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ABSTRACT 

Drainage networks are important geomorphologic and hydrologic features which 

significantly control runoff generation. Drainage networks are composed of unchannelized 

valleys and channels. At valley heads, flow changes from unconfined sheet flow on the 

hillslope to confined flow in valley. Localized confined flow dominates in valleys as a result 

of convergent topography with positive curvature. Channels initiate at some distance down 

from the valley head, and the transition from unchannelized valley to channel is referred to 

as the channel head. Channel heads occur at a point where fluvial transport dominates over 

diffusive transport. 

From the hydrologic perspective, channels are categorized as perennial, intermittent, 

and ephemeral streams based on the flow durations. Perennial streams flow for the most of 

the time during normal years and are maintained by groundwater discharge. Intermittent 

(i.e. seasonal) streams flow during certain times of the year receiving water from surface 

sources such as melting snow or from groundwater. Lastly, ephemeral streams flow only in 

direct response to precipitation without continuous surface flow.  

In this dissertation, the hydrologic controls on the drainage networks extracted from 

high resolution Digital Elevation Models (DEMs) based on Light Detection and Ranging 

(LiDAR) are investigated. A method for automatic extraction of valley and channel networks 

from high-resolution DEMs is presented. This method utilizes both positive (i.e., convergent 

topography) and negative (i.e., divergent topography) curvature to delineate the valley 
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network. The valley and ridge skeletons are extracted using the pixels’ curvature and the 

local terrain conditions. The valley network is generated by checking the terrain for the 

existence of at least one ridge between two intersecting valleys. The transition from 

unchannelized to channelized sections (i.e., channel head) in each 1st-order valley tributary 

is identified independently by categorizing the corresponding contours using an 

unsupervised approach based on K-means clustering. The method does not require a 

spatially constant channel initiation threshold (e.g., curvature or contributing area). 

Moreover, instead of a point attribute (e.g., curvature), the proposed clustering method 

utilizes the shape of contours, which reflects the entire cross-sectional profile including 

possible banks. The method was applied to three catchments: Indian Creek and Mid Bailey 

Run in Ohio, and Feather River in California. The accuracy of channel head extraction from 

the proposed method is comparable to state-of-the-art channel extraction methods.  

Valleys extracted from DEMs may be wet (flowing) or dry at any given time depending on 

the hydrologic conditions. The temporal dynamics of flowing streams are vitally important 

for understanding hydrologic processes including surface water and groundwater 

interaction and hydrograph recession. However, observations of wet channel networks are 

limited, especially in headwater catchments. Near infrared LiDAR data provide an 

opportunity to map wet channel networks owing to the fine spatial resolution and strong 

absorption of light energy by water surfaces. A systematic method is developed to map wet 

channel networks by integrating elevation and signal intensity of ground returns. The signal 

intensity thresholds for identifying wet pixels are extracted from frequency distributions of 

intensity return within the convergent topography extent using a Gaussian mixture model. 
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Moreover, the concept of edge in digital image processing, defined based on the intensity 

gradient, is utilized to enhance detection of small wet channels. The developed method was 

applied to the Lake Tahoe area based on eight LiDAR acquisitions during recession periods 

in five watersheds. A power-law relationship between streamflow and wetted channel 

length during recession periods was derived, and the scaling exponent (L ∝ Q0.38) is within 

the range of reported values from fieldwork in other regions. 

Several studies in the past focused on the relationship between drainage density (i.e., 

drainage length divided by drainage area) and long-term climate and reported a U-shape 

pattern. In this dissertation, this relationship was re-visited and the effect of drainage area 

on drainage density was investigated. Long-term climate was quantified by climate aridity 

indices which is the ratio between long-term potential evaporation and precipitation. 120 

study sites across the United States with minimal human disturbance and a wide range of 

climate aridity index were selected based on the availability of LiDAR data. The drainage 

networks were delineated from LiDAR-based 1 m DEMs using the proposed curvature-based 

method. Despite the U-shaped relationship in the literature, our result shows a significant 

decreasing trend in the drainage density versus climate aridity index in arid regions; 

whereas no trend is observed in humid watersheds. This observation and its discrepancy 

with the reported pattern in the literature are justified considering the dynamics of the 

runoff erosive force and the resistance of vegetation and the climate controls on them. Our 

findings suggest that natural drainage networks in arid regions are more sensitive to the 

change in long-term climate conditions compared with drainage networks in humid climate. 

It was also found that drainage density has a decreasing trend with drainage area in arid 
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regions; however, no trend was observed in humid regions. In a broader sense, the findings 

influence our understanding of the formation of drainage networks and the response of 

hydrologic systems to climate change.  

The formation and growth of river channels and their network evolution are 

governed by the erosional and depositional processes operating on the landscape due to 

movement of water. The branching angles, i.e., the angle between two adjoining channels, in 

drainage networks are important features related to the network topology and contain 

valuable information about the forming mechanisms of the landscape. Based on channel 

networks extracted from 1 m Digital Elevation Models of 120 catchments with minimal 

human impacts across the United States, we showed that the junction angles have two 

distinct modes with α1��� ≈ 49.5°  and α2��� ≈ 75.0° . The observed angles are physically 

explained as the optimal angles that result in minimum energy dissipation and are linked to 

the exponent characterizing slope-area curve. Our findings suggest that the flow regimes, 

debris-flow dominated or fluvial, have distinct characteristic angles which are functions of 

the scaling exponent of the slope-area curve. These findings enable us to understand the 

geomorphologic signature of hydrologic processes on drainage networks and develop more 

refined landscape evolution models. 
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CHAPTER 1: VALLEY NETWORK EXTRACTION 

Valleys and channels are important geomorphologic and hydrologic features. Valleys 

are generally associated with convergent topography in the landscape [Montgomery and 

Foufoula-Georgiou, 1993; Howard, 1994], and channels are the sections of valleys 

constrained by well-defined banks [Montgomery and Dietrich, 1989]. Channels initiate at 

some distance down from the valley head, and the transition from unchannelized valley to 

channel is referred to as the channel head [Montgomery and Foufoula-Georgiou, 1993]. 

Channel heads occur at a point where fluvial transport dominates over diffusive transport 

[Dietrich et al., 1987; Tarboton et al., 1992].  

A curvature-based approach is developed to delineate the valley network by utilizing 

both positive (i.e., convergent topography) and negative (i.e., divergent topography) 

curvature. The resulting valley skeleton is then thinned by keeping the valleys that are 

separated by one ridge (i.e., negative curvature patch). The resulting valley skeleton is then 

thinned by keeping the valleys that are separated by one ridge (i.e., negative curvature 

patch). The procedure for extracting valley network uses the location of valleys and ridges, 

which are defined as convergent and divergent topography, respectively. Ridges correspond 

to the flow separation lines that define the boundaries of subcatchments and separate 

surface runoff between neighboring valleys.  
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1.1 Filtering DEM and calculating curvature 

Curvature-based valley network extraction requires smoothing the DEM [Lashermes 

et al., 2007; Passalacqua et al., 2010b]. The Gaussian filter [Lashermes et al., 2007], Perona-

Malik filter [Passalacqua et al., 2010b] and optimal Wiener filter [Pelletier, 2013] have been 

previously used for this purpose. The optimal Wiener filter converts the original DEM into 

frequency space using Fourier transforms and filters out the frequencies representing noise 

[Press et al., 2007]. The Perona-Malik filter is a nonlinear diffusive filter that utilizes an edge-

stopping function to remove the noise while enhancing the edges. The proposed method uses 

the Perona-Malik filter due to its robust performance [Passalacqua et al., 2010b; Passalacqua 

et al., 2010a; Passalacqua and Foufoula-Georgiou, 2015]. The Perona-Malik filter employs a 

parameter referred to as “time of forward diffusion” and denoted by TF [Passalacqua and 

Foufoula-Georgiou, 2015]. TF is the number of iterations for the numerical representation of 

derivatives for smoothing. The derivatives are approximated using standard finite 

differences with one pixel spacing as suggested by Weickert and Benhamouda [1997]. More 

information regarding the numerical approximations for nonlinear filters can be found in 

Weickert [1997]. TF was set to 50 for the results presented in this chapter and the sensitivity 

of results to this parameter is presented in Section 3.3.  

The curvature of a surface includes profile curvature in the gradient direction 

(direction of steepest slope) and contour curvature perpendicular to the gradient direction. 

Profile curvature reflects the change in the slope angle in the gradient direction; whereas, 

contour curvature represents the change in the aspect angle and reflects the 

convergence/divergence of the surface [Mitasova and Hofierka, 1993]. Positive contour 
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curvature implies flow convergence and indicates a valley candidate. Contour curvature is 

computed as [Mitasova and Hofierka, 1993]: 

κ =
zxxzy2−2zxyzxzy+zyyzx2�zx2+zy2��1+zx2+zy2         (1) 

where, x and y are the global DEM coordinates. zx  and zxx  (zy  and zyy) represent the first 

and second derivatives of elevation (z) with respect to x (y). zxy is the first derivative of zx 

with respect to y. In order to robustly calculate contour curvature (simply referred to as 

curvature hereafter) for each pixel, a fourth-order polynomial function (equation 2) is fitted 

to each 3 × 3 moving window:  

z = Ax2y2 + Bx2y + Cxy2 + Dx2 + Ey2 + Fxy + Gx + Hy + I   (2) 

This leads to the following equation for computing curvature based on the coefficients of the 

polynomial function in equation (2): κ =
2GE2−2FGH+2EG2
(G2+H2)√1+G2+H2         (3) 

1.2 Determining flow directions  

Flow directions are typically determined after iteratively removing all sinks in the 

filtered DEM as suggested by O'callaghan and Mark [1984b]. Several algorithms (e.g., MFD 

[Quinn et al., 1991] and D∞  [Tarboton, 1997b]) have been proposed to determine flow 

directions based on elevation. However, other topographic attributes, including curvature 

[Passalacqua et al., 2010b] and downslope gradient [Qin et al., 2007], have been shown to be 

important in local flow partitioning and channel path extraction. Here, flow directions are 

determined by considering both the flow toward the steepest downward slope and the flow 
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perpendicular to it. The former relates to the response of flow to the profile slope as 

considered in traditional methods for determining flow directions such as the D∞. The latter, 

referred to as the cross-sectional flow, is attributed to the flow response to the cross-

sectional slope and is directed toward the flow concentration point (or potential channel 

centerline). The curvature in equation (1) represents the slope gradient perpendicular to 

the steepest downward slope and represents the average cross-sectional slope. Since the 

cross-sectional slope and curvature increase moving toward the channel’s centerline, the 

cross-sectional flow is from low to high curvature pixels.  

Based on the D∞ concept, flow direction is toward two neighboring pixels located in 

the steepest downward slope direction [Tarboton, 1997b]. These two downstream pixels are 

marked as 1 and 2 counterclockwise in Figure 1a and Figure 1b. κ1  and κ2  denote the 

curvature of pixels 1 and 2, respectively. Given the flow direction from the D∞, denoted by α 

and shown by the dashed arrow in Figure 1a and Figure 1b, a modified flow direction, 

denoted by α′ and shown by the solid arrow, is defined by rotating the flow direction toward 

the pixel with higher curvature based on equation (4.1):  α′ =  α� + (α − α�)rκ         (4.1) 

where α� and rκ are defined as below and α is the flow direction from the D∞: 

α� = �π4 �α �π4�−1�       κ1 > κ2 π4 �α �π4�−1�       κ2 > κ1        (4.2) 

rκ = �κ2κ1       κ1 > κ2 κ1κ2       κ2 > κ1          (4.3) 
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In equations (4.2), the symbols ⌊ ⌋ and ⌈ ⌉ represent floor and ceiling functions that map a 

real number to the largest previous integer and the smallest following integer, respectively. 

When κ1 or κ2  is negative, no modification to the flow direction is performed. Based on 

equation 4, the adjusted flow directions are determined first by finding the two downstream 

pixels utilizing slope, then adjusting them based on curvature. Therefore, slope is the first 

order control on the adjusted flow directions and the curvature is the second order factor. 

After obtaining the flow directions, the upslope area grid is calculated by performing the flow 

accumulation algorithm proposed by Tarboton [1997b]. 

Figure 1c and Figure 1d illustrate the one-pixel-wide flow path from the D∞ and the 

adjusted flow directions using curvature in two zoomed-in areas located in Mid Bailey Run, 

OH. The flow path is extracted as the local maximums of the flow accumulation grid along 

the flow direction. The paths predicted by the D∞ clearly pass through the ridges (divergent 

contours). The adjusted flow directions consider both flow toward the steepest downward 

slope and the cross-sectional flow toward the concentration points by incorporating the 

curvature; therefore, the flow path shifts slightly toward the contour crenulations.  
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Figure 1. Curvature-adjusted flow direction (α′) for cases when (a) curvature in pixel 1 is higher 

than pixel 2, and (b) curvature in pixel 1 is lower than pixel 2. α represents the flow direction 

from the D∞. (c) and (d) demonstrate the valley path from the  D∞ and the curvature-adjusted 

flow directions in two areas in Mid Bailey Run, OH.  

1.3 Extracting valley and ridge skeletons 

Delineating drainage networks from high-resolution DEMs often requires extracting 

the valley skeleton as the potential extent of the valley network. In curvature-based methods, 

the valley skeleton is usually extracted by imposing a curvature threshold. Based on the 

difference of curvature distribution between hillslope and valley, Lashermes et al. [2007] 

extracted the threshold from the curvature q-q plot. Passalacqua et al. [2010b] and Sofia et 

al. [2011] utilized a similar approach; and Sofia et al. [2011] additionally used an openness 
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threshold from the corresponding q-q plot. The existing methods for extracting skeletons 

were developed based on the curvature of individual pixels. A pixel with a curvature that 

exceeds a threshold is considered part of the skeleton regardless of local terrain conditions. 

Occasionally, the curvature values at the upper sections of valleys and hillslopes may 

coincide. A pixel with a relatively small positive curvature may be a part of the valley skeleton 

or hillslope, and it is impossible to differentiate this based only on the curvature of the pixel. 

Therefore, it is necessary to consider local terrain conditions when extracting the skeleton.  

In this chapter, a systematic approach is proposed to extract valley and ridge 

skeletons considering curvature and local terrain conditions. The following explanation is 

focused on the valley skeleton; a similar procedure applies to ridge skeleton extraction.  

In this context, a terrain consists of patches and their surrounding area. Patches are 

defined as local maximums in the curvature grid. For demonstration, the curvature and 

patches along a 1D transect are shown in Figure 2a and Figure 2b; in reality patches exist in 

the 2D plane. Some patches belong to the valley skeleton and are referred to as valley 

patches; the rest are isolated convergent surfaces on hillslopes and referred to as non-valley 

patches. The valley patches generally have confined flow with active channel incisions in 

some locations. This process tends to increase the convergence of the channelized sections 

of valley patches, and consequently the maximum curvatures within the valley patches are 

higher than those in the non-valley patches where the incision process does not occur. 

Therefore, a statistically higher peak curvature within valley patches is expected compared 

with non-valley patches. 
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In this case, before extracting the valley skeleton, it is necessary to identify patches 

by imposing a segmentation curvature threshold ( κs ). κs  is the lower bound of the 

convergence curvature threshold, i.e., any pixel with κ < κs is not part of the valley skeleton; 

however, pixels with κ ≥ κs may be part of the valley skeleton depending on the patch they 

are attached to. For any estimate of κs, denoted by κs� , patches are identified as the set of 

contiguous pixels with κ ≥ κs�  by performing connected-component labeling [Suzuki et al., 

2003] using eight-neighbor connectivity. The ideal segmentation threshold satisfies the 

following criteria: (1) all potential non-valley patches are detached; and (2) all potential 

valley patches are kept. It is computationally expensive, if not practically impossible, to 

determine such an ideal segmentation threshold; however, a reasonable estimation of the 

threshold can be obtained by investigating the total number of patches (NP) as a function of κs� . As κs�  increases from 0, NP changes as the result of two main processes: disconnection and 

termination. Through the disconnection process a patch splits into two or more, leading to 

an upsurge in NP  (Figure 2d.1). Alternatively, the termination process describes the 

disappearance of a patch as κs�  increases, causing NP to decrease (Figure 2d.2).  

As shown in Figure 3c, with the increase of κs� , NP increases initially indicating the 

domination of the disconnection process, and then decreases due to the domination of the 

termination process. Based on the definition of the ideal segmentation threshold, 

disconnection is desirable since non-valley patches, through the disconnection process, are 

likely to be detached from valley patches. However, the termination process can lead to an 

erroneous valley skeleton as potential valley patches may disappear. Consequently, the 
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transition from the disconnection-dominated phase to the termination-dominated phase 

(i.e., κs�  that creates maximum NP) is a reasonable choice for the segmentation threshold.  

After identifying the patches, the valley skeleton can be extracted by removing non-

valley patches. As mentioned earlier, valley patches are expected to have higher peak 

curvature compared with non-valley patches. This property facilitates identification of the 

valley patches. To minimize the effect of point-scale erroneous peaks, the 95-percentile of 

curvature in each patch p (denoted by Κp) is used to represent the peak curvature (Figure 

3b). The problem of valley skeleton extraction is transformed into the task of identifying a 

peak curvature threshold, denoted by KT, so that p is a valley patch if Κp ≥ KT. As suggested 

by Otsu [1975], a reasonable choice for KT is the value which maximizes the variance of Κp 

between valley and non-valley patches (i.e., the inter-class variance). Mathematically, this 

can be presented as the following optimization problem: 

KT  = argmaxx Nv(x)Nnv(x)[K�v(x) − K�nv(x)]2     (5.1) 

where, 

Nv(x) = ∑ �1|Kpi ≥ x�NPi=1         (5.2) 

K�v(x) =
∑ �Kpi |Kpi ≥x�NPi=1Nv(x)

         (5.3) 

Nnv(x) = ∑ �1|Kpi < x�NPi=1         (5.4) 

K�nv(x) =
∑ �Kpi |Kpi <x�NPi=1Nnv(x)

        (5.5) 
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where Kpi  represents Κp of the patch i; Nv and Nnv are the number of valley and non-valley 

patches, respectively; and K�v and K�nv denote average Κp values  for valley and non-valley 

patches, respectively. 

The ridge skeleton can be extracted by applying the same procedure to the additive 

inverse of the curvature grid; i.e., the curvature multiplied by -1 (Figure 3c and Figure 3d). 

In this case, the patches consist of ridge and non-ridge patches. The ridge patches are 

adjacent to the valley patches with confined flow and channel incision; therefore, they are 

expected to be relatively more divergent with smaller peak curvature. Although the ridge 

and valley skeletons are extracted using the same method, the procedures are independent.  
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Figure 2. (a) Curvature along the 1-D transect shown in (b) and examples of patches. (c) The 

effect of increasing curvature threshold on the number of patches. The domain is separated into 

disconnection- and termination-dominated sections. (d) Convergent patches for two values of κs�  

(i.e., 0.01 and 0.005 m-1). (d.1) shows a disconnection which causes a rise in the number of 

patches. (d.2) represents a termination, leading to a reduction in the number of patches.  
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Figure 3. Procedure for extracting valley and ridge skeletons. (a) Curvature: bright colors 

indicate convergent areas and potential valleys. Dark colors indicate divergent surfaces and 

potential ridges. (b) & (c) Convergent and divergent patches, respectively. The color indicates 

the 95-percentile of absolute curvature in each patch, denoted by Kp. (d) Valley and ridge 

skeletons.  

1.4 Thinning and connecting valley network 

After extracting the valley and ridge skeletons, an initial valley network is created 

within the valley skeleton as line segments. The details regarding the delineation of the initial 

valley network is presented at the end of this section. The initial valley network is often 

unrealistically dense and disconnected; therefore, it usually must undergo post-processing 

phase including thinning and connecting.  
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In the thinning step, each pair of intersecting valleys is checked for the existence of a 

separating ridge. If a ridge is not detected between the valleys, one of them is selected as the 

inferior valley and filtered out. If the two valleys are in different Strahler orders, the one with 

the smaller order is selected as the inferior valley; otherwise, the one with a lower average 

curvature along the valley is selected as the inferior one since the true valleys lay on the 

contour crenulations where the curvature is relatively high. Figure 4a.1 shows a schematic 

example of this process when comparing intersecting valleys marked as I and II. Initially the 

enclosed area is searched for a ridge. The upper bound of the enclosed area is formed by 

connecting the intersecting valleys at Lmin = min (LI, LII) , where LI  and LII  are distances 

measured from the intersection along the valleys. Since there is no separating ridge inside 

the enclosed area, the inferior valley is filtered out as shown in Figure 4a.2.  

In some cases, there is a relatively small ridge, compared to the valley length, between 

a pair of intersecting valleys. These small patches typically correspond to the elevated bed 

within a single valley cross-section and cannot be considered as separating ridges. To 

address this issue, when a ridge patch is detected, the section of the inferior valley located 

downstream of the ridge, referred to as the unconfined section, is filtered out and the 

upstream part is kept. This process is illustrated in Figure 4b for the intersecting valleys 

marked as I and II. The unconfined area (with length denoted by Lun) corresponds to the 

maximum enclosed area in which there is no ridge. In this case, the unconfined section of the 

inferior valley is filtered as shown in Figure 4b.2. This creates a disconnection in the valley 

network, shown by the dashed line, which is processed in the connecting step.  
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The disconnections in the valley network are due to either erroneous filtering of 

valley patches or the thinning step as discussed previously. Valleys located upstream of each 

gap should generate enough flow to pass through the gap and connect to the downstream 

network. Here, it is assumed that discharge from groundwater along the entire network 

contributes to streamflow. From Darcy’s law and assuming spatially uniform hydraulic 

conductivity, the flow per unit length of valley (q) is proportional to the water table slope 

(ω). Assuming that the water table is parallel to the land surface [Beven and Kirkby, 1979], ω 

can be approximated as the cross-sectional slope. In order to avoid the complexity of 

calculating the cross-sectional slope, it is assumed to be linearly proportional to the local 

curvature; i.e., ω ∝ κ . This assumption is reasonable since the curvature in equation (1) 

represents the slope gradient perpendicular to the steepest downward slope, which is 

proportional to the average cross-sectional slope. Therefore, the total flow from any 

connected segment of valley network is:  

Q ∝ ∑ ∆li × κiiϵVd          (6) 

where κi  and ∆li  are the curvature and length (along the flow direction) of pixel i , 

respectively; and Vd denotes the set of pixels in the disconnected segment. Q from equation 

(6) should be high enough to pass through the downstream gap, the length of which is 

measured along the potential connection and denoted by Lg. The upstream part is connected 

if: 

Lg < CT∑ ∆li × κiiϵVd          (7) 

where CT is a watershed specific parameter referred to as the “connecting threshold” and is 

controlled mainly by the topographic features such as the shape of channelized cross-



 

15 

 

sections (width and area) and the geometry of the gaps. CT was set to 20 m for the results 

presented in this chapter. The sensitivity of the results to CT is presented in Section 3.3.  

As mentioned earlier, an initial valley network within the valley skeleton as line 

segments are created before the thinning and connecting steps. The initial valleys are 

originated when upslope pixels create sufficient flow to pass through the next pixel. The 

length of the pixel along the flow path is approximated by the DEM resolution, denoted by ∆. 

From equation (7) and using Lg = ∆ , pixel c  is an initiation point if ∑ κiiϵUc > ∆ × CT−1 , 

where Uc represents all of the pixels within the valley skeleton and located upstream of c. 

The final valley network is extracted by performing the connecting and thinning steps on the 

initial network.  
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Figure 4. Schematic of thinning and connecting steps. (a) No separating ridge in the enclosed 

area between I and II; therefore, the inferior valley is deleted. The upper bound of the enclosed 

area is formed by connecting the intersecting valleys at Lmin = min (LI, LII) measured from the 

intersection along the valleys. (b) Separating ridge inside the enclosed area between the 

intersecting valleys I and II; therefore, the unconfined section (downstream of ridge patch) of the 

inferior valley is filtered out. The unconfined area (with length denoted as Lun), corresponds to 

the maximum enclosed area in which there is no ridge. (c) Disconnected section that can 

potentially be connected to the main network through a gap whose length along the possible 

valley is denoted by Lg. 

1.5 Results 

To evaluate the performance of the proposed method, the valley and channel 

networks were extracted in three catchments with channel heads mapped in the field by 

Clubb et al. [2014]: Feather River in California, Mid Bailey Run and Indian Creek in Ohio. 

Clubb et al. [2014] used the same catchments to evaluate the performance of three state-of-

the-art methods for channel network extraction proposed by Passalacqua et al. [2010b], 

Pelletier [2013], and Clubb et al. [2014].  
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For the three study catchments, the valley networks were extracted from LiDAR-

based 1-m bare earth DEMs. Initially, the DEMs were smoothed using a Perona-Malik filter 

with TF = 50 (see Section 2.1.1). The curvature was then calculated from the smoothed DEM 

using equation (1). NP  (i.e., the number of patches) versus the potential segmentation 

threshold (κs� ) in Indian Creek, Mid Bailey Run, and a subcatchment in Feather River are 

shown in Figure 5. Although all curves contain easily detectable peaks, the magnitudes of 

segmentation thresholds are noticeably different and location-specific. The valley skeleton 

was extracted by imposing the derived threshold (κs) and filtering any patch with Kp < KT, 

where  Kp is the 95-percentile of curvature within each patch and KT was calculated from 

equation (5). The ridge skeleton was extracted following the same procedure on the additive 

inverse of the curvature grid. The segmentation threshold for the ridge skeleton is denoted 

by κs−�  in Figure 5. An initial valley network was created within the valley skeleton then 

connected and thinned using CT = 20 m following the procedure explained in Section 2.1.4. 

 

Figure 5. Valley and ridge skeleton delineations. (a), (b), and (c) show the number of patches 

(NP) versus the potential segmentation curvature threshold (κs� ) for Indian Creek, Mid Bailey 

Run, and a subcatchment in Feather River. All curves have easily detectable peaks denoted by κs 
and κs−.  
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The segmentation of terrain under different values of the filtering parameter (TF) was 

also investigated. Higher values of TF produce rougher contours at channels and ridges, but 

reduce the noise and eliminate small features. Therefore, the number of convergent and 

divergent patches decreases with increasing TF as shown in Figure 6. Despite this trend, for 

any value of TF the curves in Figure 6 display easily-detectable peaks. The curvature at the 

peaks, which correspond to the segmentation thresholds, increases with decreasing TF. 

 

Figure 6. Number of (a) convergent and (b) divergent patches versus the potential segmentation 

threshold for different values of filtering parameter (TF) in Indian Creek.  

1.6 Conclusion 

Valleys are defined as convergent topography in the landscape, and the convergence 

is naturally associated with positive contour curvature. Delineating drainage networks from 

high-resolution DEMs often requires extracting the valley skeleton as the potential extent of 
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the valley network. In curvature-based methods, the valley skeleton is usually extracted by 

imposing a curvature threshold. Based on the difference of curvature distribution between 

hillslope and valley, Lashermes et al. [2007] extracted the threshold from the curvature q-q 

plot. Passalacqua et al. [2010b] and Sofia et al. [2011] utilized a similar approach; and Sofia 

et al. [2011] additionally used an openness threshold from the corresponding q-q plot. The 

existing methods for extracting skeletons were developed based on the curvature of 

individual pixels. A pixel with a curvature that exceeds a threshold is considered part of the 

skeleton regardless of local terrain conditions. Occasionally, the curvature values at the 

upper sections of valleys and hillslopes may coincide. A pixel with a relatively small positive 

curvature may be a part of the valley skeleton or hillslope, and it is impossible to differentiate 

this based only on the curvature of the pixel. Therefore, it is necessary to consider local 

terrain conditions when extracting the skeleton. In this chapter, a systematic approach is 

proposed to extract valley and ridge skeletons considering curvature and local terrain 

conditions. 
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CHAPTER 2: CHANNEL NETWORK EXTRACTION 

Several methods have been proposed to delineate channel network from Digital 

Elevation Models (DEMs). These methods often require a channel initiation threshold such 

as contributing area [O'callaghan and Mark, 1984b; Band, 1986; Tarboton et al., 1991], slope-

area [Montgomery and Dietrich, 1988; Willgoose et al., 1991; Dietrich et al., 1992b; Dietrich 

et al., 1993a; Ijjasz-Vasquez and Bras, 1995], or the Strahler’s [1952] order [Peckham, 1995]. 

In methods based on contributing area, all pixels with upslope area greater than a pre-

defined threshold are labeled as channelized. The upslope area is computed by flow 

directions from the D8 [O'callaghan and Mark, 1984b], the D∞  [Tarboton, 1997b], or the 

MDF [Quinn et al., 1991] algorithms. Methods based on slope-area utilize a threshold for a 

function of upslope area (A) and local slope (S) (e.g., βAmSn where β, m and n are constants) 

to delineate channel network. Alternatively, using order as the channel initiation threshold, 

a section with a Strahler’s order higher than a pre-defined threshold is identified as 

channelized. Orlandini et al. [2011] assessed these three types of channel initiation 

thresholds and concluded that their performance depends on the resolution of the DEM as 

well as catchment geology, topography and morphology. 

Recently, the availability of high resolution DEMs (i.e., ≤  3m) has paved the way 

towards another class of methods that utilize topographic attributes such as curvature 

[Lashermes et al., 2007; Passalacqua et al., 2010b; Sofia et al., 2011; Pelletier, 2013], 

openness [Sofia et al., 2011], and slope direction [Lashermes et al., 2007] to extract channel 

network. The idea of using curvature in channel delineation originates from the traditional 
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contour crenulation method [Strahler, 1953; Morisawa, 1957; Pelletier, 2013]. The general 

procedure used by these methods includes the following four steps: 1) filter the DEM; 2) 

calculate the topographic features (e.g., curvature) from the filtered DEM; 3) extract the 

channel skeleton by applying either a user-defined or automatically-derived threshold for 

the topographic feature; and 4) identify and connect the channel heads to generate the 

channel network.  

In particular, after computing the slope and curvature on a Gaussian-filtered DEM 

[Mallat, 1989], Lashermes et al. [2007] extracted the valley network based on a spatially 

constant curvature threshold, defined as the deviation point from a normal distribution in 

the curvature q-q plot. Similarly, a slope direction change threshold was also obtained from 

its corresponding q-q plot to delineate the channel network.  

Passalacqua et al. [2010b] developed GeoNet by filtering the DEM using the Perona-

Malik nonlinear diffusion filter, identifying a curvature threshold for the transition from 

hillslope to valley at the deviation point of the curvature q-q plot from a normal distribution, 

and constructing the valley skeleton. Subsequently, the channel skeleton was defined as the 

pixels in valley skeleton with an upslope area more than a user-defined contributing area 

threshold called “skeleton thinning parameter”. The channel heads were detected and 

connected to the outlet following the minimum geodesic distance defined as the inverse of 

the weighted summation of upslope area and curvature. Passalacqua et al. [2012] studied 

the performance of GeoNet when extracting channel networks in flat and human-impacted 

landscapes and suggested using Laplacian rather than geometric curvature in those areas. 

GeoNet requires three user-defined parameters including the time of forward diffusion (i.e., 
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the number of iterations) for filtering the DEM, the contributing area threshold for thinning 

the skeleton, and the size of the search box for identifying channel heads [Passalacqua and 

Foufoula-Georgiou, 2015]. Sangireddy et al. [2016a] eliminated the size of the search box by 

setting it equal to the median hillslope length and suggested using 50 iterations for 

smoothing the DEM.  

Based on the statistical analysis of minimum curvature [Evans, 1979] and openness 

[Yokoyama et al., 2002], Sofia et al. [2011] determined the optimal kernel size for filtering 

DEMs. The openness and minimum curvature were normalized using thresholds derived 

from their corresponding q-q plots. The upslope area from the MFD algorithm was weighted 

by the normalized curvature and openness to enhance the contributing area of the 

convergent pixels. Channelized pixels were defined as those with an upslope area greater 

than the average value.  

Applying the optimal Wiener filter [Press et al., 2007] for smoothing the DEM, 

Pelletier [2013] extracted the channel skeleton and channel heads by a user-defined 

curvature threshold. Instead of geometric or Laplacian curvature, Pelletier [2013] used 

contour curvature to quantify the surface convergence. The channel network was extracted 

by routing a unit discharge from the channel heads and then deleting discontinuous patches 

using a parameter that specifies the minimum flow in each pixel.  

More recently, Clubb et al. [2014] developed the DrEICH method for locating channel 

heads based on the longitudinal profile of channels and hillslopes after extracting the initial 

network using a curvature threshold (i.e., 0.1 m-1).  
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Existing methods for locating channel heads utilize various types of thresholds which 

are usually treated as spatially constant in a catchment, although they may vary due to the 

spatial heterogeneity of topography, soil and vegetation [Orlandini et al., 2011]. The 

developed method for mapping channel heads in this chapter is based on the fact that 

channels and valleys have fundamental geomorphologic differences. Channels have V or U-

shaped cross-sections with well-defined banks [Montgomery and Dietrich, 1989], while 

cross-sections in unchannelized valleys are wide with no confining banks.  

This extracted valley network in pervious chapter is used to spatially constrain the 

search for channel heads. Channel heads are extracted for each 1st-order valley based on the 

shape of the contours, which reflects the signature of the corresponding cross-sections 

including the banks. An unsupervised algorithm based on K-means clustering [Macqueen, 

1967] is used to classify the contours of each tributary as channelized or unchannelized 

based on the similarity of their shapes. The transition point from unchannelized to 

channelized contours is interpreted as the channel head. The proposed clustering approach 

has two main advantages: 1) instead of a point attribute (e.g., curvature), the entire cross-

section from bank to bank is utilized to detect channel heads; and 2) the channel head 

identification is performed independently for each tributary using an unsupervised 

clustering approach; therefore, the method does not require a spatially constant channel 

initiation threshold (e.g., curvature or contributing area).  
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2.1 Cross-section profile and contours 

The signatures of channel and valley cross-sections are reflected in the contours. This 

is demonstrated in a synthetic landscape (Figure 7) constructed for specified cross-sections 

of upslope, valley and channel. The upslope cross-section (i.e., zu) is defined as a constant 

elevation (i.e., 𝐻𝐻𝑢𝑢). The valley cross-section is generated by a quadratic function represented 

in equation (8):  𝑧𝑧𝑣𝑣(𝑥𝑥) =
4𝑑𝑑𝑣𝑣𝐵𝐵2 𝑥𝑥2 − 𝐼𝐼𝑣𝑣         (8) 

where 𝐼𝐼𝑣𝑣 and 𝐵𝐵 are the depth and width (i.e., equivalent to the width of the region) of valley, 

respectively (see Figure 7c). The channel cross-section is defined as a differentiable 

piecewise quartic function shown in equation (9):  

𝑧𝑧𝑐𝑐(𝑥𝑥) = � − 164𝑑𝑑𝑐𝑐𝑤𝑤𝑐𝑐4 𝑥𝑥4 +
8𝑑𝑑𝑐𝑐𝑤𝑤𝑐𝑐2 𝑥𝑥2 − (𝐼𝐼𝑐𝑐 − ℎ𝑏𝑏)      |𝑥𝑥| ≤ 𝑤𝑤𝑐𝑐2− 164ℎ𝑏𝑏

(𝐵𝐵−𝑤𝑤𝑐𝑐)4 �𝐵𝐵2 − |𝑥𝑥|�4 +
8ℎ𝑏𝑏

(𝐵𝐵−𝑤𝑤𝑐𝑐)2 �𝐵𝐵2 − |𝑥𝑥|�2 |𝑥𝑥| >
𝑤𝑤𝑐𝑐2    (9) 

The first statement of equation (9) describes the cross-section of channel within the 

banks and the second statement represents the cross-section from the peak of the banks to 

the edges. In equation (9), 𝐼𝐼𝑐𝑐 and 𝐼𝐼𝑐𝑐 are the width and depth of the channel, respectively. ℎ𝑏𝑏 

represents the height of the channel banks relative to the elevation at the edge (see Figure 

7d).  

As shown in Figure 7a, the span of the domain along the y-axis is 𝐿𝐿 and consists of 

three sub-regions: downstream, transition, and upstream with lengths of 𝐿𝐿𝑑𝑑 , 𝐿𝐿𝑡𝑡 , and 𝐿𝐿𝑢𝑢 , 

respectively. Starting from the top, the upslope cross-section evolves linearly in space into 

the valley cross-section moving from the upper edge (i.e., 𝑚𝑚 = 𝐿𝐿 ) toward 𝑚𝑚 = 𝐿𝐿 − 𝐿𝐿𝑢𝑢 . 
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Similarly, the cross-section in the transition changes gradually to the channel cross-section 

moving from 𝑚𝑚 = 𝐿𝐿 − 𝐿𝐿𝑢𝑢  to 𝑚𝑚 = 𝐿𝐿𝑑𝑑 . The downstream part represents the strongly 

channelized section in which the shape of cross-section is constant. 

Having the upslope (i.e., 𝑧𝑧𝑢𝑢), valley (i.e., 𝑧𝑧𝑣𝑣), and channel (i.e., 𝑧𝑧𝑐𝑐) cross-sections, the 

elevation at any location (𝑥𝑥,𝑚𝑚) is calculated as the weighted average of the elevations in the 

three cross-sections (equation 10.1). The weight coefficients are computed based on the 

distance (along the y-axes) of each point from two surrounding cross-sections (equation 

10.2-4): 𝑧𝑧(𝑥𝑥,𝑚𝑚) = 𝐼𝐼𝑢𝑢(𝑚𝑚)𝑧𝑧𝑢𝑢(𝑥𝑥) + 𝐼𝐼𝑣𝑣(𝑚𝑚)𝑧𝑧𝑣𝑣(𝑥𝑥) + 𝐼𝐼𝑐𝑐(𝑚𝑚)𝑧𝑧𝑐𝑐(𝑥𝑥) + 𝐻𝐻𝑢𝑢 − 𝐷𝐷(𝐿𝐿 − 𝑚𝑚)  (10.1) 

𝐼𝐼𝑢𝑢(𝑚𝑚) = �𝐿𝐿𝑢𝑢−𝐿𝐿+𝑦𝑦𝐿𝐿𝑢𝑢  𝑚𝑚 ≥ 𝐿𝐿 − 𝐿𝐿𝑢𝑢
0      𝑂𝑂𝑂𝑂ℎ𝑒𝑒𝑒𝑒𝐼𝐼𝑒𝑒𝛼𝛼𝑒𝑒        (10.2) 

𝐼𝐼𝑣𝑣(𝑚𝑚) = ⎩⎨
⎧ 𝐿𝐿−𝑦𝑦𝐿𝐿𝑢𝑢       𝑚𝑚 ≥ 𝐿𝐿 − 𝐿𝐿𝑢𝑢𝑦𝑦−𝐿𝐿𝑑𝑑𝐿𝐿𝑡𝑡 𝐿𝐿𝑑𝑑 ≤ 𝑚𝑚 < 𝐿𝐿 − 𝐿𝐿𝑢𝑢

0        𝑂𝑂𝑂𝑂ℎ𝑒𝑒𝑒𝑒𝐼𝐼𝑒𝑒𝛼𝛼𝑒𝑒        (10.3) 

𝐼𝐼𝑐𝑐(𝑚𝑚) = �𝐿𝐿𝑡𝑡+𝐿𝐿𝑑𝑑−𝑦𝑦𝐿𝐿𝑡𝑡  𝐿𝐿𝑑𝑑 ≤ 𝑚𝑚 < 𝐿𝐿 − 𝐿𝐿𝑢𝑢
1                  𝑚𝑚 < 𝐿𝐿𝑑𝑑

0            𝑂𝑂𝑂𝑂ℎ𝑒𝑒𝑒𝑒𝐼𝐼𝑒𝑒𝛼𝛼𝑒𝑒       (10.4) 

where 𝐷𝐷 is the slope along the y-axes; 𝑧𝑧𝑢𝑢, 𝑧𝑧𝑣𝑣, and 𝑧𝑧𝑐𝑐 refer to the elevations of upslope, valley 

and channel cross-sections, respectively.  

To investigate the signature of cross-sections on the contours, three synthetic 1-m 

DEMs were generated using different channel cross-sections and fixed upslope and valley 

cross-sections. The parameters that describe upslope and valley cross-sections were set to 𝐵𝐵 = 100 𝑚𝑚 , 𝐿𝐿 = 200 𝑚𝑚 , 𝐿𝐿𝑢𝑢 = 50 𝑚𝑚 , 𝐻𝐻𝑢𝑢 = 100 𝑚𝑚 , 𝐼𝐼𝑣𝑣 = 0.5 𝑚𝑚 , and 𝐷𝐷 = 0.1, and were kept 
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constant in all generated DEMs to isolate their effects on the contours. In the first DEM, a 

channel was added using 𝐼𝐼𝑐𝑐 = 1 𝑚𝑚 , 𝐼𝐼𝑐𝑐 = 40 𝑚𝑚 , and ℎ𝑏𝑏 = 0 m. In this case, the transition 

length 𝐿𝐿𝑡𝑡 = 150 𝑚𝑚  was used. The corresponding contours in Figure 7e show a slight 

signature of the channel banks, which are highlighted as the dark color in the curvature color 

map representing negative values. Using the same transition length (150 𝑚𝑚) and adding a 

sharper channel by setting 𝐼𝐼𝑐𝑐 = 2 𝑚𝑚, 𝐼𝐼𝑐𝑐 = 40 𝑚𝑚, and ℎ𝑏𝑏 = 1 𝑚𝑚 (Figure 7c), the change of the 

contours is enhanced as shown in Figure 7f. Figure 7g shows the contours using a similar 

setup for the channel cross-section and smaller transition length (𝐿𝐿𝑡𝑡 = 50 𝑚𝑚).  

This synthetic example demonstrates how the contours change from valley to channel 

sections. Channelized contours have positive curvature at the channel’s centerline and 

negative curvature at the banks. In contrast, unchannelized contours have small positive 

curvature with no detectable negative curvature due to the absence of banks. Figure 8 shows 

the difference in the shapes of channelized and unchannelized contours in a natural 

landscape located at Indian Creek, OH.  

In the next section, an unsupervised algorithm based on K-means clustering is 

proposed to classify the contours in each tributary as either channelized or unchannelized. 

The transition from the unchannelized to channelized contours is identified as the channel 

head. 
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Figure 7. (a) Location of upslope (b), valley (c), and channel (d) cross-sections in the synthetic 

DEMs. (e), (f), and (g) Curvature and 1-m contours for synthetic DEMs. The numbers are the 

contour elevations in meters. The imposed channel cross-sections with well-defined banks 

resulted in sharp signatures in contours as highlighted by the dark background color (negative 

curvature). 
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Figure 8. Examples of channelized and unchannelized contours in a natural landscape (Indian 

Creek, OH). 

2.2 K-means clustering for channel head identification 

K-means clustering [Macqueen, 1967] is an unsupervised classification algorithm to 

solve a clustering problem given as the minimization of the overall distance between points 

and the centroid of their corresponding clusters: 𝑁𝑁𝑒𝑒𝑀𝑀 ∑ ∑ �𝑝𝑝𝑖𝑖𝑗𝑗−𝑁𝑁𝑗𝑗�𝑁𝑁𝑗𝑗𝑖𝑖=1𝐽𝐽𝑗𝑗=1          (11) 

where 𝐽𝐽  is the number of clusters; 𝑁𝑁𝑗𝑗  is number of points in cluster j; and 𝑝𝑝𝑖𝑖𝑗𝑗  is the 𝑒𝑒𝑡𝑡ℎ 

member of cluster 𝑗𝑗  and 𝑁𝑁𝑗𝑗  is its centroid. Traditional K-means clustering is initiated by 

randomly assigning each point to one of the clusters. Afterwards, the centroid of each cluster 

is calculated as the average location of all the points in that specific cluster. Then, all the data 

points are reassigned to the closest centroid and the centroids of all clusters are updated. 

This procedure is followed until the clusters converge.  
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Figure 9. Example of 1st-order valley with 𝑁𝑁𝐶𝐶 equally-elevated contours created within the 

contributing extent. The upper bound of the contributing extent is constrained by the valley head 

elevation. The dissimilarity of contours is quantified based on their absolute orientation. For 

example, when comparing A and B, 𝐴𝐴 is reoriented toward B based on equation (12) forming the 

new contour 𝐴𝐴′. The dissimilarity index between 𝐴𝐴 and 𝐵𝐵 (𝐷𝐷𝐷𝐷𝐴𝐴𝐵𝐵) is calculated as the root-mean-

square (RMS) difference between 𝐴𝐴’ and 𝐵𝐵. 

Typically, the K-means method deals with points and clustering is done based on the 

distance between points. In this chapter, the contours in a tributary are classified into two 

clusters (channelized and unchannelized) based on their shapes. The dissimilarity (𝐷𝐷𝐷𝐷) of 

two contours is defined as the minimum root-mean-square (RMS) difference of one’s best 

orientation relative to the other. Figure 9 shows an example of computing the dissimilarity 

index (i.e., 𝐷𝐷𝐷𝐷𝐴𝐴𝐵𝐵) between contours 𝐴𝐴 and 𝐵𝐵. Each contour is represented by a 2 × 𝑁𝑁 matrix 

containing 𝑁𝑁  equally-distanced (𝑥𝑥,𝑚𝑚) pairs (i.e., points). The best orientation of A to B, 

denoted as 𝐴𝐴′, is obtained by translating, rotating and scaling 𝐴𝐴 so that the RMS difference 

between 𝐴𝐴′ and 𝐵𝐵 (i.e., ‖𝐵𝐵 − 𝐴𝐴′‖) is minimized: 
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𝑁𝑁𝑒𝑒𝑀𝑀 ‖𝐵𝐵 − 𝐴𝐴′‖𝛼𝛼𝑂𝑂.𝐴𝐴′ = 𝛼𝛼 × 𝑅𝑅 × 𝐴𝐴 + 𝑇𝑇 × 𝑈𝑈        (12) 

where 𝛼𝛼 is the scale factor; 𝑅𝑅2×2  is the rotation matrix; 𝑇𝑇2×1  is the translation vector; and 𝑈𝑈1×𝑀𝑀  is the unit (i.e., all-ones) matrix. 𝐴𝐴′ represents the scaled, rotated and translated 𝐴𝐴. 

Horn [1987] developed a closed-form solution for the absolute orientation by solving this 

least-squares problem. In this solution, rotation is represented by quaternions and is similar 

to a rotation matrix in plane space. Translation represents the distance between the centers 

of 𝐵𝐵 and the scaled and rotated 𝐴𝐴. The scale is given by the ratio of RMS deviation (i.e., which 

is an indicator of the length) of A and B from their centers. The RMS difference obtained from 

equation (12) is interpreted as the dissimilarity between A and B (𝐷𝐷𝐷𝐷𝐴𝐴𝐵𝐵).  

Based on traditional K-means clustering and using the best orientation approach to 

quantify the dissimilarity of contours, the following clustering method is developed. The 

presented algorithm minimizes the dissimilarity index of contours in each cluster. The 

outcome of this algorithm is a transition contour (i.e., equivalently the elevation of the 

transition contour) that delineates the boundary between channelized and unchannelized 

sections. Therefore, the contours with elevation lower than or equal to the transition contour 

belong to the channelized cluster and the rest are unchannelized.  

For each valley tributary, the total contributing extent is extracted using the adjusted 

flow directions. The upper bound of the extent is constrained by the valley head elevation as 

shown in Figure 9. NC equally-elevated contours are then generated within the contributing 

extent. Therefore, the contour interval would be 
∆𝐸𝐸𝑁𝑁𝐶𝐶−1 , where ∆𝐸𝐸  is the relief in the 
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contributing extent. Higher values of 𝑁𝑁𝐶𝐶  indicate a more detailed representation of the 

terrain and higher computational load.  

To initiate the clustering, a contour (𝑙𝑙) with elevation 𝐸𝐸𝑙𝑙  is selected randomly as the 

transition contour. All contours having elevation less than or equal to 𝐸𝐸𝑙𝑙  are initially assigned 

to the channelized (C) cluster (equation 13.1) and all contours with elevation higher than 𝐸𝐸𝑙𝑙  
are considered unchannelized (UC) (equation 13.2): 𝑁𝑁 = [𝑗𝑗|𝐸𝐸𝑗𝑗 ≤ 𝐸𝐸𝑙𝑙]          (13.1) 𝑈𝑈𝑁𝑁 = [𝑗𝑗|𝐸𝐸𝑗𝑗 > 𝐸𝐸𝑙𝑙]         (13.2) 

The centroids of the two clusters are calculated by averaging the coordinates of all 

contours in each cluster: 𝑋𝑋𝐶𝐶𝑖𝑖 =
∑ 𝑋𝑋𝑗𝑗𝑗𝑗𝑗𝑗𝐶𝐶

|𝐶𝐶|
  𝑒𝑒 = 1 …𝑁𝑁        (14.1) 

𝑌𝑌𝐶𝐶𝑖𝑖 =
∑ 𝑌𝑌𝑗𝑗𝑗𝑗𝑗𝑗𝐶𝐶

|𝐶𝐶|
  𝑒𝑒 = 1 …𝑁𝑁        (14.2) 

𝑋𝑋𝑈𝑈𝐶𝐶𝑖𝑖 =
∑ 𝑋𝑋𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝐶𝐶

|𝑈𝑈𝐶𝐶|
  𝑒𝑒 = 1 …𝑁𝑁        (14.3) 

𝑌𝑌𝑈𝑈𝐶𝐶𝑖𝑖 =
∑ 𝑌𝑌𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝐶𝐶

|𝑈𝑈𝐶𝐶|
  𝑒𝑒 = 1 …𝑁𝑁        (14.4) 

where M is the number of points in each contour; |𝑁𝑁| (|𝑈𝑈𝑁𝑁|) is the number of channelized 

(unchannelized) contours. (𝑋𝑋𝐶𝐶𝑖𝑖  ,𝑌𝑌𝐶𝐶𝑖𝑖) and (𝑋𝑋𝑈𝑈𝐶𝐶𝑖𝑖,𝑌𝑌𝑈𝑈𝐶𝐶𝑖𝑖) are the coordinates of the ith point of 

the average contour (i.e., centroid) representing channelized and unchannelized clusters, 

respectively.  

For any contour 𝒿𝒿  located at the border of two clusters, the dissimilarity index of 

contour 𝒿𝒿 to the centroid of each cluster is calculated using equation (12). Contour 𝒿𝒿 is said 
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to be located at the border of the two clusters if it belongs to the channelized cluster and its 

elevation is the maximum among all channelized contours; or it belongs to the unchannelized 

cluster and its elevation is the minimum among all unchannelized contours. The contour 𝒿𝒿 is 

then assigned to the cluster with the smaller dissimilarity index. The process of identifying 

cluster centroids (equation 14) and reassigning the bordering contours is repeated until no 

change occurs in the clusters’ membership. The transition contour (𝒥𝒥) is determined to be a 

member of the channelized cluster with the maximum elevation denoted by 𝐸𝐸𝒥𝒥.  

Since the outcome of the clustering process is sensitive to the random initial guess, 

the clustering is repeated 𝐼𝐼 times. This yields the vector 𝑉𝑉1×I that represents the number of 

times (out of 𝐼𝐼  iterations) the clustering converges to any contour. Finally, the transition 

elevation from an unchannelized to channelized section (𝐸𝐸∗) is calculated as the weighted 

average of contour elevations using 𝑉𝑉 as the weight. The contours that have been selected as 

the transition contour for less than 0.1 × 𝐼𝐼 times are discarded in this calculation: 

𝐸𝐸∗ =
∑ 𝑉𝑉𝑗𝑗𝐸𝐸𝑗𝑗𝑗𝑗|𝑉𝑉𝑗𝑗>0.1×𝐼𝐼∑ 𝑉𝑉𝑗𝑗𝑗𝑗|𝑉𝑉𝑗𝑗>0.1×𝐼𝐼          (15) 

It should be noted that the relative orientation of contours affects the centroid 

contours in equation (14). However, any effects caused by the contour orientations (i.e., 

translation, scale and rotation) is compensated for in the dissimilarity step. The only 

parameter used in channel network extraction is the number of contours in each valley 

tributary (𝑁𝑁𝐶𝐶). 𝑁𝑁𝐶𝐶 = 30 was used for the results presented in this chapter; however, the 

sensitivity to 𝑁𝑁𝐶𝐶  is presented in Section 3.3. 
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The presented clustering algorithm was applied to the synthetic DEMs in Figure 7, 

and the extracted channels are shown by blue lines. To better demonstrate the performance 

of the clustering, the dissimilarity curves for the synthetic DEMs in Figure 7f and 6g are also 

shown in Figure 10. The dissimilarity curves represent the summation of dissimilarity within 

channelized and unchannelized clusters for any estimate of channel head elevation. Based 

on the proposed methodology, the minimum of this curve, identified by the clustering 

method, corresponds to the elevation of the channel head. As mentioned earlier, the 

channelized cross-section transitioned to unchannelized within 150 m for the DEM in Figure 

7f. For the DEM in Figure 7g, this transition occurred within 50 m. The dissimilarity curves 

clearly reflect the difference between transition lengths. The dissimilarity curve for 𝐿𝐿𝑡𝑡 =

50 𝑚𝑚 is relatively sharper around the minimum compared to the case when 𝐿𝐿𝑡𝑡 = 150 𝑚𝑚. In 

the latter case, the quality of the DEM and the filtering parameters would have more impact 

on the clustering performance resulting in higher uncertainty in channel head location 

prediction.  
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Figure 10. Normalized (by maximum) dissimilarity for estimates of the transition contour 

elevation for synthetic DEMs given in Figure 7f and Figure 7g. The minimum of these curves 

represents the transition from channelized to unchannelized section.  

2.3 Results 

After delineating the valley network, the contour clustering was performed for all 1st-

order valleys (see Section 2.2.2) to locate the transition from unchannelized to channelized 

sections. The number of contours (𝑁𝑁𝐶𝐶) was set to 30 for all catchments throughout this study. 

The extracted channel network and the location of mapped channel heads (reported in Clubb 

et al. [2014]) in Indian Creek are shown in Figure 11. The distributions of horizontal distance 

error between the mapped and predicted channel heads for three study catchments are 

presented in Figure 12. The distance error is negative if the mapped head is located 

downstream of the predicted one. The average error or net bias (𝑒𝑒𝑒𝑒𝑒𝑒�����), the standard deviation 

of error (𝜎𝜎), the number of heads that are mapped and predicted (𝑁𝑁𝑀𝑀𝑀𝑀), and the total number 

of mapped heads (𝑁𝑁𝑀𝑀) are also reported for each case. Generally, the results in Indian Creek 



 

35 

 

and Mid Bailey Run are comparable to those reported in Clubb et al. [2014]. However, the 

extracted channel heads for Feather River are mainly located upstream of those found in the 

field and some of the mapped channels originate in the predicted 2nd-order valleys (Figure 

13). Since the clustering was performed on the 1st-order valleys located upstream of the 

mapped heads, a relatively high negative error in channel heads’ locations is observed in 

Feather River.  

 

 

Figure 11. Comparison of mapped and predicted channel heads: (a) delineated channel network 

and the mapped channel heads in Indian Creek; (b) a zoomed-in area including two mapped and 

predicted channels; (c) cross-section at A; (d) area with three unmapped channels where the 

contours clearly indicate strong crenulations; and (e) cross-section with well-defined banks at B.  
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Figure 12. Distribution of error between the mapped and predicted channel heads in (a) Indian 

Creek (b) Mid Bailey Run, and (c) Feather River. 𝑒𝑒𝑒𝑒𝑒𝑒����� and 𝜎𝜎 refer to the average and standard 

deviation of distance error. The total number of mapped heads (𝑁𝑁𝑀𝑀), the number of mapped and 

predicted heads (𝑁𝑁𝑀𝑀𝑀𝑀) are also reported. 

 

Figure 13. Example of mapped channelled heads located in the 2nd-order predicted valley in a 

subcatchment of Feather River. The presence of contour crenulations suggests the existence of 

channels upstream of the mapped head.  
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2.3.1 Sensitivity analysis 

The sensitivity of the presented method to the parameters for extracting valley and 

channel networks was assessed for the Indian Creek catchment. In total, the proposed 

method includes parameters for filtering the DEM (time of forward diffusion, 𝑇𝑇𝐹𝐹), valley 

network extraction (connecting threshold, 𝑁𝑁𝑇𝑇 ), and channel head extraction (number of 

contours, NC).  

As shown in Figure 14a, Figure 14b, and Figure 14c, the proposed method performed 

robustly for various values of the parameters. In 13 out of 15 sensitivity tests, the distance 

error remained under 2 m and the standard deviation of error did not exceed 15 m. None of 

the parameters systematically altered the location of predicted channel heads; whereas, 

when using a user-defined curvature (as in Pelletier [2013]) or contributing area threshold 

for skeleton thinning (as in Passalacqua et al. [2010b]), the parameter systematically moves 

the predicted channel heads upstream or downstream as shown by the sensitivity analysis 

in Clubb et al. [2014].  

  



 

38 

 

 

Figure 14. Sensitivity of the proposed method in Indian Creek to (a) the time of forward 

diffusion (𝑇𝑇𝐹𝐹), (b) the connecting threshold (𝑁𝑁𝑇𝑇), and (c) the number of contours (𝑁𝑁𝐶𝐶) in terms of 

average and standard deviation of distance error. The number of heads that were mapped and 

predicted are shown for each parameter value.  

The only parameter related to the channel head prediction is the number of contours 

(NC ). As shown in Figure 14c, increasing the number of contours does not necessarily 

enhance the performance of the method with respect to the average and the standard 

deviation of error. To better understand the sensitivity of the method to 𝑁𝑁𝐶𝐶 , the standard 

deviation of distance error (𝜎𝜎𝑒𝑒𝑒𝑒𝑒𝑒) at each channel head was studied. For each pair of mapped 

and predicted channel heads, 𝜎𝜎𝑒𝑒𝑒𝑒𝑒𝑒 is the standard deviation of four values of distance errors, 

each of which corresponds to one value of NC. As shown in Figure 15, for more than 85% of 

the heads σerr was less than 3.5 m, indicating only minor alteration of the predicted channel 

head location for various values of 𝑁𝑁𝐶𝐶 .  
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Figure 15. Distribution of standard deviation of distance error (𝜎𝜎𝑒𝑒𝑒𝑒𝑒𝑒) at individual heads, which 

represents the change in predicted head location caused by alteration of 𝑁𝑁𝑐𝑐 in Indian Creek.  

2.3.2 Comparison to other methods 

Clubb et al. [2014] studied three state-of-the-art channel delineation methods in the 

same catchments used here. These methods include GeoNet proposed by Passalacqua et al. 

[2010b], Pelletier proposed by Pelletier [2013], and DrEICH proposed by  Clubb et al. [2014]. 

Since all the channel heads were mapped only in Indian Creek and Mid Bailey Run, the 

discussions here focus on these two study sites. The average distance error (𝑒𝑒𝑒𝑒𝑒𝑒�����), standard 

deviation of distance error (𝜎𝜎 ), reliability (𝑒𝑒), sensitivity (𝛼𝛼), and percentage error of 

mapped and predicted channel densities (𝜀𝜀𝐷𝐷) were used to compare the performance of the 

methods [Orlandini et al., 2011; Clubb et al., 2014].  𝑒𝑒 =
∑𝑇𝑇𝑀𝑀∑𝑇𝑇𝑀𝑀+∑𝐹𝐹𝑀𝑀          (16.1) 

𝛼𝛼 =
∑𝑇𝑇𝑀𝑀∑𝑇𝑇𝑀𝑀+∑𝐹𝐹𝑁𝑁          (16.2) 
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𝜀𝜀𝐷𝐷 = 100
𝐷𝐷𝑀𝑀−𝐷𝐷𝑃𝑃𝐷𝐷𝑀𝑀          (16.3) 

where true positive (TP) heads are both predicted and mapped; false positive (FP) heads are 

predicted but not mapped; and false negative (FN) heads are mapped but not predicted in 

the same 1st-order basin. ∑𝑇𝑇𝑁𝑁, ∑𝑇𝑇𝑁𝑁, and ∑𝑇𝑇𝑁𝑁 represent the number of heads in each class. 

DM and DP are the mapped and predicted channel densities.  

Table 1 summarizes the performance of DrEICH, GeoNet, Pelletier, and the proposed 

method in Indian Creek and Mid Bailey Run. The results for DrEICH and Pelletier methods were 

taken from Clubb et al. [2014], and the indices for GeoNet were measured using parameters 

suggested by Passalacqua and Foufoula-Georgiou [2015] (i.e., skeleton thinning parameter of 200 

m2 with Laplacian curvature).  

The proposed method had equal or better performance compared to the best of the 

existing methods in three indices for Indian Creek and one index for Mid Bailey Run. In 

addition, two indices ( 𝑒𝑒𝑒𝑒𝑒𝑒�����  and 𝜎𝜎 ) in Mid Bailey Run were comparable to the best 

performance achieved by existing methods. Considering the sensitivity analysis (Figure 14) 

and the results presented in Table 1, the proposed method performed well in terms of err����, σ, 

and s; however, it resulted in negative 𝜀𝜀𝐷𝐷, as other methods did, and smaller 𝑒𝑒 which implies 

overestimation of channel network. Although some predicted heads were not mapped in the 

field, they often satisfy the basic definition used to delineate channels, i.e., convergent surface 

confined by well-defined banks. Figure 11d shows a zoomed-in area in Indian Creek with 

three unmapped channels. The contours clearly show strong crenulations and the cross-

section at B, shown in Figure 11e, is channelized with well-defined banks. For comparison, 

contours and cross-section in a mapped channel are shown in Figure 11b and Figure 11c.  
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Table 1. Performance of DrEICH, GeoNet, Pelletier and the proposed method in terms of the 

average error (𝑒𝑒𝑒𝑒𝑒𝑒�����), standard deviation of error (𝜎𝜎), reliability (𝑒𝑒), sensitivity (𝛼𝛼), and percentage 

error of mapped and predicted channel densities (𝜀𝜀𝐷𝐷) in Indian Creek and Mid Bailey Run.  

 Method Indian Creek Mid Bailey Run 

𝒆𝒆𝒆𝒆𝒆𝒆����� 
(m) 

DrEICH* 12 3 

GeoNet** -9 8 

Pelletier* 5 -7 

Proposed 1 -4 

𝝈𝝈 

(m) 

DrEICH* 21 22 

GeoNet** 13 16 

Pelletier* 13 17 

Proposed 13 18 

𝒆𝒆 

DrEICH* 0.51 0.49 

GeoNet** 0.15 0.31 

Pelletier* 0.53 0.52 

Proposed 0.34 0.34 

s 

DrEICH* 0.75 0.83 

GeoNet** 0.58 0.77 

Pelletier* 0.72 0.74 

Proposed 0.91 0.77 

𝜺𝜺𝑫𝑫 

DrEICH* -17% -48% 

GeoNet** -34% -40% 

Pelletier* -26% -38% 

Proposed -35% -34% 
* These results are from Clubb et al. [2014] 
** Using thinning parameter of 200 m2 with Laplacian curvature as 

suggested in Passalacqua and Foufoula-Georgiou [2015] 

2.3.3 Channel initiation  

The advantage of the proposed method over the existing curvature-based approaches 

is that the channel head prediction is performed separately for each tributary. The channel 

head is identified based on the shape of the contours; therefore, no spatially constant 
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curvature threshold is required. Channel initiation criteria such as upslope area, slope-area, 

order, and curvature were observed to be spatially variable within a catchment [Tarolli and 

Dalla Fontana, 2009; Orlandini et al., 2011; Clubb et al., 2014]. In addition, the magnitude of 

curvature is sensitive to the filtering method and the DEM resolution [Tarolli and Dalla 

Fontana, 2009], which makes it difficult to propose a single curvature threshold that works 

well across various landscapes. To avoid this, channel (or valley) initiation curvature 

thresholds based on the curvature statistics have been proposed [Lashermes et al., 2007; 

Tarolli and Dalla Fontana, 2009]. Although these thresholds vary from one catchment to 

another, they are constant within a single catchment.  

Figure 16 shows the CDF of mapped and predicted channel head curvature in the 

study sites. Despite the relatively small size of the catchments, the curvature at the mapped 

channel heads varied considerably. For instance, the curvature at Indian Creek, the smallest 

catchment in this study, ranges from 0.006 to 0.1 m-1 with an average of 0.053 m-1 and a 

coefficient of variation (CV) of 54%. Therefore, it is a challenge to define a spatially constant 

curvature threshold for channel head identification.  

The distribution of the curvature at the predicted channel heads along with their 

statistics are also shown in Figure 16. In Feather River, the curvature at the predicted 

channel heads is smaller compared to the mapped heads. This is consistent with the negative 

distance error of predicted channel heads (Figure 12) since the curvature usually decreases 

moving upstream in the valleys.  

To further analyze the capability of the proposed method to capture the spatial 

variation of curvature at channel heads, the relationship between curvature at the mapped 
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and predicted heads in Indian Creek and Mid Bailey Run is shown in Figure 17. The data 

points were binned along the horizontal axis using a 0.005 m-1 bin size and the 25, 50, and 

75 percentiles at each bin are presented. Figure 17 indicates relatively good agreement 

between the curvature at mapped and predicted heads, especially for mapped heads with 

curvature values between 0.03-0.09 m-1.  

 

Figure 16. Distribution of curvature at the mapped and predicted channel heads in (a) Indian 

Creek (b) Mid Bailey Run, and (c) Feather River. The average and the coefficient of variation 

(CV) for each distribution are given.  
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Figure 17. Curvature at the mapped versus predicted channel heads. The data points were binned 

along the horizontal axis using a 0.005 m-1 bin size and the 25, 50, and 75 percentiles at each bin 

are presented. The dashed black line represents the linear fit in the range of 0.03-0.09 m-1 which 

indicates a strong linear correlation with 𝑅𝑅2 = 0.73.  

2.4 Conclusions 

Valley and channel networks are important geomorphologic features of catchments. 

Recently developed channel extraction methods utilize local curvature as the initiator of 

channels, i.e., the channel begins when the landscape is convergent enough and the 

convergence is measured by curvature. The channel initiation curvature threshold is 

assumed to be spatially constant; however, it has been shown to be unrealistic even in small 

catchments. 

The basic definitions of channels and valleys were used to identify them in high-

resolution DEMs. Channels are generally surrounded by well-defined banks that have a 

distinct signature in the contours. A new method was proposed to automatically extract 
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channel heads based on the clustering of contours, utilizing the information derived from the 

entire cross-section. The similarity-based clustering method eliminates the need for a 

spatially constant channel initiation threshold. The proposed method was able to capture 

the spatial variation of channel initiation curvature threshold.  

The proposed method was applied to three study sites and performed well in terms 

of identifying small channels. 34 and 52 (out of 36 and 53) channel heads were identified in 

Indian Creek and Mid Bailey Run, respectively. The average and standard deviation of 

distance error between mapped and predicted channel heads were better or comparable to 

existing methods. None of the three parameters associated with the proposed method 

systematically altered the location of predicted channel heads; whereas, in the case of using 

spatially constant user-defined curvature (as used in Pelletier’s method) or thinning 

contributing area (as used in GeoNet) thresholds, the parameter systematically moves the 

heads upstream or downstream.  

The proposed method was also able to detect small-scale tributaries, but it 

overestimated the number of channel heads. In most cases, the predicted and unmapped 

channel heads satisfied the basic definition used to delineate channels, i.e., convergent 

surfaces confined by well-defined banks.  

Some components of the proposed method (e.g., terrain segmentation and channel 

head identification) are more complex and computationally expensive compared to existing 

approaches. However, the complexity is acceptable in terms of producing a robust and 

physically-based method for automatic drainage network delineation. In particular, despite 

its solid physical foundations and robust performance, the contour clustering requires 
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greater computational effort compared to methods that employ spatially constant curvature 

thresholds.  

The proposed method was developed for landscapes with minimal human impacts 

where there is a well-defined distinctions between unchannelized valleys and channels 

reflected in their corresponding cross-sections. The applicability of the proposed method to 

catchments with anthropogenic features and topographic gradients at the upper and lower 

ends of the spectrum will be investigated in future work. 

Lastly, although the valley network extracted using the proposed method was used 

to delineate the channel network, the two steps are independent. Therefore, the valley 

network extracted from any of the existing methods can be used as the basis for channel 

network extraction using the proposed clustering approach. Alternatively, the extracted 

valley network from the proposed method can also serve as the basis for channel head 

identification using process-based techniques. Collectively, this presents an opportunity for 

the development of additional hybrid approaches that may be suitable for particular 

terrains.  
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CHAPTER 3: WET CHANNEL EXTRACTION 

Flowing channel networks expand in response to rainfall events and contract during 

streamflow recession periods. The temporal and spatial dynamics of wet channel networks 

are one of the key features for revealing the links between hydrology and geomorphology 

driven by climate mechanisms [Abrahams, 1984; Wang and Wu, 2013a] on hydrologic 

processes [Biswal and Marani, 2010], stream ecosystem expansion and contraction [Stanley 

et al., 1997], and spatial variability in stream chemistry [Zimmer et al., 2013; Mcguire et al., 

2014]. Perennial streams, by definition, have continuous flow during years of normal rainfall 

[Meinzer, 1923]; whereas, temporary streams, including intermittent and ephemeral 

streams, cease flowing at one or more points in space and time along their course. 

Temporary streams support high biodiversity and important ecosystem processes [Acuña et 

al., 2014]. Studying the temporal dynamics of wet channels is also beneficial to advance 

surface-subsurface models [Kollet and Maxwell, 2006; Camporese et al., 2010], since it 

provides efficient means to validate the internal exchanges at the land surface interface. The 

ability of surface-subsurface models to reproduce the complex process of wet channel 

formation is important for long-term simulations under climate change scenarios. Therefore, 

understanding and monitoring these short-term changes in wet channel networks will 

benefit both hydrology and aquatic ecology. However, the data availability on the wetting 

and drying dynamics of temporary streams is limited. Streamflow gauges operated by United 

States Geological Survey (USGS) are generally sited on relatively large perennial streams and 

rivers.  
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Remotely sensed images from satellites have been used to identify the open water 

bodies and large rivers. Near-infrared (NIR) radiation is absorbed by water but reflected by 

vegetation and dry soil. This characteristic of NIR has been utilized to identify ponds and 

lakes [Work Jr and Gilmer, 1976]. Based on the reflectance of water and vegetation to NIR 

and green light, the normalized difference water index (NDWI) has been developed and used 

for differentiating water surface features from soil and vegetation [Mcfeeters, 1996; Xu, 

2006]. Beeson et al. [2011] used night/day temperatures, as a proxy for soil moisture, from 

advanced spaceborne thermal emission and reflection radiometer (ASTER) images with 15 

meter resolution to identify ephemeral and perennial stream reaches. Since headwater 

streams are typically narrower, shallower, and heavily vegetated, it is challenging to use 

satellite imagery to detect the water surface.  

Airborne light detection and ranging (LiDAR) provides an opportunity to map wet 

channel networks. LiDAR has become an important technique to acquire topographic data at 

sub-meter resolution and accuracy [Marks and Bates, 2000; Bowen and Waltermire, 2002] 

and has been utilized to extract flow direction [Tarboton, 1997b; Orlandini and Moretti, 

2009], channel networks [Lashermes et al., 2007; Orlandini and Moretti, 2009; Passalacqua 

et al., 2010b; Orlandini et al., 2011; Sofia et al., 2011; Pelletier, 2013; Clubb et al., 2014], and 

topographic depressions [Le and Kumar, 2014] in the past. LiDAR has also been used to 

retrieve water surface information including flood inundation extent [Genc et al., 2005] and 

water levels and gradients [Magirl et al., 2005; Hopkinson et al., 2011]. As an active remote 

sensing technique, the airborne LiDAR sensor emits NIR laser pulses with a wavelength of 

1064 nm that almost entirely absorbed by water. The infrared laser light is effectively 
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absorbed in the water column or reflected specularly away from the field view of the discrete 

echo recording system [Wolfe and Zissis, 1985; Brzank et al., 2008]. Recently, the green laser 

with a wavelength of 532 nm from a bathymetric airborne LiDAR sensor has shown the 

capability of penetrating the water surface to directly measure water depths in clear water 

environments [Höfle et al., 2009]. A key element of the LiDAR data stream is the signal 

intensity, which is a relative strength measurement of the return pulse by the LiDAR sensor. 

The signal intensity is lower from the water surface compared with land areas. The intensity 

characteristics of water surface have previously been used to derive water-land boundaries 

in river segments [Höfle et al., 2009]. With high airborne LiDAR acquisition altitudes and 

incidence angles, the intensities of water surface returns arriving at the receiver are too 

small to be detected. Therefore, laser shot dropouts may occur and the point density is 

typically lower on water surfaces [Höfle et al., 2009]. Even though bathymetric LiDAR in the 

green and infrared spectral bands have the ability to generate returns at water surfaces, 

point densities are lower than those of topographic LiDAR, affecting the minimum detectable 

size of water body systems [Hilldale and Raff, 2008; Mallet and Bretar, 2009].  

Intensity information from single wavelength topographic LiDAR (i.e., NIR) systems 

has been used to map many types of water surfaces including rivers, wetlands, ponds, and 

lakes [Höfle et al., 2009; Smeeckaert et al., 2013; Wu et al., 2013]. Antonarakis et al. [2008] 

identified a water surface in a river segment when the height range of the returns is less than 

0.5 m and an average intensity value in a local domain is less than 55 DN (digital number). 

Lang and Mccarty [2009] demonstrated the ability of LiDAR intensity data for mapping 

inundated areas beneath a forest canopy. Brzank et al. [2008] developed a supervised 
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classification method for identifying laser points on the water surface of the Wadden Sea 

using elevation, intensity, and 2D point density. These studies are successful in delineating 

water-land boundaries of large continuous water areas (i.e., geometrical assessment of 

water bodies).  

The objective of this chapter is to extract wet channel networks at sub-meter 

resolution using the elevation and intensity information from the point cloud generated by 

topographic LiDAR systems which are now available to the public in many areas [Stoker et 

al., 2006]. Given the valley network delineated from LiDAR topographic data, the wet 

sections of the network are extracted based on signal intensity of ground returns. Wet pixels 

are identified along the valley network based on the frequency distribution and the gradient 

of intensity returns. Solely based on the intensity distribution, it is quite challenging to detect 

narrow and shallow streams since their intensity returns have relatively high variation. This 

challenge is addressed by utilizing the gradient of intensity to locate the transition from wet 

to dry pixels in the bank of small wet channels. The Lake Tahoe area is used as the case study 

due to the availability of high resolution LiDAR data with intensity information and two data 

acquisitions, separated by approximately two years, in some watersheds. The developed 

method provides an opportunity to map wet channel networks. 

3.1 Study sites 

Lake Tahoe is located in the high mountain area at the state border of California and 

Nevada. The lake covers 496 km2 with a total drainage area of 1,310 km2 [Dettinger, 2013]. 

The Lake Tahoe drainage basin is formed by geologic uplift that created the Carson Range on 

http://en.wikipedia.org/wiki/Carson_Range
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the east and the Sierra Nevada on the west with an average surface elevation of 1,897 m 

above mean sea level. The area has cold and wet winters with an average temperature of -1 

oC in January and warm and dry summers with an average temperature of 18 oC in June 

[Taylor and Beaty, 2005]. Mean annual precipitation on the west and east sides of the lake 

are 1400 mm and 670 mm, respectively. Precipitation mainly occurs as snow from 

November to April, and most runoff occurs during the spring snowmelt period from April to 

June [Coats and Goldman, 2001].  

This study focused on five watersheds around Lake Tahoe as shown in Figure 18a. 

Four watersheds, including Blackwood Creek, Ward Creek, General Creek, and Trout Creek, 

are located in California; Incline Creek, where there are two streamflow gages, is located in 

Nevada. The human impacts and urbanization are minimal in these watersheds. The 

drainage area of the six USGS gages varies from 7.4 km2 to 28.9 km2 (Table 2). The climate 

aridity index, defined as the ratio of potential evaporation to precipitation, varies from 0.99 

to 1.61 in these watersheds. They are covered by intact forest and shrub area; as an example, 

the forest and shrub land area in the Blackwood Creek watershed is 70% and 28%, 

respectively. 
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Figure 18. Map for the study sites. (a) Five study watersheds around Lake Tahoe. (b) Six 

streamflow gages and the spatial coverage of LiDAR data sets. 

 

Table 2. USGS gage identification number, drainage area, streamflow and its exceedance 

probability during the LiDAR surveys for the study watersheds. 

Watershed 
Gage 

Number 

Drainage 

Area  

[km2] 

LiDAR Acquisition 

Date 

Streamflow 

[m3/s] 

Streamflow 

Exceedance 

Probability 

[%] 

Blackwood Creek, CA 10336660 28.9 
8/20/2010-8/23/2010 0.10±0.01 73 

6/20/2012-6/21/2012 0.52±0.01 40 

Ward Creek, CA 10336676 24.9 
8/14/2010 0.06 72 

6/20/2012-6/21/2012 0.27±0.01 43 

General Creek, CA 10336645 19.2 8/20/2010-8/23/2010 0.02 95 

Trout Creek, CA 10336770 19.1 8/23/2010 0.16 54 

Incline Creek, NV 10336700 17.3 8/12/2010 0.10 66 

Incline Creek, NV 103366993 7.4 8/12/2010 0.04 74 

 

http://en.wikipedia.org/wiki/Plus-minus_sign
http://en.wikipedia.org/wiki/Plus-minus_sign
http://en.wikipedia.org/wiki/Plus-minus_sign
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3.2 LiDAR and streamflow data 

These watersheds are selected for this study based on the availability of streamflow 

observations and LiDAR data. Streamflow observations at the gages (Figure 18b) are 

obtained from the USGS National Water Information System. The USGS Center for LiDAR 

Information, Coordination and Knowledge (CLICK) provides LiDAR data tiled by USGS 

Quarter Quadrangles in LAS and ASCII format [Stoker et al., 2006]. The LiDAR data are 

obtained through the CLICK website (http://lidar.cr.usgs.gov, Last Accessed July 15, 2014). 

The ground returns of LiDAR data, in which vegetation and buildings are filtered out by the 

data provider, are used in this study. 

As shown in Figure 18b, two sets of LiDAR data are available, one flown in 2010 and 

the other in 2012. The LiDAR data in 2010 (from August 11 to August 24) are acquired using 

a Leica ALS50-II LiDAR System. Each return (data point) includes a Global Positioning 

System (GPS) time stamp, spatial coordinates (X, Y, Z), intensity representing the strength of 

the reflected signal, flight line, scan angle, and return number (first/last return). The data 

are collected from an altitude of approximately 900~1300 m. The average spacing and 

average point density of irregularly-spaced LiDAR points for ground returns are 0.67 m and 

2.26 points/m2, respectively.  

The LiDAR data in 2012 (from March 25 to June 29) are acquired using an Optech 

ALTM Gemini LiDAR system. The data are collected from an altitude of approximately 915 

m. The average spacing and average point density of irregularly-spaced LiDAR points for 

ground return are 0.72 m and 1.94 points/m2, respectively. The range of scan angle is ± 19° 

http://waterdata.usgs.gov/nwis
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and the vertical accuracy is 18 cm. The point cloud data are processed to derive the intensity 

map and the land surface topography using the QCoherent software LP360 for ArcGIS.  

There is an overlap between two LiDAR data sets for Blackwood Creek and Ward 

Creek watersheds. Therefore, two snapshots of LiDAR data are available for these two 

watersheds and they are used to identify wet channel networks in 2010 and 2012 as 

described below. The LiDAR acquisition date(s) for each watershed are listed in Table 2. The 

acquisition dates cover four consecutive days for Blackwood Creek and General Creek 

watersheds in 2010 and one or two days for the others.  

The streamflow and its associated exceedance probability during the LiDAR 

acquisition dates are listed in Table 2. All LiDAR data are acquired during hydrograph 

recession periods. For example, the rainfall and hydrograph for Blackwood Creek during the 

LiDAR acquisition periods are plotted in Figure 19. Streamflow declines during the recession 

period from June to September. The LiDAR surveys are performed at the recession stages in 

August 2010 (Figure 19a) and June 2012 (Figure 19b). Based on 53 years of daily streamflow 

records for Blackwood Creek, the exceedance probabilities during the LiDAR surveys are 

73% in 2010 and 40% in 2012, respectively. As shown in Table 2, the exceedance probability 

of streamflow for all the snapshots is more than 40%. In particular, the exceedance 

probability for General Creek is 95%, indicating a low flow condition in which dry channels 

are expected.  
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Figure 19. Rainfall and hydrograph for Blackwood Creek, and the LiDAR acquisition periods 

during (a) 8/20/2010-8/23/2010 and (b) 6/20/2012-6/21/2012.  

3.3 Methodology and Demonstration 

The signal intensity of ground returns is the main information used for identifying 

wet and dry channels. Intensity is usually represented in DN (digital number) units that are 

a digitized form of the amount of electromagnetic radiation received from a point on a 

surface. LiDAR intensity returns from water surfaces are usually lower than the intensity 

from the dry land because of the strong absorption of light energy by water. The point cloud 

returns for water surface are usually associated with low signal intensity, dropouts, and a 

high relative variation of intensity [Höfle et al., 2009]. The specular reflection from the water 

surface also contributes to low intensity of the signal. When the signal intensity is lower than 

a threshold, the data point is dropout processed by the data acquisition provider, leading to 

reduction in point density on the water surface. Figure 20a shows the 2010 intensity image 
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for a headwater catchment in the Blackwood Creek watershed; Figure 20b shows the 2012 

intensity image in the same area. The intensity value varies from 1 DN to 215 DN for 2010 

LiDAR and from 1 DN to 803 DN for 2012 LiDAR. As shown in Figure 20, the intensity in the 

wet channels is significantly lower than that on hillslopes and dry channels. The wet channel 

heads (i.e., upstream limits of wet channels) are identified visually and marked by green 

dots.  

 

Figure 20. LiDAR intensity for a headwater catchment in the Blackwood Creek watershed during 

(a) 2010 and (b) 2012 surveys. The wet channel heads (i.e., upstream limits of wet channels) are 

identified visually and marked by green dots. 

In this chapter, a systematic method is developed to extract wet channel networks 

based on both LiDAR intensity and the digital elevation model (DEM). The proposed method 

consists of the following six major steps: 1) masking dense vegetation in intensity maps 

based on elevations of ground surface and canopy (Section 3.1); 2) extracting valley extents 

from the LiDAR-based DEM (Section 3.2); 3) decomposing composite probability 
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distribution function (PDF) of intensity (Section 3.3); 4) detecting edges (i.e., high gradient 

pixels in intensity map) based on the local gradient of intensity (Section 3.4); 5) identifying 

wet pixels based on the thresholds determined from the decomposed PDFs and detected 

edges (Section 3.5); and 6) generating the wet channel network (Section 3.6). The step-by-

step procedure of the proposed method is described below. The figures used to illustrate the 

method are based on the 2012 LiDAR from the Blackwood Creek watershed.  

3.3.1 Masking dense vegetation in intensity maps 

LiDAR point cloud data contains intensity returns from surfaces with different 

elevations. For instance, the LiDAR data in a vegetated area provides intensity from top of 

the canopy (Figure 21a) and the ground surface (Figure 21b). In order to identify wet 

channels, it is essential to use the return intensity from ground surface. As shown in Figure 

21b, the intensity under canopy is relatively low and in the same range of those from wet 

surface, due to energy absorption by vegetation. This can be misleading for identifying wet 

channels, since some vegetated areas may be erroneously classified as wet surfaces. Here, to 

enhance the performance of wet channel identification, densely vegetated areas are masked 

from the intensity map. Similar to the intensity returns, the LiDAR data provided elevations 

at top of the canopy and the ground surface. The densely vegetated areas are identified as 

the locations where the canopy elevation (ℎ𝑐𝑐 ) is significantly higher than the ground 

elevation (ℎ𝑔𝑔). In other words, a pixel 𝑝𝑝 is marked as densely vegetated if the condition given 

in equation (17) is satisfied: ℎ𝑐𝑐(𝑝𝑝) ≥ ℎ𝑔𝑔(𝑝𝑝) + ℎ𝑇𝑇         (17) 
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where ℎ𝑇𝑇  is a parameter indicating the minimum height of canopy and is set to 2 m for the 

results presented here. Figure 22 shows the identified densely vegetated area in the 

Blackwood Creek watershed. The areas marked as densely vegetated are masked out from 

the intensity map and omitted for extraction of wet channels. 

 

Figure 21. The intensity of returns from (a) the top of canopy and (b) the ground surface in the 

Blackwood Creek watershed based on 2012 LiDAR survey. 
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Figure 22. (a) The extent of dense vegetation, identified at the locations where the elevation 

difference between the top of canopy and the ground surface is more than 2 m. (b) The modified 

LiDAR intensity map after masking dense vegetated areas (Blackwood Creek watershed using 

2012 LiDAR survey). 

3.3.2 Extracting valley network and extent 

Channels, wet or dry, have geomorphologic characteristics that differentiate them 

from other features in the landscape. Potential wet channels lie within topographically 

convergent regions referred to as valley and are associated with positive contour curvature 

[Howard, 1994]. Therefore, wet channel identification can be spatially constrained to the 

valley extent rather than the entire watershed. This will enhance the performance of wet 

channel identification in terms of accuracy and computational time.  

In order to extract the valley extent, the DEM is smoothed to reduce noise and 

eliminate insignificant features. Several filtering methods have been applied to smooth DEMs 

for extracting valley or channel networks, including the Optimal Wiener filter [Pelletier, 
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2013], Perona-Malik filter [Passalacqua et al., 2010b], and Gaussian filter [Lashermes et al., 

2007]. Here, Perona-Malik filter [Perona and Malik, 1990], a nonlinear diffusive filter used 

in GeoNet2.0 [Passalacqua et al., 2010b], is utilized to smooth the DEM. Afterwards, the 

contour curvature (𝜅𝜅) for each pixel is computed using equation (1). Figure 23a shows the 

contour curvature map in a subcatchment of Blackwood Creek watershed.  

The valley extent is generated by imposing a relatively small positive curvature 

threshold (κv) to the curvature map. Figure 23b shows the intensity return within the 

identified valley extent with curvature greater than or equal to κv = 0.025 m−1. The valley 

network is delineated within the valley extent by imposing a small upslope area threshold 

(i.e., 25 m2). The flow direction grid, used to calculate upslope area, is generated using the 

Dinf method [Tarboton, 1997b]. The final valley network is generated by eliminating the 1st-

order valley segments with length less than 25 m. This procedure may miss possible wet 

channels located in small 1st-order valleys. However, this error is negligible considering that 

the wet channels are usually located far downstream of valley heads and in higher order 

valleys. In addition, the relatively small curvature threshold of 0.025 m-1, compared to 0.1 m-

1 which has been used previously for identifying valley heads [Clubb et al., 2014], further 

reduces the error since the extracted valley network extends  upstream.  
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Figure 23. (a) Contour curvature and the visually detectable drainage path by blue segments. (b) 

The intensity returns within the valley boundary determined by the curvature threshold (𝜅𝜅𝑣𝑣) of 

0.025 𝑚𝑚−1 in the Blackwood Creek watershed based on 2012 LiDAR survey. 

3.3.3 Decomposing composite PDF of intensity 

LiDAR return intensity varies significantly with the surface characteristics. As stated 

previously, wet surfaces have relatively low intensity compared to those from dry surfaces. 

The probability distribution of intensity reflects the variation of intensity over land surface. 

Assuming the intensity from a single type of surface follows a Gaussian distribution (i.e., 

normally distributed variation or error in the observations [Hooshyar et al., 2016a]), the 

overall PDF of intensity has a multimodal distribution constructed from a combination of 

several Gaussian distributions. Each mode of this PDF represents a category of ground 

surface (e.g., wet or dry). Having the PDF of intensity, extracted by performing frequency 

analysis on the intensity map, the underlying modes can be represented by a Gaussian 
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mixture model (GMM). GMM is a generative model that describes the distribution of the data 

points generated from a mixture of a finite number of individual Gaussian distributions. 

GMM with 𝑁𝑁 components (i.e., modes) is given as equation (18) [Rasmussen, 1999]:  𝐿𝐿(𝑥𝑥|𝜇𝜇1, … , 𝜇𝜇𝑁𝑁 ,𝜎𝜎1, … ,𝜎𝜎𝑁𝑁 ,𝐼𝐼1, … ,𝐼𝐼𝑁𝑁  ) = ∑ 𝐼𝐼𝑖𝑖 × 𝒢𝒢(𝑥𝑥|𝜇𝜇𝑖𝑖,𝜎𝜎𝑖𝑖)𝑁𝑁𝑖𝑖=1    (18) 

where 𝐿𝐿 is the Gaussian mixture distribution; 𝒢𝒢(𝜇𝜇𝑖𝑖,𝜎𝜎𝑖𝑖) is an individual Gaussian distribution 

for the mode 𝑒𝑒 with mean 𝜇𝜇𝑖𝑖 and standard deviation 𝜎𝜎𝑖𝑖; and 𝐼𝐼𝑖𝑖 represents its corresponding 

weight or proportion of the mixture distribution. 𝐼𝐼𝑖𝑖 sums to unity for all values of 𝑒𝑒.  
Prior to decomposing the composite PDF into individual Gaussian distributions, the 

number of modes contained in the composite PDF and the corresponding types of ground 

surface have to be determined. A small number of modes leads to erroneous clustering 

results by ignoring potential classes of ground surface; but a high number of modes may lead 

to an overfitted model [Smyth, 2000]. The infinite Gaussian mixture model [Rasmussen, 

1999] and cross-validated likelihood [Smyth, 2000] are suggested in literature to find the 

realistic number of modes in mixture models to avoid overfitting. However, the 

representative number of modes in intensity return distribution can be identified based on 

the nature of the problem. Since the goal is to detect wet channels, there should be at least 

two modes representing wet and dry surfaces. An additional mode, called transition, is also 

considered to describe moderately saturated areas, shallow streams and possible snow 

covered areas. Since these three clusters have physical meanings, the overfitting due to a 

high number of clusters is not an issue in this case.  

The mean, standard deviation and weight corresponding to each mode are estimated 

using the Expectation–Maximization (EM) algorithm [Moon, 1996a]. The EM algorithm is an 
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iterative process of subsequent expectation (E-step) and a maximization (M-step). In the E-

step, the expectation function of log-likelihood is computed using the current estimate of the 

parameters. The parameters of the probability distribution are then updated through 

maximization of the log-likelihood [Do and Batzoglou, 2008]. The EM algorithm is capable of 

estimating the parameters of mixture models with hidden variables or latent factors (i.e., the 

individual mode that creates each sample). The number of iterations and tolerance of the EM 

algorithm are set to 1.5 × 104 and 1 × 10−8, respectively. 

After extracting the decomposed intensity PDFs, two thresholds, 𝐼𝐼𝑊𝑊 for wet pixels and 𝐼𝐼𝐷𝐷  for dry pixels, are extracted to differentiate wet, transition, and dry surfaces. In other 

words, a discriminative model is developed based on the generative model represented by 

GMM. 𝐼𝐼𝑊𝑊 is defined as the intensity at the intersect of the wet and transition PDFs. Similarly, 

the intensity at the intersect of the transition and dry PDFs are considered as ID. In Figure 

24a the individual PDFs and the wet and dry thresholds are shown schematically. Having the 

individual PDF of each mode from EM algorithm, the membership probability is quantified 

based on equation (19): 𝑁𝑁(𝑁𝑁 ∈ 𝑘𝑘|𝐼𝐼𝑐𝑐) =
𝑤𝑤𝑘𝑘×𝒢𝒢(𝑥𝑥|𝜇𝜇𝑘𝑘,𝜎𝜎𝑘𝑘)∑ 𝑤𝑤𝑖𝑖×𝒢𝒢(𝜇𝜇𝑖𝑖,𝜎𝜎𝑖𝑖)𝑖𝑖=𝑊𝑊,𝑇𝑇,𝐷𝐷 , 𝑘𝑘 = 𝐼𝐼,𝑇𝑇,𝐷𝐷     (19) 

where 𝑁𝑁(𝑁𝑁 ∈ 𝑘𝑘|𝐼𝐼𝑐𝑐) is the probability of pixel 𝑁𝑁  with intensity value 𝐼𝐼𝑐𝑐  being a member of 

mode (i.e., cluster) k. k can be either of wet (W), transition (T) or dry (D) modes. Figure 24b 

schematically shows the membership probabilities of the three modes. Pixels with intensity 

values less than or equal to 𝐼𝐼𝑊𝑊 are most probably wet. Although the probability of being dry 

or transition is low in this case, it produced uncertainty in extracting wet pixels. Figure 24c 
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shows the probability of misclassification of wet pixels when I ≤ Iw , denoted by 𝑁𝑁(𝑁𝑁 ∉𝐼𝐼|𝐼𝐼 ≤ 𝐼𝐼𝑤𝑤). Moreover, pixels with intensity higher than 𝐼𝐼𝑊𝑊  can be wet, but they are most 

probably transition or dry. When 𝐼𝐼 > 𝐼𝐼𝑤𝑤, the corresponding uncertainty is denoted by P(c ∈
W|I > Iw) and is shown in Figure 24c. The overall uncertainty of wet pixel identification is 

the summation of these two misclassification probabilities.  

 

 

Figure 24. (a) A schematic representation of the composite and the individual PDFs of intensity 

return along with the wet (𝐼𝐼𝑊𝑊) and dry (𝐼𝐼𝐷𝐷) thresholds. (b) The membership probability of each 

mode. (c) The uncertainty of wet mode cluster visualized as hatched areas.  

3.3.4 Detecting edges 

As stated previously, water surfaces have low intensity values compared to their 

surrounding dry surface, leading to formation of edges (high gradient pixels) in the 
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boundary of wet channels. As an example, Figure 25a shows the visually detectable edges at 

the border of wet channels in the intensity return map of the Blackwood Creek watershed.  

Here, the Canny method [Canny, 1986] is used to detect edges based on the gradient 

of intensity returns. The Canny method originally utilizes a Gaussian filter to remove the 

noise and robustly calculate the gradient of an image, but the linear Gaussian filter performs 

spatially constant smoothing throughout the image, causing distortion of meaningful edges. 

Perona-Malik filter [Perona and Malik, 1990; Perona et al., 1994] is a locally adaptive 

diffusive filter which can smooth the image while simultaneously sharpening the edges. 

Therefore the Perona-Malik filter is used to enhance the signature of the edges in the 

intensity map. After smoothing the intensity map, the magnitude of gradient and its direction 

are computed using equations (20) and (21):  

𝐼𝐼𝐼𝐼 = �𝐼𝐼𝑥𝑥2 + 𝐼𝐼𝑦𝑦2         (20) 

𝜃𝜃 = 𝑂𝑂𝑡𝑡𝑀𝑀−1 𝐼𝐼𝑦𝑦𝐼𝐼𝑥𝑥          (21) 

where I𝑥𝑥  and 𝐼𝐼𝑦𝑦  represent the local intensity gradients in the horizontal and vertical 

directions. Incorporating the direction (𝜃𝜃 ) and magnitude ( 𝐼𝐼𝐼𝐼 ) of gradient, the local 

maximums of gradient are identified and marked as potential edges. After identifying all 

potential edges, lower (𝐼𝐼𝐼𝐼𝑚𝑚𝑖𝑖𝑚𝑚) and upper (𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚𝑥𝑥) gradient thresholds are employed to filter 

out weak edges. All potential edge pixels with gradient less than 𝐼𝐼𝐼𝐼𝑚𝑚𝑖𝑖𝑚𝑚  are deleted, while 

those with higher gradient than 𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚𝑥𝑥  are marked as strong edges. Potential edges with 

gradient between 𝐼𝐼𝐼𝐼𝑚𝑚𝑖𝑖𝑚𝑚 and dImax  are deleted if they are not connected to a strong edge. 
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Figure 25b shows the detected edges by setting lower and upper thresholds to 60 DN and 80 

DN, respectively, after trial and error.  

 
 

Figure 25. Extracting wet pixels in the Blackwood Creek watershed based on 2012 LiDAR 

survey. (a) The original intensity map where the wet channels are visually detectable as dark and 

narrow segments with detectable edges (i.e., abrupt transition from wet to dry in the channel 

banks). (b) The detected edges in the intensity return map. 

3.3.5 Identifying wet pixels 

Wet pixels are identified based on the decomposed intensity PDFs and the detected 

edges. All pixels with intensity value equal or lower than 𝐼𝐼𝑊𝑊 are marked as wet and all pixels 

with intensity higher than 𝐼𝐼𝐷𝐷 are classified as dry. For pixels within the range of [𝐼𝐼𝑊𝑊, 𝐼𝐼𝐷𝐷], if 

edges (i.e., abrupt transition from wet to dry in the channel banks) are detected nearby in 

the intensity map, the pixels are also classified as wet. Therefore, the following criteria are 

used to extract wet pixels: 1) pixels with intensity less than or equal to 𝐼𝐼𝑊𝑊; and 2) pixels with 
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intensity higher than 𝐼𝐼𝑊𝑊 and less than 𝐼𝐼𝐷𝐷 and edges are detected within 1 m . Any pixel that 

satisfied one of these two criteria is marked as wet. The identified wet pixels for the 

subcatchment in the Blackwood Creek watershed are shown in Figure 26. 

 

Figure 26. The identified wet pixels based on intensity thresholds for wet and dry pixels from 

decomposed intensity PDFs, and the detected edges for 2012 LiDAR survey in the Blackwood 

Creek watershed. 

3.3.6 Generating wet channel network  

The initial wet channel segments are extracted by overlaying the identified wet pixels 

onto the existing valley network (delineated from the DEM). The generated network may be 

disconnected for several reasons. Some wet channels are naturally disconnected from the 

main network however, the disconnection may be erroneous due to the mismatch between 

the valley network and the intensity map. A small offset between the valley network and the 

wet pixels may exist in some locations, mainly due to distortion of the DEM through the 
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filtering procedure or error in the DEM itself (Figure 27). Moreover, low quality and missing 

intensity data can also lead to disconnection in wet channel network.  

To mitigate the error regarding mismatch between the valley network and the 

intensity map, a 1-m buffer zone is added to the wet pixels. In other words, for any valley 

pixel, it is marked as wet if there is a wet pixel within 1 m (Figure 28a). To resolve the 

disconnection caused by missing intensity data and vegetation coverage, for any 400-m-long 

valley section starting from point 𝑝𝑝 heading to downstream, if at least 50% of the section’s 

length is classified as wet, the point 𝑝𝑝 is considered as a part of the wet channel network. 

This procedure led to an overestimated initial wet channel network which is further 

processed by eliminating any 1st-order wet channel that had less than 20% of its length 

initially identified as wet pixels. The resulting wet channel network is further processed 

manually to connect the segments which are isolated due to missing intensity data. Figure 

28b shows an example of the valley and wet channel in the Blackwood Creek watershed.  
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Figure 27. Overlay of intensity map and valley network extracted from LiDAR-based DEM for 

2012 LiDAR survey in the Blackwood Creek watershed. Some valley segments are not exactly 

located within the wet channel boundary.  
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Figure 28. Extracting wet channel network in the Blackwood Creek watershed. (a) The base 

valley network extracted from topographic data, and the wet cells identified based on LiDAR 

intensity. (b) The connected wet channel network along with the base valley network after 

processing wet channel segments. 

3.4 Results 

3.4.1 Intensity thresholds 

The methodology described above is then applied to LiDAR surveys for five study 

watersheds shown in Table 2. In the Blackwood Creek and Ward Creek watersheds, the 

LiDAR scans are performed both in 2010 and 2012; whereas, the LiDAR data for the other 

three watersheds are only available for 2010. The PDFs of intensity along with the extracted 

modes (i.e., wet, transition and dry) are shown in Figure 29. Table 3 shows the identified wet 

( IW ) and dry ( 𝐼𝐼𝐷𝐷 ) thresholds for the study watersheds, derived from the PDFs of the 

intensity. The thresholds varies both temporally and spatially. For instance, wet threshold in 

the Ward Creek watershed is identified as 46 DN in 2010 and 72 DN in 2012, respectively. 
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The discrepancy in the thresholds between two surveys in the same watershed can be 

potentially attributed to the differences of LiDAR sensors, variations in path length resulting 

from the altitude changes, scan angle, surface specularity, atmospheric conditions, and the 

soil moisture conditions.  

Table 3. Thresholds for identifying wet and dry channels for the study watersheds.  

Watershed Year 
Thresholds [DN] Wetted Channel 

Length [km] 𝑰𝑰𝒘𝒘 𝑰𝑰𝒅𝒅 

Blackwood Creek, CA 
2010 23 84 30.3 

2012 42 165 51.0 

Ward Creek, CA 
2010 22 77 27.3 

2012 62 174 53.9 

General Creek, CA 2010 25 89 13.6 

Trout Creek, CA 2010 36 104 22.8 

Incline Creek, NV 
2010 60 110 

27.7 

Incline Creek, NV (Upstream) 14.8 
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Figure 29. The multimodal PDF of intensity returns and the decomposed individual distributions 

representing wet, transitional and dry modes along with the wet (𝐼𝐼𝑤𝑤) and dry (𝐼𝐼𝑑𝑑) transitions, (a) 

& (b) for the Blackwood Creek watershed based in 2010 and 2012, (c) & (d) for the Ward Creek 

watershed in 2010 and 2012, (e) for the General Creek watershed in 2010, (f) for the Trout Creek 

watershed in 2010, and (g) for the Incline Creek watershed in 2010.  

 



 

73 

 

3.4.2 Flowing channel network 

Wet surfaces are identified within valley extent based on the thresholds extracted 

from the intensity PDF and the edges in intensity map as described in Section 3. Intensity 

images and DEMs for the study watersheds are generated with a spatial resolution of 0.5 m. 

Following the procedure explained in Section 3.6, the wet channel networks are delineated 

by combining the classified intensity image and LiDAR-based valley network.  

Two snapshots (two points in time) of identified wet channel network are compared 

in the Blackwood Creek (Figure 30a and Figure 30b) and the Ward Creek watersheds (Figure 

30c and Figure 30d). The wet channel networks in Figure 30 are the connected part of the 

wet channels that contribute to the streamflow in the outlet. In both watersheds, there are 

more wet channels during the 2012 survey than the 2010 survey. In the Blackwood Creek, 

the total wetted channel length is 51.5 km during the 2012 survey and 26.3 km during the 

2010 survey; the corresponding wet channel density, which is defined as the ratio of wetted 

channel length to total drainage area, is 1.78 km/km2 and 0.91 km/km2, respectively. The 

total wetted channel length in the 2012 survey is almost twice of that in the 2010 survey. As 

shown in Table 2, the streamflow during the 2012 survey (0.52 m3/s) is significantly higher 

than that during the 2010 survey (0.10 m3/s); and the streamflow exceedance probability is 

40% and 73% during the 2012 and 2010 LiDAR scans, respectively. It should be noted that 

the streamflow during the 2012 survey is about 5 times of that during the 2010 survey. This 

indicated a nonlinear relationship between streamflow and wetted channel length. Similarly 

for the Ward Creek watershed, the identified wetted channel length during the 2012 survey 

(51.8 km) is twice that of 2010 survey (29.3 km). Correspondingly, the streamflow during 



 

74 

 

the 2012 survey is about 4.5 times the streamflow during the 2010 survey (Table 2). The 

calculated wetted channel length involved a level of uncertainty due to low quality and 

missing intensity data. Generally, it is difficult to quantify the exact uncertainty regarding the 

flowing channel length. However, the percentage of manually added length (described in 

Section 3.6) to the total length of the wet channel network can be a proxy for the uncertainty 

in the results. In the Blackwood Creek watershed the ratio of manually added length to the 

total length for 2010 and 2012 are 8% and 13%, respectively; and the ratio in the Ward Creek 

watershed for 2010 and 2012 are 13% and 15%, respectively. This indicated that the missing 

data in the LiDAR intensity maps introduced an uncertainty of approximately 15% into the 

total length of wet channels.  

The identified wet channels for the other three watersheds during the 2010 survey 

are presented in Figure 30: e) General Creek; f) Trout Creek; and g) Incline Creek. The wet 

channel for the General Creek in Figure 30e is only located in the main stream and the total 

wetted channel length is 14.6 km. The corresponding wet channel density is 0.76 km/km2, 

which is the smallest among all the study watersheds. This indicated a dry condition during 

the LiDAR survey dates as shown by the streamflow exceedance probability of 95% in Table 

2. The total wetted channel length in the Trout Creek watershed shown in Figure 30f is 28.8 

km and the wet channel density is 1.51 km/km2; the streamflow exceedance probability is 

54%. The Incline Creek watershed has two main tributaries, and there are two streamflow 

gage stations in the watershed (Figure 30g). One gage (#10336700) is located at the 

watershed outlet with a drainage area of 17.3 km2 and the other (#103366993) is located 

on one of the main tributaries with a drainage area of 7.4 km2. The wet channel density is 
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2.15 km/km2 for the catchment and 2.73 km/km2 for the subcatchment; and the streamflow 

exceedance probabilities are 66% and 74%, respectively. This small discrepancy is due to 

the spatial heterogeneity of land cover, i.e., the subcatchment is a natural area but the 

downstream area of the catchment is developed.  
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Figure 30. Connected wet channel (after deleting isolated wet channel segments) and valley 

network based on LiDAR data for Blackwood Creek watershed in 2010 (a) and 2012 (b), Ward 

Creek watershed in 2010 (c) and 2012 (d), General Creek watershed in 2010 (e), Trout 
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3.5 Discussion 

In order to validate the extracted wet channel networks, the relationship between 

wetted channel length and streamflow is analyzed. The availability of two LiDAR surveys for 

Blackwood Creek and Ward Creek watersheds (Table 2) provided an opportunity to study 

wet channel dynamics. Figure 31a shows wetted channel length from LiDAR data versus 

streamflow for these two watersheds. Generally, the wetted channel length decreases with 

decreasing streamflow for a given watershed, but the decreasing rate of streamflow is higher 

than that of wetted channel length. For the Blackwood Creek and the Ward Creek 

watersheds, the wetted channel length shrunk to almost half from 2012 to 2010 LiDAR 

surveys; while streamflow decreased to 20% in both watersheds.  

Wetted channel lengths are generally highly correlated with streamflow, and power-

law relationships are usually identified to represent the relationship [Gregory and Walling, 

1968; Godsey and Kirchner, 2014]. The power-law relationship is typically identified using 

multiple data points within the watershed which requires multiple snapshots of wetted 

channel length. It is reasonable to assume a similarity of wetted channel length and discharge 

relationship for the five study watersheds since they are all in close proximity to Lake Tahoe 

with similar hydro-geomorphologic conditions. The climate aridity index, defined as the 

ratio between mean annual potential evaporation to precipitation [Budyko, 1971], ranged 

from 1 to 1.6 for the five watersheds. The relation between wetted channel length and 

discharge during recession periods for all the six stream gages are plotted in Figure 31b. A 

power-law relationship, 𝐿𝐿 = (73.0 ± 1.2) 𝑄𝑄0.44±0.09 (or Q ∝ L2.38±0.48) is the best fit to the 

data with R2 = 0.80  (Figure 31b). Godsey and Kirchner [2014] compiled the values of 
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scaling exponent for 11 catchments in the literature, and the reported values ranged from 

0.042 to 0.688. The scaling exponent of the power-law relationship (i.e., 0.44±0.09) is within 

the range of reported values from fieldwork in other regions. 

 

Figure 31. (a) Identified wetted channel length and measured streamflow in the Blackwood 

Creek watershed (red triangle) and Ward Creek watershed (black circle). (b) Relationship 

between wetted channel length and streamflow across all the study watersheds. 

It should be noted that the scaling exponents in watersheds with varying geologic, 

topographic and climatic characteristics are quite different [Godsey and Kirchner, 2014], and 

that the wetted channel length and streamflow in a watershed are not observed to be a one-

to-one relationship due to the spatial heterogeneity of runoff generation. Stream network 

expansion and contraction are related to the local watershed characteristics including the 

amount and spatial pattern of rainfall, antecedent moisture contents, vegetation, rock type, 

and topography [Morgan, 1972; Day, 1978; Gurnell, 1978; Goulsbra et al., 2014]. The 

exponent of the power relationship may vary with wet/dry seasons [Blyth and Rodda, 1973; 

Wigington et al., 2005] and rising/recession limbs [Roberts and Archibold, 1978]. Given a 
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unique streamflow, the wetted channel length during the rising limb of the hydrograph can 

be different from that during a recession limb in that the relative contribution of surface 

runoff and base flow can vary greatly. Thus, the relationship from Figure 31b may be only 

applicable at the recession limbs through June to August for the study watersheds.  

Although LiDAR data provides high resolution information regarding channels for 

relatively extensive areas, it is usually limited to one snapshot obtained every five years or 

more. Alternatively, the temporal dynamics of wet channels can be monitored by 

implementing various sensors such as soil-moisture sensors which can provide time series 

of channel wetness. However, their application is spatially restricted due to the high 

installation cost throughout large watersheds and the difficulty of accessing to some areas. 

There is an opportunity for coupling these two sources of data in order to mitigate their 

limitations. The integration of continuous wetness monitoring with ground-based sensors 

and the extracted wet channels by LiDAR at the watershed scale will advance the knowledge 

of temporal dynamics of stream network.  

This method can be applied to areas where the wet channels are at least partially 

exposed. This limitation is mainly due to the inability of the current LiDAR technology to 

record sufficient returns from underneath dense canopy, especially in cases where the area 

is covered by the vegetative species Abies, which significantly blocks the LiDAR beam. Snow 

covered areas during winter can also increase the uncertainty of the results. The method 

presented here is for wet channel extraction but is not recommended for detecting wet 

surfaces on steep hillslopes, especially in humid regions. The method is also spatially 

constrained within valley boundaries delineated by a filtered LiDAR-based DEM. Moreover, 
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wet surfaces on hillslopes usually do not create detectable edges in the intensity map since 

they cover a relatively extensive area and the transition from wet to dry is gradual. 

Consequently, wet hillslopes cannot yet be mapped by the edge detection method presented 

in Section 3.4. The absence of strong edges around wet vegetation automatically prevents 

the clustering algorithm from classifying them as wet pixels. 

One of the main concerns regarding wet channel extraction from LiDAR intensity 

returns, is the disconnection in wet channel network due to missing and low quality intensity 

data. The quality of LiDAR data is affected by the condition of the site and also the type of 

LiDAR system. Development of new LiDAR systems will enhance the quality of LiDAR 

intensity data, leading to more accurate wet channel network extraction. The proposed 

method for identifying wet channels can be applied to other watersheds with varying 

climatic and topographic gradients. Field surveys on wet channels can proceed 

simultaneously with a LiDAR survey. However, we acknowledge that the NIR LiDAR signal is 

not able to penetrate water to measure the wet channel bed morphology. Instead, the green 

LiDAR signal can penetrate water surface and the LiDAR returns can provide water depth 

information, which can be combined with the intensity of NIR LiDAR to enhance the accuracy 

of wet channel network mapping. 

3.6 Conclusions 

The temporal dynamics of stream networks are of great importance in understanding 

the hydrologic processes such as hydrograph recession. The study of stream network 

dynamics is constrained by lack of temporal high-resolution observations on wet channel 



 

81 

 

network especially in non-perennial streams. LiDAR provides an opportunity for mapping 

wet channel networks because of the topographic and intensity information delivered with 

high spatial resolution. Here, a systematic method is developed for mapping wet channel 

networks based on LiDAR data. Wet channels are extracted by integrating the topographic 

information (i.e., flow direction grid and valley network) and the identified wet pixels by 

intensity of ground returns. The frequency distribution of intensity return is utilized to 

identify two thresholds representing wet, transition and dry surface. Edge detection in 

digital images is used to accurately map the wet channels that are located within transition 

zone based on their intensity return. The proposed method is applied to extract wet channel 

networks in five watersheds in the Lake Tahoe area.  

The intensity threshold derived from the PDF of intensity return for differentiating 

wet and dry pixels vary both spatially (from watershed to watershed) and temporally (for 

the same watershed in different times). The differences of LiDAR sensors, variations in path 

length resulting from the altitude changes, scan angle, surface specularity, atmospheric 

conditions, and the soil moisture conditions can potentially explain the variation of intensity 

thresholds.  

A power-law relationship between wetted channel length and streamflow is derived 

to validate the extracted wet channel networks. A power-law relationship, 𝑄𝑄 ∝ 𝐿𝐿2.38±0.48 is 

the best fit to the data. The uncertainty regarding the wetted channel length is mainly due to 

the vegetation coverage, mismatch between the valley network (extracted from topographic 

DEM) and intensity map, and the uncertainty of the clustering approach. Using the 

percentage of manually added length (described in Section 3.6) to the total length of the wet 
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channel network as a proxy for the uncertainty in the results indicates that the missing data 

in the LiDAR intensity maps introduced an uncertainty of approximately 15% into the total 

length of wet channels.  

Future enhancements to this work are contingent upon the acquisition of reliable 

field observations that are obtained within days or hours of the LiDAR acquisition. These 

data would be of great benefit to the hydrologic remote sensing research community as a 

whole, extending beyond LiDAR into other types of optical, multispectral and synthetic 

aperture radar imagery. 
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CHAPTER 4: RE-VISITING THE DEPENDENCE OF DRAINAGE 

DENSITY ON CLIMATE AND DRAINAGE AREA BY LIDAR DATA 

Drainage network is an important geomorphologic and hydrologic feature which 

significantly controls runoff generation. Drainage network is composed of unchannelized 

valleys and channels [Dietrich et al., 1993b]. At valley heads, flow changes from unconfined 

sheet flow on the hillslope to confined flow in valley [Montgomery and Dietrich, 1989; 

Moglen et al., 1998]. Localized confined flow dominates in valleys as a result of convergent 

topography with positive curvature [Howard, 1994].  Drainage density (𝐷𝐷𝑑𝑑), defined as the 

ratio of the total valley length in a watershed to the drainage area [Horton, 1932b; 1945b], 

quantitatively represents the efficiency of the drainage basin and controls the runoff 

response at the catchment scale [Rinaldo et al., 1991; Rodriguez-Iturbe et al., 2009; Biswal 

and Marani, 2010; Mutzner et al., 2013; Godsey and Kirchner, 2014; Ghosh et al., 2016]. 

Watersheds with higher drainage density usually produce a higher peak flow and sediment 

load [Dunne and Leopold, 1978]. Di Lazzaro et al. [2015] demonstrated that spatial 

heterogeneity of drainage density within watersheds affects surface and subsurface runoff.  

Drainage density is controlled by various factors including climate, lithology, 

vegetation, and topography [Melton, 1957; Carlston, 1963; Montgomery and Dietrich, 1988; 

Sangireddy et al., 2016b]. Gregory and Gardiner [1975] indicated that drainage densities in 

arid regions have higher variability compared with humid areas due to the seasonal variation 

of climate. By analyzing watersheds in arid regions including Arizona, New Mexico, Colorado 
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and Utah, Melton [1957] identified a negative correlation between drainage density and 

precipitation effectiveness PE index, which is defined as 10 multiplied by the summation of 

ratios between monthly average precipitation and evaporation [Thornthwaite, 1931]. 

Madduma Bandara [1974] presented a positive correlation between drainage density and 

PE index for humid watersheds in Sri Lanka. Combining the data from Melton [1957] and 

Madduma Bandara [1974], a U-shaped relationship between drainage density and PE index 

was introduced [Abrahams, 1984] and has been explained by the trade-off between the 

resistive force of vegetation and the erosive force of runoff [Abrahams, 1984; Istanbulluoglu 

and Bras, 2005; Collins and Bras, 2010].  

It has also been reported that drainage area affects drainage density [Gregory and 

Walling, 1973]. Based on the reported data in the literature, Pethick [1975] presented a 

power relationship, 𝐷𝐷𝑑𝑑  ∝ 𝐴𝐴−0.337, which indicates that drainage density (𝐷𝐷𝑑𝑑) decreases with 

drainage area (𝐴𝐴 ). The exponent of the power relationship varies with environmental 

characteristics such as climate, vegetation, and geology [Gardiner et al., 1977; Richards, 

1978]. Since drainage density is controlled by both watershed properties and climate, the 

dependence of drainage density on drainage area may vary from humid to arid regions. 

In this study, high resolution topographic data from Light Detection and Ranging 

(LiDAR) in 120 watersheds across the United States are utilized to extract accurate valley 

networks and re-visit the relationship between drainage density and climate as well as 

drainage area. The objectives of this chapter include: (i) re-visiting the U-shaped relationship 

between drainage density and climate; and (ii) interpreting the impact of drainage area on 

drainage density. The remaining of the chapter is organized as follows. The study sites and 
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methods are introduced in Sections 2 and 3. Section 4 presents the results in terms of the 

relationship between drainage density and long-term climate as well as drainage area, 

followed by the discussion in Section 5. Section 6 summarizers and concludes the findings.  

4.1 Study Sites 

The study sites are selected based on the LiDAR availability and minimal human 

impacts such as land use change, reservoir, and road construction. The Center for LiDAR 

Information, Coordination and Knowledge (CLICK, http://lidar.cr.usgs.gov) provides data 

tiled by USGS Quarter Quadrangles in LAS and ASCII formats [Stoker et al., 2006]. The blue 

area in Figure 32a shows the LiDAR data availability in the CLICK website; and the red dots 

highlight the 120 sites selected for this study, located in 17 states with various climate 

conditions. The point cloud data of ground returns from LiDAR are processed to derive 1 m 

Digital Elevation Models (DEMs) using QCoherent software LP360 for ArcGIS.  

Climatic data including potential evaporation and precipitation are processed for 

exploring the relationship between climate and drainage density. Potential evaporation is a 

function of several meteorological variables such as wind speed, humidity, radiation, and air 

temperature [Mcvicar et al., 2012]. In this study monthly potential evaporation data with a 

spatial resolution of 8 km is obtained from Zhang et al. [2010]. This data was computed by 

the Priestly-Taylor method [Priestley and Taylor, 1972], and has been used for long-term 

and seasonal water balance analysis [Wang and Hejazi, 2011; Chen et al., 2013]. Mean annual 

precipitation during 1981-2010 is computed based on the parameter-elevation regressions 

on independent slopes model (PRISM) data with a spatial resolution of 4 km [Daly et al., 
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1994]. Mean annual potential evaporation and precipitation are spatially averaged over each 

study watershed.  

 

Figure 32. (a) The locations of the study sites and the LiDAR data availability across United 

States; and (b) the cumulative probability distribution of the climate aridity index (𝐸𝐸𝑀𝑀/𝑁𝑁) in the 

study sites. 

 

Figure 33. The relationship between PE index and climate aridity index (𝐸𝐸𝑀𝑀/𝑁𝑁) using the data 

provided by Wang and Wu [2013b] after removing the outliers.  
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4.2 Methods 

4.2.1 Drainage network extraction 

LiDAR provides high resolution topographic data which facilitates extracting 

topographic features such as drainage networks accurately [Passalacqua et al., 2010b; Clubb 

et al., 2014; Hooshyar et al., 2015]. In this study, valley networks are delineated using a 

curvature-based method developed by Hooshyar et al. [2016b]. The method first filters the 

DEM using Perona-Malik nonlinear diffusive filter [Perona and Malik, 1990] and then 

calculates the contour curvature given as equation (1). After removing the sinks using 

O'callaghan and Mark [1984b]’s method, the flow direction grid from 𝐷𝐷∞ [Tarboton, 1997b] 

is adjusted by incorporating the local curvature. Afterwards, the terrain is objectively 

segmented into valley and ridge patches, where patches are defined as the local maximums 

or minimums in the curvature grid. To do so, a segmentation curvature threshold is 

calculated in the way that maximum separation in the terrain (maximum number of patches) 

is achieved. Afterwards, the non-valley and non-ridge patches are removed systematically 

using Otsu [1975]’s method leading to the valley and ridge skeletons. Consequently, the 

valley skeleton is thinned to a 1-pixel wide valley line by checking the existence of a ridge 

patch between two intersecting valleys. For valley extraction, the method requires two user-

defined parameters including the time of forward diffusion (𝑇𝑇𝐹𝐹 ) for filtering and the 

connecting threshold (𝑁𝑁𝑇𝑇), which are set to 50 and 20 m for all the watershed in this study. 

Hooshyar et al. [2016b] examined the performance of the method in three watersheds and 

compared the results with the state-of-the-art methods.  
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Figure 34. (a) The contour curvature computed from the filtered DEM; and (b) the extracted 

valley network from 1 m and 30 m DEMs in the Isleta Drain watershed located in New Mexico. 

Drainage density (𝐷𝐷𝑑𝑑) is computed as the ratio of the total valley length to the total 

drainage area. Drainage density has the dimension of 𝐿𝐿−1 and is scale dependent. Sangireddy 

et al. [2016b] introduced dimensionless drainage density index as the ratio of the total area 

of convergent pixels (the area of valley skeleton) and the drainage area. Here, the input DEMs 

have the same resolution (1 m); therefore, using the traditional definition of drainage 

density does not introduce any systematic error in the results.  

4.2.2 Climate aridity index 

Climate aridity index, defined as the ratio of mean annual potential evaporation (𝐸𝐸𝑀𝑀) 

to precipitation (𝑁𝑁), is used as the indicator of long-term climate. Climate aridity index 

(𝐸𝐸𝑀𝑀/𝑁𝑁 ) is the first order control on the partitioning of mean annual precipitation into 

evaporation and runoff [Budyko, 1971]. Climate aridity index describes most of variability 

of runoff coefficient, which is closely correlated with drainage density [Sankarasubramanian 

and Vogel, 2002] and is related to the perennial stream density through the Budyko 
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framework [Wang and Wu, 2013b]. Climate aridity index also reflects the vegetation cover 

as it is strongly correlated with the Normalized Difference Vegetation Index (NDVI) [Voepel 

et al., 2011]. Climate aridity index objectively categorizes watersheds into arid and humid; 

the watersheds with 𝐸𝐸𝑀𝑀/𝑁𝑁 < 1 are classified as energy-limited or humid and the watersheds 

with 𝐸𝐸𝑀𝑀/𝑁𝑁 > 1 are referred to as water-limited or arid.  

The climate aridity index in the study sites ranges from 0.18 to 17.3 and Figure 32b 

shows its cumulative probability distribution. Melton [1957] and Madduma Bandara [1974] 

used PE index to quantify the long-term climate for studying climate controls on drainage 

density. PE index  is defined as 10 multiplied by the summation of ratios between monthly 

average precipitation and evaporation [Thornthwaite, 1931]. In this study, PE index in 

Melton [1957] and Madduma Bandara [1974] is converted to climate aridity index using the 

data provided by Wang and Wu [2013b] after removing the outliers (Figure 33). The 

obtained climate aridity index in Madduma Bandara [1974]’s watersheds varies from 0.53 

to 1.8 and from 1.9 to 9.1 in Melton [1957]’s watersheds. 

4.3 Results 

The valley networks for all the study watersheds are extracted using 1 m LiDAR-

based DEMs. As a demonstration, Figure 34a shows the curvature grid computed from the 

filtered DEM in the Isleta Drain watershed; and Figure 34b shows the corresponding valley 

network.  
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4.3.1  Drainage density and climate 

Figure 35a shows the drainage density and  climate aridity index of the watersheds 

in this study overlaid with the reported data by Melton [1957] and Madduma Bandara 

[1974]. In our study sites, the drainage density varies from 3.8 km/km2 to 43.5 km/km2.   The 

drainage density in Madduma Bandara [1974]’s watersheds varies from 2.7 km/km2 to 113 

km/km2 and from 2.6 km/km2 to 14.5 km/km2 in Melton [1957]’s watersheds. 

The relationship between drainage density and climate aridity index from this study 

shows a strong increasing trend in arid regions (𝐸𝐸𝑀𝑀/𝑁𝑁 > 1) with 𝑝𝑝 = 3.9𝑒𝑒 − 11, where 𝑝𝑝 

denotes the p-value of the least-squared linear regression. However, the trend in humid 

regions (𝐸𝐸𝑀𝑀/𝑁𝑁 ≤ 1) is not significant (𝑝𝑝 = 0.49), which is in contrast with the decreasing 

trend observed in Madduma Bandara [1974].  

The trends are further analyzed using the Mann-Kendall test [Mann, 1945; Kendall, 

1975] which quantifies the significance of a trend through a normalized statistic, z-value. A 

high positive z-value indicates strong increasing trend; while, a small negative z-value 

corresponds to strong decreasing trend. Table 4 shows the results of the Mann-Kendall test 

in arid (EP/P > 1) and humid (EP/P ≤ 1) watersheds. A statistically significant increasing 

trend is detected in arid watersheds; whereas, no trend exists in the humid regions. 
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Table 4. Trend analysis based on the Mann-Kendall test for arid and humid watersheds. 

 Number of data  p-value  z-value  
Trend 

(95% significance) 

Arid watersheds 

(𝑬𝑬𝑷𝑷/𝑷𝑷 > 𝟏𝟏) 
91 1.4e-11 6.7 Increasing 

Humid watersheds  

 (𝐄𝐄𝐏𝐏/𝐏𝐏 ≤ 𝟏𝟏) 
29 0.38 -0.88 No trend 

 

As shown in Figure 35a, although the extracted drainage densities match the data 

from Madduma Bandara [1974]; they are relatively higher than those from Melton [1957]. 

This can be attributed to the difference in map scales and methods used to extract drainage 

networks in the previous studies. The drainage networks by Melton [1957] were delineated 

from the topographic maps with the scale of 1:24,000, equivalent to the nominal spatial 

resolution of 30 m [Kosovich et al., 2008], using the contour crenulation method. Some 

watersheds in Arizona were mapped through field survey. The drainage networks from 

Madduma Bandara [1974] were obtained from field work, aerial photograph, and maps with 

the scale of 1:12,672l; therefore, they correspond to relatively smaller scale than those from 

Melton [1957]. 
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Figure 35. The relationship between drainage density (𝐷𝐷𝑑𝑑) and climate aridity index (𝐸𝐸𝑀𝑀/𝑁𝑁); (a) 

the data from Melton [1957], Madduma Bandara [1974], and this study. (b) The correlation 

analysis of drainage density and climate aridity index in the study watersheds. The least-squares 

regression line, slope (𝑚𝑚), R-squared (𝑅𝑅2), and p-value (𝑝𝑝) are shown. For 𝐸𝐸𝑀𝑀/𝑁𝑁 > 1 (arid 

regions), a significant increasing trend is observed; whereas, the trend in humid regions (𝐸𝐸𝑀𝑀/𝑁𝑁 ≥
1) is not significant.  

The extracted drainage network from coarse topographic maps deviates significantly 

from the correspondingly observed one in the field [Morisawa, 1957; Schneider, 1961]. To 

demonstrate the effect of DEM resolution on the variation of the drainage density, 1 m DEMs 

for some of the study watersheds are resampled to 30 m DEMs. 20 watersheds with 𝐸𝐸𝑀𝑀/𝑁𝑁 

less than 6 and drainage area larger than 0.2 km2 are randomly selected. As an example, 

Figure 34b shows the extracted valley network from 1 m and 30 m DEMs for the Isleta Drain 

watershed in New Mexico. As shown in Figure 36a, drainage densities from 1 m DEMs are 

higher than those from 30 m DEMs. This suggests that the underestimation of drainage 
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network due to the coarse resolution of the maps may be the reason of the difference 

between drainage densities from this study and Melton [1957].  

 

Figure 36. Drainage density (𝐷𝐷𝑑𝑑) derived from LiDAR-based 1 m DEMs compared with (a) the 

resampled 30 m DEMs and Melton [1957]’s data; and (b) the resampled 15 m DEMs and 

Madduma Bandara [1974]’s data. The least-squares regression line to data from resampled 

DEMS and the corresponding slope (m), R-squared (R2), and p-value (p) are shown. 

For EP/P ≥ 7, the drainage densities from Melton [1957] are higher than those in this 

study (Figure 35a). These six watersheds from Melton [1957] are located in Arizona; two 

within the Chinle watershed in Cameron and four within Saguaro National Monument in 

Tucson. The valley networks in these six watersheds were mapped by field survey: the two 

catchments in the Chinle watershed by Schumm [1956] and the other four by Melton [1957]. 

These watersheds are relatively small with drainage areas between 0.001 to 0.006 km2; 

whereas, the drainage area of our study sites with 𝐸𝐸𝑀𝑀/𝑁𝑁 ≥ 7 are relatively larger and the 

average drainage area is 0.40 km2. The small drainage area of the watersheds from Melton 
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[1957] may contribute to their relatively high drainage density, since the drainage density 

has a negative correlation with area in arid climate as will be discussed in Section 4.2.  

To understand the effect of the spatial resolution on the drainage density trend in the 

humid climate, 18 watersheds with 𝐸𝐸𝑀𝑀/𝑁𝑁 less than 1 and drainage area larger than 0.4 km2 

are selected randomly from the study watersheds. LiDAR-based 1 m DEMs for the selected 

watersheds are resampled to 15 m DEMs. This is approximately equal to the spatial 

resolution of the topographic maps used by Madduma Bandara [1974]; however, field work 

and aerial photograph as well were used to delineate the drainage networks by Madduma 

Bandara [1974]. As shown in Figure 36b, drainage densities from 15 m DEMs are lower than 

those from 1 m DEMs and regardless of the resolution, they do not present a decreasing trend 

as observed in Madduma Bandara [1974].  

The correlation between drainage density and mean annual precipitation (P ) is 

investigated as shown in Figure 37. Sangireddy et al. [2016b] reported significant decreasing 

when 𝑁𝑁 ≤ 𝑁𝑁𝑇𝑇  and increasing trends when 𝑁𝑁 > 𝑁𝑁𝑇𝑇 , where 𝑁𝑁𝑇𝑇  is visually detected as 

1050 mm
yr� . Similar pattern is observed in this study as shown in Figure 37a; although, the 

increasing trend for P > PT  is not significant. The magnitude of 𝑁𝑁𝑇𝑇 , which is visually 

identified as 1050𝑚𝑚𝑚𝑚 𝑚𝑚𝑒𝑒�  in Sangireddy et al. [2016b], affects the significance of the 

detected trend. Table 5 shows the trend slope (m) and p-value (p) for different values of PT. 

To eliminate the need for 𝑁𝑁𝑇𝑇 , the data is objectively divided into arid and humid based on 

EP/P as shown in Figure 37b. The data in arid regions show a strong decreasing trend (𝑝𝑝 =

8.7𝑒𝑒 − 10); however, no trend is observed in humid watersheds (𝑝𝑝 = 0.54).  
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Figure 37. Drainage density (Dd) versus mean annual precipitation (𝑁𝑁) after dividing the data into 

arid and humid based on (a) 𝑁𝑁 with 𝑁𝑁𝑇𝑇 = 1050𝑚𝑚𝑚𝑚 𝑚𝑚𝑒𝑒� , and (b) climate aridity index (𝐸𝐸𝑀𝑀/𝑁𝑁). 

The least-squares regression lines, slopes (𝑚𝑚), R-squared (𝑅𝑅2), and p-value (𝑝𝑝) are shown.  

 

Table 5. The slope (𝑚𝑚) and p-value (𝑝𝑝) of the least-squares regression line fitted to the data 

points with  𝑁𝑁 > 𝑁𝑁𝑇𝑇 for different values of 𝑁𝑁𝑇𝑇 

𝑷𝑷𝑻𝑻 (𝒎𝒎𝒎𝒎) 𝒎𝒎 𝒑𝒑 

1050 1.55e-6 0.06 

1100 7.70e-7 0.35 

1150 7.99e-7 0.36 
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4.3.2 Drainage density and drainage area 

Here the relationship between drainage density and drainage area is studied. The 

average drainage area in our data set is 1.20 km2, with a minimum of 0.04 km2 and a 

maximum of 3.5 km2. The drainage area ranges from 0.0002 km2 to 14.14 km2 in Melton 

[1957]’s watersheds, and from 0.85 km2 to 4.82 km2 in Madduma Bandara [1974]’s 

watersheds. To investigate the climate effects on the relationship between drainage density 

and drainage area, the study watersheds are categorized into humid (EP/P < 1); and arid 

(EP/P ≥ 1). Figure 38 plots the relationship between drainage density and drainage area for 

arid (Figure 38a) and humid (Figure 38b) watersheds in this study, watersheds in the arid 

climate from Melton [1957] (Figure 38c), and watersheds in the humid climate from 

Madduma Bandara [1974] (Figure 38d).  



 

97 

 

 

Figure 38. The relationship between drainage density (𝐷𝐷𝑑𝑑) and drainage area for (a) arid and (b) 

humid watersheds in this study, (c) watersheds in the arid climate from Melton [1957] , and (c) 

watersheds in the humid climate from Madduma Bandara [1974]. The least-squares regression 

line, slope (𝑚𝑚), R-squared (𝑅𝑅2), and p-value (𝑝𝑝) are shown.  
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There is a strong negative correlation between drainage density and drainage area in 

arid watersheds based on Melton [1957]’s and this study’s data sets. However, in humid 

regions the relationship from Madduma Bandara [1974]’s and this study’s data does not 

show a significant correlation.  

4.4 Discussion 

4.4.1 Drainage density and climate 

For 𝐸𝐸𝑀𝑀/𝑁𝑁 ≤ 1 , the drainage density versus climate aridity index by Madduma 

Bandara [1974] follow a decreasing trend; whereas, such a declining trend does not exist for 

the watersheds in this study. The decreasing trend by Madduma Bandara [1974] continues 

until 𝐸𝐸𝑀𝑀/𝑁𝑁  approaches to ~1.8. The drainage density also shows a significant decreasing 

trend with precipitation in arid climate; although, no strong trend was observed in humid 

regions. This discrepancy can be explained by the land cover in Madduma Bandara [1974]’s 

watersheds. It is well-known that land use changes, such as agricultural activities, are also 

major human activities with substantial impacts on landscape [Gregory and Walling, 1968; 

Montgomery and Dietrich, 1992]. Vegetation cover controls the resistance against the 

erosive force of runoff [Abrahams, 1984; Collins and Bras, 2010]. As climate becomes more 

humid, vegetation gets more dense and the erodibility reduces due to the higher resistance 

by vegetation [Moglen et al., 1998]. In Madduma Bandara [1974]’s watersheds the natural 

land cover has been consistently removed due to tea plantation over a 100 year period 

[Madduma Bandara, 1974], therefore, the same vegetation cover exists in different climates 

leading to the same resistance against erosive force of runoff. Given this circumstance, when 
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climate aridity index increases (i.e., less precipitation), the erosive force drops while the 

resistance is constant. This condition results in decreasing drainage density as climate 

aridity index increases.  

4.4.2 Drainage density and drainage area 

The drainage density has a decreasing trend with drainage area in arid regions; 

however, no trend is observed in humid regions. Similar pattern exists in  Melton [1957]’s 

Madduma Bandara [1974]’s data. This pattern indicates that the channels are more 

uniformly distributed across watershed in humid regions compared with arid watersheds. 

This is confirmed by analyzing the distribution of drainage density in watersheds. 30 

watersheds with different values of climate aridity index are selected randomly in our study 

sites, and each watershed is divided into 3~8 subwatersheds. The maximum stream order 

of the subwatersheds is greater than 3 and the range of subwatershed area is 0.01~2.93 km2. 

Figure 39a shows the average, minimum and maximum drainage density of subwatersheds 

with different drainage areas in the selected 30 study sites. Generally, the variation of 

drainage density in humid regions is smaller than arid regions. Standard deviation of 

drainage density (σDd) of subwatersheds in each study site increases with climate aridity 

index as shown in Figure 39b.  
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Figure 39. The relationship between drainage density (Dd) and climate aridity index (𝐸𝐸𝑀𝑀/𝑁𝑁): (a) 

Average, minimum and maximum of drainage density from subwatersheds with different 

drainage area in the selected 30 study sites; and (b) The standard deviation of drainage density 

(𝜎𝜎𝐷𝐷𝑑𝑑) of subwatersheds in each study site versus climate aridity index.  

 

4.5 Conclusion 

Technological advancements and the availability of accurate climate data have 

provided the opportunity to investigate long-lasting questions in hydrology and 

geomorphology. The drainage networks have been studied extensively in past decades; 

however, our understanding in some extent is formed by low quality and limited data 

regarding the land surface and climate. In this study the dependence of drainage density on 

climate and drainage area was re-visited using publicly available high resolution topographic 

and climate data.  
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120 watersheds with natural conditions were selected based on the LiDAR data 

availability and the drainage network were automatically delineated from 1 m DEMs. There 

are different definitions for valley in the literature; therefore, the valley networks in Melton 

[1957], Madduma Bandara [1974], and this study may have been extracted based on 

different definitions. However, the proposed valley delineation method is reasonably similar 

to the one used by Melton [1957] and Madduma Bandara [1974], since it utilizes the contour 

curvature to quantify the convergence, i.e., similar to the tradition contour crenulation 

method.  

The relationship between drainage density and climate aridity index, defined as the 

ratio of the mean annual potential evaporation to the mean annual precipitation, in the data 

from Melton [1957] and Madduma Bandara [1974] has a U-shape; however, our result 

showed decreasing trend in arid regions, which is consistent with the observations in other 

studies, and no trend in humid watersheds. The increasing trend observed in humid 

watersheds by Madduma Bandara [1974] can be explained considering the specific 

vegetation cover in that area. Those watersheds have been modified by extensive human 

interferences and the natural vegetation has been eliminated due to tea plantation. 

Therefore, the erosive force increases as the climate gets more humid while the resistance 

due to vegetation cover remains constant which increases the drainage density. Our finding 

suggests that the erosive force and the resistance due to vegetation reach an equilibrium in 

humid regions and the change in climate conditions does not systematically impact the 

drainage network. Whereas, in arid region, the increase in resistive force of vegetation 

dominates the escalation of erosive force of runoff which leads to a decreasing trend in 
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drainage density. Our finding also suggests that natural drainage networks in arid regions 

are more sensitive to the change in long-term climate conditions compared with the 

watersheds located in humid regions. This is vitally important for quantifying the climate 

change impact on natural hydrologic systems and man-made infrastructures [Alirezaei et al., 

2017] and influences our understanding of the formation of drainage networks and the 

response of hydrologic systems to climate change.  

The relation between drainage density and drainage area was also investigated and 

the result showed a negative correlation in arid regions; whereas, no trend was observed in 

humid watersheds. This pattern indicates that the drainage density is uniformly distributed 

in humid regions which was also confirmed by investigating the variation of standard 

deviation of drainage density with climate aridity index.  
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CHAPTER 5: HYDROLOGIC CONTROLS ON CHANNEL JUNCTION 

ANGLE 

Channels emerge on landscapes as a result of flow forming concentrated erosion 

paths [Horton, 1945a; Smith and Bretherton, 1972; Dietrich et al., 1993b]. In particular, 

when the surface resistance to erosion enforced by overland flow [Dunne, 1980; Dietrich and 

Dunne, 1993; Hooshyar and Wang, 2016] during rainfall events [Hooshyar and Wang, 2016], 

groundwater seepage [Dunne, 1990; Abrams et al., 2009a], or shallow land sliding [Dietrich 

et al., 1992a] is exceeded, channels begin to initiate. These erosional processes form drainage 

networks with branched structure which have been studied for decades [Horton, 1945a; 

Leopold, 1971; Pelletier and Turcotte, 2000; Rodríguez-Iturbe and Rinaldo, 2001; Perron et 

al., 2012; Hooshyar et al., 2017]. Junction angle is one of the main characteristics of drainage 

network related to basin dissection and network orientation [Howard, 1990] and has been 

shown to be correlated with other properties such as slope and discharge at the junction 

[Horton, 1932a; 1945a; Howard, 1971a; b; Roy, 1983].  

Horton [1932a] proposed the first quantitative model for predicting the angle 

between the overland flow on the hillslope and the stream by relating it to the ratio of the 

main stream’s gradient to that of the hillslope. Horton [1945a] utilized the same concept for 

predicting the angle between a major stream and a tributary. Despite its capability to capture 

the dependency of slope and junction angle [Lubowe, 1964], the Hortonian model is 

mathematically deficient as it predicts the angle of two streams with the same slope as zero 
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[Howard, 1971b]. To resolve this issue, Howard [1971b] generalized the Hortonian model 

by dividing the junction into two sub-junctions with respect to the axial prolongation of the 

main stream and used the Hortonian model to calculate the angle of sub-junctions. He further 

quantified the angle based on the discharge by relating the slope and discharge through a 

power function. In addition, Howard [1971b] proposed a new model based on the minimum 

power losses which gives the angle as a function of the discharge and slope. Roy [1983] 

revealed the optimality basis of the Hortonian model and its modified form by Howard 

[1971b] and showed that the Hortonian model is a special case of a general solution 

developed based on the minimum power losses. He also generalized the model using other 

optimality criteria and presented the angles based on the relative size of the tributaries. The 

discussed models typically require specific information about the tributaries (e.g., their 

slopes and relative size) in addition to the exponents of the power relationships between 

discharge and various variables such as slope, velocity, width and/or depth. Therefore, they 

do not provide the characteristic branching angles of specific flow regimes in the network.  

Devauchelle et al. [2012a] studied the branching angle of channels formed by 

groundwater seepage and observed the angle as ≈ 72°. This specific angle was found to be 

the stable growth direction enforced by flow from groundwater table represented by an 

infinite Laplacian field [Devauchelle et al., 2012a; Petroff et al., 2013]. The prediction by 

Devauchelle et al. [2012a] is general for the groundwater fed channels since it does not 

require any other information, e.g., slope and area.  

In this study, we investigate the branching angles of natural drainage networks in 120 

catchments across the United States and the observations are explained using the Optimal 
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Channel Network (OCN) concept [Rinaldo et al., 1992; Rodriguez‐ Iturbe et al., 1992; 

Rodríguez‐Iturbe et al., 1992; Rodríguez-Iturbe and Rinaldo, 2001]. The junction angles are 

quantitatively related to the exponent of the slope-area curve through a mathematical 

optimization in a fan-shaped junction geometry. The model predicts a characteristic angle 

for each scaling regime in the slope-area curve solely based on the scaling exponent. The 

theoretical findings show reasonable agreements with the observations from 14,771 

junctions in the study catchments.  

The remaining of the chapter is organized as follows. Section 2 provides information 

about the study sites. The methods, including the drainage network extraction, junction 

angle calculation and the derivation of optimal junction angle, are presented in Section 3. 

The results and the physical explanation of the observation are provided in Section 4. Section 

5 summarizes and concludes the chapter.  

5.1 Data set 

In this study, 120 catchments in the United States were selected based on the LiDAR 

data availability and minimal human impacts on the land surface. The LiDAR point cloud 

were downloaded from a USGS public data base and processed to derive 1 m Digital Elevation 

Model (DEM) using ArcGIS. Figure 40 shows the locations of the study catchments which are 

distributed over 17 states. The drainage area of the catchments ranges from 0.04 𝑘𝑘𝑚𝑚2 to 3.5 𝑘𝑘𝑚𝑚2 with the average of 1.2 𝑘𝑘𝑚𝑚2. The mean annual precipitation varies from 123 𝑚𝑚𝑚𝑚 ∙ 𝑚𝑚𝑒𝑒−1 

to 3838 𝑚𝑚𝑚𝑚 ∙ 𝑚𝑚𝑒𝑒−1, representing a wide range of climatic conditions.  
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Figure 40. The locations of the 120 study catchments in the United Sates. 

5.2 Methods 

5.2.1 Valley network extraction 

The drainage networks were extracted from 1 m LiDAR-based DEM using a 

curvature-based method proposed by Hooshyar et al. [2016b]. This method utilizes the 

Perona-Malik nonlinear diffusive filter [Perona and Malik, 1990] to smooth the DEM. The 

contour curvature is calculated from the filtered DEM and is used to objectively segment the 

terrain into valley and ridge patches, which are defined as the local maximums or minimums 

in the curvature grid. Using Otsu [1975]’s method, the non-valley and non-ridge patches are 

detected and filtered systematically to obtain the valley and ridge skeletons. Consequently, 

1-pixel-wide valley lines are achieved by checking the existence of a ridge patch between 

two intersecting valleys. The method utilizes curvature-adjusted flow direction by modifying 
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the 𝐷𝐷∞-based [Tarboton, 1997a] flow direction grid which is calculated from the filled DEM 

using O'callaghan and Mark [1984a]’s method. The flow directions are rotated toward the 

pixel with higher local curvature (more convergent) which enhance the accuracy of the 

method to detect the valley path. The method requires two user-defined parameters for 

valley extraction including the time of forward diffusion (𝑇𝑇𝐹𝐹) for filtering and the connecting 

threshold (𝑁𝑁𝑇𝑇) which are set to 50 and 20 m, respectively. The contributing area and slope 

are used throughout the chapter to study the branching angle distribution and are calculated 

from the curvature-adjusted flow direction grid from the 𝐷𝐷∞  method [Hooshyar et al., 

2016b].  

5.2.2 Junction angle calculation 

Having the 1-pixel-wide valley network, the junctions are detected as the pixels with 

more than one immediate upstream pixels. Figure 41 shows four examples of junctions in a 

catchment located in northern Georgia. Intersecting valleys do not follow a linear path in 

most cases as shown in Figure 41; therefore, a linear function is fitted to the portion of the 

intersecting valleys with the length Lf (measured from the junction). The branching angle is 

estimated as the angle between the fitted lines (Figure 41). Various values of 𝐿𝐿𝑓𝑓 , ranging 

from 10 m to 30 m, are tested for each intersecting valley, and the one with the best linear fit 

to the valley (i.e., highest 𝑅𝑅2), denoted by 𝐿𝐿𝑓𝑓∗, is used for calculating the angle.  



 

108 

 

 

Figure 41. Junction examples in a catchment located in northern Georgia. The junctions are 

marked by red dots and the dashed-blue lines represent the fitted lines. The length (𝐿𝐿𝑓𝑓∗) of the 

fitted line with the highest 𝑅𝑅2 and the calculated angle at each junction are shown in blue and red 

texts, respectively.  

5.3 Optimal junction angle  

Several studies have characterized the landscape evolution as an optimization 

problem [Howard, 1990; Rigon et al., 1993; Rinaldo et al., 2014]. In particular, the Optimal 

Channel Network (OCN) [Rinaldo et al., 1992; Rodriguez‐Iturbe et al., 1992; Rodríguez‐

Iturbe et al., 1992; Rigon et al., 1993; Rodríguez-Iturbe and Rinaldo, 2001; Rinaldo et al., 

2014; Abed-Elmdoust et al., 2016] approach indicates that the natural channel 

configurations emerge in a way that the total energy dissipation is minimized. The energy 

dissipation rate 𝐸𝐸𝑖𝑖 for any link 𝑒𝑒 of the network, i.e., a channel segment with no junction in 

the middle, can be written as [Yang and Song, 1979]:  𝐸𝐸𝑖𝑖 = 𝐿𝐿(𝜌𝜌𝑄𝑄𝑖𝑖 + 𝑁𝑁𝑖𝑖)𝐷𝐷𝑖𝑖𝐿𝐿𝑖𝑖        (22) 
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where 𝐿𝐿 is gravitational acceleration and 𝜌𝜌 is water density. 𝑄𝑄𝑖𝑖, 𝑁𝑁𝑖𝑖 , 𝐷𝐷𝑖𝑖 and 𝐿𝐿𝑖𝑖  are the water 

discharge, sediment discharge, the average slope, and length along the link 𝑒𝑒 . In natural 

drainage networks, 𝑁𝑁𝑖𝑖  is relatively small compared with 𝜌𝜌𝑄𝑄𝑖𝑖; therefore equation (22) can be 

expressed as: 𝐸𝐸𝑖𝑖 ∝ 𝑄𝑄𝑖𝑖𝐷𝐷𝑖𝑖𝐿𝐿𝑖𝑖   .        (23) 

Assuming 𝑄𝑄𝑖𝑖 ∝ 𝐴𝐴𝑖𝑖  and using the slope-area relationship 𝐷𝐷𝑖𝑖 ∝ 𝐴𝐴𝑖𝑖−𝑚𝑚 , where 𝐴𝐴𝑖𝑖  is the 

contributing area at the end of link 𝑒𝑒,  and 𝑚𝑚  is the exponent of the slope-area curve 

[Montgomery and Dietrich, 1988] which varies for debris-flow-dominated and alluvial 

channels [Montgomery and Foufoula-Georgiou, 1993] , equation (23) leads to: 𝐸𝐸𝑖𝑖 ∝ 𝐿𝐿𝑖𝑖𝐴𝐴𝑖𝑖𝛾𝛾          (24) 

where 𝛾𝛾 = 1 −𝑚𝑚 . The exponent 𝛾𝛾  characterizes mechanics of erosional processes and 

ranges between zero and unity [Rodríguez-Iturbe and Rinaldo, 2001; Rinaldo et al., 2014]. 

Based on the OCN approach, the channel networks are obtained by minimizing total 

energy dissipation; therefore, they can be described using the following optimization 

problem:  𝑚𝑚𝑒𝑒𝑀𝑀∑ 𝐿𝐿𝑖𝑖𝐴𝐴𝑖𝑖γ𝑖𝑖∈𝐼𝐼          

 (25) 

where I is the set of all the links in the network.  

Figure 42a shows a schematic example of a 1st-order junction with angle denoted by α. The vertical and horizontal dimensions (representing basin shape) of the junction are 

denoted by 𝑋𝑋 and 𝑌𝑌 and the distance of the junction from the upper bound (representing 

basin drainage divide) is given by 𝑥𝑥. Using a similar setup, Leopold [1971] argued that the Y-
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shaped junctions, observed in the natural landscapes, create smaller total length and are 

more efficient in terms of water and sediment transport compared to T-shaped (x = 0) or V-

shaped ( x = X ) ones. Figure 42b shows an extension of Figure 42a in terms of the 

contributing area and the length of the upstream (Au and 𝐿𝐿𝑢𝑢) and downstream links (𝐴𝐴𝑑𝑑  and 𝐿𝐿𝑑𝑑). 𝛽𝛽 is the junction angle between downstream link and the neighboring tributary. For this 

plan view geometry, for simplification, it is assumed that the channels have equal distance 

from the confining ridges and the upper bound of the domain has a circular shape.  

 

Figure 42. (a) A symmetric junction with the vertical and horizontal dimensions denoted by 𝑋𝑋 

and 𝑌𝑌. (b) The contributing area and the length of the upstream (𝐴𝐴𝑢𝑢 and 𝐿𝐿𝑢𝑢) and downstream 

reaches (𝐴𝐴𝑑𝑑 and 𝐿𝐿𝑑𝑑). The junction angle is denoted as 𝛼𝛼, and 𝛽𝛽 represents the junction angle 

between downstream link and the channel within the neighbouring tributary.  

Given X, Y and assuming constant total contributing area (area confined by the blue 

lines in Figure 42b), the optimal angle is the one yielding the minimum energy dissipation 

rate. Based on the setup given in Figure 42b, one can write the total energy function as: 

E(𝛼𝛼,𝑋𝑋,𝑌𝑌) ∝ 2𝐿𝐿𝑢𝑢𝑨𝑨𝒖𝒖𝛾𝛾 + 𝐿𝐿𝑑𝑑𝑨𝑨𝒅𝒅𝛾𝛾       (26) 
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where 𝑨𝑨𝒖𝒖  and 𝑨𝑨𝒅𝒅  are normalized 𝐴𝐴𝑢𝑢  and 𝐴𝐴𝑑𝑑  by the total contributing area, since the total 

catchment area is assumed to be a constant. 𝐿𝐿𝑢𝑢, 𝐴𝐴𝑢𝑢, 𝐿𝐿𝑑𝑑 , and A𝑑𝑑  can be expressed as functions 

of 𝛼𝛼, 𝑋𝑋 and/or 𝑌𝑌: 𝐿𝐿𝑢𝑢 =
𝑌𝑌2 𝑁𝑁𝛼𝛼𝑁𝑁 𝛼𝛼2          (27) 

𝐴𝐴𝑢𝑢 = 𝛼𝛼 𝑌𝑌28 𝑁𝑁𝛼𝛼𝑁𝑁2 𝛼𝛼2         (28) 

𝐿𝐿𝑑𝑑 = 𝑋𝑋 − 𝑌𝑌2 𝑁𝑁𝛼𝛼𝑂𝑂 𝛼𝛼2         (29) 

𝐴𝐴𝑑𝑑 =  𝛼𝛼 𝑌𝑌24 𝑁𝑁𝛼𝛼𝑁𝑁2 𝛼𝛼2 + 𝑋𝑋𝑌𝑌 𝑁𝑁𝛼𝛼𝛼𝛼 𝛼𝛼2 − 𝑌𝑌22 𝑁𝑁𝛼𝛼𝛼𝛼2 α2 csc
α2     (30) α is given as a function of x and Y (Figure 42a): α = 2 𝑁𝑁𝛼𝛼𝑂𝑂−1 2𝑥𝑥𝑌𝑌          (31) 

The optimal junction angle is denoted as 𝛼𝛼�, which can be calculated as a function of 𝛾𝛾 and 𝑒𝑒 =
𝑋𝑋𝑌𝑌 by setting 

𝑑𝑑𝐸𝐸𝑑𝑑𝛼𝛼 (𝛼𝛼 = 𝛼𝛼�) = 0. This leads to:  

12 𝑁𝑁𝛼𝛼𝑁𝑁 𝛼𝛼�2 𝑁𝑁𝛼𝛼𝑂𝑂 𝛼𝛼�2 �2 +
4𝛼𝛼� 𝑒𝑒 𝛼𝛼𝑒𝑒𝑀𝑀 𝛼𝛼�2 𝛼𝛼𝑒𝑒𝑀𝑀 𝛼𝛼� − 2𝛼𝛼� 𝑁𝑁𝛼𝛼𝛼𝛼 𝛼𝛼�2 𝛼𝛼𝑒𝑒𝑀𝑀 𝛼𝛼��−𝛾𝛾 − 𝛾𝛾 𝑁𝑁𝛼𝛼𝑁𝑁 α�2 �2 +

4𝛼𝛼� 𝑒𝑒 𝛼𝛼𝑒𝑒𝑀𝑀 𝛼𝛼�2 𝛼𝛼𝑒𝑒𝑀𝑀 𝛼𝛼� −
2𝛼𝛼� 𝑁𝑁𝛼𝛼𝛼𝛼 𝛼𝛼�2 𝛼𝛼𝑒𝑒𝑀𝑀 𝛼𝛼��−𝛾𝛾−1 ���2𝑒𝑒𝛼𝛼�+2𝛼𝛼�2 � 𝑁𝑁𝛼𝛼𝛼𝛼 𝛼𝛼�2 + �𝛼𝛼�−4𝑒𝑒𝛼𝛼�2 � 𝛼𝛼𝑒𝑒𝑀𝑀 𝛼𝛼�2� 𝛼𝛼𝑒𝑒𝑀𝑀 𝛼𝛼� + �4𝑒𝑒𝛼𝛼� 𝛼𝛼𝑒𝑒𝑀𝑀 𝛼𝛼�2 − 2𝛼𝛼� 𝑁𝑁𝛼𝛼𝛼𝛼 α�2� cosα�� +

14 csc2 α�2 = 0           (32) 

Figure 43a shows α� for different values of 𝑒𝑒 and 𝛾𝛾. For a given value of 𝑒𝑒, increasing 𝛾𝛾 

results in wider angle, suggesting that the junction angle decreases with increasing 𝛾𝛾.  
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Figure 43. (a) The optimal junction angle 𝛼𝛼� for various values of 𝛾𝛾 and 𝑒𝑒; (b) The optimal angle 

(𝛼𝛼�) and the downstream angle (𝛽̂𝛽) when 𝛾𝛾 = 0.75. Two curves intersect at 𝛼𝛼� =  𝛽̂𝛽 ≈ 65.3°. The 

intersection is denoted by 𝛼𝛼𝑠𝑠. This indicates that if γ = 0.75, the stable branching angle would 

be αs = 65.3°.  

As shown in Figure 42b, β is the junction angle between the downstream link and the 

channel within the neighboring tributary. Assuming that the flow separation line (ridge) is 

located at an equal distance from both channels, 𝛽𝛽 can be expressed as a function of 𝛼𝛼 and 𝑒𝑒: 

𝛽𝛽 = 2 𝛼𝛼𝑒𝑒𝑀𝑀−1 �12 𝑁𝑁𝛼𝛼𝑁𝑁 𝛼𝛼2 𝛼𝛼𝑒𝑒𝑀𝑀 𝛼𝛼 ��12 𝑁𝑁𝛼𝛼𝑁𝑁 𝛼𝛼2�2 + �𝑒𝑒 − 12 𝑁𝑁𝛼𝛼𝑂𝑂 𝛼𝛼2�2 + 2 �12 𝑁𝑁𝛼𝛼𝑁𝑁 𝛼𝛼2� �𝑒𝑒 − 12 𝑁𝑁𝛼𝛼𝑂𝑂 𝛼𝛼2� 𝑁𝑁𝛼𝛼𝛼𝛼 𝛼𝛼�−12� (33) 

Defining 𝛽̂𝛽  as the downstream angle corresponding to optimal angle 𝛼𝛼� , 𝛽̂𝛽  can be 

expressed as a function of 𝑒𝑒  and 𝛾𝛾  similar to 𝛼𝛼�  by substituting α� from equation (32) into 

equation (33). As an example, Figure 43b shows α� and 𝛽̂𝛽 for different 𝑒𝑒 when 𝛾𝛾 = 0.75. If 

both upstream and downstream junctions have similar hydrologic and geomorphologic 

conditions, one can expect α� = β� for a homogeneous landscape. For γ = 0.75 the two curves 

in Figure 43b intersect at α� = β� ≈ 65.3°. This suggests that if 𝛾𝛾 = 0.75, the stable branching 
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angle would be 𝛼𝛼𝑠𝑠 = 65.3° and for any given γ (equivalently m =  1 −  γ), one can find the 

specific branching angle. Figure 44 shows the relationship between αs  and 𝑚𝑚 = 1 − 𝛾𝛾 . 

Higher values of 𝑚𝑚 correspond to alluvial channels where the branching angle is relatively 

larger than the debris-flow-dominated channels.  

 

Figure 44. 𝛼𝛼𝑠𝑠 for different values of 𝑚𝑚 = 1 − 𝛾𝛾, where 𝑚𝑚 is the exponent of slope-area 

relationship (𝐷𝐷 ∝ 𝐴𝐴−𝑚𝑚). The crosses represent the characteristic angles for debris-flow 

dominated and fluvial regimes based on the observations in the study catchments. The vertical 

line at each point correspond to the range of the characteristic angles quantified using different 

approaches (GMM, angle-area curve and slope-area curve; see section 4.1) and reflects the 

uncertainty. 

5.4 Results and discussions 

In total, there were 14,771 junctions in the 120 study catchments. Figure 45 shows 

an example of the extracted valley network and the computed junction angles in a catchment 

located in northern Georgia. As mentioned in Section 3.2, linear functions were fitted to a 

portion of valley line with the length 𝐿𝐿𝑓𝑓∗ and were used to calculate the branching angle. 𝐿𝐿𝑓𝑓∗ 
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is the length, ranging from 10 m to 30 m, that results in the highest 𝑅𝑅2  value and was 

calculated for each intersecting valley. The mean and the standard deviation of 𝐿𝐿𝑓𝑓∗ are 20.2 

m and 7.6 m, respectively; whereas, the mean and the standard deviation of 𝑅𝑅2 for the linear 

fits for 𝐿𝐿𝑓𝑓∗ are 0.92 and 0.11, respectively.  

 

Figure 45. The valley network and the junction angles for a drainage network located in northern 

Georgia, United States. 

5.4.1 Observations 

From the extracted drainage networks, the branching angles in the study sites were 

measured as 61.8° ∓ 27.1°  (average ∓  one standard deviation). Figure 46a shows the 

probability distribution function (PDF) of the observed junction angle (αobs) using a bin size 
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of 5°. The PDF is right-skewed with a skewness of 𝐷𝐷𝑘𝑘 = 0.27. This may be due to the multi-

modal behavior of the PDF where each mode represents the angle distribution 

corresponding to a specific physical condition. Assuming that modes are normally 

distributed, as observed by Devauchelle et al. [2012a] for groundwater-fed channels, one can 

represents the PDF in Figure 46a as a Gaussian Mixture Model (GMM). Figure 46b shows the 

extracted modes of the original PDF using the Expectation-Maximization (EM) algorithm 

[Moon, 1996b]. The extracted modes exhibit the averages of 47.0° and 76.6°  with the 

standard deviations of 24.5°and 22.4°, respectively.  

 

Figure 46. (a) The PDF of the observed junction angle (𝛼𝛼𝑜𝑜𝑏𝑏𝑠𝑠) using a bin size of 5°. (b) The 

decomposed PDFs from (a) using the Expectation-Maximization  algorithm. The extracted 

modes exhibit the averages of 47.0°and 76.6° with the standard deviations of 24.5°and 22.4°, 

respectively.  

The relationship between the observed junction angle (αobs) and the contributing 

area to the end of the intersecting valleys (A) is shown in Figure 47. As can be seen from this 

figure, for large contributing area, i.e., higher order channels located downstream of the 

catchments, the angle is observed to be around 75.8°. At the other end, the junctions with 
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small contributing area and located higher up in the catchments, are found to branch in a 

relatively smaller angle (≈ 54.0°).  

 

Figure 47. The observed junction angle (𝛼𝛼𝑜𝑜𝑏𝑏𝑠𝑠) versus the contributing area (𝐴𝐴). The curves 

represent 25th , 50th and 75th percentiles, respectively. The junction angle starts from 54.0° (the 

average of the 50th percentile for 2.5 ≤ 𝐿𝐿𝛼𝛼𝐿𝐿(𝐴𝐴) ≤ 3.9) for small contributing area and 

approaches to 75.8° (the average of the 50th percentile for 5.5 ≤ Log(A) ≤ 6.4), where the 

transitions are visually identified.  

Figure 48a shows the slope-area curve in the study sites. A is the contributing area to 

the end of the valley, and 𝐷𝐷 is the average slope along the valley defined as the relief divided 

by the length. The slope-area curve exhibits log-log linear relationships and in fact has two 

scaling regimes with the exponents 𝑚𝑚1 = 0.15  and 𝑚𝑚2 = 0.37 , where 𝐷𝐷 ∝ 𝐴𝐴−𝑚𝑚 , and the 

transition occurs at 𝐴𝐴𝑇𝑇 = 103.9 m2. The exponents and the transitional area threshold are 

objectively extracted by maximizing the product of 𝑅𝑅2 for two linear fits. The first scaling 

regime is attributed to the debris-flow-dominated [Montgomery and Foufoula-Georgiou, 

1993; Singh et al., 2015] which is the main flow regime near the channel heads; and the 
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second one corresponds to the fluvial regime. The angles are divided into two groups based 

on the area threshold extracted from the slope-area curve (AT = 103.9 m2). The angle PDFs 

for the two groups are shown in Figure 48b, and the peaks for the two groups are at ≈ 47.5° 

and ≈ 72.5°.  

 

Figure 48. (a) The slope-area curve for the study sites. The curve exhibits log-log linear 

relationships with the exponents 𝑚𝑚1 = 0.15 and 𝑚𝑚2 = 0.37. The transition occurs at 𝐴𝐴𝑇𝑇 = 103.9 

m2. (b) The junction angle distributions for 𝐴𝐴 < 𝐴𝐴𝑇𝑇 and 𝐴𝐴 ≥ 𝐴𝐴𝑇𝑇.  

5.4.2 Explanation based on minimum energy dissipation 

Figures 7b, 8 and 9b clearly indicate that the junction angles in the study catchments 

have two distinct modes which may correspond to specific geomorphologic conditions. 

Based on the concept of minimum energy dissipation, the junction angle varies with the 

exponent of the slope-area curve (Figure 5). Here, we hypothesize that the two observed 

modes in the angle distribution are attributed to the two scaling regimes in the slope-area 

curve. The first mode corresponds to those junctions located upstream of the catchments 
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and attributes to the debris-flow dominated regime with a scaling exponent of 𝑚𝑚1 = 0.15. 

The second mode is related to the fluvial regime with m2 = 0.37. There is uncertainty in 

evaluating the characteristic angles. Table 6 summarizes the identified angles associated 

with the two modes by the three methods: GMM (Figure 7b), angle-area curve (Figure 8), 

and slope-area curve (Figure 9b). The average angles of modes over the three methods are 𝛼𝛼1��� ≈ 49.5° and 𝛼𝛼2��� ≈ 75.5° , which are used as the best estimations of the characteristic 

angles associated with the two modes.  

Table 6. The characteristic angles extracted from three methods.  

 Mode 1 

Debris-flow dominated 

Mode 2 

Fluvial regime 

GMM 47.0° 76.6° 

Angle-area curve 54.0° 75.8° 

Slope-area curve 47.5° 72.5° 

Average 49.5° 75.0° 

Max 54° 76.6° 

Min 47° 72.5° 

 

In order to verify the derived relationship between junction angle and 𝑚𝑚, the two 

modes are added to the 𝛼𝛼𝑠𝑠~𝑚𝑚 curve shown in Figure 5. The first mode is located at 𝑚𝑚1 =

0.15 and α1��� ≈ 49.5° and corresponds to the debris-dominated-flow channels as discussed 

before. The second mode is attributed to the fluvial regime with 𝑚𝑚1 = 0.37  and 𝛼𝛼1��� ≈
75.0°. The maximums and minimums at each point are also shown as the vertical lines to 

visualize the uncertainty. Both points are close to the 𝛼𝛼𝑠𝑠~𝑚𝑚 curve which indicates that the 

modes in the angle distribution may be attributed to the scaling regimes characterized by 

the slope-area curve.  
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5.5 Conclusion 

Networks with branching structure are common in different areas such as social 

networks [Hajibagheri et al., 2013; Hajibagheri et al., 2016], energy systems [Alirezaei et al., 

2016], infrastructures [Madani and Hooshyar, 2014; Madani et al., 2014], and hydrology in 

form of natural drainage networks.  Drainage networks are important hydrologic and 

geomorphologic features which have been studied extensively in past decades. The 

branching angle directly controls the topology of these networks and holds important 

information on the underlying physical mechanisms that form the drainage network. In this 

study, the junction angle of 120 catchments in the United States with the total of 14,771 

junctions was studied. Investigating the variation of angles in the study catchments revealed 

the existence of two distinct characteristic angles.  

The observed angles were linked to the scaling exponents of the slope-area curve 

through the theory of Optimal Channel Network (OCN) or minimum energy dissipation. To 

do so, an optimization was formulated for a fan-shaped junction geometry and the optimal 

angle was calculated by minimizing the energy dissipation rate on the network link. The 

optimization led to a relationship between junction angles and the scaling exponent of the 

slope-area curve which showed reasonable agreement with the observations. This indicates 

that the flow regimes, characterized by the slope-area curve as debris-flow dominated or 

fluvial, have distinct signatures on the network topology and junction angles.  

The plan view geometry, used for formulating the optimization, assumes that the 

channels have equal distance from the confining ridges and the upper bound of the domain 

has a circular shape. Although, this fan-shaped geometry is common in natural drainage 
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networks, there also exist catchments with other shapes and often highly asymmetric. The 

connection between the catchment’s shape and asymmetry on the branching angle will be 

the topic of future research. The proposed optimization framework is based on the 

assumption 𝑄𝑄 ∝ 𝐴𝐴 which has been argued to be reasonable for runoff due to overland flow 

rather than groundwater seepage.  
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CONCLUSION 

Drainage network is an important geomorphologic and hydrologic feature which 

significantly controls runoff generation and is vitally important for practical water resource 

management. Consisting of valleys and channels [Montgomery and Foufoula-Georgiou, 

1993], drainage networks can be characterized by drainage density (Dd) which is defined as 

the ratio of the total length of channels in a watershed to its drainage area [Horton, 1932b; 

1945b] and has been a topic of significant research for past several decades. From 

geomorphologic perspective, the transition from valley to channel (i.e., channel heads) in 

drainage network can be quantified via various thresholds, for e.g., upslope area and 

curvature. From hydrologic perspective, channels are categorized as perennial, intermittent, 

and ephemeral streams based on the flow durations. Perennial streams flow for the most of 

the time during normal years and are maintained by groundwater discharge. Intermittent 

(i.e. seasonal) streams flow during certain times of the year receiving water from surface 

sources such as melting snow or from groundwater sources such as springs. Lastly, 

ephemeral streams flow only in direct response to precipitation without continuous surface 

flow [Meinzer, 1923]. A longstanding question is whether these hydrologically characterized 

channels leave distinctive signatures on topology and geomorphology of the networks. 

Understanding the impacts of climate and hydrology on geomorphology and topology of 

drainage networks is essential for predicting the evolution of land surface. 

The first step to study the drainage networks is accurately extract them from DEMs. 

Here, the basic definitions of channels and valleys were used to identify them in high-
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resolution DEMs. Valleys are defined as convergent topography in the landscape, and the 

convergence is naturally associated with positive contour curvature. An automatically 

derived curvature threshold was proposed to differentiate significant convergence, 

significant divergence, and insignificant features. Significant convergent cells form a valley 

skeleton and significant divergent cells define ridge patches. With the valley skeleton and 

ridge patches extracted, the valley network was generated by removing valley tributaries 

that are not confined by at least one ridge patch. Channels are generally surrounded by well-

defined banks that have a distinct signature in the contours. A new method was proposed to 

automatically extract channel heads based on the clustering of contours, utilizing the 

information derived from the entire cross-section. The similarity-based clustering method 

eliminates the need for a spatially constant channel initiation threshold. The proposed 

method was able to capture the spatial variation of channel initiation curvature threshold. 

The temporal dynamics of stream networks are vitally important for understanding 

hydrologic processes including surface water and groundwater interaction and hydrograph 

recession. A systematic method was developed to map wet channel networks by integrating 

elevation and signal intensity of ground returns. The signal intensity thresholds for 

identifying wet pixels were extracted from frequency distributions of intensity return within 

the convergent topography extent using a Gaussian mixture model. A power-law 

relationship between streamflow and wetted channel length during recession periods was 

derived. 

In a pioneer work, Abrahams [1984] proposed a U-shaped relationship between 

drainage density and climate aridity index, defined as the ratio of the mean annual potential 
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evaporation to the mean annual precipitation. However, our result showed an increasing 

trend in arid regions, which is consistent with the observations in other studies, and no trend 

in humid watersheds. The decreasing trend observed in humid watersheds by Madduma 

Bandara [1974] can be explained considering the specific vegetation cover in that area. 

Those watersheds have been modified by extensive human interferences and the natural 

vegetation has been eliminated due to tea plantation. Therefore, the erosive force increases 

as the climate gets more humid while the resistance due to vegetation cover remains 

constant which increases the drainage density. Our finding suggests that the erosive force 

and the resistance due to vegetation reach an equilibrium in humid regions and the change 

in climate conditions does not systematically impact the drainage network. Whereas, in arid 

region, the increase in resistive force of vegetation dominates the escalation of erosive force 

of runoff which leads to a decreasing trend in drainage density. Our finding also suggests that 

natural drainage networks in arid regions are more sensitive to the change in long-term 

climate conditions compared with the watersheds located in humid regions. In a broader 

sense, this influence our understanding of the formation of drainage networks and the 

response of hydrologic systems to climate change.  

The formation and growth of river channels and their network evolution are 

governed by the erosional and depositional processes operating on the landscape due to 

movement of groundwater [Dunne, 1990; Abrams et al., 2009b] and/or surface runoff 

[Horton, 1945b; Dunne, 1990]. Recent research has shown groundwater flow controls on 

channel junction angles [Devauchelle et al., 2012b]; however, the role of surface runoff is still 

not clear. Surface runoff dominated channels receive water from sources such as melting 



 

124 

 

snow or overland flow during rainfall events [Levick et al., 2008]. Based on channel networks 

extracted from 1 m DEMs of 120 catchments with minimal human impacts across the United 

States, we showed that the junction angles have two modes with 𝛼𝛼1��� ≈ 49.5° and 𝛼𝛼2��� ≈ 75.0°. 

The latter is close to the branching angle of the groundwater fed channels (𝛼𝛼𝑔𝑔 ≈ 72° ) 

[Devauchelle et al., 2012b]. The observed angles were physically explained as the optimal 

angles that result in minimum energy dissipation and were linked to the exponent 

characterizing slope-area curve [Montgomery and Dietrich, 1988]. These findings enable us 

to understand the geomorphologic signature of hydrologic processes on drainage networks 

and develop more refined landscape evolution models. 
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