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ABSTRACT 

The primary objective of this research was to develop, fabricate, evaluate and utilize 

microelectrodes to metal coupons in artificial water system. In the brass experiment, it presented 

profiles of direct measurements of free chlorine/monochloramine, oxygen and pH to brass and 

cement based coupons. In monochloraminated water, brass showed a much faster corrosion 

process under observation. Profiles showed a less monochloramine consumption with as high as 

7% greater oxygen utilization comparing to the brass in free chlorine solution, reflecting oxygen 

could be a major part of the corrosion initiation process. While cement showed less reactive 

characteristics to disinfectants and oxygen compared to the brass profiles, however, pH showed 

a significant rise for cement coupon under monochloramine condition. In galvanic experiment, 

the developed lead micro-ISE (100 µm tip diameter) showed excellent performance toward 

soluble lead (Pb2+) with the sensitivity of 22.2 ± 0.5 mV decade-1 and limit of detection (LOD) 

of 1.22×10-6 M (0.25 mg L-1). The response time was less than 10 seconds with a working pH 

range of 2.0 – 7.0. Using the lead micro-ISE, lead concentration microprofiles were measured 

from the bulk to the metal surface over time. Combined with two-dimensional (2D) pH map, this 

work clearly demonstrated that lead leaching at the metal surface is non-uniform and lower 

surface pH leads to higher lead leaching from the surface. Once significant pH variation (ΔpH: 

6.0) was developed across brass-lead joint coupon, even a small pH change (ΔpH: 0.6) within 

the Pb/Sn alloy resulted in 4 times different surface lead concentrations (42.93 vs. 11.61 mg L-1) 

and 5 times different fluxes (18.5×10-6 vs. 3.5×10-6 mg cm-2 s-1). Continuous surface lead 

leaching monitoring and surface characterization found that free chlorine is the primary 

contributor to lead leaching. 
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SUMMARY 

Pipeline corrosion has been a critical issue for drinking water quality in United States. 

Corrosion in drinking water distribution systems (DWDS) can cause serious economic, 

environmental, and public safety problems from pipe damages, water loss, and water quality 

degradation. Many studies investigated and evaluated corrosion in DWDS with different pipeline 

materials under various aqueous conditions for decades. However, most of them focused on mainly 

bulk water monitoring using conventional water analytical methods and/or surface characterization 

of samples which were collected from real sites or simulated systems (e.g., pipe-loops) using 

electron microscopy and electrochemical techniques. Although surface characterization using 

atomic force microscopy (AFM) and Scanning electron microscope (SEM) can provide 

meaningful information, it is essentially a forensic investigation, not providing in situ dynamics of 

surface chemical reaction. Thus, it is required to develop and apply in situ analytical tools for better 

understanding of corrosion mechanism to mitigate and control effectively corrosion in DWDS.  

The primary motivation of this research was to understand in situ dynamics of water 

chemistry at the interface between metal and water under various water conditions (e.g. free 

chlorine, monochloramine, pH, dissolved inorganic carbon, etc.) using a novel microelectrode 

technique. Microelectrodes have been widely used for biofilm and sediment studies; however, they 

were not applied for hard material due to their soft tip of the microelectrode (e.g. glass). A new 

technique was developed in this study and pseudo-surface chemistry (i.e. 5 µm above the metal 

surface) was successfully measured and the important kinetic parameters of the corrosion (e.g. flux 

and reaction rates) were quantitively determined throughout the doctoral study. Various reactive 
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pipe materials including brass and cement, and lead-brass galvanic joints were tested and evaluated 

using microelectrodes in simulated DWDS.  

First, brass and cement materials were tested for 120 days as representative pipe materials 

for DWDS to investigate the reactions of free chlorine and monochloramine at the surface of brass 

and cement coupons using different microelectrodes including free chlorine and monochloramine, 

dissolved oxygen (DO), pH and oxidation-reduction potential (ORP) microsensors. Total 4 sets of 

experiments were conducted on non-aged brass and cement coupons with different disinfectants 

(free chlorine vs. monochloramine) under two flow conditions (2 ml/min vs. stagnant) for 120 days. 

Bulk flowing solution contained 10 mg C L-1 DIC, 100 mg Cl- L-1, 100 mg SO4
2- L-1, 2 mg Cl2 L-

1 (free chlorine or monochloramine) at pH 7. Based on the measured chemical profiles, various 

kinetic parameters (i.e., diffusion boundary layer, flux, reaction rate, and surface concentration) 

were determined to provide a better understanding of relationship between disinfectant and pipe 

materials. At the initial stage (0 day), DO was consumed at the brass surface with both disinfectants 

and the oxygen reaction rate in a monochloramine solution was almost twice higher in free chlorine 

condition. However, free chlorine consumption (Csurface: 0.88 mg Cl2 L-1) was approximately three 

times greater than monochloramine (Csurface: 1.38 mg Cl2 L-1) at brass surface. After 120 days, 

brass coupons with both disinfectants were developed dark brown substances at the surface and 

disinfectants and oxygen consumption were increased at the brass surface compared to the initial 

stage. In cement coupons, results showed that disinfectants consumption were constant with 

approximately 1.5 mg Cl2 L-1 at the coupon surface with negligible oxygen consumption 

throughout the entire period, with slightly increased oxygen reaction (Cs: 7 mg O2 L-1) under the 

free chlorine condition. SEM/EDS analysis demonstrated that brass coupons in applied conditions 

have two distinguished area; one is filled with wavy fiber structured substances (high in zinc and 
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oxygen contents) at the brass coupon surface, and the other is crystal shaped structure (high in 

copper, oxygen and carbon contents).  

As the application of microelectrodes to the metal/solid surface provided direct evidence 

of chemistry change at the coupon surface, galvanic joints were investigated to understand the 

relationship between pH and lead leaching in chlorinated water systems. During the period of the 

experiments, one of the major reflections on galvanic corrosion was the outbreak of Flint water 

crisis in Michigan due to the corrosion of lead contained pipelines. The lead concentration in 

household tap was found 200 times higher than the World Health Organization (WHO) standards. 

In the experiments, it was hypothesized that in situ concentration microprofiles of pH, DO, and 

free chlorine on different pipe materials would provide more understanding on the galvanic 

corrosion processes. pH microprofiles of corroding metal surfaces were measured to construct 

detailed in situ 2D spatial maps of the pH under flowing and stagnation conditions. The opposite 

pH trend was directly observed across the galvanic couple under flow and stagnation conditions. 

Water stagnation resulted in a pH at the anode (leaded solder) of 1.5 pH units lower than the bulk 

water pH (9.0) and as much as 2.5 pH units lower than the cathode (brass). These conditions can 

enhance lead release at the anode, which reflects different anodic–cathodic relationships of 

coupled metals primarily controlled by water flow. Most importantly, this work has demonstrated 

the ability to make real pH measurement at the surface of corroding metals using a novel 

microelectrode approach. Further investigations on galvanic corrosion process was conducted 

based on multiple parameters changed conditions, such as different pH, chlorine concentration, 

and alkalinity. Multiple microelectrodes were applied to the direct measurements. Results found 

that Maximum pH variation of 7.5 unit (ΔpH=7.5) between brass (pH 10.3) and solder surface (pH 

2.8) was found at neutral condition with less than 8 hours of stagnation. The average pH variation 
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exceeded 4 pH unit under different stagnant conditions. However, under flow condition, especially 

with high pH (pH 9) or high alkalinity condition (50 mg C L-1), the pH was more evenly distributed 

with their buffer pH. And no obvious surface oxygen (< 0.3 mg L-1) decrease was found. Data also 

showed that with addition of 3.0 mg P L-1 of orthophosphate as corrosion inhibitor, the pH diversity 

on coupon surface was greatly decreased under both flow and stagnant condition. Results were 

presented using 2D mapping technique in liquid-metal interfacial micro-environment. Also, 

surface characterization techniques were used to provide co-relation between water chemistry and 

coupon surface morphology. 

In the final stage of galvanic corrosion experiments, a novel method using a micro-ion-

selective electrode (micro-ISE) technique was developed for in situ lead monitoring at water-

metal interface of a brass-leaded solder galvanic joint in a simulated chlorinated drinking water 

environment. The developed lead micro-ISE (100 µm tip diameter) showed excellent 

performance toward soluble lead (Pb2+) with the sensitivity of 22.2±0.5 mV decade-1 and limit of 

detection (LOD) of 1.22×10-6 M (0.25 mg L-1). The response time was less than 10 seconds with 

a working pH range of 2.0–7.0. Using the lead micro-ISE, lead concentration microprofiles were 

measured from the bulk to the metal surface over time. Combined with two-dimensional (2D) pH 

mapping, this work clearly demonstrated that lead build-up across the lead anode surface was 

substantial, non-uniform, and dependent on local surface pH. A large pH gradient (ΔpH: 6.0) 

developed across the brass and leaded-tin solder joint coupon. Local pH decreases were observed 

above the leaded solder to a pH as low as 4.0indicating it was anodic relative to the brass. The 

low pH above the leaded solder supported elevated lead levels where even small local pH 

differences of 0.6 (ΔpH: 0.6) resulted in four times different surface lead concentrations (42.9 vs. 

11.6 mg L-1) and five times different fluxes (18.5×10-6 vs. 3.5×10-6 mg cm-2 s-1).  
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Overall, the research addressed key technical challenges associated with understanding 

the metal corrosion at multiple analytical scales through the combined use of microelectrode 

techniques, microscopic observations, other surface characterization techniques, and kinetic 

modeling, confirming what others have previously speculated or indicated by alternate "macro" 

methods. 
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CHAPTER ONE: INTRODUCTION 

This research was focused on the fundamental mechanisms at the early stages of corrosion 

on the surface of different metal pipe materials, via in-situ investigations of water chemistry 

changes using microelectrodes in simulated drinking water distribution systems.  The metal 

corrosion symptoms may include a localized corrosion in the presence of water disinfectants (e.g., 

free chlorine and chloramines). Copper, brass, ductile iron, cements and galvanic joints are typical 

common pipe materials used for drinking water distribution systems. This research addressed the 

key technical challenges associated with understanding the metal corrosion at multiple time length 

scales through the combined use of microelectrode techniques, microscopic observations, and 

kinetic modeling. 

The need to understand, assess, and reduce corrosion in drinking water is more urgent than 

ever due to the aging drinking water pipeline system around the country at the moment. Corrosion 

is a major cause of failure in water, oil, and energy infrastructure throughout the world, causing 

billions of dollars in losses annually. Particularly, corrosion and degradation of drinking water 

plumbing materials significantly deteriorates drinking water quality and causes a failure to supply 

safe water to the public. As a result of the Lead and Copper Rule,1 many water utilities in the U.S. 

have evaluated corrosion control strategies. A better understanding of the fundamental 

mechanisms contributing to the rates and magnitude of corrosion at the surface of pipe materials 

can lead to improved corrosion control strategies, reduction of the costs for distribution system 

maintenance and conservation of drinking water quality. Although new drinking water utilities and 

households now use polyvinyl chloride (PVC) or concrete-lined pipes, cast or ductile iron pipes 

are still 56.6 % based on the recent pipe inventory survey. PVC and polyethylene pipe are 17.7 % 
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of the pipe inventory survey . For the customer service line, about 56.3% of materials are copper 

pipes and 8% are galvanized line.2, 3 Among the most common causes of main breaks, internal 

corrosion contributed to 25%, leading to pipe leaks and water quality changes.4 In the early stage 

of my research, brass and cement were used as two representative reactive pipe materials which 

are susceptible to corrosion in drinking water distribution systems. Brass-lead joints were used as 

a representative galvanic joint which can be found in household plumbing systems in the following 

stage experiment. Although corrosion has been studied intensively and conceptual theories on the 

surface chemistry of corroding metals are available, actual measurements of chemical profiles that 

permit correlation between water chemistry and corroding metals at water-metal interfaces have 

not been made, limiting our fundamental understanding of corrosion mechanisms in 

microenvironments. Majority of existing studies focused on macroscopic investigation of the 

corroding materials and the knowledge gained is thus often case-specific and non-transferrable. 

Nano/microscale understanding of the fundamental mechanisms contributing to the rates and 

magnitude of corrosion at the surface of pipe materials can induce and enable unprecedented 

improvements in the prevention and mitigation of metal corrosion in drinking water environments, 

reduction of the costs for distribution system maintenance and conservation of drinking water 

quality. The utilization of microelectrode to quantify chemical changes can greatly improve the 

fundamental understanding of water chemistry at the metal surface level. 

The main objective of my research is to measure various chemical profiles directly using 

microelectrodes to investigate in-situ chemical reactions on the surface of metals used in drinking 

water distribution systems. The chemical profiles to be measured in this research include free 

chlorine (or monochloramine), DO (DO) concentrations, pH, and oxidation-reduction potential 

(ORP) microprofiles. The specific objectives are 1) to evaluate the disinfectant loss and evaluate 
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corrosion mechanisms of brass and cement materials, 2) to investigate corrosion across the surface 

of brass-lead galvanic joints in a micro-environment, 3) to extend chemical constituents effect on 

the galvanic corrosion with higher dose of dissolved inorganic carbon (DIC) and free chlorine 

concentration, and 4) the development of lead microelectrode for quantification of galvanic 

corrosion study. 

1.1. Abiotic reaction in brass and cement materials 

Corrosion in drinking water distribution systems (DWDS) can cause serious economic, 

environmental, and public safety problems from pipe damages, water loss, and water quality 

degradation. Over the past decades, corrosion mechanisms have been studied by monitoring bulk 

water quality changes and performing forensic studies of pipe-loops like surface characterization 

using electron microscopy.5-9 Even though metal surface chemistry has been analyzed using atomic 

force microscopy (AFM) and scanning electron microscope (SEM) characterization, the samples 

need to be scarified and further analysis (or temporal analysis) is not possible. In-situ liquid-solid 

water chemistry dynamics between chlorinated (or chloraminated) water and pipe materials over 

time has rarely been studied due to the limitation of techniques. The approach presented here is to 

provide a better understanding of the reactions of free chlorine (or chloramines) at the surface of 

brass and cement by applying microelectrodes to measure in-situ free chlorine (or 

monochloramine), DO concentration, pH and oxidation-reduction potential (ORP or redox) 

microprofiles from bulk water to the proximity of material surface (e.g., 50 µm above the surface). 

The obtained chemical profiles were interpreted to determine kinetic parameters and cross-

evaluated with SEM/EDS results, which can provide detail information on micro-scale corrosion 

process and diffusion-reaction kinetics of reactive pipe materials with chlorine (or chloramines) 
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and oxygen. The use of microelectrode techniques for investigating the in-situ reaction elucidate 

related corrosion mechanisms is the main novelty of this research.  

1.2. Galvanic corrosion mechanisms in brass-lead joints 

One form of corrosion, galvanic corrosion, results when two dissimilar metals are in 

electrical contact in water where one of the metals corrodes preferentially to the other. The impact 

of galvanic corrosion is an important issue that affects the quality of potable water by releasing 

metals of concern.  Lead (Pb) solder has been widely used as a galvanic joint for connecting home 

plumbing materials such as brass and iron. It accelerates the process of lead-containing particles 

releasing to the potable water with probable cause of construction disturbances or destabilization 

of corrosion byproducts at the galvanic connection with other new metal materials. Therefore, 

these joints have often caused the level of lead in aged drinking water service lines to reach 

regulatory incompliance. In 1991, the LCR was released by the U.S. Environmental Protection 

Agency (EPA) which required a lead action level lower than 15 µg L-1  and partial replacement of 

utility-owned lead service lines. However, the replacement of some lead service lines has been 

suspended for various reasons (e.g., high lead level in children’s blood found in DC area).10 The 

recent Flint water crisis brought national attention to the problem of lead leaching from aging pipes 

into the water supply. The average of lead concentration in the initial victim’s house is over 2,000 

µg L-1, 200 times more than the WHO standards (10 µg L-1  for adults) over 20 minutes of water 

usage.11 Studies have shown the main problem in Flint drinking water incident is the classic “red 

water” and extremely high lead concentration, which can be induced by the changing of water 

source and aged pipeline system 12 and also have shown that corrosive water sources and a lack of 

corrosion inhibitors in distribution systems may be the main causes.13 
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The issue for the Pb leaching in drinking water is mainly occurred during the water 

transportation and household plumbing stages due to galvanic/general corrosion on lead material, 

including lead pipes, tin coating, lead solder joints and fittings 14. In the case of water transportation 

pipeline perspective, before the Safe Drinking Water Act established in 1986, lead pipelines were 

used as a common drinking water transporting material, and according to Rosario-Ortiz et al., 22% 

of the pipelines in US are over 50 years old, which exceeds the average pipe failure age (47) 15. 

Although, Pb service line replacement was applied, studies showed that situations with partial Pb 

service line replacement could stimulate the Pb leaching in the drinking water 16-18. Also, upstream 

pipeline corrosion not only can affect the water quality of the specific area, with scales detachment, 

it can affect downstream and even household water quality as well due to the deposit corrosion 19. 

Due to various reasons (pH, disinfectant, alkalinity, etc.), galvanic corrosion can lead to household 

pipeline leaks and lead leaching. This urges progress in Pb monitoring and control in drinking 

water system.  

Many studies regarding to galvanic interactions with water chemistry changes have been 

conducted with bulk monitoring and microscopic investigations, the corrosion mechanisms are 

still unclear. Detail research on chemistry changes between water-metal surfaces have not been 

done in the galvanic corrosion initiation. In this study, a microelectrode system was applied to 

investigate in-situ chemical reaction between bulk water and metal surface with high spatial and 

temporal resolutions. Various in-situ two-dimensional (2D) spatial images (e.g., pH, DO, and free 

chlorine concentration distribution) across metal surfaces including galvanic corrosion will be 

constructed along with 1D chemical profile measurements and SEM and Energy Dispersive X-ray 

Spectroscopy (EDS) surface characterization.    
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CHAPTER 2: LITERATURE REVIEW 

2.1. Brass in DWDS: surface chemical reaction and corrosion mechanisms 

In drinking water distribution system, brass as a copper-zinc alloy has been widely as tap 

valves, heating components, varies fittings, and other fixtures.20 Even though the addition of zinc 

and other impurities, such as aluminum, silica, iron, lead and tin, greatly increased the resistance 

of corrosion for brass in drinking water, corrosion still occurs over time in different water 

environment.21 Previous studies have showed fundamental knowledge of brass corrosion 

mechanisms in drinking water. The main mechanisms of brass corrosion are due to dezincification 

and passive film formation. In dezincification process, it characterized by dealloying zinc from the 

brass material can result in pipe leakage, fitting failures and pitting problems.22 During the 

dezincification process, at the anode end, zinc was oxidized to zinc ions with cathode reaction of 

oxygen or other oxidants in the water gaining electrons.23 While passive film formation at the brass 

surface normally coupled with copper oxidation at the brass surface as an electron donor, and 

oxygen or chlorine species as electron acceptors. The key possible electrochemical half reactions 

related to dezincification mainly are listed below (1-5) 23:  

Anode reactions:  Zn →Zn2+ + 2e-         (1) 

   Cu →Cu2+ + 2e-         (2) 

 

Cathode reactions:  O2 + 2H2O + 4e- →4OH-         (3) 

  Cl2 + 2e-→2Cl-         (4) 

  Cu2+ + 2e- →Cu        (5) 

 

Dezincification process with leaching of lead can create a low pH environment for the 

pipeline surface, where localized pitting can be formed.23 However, at higher pH water 

environment, according to literature review,  a white particulate film (or block named “meringue”) 
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can be formed on brass surface.24 The formation of meringue is mainly due to the low zinc 

solubility with the production of zinc carbonate and causing blocking problems in brass fittings in 

the plumbing system.23 

2.2. Copper in DWDS: surface chemical reaction and corrosion mechanisms 

Copper corrosion is the result of the loss of solid copper metal to solution. This occurs 

when electrons are lost by the base metal, and the solid phase is transformed into soluble, dissolved 

cuprous (Cu+) and/or cupric (Cu2+) ions. During metal corrosion in drinking water, chemical 

oxidation occurs at anodes where electrons are released and alternately chemical reduction (the 

gain of the electrons) occurs at cathodes.25 In relatively new plumbing system, pure copper on pipe 

walls are exposed to the water environment and can be easily oxidized to cupric hydroxide 

(Cu(OH)2) which maintains high levels of soluble copper in potable water 26, 27 and in cases can 

contribute to human stomach problems from ingesting elevated soluble copper.28 For this reason, 

copper concentrations in drinking water are regulated by the USEPA LCR (USEPA, 1991) with 

action level at 1.3 mg L-1. For example, according to a copper Pourbaix  diagram presented in 

Figure 1,29 in saturated water without chlorine residual (or other oxidants) copper will 

spontaneously react with DO and form cupric ion according to the following balanced redox 

reaction  (1) 30: 

12 𝑂2 + 𝐶𝑢 + 𝐻2𝑂 → 𝐶𝑢2+ + 2𝑂𝐻− (pH ↑)        (6) 

Localized, or pitting, corrosion is a major cause of household copper drinking water pipe 

failure and, as a result, the subject of many studies on the relationship between pitting corrosion 

and water quality.25 Pitting corrosion describes the case where corrosion is localized and copper 

metal is lost at small, fixed anode points. Eventually, this attack penetrates the pipe wall. The 
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relatively large surrounding surface of the pipe surface serves as the cathode. Since the electron 

acceptors in drinking water are chlorine (or other disinfectant residual) and/or oxygen, the rate of 

corrosion is sensitive to the concentrations of both of these oxidizing agents. Pitting corrosion on 

the surface of copper pipes is a very complex phenomenon that involves many initiating factors 

including pH, temperature, oxygen, alkalinity, chloride, sulfate, phosphate, and organic matter, 

also operating conditions as stagnation time and pipe age.25  

 
Figure 1: Pourbaix diagram for copper in sodium solution.  
 

Copper pitting is normally considered as a two-step process including an initiation and a 

propagation process. The initiation process is not well understood, but is considered greatly 

depending on physical and chemical parameters, such as pH and oxygen.23, 31 However, for the 
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propagation process, it is generally believed to be proceeded with cathodic and anodic reactions in 

the presence of oxygen and free chlorine (2-4): 

Cathodic reactions:     
1
2

O2+2H++2e-→H2O           (7) 

HOCl+H++2e-→Cl-+H2O         (8) 

Anodic reaction:          2Cu0→2Cu++2e-          (9) 

In the anodic area of the copper pipe, the pit water pH becomes extremely low due to the 

Lewis acidity of released cupric ions, and in some cases the acidic environment will promote the 

corrosion of pit.23 

2.3. Cement in DWDS: surface chemical reaction and corrosion mechanisms  

Cement/concrete pipeline is mainly used in the drinking water transportation process as  

another important material.32 In field practice, newly installed ductile iron pipelines is typically 

lined with cement-mortar to protect iron materials from corrosion process.33 Cement (primarily 

Portland cement) contains calcium silicates, calcium aluminate, iron calcium aluminate, and 

gypsum, which can harden the cement through multiple reactions. While most drinking water 

corrosion studies focused on the metal corrosion, little research has been done on the cement 

materials. However, the degradation of cement material can greatly affect the quality of drinking 

water downstream and promoting the corrosion in the pipeline system.32 During the water 

transportation stage, if the water in the cement pipeline has low pH and low alkalinity, it could 

promotes the dissolution  of the cement material, which directly affect the integrity of the cement 

pipeline; when the water in the cement pipeline has relatively high pH and high alkalinity, it could 

lead to the aggregation of the cement material, which could lead to large scales formed at the 



10 
 

materials surface leading to pipeline blocking.33, 34 Furthermore, the corrosion process of the 

cement material can indirectly affect other chemical reactions, such as copper corrosion and lead 

leaching.32 These research results helped greatly to understand the fundamental knowledge of 

cement material behavior in drinking water systems.35-37 In the study of cement material for my 

research, it mainly focused on the investigation on the chemical profiles at the cement surface, 

which showed both great novelty and direct evidence for chemical reactions compared to the 

conventional experiments (weight change and surface characterization). This laid importance 

foundation for general corrosion studies, and the effect of the results can be further interpreted for 

other material studies.  

2.4. Brass–lead galvanic joints in plumbing systems: surface chemical reaction and corrosion 

mechanisms 

Galvanic corrosion has been a major issue in drinking water quality for the last decade. 

The general concept of galvanic corrosion is when two dissimilar metals are in electrical contact 

in water where one of the metals corrodes preferentially to the other. It can result in the metal 

concentration elevation the consumer’s drinking water. In my research, experiments were focused 

on lead leaching from the galvanic corrosion process. Lead (Pb) in drinking water can cause 

various health problems, such as kidney failure and damage to nervous systems, especially among 

children. Even though risks due to Pb exposure have been widely studied for many years, outbreaks 

of Pb in drinking water remain to be a serious issue over the last decade, such as Washington and 

Flint water crisis 38-40. According to EPA reports, over 2000 water utilities across the control have 

exceeds the Pb MCLs (15 µg L-1) over the past four years, and Florida is among the most 

contaminated states 41.  
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 Aside from the pure lead pipeline installed before 1986,  lead was mainly leached from 

lead service lines and leaded solder joints, which can be accelerated by the galvanic connection 

with other metal materials, 42-44 where lead (Pb) serves as an anode (location of oxidation) and lead 

ions (Pb2+) are released and the cathodic metal (brass) protected from a galvanic reaction (10-11).45  

Anode reaction: Pb →Pb2+ + 2e-          (10) 

Cathode reaction: O2 + 2H2O + 4e- →4OH-        (11) 

Although general theories regarding galvanic interactions leading to lead release have 

been described, and experimental and microscopic support has been reported,42-45 detail in-situ 

water quality measurements at the surface of galvanic connections have not been performed. 

Specifically, no direct measurements of water-metal interface chemistry on a micro-scale 

environment have been conducted, and thus a practical link between bulk water chemistry and 

the metal surface dynamics has not been well established. Therefore, an obvious need to better 

understand the surface chemical dynamics of galvanic couples leading to enhanced metal release 

is apparent. Conventional analytical approaches of Pb detection normally involves with 

expensive or high demanding methods, including inductively coupled plasma-atomic emission 

spectroscopy (ICP-AES), inductively coupled plasma-mass spectrometry (ICP-MS), continuous 

flow-cold vapor-atomic absorption spectrometry (CV-AAS), and total carbon and total sulfur by 

combustion 19. In last decade, numerous scientists have reported innovation methods for in-situ 

and ex-situ Pb monitoring (Table 1). As for industries and family, samples are normally collected 

and send it to the lab for analysis. 
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Table 1. Summary of Pb detecting main methods in drinking water 
Methods Detection 

limit 
Materials Limitation Reference 

Colorimetric  3 nM 
(0.625 ppb) 

Gold nanoparticles and 
DNAzyme 

pH adjustment 
required 
(Acidic) 

46 

Selective 
catalytic DNA 
biosensor 

10 nM (1.3 
ppb) 

Deoxyribozyme based  Fluorescence 
quenching 

47 

Stripping 
voltammetry 

Varies 
from 0.3 
ppb – 12 
ppb 

Bismuth, carbon, gold, 
antimony, 
boehmite@SiO2/Fe3O4, 
and boron-doped 
diamond 

Long 
accumulation 
time, toxic 
chemical release 

48, 49 

Dispersive 
liquid–liquid 
microextraction 
(DLLME) and 
flame atomic 
absorption 
spectrometry 
(FAAS) 

0.5 ppb Diethyldithiophosphoric 
acid (DDTP), carbon 
tetrachloride and 
methanol 

Special 
equipment 
required 
 
 

50 

Potentiometric  70 ppb PVC based membrane pH adjustment 
required (≤7) 

51, 52 

Industries lead leaching control strategies in drinking water varies due to the water source, 

facility location, and suggestions from the commercial chemical company. The common 

procedures include cathodic and anodic protection, metal pipe pretreatment and coating, and 

chemical additions to the drinking water. 

Cathodic/Anodic protection and metal pipe coating are normally done by the piping 

industry, while the chemical addition is performed by the water treatment plant. As for residents, 

different filters are suggested by the Disease Control and Prevention that can be applied to the 

house, such as reverse osmosis, distillation, and carbon filters, which are designed to remove lead. 

Also, it is recommended to test the water at the tap regularly. The main idea of applying chemicals 

as corrosion inhibitor to drinking water is to form a protective scale over the metal surface. These 
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scales are commonly recognized as inorganic precipitates. The formation of the passive film (Scale) 

can act as a diffusion barrier and reduce the corrosion rate 53. The available corrosion control 

treatment methods include pH/Alkalinity/DIC adjustment, phosphate-based inhibitors addition, 

and silicate inhibitors addition, which can be used to control the Pb leaching 54. However, different 

water quality needs different approaches and dosages, parameters including pH, metal ions, 

alkalinity, and disinfectants. These parameters are widely studied by researchers. For example, 

different disinfectants usage can change Pb leaching in drinking water. Xie and Giammar reported 

in 2011, with 1 mg L-1  of free chlorine presented in the drinking water, lead release was decreased, 

and Edwards and Dudi (2004), also illustrated more Pb leaching in drinking water when switching 

free chlorine to monochloramine as disinfectants 55, 56.  
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CHAPTER 3: MICROELECTRODE-BASED TEMPORAL 

INVESTIGATION OF THE IMPACTS OF CHLORINE AND 

MONOCHLORAMINE ON BRASS AND CEMENT 

3.1. Introduction 

Brass as a copper-zinc alloy has been widely used in drinking water distribution systems, 

mainly in house plumbing, such as tap valves, heating components, varies fittings, and other 

fixtures.20 The addition of zinc greatly improves the brass mechanical properties and made brass 

more cost effective compared to copper tubing. In addition, impurities incorporation of aluminum, 

silica, iron, lead, and tin can increase corrosion resistance to brass in drinking water conditions.21 

As brass has often been installed in the household plumbing systems, many studies have been done 

to investigate the chemistry reaction of the brass material and water environment. The main 

mechanisms of brass corrosion are due to dezincification and thin film formation. Dezincification 

characterized by dealloying zinc from the brass material can result in pipe leakage, fitting failures 

and pitting problems.22 The key possible electrochemical half reactions related to dezincification 

mainly are listed below 23:  

Anode reactions:  Zn →Zn2+ + 2e-        (12) 

    Cu →Cu2+ + 2e-        (13) 

 

Cathode reactions:  O2 + 2H2O + 4e- →4OH-        (14) 

   Cl2 + 2e-→2Cl-        (15) 

   Cu2+ + 2e- →Cu       (16) 

 



15 
 

Due to the selective leaching process of zinc at low pH, the brass pitting can be localized.23 

However, at high pH, a white particulate film (or block named “meringue”) can be formed on brass 

surface.24 The formation of meringue is mainly due to the low zinc solubility with the production 

of zinc carbonate and causing blocking problems in brass fittings in the plumbing system.23 

Cement/concrete is another important material used for drinking water distribution 

pipelines.32 In field practice, newly installed ductile iron pipelines is typically lined with cement-

mortar to protect iron materials from corrosion process.33 Cement (primarily Portland cement) 

contains calcium silicates, calcium aluminate, iron calcium aluminate, and gypsum, which can 

harden the cement through multiple reactions. For last two decades, numerous research had 

investigated the relationship among water chemistry, concrete materials, and iron materials. In 

1996, American Water Works Association Research Foundation and DVGW-Technologiezentrum 

Wasser (AwwaRF and TZW) reported that calcium related compounds from the cement can 

dissolve into the drinking water based on the saturation point and their solubility, which can 

significantly increase the pH of the water, therefore affecting the drinking water environment 

aspects, such as corrosion control chemicals, disinfection by-products (DBPs) formation, and 

scaling.33 Other researchers later tested and found that metal impurities can also leach into the 

drinking water.57, 58 In 2007, Trussel and Morgan proved that calcium silicate dissolution in the 

water can greatly affect the integrity of cement-lined pipes.34 In 2012, Parks et al. investigated how 

zinc and orthophosphate to prevent chemicals from leaching and scaling in cement materials at 

different alkalinity, pH, and hardness.32 And a lot more research have been done relating to this 

subject.35-37 

Understanding water chemistry changes on pipe materials can help to understand the 

mechanisms of pipe corrosion processes, however, for both brass and cement materials studies, 
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most of them were focused on using electrochemical methods (corrosion potentials, current, and 

noise), metal leaching to the water environment, weight changes and other technologies and 

limiting information can be gained from these methods.5, 20, 34, 36, 37, 59, 60 Little research has been 

conducted on the simulation of corrosion for both materials, especially on a micro-level of study. 

One key point of investigating the corrosion process is to study the chemistry changes over the 

material surface at certain time length, such as disinfectants concentration, oxygen level, and pH 

of the water environment. Even though microelectrode technique has been extensively used in the 

biomedical field and bioscience field since late 1960s,61-63 only a few studies used the 

microelectrodes for investigating corrosion of reactive materials.64-66 With the acknowledgement 

of these information can help us better to gain a more profound understanding regarding to the 

corrosion process of brass and cement in the distribution systems. This study has three specific 

objectives to present: 

• Gain detail information about surface water chemistry changes by direct measurements of 

pH, oxygen and free chlorine (or monochloramine) using microelectrodes on material 

surface. 

• Understand reactions of brass and cement materials with different chemicals in the bulk 

water over time. 

• Evaluate the effect of pH, chlorine species and oxygen on brass and cement materials 

surface characterization over time. 
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3.2. Materials and Methods 

CDA 443 brass slides (UNS C44300, admiralty brass, density 8.52 g/cm3, Metal Samples 

Co., Munford, AL) and concrete coated slides (BST 503-12, BioSurface Technologies Corp., 

Bozeman, MT) were used for abiotic corrosion tests. A brass slide was cut into small pieces of 

coupons (1.5 × 1.2 cm) and cleaned by following G31-72 67 and D2688-83 68, two American 

Society for Testing and Materials (ASTM) coupon wash procedures. Concrete coupon was cut into 

two similar size pieces (size not measured), and then gently flushing and immersing in DI water 

for 5 minutes to eliminate any impurity contamination from other sources.32 

Total four sets of flow cells were constructed and operated for abiotic tests (Figure 2. Ex 

1: brass coupon with free chlorine, Ex 2: brass coupon with monochloramine, Ex 3: cement coupon 

with free chlorine, and Ex 4: cement coupon with monochloramine). In each test set (Figure 2), 4 

coupons were placed in a special designed transparent acrylic flow cell followed by a reduced-

mass-transfer (RMT) cell with two coupons in it. The feeding solution of artificial tap water was 

prepared with composition of 100 mg Cl- L-1, 100 mg SO4
2- L-1, 10 mg C L-1  dissolved inorganic 

carbon (DIC), and 2.0 mg Cl2 L-1  at 23 ºC (Table 2). pH was adjusted to 7.0 by adding 1 M HCl 

or 1M NaOH. A calculated amount of NaHCO3, NaSO4, and NaCl (Fisher Scientific, Fair Lawn, 

NJ) were added into 20L feeding tank with DI water to match background SO4
2-, Cl-, and DIC. 

The artificial tap water was air-saturated by bubbling air for 15 min before pH adjustment and free 

chlorine (or monochloramine) addition. Free chlorine solutions were prepared by diluting 6% 

sodium hypochlorite (Fisher Scientific, Fair Lawn, NJ) to 10,000 mg Cl2 L-1  as stock solution, 

and then diluted to the target concentration in the bulk test water solution for the experiments. 

Monochloramine solutions were prepared with the same stock solution, with addition of ammonia 

at a Cl2: N ratio of 4 by weight at pH 8.0 and adjusted back to 7 for the operation control.69 The 
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artificial tap water was then fed into the flow cell at 2 ml/min of flow rate using a peristaltic pump 

(Masterflex, Cole-Parmer Instrument Company, Court Vernon Hills, IL). 

 
Figure 2. Operation setups & Microelectrode profiling setups. 
 
Table 2. Experiment operating conditions for microelectrode profiles. 

Operating parameters Detail information 

Flow speed 2 ml/min 

pH condition 7.0 

Background ions concentrations 0.83 mM NaHCO3,100 mg SO4
2- L-1, and 100 mg Cl- L-1. 

Disinfectant concentration 2.0 mg Cl2 L-1  (free chlorine/chloramines) 

Oxygen concentration Saturated 

Temperature Room (~23 oC) 

Light condition Dark 

 

Free chlorine (or monochloramine), pH, and oxygen were measured directly using 

microelectrodes for each coupon. pH microelectrode (pH-10, 10 µm tip diameter, UNISENSE A/S, 

Denmark) and oxygen microelectrode (Ox-10, 10 µm tip diameter, UNISENSE A/S, Denmark) 

were used for pH and oxygen microprofile measurements, respectively. Free chlorine and 

monochloramine microelectrodes were fabricated in the lab.70, 71 The tip diameter of free chlorine 
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and monochloramine microelectrodes were controlled at 10 µm, and calibrated with level of 

confidence at 99%. Microelectrodes used in this research were pre- and post-calibrated.   

Microprofiles were then conducted at Day 0, and 60 under flow condition along with day 

120 under both flow and RMT conditions. For microprofile measurements, the working 

microelectrode was connected with an Ag/AgCl reference milli-electrode (MI-401, 

Microelectrodes Inc., Bedford, NH) and the microelectrode tip was positioned by controlling a 3D 

micromanipulator (UNISENSE A/S, Denmark) under a microscope (World Precision Instruments, 

Sarasota, FL) inside the Faraday cage. The microprofiles were then step-size measured from bulk 

solution to coupon surface at 50 µm intervals. A guide microelectrode was used during profile 

measurements to identify the coupon surface.72 The electrical signals (pA or mV) were recorded 

using a multimeter (UNISENSE A/S, Denmark), a data acquisition system, and a software program 

(SensorTrace Pro 3.0, UNISENSE A/S, Denmark). Two random locations were selected for the 

microprofile experiments and duplicate measurements were conducted for each parameter at each 

location. SEM/EDS experiments for each coupon were also conducted on the following day 

(Figure 3). 

 

 

Figure 3. Horizontal view of coupons for multiple purposes. 
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3.3. Results and Discussion 

3.3.1. Surface changes over 120 days for brass and cement coupons 

During the profiling experiments, coupon surfaces were monitored under the microscope 

for both observation and micro-electrode positioning control purposes. At Day 0, the initial 

profiling stage, brass coupon in monochloramine solution had dark substances appeared on the 

surface after one-hour pretreatment during the microprofiling experiment, while in free chlorine 

solution, the brass coupon remained a shining yellow color throughout the whole process (Figure 

4, Day 0). Similarly, during the entire experiment operation period, it appeared that the dark 

substances coverage of brass coupons in monochloramine solution were much faster compared to 

the ones in free chlorine solution under flow condition. This observation is in the agreement with 

the previous brass corrosion studies.5, 7, 60, 73 However, in RMT cell (Figure 4, RMT Day 120), the 

results were opposite to the free chlorine condition, brass with uniformed dark matters in free 

chlorine solution was observed, and in monochloramine solution, brass surface was covered of 

dark brown material mottled with original yellow color. Surface changes on cement coupons were 

more similar in either solutions. Both coupons started to have yellow substances developed on the 

surface around Day 60, and cement coupon under free chlorine condition had a larger overlapping 

area and darker color (Figure 5), similar situation for concrete coupons in RMT cells. 
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Figure 4. Surface changes on brass coupons over 120 days through microscope observations. 
 

 

Figure 5. Surface changes on cement coupons over 120 days through microscope observations 
 
 
 
3.3.2. Water chemistry profiles and consumptions on brass and cement coupons 

Microprofiling experiments were conducted on coupons at day 0, 60, and 120 under flow and 

reduced-mass-transfer (RMT) conditions. For brass in free chlorine solution (Figure 6a), profiles 
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showed constant decrease of free chlorine concentration at surface with time. At day 120, the 

concentration of free chlorine at brass surface reached about 0.28±0.09 mg Cl2 L-1  under flow 

condition. Similar trend was found in oxygen profiles for brass in free chlorine solution (Figure 

6b), even though the differences between each stage were less obvious. Brass coupon in RMT cell 

appeared to be much less reactive to free chlorine than in flow condition, the free chlorine 

concentration at the brass surface (1.45±0.04 mg Cl2 L-1) were higher compared to day 0, indicating 

only small portion of free chlorine were consumed at the reaction of RMT cell, indicating much 

less free chlorine was consumed at the brass surface in RMT cell. However, unexpected oxygen 

decreasing in RMT condition was measured. The oxygen concentration reduced 35% (5.21±0.64 

mg L-1) at brass surface compared to the bulk concentration (Figure 6b). The reactions between 

brass and free chlorine were much more significant influenced by the flow, while oxygen appeared 

to be the significant factor for brass reaction under RMT condition. 

Monochloramine was known as a much more stable disinfectants in the drinking water, 

and a less reactive disinfectant compared to free chlorine.74 Profiles of monochloramine at the 

brass surface showed relatively similar results at day 0, 60 and RMT conditions. Monochloramine 

remaining concentrations in these stages were able to maintain above 55%. However, at day 120 

under flow condition, monochloramine concentration experienced a dramatic decrease at the brass 

surface with concentration of 0.33±0.18 mg Cl2 L-1  left, similar to free chlorine result at the same 

stage. What distinguish from free chlorine was that, under monochloramine condition, profiles 

showed a much important role of oxygen in both flow and RMT conditions. Lower concentration 

of oxygen was measured on brass surface in monochloramine condition compared to free chlorine 

condition, indicating that oxygen might be the key factor for brass corrosion in monochloramine 

condition. One interesting observation was discovered from the results, at day 60, oxygen 
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reactivity on brass surface for both conditions reduced to the minimum level, less than 4% of 

oxygen were consumed at this stage (Figure 6d). Despite the differences in profiles of brass in free 

chlorine and monochloramine solutions over 120 days’ time period, resemblance in disinfectants 

and oxygen consumption at day 120 under flow and RMT conditions cannot be denied (Figure 6). 

Both free chlorine and monochloramine showed up to 80% consumption at the surface under flow 

condition, while merely 20% of which were found under RMT condition. Oxygen, on the other 

hand, gave an opposite conclusion, almost 20% more oxygen consumptions were measured in both 

free chlorine and monochloramine solutions under RMT conditions, which showed that free 

chlorine and monochloramine was much more reactive under flow condition, and oxygen can be 

the main reactant for brass under RMT condition.  
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Figure 6. Long-term chemical profiles for brass coupon from day 0 to day 120 under flow and 
RMT conditions. (a) & (b) Free chlorine and oxygen profiles of brass in chlorinated condition; (c) 
& (d) Monochloramine and oxygen profiles of brass in chloraminated solution (pH 7, chlorine 
residuals 2 mg L-1, oxygen 8.5 mg L-1). 
 

Free chlorine profiles on cement coupon showed that the reactivity at day 0, 60, and RMT 

stages were quite similar due to the surface concentration measured. However, it was observed 

that free chlorine was greatly declined to 0.67±0.06 mg Cl2 L-1  at day 120 under flow condition. 

This was probably occurred due to the increased dissolution of lime from the cement material,32 

or the reaction between free chlorine and the yellow substances developed on the cement coupon 

after 60 days. Comparable profiles were also found on oxygen concentrations on cement coupon 

in free chlorine solution. At day 0 and 60, unnoticeable decrease of oxygen concentrations was 

measured 50 µm above the surface. While at day 120, under both flow and RMT conditions, 
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oxygen concentrations showed a dramatic drop. Again, this decreasing showed that oxygen played 

an important role under RMT conditions, which was similar to the oxygen in brass profiles. As for 

cement in monochloramine solution (Figure 7c&d), profiles for both monochloramine and oxygen 

were completely opposite from results obtained in free chlorine for cement materials. The 

monochloramine concentration was much lower at the cement coupon surface at day 120 under 

flow condition (0.46±0.05 mg Cl2 L-1), indicating the reaction of monochloramine at surface was 

much more severe than free chlorine, while the oxygen concentration under flow and RMT were 

merely decreased about 0.9 mg L-1.  

 

Figure 7. Long-term chemical profiles for cement coupon from day 0 to day 120 under flow and 
RMT conditions. (a) & (b) Free chlorine and oxygen profiles of cement coupon in chlorinated 
condition; (c) & (d) Monochloramine and oxygen profiles of cement coupon in chloraminated 
solution (pH 7, chlorine residuals 2 mg L-1, oxygen 8.5 mg L-1). 
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Figure 8. Free chlorine (or monochloramine) and oxygen consumption with reactive surface for 
brass and cement coupons over 120 days. (a) free chlorine consumption and (b) oxygen 
consumption (FC: free chlorine, Mono: Monochloramine). 
 
3.3.3. Surface characterization of brass and cement coupons 

When brass and cement coupons were conducted in profiling experiments for different 

parameters, surface characterizations (SEM/EDS analysis) were also performed with same time 

line. At Day 0, brass coupons in both conditions showed relative smooth surface with minor scratch 

on the surface. After 60 days, brass in free chlorine conditions formed “valley” areas with high 

zinc contents (40.73%) according to the EDS results (Figure 9). Similar high zinc area was also 

found on day 120 under flow and RMT condition, and after 5000 times magnification, fiber 

structured zinc compounds were developed at the coupon surface without any copper detection. 

This could be the re-deposition of zinc carbonate compounds.23 Similar formation was found on 

brass surface in monochloramine condition, however, few places with high zinc compounds were 

found in monochloramine brass coupon and none were found in RMT conditions for brass in 

monochloramine, which could be the increased dezincification process on brass surface in the 

monochloramine condition. 
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Figure 9. High selective zinc leaching area and zinc compounds forming area SEM images and 
EDS results of brass coupon in free chlorine solution at day 60 and 120. 
 

 
Figure 10. High selective zinc leaching area and zinc compounds forming area SEM images and 
EDS results of brass coupon in monochloramine solution at day 60. 
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SEM images of cement coupon in both solutions were comparably alike (Figure 11). At 

initial stage (Day 0), cubical shaped cement materials were closely attached to the coupon surface. 

After 60 days, under both free chlorine and monochloramine conditions, large silicon stones were 

appeared on under the SEM images. And fully exposure of silicon stones was found in Day 120 

under flow and RMT conditions for both solutions. This dissolution of cement materials 

observation validated the previous mechanism of cement behavior in drinking water system 

pipelines.32 

 

Figure 11. Long-term SEM images of cement coupon in free chlorine and monochloramine 
solutions under flow and stagnant condition (500 times magnification).  
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3.3.4. Weight losses of brass and cement coupons in RMT condition 

The weight loss of brass was controlled under averaging 5% (Figure 12). The difference 

between brass in free chlorine and monochloramine might due to the higher dezincification rate 

showed in the EDS results, and continuously re-deposit of zinc compounds on brass surface in free 

chlorine solution resulted in half less weight loss. Higher weight loss was also found in cement 

coupon in monochloramine condition. It appeared that the dissolution rate of cement materials was 

much   faster in monochloramine solution rather than in free chlorine solution. The larger formation 

of yellow substance on cement coupon surface probably attributed to this result. Further study is 

needed to determine the yellow substance. The high rate of cement material loss could result in 

the penetration of chloride ion into the cement-lined steel, causing further corrosion in the drinking 

water system.75 

 

Figure 12. Weight losses of brass and cement in free chlorine and monochloramine under 
stagnation. 
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3.4. Conclusion 

Brass and cement reactions with disinfectants and oxygen in abiotic artificial water 

environment were closely examined on micro-level in the present study, which provides a more 

detailed understanding between water chemistry and surface characteristic changes of brass and 

cement in corrosion studies. In this applied water type, free chlorine and monochloramine served 

a significant role for both brass and cement corrosions under flow condition, and both of which 

showed great reactivity during the experiments. In the reduced-mass-transfer cell, the oxygen 

availability appears to be the essential factor to the corrosion processes with high consumption rate 

at the coupon surface. On brass coupons, selective leaching of zinc gets extremely serious at certain 

areas over time, especially under monochloramine condition, while under free chlorine condition, 

re-deposit of zinc compounds can be easily found on the surface under artificial water. According 

to previous review, cement behavior in both solutions were similar to the dissipating process of 

cement material with elevation the pH of the surrounding water environment. These results provide 

detailed information of key parameters change over the material surface, and can be used to assist 

the further study on the abiotic corrosion and biotic corrosion studies for brass and cement 

materials in the future. 
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CHAPTER 4.  IN-SITU 2D MAPS OF PH SHIFTS ACROSS BRASS-LEAD 

GALVANIC JOINTS USING MICROELECTRODES 

4.1. Introduction 

Corrosion in drinking water distribution systems can cause serious economic, 

environmental and public safety problems from pipe damage, water loss and water quality 

degradation. One form of corrosion, galvanic corrosion, results when two dissimilar metals are in 

electrical contact in water where one of the metals corrodes preferentially to the other. The impact 

of galvanic corrosion on metal release is an important issue that affects the quality of potable water.  

The practice of partial lead (Pb) service line replacement and the associated possible increased risk 

of lead release into drinking water has been a concern.10, 42, 76 Lead-containing particles are being 

released due to disturbances associated with construction, destabilization of corrosion by-products 

on the remaining lead pipe, and galvanic corrosion at the connection between the remaining lead 

pipe and new service material such as copper. These are many causes for elevated lead release 

following partial lead service line replacement. Lead leaching from lead service lines and leaded 

solder joints can be accelerated by the galvanic connection (Table 3) with other metal materials42-

44 including brass and copper, where lead (Pb) serves as an anode (location of oxidation) where 

lead ions (Pb2+) are released and the cathodic metal (brass) protected from a galvanic reaction (17-

18).45  

Anode reaction: Pb →Pb2+ + 2e-           (17) 

Cathode reaction: O2 + 2H2O + 4e- →4OH-         (18) 
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Table 3. Galvanic series of selected metals and alloys and standard electrode potential 
(electromotive force series). 

Galvanic series of selected metals and  

alloys in seawater 
Electrode reaction 

Standard electrode 

potential  

(V-SHE* @25 oC)  

Cathodic (noble, 

least likely to 

corrode) 

↑ 

 

 

↓ 

Anodic (active, 

most likely to 

corrode) 

Gold Au2+ + 2e- ↔Au 1.50 

Silver Ag2+ + 2e- ↔Ag 0.80 

Copper Cu2+ + 2e- ↔Cu 0.337 

Brasses  

Tin Sn2+ + 2e- ↔Sn -0.136 

Lead Pb2+ + 2e- ↔Pb -0.126 

Lead-tin solders  

Zinc Zn2+ + 2e- ↔Zn -0.763 

Magnesium Mg2+ + 2e- ↔Mg -2.37 

 

Although general theories regarding galvanic interactions leading to lead release have been 

described, and experimental and microscopic support has been reported,42-45 detail in-situ water 

quality measurements at the surface of galvanic connections have not been performed. Specifically, 

no direct measurements of micro-environment water chemistry at metal surface have been 

conducted, and thus a practical link between bulk water chemistry and the metal surface dynamics 

has not been well established. Therefore, an obvious need to better understand the surface chemical 

dynamics of galvanic couples leading to enhanced metal release is apparent. In order to provide 
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effective mitigating solutions for reducing metal release associated with galvanic corrosion and 

complying with the lead and copper rule (LCR),77 in-situ water-metal interaction of galvanic joints 

must be better understood. Many studies have been conducted to evaluate the impact of water 

quality parameters on brass corrosion, for example, pH, temperature, DO (DO), free chlorine (or 

monochloramine), chloride, corrosion inhibitors and others.5-9 Electrochemical measurements 

(e.g., current density), visual observation, weight loss, metal release and surface characterization 

are also commonly used as analytical methods for studying corrosion in water. Arnold and 

Edwards (2012)78 demonstrated a mass balance of lead release by measuring electrochemical 

potential (Ecorr vs. Ag/AgCl) of metal and investigating lead release from galvanic connections in 

different water patterns, disinfectants, and corrosion inhibitor. Nguyen et al. (2010)9 evaluated the 

relationship between chloride to sulfate mass ratio (CSMR) and the associated galvanic current 

using an electrochemical method, surface characterization and microelectrode techniques.  

These methods provide fundamental understandings of brass corrosion; however, they 

have been limited to bulk monitoring. Direct measurements in the proximity of the very surface is 

required for better understanding of corrosive microenvironment to develop appropriate control 

corrosion strategies (e.g., lead leaching control). Some of studies used electrode (or microelectrode) 

technique;9, 78 however, most of them used a macro electrode (e.g., a standard hydrogen electrode 

(SHE) electrode) which is not able to provide a localized chemical information. pH 

microelectrodes (Microelectrode Inc.) were also used to investigate pH changes,9 however, a 

relative big tip diameter (0.8 mm) was limited to measure one dimensional (1D) profile (e.g., 1D 

pH and chloride profiles along with pipe distance) in a bulk of copper joint macrocell. Although 

pH is one of the most important parameters for elucidating corrosion mechanism, the measurement 

was limited only to the bulk and no two-dimensional (2D) surface contour map of pHs on a metal 
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surface (or galvanic couple) has not been constructed due to the lack of microelectrode technique 

to measure chemical profiles in the proximity of the very surface. In order to better understand 

conditions at galvanic connections that lead to enhanced metal release and provide remedial 

strategies, the localized corrosion reaction at water-metal interfaces must be better understood. 

The objective of this work is to develop a new experimental methodology to measure in situ pH 

changes from the bulk to the proximity to metal surfaces and construct 2D maps across a galvanic 

joint, providing a direct evidence of micro-environment’s chemistry dynamics for better 

understanding of galvanic corrosion mechanisms. Brass was selected as a representative material 

for a galvanic connection with a lead-tin solder. Brass is a copper-zinc alloy that often contains 

relatively small amounts of lead and has been widely used in drinking water distribution systems, 

especially in premise plumbing components including faucets, valves and other types of 

connectors.7, 60, 79 Brass coupons alone were also used for construing a 2D pH contour map to 

establish a baseline. Two different flow conditions (flow vs. stagnation) were compared to evaluate 

the effect of flow on pH at the metal surfaces. Although it is well known that galvanic corrosion 

can result in the localized change of pH, the present work found a novel phenomenon that flow 

and stagnation may result in an opposite trend for the change of pH. The results of this study 

provide a direct evidence of pH shifts on the metal surface across a galvanic joint which have been 

hypothesized for many years. 3, 18, 26-29    

 

4.2. Materials and Methods 

4.2.1. Metal Coupons Preparation 

 New brass CDA 443 coupons (UNS C44300, admiralty brass, density 8.52 g/cm3, 

Metal Samples Co., Munford, AL) with 1.6 mm thick×12 mm wide×140 mm long were cut into 
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small sections (1.6 mm thick×12 mm wide×14 mm long). The sections of brass coupons were 

cleaned using a combination of two American Society for Testing and Materials (ASTM) coupon 

wash procedures: G31-7267 and D2688-83.68 Four sections were immersed in a specifically 

designed Teflon flow cell (Brass 1) with a flow at 2 ml/min of a synthetic chlorinated water (Figure 

13). For the first 120 days, a test water with a pH 7.0, 100 mg Cl- L-1, 100 mg SO4
2- L-1, 10 mg C 

L-1  dissolved inorganic carbon (DIC), 2.0 mg Cl2 L-1  free chlorine at 23 ºC was fed through the 

flow cell. After 120 days, free chlorine concentration was increased to 4.0 mg Cl2 L-1  and pH was 

adjusted to pH 9.0 to provide a corrosive environment in order to accelerate brass corrosion.5, 43, 80 

At the same time (at 120 days of Brass 1), another four sections of brass coupon were immersed 

in a separate flow cell (Brass 2) under the same water conditions (pH 9.0 and 4.0 mg Cl2 L-1). Then, 

after 80 days of aggressive water environment, each brass coupon was taken from each flow cell 

and 1D pH microprofiles and 2D pH contour maps were measured for each coupon (i.e., 200-day 

aged coupon for Brass 1 and 80 day aged coupon for Brass 2). For preparation of the test water, 

reagent grade chemicals (NaHCO3, NaSO4, and NaCl) (Fisher Scientific, Fair Lawn, NJ) were 

added into a 20 L carboy with DI water. Free chlorine solutions were prepared by diluting 6% 

sodium hypochlorite (Fisher Scientific, Fair Lawn, NJ) to 10,000 mg Cl2 L-1  as stock solution, 

then diluted to the target concentration in the bulk test water solution for the experiments. HCl and 

NaOH were used for pH adjustments. The bulk water was air-saturated before the pH adjustment 

and free chlorine addition. Flow cells were operated in the dark by covering them with aluminum 

foil. 
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Figure 13. Schematic diagram of the simulated water distribution system for aged brass and 
galvanic coupons preparation. 
 
 After cleaning (see Section 2.1.1 ASTM brass cleaning procedures), two small pieces 

of brass coupon (CDA 443, admiralty brass, Metal Samples Co., Munford, AL) were connected to 

each other with a 3-mm in length and 8-mm in width 50:50 Pb-Sn solder (38110, Forney) to create 

a simulated brass-lead soldered galvanic joint coupon (8-mm in width and 25-mm in length). The 

fresh galvanic coupon was placed in a flow cell (Figure 13) under the same aggressive water 

condition as brass coupons (pH 9.0, 100 mg Cl- L-1, 100 mg SO4
2- L-1, 10 mg C L-1  DIC, 4.0 mg 

Cl2 L-1  free chlorine, and 23 ºC) for two weeks. The galvanic joint coupon was then taken for pH 

profile measurements and 2D pH contour mapping. The flow cell was also operated in the dark by 

covering it with aluminum foil. 
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4.2.2. Microprofile measurements and pH contour mapping 

 

Figure 14. pH 2D contour mapping experimental setup. (a) microprofiling setup, (b) flow cell 
system for microelectrode profile measurements. 
 

pH microprofiles were measured using a pH microelectrode (70 and an automatic 3D 

micromanipulator (World Precision Instruments, Sarasota, FL) (Figure 14). The pH 

microelectrode used in this work has been widely used and its performance has been validated 

previously.81-83 Each coupon taken from each flow cell was moved to a transparent acrylic flow 

cell which was filled with the same test water (i.e., pH 9.0, 100 mg Cl- L-1, 100 mg SO4
2- L-1, 10 

mg C L-1  DIC, and 4.0 mg Cl2 L-1  free chlorine). The coupon was then acclimated under the same 

water condition for one hour before profile measurements. The pH microelectrode was connected 

with an Ag/AgCl reference milli-electrode (MI-401, Microelectrodes Inc., Bedford, NH) and the 

sensor tip was positioned by controlling a 3D manipulator (UNISENSE A/S, Denmark) under a 

microscope (World Precision Instruments, Sarasota, FL). The microprofiles were then measured 

from the bulk to 100 µm above the metal surface. After positioning a pH microelectrode, 10-30 
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seconds was spent to stabilize the pH readings initially. Then, pH (as mV vs. Ag/AgCl) was 

measured by moving the tip of the sensor (3 sec), waiting before the signal recording (3 sec), and 

recording the signal (3 sec). 1D profiles were measured triplicate (or duplicate) to ensure that the 

measured pH microprofile is representative and reproducible. Under flow condition, flow was 

controlled at 2ml/min, the flow effect on the pH measurements was very minimal and negligible. 

Pre- and post-calibration were conducted for every pH profile measurement. The metal coupon 

surface was initially identified with a used microelectrode. The electrode signals were monitored 

and recorded using a multimeter (UNISENSE A/S, Denmark), a data acquisition system and a 

software program (SensorTrace Pro 3.0, UNISENSE A/S, Denmark). Microelectrode profile 

measurements using a control coupon (e.g., polycarbonate slides) were conducted and validated 

previously.84, 85   

For the 2D pH map, pH was measured at 100 µm above the metal surface with a certain 

grid. For the 80-day aged brass coupon, a total of 25 points (5×5) were measured over the coupon 

surface of 6,400 µm (W) × 7,200 µm (L) with a distance interval of 1,600 µm (W) and 1,800 µm 

(L). For the 200-day aged brass coupon 2D pH map, 25 points (5×5) were measured over the 

coupon surface of 4,000 µm (W) × 7,200 (L) with a distance interval of 1,000 µm (W) and 1,800 

µm (L). Triplicated data was recorded in each point for 2D mapping. Triplicates for the pH 

measurements indicate three profiles measurements at one point before moving to a next point. 1D 

pH microprofiles were measured from the bulk (2,000 µm above the metal surface) with a 50 µm 

interval, and at least two random locations were selected to investigate the heterogeneity of 

measured pH profiles (Figure 15). Each measurement was replicated at least once. The total 

duration for obtaining a 2D pH contour map of a single brass coupon was 1.5 to 2.5 hours. For the 

galvanic solder coupon measurement, 30 points (3×10) were selected over the coupon surface of 
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4,000 µm (W) × 18,000 (L) with an interval 2,000 µm (W) and 2,000 µm (L) under flow condition, 

and 65 points (5×13) were selected over the coupon surface of 4,800 µm (W) × 24,000 (L) with 

an interval of 1,200 µm (W) and 2,000 µm (L) under stagnant condition. Triplicated data was also 

recorded in each point for 2D mapping. Three different locations (brass | solder | brass) were 

selected for 1D pH microprofile measurement (Figure 15). Each measurement was replicated at 

least once. The total duration for obtaining a 2D pH contour map of a galvanic coupon was 3 to 4 

hours. After surface pH scanning with the pH microelectrode, 2D maps were constructed using a 

programming language (Python 2.7.10, Python software). Free chlorine concentrations in the bulk 

solution in a flow cell were measured before and after the experiments by a colorimetric test kit 

(Hach–8021) and a DR 5000 spectrophotometer (Hach Co.). Weight loss of the galvanic solder 

coupon was measured on a weekly basis. The pH microelectrode was pre- and post-calibrated 

during the profiles to make sure that the pH changes are not from the electrode signal drift.  

 

Figure 15. Optical microscopic images of brass coupons and galvanic coupon in a microprofiling 
flow cell. (a) 80 days aged brass coupon. (b) 200 days aged brass coupon. (c) 14 days aged brass-
lead galvanic connection coupon. 
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4.3. Results and Discussion 

4.3.1. 2D pH shift on aged brass coupons 

After 80 and 200 days of flow cell operation, the colors of both brass coupon surfaces 

turned from their original bright yellow to dark brown, reflecting the development of corrosion 

by-products on the surface (Figure 15a and b), which has been reported in previous brass corrosion 

studies.5, 7, 60, 73 The 200-day brass coupon showed more homogenous dark brown corrosion by-

products formation across the surface than the 80-day coupon.  

 

Figure 16. 2D pH contour map of 80 days aged brass coupon. (a) 2D map grid with scale, (b) with 
flow (2 ml/min). (c) under stagnation. The pH in the bulk solution was 9.0. 
 

2D pH surface profiles above the brass coupons showed that the water flow influenced the 

pH across the coupon surface (Figure 16 and 17). During flow, the pH near surface averaged pH 

9.0 and was relatively uniform across the surface for coupons after 80 and 200 days (Table 4, 

Figure 16b and 17b), which was the same as the bulk pH. However, under the stagnation of 1.5 to 

2.5 hours, the pH varied from 9.0 (min.) to 9.5 (max.) with an average of 9.4±0.08 across the 80-

day brass coupon surface (Figure 16c) and from 9.1 (min.) to 9.4 (max.) with an average of 
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9.2±0.08 across the brass coupon surface after 200 days (Figure 17c). Water stagnation increased 

the pH at the brass surface as compared to the bulk water. In addition, the pH across the surface 

was much more variable. During the stagnation test, free chlorine residual was maintained at 3.8 

and 3.1 mg Cl2 L-1  for 80- and 200-day brass coupons, respectively. This indicates pH may 

continue to change with time. Water stagnation showed a wider range of pH distributions across 

the surface compared to flow condition, indicating that even in a small area, brass coupons can be 

polarized and thus corrosion proceeds non-uniformly.60  

 

Figure 17. 2D pH contour map of 200 days aged brass coupon. (a) 2D map grid with scale, (b) 
with flow (2 ml/min). (c) under stagnation. The pH in the bulk solution was 9.0. 
 

 
Figure 18. Measured representative 1D pH microprofiles of brass coupons. (a) pH microprofiles 
of 80 days aged brass coupon with and without flow. (b) pH microprofiles of 200 days aged brass 
coupon with and without flow. The pH in the bulk solution was 9.0. Two locations per one coupon 
(Figure 16) were measured and an average value with error bar was presented for each pH profile.   
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Table 4. Summary of the surface pH changes on brass coupons and a galvanic solder coupon. 

Metal Coupons 
Flow condition Stagnation 

Ave. pH ∆pH Ave. pH ∆pH  

Aged brass  

(80 days) 

9.0 ± 0.03 

max.: 9.1  

min.: 9.0 

0.1 

9.4 ± 0.08 

max.: 9.5 

min.: 9.0 

0.5 

Aged brass  

(200 days) 

9.0 ± 0.08 

max.: 9.1 

min.: 8.8 

0.3 

9.2 ± 0.08 

max.: 9.4 

min.: 9.1 

0.3 

Brass-lead galvanic connection  

(14 days) 

9.1 ± 0.12 

max.: 9.4 

min.: 8.9 

0.4 

8.9 ± 0.51 

max.: 10.0 

min.: 7.9 

2.1 

 

1D pH profiles (Figure 18) confirmed that the pH under flow conditions did not change. 

The pH was very close to the bulk water pH (200-day brass) or slightly increased to pH 9.1 (80-

day brass). The water flow influenced surface pH near the brass surface within a diffusion 

boundary layer (DBL) of 600 to 800 µm thickness from the metal surface. Water stagnation greatly 

affected pH. The pH increased to as high as 9.5 (80 day-aged brass) and 9.3 (200 day-aged brass) 

as compared to the initial pH of 9.0 during the stagnation. For both flow and stagnation, the 80-

day brass coupon showed slightly higher pH at the surface compared to the 200-day brass coupon, 

indicating higher reactivity of the newer brass surface in chlorinated water. For the 200-day aged 

brass coupon, dark brown deposits covered the entire surface, which may have contributed to the 
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lower pH surface change during stagnation (Figure 18) as compared to the 80-day aged brass 

coupon. In contrast, corrosion by-products on the surface of the 80-day brass coupon were non-

homogenous and poorly established, which may have resulted in relatively higher cathodic 

reactions5 along with higher pH across the surface under stagnation (Figure 16c). An interesting 

observation for the 200-day aged coupon is that, as shown in Figure 15b which was taken after the 

experiment, white compounds were formed at the end of the brass coupon following a flow 

direction. On the other hand, with 80-day aged brass coupon, there were no similar findings. It 

seems that the formation of zinc meringue corrosion by-products5 may be initiated after the 

completion of the surface oxidation (i.e., 200-day aged coupon with entire color change to dark 

brown). 
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Figure 19. 2D pH contour map of 14 days aged brass/lead solder joint coupon. (a) 2D map grid 
with scale for flow condition, (b) 2D map with flow (2 ml/min), (c) 2D map grid with scale for 
stagnant condition, and (d) 2D map under stagnation. The pH in the bulk solution was 9.0. 
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Figure 20. Measured representative 1D pH microprofiles of 14 days aged brass/lead solder joint 
coupon. (a) pH microprofiles under flow condition (2 ml/min) and (b) pH microprofiles under 
stagnation. The pH in the bulk solution was 9.0. 
 

4.3.2. 2D pH shift on a brass-lead soldered joint coupon  

Many studies showed lead leaching from solder by analyzing bulk solutions 9, 86, 87; 

however, only a conceptual description of the anodic and cathodic reactions has been provided and 

no direct measurements have been conducted. In this experiment, the brass-lead joint coupon was 

harvested after two weeks under flow condition. During this period, white colloidal particles were 

observed on and near the joint area. Surface characterization using SEM/EDS of the particles was 

failed due to the interference of other salt precipitates; however, the white deposits, mostly 

observed on the solder area, resemble lead (Pb) and tin (Sn) colloidal particles associated with the 

solder based on similar findings illustrated in previous investigations.43, 88 The feeding solution 

was gently flushed for five minutes over the coupon surface before profile measurements in order 

to avoid any interference from the particulate deposits.89, 90 The 2D pH map (Figure 19) clearly 

demonstrated the pH increase in lead joint (solder) under flow condition. While the pH at both 

brass ends was the same as the bulk pH, the pH increased from both brass ends to the joint “layer 

by layer,” reaching its maximum value of pH 9.4 at the left end of the lead connection. This pH 
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increase at lead surface under flow condition can be explained by the following: (1) micro-galvanic 

deposition corrosion,42, 91, 92 where zinc (Zn2+) and cupric ions (Cu2+) are released from the 

upstream and deposited on the lead surface forming micro-galvanic cells. This cathodic reaction 

occurred on the deposited copper causes a pH increase at the lead surface, releasing lead42; (2) 

Free chlorine can reduce lead solubility with oxygen by forming hydrocerussite (Pb3(CO3)2(OH)2) 

or Pb (IV) oxides, increasing pH at the surface.55, 80, 93 The measured pH profiles in this work 

provided a direct evidence to these two theories. 4.2 mg (0.11%) weight loss was measured after 

exposing the coupon to the bulk water at a flow of 2 ml/min continuously for seven days, indicating 

the possible zinc and/or copper ions release. However, when water flow stopped and stagnant 

water contacted brass and lead solder (simulated soldered joint), the 2D pH surface showed a 

different phase as opposed to the pH shift under flow condition. Under stagnation, a corrosion cell 

was formed between metals in solder (Pb and Sn) and the brass, resulting in a relatively corrosive 

microenvironment at the solder surface which may contribute to rapid lead release.42, 91  The 

different surface pH dynamics between flow and stagnation were quantitatively determined for a 

galvanic solder coupon (Table 3). After three to four hours of stagnation, the lead surface became 

anodic with a pH drop to 7.9, while the pH on brass increased up to 10.0. The pH difference 

between cathodic area (brass) and anodic area (lead) was 2.1, and the average pH across the 

galvanic connection was 8.9±0.51.   

1D pH profiles (Figure 20) measured at three different locations showed that under flow 

condition, the pH profile on the brass coupon was similar to the bulk water pH, while the pH on 

the lead joint increased from the bulk pH of 8.8 to 9.3 (∆pH: 0.5). However, under stagnation, the 

pH on lead joint showed an opposite aspect. During the stagnation, the bulk pH dropped to 8.6; 

however, the pH on the brass increased up to 9.9, while the pH at the galvanic connection location 
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dropped further to 8.0 near the lead surface (Figure 20b). This observation along with 2D pH 

surface demonstrated that 1) under water stagnation, the galvanic connection significantly 

promoted a cathodic reaction at the brass contributing to pH increase, and 2) lead ions released at 

the joint could contribute to the formation of soluble complexes or insoluble precipitates that 

contain OH-, Cl- and SO4
2-.9 The chlorine residual was 2.4 mg Cl2 L-1  after the experiment. 

DeSantis et al.44 showed deep corrosion of brass or copper piping immediately adjacent to soldered 

joint and summarized brass/copper materials behaving anodically when coupled with lead, 

contrary to conventional wisdom of commonly referenced galvanic series tables and standard 

electro-potential series. In this study, it was obvious that the 2D pH surface under stagnation was 

completely opposite to the 2D pH surface under flow condition, indicating that the water flow 

condition may be one of the most significant parameters controlling anodic-cathodic relationships 

of coupled metals in addition to water chemistry. It appeared that under flowing condition, micro-

galvanic deposition corrosion42, 91, 92 or the formation of hydrocerussite (Pb3(CO3)2(OH)2) or Pb 

(IV) oxides55, 80, 93 would be the dominant reaction, whereas under stagnation, galvanic corrosion 

releasing lead ion42 would be the main cause.  

 

4.4. Conclusion 

This work is the first to construct, by direct measurement, the 2D pH map to demonstrate 

large pH variation across a galvanic couple. The observations reflect galvanic interactions between 

lead solder-brass joints under stagnant water conditions. Under continuous flow conditions, 

surface pH was relatively uniform and close to the bulk water pH. However, under stagnation the 

surface pH varied by as much as 2.1 pH units. In the case of brass-solder connections, pH scanning 

images under flow and stagnation showed opposite pH changes over the solder surface, which 
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could be the possible different mechanisms of the lead corrosion process under flow and stagnant 

conditions. pH was notably lower at the solder surface while the brass surface pH was much higher. 

The galvanic connection between brass and lead/tin solder appeared to “protect” brass, but the 

corrosion of solder may be accelerated under stagnation. The differences in pH on the surface 

likely reflected anodic and cathodic regions across metals.  

As practical implications from the study, pH in the bulk solution of aged brass pipelines 

may be identical with the pH near the metal surface, indicating that bulk monitoring would provide 

meaningful information on interfacial processes between aged brass and water. However, when it 

comes to the brass-lead galvanic joint under stagnation, the bulk pH monitoring as a corrosion 

assessment would not provide any information regarding the magnitude of corrosion at the 

interface of galvanic joints. In addition, this work demonstrated a new experimental method to 

directly measure pH in the proximity of the metal surface, which has never been successfully 

conducted previously. This measurement provides a direct evidence of localized metal corrosion 

mechanisms in a micro-environment, confirming what others have previously speculated or 

indicated by alternate "macro" methods.3,17,26-28  Future work will seek to collect more 

spatiotemporal microprofile data with regard to longer-term corrosion processes under various 

water conditions along with other important chemical profiles such as free chlorine (or 

monochloramine), oxygen, redox potential, lead, zinc, and phosphate as a corrosion inhibitor. The 

extension of the localized water chemistry measurements using microelectrodes will lead to better 

understanding of the corrosion mechanisms and validate existing theories. 
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 CHAPTER 5: THE AFFECT OF ALKALINITY, FLOW, AND BULK 

PH ON INTERFACIAL MICROENVIRONMENT OF BRASS-LEAD 

GALVANIC COUPONS IN SYNTHETIC DRINKING WATER 

5.1. Introduction 

In DWDS, corrosion can cause pipeline damage, water leakage, and water quality 

degradation, which will eventually lead to distribution system structure integrity failure, national 

economic loss, and public health issues.94  Corrosion process in DWDS is generally impacted by 

numerous factors, such as pH, alkalinity, hardness, DO, chlorine residual, chloride, temperature, 

corrosion inhibitor, and bacterial.95 For the last couple of years, Flint water crisis became national 

news, and raise great attention of lead leaching in drinking water. This water crisis showed how 

water chemistry change can enormously affect the water quality, especially for lead in the 

DWDS.96 In early February, the New York Times reported that in states of Ohio, Mississippi, 

North Carolina, and South Carolina, the lead concentration was exceeding the EPA action level by 

LCR.96 Since 1987, the Safe Water Drinking Act (SWDA) established the regulation for the 

pipeline, prohibiting the use of any non-lead-free pipe, fitting, solder, or flux to water system that 

has direct contact to human beings.97 However, before the SWDA, lead was considered as a 

common material for the plumbing system due to its longer life time over iron (35 years to 16 

years) and its flexibility.98 Even today, there are still great amounts of lead pipes and fittings 

serving at service line, especially in old homes. In corrosion mechanisms, galvanic corrosion is 

considered as one of the major reasons for the elevating lead concentration in the drinking water. 

The fundamental understanding of the galvanic corrosion is when two dissimilar metals directly 

connected together, the reactive end will be sacrificed while the noble end is being protected 
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through the reaction in drinking water.99 The general concepts and theories galvanic corrosion 

process with lead is well studied through the years.18, 44, 99-101  

Anode Reaction:  𝑃𝑏 →  𝑃𝑏2+ + 2𝑒−      (19) 

Cathode Reaction: 𝑂𝐶𝑙− +  𝐻2𝑂 + 2𝑒−  →  𝐶𝑙− +  2𝑂𝐻−    (20) 

          𝑂2 + 2𝐻2𝑂 +  4𝑒−  →  4𝑂𝐻−     (21) 

In the anode reaction, lead (Pb) can be oxidized to lead ions (Pb2+/Pb4+), creating a strong 

Lewis acid, which can lead to local pH drop at the lead surface with aggressive water 

environment.99 While in the cathodic reaction, as can be seen from the equation (2) and (3), oxygen 

and chlorine species can both serve as the oxidizing reagents in the galvanic corrosion. However, 

as the pH increases in the solution, the oxidizing ability of oxygen decreased more than twice much 

faster compared to chlorine species theoretically.102 These reactions can be accelerated in a very 

short time under stagnation process.9, 94 

In previous studies, both field tests and laboratory examinations were performed with 

standard sampling methods, such as bulk water sampling with inductively coupled plasma mass 

spectrometry (ICP-MS) analysis, weight loss measurement, electrochemical methods (e.g., 

potential and current density), and surface characterization.10, 42-44, 76 These results illustrated the 

fundamental relationship between water chemistry and lead leaching process in the drinking water, 

such as evaluation of pH effect, chlorine residual effect, corrosion inhibitors, and chloride-to-

sulfate ratio (CSMR), which generated insightful reviews between water quality control and 

galvanic corrosions.42-44 In these studies, the bulk solution monitoring, and sample collecting were 

main studying objects, and reviews were general and extensive. Even though interfacial studies of 

different parameters have been progressed through last 3 decades, the investigation of water 

chemistry in water-metal interface related to galvanic corrosion is limited.9, 103, 104 Lee et al. used 



51 
 

multiple microelectrodes to measure the free chlorine and monochlorine profiles penetrating 

through the biofilm in drinking water system, while comparing to the activity of the bacteria.105 

Church et al. (2015) successfully measured direct pH drop and monochloramine concentration 

decrease in a field pitting copper sample under stagnant condition using microelectrodes.106  

Another important perspective of galvanic corrosion studied in this research is deposit 

corrosion study. Hu et al. (2012) found that high concentration of dissolved copper ion can induce 

the lead release in the drinking water with formation of micro-galvanic cell at the lead pipe 

surface.107 Later, Clark et al. (2015) proved this theory with more complete examination of surface 

characterization.108 These results showed detail information about the morphology of metal surface 

during galvanic corrosion.  

The objective of this work is to extend previous work (Chapter 4),94 and aimed to perform 

extensive and profound experiments using multiple microelectrodes to evaluate the effect of flow, 

pH, alkalinity, oxygen, and free chlorine residual on the re-constructed galvanic connected coupon 

based on micro-environment. Experiments are conducted in various conditions, and real time in 

situ readings of pH and chlorine residual concentrations were obtained as the main assessment of 

the targeting environment. Thus, direct visual outcomes can be provided as the evidence for 

galvanic corrosion theory, as well as the actual surface chemistry change in the galvanic corrosion 

process. Also, using SEM observation, backscattered Electron (BSE) images and EDS can provide 

co-relation between water chemistry and coupon surface morphology. With the aid of 

microelectrodes, the interfacial chemistry between water and metal surface can be further studied 

as the fundamental knowledge for the galvanic corrosion.  
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5.2. Materials and Methods 

5.2.1. Metal coupon preparation and condition 

 Metal materials used in this research were CDA 443 brass coupons (UNS C44300, 

admiralty brass, density 8.52 g·cm-3, Metal Samples Co., Munford, AL) and 50:50 Pb-Sn solder 

(38110, Forney). Brass coupons were cut into small fragments (1.6 mm thick×12 mm wide×14 

mm long) and cleaned using a combination of two American Society for Testing and Materials 

(ASTM) coupon wash procedures: G31-72 and D2688-83.67,68 Then lead-tin was soldered in 

between two pieces of brass coupon and then applied with cold epoxy specimen mounting 

technique to provide a smooth even surface after polishing with 800 grit sandpaper (Figure 21a 

&1b). Coupons were preserved in the sealed box before applying them to synthetic drinking water. 

During the experiment, these galvanic connected coupons were placed in an acrylic glass flow cell 

under 2 ml/min for measurements under different conditions such as pH, free chlorine residual, 

and dissolved inorganic carbon (DIC) (Table 5). After 2D mapping and microprofiling 

experiments under flow, a continuous stagnant condition was applied for 2 hours before the 

stagnation measurements. During the artificial water preparation, reagent grade chemicals 

(NaHCO3, Na2SO4, and NaCl) (Fisher Scientific, Fair Lawn, NJ) were used to treat coupons. Free 

chlorine solutions were prepared from 6% sodium hypochlorite (Fisher Scientific, Fair Lawn, NJ) 

to 8000 mg Cl2·L-1 as stock solution, then reduced to the target concentration in the 4-liter bulk 

synthetic water solution for the experiments. HCl and NaOH (Fisher Scientific, Fair Lawn, NJ) 

were used for pH adjustments. The bulk water was air-saturated before the pH adjustment and free 

chlorine addition. The synthetic water was then drove by peristaltic pump (Cole-Palmer, Vernon 

Hills, IL) under 2 ml·min-1 through the flow cell for the experiment. Fresh coupon will be 

pretreated under flow condition for one hour before the actual measurement. 
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Table 5. Experimental conditions for microprofiling and 2D mapping of galvanic joint coupons in 
synthetic drinking water. 

Experiment groups Flow Condition pH 
Free Chlorine  
(mg Cl2 L-1) 

DIC (mg C L-1) 

Ex1 - Control Ex1.1 - flow 7 2 10 

Ex1.2 - stagnation 7 2 10 

Ex2 - DIC 
Ex2.1 - flow 7 2 50 

Ex2.2 - stagnation 7 2 50 

Ex3 - Free 
Chlorine 

Ex3.1 - flow 7 4 10 

Ex3.2 - stagnation 7 4 10 

Ex4 - pH 
Ex4.1 - flow 9 2 10 

Ex4.2 - stagnation 9 2 10 

Ex5 - pH + DIC 
Ex5.1 - flow 9 2 50 

Ex5.2 - stagnation 9 2 50 

Ex6 - pH + Free 
Chlorine 

Ex6.1 - flow 9 4 10 

Ex6.2 - stagnation 9 4 10 

Ex7 Non-
continuous 
stagnation 

Ex7 - stagnation 7 2 10 

 

 

Figure 21. Galvanic joint coupons and microprofiling. (a) Vertical view of an epoxy specimen 
mounted galvanic joint coupon with scale specification, (b) Smoothness of the coupon by 
horizontal view, and (c) In-situ pH microprofiling near the coupon surface (100 µm) from the 
surface) using microelectrodes. 
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5.2.2. Micro-profile and 2D mapping setups 

Multiple parameters were measured using different microelectrodes, including pH 

microelectrode (pH-10, 10 µm tip diameter, UNISENSE A/S, Denmark), free chlorine 

microelectrode (10 µm tip diameter, self-made), and oxygen microelectrode (O2-50, 50 µm tip 

diameter, UNISENSE A/S, Denmark). Microelectrodes used in this research were mentioned in 

different researching fields and their performances have been validated in numerous 

experiments.70, 81-83, 94, 105 Each fresh coupon was placed in a transparent flow cell with desired 

water condition from Table 5 (i.e., pH 7.0, 100 mg Cl-·L-1, 100 mg SO4
2-·L-1, 10 mg C·L-1 DIC, 

and 4.0 mg Cl2·L-1 free chlorine). The coupon was then pretreated in the synthetic drinking water 

for 1 hour under flow before the mapping process. During the pretreatment time, a well-calibrated 

microelectrode was connected along with a dip-type Ag/AgCl reference electrode (MI-401, 

Microelectrodes Inc., Bedford, NH) and the sensor tip was positioned by controlling 3D 

manipulator (UNISENSE A/S, Denmark) through microscope (World Precision Instruments, 

Sarasota, FL), which were operated by computer software.  

In microprofile measurement, microelectrode tip was positioned 2,000 µm above the 

coupon surface, and stopped at 50 µm above the surface with 50 µm step for every measurement. 

The 3D manipulator was able to adjust the microelectrode at the exact height with precision of 1 

µm. Due to the nature of different microelectrodes, there was a 15-second waiting time before the 

stabilization of the pH/Oxygen microelectrode and 5 seconds for free chlorine microelectrode in 

between each step. Every micro-profile was measured duplicate to ensure profiles were 

representable and reproducible.  

In 2D mapping measurement, microelectrode tip was stationed 100 µm above the metal 

surface, and only moving horizontally across the coupon. As it can be seen from picture, a surface 
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area of 8400 µm (W) × 20000 µm (L) was measured using microelectrode with distance intervals 

of 1200 µm (W) × 2000 µm (L). The movement of the microelectrode was controlled by 3D 

manipulator with precision level to 1 µm, which helped to create uniform mapping after the data 

collection. A total of 112 data points was obtained for each 2D mapping image, which providing 

high resolution of chemistry profiles across the coupon surface. During each point measurement, 

there was a 15-second waiting time before the stabilization of the pH microelectrode and 5 seconds 

for free chlorine microelectrode. The mapping of pH and free chlorine concentration across the 

metal surface reflects the chemistry change over spatial and temporal perspective. 

After the surface scanning using microelectrodes, data was imported and constructed using 

an advanced programming language (Python 2.7.10, Python software). And for quality control, 

free chlorine microelectrode calibration curve was pre- and post-calibrated with comparison to 

colorimetric test (HACH-8021) using DR 5000 spectrophotometer (HACH Co.). Also, pH 

microelectrode was pre- and post-calibrated in pH standard solution (Fisher Scientific, Fair Lawn, 

NJ). 

 

5.2.3. Metal surface characterization 

A ZEISS ULTRA 55 FEG SEM machine was used for galvanic coupon surface 

characterization purpose. During experiments, one of the coupon was conditioned in Table 5. (Ex1) 

environment and sacrificed for analysis. SEM images, BSE images, and EDS analysis were used 

for the element distribution under different magnification, which can provide surface morphology 

of the coupon, chemical elements distribution and identification. These results will be reflecting 

the lead particles migration and deposition during the experiment. 

 



56 
 

5.3. Results and Discussion 

 

Figure 22. 2D mapping of pH on galvanic coupons surface under different flow, DIC, and free 
chlorine concentration (pH 7, 100 mg Cl- L-1, 100 mg SO4

2- L-1). 



57 
 

 

Figure 23. 2D mapping of free chlorine concentration on galvanic coupons surface under 
different flow, DIC, and free chlorine concentration (pH 7, 100 mg Cl- L-1, 100 mg SO4

2- L-1). 
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Figure 24. 2D mapping of pH on galvanic coupons surface under different flow, DIC, and free 
chlorine concentration (pH 9, 100 mg Cl- L-1, 100 mg SO4

2- L-1). 
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Figure 25. 2D mapping of free chlorine concentration on galvanic coupons surface under 
different flow, DIC, and free chlorine concentration (pH 9, 100 mg Cl- L-1, 100 mg SO4

2- L-1). 
 

As it can be seen from Figure 22 - 25, two major parameters (pH and free chlorine 

concentration) were measured along with oxygen concentration (data not shown). Each label in 

Figure 22 is accordingly to Figure 24 with same back ground condition except for the pH difference. 

For example, Figure 22 & 23 showed pH and free chlorine concentration 2D mapping in both flow 

and stagnation under initial condition at pH 7, free chlorine at 2 mg Cl2·L-1, DIC at 10 mg C·L-1, 

with saturated oxygen and background chloride and sulfate ions, while the only difference for 

initial condition in Figure 24 & 25 was the pH adjustment from 7 to 9. This pH difference is applied 

to Figure 22 - 25 comparison. 
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5.3.1. pH effect 

pH change is one of the most import factors in this galvanic corrosion study. Under pH 7 

condition, low DIC (10 mg C·L) and low free chlorine concentration (2 mg Cl2·L-1) showed 

dramatic pH variance under both flow and stagnant condition (Figure 22). The pH changes from 

9.3 (inflow brass end) to 3.8 (outflow brass and lead interface) under flow condition. This pH 

difference increased under stagnation, with highest pH at 10.3 (inflow brass end) and lowest 2.8 

(lead end). This 7.5 pH unit change occurred on a 2 cm × 0.84 cm area under 8 hours of experiment 

time. Similar pH diversity was found under pH 9 condition (Figure 24). The highest pH point 

reached 10 under both flow and stagnation on the brass ends of the coupon, similar to pH 7 

condition, while the lowest pH was found at 4.7 under flow and 6.3 under stagnation. Even though 

the pH measurement at pH 9 stagnation condition was higher comparing to pH 7, reductions from 

the original pH were similar under different conditions. After increasing the alkalinity from DIC 

10 mg C·L-1 to 50 mg C·L-1 and free chlorine concentration from 2 mg Cl2·L-1 to 4 mg Cl2·L-1 

respectively, 2D mapping under flow showed that surface pH distribution was similar to the buffer 

pH in both conditions, while stagnation still resulted in localized pH drop on the galvanic joint 

with high pH increase on the brass end. Even though at different pH under stagnant condition, pH 

2D mapping on the galvanic joint showed relatively similar pH unit drop from the original buffer, 

with averaging pH 3.1 from pH 7 condition and pH 5.9 from pH 9 condition. Free chlorine 

consumption in different pH appears to be more randomly across the coupon surface. In pH 7 

conditions, free chlorine concentration depleted over 90% in some locations (Figure 23), which 

were similar to most conditions in pH 9 solution. However, in pH 9, DIC 10 mg C·L-1, and 4 mg 

Cl2·L-1 solution, about 46% of free chlorine residual was remained at the coupon surface (Figure 

25). Similar observations interfacial pH studies on galvanic metals were made in previous research. 
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Kuhn and Chan (1984) stressed the importance of studying interfacial pH change between liquid 

and solid phase.103 Several works have been conducted to achieve the in situ measurement of pH 

at the interfacial area. Tada et al. (2004) measured pH distribution on zinc (Zn)/steel samples with 

potential method.104 This research found drastic pH change across the coupled slide at about 1.5 

mm above the surface. Katsounaros et al. (2012) used electrochemical method (Cyclic 

Voltammetry) to identify the effect of solid-liquid interfacial pH difference in buffered and 

unbuffered solutions.109 Nguyen et al. (2010) performed micro-environment experiment regarding 

to galvanic corrosion between lead solder with copper pipe. Even though the microelectrode used 

in the study was 800 µm and the height was unclear, it indicated that much lower pH can be 

generated near the lead surface than in the bulk solution under the stagnation process in a very 

short period. The article mentioned that away from lead solder, pH tends to arise close to the metal 

surface.9 The dramatic difference of pH distribution between the lead joint and brass end can 

accelerate the galvanic corrosion process, which leads to more severe lead leaching in drinking 

water system. As Figure 22 showed, the leaching of lead could also result in pH drop at the outflow 

end due to the possible lead deposition from the flow condition. 

 

5.3.2. Alkalinity effect 

Sodium bicarbonate was used to control the alkalinity in this synthetic water system. In pH 

7 condition under flow, it appears with higher alkalinity, the more evenly distribution of pH can 

be observed. Compared to DIC 10 mg C·L-1, DIC 50 mg C·L-1 showed a much less diversified 

surface from pH perspective, and free chlorine was much less consumed under flow condition 

(Figure 22 & 3). Yet after 2 hours, high pH difference and free chlorine consumption from brass 

end to galvanic joint end was observed from different DIC solution. Unlike DIC (10) condition, 
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DIC(50) localized pH drop was able to maintained only on the surface of lead-tin solder, with 

minimum effect on the brass end (Figure 22). This similar pH observation was also found in pH 9 

different DIC comparison (Figure 24). Results showed that with increased alkalinity in the water, 

pH at the surface tends to be more uniformed under flow, and less drift effect under stagnation. 

Arnold Jr. (2011) reported that with higher alkalinity resulted less pH decrease near galvanic joint 

surface in a similar setup.110 Even though higher buffer capacity (50 mg C L-1) still showed great 

pH decrease at the lead joint, the mitigation of low pH was restricted in the center compared to 

low alkalinity condition (10 mg C·L-1). 

 

5.3.3. Free chlorine residual effect 

Free chlorine is used as one of main disinfectants in United States. It has a stronger 

oxidation ability compared to DO in the drinking water system. In this research, different free 

chlorine residual effects on galvanic corrosion were evaluated using the 2D mapping techniques. 

In pH 7 with low DIC (10 mg C·L-1) in synthetic water, free chlorine consumption at the coupon 

surface in high free chlorine initial concentration (4 mg Cl2·L-1) was less compared to low free 

chlorine initial concentration (2 mg Cl2·L-1) from percentage viewpoint under both flow and 

stagnation (Figure 23). This observation in pH 9 condition was clearer (Figure 25). And with less 

free chlorine consumption at the surface, pH distribution difference between brass and galvanic 

joint was much less. Also, DO (DO) profiles were measured through the whole experiments (data 

not shown). There was no obvious DO decrease (<1%) at the coupon surface, which indicate that 

free chlorine was the main oxidant for galvanic corrosion in these simulations. This result was 

consistent with previous work.94 
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5.3.4. Flow effect 

 

 

Figure 26. 2D pH mapping of (a) consecutive stagnation after initial flow condition vs. (b) 
stagnation without flow under pH 7, free chlorine 2 mg Cl2 L-1, and DIC 10 mg C L-1. 
 

As it was mentioned in materials and methods section, stagnation measurements in this 

chapter were mainly conducted consecutively after the flow. In situ pH microprofiles showed more 

intense pH drop and more free chlorine consumption at the metal surface under stagnation 

compared to flow condition (Figure 22 & 24), providing insightful view for the pH change at the 

metal-liquid surface level of galvanic corrosion. During data analysis, another interesting point 

was found, at pH 7, observed low pH and free chlorine concentration distribution shifted from 

galvanic joints to downstream brass end (Figure 22) under low initial free chlorine and DIC 

concentration (2 mg Cl2·L-1, 10 mg C·L-1). This comparable phenomenon was also found in 2D 

mapping at pH 9 under stagnation after the consecutive flow (Figure 24). Even though in the work 

by Tada et al. (2004), it was mentioned that in galvanic connections the pH distribution across two 

dissimilar metals may overlay in both surfaces under stagnation,104 the 2D maps at both pH 7 and 
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9 conditions showed that this could also be affected by the flow (Figure 22 and 23) according to 

the deposition corrosion theory.107, 111  After suspecting this could be the impact from the flow, an 

additional control experiment was done for comparison. In Figure 26, it was shown that pH 

distribution under stagnation after consecutive flow (left), and pH distribution under stagnation 

without initial flow action. It was shown that without continuous flow, the pH reduction was 

localized mostly in the galvanic joint area, while coupon with initial flow, pH decreased not only 

on the galvanic joint as well as on the outflow end of the brass. These pH mappings gave direct 

evidence for the deposit corrosion theory that was mentioned before.  

Surface characterization was performed on a coupon under flow condition at 2 ml/min for 

2 hours (pH 7, DIC 10 mg C L-1, and free chlorine 2 mg Cl2·L-1). After 2 hours of flow, the surface 

of lead joint already showed dissolution of the surface area with expansion of the white particles 

(Figure 27a), while brass surface stayed the same. However, after examined location i&ii in Figure 

27a under SEM, noticeable white stripes and points can be observed in SEM images (Figure 27b), 

and with BSE images (Figure 27c), these figures indicated that different elements with high 

differential atom numbers were located on the outflow end of the brass surface. An EDS analysis 

was performed to identify these elements (Figure 27e). After increasing a random location in 

Figure 27c, EDS scanning results showed that high concentration of lead contained particles, along 

with copper, zinc and oxygen located in the targeting area. This implied that for deposit corrosion 

in galvanic corrosion, not only can copper deposit on lead pipe,107 the deposit of lead particles 

could also result in the downstream of brass end, which can lead to localized pH drop in the 

downstream brass.  
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Figure 27. Surface characterization of galvanized coupon (after two hours of flow under pH 7, 
free chlorine 2 mg Cl2 L-1, and DIC 10 mg C L-1, 100 mg Cl- L-1, 100 mg SO42- L-1). (a) 
Observation of corroded coupon and location for surface characterization; (b) SEM image of the 
selected location with magnification (×22); (c) Backscattered electrons (BSE) image of location 
with magnification (×22); (d) Magnification (×100) of BSE image of selected location in Figure 
7c; (e) and element distribution using EDS. 
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5.3.5. Cross-sectional image 

 

 

Figure 28. Cross-sectional 2D mapping view of pH profiles under stagnation (pH 9, free chlorine 
2 mg Cl2 L-1, DIC 50 mg C L-1), with comparison among commercialized pH sensor tip size and 
this research pH tip size. 
 

Kuhn and Chan (1984), and Tada et al. (2004) stressed the importance of studying 

interfacial chemistry change between liquid and solid phase, and how it differentiated from the 

bulk measurement.103,104 The dramatic change of pH from buffer to surface is one of the most 

important factors inspiring the production of this chapter. Visualization has always been an 

important illustration in environmental studies, and 2D mapping showed an innovative and 

organized technique of direct presentation of chemistry changes in the area which was under 

appreciated. As it was shown in Figure 28, comparison among commercialized pH probe, micro 

probe, and microelectrode was presented in the buffer solution. The commercialized probe was 

designed for the purpose of buffer monitoring with a diameter about 12 mm. The micro-probe, 

which is 0.8 mm tip pH meter (Microelectrode, INC), was used in Nguyen et al. (2010) research 

to study the micro-environment in galvanic corrosion.9 It was shown that  pH distribution along 

the surface and comparison to the buffer, which was moderately close to “micro-environment” as 

it described in the manuscript. As for this research, a 10 µm pH microelectrode was used for the 
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2D mapping experiments, which was able to provide high resolution results for the micro-

environment investigations. Thus, a multi-profiling experiment was done to present the difference 

between micro-environment in situ measurement to bulk monitoring. Twelve profiles from 2,000 

µm above the surface to 50 µm above the metal surface were measured with 50 µm intervals during 

each measurement under Figure 23f condition (pH 9, free chlorine 2 mg Cl2·L-1, DIC 50 mg C·L-

1). With about 500 data points, high resolution image of pH distribution on a cross-sectional area 

above the metal surface was presented in Figure 26. It was visualized the diffusion boundary layer 

of pH, which was approximately 600 µm (extract from the profiles, data not shown) from brass 

end to galvanic joint end. While assuming 2,000 µm above the metal surface can be considered as 

the buffer pH, Figure 28 showed that micro-environment at the galvanic coupled surface varies 

dramatically from the original pH. Another important advantage of using microelectrode for the 

direct measuring is no disruption of the diffusion boundary layer, especially under stagnation, 

which is essential for micro-environments study. In Nguyen et al. (2010) research, it was found 

that pH can drop quickly near the galvanic surface in an hour, which also confirmed in this research. 

In summary, the results in this chapter showed that galvanic coupons in pH 7 synthetic 

water with low DIC and low free chlorine concentration had the largest pH difference across the 

surface. With the presence of free chlorine, oxygen was not a main factor for galvanic corrosion 

process. The dramatic pH difference across the coupon size of 2 cm × 1 cm was precisely recorded 

under hours of operation, it showed great advantages of using microelectrode to study galvanic 

corrosion mechanisms in micro-environment, separating itself from macro-environment 

investigation and buffer monitoring. This research showed systematic evaluations of galvanic 

corrosion in micro-environment under different situations/parameters. The results showed direct 
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evidence for previous works and theories with in situ measurements, the mitigation of lead 

particles with flow can results dramatic pH drop in downstream of pipelines, which can cause 

further micro-cell galvanic corrosion or general corrosions in drinking water. This technique 

expanded the view of galvanic corrosion process and future corrosion studies.  
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CHAPTER 6: IN-SITU MONITORING OF PB2+ LEACHING FROM THE 

GALVANIC JOINT SURFACE IN A SIMULATED CHLORINATED 

DRINKING WATER  

6.1. Introduction 

Due to its durability and flexibility, lead (Pb) has been widely used in drinking water 

delivery pipelines, premise plumbing systems, various fittings, and has been added to solder for 

making pipe connections.112 However, from general corrosion and galvanic corrosion processes, 

and dissolution of lead minerals, lead can leach out of lead-containing materials into the drinking 

water resulting in  elevated Pb2+ levels in drinking water, which may be correlated lead levels in 

blood.39  Chronic exposure of lead can cause serious health issues related to brain development, 

liver, kidney, and bones, especially to children.39 After establishing amendments of the Safe 

Drinking Water Act (SDWA) in 1986, United State Environmental Protection Agency (USEPA) 

proposed the use of “lead free” in drinking water pipelines, fittings, and solders, which were related 

to water for human consumptions under Section 1417.113 In 1991, Lead and Copper Rule (LCR) 

was issued by USEPA, regulating lead concentration in drinking water at taps should not exceeding 

0.015 mg L-1  and copper concentration action level not exceeding 1.3 mg L-1.114 Development and 

implementation of effective corrosion control is important to mitigate lead leaching from the 

source in household plumbing systems. Galvanic corrosion, however, is a complicated process and 

our understanding on the mechanism(s) related to lead leaching in chlorinated drinking water has 

largely been based on theory, bulk water analysis and forensic metal surface characterization. For 

example, inductively coupled plasma mass spectrometry (ICP-MS) analysis were used for lead 

measurement in many studies on galvanic corrosion in drinking water.10, 42-44, 76 Although ICP-MS 
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provide information of accurate lead concentrations, it is limited to the bulk concentration of 

soluble lead. For better understanding of the lead leaching and its transport from lead-containing 

metal surface, it is required to directly monitor the lead concentrations at the interface where 

corrosion occurs.  

Potentiometric ion-selective electrodes (ISEs) have been known as an attractive, sensitive, 

and easily miniaturized tool for the analysis of heavy metal ions in aqueous samples115 and have 

been used for a variety of applications including clinical, food, environment, and industrial 

analyses.116-119 ISEs are often the preferred analytical tool due their high degree of sensitivity and 

selectivity, and are able to reach nanomolar and sub-nanomolar limits of detection (LOD), 

competing with other well-established and sophisticated analytical tools (e.g. ICP-MS and high-

performance liquid chromatography mass spectrometry (HPLC-MS)).115, 120, 121 Particularly, 

polymeric-based ISEs offer the versatility to analyze a variety of ions by simple manipulation of 

the polymer membrane composition. A polymeric membrane is typically composed of three 

compounds: 1) an ionophore, which selectively binds the target ion, 2) an ion-exchanger, which 

maintains electroneutrality within the matrix and allows for permselectivity of ions and 3) a 

polymer matrix, which yields the support and mechanical stability of the membrane.122 The 

response mechanism does not require an external input of energy, as the resulting potential, or 

electromotive force (EMF) response is directly related to the potential difference across the 

hydrophobic and sample phase boundary of the ISE.122  

In this study, a micro-scale needle-type ion-selective electrode (micro-ISE) was developed 

using lead-selective liquid ion exchange (LIX) membrane for in situ monitoring of Pb2+ 

concentrations near the metal surface of galvanic joints in a simulated chlorinated drinking water 

environment. The miniaturization of the polymeric-based ISE’s tip size to micrometer level (50–
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100 µm) will not only make in situ monitoring possible in a small amount of sample volume, but 

can also provide real-time dynamic information about liquid-metal interfacial chemistry with high 

spatio-temporal resolution, which can be further interpreted by determining diffusion boundary 

layer (DBL), reaction rate, and flux of the ion species of interest. As soluble lead (Pb2+) is pH-

dependent, two-dimensional (2D) surface pH mapping was also performed using a pH 

microelectrode. It is expected that the direct measurement of lead concentrations near metal 

surface at micro-scale will expand the knowledge of galvanic corrosion and lead leaching 

mechanisms in drinking water distribution systems.   

6.2. Materials and Methods 

6.2.1. Reagents and Materials 

Chemicals used in this study were in analytical reagent grade. Tert-Butylcalix-4 arene-

tetrakis (N,N-dimethylthioacetamide) (Pb ionophore IV), sodium tetrakis 3,5-bis-

(trifluoromethyl)phenyl borate (NaTFPB), 2-nitrophenyl octyl, high molecular weight polyvinyl 

chloride (PVC) and tetrahydrofuran (THF) were purchased from Sigma-Aldrich (Milwaukee, WI). 

The Pb2+ ISE cocktail was prepared by adding 5 mmol/kg of NaTFPB, 12 mmol/kg of Pb IV, o-

NPOE (66.6 w%) and PVC (33.3 w%), dissolved in 1mL of THF and vortexed for 1 hour. 

Synthetic chlorinated drinking water solutions were prepared in distilled (DI) water with serial 

dilutions from the stock solution containing dissolved inorganic carbon (DIC), chloride (Cl-), 

sulfate (SO4
2), and free chlorine (Cl2) (see APPENDIX A for details). 
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Figure 29. A finished Pb2+ micro-ISE with a tip size of 100 µm and membrane length of 200 µm. 
(nickel for scale). 
 

6.2.2. Fabrication, preparation and calibration of a lead micro-ISE 

A flaming/brown micropipette puller (Model P-1000, Sutter Instrument Co., Novato, CA) 

was used to pull the glass micropipette (640815, O.D.: 1.5 mm, I.D.: 1.1 mm, 10 cm length, Warner 

Instruments, Hamden, CT). After opening the tip by a surgical grade tweezer (Sigma-Aldrich, 

Milwaukee, WI), the tip was silanized with N-N Dimethyltrimethyl-silyamine (Sigma-Aldrich, 

Milwaukee, WI) and the micropipettes were stationed at the glass micropipette holder (custom-

made) and baked in the oven (Quincy Lab, Chicago, IL) at 180 oC for 4 hours. After removing 

them from the oven, the micropipettes were kept in the dark in a desiccator for 1.5–2 hours. The 

silanized micropipette was then back-filled with an internal solution (1 mM Pb(NO3)2 and 1 mM 

KCl) using fine injection needles (World precision instruments, MF28G-5) and the lead cocktail 

was inserted into the front tip by capillary force (2 min). An internal Ag/AgCl coated wire was 

prepared (see APPENDIX A for details) and inserted from the electrode back and immersed in the 

internal solution with 1 cm distance between LIX membrane and the internal reference electrode. 

The fully-assembled lead micro-ISE was then pretreated in 1.0×10-3 M Pb(NO3)2 solution at 25 oC 

for overnight to achieve the equilibrium of the sensor. A commercial Ag/AgCl milli-electrode was 
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used as an external reference electrode. During profiling, the order of the lead micro-ISE assembly 

was followed by: 

Internal Ag/AgCl | internal solution (1 mM Pb(NO3)2 and 1 mM KCl) | PVC membrane | test 

solution | 3.0 M KCl | external Ag/AgCl. 

Finally, the finished Pb2+ micro-ISE was calibrated in the lead standard solution (Pb(NO3)2) 

with different lead concentrations (1.0×10-7–1.0×10-2 M). Interference of different ions123 such as 

sodium ion (Na+) was also evaluated during the calibration. Calibrations were conducted at pH 4.8 

and 23 oC.  

 

6.2.3. Microprofiling of lead concentrations using a lead micro-ISE 

 

Figure 30. A specifically designed brass-lead galvanic coupon (2×1 cm) imbedded using a cold 
epoxy specimen mounting technique. 
 

For microprofiling of lead concentrations using the fabricated lead micro-ISE, a fresh 

brass-lead galvanic joint coupon imbedded with cold epoxy specimen mounting technique (Figure 

30) was prepared (see Appendix A for details) and immersed in the synthetic chlorinated drinking 

water solution (pH 7, free chlorine 2 mg Cl2 L-1, 100 mg L-1 of Cl- and SO4
2-, and DIC 10 mg C L-

1) for 1 hour before microprofiling. Microprofiles were measured under stagnation where pH 
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changes are found to be more significant compared to the flow condition94 and thus more lead 

leaching was expected during the experiments. During the lead concentration microprofiling, the 

Pb micro-ISE tip was positioned at 2,000 µm above the lead joint surface in the synthetic 

chlorinated drinking water (Figure 31). After a steady electric signal (mV vs. Ag/AgCl) was 

obtained, the tip of the micro-ISE was positioned perpendicular to the metal surface area of interest 

using a three-dimensional (3D) manipulator (UNISENSE A/S, Denmark) and electronic signals 

were recorded at 50 µm interval from the bulk (2,000 µm) to the metal surface with every 15 

seconds of electrode signal stabilization (total 10 minutes of duration for one profile). Profile 

measurements were duplicated to investigate whether the measured profile was reproducible and 

representable. Two consecutive profiles were measured at 1 hour and 2 hours after the coupon was 

immersed in the synthetic chlorinated drinking water. After lead microprofilings, surface pH at 50 

µm above the metal’s surface was measured at total 96 points (8 × 12) across the galvanic coupon 

(Figure 31a) and a 2D pH spatial map was constructed to investigate the correlation between pH 

and lead concentrations. The details on microprofile measurements using a microelectrode and the 

construction of 2D pH spatial map were described elsewhere.94  

 

Figure 31. (a) 2D map grid (total 96 points: 8×12) with scale on the brass-lead galvanic coupon 
(2×1 cm) and (b) a schematic of microprofiling using a Pb2+ micro-ISE in a flow cell. 
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Continuous monitoring of Pb2+ leaching from the galvanic joint for 16 hours was also 

performed using the lead micro-ISE to evaluate long-term sensor performance. MINEQL+ 

(Environmental Research Software, Hallowell, ME) chemical equilibrium modeling system 

software was used to identify soluble lead ions depending on pH in various aqueous solutions. 

Bulk monitoring including free chlorine and Pb2+ concentrations, and pH was also performed over 

time. Lead (Pb2+) concentrations in the synthetic water were validated using a Atomic Absorption 

Spectrometer (AAS) (Perkin Elmer AAnalyst 400 Flame, Waltham, MA). During the experiment, 

pre-calibration and post-calibration were performed for the correct measurements of Pb using the 

Pb micro-ISE. After completion of Pb2+ microprofiling, the coupon was sacrificed for the surface 

characterization using Raman spectroscopy (Renishaw RM 1000B Micro-Raman Spectrometer) 

to identify corrosion by-products.  

6.3. Results and Discussion 

6.3.1. Characterization of the developed lead micro-ISE performance  

Figure 29 shows the finished lead micro-ISE with tip diameter of 100 µm. When Pb2+ 

cocktail successfully applied to the hydrophobic silanized microelectrode tip, a noticeable dark 

LIX membrane with a length of 200 µm was observed (Figure 29) The selectivity and sensitivity 

of Pb2+ ISE is greatly influenced (up to 1,000 times variance) by the ratio (w/w) between ionophore 

and PVC.124, 125 In this fabrication, PVC content was adjusted to 33% to optimize the sensitivity 

of electrode towards soluble Pb2+ and sensor life-time (one week). A tip diameter less than 50 µm 

was found to be difficult to have a sufficient length of LIX membrane for lead detection due to 

relatively high density of PVC (33%) in the cocktail. 



76 
 

 

Figure 32. Calibration curves of a developed Pb micro-ISE with different Pb2+ concentrations. 
Pb(NO3)2 was used for preparing Pb standard solutions and NaNO3 was used for testing ion 
interference (pH 4.8, 23 oC). The lead concentrations in the x-axis are the measured lead 
concentration by AAS.  
 

Table 6. Pb2+ concentration comparison between AAS method and Pb2+ micro-ISE method 
Methods Average concentration (mg L-1)  S.D. (n=3) R.S.D. (%) 

AAS 2.06 0.0012 0.06 

Pb2+ micro-ISE 2.13 0.09 4.23 

S.D.: standard deviation; R.S.D.: relative standard deviation 

 

The developed Pb2+ micro-ISE exhibited excellent linear relationship with various Pb2+ 

concentrations up to 10-3.0 M with the slope of 22.2±0.5 mV decade-1 which is similar with the 

theoretical value (22.4±0.5 mV decade-1) from Nernst equation. The Pb2+ micro-ISE showed good 

calibration curves over the wider working range of lead concentrations between 10-6 to 10-3 M 

(0.21 to 210 mg L-1), compared to the previous Pb2+ ISEs fabricated using a similar configuration 

of the LIX membrane where the Pb2+ concentration detection range was 1.0×10-4.1 to 1.0×10-2 

M.125 It was also found that the performance of the developed Pb2+ micro-ISE was comparable to 

AAS (Table 6). The LOD of the Pb2+ micro-ISE was 1.22×10-6 M (0.25 mg L-1) and response time 
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of the sensor was less than 10 seconds. It is expected that the solubility of lead would be changed 

by the presence of other ions (e.g. Cl2, Cl-, and SO4
2-). In the range of pH 2–10 (DI water containing 

10-5 M), a MINEQL+ simulation showed that Pb2+ solubility was soluble below pH 6.0 and the 

soluble lead species were changed to insoluble lead at pHs above 7.5 (Figure 33a). The developed 

Pb2+ micro-ISE followed the trend of the soluble Pb2+ concentrations, confirming that the micro-

ISE measures the soluble Pb2+ ions in a solution (Figure 33b). The optimal working pH range for 

lead detection in DI water using Pb2+ micro-ISE is 2.0–7.0.123, 124  

 

Figure 33. (a) pC-pH diagram simulated using MINEQL software and (b) measured data using a 
Pb2+ micro-ISE. 10-5 M Pb2+ in DI water was used for both the simulation and the experiment. 
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Figure 34. (a) In situ Pb2+ concentration microprofiling of a lead-brass galvanic joint coupon with 
three profiling locations, (b) Pb2+ concentration and pH microprofiles on location 1 and location 3 
after 1 hour of stagnation, and (c) Pb2+ concentration microprofiles on location 1 and 2 after 2 
hours of stagnation (pH 7, 23 oC, 2.0 mg Cl2 L-1, 100 mg Cl- L-, 100 mg SO4

2- L-, and DIC 10 mg 
C L-1). 
 

Based on the selectivity coefficient for lead ionophore IV, it seems that mercury (Hg) and 

silver (Ag) have the highest interference with lead due to their soft character and binding affinity 

to sulfur atoms.126, 127 Among the other possible ions interference, sodium ion (Na+) is known as 

one of the interfering ions for the lead concentration measurements.124, 125 As the selectivity 

coefficients of other positively charged ions (Mg2+ and Ca2+) are relatively low, only sodium ion 

interference was evaluated for the sensor performance. In the standard lead solution containing 1 

mM Na+, the slope of the calibration curve slightly decreased to 18.4 mV decade-1 from the original 

slope of 22.2 mV decade-1 without Na+ (Figure 32) due to the increased ionic strength. Given that 
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sodium concentration in typical drinking water is approximately 20 mg L-1 (1 mM),128  the 

sensitivity changes was only about 82.9% with a good linear relationship with different Pb 

concentrations, indicating that the presence of the sodium would not affect the sensor performance.  

The ion interference is based on the lead ionophore IV used for Pb2+ micro-ISE fabrication and 

thus it is important to test ion interferences in every real environment. Therefore, in this study, a 

pre- and post-calibration was performed in the same solution of microprofiling for accurate Pb2+ 

measurements.  

6.3.2. Pb2+ microprofiles in a galvanic joint   

After the sensor characterization, the developed Pb2+ micro-ISE was deployed and 

measured soluble Pb2+ concentrations in the synthetic drinking water environment (pH 7, free 

chlorine 2 mg Cl2 L-1, 100 mg L- of Cl- and SO4
2-, and DIC 10 mg C L-1). Figure 34 shows Pb2+ 

concentration microprofiles from 2,000 µm above to the metal surface at three different locations 

of the galvanic joint coupon and after one and two hours of stagnation. After 1 hour, Pb2+ 

concentration in the solution between 600 µm and 2,000 µm directly above the surface of location 

1 was 9.89×10-6 M (2.05 mg L-1). From the microprofiling (Figure 34b), the bulk water 

concentration was relatively constant until the until 600 µm above the lead joint surface and after 

600 µm, the concentration of Pb2+ was dramatically increased as the micro-ISE moved closer to 

lead joint surface, indicating the build-up of Pb2+ ions from the corroding lead joint surface. DBL 

was approximately 380 µm. The soluble Pb2+ concentration at 50 µm above the lead joint surface 

(location 1) was 5.31×10-5 M (11.0 mg L-1), which is 5.4 times greater than the bulk lead 

concentration. The increase of Pb2+ concentration was associated with the corresponding local 

decrease in pH (Figure 34b, location 1), increasing the solubility of Pb2+. The pH at location 1 was 

as low as 6.4 at a distance of 50 µm from the lead joint. The Pb2+ microprofile at the location 3 
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(3,000 µm downward from location 1) over the brass surface showed that lead levels were 

consistent throughout the distance from the bulk to the brass surface, indicating that there is no 

lead leading from the brass surface (Figure 34b). The relatively low Pb2+ in this region was 

attributed the minor amount of lead (0.07%) associated with the brass and the negligible change 

in pH at the metal surface (Figure 37) from the bulk (e.g. pH 7.0). The 2D pH mapping of the 

coupon surface (Figure 35) also shows that the pH near the cross section of 7,000 µm (Y-axis) and 

4,000 µm (X-axis) was approximately 7.6 which was similar to the bulk pH after 1 hour of 

stagnation (Table 8). After 2 hours of stagnation, the surface Pb2+ concentration (50 µm above the 

surface) in location 1 increased to 1.13×10-4 M (23.4 mg L-1), which is 12.5 times greater than the 

bulk lead concentration of 9.04×10-6 M (1.87 mg L-1) (Figure 34c). DBL decreased from 380 µm 

to 220 µm, indicating the surface reaction of lead joint with high concentration of Pb2+. In a 

different location (location 2) of lead joint, the Pb2+ concentration was 3.84×10-5 M (7.95 mg L-1), 

which was lower than the concentration in location 1 which was attributed largely the higher local 

surface pH (Figure 35) of approximately 7.0. The 2D pH mapping of the coupon surface (Figure 

35) showed the dramatic pH differences between lead joint and brass surface. The maximum pH 

difference (ΔpH) between brass (the highest pH was 10) and lead (the lowest pH was 4) was 6 pH 

units, while the bulk pH was not changed throughout the experiments (Table 8). The pH difference 

between lead and brass reflected anodic (lead solder) and brass (cathodic) functions in the galvanic 

cell in the electrolyte (a simulated chlorinated drinking water) and subsequently directly impacted 

the solubility of lead in the respective regions.  
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Figure 35. 2D mapping of pH on the galvanic coupon surface (50 µm above the surface) under 
stagnation (pH 7, 23 oC, stagnation, free chlorine 2 mg L-1, 100 mg L-1 of Cl- and SO4

2-, and DIC 
10 mg C L-1). 
 

The measured lead concentration profiles were further interpreted to determine reaction 

rates (k) and flux (J) related to the lead leaching process (Table 7). The reaction rates (k) and flux 

(J) in location 1 after 1 hour of reaction was 2.46×10-4 cm s-1 and 3.7×10-6 mg cm-2 s-1, respectively. 

After 2 hours, the reaction rates (k) and flux (J) in location 1 was increased to 4.31×10-4 cm s-1 and 

18.5×10-6 mg cm-2 s-1 with decreased DBL, indicating the increased Pb2+ leaching from the lead 

joint over time and accumulation of lead at the metal surface. The predicted surface 



82 
 

Pb2+concentration at location 1 was 2.8 times increased from 14.86 to 42.93 mg L-1 for 1 hour 

(Table 6). During the profiling, Pb2+ concentration in the bulk solution was relatively constant at 

2 mg L-1 (Table 8).   

At the lead joint surface, pH was randomly decreased across the strip, with lowest pH found 

in the left side at 4.0. ΔpH across the Pb/Sn alloy was 3.1 (pH 4.0–7.1). In contrast, the pHs on 

both brass sides were increased to maximum pH 10 in some locations. However, the initial and 

final pH in the bulk (before and after the lead and pH microprofile measurements) was 7.0 and 7.2, 

respectively. It is practically important to point out that although the pH in the bulk was 7.2 

throughout the experiment, over time of the galvanic reaction under stagnation, ΔpH across the 

brass-lead joint coupon was around 6.0, indicating that there is significant difference of pH. Only 

at the local level and through the application of truly microelectrode measurement capabilities 

could this important and informative observation be recognized. This dramatic pH difference 

would be enough to initiate and continue cathodic-anodic reaction on the galvanic joint coupon. 

The low pH environment at the lead joint which was created by galvanic corrosion along with Pb2+ 

leaching could intensify the corrosion on both lead and brass surface.9 In this experiment, the 

measured lead concentrations between location 1 and 2 clearly demonstrated the pH effect on lead 

leaching processes. From the surface pH variance across the Pb/Sn alloy surface (pH 4.0–7.1), it 

is predicted that left side of the lead material would contribute more to the lead leaching to the 

bulk, indicating that the lead leaching is a non-uniform process. The mechanism of this randomly 

selective Pb2+ leaching is still unclear; however, the 2D map of pH changes and lead concentration 

microprofiles with two different locations (Figure 35) clearly showed that lead leaching is highly 

heterogeneous even in the small area of lead joint, and lower pH leads to higher lead concentration 

at the lead surface. Although ΔpH was only 0.6 between location 1 (pH 6.4) and 2 (pH 7.0), the 
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surface lead concentration was 4 times different between location 1 (42.93 mg L-1) and 2 (11.61 

mg L-1). The increase in soluble Pb2+ concentrations after 2 hours showed the continuous 

oxidation-reduction reaction between the chlorinated bulk water and the galvanic joint, oxidizing 

pure solid lead to the soluble Pb2+ form before forming any possible complexes with background 

solution.129  

 

Figure 36. Continuous real-time monitoring of Pb2+ leaching from the lead surface (50 µm above 
the surface) and comparison of Pb2+ concentrations between lead joint surface and bulk. Another 
spike of a feed solution after 15 hours was performed (pH 7, 23 oC, stagnation, free chlorine 2 mg 
L-1, 100 mg L- of Cl- and SO4

2-, and DIC 10 mg C L-1). 
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Figure 37. Metal surface characterization using Raman spectroscopy. (a) Optical images of (left) 
the part and (right) the brass, lead joint and region made of white deposit characterized with Raman 
spectroscopy. (b) Average Raman spectra obtained in each region described in (a) with bands 
corresponding to Pb3O4 (125 cm-1), PbO (185 cm-1), PbCO3 (230 cm-1), SO4

2- (980 cm-1) and CO3
- 

(1050 cm-1). 
 

The continuous real-time monitoring of lead concentrations at 50 µm above the lead joint 

surface (location 1) was conducted using the developed lead micro-ISE over 18 hours and the 

surface lead concentrations were compared to the bulk lead concentrations over time (Figure 36). 

The monitoring result showed that the Pb2+ leaching from the lead joint occurs mostly at the first 

few hours (i.e. 3 hours) under stagnation. During the period, white corrosion by-products were 

deposited on the lead joint (Figure 38). After 12 hours of stagnation when free chlorine 

concentration in the solution was zero (measured by Hach method), the soluble Pb2+ near the lead 

joint surface was reduced similar to bulk level (1.58 mg L-1). However, when replacing the feed 

solution with a freshly prepared synthetic chlorinated drinking water after 15 hours, the Pb2+ 

concentration immediately increased to about 2.28×10-5 M (4.71 mg L-1) within 1 hour, indicating 

that free chlorine may be the primary contributor for lead leaching.  Throughout the experiment, 

there was only a slight change of DO (DO) concentrations in the bulk and near the metal surface 
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(e.g. 8.5 to 8.4 mg O2 L-1) which were measured using DO microelectrodes.94 The galvanic coupon 

was then sacrificed for surface characterization using Raman spectroscopy. Optical images of the 

coupon showed that on the brass section where it was protected due to high pH, the structure of 

the surface remains unchanged, while in the corroded lead joint and white deposit areas crystalized 

structure was observed (Figure 37a). After scanning these areas with Raman spectroscopy, the 

average Raman spectra showed peak of PbO, Pb3O4, and PbCO3 formed on the lead joint and white 

deposit area (Figure 37b).130-132 This observation shows that the consumption of free chlorine is 

the main contributor to the Pb oxidation in the galvanic corrosion process. The leaching of soluble 

Pb2+ at the liquid-metal interface occurred instantly after placing the fresh coupon in artificial water 

environment. This fast reaction was able to raise the Pb2+ concentration in the bulk solution at the 

first hour, and maintained at the same level through the entire experiment. Even though after 2 

hours of stagnation, the highest Pb2+ leaching was observed (Figure 36), the concentration in the 

bulk was not changed significantly. The Raman analysis of white deposits on the coupon surface 

directly showed results of soluble Pb2+ into the formation of insoluble Pb complexes. 

 

Figure 38.  Spatio-temporal microprofiling of in situ Pb2+ measurements at the brass-lead 
galvanic coupon surface (pH 7, 23 oC, 2.0 mg Cl2 L-1, 100 mg Cl- L-, 100 mg SO4

2- L-, and DIC 
10 mg C L-1). 
 
 
Table 7. Quantification of Pb leaching from microprofiles after 1 hr and 2 hrs. 
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Location Time 
DBL 

(µm) 

Reaction 

rate,  

k (cm s-1) 

Flux,  

J (mg cm-2 s-1) 

Cs 

(ppm)* 

Cbulk 

(ppm) 

Location 1 
after 1 hr 380 2.46×10-4  3.7×10-6 14.86 2.05 

after 2 hrs 220 4.31×10-4 18.5×10-6 42.93 1.87 

Location 2 after 2 hrs  320 3.46×10-4   3.5×10-6 11.61 1.87 

(*Cs is the predicated surface lead concentration (ppm) at 0 µm based on the measured lead 
concentration at 50 µm above the metal surface with the assumption of same flux.) 
 
Table 8. Monitoring of Pb2+ concentration, pH, and free chlorine concentration in the 
experimental solution over 24 hours. 

Species/Time 0 hour 1 hour 2 hours 4 hours 24 hours 

Pb2+ (mg L-1) 0 2.05 1.87 1.58 3.68 

pH 7.0 7.3 7.2 7.1 7.4 

Free chlorine  

(mg Cl2 L-1) 
2.00 1.72 1.50 1.14 0.00 

 

Overall, this study successfully developed and demonstrated an innovative tool for in situ 

monitoring of Pb2+ concentrations near metal surfaces with high spatial resolutions. This is the 

first to measure lead concentrations directly near (within 50 µm) the galvanic joint surface along 

with corresponding pH measurements at same resolution. Although the continuous monitoring for 

months may not be possible due to the inherent short life time (1 – 3 days) from evaporation of the 

liquid membrane,133 the real-time monitoring for a certain duration (e.g. 16 hours) seems to be 

enough to identify the trend of lead leaching from the galvanic joint under various water/metal 

conditions with further experimental plans. It is expected that the application of this novel 
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technique of lead detection using a microelectrode technique will provide better understanding of 

lead corrosion and leaching in drinking water distribution plumbing systems and elucidate the 

related galvanic corrosion mechanism along with other microprofiles of DO, pH, free chlorine, 

oxidation-reduction potential (ORP), and zinc (for brass) for improving corrosion control 

strategies.   
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CHAPTER 7. SUMMARY 

In the last four years of work, my research has been mainly focused on the corrosion 

mechanisms investigation using different microelectrodes. Microelectrodes showed steady and 

dramatic chemistry change on the metal-liquid interface of uniformed corrosion on brass and 

cement coupon, and heterogeneous corrosion on galvanic joint. Microelectrodes, commercial and 

self-made, were successfully utilized to fulfill the objectives and assumptions of each experiment. 

In the brass and cement corrosion experiment. At initial stage, brass corrosion in free 

chlorine was slower than brass in monochloramine through observation, with selective leaching of 

zinc on brass surface observed throughout the experiment. A “Fiber structured” zinc compounds 

was formed at pH 7. Oxygen at the brass surface showed much greater decrease under the reduced-

mass-transfer condition. Cement dissipation was expected at the start of the experiment with pH 

increased at the surface and weight loss in the end of the experiment. 

During the galvanic joint experiment, the methods evolved greatly throughout the entire 

experiment stage, from 2D mapping on a rough coupon surface to epoxy mounting fabricated 

surface, and from EXCEL data processing to python code processing. The results showed detail 

and dramatic chemistry change on the liquid-metal interface. Under both flow and stagnant 

condition, pH increased to maximum 10 at the both end of the brass. In the galvanic joint, pH 

decreased under different flow conditions. At pH 7, pH varies from 2.8 to 10.3 across the surface 

of a single coupon. There was little oxygen consumption observed during the experiment, 

indicating that free chlorine served the main contributor as the oxidant to the chemistry reaction. 

The dramatic local pH can be a great concern for the drinking water pipeline corrosion, promoting 

galvanic corrosion and accelerating pitting corrosion. With this newly introduced methodology, it 
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can be extended in other important water quality parameters in the drinking water, such as lead, 

zinc, and phosphate profiling using microelectrodes for corrosion studies.  

In the lead micro-ISE experiment, an in-situ lead monitoring method was developed for 

liquid-metal interface at a brass-lead galvanic joint in a simulated chlorinated drinking water. The 

developed lead micro-ISE (100 µm tip diameter) showed excellent performance toward soluble 

lead (Pb2+) with the sensitivity of 22.2±0.5 mV decade-1 and limit of detection (LOD) of 1.22×10-

6 M (0.25 mg L-1). The response time was less than 10 seconds with a working pH range of 2.0–

7.0. Using the lead micro-ISE, lead concentration microprofiles were measured from the bulk to 

the metal surface over time. Combined with two-dimensional (2D) pH map, this work clearly 

demonstrated that lead leaching at the metal surface is non-uniform and lower surface pH leads to 

higher lead leaching from the surface. Once significant pH variation (ΔpH: 6.0) was developed 

across brass-lead joint coupon, even a small pH change (ΔpH: 0.6) within the Pb/Sn alloy resulted 

in 4 times different surface lead concentrations (42.93 vs. 11.61 mg L-1) and 5 times different 

fluxes (18.5×10-6 vs. 3.5×10-6 mg cm-2 s-1). Continuous surface lead leaching monitoring and 

surface characterization found that free chlorine is the primary contributor to lead leaching.  
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CHAPTER 8. FUTURE WORK 

The points below are proposed as possible contents for future research: 

8.1. Phosphate sensor development 

Co based phosphate sensor has been developed by other researchers in previous years, and 

results showed multiple application of phosphate microelectrode in drinking water system.134 

Phosphate as an important component in drinking water pipeline corrosion inhibitor has been 

applied to many drinking water facilities. The development of a phosphate sensor will allow more 

quantification in corrosion control strategies. Based on fundamental knowledge of 

electrochemistry, more experiments need to be focused on pH effect, oxygen and ion interference, 

which can greatly improve the sensor’s performance in a complicated drinking water system. 

8.2. Chloride to sulfate mass ratio (CSMR) experiment 

Chloride to sulfate mass ratio was proposed by other researchers which indicating it as a 

major part of corrosion mechanism.9 However, this theory was mainly focused on the bulk 

monitoring, along with elemental analysis. The surface chemistry change was not emphasized due 

to the lack of techniques for investigation. Based on the fundamental knowledge to this specific 

matter, liquid-metal interface investigation can improve the understanding of corrosion 

mechanisms under different water environment, which can further improve the theory regarding 

to the corrosion process. The results of CSMR experiment with microelectrodes can visualize and 

quantify the chemistry change over the metal surface. The behavior of corrosion in drinking water 

varies to different conditions, and microelectrodes will be able to help and model pipeline reaction 

even under extreme environment. 
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APPENDIX A: SOLUTION PREPARATION, MICROELECTRODES 

FABRICATION, AND CALCULATION 
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A chlorinated artificial water solution preparation 
Stock solution was prepared with NaCl, NaHCO3, and Na2SO4 (Fisher Scientific, Fair Lawn, NJ) 

and was diluted proportionally for the lead profile measurements in a 20 L feeding solution with a 

final concentration of 10 mg C L-1, 100 mg Cl- L-1 and 100 mg SO4
2- L-1. Free chlorine solutions 

were prepared by diluting 6% sodium hypochlorite (Fisher Scientific, Fair Lawn, NJ) to 8,000 mg 

Cl2 L-1 as stock solution, then diluted to the 2 mg Cl2 L-1 in the bulk test water solution for the 

experiment. The free chlorine concentration was validated by a colorimetric test kit (Hach-8021) 

and a DR 5000 spectrophotometer (Hach Co.). HCl and NaOH were used for pH adjustments to 

pH 7. The bulk water was air-saturated before the pH adjustment and free chlorine addition. 

 

Ag/AgCl internal reference electrode fabrication and preparation 

The Ag/AgCl internal reference electrode for the connection of Pb micro-ISE was prepared 

manually in the laboratory. An 8-cm silver wire (0.25 mm diameter, Sigma-Aldrich, Milwaukee, 

WI) was cut and connected against graphite rod. The brownish AgCl was formed by electroplating 

the Ag wire 1 M HCl (Fisher Scientific, Fair Lawn, NJ) at 4.5 V for 10 minutes. The typical 

distance between the LIX membrane and the Ag/AgCl internal reference electrode is 1 cm.  

 

Brass-lead galvanic joint coupons 

Two small pieces of brass coupon (DCA 443, admiralty brass, Metal Samples Co., Munford, AL) 

were cleaned using a combination of two American Society for Testing and Materials (ASTM) 

coupon wash procedures: G31-7267 and D2688-8368 and then connected to each other with 50:50 

lead-tin (Pb-Sn) solder (38110, Forney). Then after polishing with 800 grit sandpaper, a cold epoxy 

specimen mounting technique was applied to the brass-lead soldered galvanic joint coupon to 

provide a smooth even surface throughout the coupon area for microprofiling.    

 

Mass flux and reaction rate determination 

Using measured Pb2+ concentration microprofiles, the mass flux (J) and reaction rate (k) were 

calculated from Fick’s first law 135: 

 𝐽 = −𝐷 𝑑𝐶𝑑𝑧 = −𝐷 𝐶1−𝐶2𝑧1−𝑧2 = 𝑘𝐶𝑠                        (Eq. 1) 

 

where J is the mass flux (mg/cm2·s) of constituent (Pb2+), D is the coefficient for the species 

(9.45×10-6 cm2/s for Pb2+),136 dC/dz is the concentration gradient with depth (mg/cm4), C1 and C2 

are two different concentrations at different depth (cm) z1 and z2 within the diffusion layer 
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(mg/cm3), Cs is the estimated concentration at 0 µm on coupon surface (mg/cm3), and k is the 

reaction rate (cm/s). 

Experiment setups 

 

Figure 39. Experiment setups for microprofile system. 

Microprofile experiments were conducted in a designated faraday cage in the lab as it displayed in 

figure 39. A flow cell was connected to a peristaltic pump (Masterflex, Cole-Parmer Instrument 

Company, Court Vernon Hills, IL) with artificial water flowing at controlled speed and a beaker 

for waste collection. Light source was used for microelectrodes positioning, and it was turned off 

during the profile/mapping experiment. The working and guide microelectrodes were controlled 

by automatic 3D manipulator during the experiment with connected Ag/AgCl reference electrode 

submerged in the tested water. The faraday cage was closed and properly grounded during the 

experiment.  

 

 

  

Flow cell

Flow direction
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APPENDIX B: A SAMPLE CODE FOR PYTHON FIGURES 
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#example code for pH distribution at pH 7, free chlorine 2 mg L-1 

# -*- coding: utf-8 -*- 

import scipy.interpolate 

import matplotlib.pyplot as plt 

import numpy as np 

from matplotlib.ticker import MultipleLocator 

import matplotlib 

#pH 9 chlorine 

font = {'family' : 'serif', 

        'color'  : 'black', 

        'weight' : 'bold', 

        'size'   : '40', 

        } 

x = np. array([0, 1200, 2400, 3600, 4800, 6000, 7200, 8400, 0, 1200, 2400, 3600, 4800, 6000, 

7200, 8400,0, 1200, 2400, 3600, 4800, 6000, 7200, 8400,  

0, 1200, 2400, 3600, 4800, 6000, 7200, 8400,  

0, 1200, 2400, 3600, 4800, 6000, 7200, 8400,  

0, 1200, 2400, 3600, 4800, 6000, 7200, 8400,  
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0, 1200, 2400, 3600, 4800, 6000, 7200, 8400,  

0, 1200, 2400, 3600, 4800, 6000, 7200, 8400,  

0, 1200, 2400, 3600, 4800, 6000, 7200, 8400,  

0, 1200, 2400, 3600, 4800, 6000, 7200, 8400,  

0, 1200, 2400, 3600, 4800, 6000, 7200, 8400,  

0, 1200, 2400, 3600, 4800, 6000, 7200, 8400,0, 1200, 2400, 3600, 4800, 6000, 7200, 8400,  

0, 1200, 2400, 3600, 4800, 6000, 7200, 8400]) 

y = np. array([0, 0, 0, 0, 0, 0, 0, 0,  

1500, 1500, 1500, 1500, 1500, 1500, 1500, 1500,  

3000, 3000, 3000, 3000, 3000, 3000, 3000, 3000,  

4500, 4500, 4500, 4500, 4500, 4500, 4500, 4500,  

6000, 6000, 6000, 6000, 6000, 6000, 6000, 6000,  

7500, 7500, 7500, 7500, 7500, 7500, 7500, 7500,  

9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000,  

10500, 10500, 10500, 10500, 10500, 10500, 10500, 10500,  

12000, 12000, 12000, 12000, 12000, 12000, 12000, 12000,  

13500, 13500, 13500, 13500, 13500, 13500, 13500, 13500,  

15000, 15000, 15000, 15000, 15000, 15000, 15000, 15000,  
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16500, 16500, 16500, 16500, 16500, 16500, 16500, 16500,  

18000, 18000, 18000, 18000, 18000, 18000, 18000, 18000,  

20000, 20000, 20000, 20000, 20000, 20000, 20000, 20000  

]) 

z = np. array([9.5, 9.6, 9.7, 9.3, 9.6, 9.4, 9.2, 9.0, 8.1, 7.7, 7.6, 8.2, 8.8, 9.0, 8.9, 8.8, 7.6, 7.1, 8.1, 

8.7, 8.4, 8.2, 8.3, 8.5, 9.1, 9.4, 9.4, 9.3, 9.2, 9.0, 8.9, 8.8, 8.1, 9.4, 9.3, 9.4, 9.2, 8.8, 8.1, 7.3, 6.1, 

6.0, 6.0, 6.5, 6.5, 6.6, 6.7, 6.7, 3.1, 4.7, 3.7, 5.6, 5.9, 5.4, 5.7, 5.8, 6.7, 8.2, 5.9, 7.9, 8.0, 7.6, 4.0, 

5.8, 9.5, 9.5, 9.4, 9.4, 9.4, 9.2, 9.1, 9.1, 9.6, 9.7, 9.8, 9.8, 9.7, 9.7, 9.5, 9.4, 9.7, 9.8, 9.8, 9.8, 9.7, 

9.7, 9.5, 9.4, 9.7, 9.7, 9.8, 9.8, 9.8, 9.6, 9.5, 9.4, 9.7, 9.8, 9.9, 9.8, 9.8, 9.7, 9.7, 9.6, 9.8, 9.9, 10.0, 

10.0, 10.0, 9.9, 9.9, 9.8]) 

# Set up a regular grid of interpolation points 

xi, yi = np.linspace(x.min(), x.max(), 600), np.linspace(y.min(), y.max(), 600) 

xi, yi = np.meshgrid(xi, yi) 

xmajorLocator   = MultipleLocator(2000) 

ymajorLocator   = MultipleLocator(2000) 

# Interpolate 

rbf = scipy.interpolate.Rbf(x, y, z) 

zi = rbf(xi, yi) 

print(zi) 
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#plt.imshow(zi, vmin=7, vmax=10, origin='lower', 

           #extent=[x.min(), x.max(), y.min(), y.max()]) 

plt.figure(figsize=(10,18)) 

ax = plt.subplot(1, 1, 1) 

ax.xaxis.set_major_locator(xmajorLocator) 

ax.yaxis.set_major_locator(ymajorLocator) 

plt.xlim((0,8400)) 

plt.ylim((0,20000)) 

for label in (ax.get_xticklabels() + ax.get_yticklabels()): 

    label.set_fontname('Arial') 

    label.set_fontsize(24) 

#plt.scatter(x, y, c=z) 

cmap = matplotlib.cm.jet 

norm = matplotlib.colors.Normalize(vmin=3, vmax=10) 

plt.pcolor(xi, yi, zi, cmap=cmap, norm=norm) 

cb = plt.colorbar(ticks=[3, 4, 5, 6, 7, 8, 9, 10]) 

cb.set_label("pH", size=24) 

cb.ax.tick_params(labelsize=24) 
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#cb.ax.set_xticklabels(['Low', 'Medium', 'High']) 

#plt.show() 

my_dpi=5000 

plt.show() 
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