents and antibodies 

General chemicals were purchased from Sigma, immunoblotting reagents from 

Thermo/Pierce, real-time PCR reagents from Applied Biosystems. The chicken 

anti-G5 polyclonal antibody and the monoclonal antibody directed against G8 

were previously reported [244]. Total and phospho-eIF2α antibodies were 

purchased from Cell Signaling. The ABCA1 and SR-BI antibodies were 

generously provided by Mason Freeman (Harvard Medical School) and Deneys 

R. van der Westhuyzen (University of Kentucky), respectively. The β-actin 
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antibody was purchased from Sigma. Calnexin and GRP78 antibodies were 

purchased from Nventa (San Diego, CA). The antibody to Calriticulin was 

purchased from Stressgen. 

Animal husbandry 

Male C57BL/6J (Stock #000664) mice at an age of 8 weeks were purchased from 

the Jackson Laboratory (Bar Harbor, ME). Upon arrival mice were allowed to 

acclimatize for one week prior to initiation of studies. Mice were housed in 

individually ventilated cages in a temperature-controlled room with a 14:10 light: 

dark cycle and provided with enrichment in the form of acrylic huts and nesting 

material. Mice were maintained on standard rodent chow (Harlan Teklad 2014S). 

All animal procedures conform to PHS policies for humane care and use of 

laboratory animals and were approved by the institutional animal care and use 

committee at the University of Kentucky. All surgery was performed under 

anesthesia, and all efforts were made to minimize suffering. 

Human recombinant FGF19 injection experiment 

Human recombinant FGF19 (CYT-700) was purchased from ProSpec (Protein-

Specialists). Vehicle or FGF19 (1 μg/g body weight) was injected into mice 

intraperitoneally twice every four hours in a total volume of 200 μl of PBS. All 

mice were placed in clean cages with full access to water, but without food. Four 

hours after a second injection of FGF19, mice were sacrificed. Basal bile, liver, 

and three segments of the small intestine were collected as described previously 

[244].  
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Immunoblot and quantitative Real-time PCR 

The preparations of proteins, SDS-PAGE and immunoblotting were conducted as 

previously described [166, 249]. Total RNAs were extracted from each liver using 

RNA STAT-60 (Tel-Test, Inc) and subjected to cDNA synthesis with iScript 

cDNA Synthesis Kit (BIO-RAD, Hercules, CA). To determine relative abundance, 

RT-PCR was conducted using SYBRGreen as detector on Applied Biosystem 

7900HT fast-Real Time PCR System (Carlsbad, CA).  

Serum and biliary lipid analysis 

Total cholesterol in serum, as well as cholesterol and phospholipids in 

gallbladder bile, were determined using commercial colorimetric-enzymatic 

assays (Wako Chemicals, Richmond, VA). The quantitation of total bile acids  in 

bile was performed enzymatically by measuring 3α-hydroxy bile acids as 

previously described [222]. 

Statistical analysis 

All statistical analyses were conducted using GraphPad Prism. Data are 

expressed as mean ± SEM. Data were analyzed by two-tailed t-test. Differences 

were considered significant at P < 0.05. 

 

RESULTS 

The liver tissues of Asbt KO mice and their WT controls were generously 

provided by Paul Dawson (Emory University). Hepatic protein levels of G5 and 

G8 were analyzed by immunoblotting (Fig 4.1). As expected, we observed 
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reduced hepatic G5G8 protein abundance in Asbt KO mice compared with their 

WT controls (Fig 4.1). This positively correlates with the low expression of FGF15 

in ileal enterocytes in Asbt KO mice. However, we cannot exclude the possibility 

that the increased bile acid synthesis tightly regulated via the classical feedback 

mechanism may deprive the G5G8 accessible pool of cholesterol. 

 

Figure 4.1 Asbt KO mice present lower G5G8 abundance in liver. Male WT and 
Asbt KO mice were maintained on a prepared basal diet [248]. Hepatic levels of 
G5 and G8 protein expression were determined by immunoblotting. Membrane 
preparations were blotted for β-actin as loading controls.  
 

We then looked at the association between ieal FGF15 expression and hepatic 

G5G8 protein levels in LIRKO mice. We selectively deleted the hepatic insulin 

receptor from insulin receptor-floxed mice using adeno-associated virus (AAV) 

expressing a Cre recombinase (AAV-Cre) driven by the albumin promoter and 

generated the LIRKO mouse model. We confirmed the deletion of insulin 

receptor and the increase of hepatic G5G8 abundance by immunoblotting 



102 
 

analysis (Fig 4.2B). Consistently, we observed a significant increase in ileal FGF15 

expression in LIRKO mice compared with their controls (Fig 4.2A).  

 

Figure 4.2 Elevated hepatic G5G8 abundance of LIRKO mice is associated with 
stimulated ileal FGF15 expression. Male insulin receptor (IR) floxed mice at 8-
week old age were injected through the tail vein with 5x1011 particles of adeno-
associated virus encoding Cre-recombinase (AAV-Cre) or empty AAV vectors. 
Two weeks following virus infection for hepatic insulin receptor deletion, mice 
were sacrificed. The liver and ileal segment of intestine were harvested for IR, 
G5G8 immunoblotting and ileal FGF15 mRNA expression, respectively.  
 
 
Next, we directly tested if FGF15/19 could acutely increase hepatic G5G8 

abundance. Due to the decreased stability of recombinant FGF15, we used the 

human orthologue, FGF19, for our studies. Body weight tended to decrease after 

FGF19 treatment, but didn’t reach significant differences (Fig 4.3A). No change 

was noted for liver weight (Fig 4.3A). One major effect of FGF19 is to suppress 

bile acid synthesis in liver via a mechanism involving FGFR4 activation and SHP 

induction and stability [186, 250-252]. As previously reported, FGF19 

significantly reduced the mRNA expression of CYP7A1 whereas it induced that 

of SHP (Fig 4.3B). Similar results were observed for CYP8B1 and CYP27A1. 

However, no decrease was detected in CYP7B1. To determine if FGF19 would 
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directly regulate G5G8, we measured G5G8 expression at both mRNA and 

protein levels in liver by RT-PCR and immunoblotting analysis, respectively (Fig 

4.3B-C). FGF19 tended to increase the mRNA expression of both G5 and G8, but 

only reached statistical significance for G8 (Fig 4.3B). However, immunoblotting 

analysis confirmed a marked increase in both G5 and G8 protein expression (Fig 

4.3C). This was observed only in liver not in intestine (Fig 4.3D).  

 

Figure 4.3 FGF19 increases hepatic G5G8 at protein levels. Male C57BL/6J mice 
at an age of 8 weeks were treated with PBS or FGF19 (1 μg/g) by i.p. injection 
twice every four hours. (A) Body weight and liver weight. (B) Relative mRNA 
levels of major transcription factors, enzymes, and transporters involved in bile 
acid metabolism in liver. (C) Hepatic and (D) jejunal levels of G5G8 protein 
expression were determined by immunoblotting. Membrane preparations were 
blotted for β-actin as controls. Data are presented as mean ± SEM. Differences 
between FGF19- and PBS-treated groups were determined by two-tailed t-test. a: 
p<0.05, b: p<0.01, c: p<0.001, and d: p<0.0001. 
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FGF19-treated mice displayed similar rates of hepatic bile flow but significantly 

elevated total bile lipid (Fig 4.4A). Hepatobiliary secretion rates of lipids 

including cholesterol, phospholipid, and bile salt under basal conditions were 

calculated from the product of bile flow and lipid concentration. Significant 

increases were not only observed in bile salt secretion rates in FGF19-treated 

mice, but also in phospholipid and cholesterol during the 30-min collection 

period (Fig 4.4B). However, no differences were detected in bile salt, 

phospholipid, or cholesterol compositions when we expressed the biliary lipid 

data proportionally (Fig 4.4C). We then measured the CSI of gallbladder bile (Fig 

4.4D). Both groups exhibited CSI<1 in gallbladder bile indicating that the 

administration of FGF19 increases biliary cholesterol secretion without 

increasing the risk for gallstone formation. 
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Figure 4.4 FGF19 increases the biliary secretion rates of cholesterol, 
phospholipids (PL), and bile salts (BS). (A) Hepatic bile flow and total lipids 
concentrations. (B) Biliary lipid secretion rates under basal conditions. 
Gallbladder was cannulated and basal bile was collected for 30 min. (C) Biliary 
lipid composition (mole %). (D) Cholesterol saturation index of gallbladder bile 
was calculated from the critical tables. Data are presented as mean ± SEM. n=6-7 
for each group. Differences between FGF19- and PBS-treated groups were 
determined by two-tailed t-test. b: p<0.01 and c: p<0.001. 
 

To determine if increased biliary cholesterol secretion stimulated by FGF19 

changed the hepatic cholesterol metabolism, we measured the mRNA expression 

of major genes involved in cholesterol synthesis and efflux (Fig 4.5A). FGF19 

moderately increased SREBP2 and HMGCS with a tendency to increase HMGCR 

at the mRNA level, indicating that the increased biliary cholesterol secretion 

provides a driving force to cholesterol synthesis (Fig 4.5A). Even though we 

observed a significant increase in both ABCA1 and SR-BI at mRNA level, we 

didn’t detect any difference in their protein expression by immunoblotting 

analysis (Fig 4.5A-B). This is likely due to that an eight-hour interval is not long 

enough to allow us to see changes of ABCA1 and SR-BI at the protein level. 

FGF19 had no effect on serum total cholesterol or phospholipids (Fig 4.5C). 
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Figure 4.5 FGF19 increases the expression of major genes in cholesterol 
synthesis and efflux at the mRNA level. (A) The mRNA expression for major 
genes involved in de novo cholesterol synthesis and efflux was determined by 
RT-PCR. n=5-7. (B) Immunoblot analysis of hepatic SR-BI and ABCA1. (C) Total 
cholesterol and phospholipids (PLs) concentrations in serum. n=6 for each group. 
Data are presented as mean ± SEM. Differences between FGF19- and PBS-treated 
groups were determined by two-tailed t-test. a: p<0.05, b: p<0.01, c: p<0.001, and 
d: p<0.0001. 
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To determine if FGF19 altered the TG metabolism in liver, we measured the 

mRNA expression of the major genes involved in in lipogenesis and fatty acid 

oxidation (Fig 4.6). Results showed that a double-injection of FGF19 significantly 

suppressed the expression of SREBP1c, malic enzyme 1(ME1), and acetyl-CoA 

carboxylase 2 (ACC2). This confirmed the role of FGF19 in fatty acid synthesis 

and oxidation. 

 

Figure 4.6 FGF19 reduces lipogenesis in liver. The mRNA expression for major 
genes involved in fatty acid synthesis and oxidation was determined by RT-PCR. 
n=5-7 for each group. Data are presented as mean ± SEM. Differences between 
FGF19- and PBS-treated groups were determined by two-tailed t-test. a: p<0.05 
and c: p<0.001. 
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DISCUSSION 

The major findings of the study are that FGF15/19 increases the expression of 

G5G8 predominantly at the protein level as well as biliary cholesterol secretion. 

This effect is only restricted to G5G8 in liver other than intestine. Interestingly, 

the proportional increase in both biliary phospholipids and bile acids explains 

the unaltered CSI. Moreover, FGF19 also suppresses the expression of major 

lipogenic genes and those involved in fatty acid oxidation.  

A mouse model of liver-specific insulin resistance in the absence of obesity 

(LIRKO) has been previously published and the impact of selective insulin 

receptor deletion in liver on several features of sterol homeostasis was reported 

[48, 193]. Biddinger and coworkers proposed two distinct mechanisms that tie 

links between gallstones and MetS. While increasing hepatic G5G8 via a 

mechanism involving the disinhibition of FOXO1, hepatic insulin resistance 

decreases expression of major bile acid synthetic genes resulting in a lithogenic 

bile salt profile. Our results confirmed the stimulation of ileal FGF15 in LIRKO 

mice. As the roles of FGF15/19 in bile acid homeostasis have been widely 

appreciated, FGF15 may mechanistically contribute to the repressed expression 

of major bile acid synthetic genes and the elevated G5G8 abundance in LIRKO. 

Remarkably similar as insulin, FGF15/19 also stimulates hepatic glycogen 

synthesis and represses gluconeogenesis [237, 253]. In addition, FGF15 signaling 

has also been previously shown to decrease hepatic FOXO1 activity through the 
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phosphorylation of PI3K [242]. The stimulated FGF15 expression in LIRKO mice 

may not only explain the overall suppressed bile acid synthetic genes and 

increased G5G8 but also function as a compensatory mechanism to counteract 

the loss of insulin signaling.  

Controversial results have been previously reported for the roles of FGF15/19 in 

lipogenesis [237, 240, 241, 254]. Bhatnagar and coworker investigated the roles of 

FGF19 in modulating hepatic fatty acid synthesis via primary hepatocyte 

cultures with recombinant FGF19 and concluded that FGF19 suppressed insulin-

stimulated fatty acid synthesis and SREBP1c expression [254]. Stewart’s group 

generated the FGF19 transgenic mice and reported that these mice had increased 

energy expenditure and decreased liver TGs which could be partially due to the 

decreased ACC2 expression in liver [240]. They also observed similar phenotypes 

in ob/ob and HF diet-fed FVB mice injected with FGF19 [241]. However, when Kir 

and coworker overnight-fasted C57BL/6 mice and injected them subcutaneously 

with FGF19, they didn’t observe any change in lipogenic gene expression 6 hours 

following FGF19 injection [237]. Our results align with the previous observations 

but against Kir’s. The roles of FGF15/19 in lipogenesis need further 

investigation.  

Cholic acid is a strong FXR agonist that stimulates FGF15 expression and 

activates its downstream signaling cascade. Watanabe and coworker reported 

that cholic acid reduced the expression of SREBP1c and other lipogenic genes, 
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lowered hepatic and serum TG levels. Moreover, it also attenuated LXR agonist-

stimulated lipogenesis [255]. Whether the effects of cholic acid on lipogenesis 

and TG homeostasis are dependent on FGF15 signaling has never been 

addressed. However, this may provide indirect evidence that as opposed to 

insulin, which promotes lipogenesis, FGF15/19 may mitigate the induction of 

hepatic lipogenesis. 

Overall, the overlapping but distinct actions of FGF15/19 and insulin may 

promise the use of FGF15/19 as a therapeutic strategy in the treatment of 

diabetes or in combination with LXR agonists to correct atherosclerotic 

cardiovascular disease. However, the potential use of FGF19 as a chronic 

treatment may have concerns. Long-term treatments of FGF19 have been 

implicated to associate with liver tumors or hepatocellular carcinoma [256, 257]. 

Strategies aiming at developing synthetic FGF19 variants that preserve the 

metabolic effects of FGF19 but silence its mitogenic effects need to be explored.  

 

 

 

 

Copyright © Yuhuan Wang 2015 
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CHAPTER 5. SUMMARY AND FUTURE DIRECTIONS 

 

Summary of major findings 

The goal of this dissertation thesis is to understand the mechanisms responsible 

for the post-transcriptional regulation of sterol transporter G5G8 in vivo such 

that appropriate therapeutics could be employed to target cholesterol elimination 

pathways to oppose MetS and NAFLD and prevent the onset and progression of 

CVD. 

In Chapter 2, acute replacement of letpin in ob/ob mice, liver-specific ablation of 

leptin receptor in lean mice, and hepatic vagotomy in diet-induced obese mice all 

failed to alter hepatic G5G8 protein levels. Therefore, the reduction of G5G8 in 

leptin axis deficient mice is not a direct consequence of leptin signaling. 

Alternatively, G5G8 may be decreased in ob/ob and db/db mice due to ER 

dysfunction, the site of G5G8 complex assembly. Our data showed that 

overexpression of the ER chaperone GRP78 alleviated ER stress and reduced 

expression of lipogenic genes and plasma TGs in db/db mice. As we 

hypothesized, both G5 and G8 protein levels increased as did total biliary 

cholesterol in the absence of changes in G5 or G8 mRNAs.  

Leptin axis deficient mice (ob/ob and/or db/db) have been frequently used in the 

pathogenic studies of MetS and NAFLD. Available data from previous studies 

using these mice establish the role of G5G8-mediated biliary cholesterol secretion 
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in opposing many risks factors for MetS and NAFLD, such as insulin resistance, 

elevated plasma TG, and ER stress. Alleviation of ER stress by TUDCA and 

GRP78 overexpression both restore insulin sensitivity and hepatosteatosis. 

TUDCA has been reported to increase G5G8 protein abundance and biliary 

cholesterol secretion. In Chapter 2, we conclude that alleviation of ER stress by 

GRP78 also rescues G5G8 and elevates biliary cholesterol secretion. This not only 

suggests a reciprocal relationship between ER function and G5G8-mediated 

biliary cholesterol secretion, but also establishes a proof-of-principle that 

improving ER function rescues G5G8 and may account for a potential approach 

to target G5G8 activity in the treatment of metabolic disease. 

Results in Chapter 3 demonstrated that a FDA approved drug for the treatment 

of primary biliary cirrhosis and dissolution of gallstones, Urso, 

pharmacologically increased hepatic G5G8 protein expression and both biliary 

and fecal sterols in a dose-dependent manner. Given the interdependent 

relationship between liver and intestine for cholesterol elimination from the body, 

we proposed that a combined therapy aimed at increasing biliary cholesterol 

secretion and simultaneously reducing intestinal absorption is likely to act 

additively in enhancing cholesterol elimination from the body. Indeed, our data 

demonstrated that EZ, an inhibitor of intestinal cholesterol absorption, produced 

an additive and dose-dependent increase in FNS elimination in the presence of 

Urso. The stimulatory effect in response to Urso or Urso-EZ treatments was not 
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G5G8 dependent. This may be partially attributed to the non-biliary route for 

cholesterol elimination. Little has been known about the mechanisms responsible 

for the non-biliary pathway. Urso and Urso-EZ in G5G8 KO mice may provide 

very useful tools in identifying novel biliary and non-biliary pathways for 

cholesterol elimination.  

We originally expected that in the absence of cholesterol feeding, the combined 

pharmacological therapy would create a net negative sterol balance or 

“cholesterol drain” that significantly drives the rate of whole body cholesterol 

synthesis. However, we only detected a very modest increase in adrenal and 

jejunal HMGCS gene expression. This indicates that Urso, as a pharmacological 

approach to target G5G8, increases biliary and fecal sterol excretion. However, 

this comes at the expense of diverting cholesterol away from bile acid synthesis 

into the G5G8 accessible pool. Though such an effect of Urso dampens our 

enthusiasm for the Urso-EZ combination therapy, it sheds light on another 

regulator of G5G8, FGF15/19. 

Beyond increasing hepatic G5G8 protein expression and biliary cholesterol 

secretion, Urso also stimulates the ileal FGF15 expression in mice. In Chapter 4, 

stimulated ileal FGF15 expression in LIRKO and reduced hepatic G5G8 protein 

levels in Atsb KO mice both indicated the previous unrecognized role of 

FGF15/19 in the regulation of G5G8 and its activity. Indeed, this was 
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subsequently confirmed by our results from the direct test of recombinant 

human FGF19 on G5G8. 

Future directions 

In this dissertation, we postulate, for the first time, a concept of “cholesterol 

drain” achieved by simultaneously increasing G5G8-mediated biliary cholesterol 

secretion and inhibiting intestinal absorption for the treatment of metabolic 

disease. Moreover, our work presented in this dissertation also demonstrate, for 

the first time, that recombinant human FGF19 increases hepatic G5G8 abundance 

and activity, and thereby uncovering a previously unappreciated link between 

FGF15/19 and sterol flux. However, many questions remain to be addressed in 

the future.  

In Chapter 3, the mechanism(s) by which Urso simultaneously increases G5G8 

and suppresses bile acid synthesis is not known. Previous studies and our results 

from Chapter 4 imply that FGF15/19 is likely to account for the Urso’s dual 

effects and work more efficiently than Urso to oppose metabolic disease in 

combination with EZ. Supportive rationales and evidence are listed below. 

Bile acid synthesis is tightly regulated via both a classical feedback mechanism 

and FGF15/19 signaling to ensure that sufficient amounts of cholesterol are 

catabolized to bile acids so as to facilitate biliary cholesterol secretion and 

provide adequate emulsification for lipid absorption in the intestine. Urso, as a 

bile acid itself, represses the bile acid synthesis via dual mechanisms. The Urso-
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stimulated biliary and fecal sterol loss comes at the expense of diverting 

cholesterol away from bile acid synthesis into biliary secretion. This is reflected 

by the unaltered expression of major genes involved in the de novo cholesterol 

synthesis shown in Chapter 3. However, treatment of FGF15/19, though 

suppresses bile acid synthesis, may still adapt to the negative feedback 

mechanism to catabolize excess hepatic cholesterol and compensate the bile acid 

loss. Our results from Chapter 4 demonstrate that the administration of 

recombinant FGF19 itself is sufficient to stimulate the expression of major genes 

involved in cholesterol biosynthesis in liver. Additionally, FGF19 stimulates 

G5G8-mediated biliary cholesterol secretion without increasing cholesterol 

saturation index.  

Moreover, insulin resistance is widely considered as the central source for the 

pathogenesis of MetS and NAFLD. FGF15/19 possesses very similar effects as 

insulin in stimulating hepatic glycogen synthesis and repressing 

gluconeogenesis, but likely an opposite effect in lipogenesis. The overlapping but 

distinct effects of FGF15/19 make it very promising in the treatment of metabolic 

disease. 

Given that the prolonged exposure of FGF19 has been implicated in liver 

tumorigenesis or hepatocellular carcinogenesis, nontumorigenic FGF19 variants 

that preserve the metabolic effects of FGF19 should be used in combination with 
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EZ for relatively long-term treatments. One of such FGF19 variants that have 

been tested in both in mice and humans is M70 [258, 259]. 

In mouse liver, FGF15 acts through a cell surface receptor complex composed of 

FGFR4 and βKlotho and promotes gallbladder filling by increasing cAMP levels. 

The cAMP analog has been recently shown to enhance canalicular trafficking of 

G5G8. Thus, the FGF15/FGF19-FGFR4-cAMP signaling pathway is likely to 

account for the regulation of hepatic G5G8 abundance and activity. Future 

investigation of the hepatic G5G8 protein abundance and biliary cholesterol in 

FGF15-KO mice, FGFR4-KO and β-Klotho-KO mice will be necessary. 

The work presented in this dissertation is mainly focused on targeting the classic 

G5G8-mediated biliary pathway to oppose metabolic disease. However, there is 

evidence that non-G5G8-mediated biliary route and non-biliary route may also 

contribute to the cholesterol elimination. The molecular components involved in 

these pathways are not known. Urso and Urso-EZ treatments in G5G8 KO mice 

suggest the G5G8-independent pathway for cholesterol elimination. Whether 

FGF15/19-stimulated biliary cholesterol secretion is dependent on G5G8 and 

whether FGF15/19 stimulates the non-biliary pathway for cholesterol 

elimination, e.g., TICE, would be interesting questions needed to be addressed 

by future studies.  

 Copyright © Yuhuan Wang 2015 

 



117 
 

APPENDICES 

ABBREVIATIONS 

AAV: adeno-associated virus 
AAV-Cre: adeno-associated virus expressing a Cre recombinase 
ACAT2: acetyl-CoA acetyltransferease 2 
ACC: acetyl-CoA carboxylase  
AdCre: adenovirus encoding Cre-recombinase  
AdGRP78: adenovirus encoding GRP78 
ALT: alanine aminotransferase  
apoB: apolipoprotein B  
ASBT: apical sodium-dependent bile transporter  
AST: aspartate aminotransferase  
ATF6: activating transcription factor 6  
ATP III: Adult Treatment Panel III 
BSEP: bile salt export protein BrdU: bromodeoxyuridine  
BSTFA: N, O-Bis (trimethylsilyl) trifluoroacetamide  
cAMP: cyclic adenosine monophosphate  
CE: cholesteryl ester 
CETP: cholesteryl ester transfer protein  
CHOP: C/EBP homologous protein  
CM: chylomicron  
CMR: chylomicron remnant  
ChREBP: carbohydrate response element-binding protein  
CRP: C-reactive protein 
CSI: cholesterol saturation index 
CVD: Cardiovascular disease  
CYP7A1: cholesterol 7alpha-hydroxylase. 
CYP7B1: 25-hydroxycholesterol 7-alpha-hydroxylase  
CYP8B1: sterol 12-alpha-hydroxylase  
CYP27A1: sterol 27-hydroxylase  
db/db: leptin receptor deficient mice 
eIF2α: eukaryotic initiation factor 2 alpha  
ER: Endoplasmic reticulum  
EZ: Ezetimibe  
FAS: fatty acid synthase 
FC: free cholesterol 
FGF: fibroblast growth factor 
FGFR: fibroblast growth factor receptor 
FOXO: forkhead box protein O 
FPLC: fast protein liquid chromatography  
FXR: farnesoid X receptor  
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G5G8: ABCG5 ABCG8  
GRP78: the 78-kD glucose-regulated/binding immunoglobulin protein  
HCC: hepatocellular carcinoma 
HDL: high-density lipoprotein  
HDL-C: high-density lipoprotein cholesterol 
HF: high fat 
HMG-CoA: 3-hydroxy-3-methylglutary CoA 
HMGCR: HMG-CoA reductase 
HMGCS: HMG-CoA synthase 
HNF4α: hepatocyte nuclear receptor 4α 
IBABP: ileal bile acid-binding protein  
IDF: International Diabetes Federation 
IL-6: interleukin-6  
Insig: insulin-induced gene proteins  
IPP: isopentenyl pyrophosphate  
IRE1: inositol-requiring enzyme 1  
IRS: insulin receptor substrate  
JNK: c-Jun N-terminal kinase  
KO: knockout  
LCAT: lecithin-cholesterol acyltransferase  
LDL: low-density lipoprotein 
LDL-C: low-density lipoprotein cholesterol 
LDLR: low-density lipoprotein receptor 
LIRKO: liver-specific insulin receptor knockout  
LPL: lipoprotein lipase  
LRH-1: orphan nuclear receptor liver receptor homolog-1  
LRP-1: low-density lipoprotein receptor related protein 1  
LXR: liver X receptor 
NAFLD: Nonalcoholic fatty liver disease  
NASH: Nonalcoholic steatohepatitis 
NEFA: nonesterified fatty acid 
NF-κB: nuclear factor kappa-light-chain-enhancer of activated B cells  
NTCP: sodium sodium (Na+)-taurocholate cotransporting polypeptide 
NPC1L1: Niemann-Pick C1-like 1 
MAP: mitogen activated protein  
MetS: Metabolic syndrome 
PBA: Phenyl butyric acid  
PAI-1: plasminogen activator inhibitor-1  
PERK: protein kinase RNA-like endoplasmic reticulum kinase  
PI3K: phosphatidylinositol 3-kinase  

PPAR: peroxisome proliferator-activated receptor alpha 
OATP: organic anion transporters  
Ob/ob: leptin deficient mice 
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ObR: leptin receptor  
PSF: plant sterol-free 
RCT: Reverse cholesterol transport  
ROS: reactive oxygen species  
SCAP: SREBP cleavage-activating protein  
SHP: small heterodimer partner  
SR-BI: scavenger receptor class B member 1  
SREBP: sterol regulatory element binding protein  
STZ: thiazolidinedione  
TICE: trans-intestinal cholesterol excretion 
TNFα: tumor necrosis factor-alpha  
TUDCA: tauroursodeoxycholic acid 
UDCA: ursodeoxycholic acid  
UPR: unfolded protein response 
Urso: ursodiol  
VLDL: very low density lipoprotein  
WT: wild-type 
XBP1: X-box binding protein 1  
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