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ABSTRACT

In the light of recent tragic events, such as, natural disasters, arson and terrorism, studying the

thermo mechanical behavior of concrete at elevated temperatures has become of special concern.

In addition, the fact that concrete has been widely used as a structural material in many critical ap-

plications, such as high rise buildings, pressure vessels, and nuclear plants, enhances the potential

risk of exposing concrete to high temperatures. Accordingly, the potential damage to large-scale

structures during the course of the fire, besides the possible loss of human life, emphasizes the

necessity to better understand the thermo-structural behavior and failure mechanism of concrete

exposed to elevated temperatures.

In this study, a one-dimensional model that describes coupled heat and mass transfer phenomena

in heated concrete was developed. The mathematical model is based on the fully implicit finite

difference scheme. The control volume approach was employed in the formulation of the finite

difference equations. The primary variables considered in the analysis are temperature, vapor den-

sity, and pore pressure of the gaseous mixture. Several phenomena have been taken into account,

such as evaporation, condensation, and dehydration process. Temperature, pressure, and moisture

dependent properties of both gaseous and solid phases were also considered. Moreover, the pro-

posed model is capable of predicting pore pressure values with a sufficient accuracy, which could

be significantly important for the prediction of spalling and fire resistance of concrete.

The two dimensional coupled heat and mass transfer problem was then studied by extending the

proposed one dimensional model so that it can be applicable in solving two-dimensional problems.

Output from the numerical model showed that the maximum values of temperature, pressure, and

moisture content occur in the corner zone of the concrete cross section, in which the pore pressure

builds up right next to the moisture pocket towards the center. In addition, the model demonstrates
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the capability to solve the coupled problem in situations involving non symmetric boundary con-

ditions, in which conducting a one dimensional analysis is of no use. The contour plots of the

temperature, pressure, and moisture were also presented. Simulation results clearly indicate the

capability of the proposed model to capture the complex behavior of the concrete exposed to el-

evated temperatures in two dimensional systems and to adequately predict the coupled heat and

mass transfer phenomena of the heated concrete over the entire flow domain.

In order to predict the structural behavior of reinforced concrete members exposed to elevat-

ed temperatures, a three-dimensional fiber beam model was developed in this study to compute

the mechanical responses of reinforced concrete structures at elevated temperatures by using the

well-known sectional analysis approach. The temperature distributions obtained from the two-

dimensional coupled heat and mass transfer analysis were used as an input to the strength analysis.

The model also accounts for the various strain components that might generate in concrete and

steel due to the effect of high temperatures. The constitutive models that describe the structural be-

havior of concrete and steel at elevated temperatures were also presented. In order to establish the

validity of the proposed fiber model, a sequentially coupled thermo mechanical analysis was im-

plemented, in which the model predictions were compared against measured data from tests with

good qualitative agreement. The developed model can be considered as an efficient and powerful

tool to promptly assess the structural behavior and the integrity of the structure during emergency

situations, such as fire events.
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CHAPTER 1: INTRODUCTION

1.1 Motivation

The thermo-mechanical behavior of concrete at elevated temperatures has been the subject of great

interest for many years. A significant amount of research has been performed to better understand

the performance of concrete at high temperatures, in particular, in fire events. Nevertheless, there

is still a lack of understanding of the behavior of concrete under extreme thermal loading. Further-

more, the fact that concrete has been widely used as a structural material in critical applications,

such as high rise buildings, pressure vessels, and nuclear plants, enhances the potential risk of

exposing concrete to high temperatures.

Concrete as a non-homogeneous material has a very complex interaction with elevated tempera-

tures. This is due to the fact that the different constituents of concrete react differently to heat

exposure, which makes predicting the exact behavior of concrete a challenging task. Besides it’s

structural properties, concrete exhibits better fire resistance than any other building material be-

cause of its low thermal conductivity and high specific gravity (Arioz, 2007), which makes it a

desirable choice in the construction industry. However, a significant loss in compressive strength

of concrete material has been noticed when exposed to rapid heating conditions, which is consid-

ered as one of the principals effect of elevated temperature on concrete. In addition, spalling of

concrete may also occur in both explosive and non-explosive forms, which in turn represents one

of the major concerns related to the use of concrete in infrastructure, such as bridges, tunnels, and

in high rise buildings.

A few examples of situations in which damage of concrete in real structures due to fire has been

observed are: the Windsor tower in Madrid, in which an extensive damage of the upper floors has
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occurred due to 18-20 hours of fire exposure; the Storbaelt Tunnel in Denmark is also an example

of the massive effects of fire, where the loss in the concrete thickness was about 75% of its original

thickness because of fire exposure in 1994 (Connolly, 1997); the Channel Tunnel fire in 1996 is

another illustration of the financial and economic consequences of 10 hours of fire exposure. The

fire temperature that reached 700◦C destroyed parts of the concrete tunnel rings because of the

thermal spalling which resulted in severe damage over thousands of meters of the tunnel length

with an average depth of 0.1 to 0.2 m (Ulm et al., 1999b,a). The potential damage to large-scale

structures during the course of the fire, besides the possible loss of human life, emphasizes the

necessity to better understand the thermo-structural behavior and failure mechanism of concrete

exposed to elevated temperatures.

1.2 Concrete as a Porous Media

Concrete is a multi-phase porous material. That is, it consists of three phases which are: (i)

the solid phase that is composed of aggregate, cement gel, and chemically bound water, (ii) the

liquid phase described by the capillary and adsorbed water, and (iii) the gaseous phase which is

a mixture of water vapor and dry air, Figure (1.1). The voids in the porous concrete may be

filled or partially filled with water and hence the concrete is referred to as saturated or partially

saturated. Accordingly, if the temperature is below the critical temperature of water (374.15◦C),

a distinction between the saturated and partially saturated concrete must be made. In the case of

higher temperatures, however, the liquid phase doesn’t exist and thus there is no need for such a

distinction.

When concrete is exposed to elevated temperatures, both conduction and convection will have a

significant role in the heat transfer process. In most porous concretes, some portion of free water is

always retained within the pores. When the temperature exceeds 100◦C, that amount of free water
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Figure 1.1: (a) Schematic description of concrete structure, (b) Volumetric proportions of concrete

components, after (Ichikawa and England, 2004)

starts to evaporate. The water in the capillary pores that is close to the exposed surface of concrete

usually starts to evaporate first.

Concrete is known to have low permeability. Accordingly, as water starts to evaporate, the rate

of vapor production will be higher than the rate of vapor migration resulting in pore pressure

build up. Hence, the mass transport phenomenon of heated concrete is mainly governed by the

pressure gradient. The vapor transport within the concrete element usually occurs in two ways: (i)

toward the outside surface where it leaves, (ii) toward the inside regions (cooler regions) where it

condenses. Based on the above illustration, there is a strong coupling relationship between heat and

mass transfer phenomena, which in turn influences the thermal behavior of concrete significantly;
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and consequently makes considering the coupling effect in the heat transfer analysis necessary for

more accurate prediction of temperature distributions.

Many research efforts have been focused on studying the problem of thermo-mechanical behavior

of concrete at elevated temperatures. In addition, most of the finite elements based software are

dedicated to model such behavior. However, the majority of these works study the transport prob-

lem without incorporating moisture flow phenomenon in the analysis, which in turn results in over

conservative or even poorly accurate predictions of temperature distributions, especially at rela-

tively deeper sections. The presented research will consider the coupling effect between moisture

and heat transfer phenomena in concrete subjected to elevated temperatures.

1.3 General Behavior of Reinforced concrete at Elevated Temperatures

As mentioned before, the actual behavior of reinforced concrete when exposed to high tempera-

tures depends on the thermal responses of its constituents, namely, concrete (including all its di-

verse components) and reinforcement steel. Accordingly, the characteristics of the thermal and me-

chanical properties of concrete and steel will be affected. In the following subsections, the discus-

sion will be mainly focused on some significant aspects of the reinforced concrete behavior, which

include: (i) concrete physiochemical response to high temperatures, (ii) the spalling/cracking phe-

nomenon, and (iii) performance of reinforcement steel at elevated temperatures.

1.3.1 Physical and chemical response of Concrete to Elevated Temperatures

When concrete is subjected to high temperatures, changes in the chemical composition and phys-

ical structure occur. Most of these changes happen in the cement paste although some of them

occur in the aggregate as well. Differential thermal analysis (DTA) has been used previously by
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some researchers, such as (Schneider et al., 1982), to investigate the combined reactions in cement

paste and aggregate in concrete. A close inspection of the DTA curves indicates the following:

at 100◦C the evaporation of free water occurs followed by the release of the compound water by

the dehydration of the calcium silicate hydrate (C3S2H3) usually known as “tobermorite gel”. This

process usually starts at about 180◦C. As the temperature increase progresses, the decomposition of

calcium hydroxide Ca(OH)2 starts, typically around 400◦C. At higher temperatures, several trans-

formations and decompositions take place until the concrete reaches a temperature of 1150◦C. At

this temperature, melting of the cement paste and aggregate commence.

The porosity and the volume of concrete, on the other hand, also change due to the effect of heat.

Many investigations reported an increase in porosity of about 34% was noticed in the cement paste

when the temperature increases from 105◦C to 900◦C (Schneider and Herbst, 1989; BaZant and

Thonguthai, 1979; Bazant and Kaplan, 1996; Hiteco III, 1999). The porosity increase is attributed

to the breakdown of the cement gel (CHS) accompanied by temperature increase, i.e., dehydration

process. It was also noticed that the average size and distribution of pores are also affected by

temperature change (Bazant et al., 1982). The change in pore structure of concrete also influences

the physical and mechanical properties of concrete.

After prolonged exposure to elevated temperatures, the changes in the structural properties of con-

crete become irreversible because of the permanent transformations in the physical and chemical

properties of the cement mortar. In addition, it should be noted that these changes may significantly

impair the performance of concrete structures after the end of heating exposure.

1.3.2 Spalling and Cracking

One of the problems that is associated with concrete exposure to elevated temperatures is spalling.

There are two hypotheses to explain the reason behind the spalling. The first hypothesis attributes
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the spalling to the mechanical stresses that are developed within the concrete element during ex-

treme heating conditions, in which the thermal expansion of the heated elements is restrained by

the adjacent cooler ones and hence creating a large compressive stress. This stress combined with

stresses that resulted from the applied external loads are released in the form of spalling. Some re-

searchers (Harmathy, 1965); however, believe that the increase in the pore water pressure resulted

from the rapid expansion of moisture content is the main reason behind spalling. This increase

in the pore water pressure causes large tensile stresses and eventually leads to tensile failure.

Occurrence of spalling has been observed in concrete when exposed to extremely rapid heating

conditions, yet some observations indicate that spalling may occur at relatively low temperatures

(Canisius et al., 2003).

One of the most deleterious effects of spalling on the performance of reinforced concrete structures

is reducing or eliminating the concrete cover over the reinforcement steel, which in turn results in

direct exposure of the naked steel bars to the heat source. Therefore, a significant reduction of the

steel strength may be expected in this case. Furthermore, If spalling happens in sufficient amounts,

a reduction in the cross-sectional area of the structural member occurs. Consequently, this leads

to a loss in the concrete stiffness, which might in severe cases endanger the integrity of the overall

structural system.

Cracking is believed to occur due to the same reasons that lead to spalling generation. Fissures may

also develop due to the thermal expansion and dehydration processes associated with the exposure

of concrete at high temperatures. These fissures may contribute to increase of the temperature

of reinforcement steel by creating a pathway from the heating source to the reinforcement bars

that could cause more thermal stresses and thus more cracking. Cracking penetration depth into

concrete was found to be highly affected by the external heating conditions. That is, the penetration

depth of cracking increases with the temperature increase (Georgali and Tsakiridis, 2005). Also,

short heating and cooling cycles, such as the case of fire extinguishing, usually result in deeper
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cracks (more than 30 mm) (Georgali and Tsakiridis, 2005).

1.3.3 Performance of Reinforcement Steel at Elevated Temperatures

In general, steel has a more understood thermal behavior than concrete. Accordingly, the strength

of steel at a certain temperature can be accurately predicted (Fletcher et al., 2007) . The thermal

expansion of steel and concrete exhibit similar trends up to a temperature of 400◦C. However,

at temperatures greater than 400◦C, steel expands at much higher rates than concrete. When rein-

forcement steel reaches a temperature of 700◦C, a reduction of 20% of its strength may be expected

(Fletcher et al., 2007).

Reinforcement steel may also have a significant effect on moisture transfer in heated concrete. This

is due to the fact that steel bars form a barrier through which water cannot be permeated, and thus

results in water trapping. The water is forced to flow around the bars, resulting in an increase in

the pore pressure at some regions of the concrete that increases the possibility of spalling occur-

ring (Chung and Consolazio, 2005). Also, it should be noted that unlike concrete, the structural

properties of steel in most cases may be restored to their original state upon cooling.

1.4 Structural system performance

Although being able to understand the behavior of individual concrete members at elevated tem-

peratures is crucial, it is more important to realize that this behavior could vary significantly if the

structure as a whole unit is considered. One of the factors that may lead to this issue is thermal

expansion. That is, if the member is exposed to elevated temperatures, the resultant thermal expan-

sion may lead to induced forces on the cooler members because of what is known as differential

expansion. At the same time, the heated members will be under the effect of compression forces
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because of the restraining effect of the adjacent members in the structure (Fletcher et al., 2007).

A thorough literature review indicated that little research has been carried out on concrete struc-

tures. However, many experimental investigations and studies have been conducted on individual

concrete components with several boundary conditions in order to provide a better understanding

of the behavior of the whole structure. It should be also noted that the failure of an individual

concrete member doesn’t necessarily lead to the failure of the whole structural system; this is due

to load redistribution and structural redundancy (Fletcher et al., 2007, 2006).

1.5 Research Objective

Generally, concrete materials exhibit complex interactions at elevated temperatures, and the degra-

dation in mechanical properties is significantly affected by many factors, such as the concrete mix,

maximum temperature reached, and the heating exposure scenario. In addition, the fact that the

concrete is a hygroscopic material in which liquid water content has a significant role, affects the

whole heat transfer process. Thus, conducting a simple heat transfer analysis, in which only con-

duction within the solid phase is considered, may result in poor estimate of temperature distribution

and hence affect the subsequent prediction of the mechanical response. Consequently, the thermo-

mechanical behavior of concrete is not well characterized for now, and thus further research should

be conducted in this area.

Accordingly, the main objective of this research is to study the thermo-mechanical behavior of

reinforced concrete members at elevated temperatures. The focus of this dissertation is to estab-

lish a sequentially coupled thermo-mechanical model for RC members exposed to both thermal

and external loadings. This includes developing the following: (i) a two-dimensional numerical

approach to model the coupled heat and mass transfer phenomenon in concrete, in which the tem-
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perature distribution will be obtained, and (ii) a fiber beam element model to predict the mechanical

response of the concrete member due to thermal and externally-applied loadings. The results ob-

tained from the heat and mass transfer analysis are used in the subsequent step to perform the

structural analysis, where the transient temperature field will be applied as thermal loading.

1.6 Research Plan

Considering concrete as a porous media when solving the transport problem requires writing the

governing equations that describe heat and mass transfer phenomena at the macroscopic level, in

which each phase is considered as a continuum that fills up the entire domain of porous medium.

In other words, trying to solve the transport problem at the microscopic level, where the focus

is on what happens at a mathematical point within a considered phase, is almost impossible and

is also of no interest in practice. Therefore, and as a first step, the governing equations at the

macroscopic level will be developed based on the generic microscopic equations and by utilizing

an averaging approach. After having defined the problem at the macroscopic level, the equations

were formulated and solved using the finite difference method. The model was first developed to

simulate the one-dimensional coupled heat and mass transfer phenomena in heated concrete. As a

potential enhancement, the derivation was extended to be applicable for two-dimensions problems.

A three-dimensional fiber beam model was then developed to compute the mechanical responses

of the concrete structural member at elevated temperatures using the well-known sectional analysis

approach. The analysis utilized the temperature distribution obtained from the coupled heat and

mass transfer analysis to determine the mechanical properties of concrete, such as the compressive

strength and modulus of elasticity. Various strain components that include mechanical and non-

mechanical strains (fire induced strains) of both concrete and reinforcement steel were also be

accounted for in the model. These strains were evaluated based on the temperature reached in
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space increment.

In order to validate the proposed coupled heat and mass transfer models, the predicted temperature

distributions obtained from numerical analyses were compared with experimental results previous-

ly published in the literature. In addition, the validity of the fiber beam model was also established

by comparing the predicted axial deformation of RC columns against measured data.
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CHAPTER 2: BACKGROUND STUDY

2.1 Thermo-Mechanical Analysis of Concrete Structures

Over the last few decades, extensive studies have been conducted to enhance knowledge of the

thermo-mechanical behavior of concrete structures under elevated temperatures and fire. Due to

the complex nature of concrete, most of these studies have considered the heat transfer process

to be only within the solid skeleton of concrete, i.e., conduction was the only mode that was

considered in the analysis. However, in the real scenario that is not always true. The fact that the

concrete is a hygroscopic material in which liquid water content has a significant role, affects the

whole heat transfer process. The evaporation of free water content at high temperatures cannot

be modeled by the previously mentioned conduction-only model. Some researchers have tried to

improve the simple model by including the effect of free water with the aid of some modifications,

such as introducing a water vapor fraction (Capua and Mari, 2007) or adding the energy consumed

by water evaporation in the specific heat of the material (Eurocode, 2004). Yet, in all these studies,

it was assumed that the water boils at a specific temperature regardless of the fact that the boiling

temperature depends on the pore and saturation pressure. Hence, other researchers have already

moved towards more refined models in which the coupled effect of heat and mass transfer was

considered (Tenchev et al., 2001; Gawin et al., 1999; Abdel-Rahman and Ahmed, 1996).

The thermo-mechanical analysis of concrete structural members under fire loading in general con-

sists of two main steps. In the first step, the temperature distributions over the cross section are

computed by implementing heat transfer analysis. In the next step, the mechanical responses are

determined in which the temperature distributions from the heat transfer analysis are defined as

thermal loading. In the following section, prior research is presented in three main categories.

The first part will focus mostly on the literature related to the simplified conduction analysis while
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the second part will address the prior research in which the coupled heat and mass transfer phe-

nomenon is accounted for in the numerical modeling. The last part concerns the mechanical anal-

ysis of concrete at elevated temperatures.

2.1.1 Conduction analysis of concrete at elevated temperatures

The main advantage of the conduction analysis is its simplicity. However, only fair accuracy can

be achieved. This analysis has been used extensively by many researchers to predict temperature

distributions in concrete members (Capua and Mari, 2007; Xu and Wu, 2009; Bratina et al., 2003).

It has also been utilized by most current finite element software, such as ABAQUS, ANSYS, and

SAFIR for modeling the heat transfer process. The conduction heat transfer model has only one

field variable, which is the temperature (T ) and two temperature dependent properties, which are

thermal conductivity (k) and specific heat (cps). The mathematical expression of the model can be

defined as:

ρscps
∂T

∂t
= ∇ · (−k∇T ) +Q (2.1)

Where t is the time of fire or heat exposure, ρs is the concrete density and Q is the internal heat

generation.

A two-dimensional heat transfer model for reinforced concrete frames exposed to fire was proposed

by Capua and Mari (Capua and Mari, 2007). The integral form of equation 2.1 was used and

the principles of virtual temperature (pressure and density for dry and moist air are the same)

were applied at time t + δt. A set of nonlinear equations was then obtained and solved after

linearization by using a full Newton-Raphson iterative method. As a possible improvement over

the pure heat transfer model, the effect of moisture was considered by introducing a water vapor

fraction function to describe the change of enthalpy rate with temperature. The model was based

12



on several assumptions which can be summarized as follows: (i) local thermodynamic equilibrium

exists. That is, the temperature of the fluid and the solid are the same at each point, (ii) the effect

of mass diffusion on heat transfer process is negligible compared with that by conduction, (iii) the

effect of dehydration of chemically bound water is neglected, and (iv) the water boils at 120◦C.

The fire loading was applied according to the ISO 834 fire curve and the numerical analysis was

validated using experimental results with a fairly good agreement.

(El-Fitiany and Youssef, 2009), on the other hand, utilized the finite difference method (FDM) to

solve the transient heat conduction equation.The model was originally proposed by (Lie and Irwin,

1995) in order to calculate the temperature variation within the cross section and fire resistance. In

this model, a set of nonlinear equations that are based on the FDM was formulated for concrete and

steel reinforcement. The model accounts for the effect of moisture by computing the volume of

moisture that evaporates from each concrete element at each time increment. It was assumed that

the water in each element starts to evaporate at 100◦C. During the evaporation process, all the heat

that is supplied to an element is used for evaporation until that element is dry. Lie also reported

pronounced differences between the measured and calculated temperature at deeper sections of the

studied columns cases. That difference was attributed to the migration of moisture towards the

center of the column which was not taken into account in his model.

(Hong, 2007) also developed a 3D finite element model using the general purpose commercial soft-

ware ABAQUS to conduct the heat transfer analysis of concrete filled tube columns. The moisture

in the concrete was modeled by imposing a uniform grid of water elements over the concrete el-

ements. Differences between the predicted and measured temperature within the cross section

were observed, and they were attributed to two main reasons: (i) variation in the concrete thermal

properties, (ii) approximations used to model the moisture in the concrete. That is, moisture was

modeled as a uniform grid, while the actual moisture distribution has a more complex pattern.

ABAQUS was also used to develop another numerical model in order to simulate the temperature
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development in concrete-filled carbon and stainless tubes by (Uy et al., 2009). In that model, the

moisture content was computed based on a formula that was originally proposed by (Hilsdorf,

1967). A sensitivity analysis was also carried out to consider the effect of the following parameter-

s: (i) steel reinforcement, (ii) constitutive models of fire curves, (iii) moisture content of concrete,

(iv) thermal contact conductance, and (v) convective heat transfer and emissivity coefficients. It

was concluded that the presence of steel reinforcement has in general a negligible effect on the

temperature development, and it was also suggested to neglect the effect of steel reinforcement (if

any) in the analysis in order to increase the computation efficiency of the FE model.

2.1.2 Coupled Heat and Mass Transfer Analysis of Concrete at Elevated Temperature

When concrete is exposed to temperatures higher than standard ones, the heat transfer process is

affected by both conduction and convection. Vapor starts to diffuse and liquid free water begins to

evaporate, which result in pore pressure buildup. At sufficiently high temperatures, the chemically

combined water starts to be released as free water by dehydration and then evaporates. All these

phenomena result in changes in chemical composition and physical structure of concrete, and cre-

ate a strong coupling effect between temperature and mass transfer. Accordingly, the mechanical

and thermal properties of concrete will be affected. Hence, it was necessary to accurately model

the coupling effect between heat and moisture in the porous concrete.

The problem was studied extensively in irreversible thermodynamics, such as the work of (Luikov,

1964), who was one of the pioneers in studying the coupling effect of heat and moisture transport

in porous media. Luikov proposed coupled differential equations for heat and moisture transfer

in the capillary porous body. Based on Luikov’s work, (Bazant and Thonguthai, 1978; Bažant

and Thonguthai, 1979) proposed field equations of coupled heat and moisture transfer for concrete

exposed to temperature above 100◦C. The equations were formulated in the finite element scheme
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and solved using a Galerkin-type procedure. In that model, the water vapor and liquid water were

considered as one variable (moisture) and the moisture flux expression was simplified by assuming

mass flux to be only a function of the pressure gradient. This assumption was supported by a

study of test data which indicated that the effect of the temperature gradient on mass flux is rather

small. Bazant also presented the well-known equations of state of pore water-sorption isotherms

and studied the effect of elevated temperatures on the permeability of concrete. He indicated that

for temperatures exceeding 100◦C, the permeability increases about two orders in magnitude. The

pore geometry was assumed to be invariable in that study and the adsorbed water was neglected.

(Gawin et al., 1999) also developed a finite element model to study the hygro-thermal behavior

and damage of concrete at high temperatures. The mathematical model was formulated based on

the works of (Whitaker, 1977). A procedure of space averaging of the conservation equations was

used to obtain the governing differential equations which include the following equations: mass of

solid skeleton, mass of dry air, and mass of water species in liquid and gaseous state. The phase

changes, i.e., evaporation-condensation, adsorption-desorption and hydration-dehydration process

were all taken into account. The effect of the pore structure on the vapor diffusion in concrete

(tortuosity factor) was also investigated. Some numerical examples were presented to demonstrate

the hygro-thermal phenomena in concrete under high temperatures which eventually lead to the

damage of concrete.

Another finite element model was developed by (Tenchev et al., 2001) to study the coupling be-

havior of heat and mass transfer in concrete structures subjected to fire. In that model, a system of

coupled transient differential equations governing heat, mass, and pore pressure were formulated

based on some assumptions. The assumptions include: (i) thermal equilibrium among all phases;

(ii) water, vapor, air and their gaseous mixture behave as ideal gases; (iii) mass flux induced by the

temperature gradient (Soret effect) is neglected; and (iv) chemically bound water diffuses and e-

vaporates only after it is released as free water. The change in free water content was accounted for
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by using the water vapor isotherms which were originally presented by (Bazant and Kaplan, 1996;

Bazant and Thonguthai, 1978). The model considered also the effect of dehydration of chemical-

ly bound water by using approximate formulations based on curve fitting of a graph presented in

(Bazant and Kaplan, 1996). The numerical results were validated against experimental tests with

good agreement.

Additional efforts to understand the coupling effect of heat and mass transfer in concrete have

focused on high-strength concrete (HSC) walls exposed to fire (Abdel-Rahman and Ahmed, 1996).

A numerical model consisting of a set of three coupled and highly nonlinear partial differential

equations was proposed. These equations include the conservation of mass of vapor and gas,

and energy equation. The model was formulated and solved based on the fully implicit finite

difference scheme. A quasi-linearization procedure of the nonlinear coefficients known as “lagging

coefficients” was used to evaluate the nonlinear coefficients by computing them at the previous time

step first and then using an iterative updating procedure until convergence was satisfied. The model

was developed further to a more sophisticated one capable of simulating two-dimensional coupled

heat and mass transfer of concrete columns (Mahmoud and Abdel-Rahman, 2013). The mobility

of water was neglected and the water vapor, air and their gaseous mixture were assumed to follow

the universal law of ideal gases. Also, the effect of column size on thermal behavior of concrete

was investigated. It was reported that significant differences could be seen between the predicted

temperatures of full and small-scale test specimens which in turn could affect the spalling behavior

considerably. (Pont et al., 2005) presented a thermo-hydro-mechanical model for concrete exposed

to elevated temperatures. The model was formulated based on the hybrid mixture theory proposed

by (Lewis and Schrefler, 1998). The liquid phase (adsorbed and capillary water), gaseous, and

solid phase were included with evaporation-condensation, adsorption-desorption and dehydration

processes. A new simplified function to describe the intrinsic permeability of concrete at elevated

temperatures was proposed based on experimental tests. The numerical analysis was implemented
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in two main steps. In the first step, the magnitude of the mechanical damage was held constant and

equal to the value obtained from the previous step, while in the second step, the final solution was

evaluated for all state variable and considering the damage effect by using the Newton-Raphson

method.

In 2006, based on the work of (Tenchev et al., 2001), (Davie et al., 2006) proposed a modified

model that explicitly accounted for the capillary pressure and the adsorbed water. The free water

content was separated into two components: liquid and adsorbed water. Comprehensive studies

were carried out using a benchmark problem to investigate the effect of these modifications on the

results and also to compare both models. It was found that the inclusion of the capillary pressure in

the modified model has a minor effect on the heat and mass transport in concrete exposed to high

temperatures. However, including the effect of adsorbed water resulted in higher gas pressure and

vapor content compared to the original model. Afterwards, (Davie et al., 2010) developed a more

generalized coupled hygro thermo mechanical model for concrete. In their model, four differential

equations were considered, which include: the mass conservation of dry air and moisture, the con-

servation of energy, and the linear momentum balance. The degradation that occurs in the material

due to both mechanical and thermal loading was accounted for. In addition, the solid phase was

considered to exhibit isotropic elastic-damage behavior. The numerical results demonstrated the

capability of the proposed model to capture the fully coupled hygro thermo mechanical behavior

of concrete qualitatively and quantitatively.

(Beneš and Štefan, 2015) presented a one-dimensional model to simulate the coupled hygro thermo

mechanical behavior of concrete walls at elevated temperatures. The mathematical model was de-

rived from the multi phase formulations and the numerical algorithm was based on the FE method.

In addition, a simplified mechanical approach was incorporated into their model to account for the

effect of thermal stresses and pore pressure build up on spalling. Several assumptions were made

in their analysis including neglecting the diffusive mass flux of water vapor, and ignoring the effect
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of variation of pressure of dry air. The validity of their model was verified by comparing their

numerical results with experimental data for two types of tests. Good agreement was achieved in

terms of temperature and pore pressure distributions.

2.1.3 Mechanical Analysis of Concrete at Elevated Temperatures

The structural behavior of concrete at elevated temperatures, such as the case of fire events has been

of special concern for many years. This may be attributed to the fact that the condition of concrete

exposure to extremely high temperatures is considered as one of the most serious potential risks

to most structures. Several studies have been done in this area to better understand the mechanical

performance of heated concrete. Most of these studies have been focused on studying fire-induced

spalling and fire resistance of concrete, because of the significant effect of spalling on the structural

performance and durability of reinforced concrete members.

Generally, when concrete is subjected to fire, the temperature increase causes chemical and me-

chanical degradation of concrete, which in turn leads to the development of micro-fractures. The

micro-structural damage results in a reduction in the stiffness and strength. In addition, a literature

review indicated that concrete in general loses about 25% of its compressive strength when heated

up to 300◦C (Lankard et al., 1971; Khoury, 1992), and about 75% when heated up to 600◦C.

To implement a structural analysis of concrete under elevated temperatures, the results from the

heat transfer analysis are used to perform the structural analysis in the subsequent step where the

transient temperature field is applied as thermal loading. (Capua and Mari, 2007) implemented

a nonlinear structural analysis of cross sections of three-dimensional reinforced concrete frames

exposed to fire. The arc length control algorithm was used to perform the mechanical analysis

for each temperature distribution and for the external applied load too. The sectional responses

were obtained in terms of stress and strain distributions at any point of the cross section and to
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be in an equilibrium state with the externally applied forces including thermal loading. The main

assumptions made in the analysis were: (i) the elements have a uniaxial state of stress, (ii) there

is no coupling between axial and tangential forces, and (iii) the Bernoulli hypothesis is applicable.

One of the main limitations in the model is that it was developed at the sectional level only. Hence,

only statically determinate structures can be analyzed using this model. A comparison of the

numerical results with experimental results was presented in order to validate the proposed model.

In general, good agreement was obtained between both results.

Another model was developed by (Kodur et al., 2009) to trace the structural response of reinforced

concrete structures using a macroscopic finite element method. In that model, the structural mem-

ber was divided into a number of segments along its length; the midsection of each segment was

assumed to represent the behavior of the whole segment. The cross section was also divided into

elements to eventually form a two-dimensional mesh. Sectional analysis was then implemented

at each cross section in order to be used to predict the overall fire response of the concrete mem-

ber. The mechanical analysis was carried out through three main steps: (i) axial force calculations

based on the sum of external applied force and fire-induced axial force, (ii) generating moment-

curvature relationships, and (iii) implementing global structural analysis to predict deflections and

internal forces in the member. The model accounts for many factors such as various strain com-

ponents, fire-induced spalling, and restraint effects. The second order effect (P − ∆ effect) was

also considered in the model. The effect of the fire scenario on the response of reinforced concrete

structures exposed to fire was also studied. It was concluded that the type of fire exposure has a

considerable effect of the fire resistance of concrete structural members. (Xu and Wu, 2009) stud-

ied the structural behavior of reinforced concrete columns with L, T, + shaped cross sections under

fire conditions both experimentally and analytically. Twelve columns were tested until failure by

exposing the columns to fire. The tested columns were subjected to concentrated axial loads. These

axial loads were applied about 20 min before the fire tests, and were maintained until maximum
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axial deformation was reached. The thermal loading was applied according to the ISO834 standard

temperature time curve. All columns were exposed to fire on all sides except two of them in order

to investigate the effect of the fire scenario on their fire resistance. In their proposed computational

model, the column was divided into 2n equal segments along its length. The analysis was per-

formed based on some assumptions which include: (i) the curvature of the cross section in each

segment was assumed to vary linearly, (ii) the stress and strain were considered to be uniform over

the element, and (iii) there is no slip between concrete and steel, and (iv) the model accounted for

the axial stress and strain only. The incremental equation of the finite element analysis of the col-

umn cross section exposed to an external applied load and high temperatures was derived and the

vertical displacements were written in terms of curvatures by using the conjugate beam method.

The nonlinear problem was solved using the modified Newton-Raphson method. The comparison

between the experimental and analytical results showed reasonably good agreement. Several con-

clusions were drawn from this study which can be summarized as follows: (i) the load-bearing

capacity of columns with non-rectangular sections are likely to be less than those with rectangular

cross section when subjected to fire, and (ii) axial load ratio and fire exposure conditions have a

significant effect on the fire resistance of reinforced concrete columns.

The behavior of reinforced concrete sections during exposure to fire was also investigated by (El-

Fitiany and Youssef, 2009). Their research mainly focused on unprotected siliceous, concrete

sections that were exposed to a standard ASTM-E119 fire on all sides, which represents the case

of an interior column. To evaluate the axial and flexural responses of the concrete section, a

methodology that relies on using a modified sectional analysis was proposed. That methodology

involves converting a two-dimensional fiber model to an equivalent one-dimensional fiber model.

Thus, the study addressed the cases of single curvature. The concrete member was divided into

horizontal discrete fibers. Some assumptions were made in order to overcome some restrictions

associated with the proposed model. These assumptions include (i) considering equivalent uniform
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properties for each layer of the cross section, and (ii) approximate the nonlinear thermal strains to

an equivalent linear distribution. This approximation was based on a methodology proposed by

(Collins et al., 1987) and (Tassios and Chronopoulos, 1991). An iterative procedure was used then

to calculate that equivalent strain such that the compressive force in concrete is equal to the tensile

force in the steel bars. The suggested methodology was validated by comparing the predicted

responses with other analytical and experimental data.

(Bamonte and Monte, 2015) utilized the FE method to study the mechanical behavior of RC

columns at elevated temperatures. In their study, four different constitutive models were consid-

ered to highlight the differences between the explicit and implicit formulations of the stress-strain

relationship of heated concrete for both concentric and eccentric axial load. The effect of the dif-

ferent strain components of concrete was also investigated in their study. In addition, a number of

full scale fire tests of RC columns were studied numerically. Based on the numerical results, it was

concluded that seconds order effects considerably influence failure time of RC members subjected

to axial load regardless of whether the force was concentric or eccentric.

A non-linear thermo-mechanical analysis of the RC columns exposed to fire was conducted by

(Bratina et al., 2007). A new strain-based planar beam finite element developed previously in

(Bratina et al., 2004, 2003) was employed in their analysis to model the investigated columns.

The system of the discretized equations of the structure was solved by using Newton’s method.

In addition, each components of the physical strain parts was considered separately including the

plastic strain. The numerical results were compared with experimental data from full-scale fire

tests on RC columns and also with results from the European building code EC 2. In spite of the

simplicity of the proposed element, the predicted fire resistance was in a good agreement with the

measured data. In addition, it was found out that the fire resistance time is not sensitive to the

amount of creep and transient strains in concrete if the structure is simple enough.
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(Lim et al., 2004) studied the behavior of two-way RC slabs using the spacial purpose non-linear

finite element program, SAFIR. The aim of their study was to validate the shell element in the

SAFIR program. Hence, the numerical results were validated against measured data from full

scale fire tests of two-way slabs. The modeling results demonstrated the capability of the SAFIR

shell element to predict tensile membrane behavior of two-way reinforced concrete slabs in fire

conditions. The analyses results also showed that two-way slabs have excellent fire resistance

provided that they bend in double curvature and develop tensile membrane action.

2.2 Thermal and Mechanical Properties of Concrete at Elevated Temperatures

Although many studies have been conducted to determine the effect of fire on the concrete behav-

ior, studying thermal and mechanical properties of concrete at elevated temperatures is still con-

sidered in most of these studies (Lie and Kodur, 1996; Harmathy, 1970; Schneider, 1988; Castillo

and DurraniI, 1990). This can be essentially attributed to the difficulty in interpretation of most

test data associated with these properties due to differences in the types of concrete studied, test

procedures, and test specimen shapes (Schneider, 1988). A review of literature indicated that the

effect of high temperatures on the mechanical properties such as compressive strength and mod-

ulus of elasticity is believed to be greater than its effect on the thermal properties, i.e., thermal

conductivity and specific heat (Lie and Kodur, 1996). This section summarizes prior research that

has been done to study the effect of high temperatures on the thermal and mechanical properties of

concrete. Some of the common models will be reviewed and discussed briefly.
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2.2.1 Thermal Properties of Concrete

Thermal conductivity and specific heat are the main thermal properties that are necessary to per-

form the heat transfer analysis. While the density of concrete shows weak dependence on the tem-

perature, the thermal conductivity and specific heat are noticeably influenced by the temperature

change. The thermal conductivity of concrete is determined by the conductivities of its ingredients

which include aggregate, moisture, and mix proportions (Schneider, 1988). A detailed literature

review indicates that concrete conductivity increases with temperature increase up to 100◦C and

starts to diminish afterwards due to the porosity increase in concrete.

(Harmathy, 1970) applied the additivity theorem to calculate the thermal conductivity of concrete

at elevated temperatures. In that study, the concrete was considered as a multiphase solid mixture

with three main phases which are: (i) the porous solid, (ii) the moisture ,and (iii) the air in the

pores. A mathematical expression was obtained for the thermal conductivity of concrete in terms

of the conductivity of air, moisture, and solid skeleton. Several conductivity models can be found

in the literature such as the models adopted by (Eurocode, 2004). In that model, a lower limit

and an upper limit were proposed to calculate the thermal conductivity. However, the use of the

upper limit model is recommended by the (Eurocode, 2004) due to the fact that it has been derived

from tests of steel-concrete composite structural elements. The suggested model is a function of

temperature only and hence it’s independent of moisture content. One of the most commonly used

models for conductivity in concrete is the ASCE model (Schaffer, 1992) in which two models

were proposed: one is for siliceous aggregate concrete and the other one is for carbonate aggregate

concrete. It is also worth mentioning that although both EC4 and ASCE models have been used

extensively by researchers, their use is limited to conductive heat transfer analysis only.

Specific heat, on the other hand, is considered harder to predict and understand compared with

the other properties of concrete. The specific heat at constant pressure is a function of enthalpy
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and temperature, and it is usually computed based on the average values. However, when the

heating process is associated with chemical reactions, such as the case in concrete, the enthalpy

becomes a function of the degree of conversion from the reactants into the products (Schneider,

1988). (Schneider, 1988) also pointed out in his general review of concrete properties at elevated

temperatures to some important observations regarding the specific heat which include: (i) the type

of aggregate has a negligible effect on heat capacity for temperatures below 800◦C (when the tem-

perature exceeds 800◦C, an immediate rise in the specific heat was noticed due to decarburization),

(ii) the specific heat of concrete is influenced by the mix proportions (richer mixes have higher

latent heat due to dehydration), and (iii) at temperatures below 200◦C, the water content has an

important effect on the specific heat (the apparent specific heat of wet concrete was noticed to have

about twice the specific heat of oven-dried concrete).

As for thermal conductivity, (Harmathy, 1970) applied the additivity theorem for the specific heat

of concrete as well. In his study, it was suggested to calculate the volume specific heat rather than

the specific heat to avoid the difficulty associated with the fact that density and weight fractions

are functions of temperature. A mathematical expression for the specific heat was then obtained

in terms of the concrete constituents and temperature. The study also included experimental tests

of four kinds of concretes with different water contents. The specific heat measurements were

presented for oven-dry concrete, and water ratios of 0.04 and 0.08. For the oven-dried samples,

an obvious peak was noticed in each curve that was attributed to the dehydration of calcium-

hydroxide. The (Eurocode, 2004) suggested a numerical model for computing the specific heat of

concrete. The model was first formulated for dry concrete (zero water content) with the temperature

being the only variable. For the cases when the moisture content is not considered explicitly in

the analysis, such as the case of conduction heat transfer, the (Eurocode, 2004) stated that the

function given for the specific heat should be revised to have a peak point situated between 100◦C

and 115◦C with a linear decrease between 115◦C and 200◦C. The ASCE model (Schaffer, 1992)
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adopted a similar approach to address the effect of moisture on the specific heat of concrete with

some minor differences between both models.

2.2.2 Mechanical Properties of Concrete

It is well known that the rise in temperature due to extreme events, such as fire, dramatically

reduces the mechanical properties of both concrete and the reinforcing steel. The mechanical

properties of concrete, such as compressive strength and modulus of elasticity were the subject

of interest by many early researchers, such as (Malhotra, 1956) and (Abrams, 1971). Those re-

searchers tended to focus on studying the mechanical properties individually rather than studying

the whole stress-strain characteristics. Most of the performed tests were on specimens heated with

no applied load. Later on, it was observed that a considerably smaller reduction in strength occurs

when preloading the specimens during the heating process.

From reported data in literature, (Schneider, 1988) came to some general conclusions related to

the factors that affect the strength-temperature characteristics. These factors can be summarized

as follows: (i) aggregate-cement ratio has a significant effect on the strength of concrete exposed

to elevated temperatures. It was noticed that the reduction is smaller for lean mixes than rich

mixes, (ii) the type of aggregate influences the strength-temperature characteristics. The loss in

strength was noticed to occur at higher temperatures for light weight aggregate concretes com-

pared with siliceous concretes. On the other hand, type of cement has a negligible effect on the

strength-temperature characteristics, and (iii) the shape of the strength-temperature relationship is

influenced significantly by sustaining stresses. It is obvious that the stressed strength is higher than

the unstressed strength.

In the context of mechanical properties, modulus of elasticity of concrete at high temperatures

seems to be affected by the test method, such as using cylinders in compression or torsion (Schnei-

25



der, 1976; Cruz et al., 1962). It was noticed that although the absolute values of the results were

different, the trend of the results were similar (Purkiss and Li, 2013). Hence, the literature indi-

cates a scatter in the experimental results for the initial modulus of elasticity (Purkiss and Li, 2013;

Schaffer, 1992; Schneider, 1986). The elasticity-temperature relationship is found to be influenced

by the same factors affecting the strength of concrete (Schneider, 1988). Several models can be

found in the literature to predict the compressive strength and modulus of elasticity of concrete at

high temperatures (Schaffer, 1992; Xiao and König, 2004; Hertz, 2005).

2.3 Concrete Constitutive Models at Elevated Temperatures

One of the major obstacles for predicting the accurate structural behavior of concrete members

exposed to elevated temperatures is the complex behavior of concrete under thermal loading. Ad-

ditional strains should be introduced during the structural analysis besides the mechanical strains.

Hence, the choice of the constitutive models and the values of their parameters significantly affect

the predicted responses from the fire analysis (Youssef and Moftah, 2007; Bratina et al., 2003).

This section presents a general review of the existing constitutive models of concrete at elevated

temperatures. This includes the effect of high temperatures on the: (i) total concrete strain, and (ii)

stress-strain relationship.

2.3.1 Fire-induced strains

The total strain of concrete at elevated temperatures is essentially composed of three components,

which are: (i) instantaneous stress-dependent strain, (ii) unrestrained thermal strain, and (iii) creep

strains which include both conventional and transient creep strains. A brief review of these strain

terms are presented below.
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2.3.1.1 Instantaneous Stress Related Strain

The instantaneous stress related strain εσ is a function of the applied stress as well as temperature.

The mechanical strain value corresponding to the ultimate stress together with the initial modulus

of elasticity define the shape of the stress-strain relationship. A number of models can be found

in the literature to estimate the value of the mechanical strain at the peak stress. Some of these

models are based on tests performed on unloaded concrete specimens during the heating process

(Schaffer, 1992; Bazant and Chern, 1987; Li and Purkiss, 2005). However, a reduction in the effect

of temperature on the strain value at peak stress was observed by a number of researchers, such as

Terro (1998) and Schneider and Kassel (1985).

(Schneider and Kassel, 1985) also measured εu for normal concrete loaded at three stress/strength

levels (0.1, 0.2, and 0.3) while heating. It was observed that εu is almost independent of tempera-

ture for stress level 0.3 with temperature up to a 650◦C. Based on Schneider’s results, (Terro, 1998)

developed a model to estimate the εu. However, he adopted a stress level equal to 0.2 rather than

0.3 as the limiting value for the stress level, above this value the strain is considered to be indepen-

dent of temperature. (Youssef and Moftah, 2007) presented a comparison between different strain

models and experimental results. In his study, it was recommended to use Terro’s model due to the

fact that this model accounts for different compressive stress levels with good accuracy.

2.3.1.2 Unrestrained Thermal Strain

Free thermal expansion εth in concrete is found to be strongly affected by the aggregate type

(Schneider, 1988). (Schaffer, 1992) proposed a linear function of temperature to calculate the value

of thermal strain for concrete with siliceous or carbonate aggregates. Other researchers, however,

suggested that εth is a nonlinear function even at relatively low temperatures (Schneider, 1988;
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Purkiss and Li, 2013). (Purkiss and Li, 2013) indicated that the nonlinear behavior is due to either

physical changes, such as the breakdown of lime stone at around 650◦C or chemical changes, such

as α − β quartz transformation at around 570◦C or because of thermal incompatibilities between

the aggregate and the matrix. The model proposed by (Eurocode, 2004) also accounts for the

nonlinear behavior of εth at temperature ranges between 20◦C and 700◦C. After 700◦C the model

suggested a constant value for εth instead.

2.3.1.3 Creep Strains

At elevated temperatures, the creep strain of concrete increases significantly over creep strain at

normal temperatures. In most creep tests at high temperatures, only primary and secondary creeps

are noticed despite the fact that creep strain might exhibit an increase in its rate at extremely high

temperatures (Purkiss and Li, 2013). Then, a noticeable increase in creep strain was detected

when the concrete specimens were preloaded during the heating process. That increase in strain

particularly occurs during the first heating cycle of loaded concrete and it was called transient

creep strain εtr (Anderberg and Thelandersson, 1976; Kordina et al., 1986). It represents by far the

largest component of the creep strains. (Purkiss and Li, 2013) attributed these transient strains to

thermally-induced compatibilities between the aggregate and cement mortar matrix.

Due to the nature of the experimental procedures, the majority of the suggested creep strain mod-

els existing in the literature account for both conventional and transient creep strains. (Anderberg

and Thelandersson, 1976) were the first who identified this transient strain. It was assumed that

εtr is proportional to the applied stress and thermal strain. Afterwards, this model was modified

by (Nielsen et al., 2002) by assuming linear proportion with the temperature instead. (Schnei-

der and Kassel, 1985) suggested computing the transient strain as a function of the corresponding

stress, temperature, initial stress, concrete strength, and modulus of elasticity. Based on experi-
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mental results from (Schneider and Kassel, 1985), another model was developed by (Terro, 1998)

to compute the transient strain. In that model, an idealized linear relation was assumed between the

initial transient strain and stress-cold strength ratio. The model also takes into account the effect

of aggregate on creep strains by introducing the volume fraction of aggregates in the mathematical

expression of the model.

2.3.2 Stress-Strain Relationship

The first complete stress-strain curve for concrete at elevated temperatures was established as early

as 1966 by (Furamura, 1966). In his results, it was implied that there is a reduction in the compres-

sive strength, modulus of elasticity, and the slope of the descending branch as well. Soon after, it

was established that when concrete specimens are heated under an applied load, the effect of tem-

perature on the stress-strain characteristics is reduced. (Terro, 1998) indicated that when concrete

is stressed up to a 30% stress level (stress/cold strength ratio), the difference between the stress-

strain curve at elevated and ambient temperatures could be very small. Hence, it was necessary to

consider the effect of preloading while heating on the stress-strain curve.

Several models are presented in the literature to predict the stress-strain relationship for concrete

at elevated temperatures (Schneider and Kassel, 1985; Eurocode, 2004; Lie and Kodur, 1996). The

Eurocode (2004) defined the compressive stress-strain model for uniaxially stressed concrete by

two parameters: the compressive strength and the strain corresponding to the compressive strength.

The compressive strength is considered to be the same as at the ambient temperature until 100◦C,

above which it starts to decrease. It was also suggested to consider linear or nonlinear models for

the descending branch. (Lie and Kodur, 1996) developed a mathematical model for the stress-strain

curve for heated concrete. In that model, a parabolic relation for the ascending and descending

branches was proposed. The concrete compressive strength is also assumed to be equal to the
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one at the ambient conditions until 400◦C. Additional efforts to understand the effect of concrete

weight on the stress-strain relationship of heated concrete were carried out by Schneider and Kassel

(1985). A non-dimensional factor (n) was introduced in his model to account for the effect of

concrete weight. It was recommended to take n equal to 2.5 and 3 for lightweight and normal-

weight concrete respectively.

In a more recent study conducted by Gernay and Franssen (2015), a new multiaxial constitutive

model for concrete in the fire conditions was developed based on a plastic damage formulation-

s. The model was developed by extending the Explicit Transient Creep (ETC) Eurocode model

(Eurocode, 2004; Gernay and Franssen, 2010) to the multiaxial case. A damage scalar for both

compression and tension was introduced to account for the phenomenological effects resulted from

the micro cracking in concrete in tension and compression. A composite yield surface was used

to model the non-symmetrical behavior of concrete in tension and compression. The capabilities

of the proposed model was demonstrated through several FE simulations of experimental tests.

The numerical results showed that the model was capable of capturing the crack pattern in a plain

concrete specimen subjected to both shear and tension and also the tensile membrane action that

develop in RC slabs .

For the tensile stress-strain relationship of concrete at elevated temperatures, it seems that there

are a limited number of publications that address this aspect. A linear relation is commonly used

to consider the pre-cracking branch. (Terro, 1998), however, suggested using another degrading

branch for the strain values that exceed the strain at the ultimate tensile stress until cracking.
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2.4 Hydration and Dehydration Phenomena in Concrete at Elevated Temperatures

Dehydration can be defined as the transformation of chemically bound water into free water. The

dehydration phenomenon in concrete is a complex process that depends on many factors such as,

temperature, degree of hydration, rate of heating, etc. When the rate of initial heating (up to a

100◦C) is slow, a considerable amount of free water can become hydrated and then released at

higher temperatures within the dehydration process (Bazant and Kaplan, 1996). While hydration

is known to occur at temperatures below 100◦C, the release of chemically-combined water in the

cement paste is noticed to start at temperatures greater than 105◦C and proceeds consistently up to

temperatures exceeding 800◦C (Harmathy, 1970).

(Bazant and Kaplan, 1996) indicated that the amount of the free water released during dehydration

significantly affects the pore pressure that is built up in concrete at high temperatures. Thus, many

attempts have been performed to consider the effect of dehydrated water in the analysis. However,

predicting the amount of dehydrated water is not a trivial task due to the great variety in concrete

properties and mix proportions which make this task even more challenging. Thermo gravimetric

analysis is usually used to determine the amount of mass loss in concrete due to dehydration

(Mahmoud and Abdel-Rahman, 2013). (Dwaikat and Kodur, 2009) assumed that the concrete

is fully hydrated in their study and accounted for the dehydration in their analysis based on a

simplified approach suggested originally by (Bazant and Kaplan, 1996). In that approach, the

amount of dehydrated water is assumed to change linearly within temperature ranges between

100◦C and 700◦. (Tenchev et al., 2001) proposed using a model based on curve fitting for one

of the weight loss measurement curves for cement paste reported by (Bazant and Kaplan, 1996).

Stoichiometric analysis can also be used to calculate the mass loss due to dehydration (Weber,

2012).
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CHAPTER 3: MULTI-PHYSICS TRANSPORT MECHANISM IN

HEATED CONCRETE

3.1 Introduction

To solve the problem of transport in porous media, the equations that describe the various transport

phenomena may be written and formulated at three different levels. At the microscopic level, the

real non-homogeneous structure of the porous medium domain is considered, where the focus is on

what happens at a mathematical point within a considered phase. The state variables that represent

the phase status should be defined only at points occupied by that phase. Although the predominant

conditions on the bounding surface of the phase may be known at this level, the equations cannot be

solved due to the complex geometry of the bounding surface, besides the incapability to observe

such a surface. Trying to solve the transport problem at the microscopic level is, therefore, not

practical and sometimes even not desirable.

Accordingly, another approach to the problem is needed, and hence using the macroscopic level to

describe the transport problem. At this level, the actual multiphase system of the porous medium

domain is represented by a model, in which each phase is considered as a continuum that fills

up the entire domain of porous medium, i.e., at time t all phases should exist everywhere with-

in that domain. The macroscopic quantities in the continuum model are, therefore, measurable,

continuous, and differentiable which enables the solution of problems of practical interest.

The megascopic level, on the other hand, is similar to the previously defined level. However, some

of the inhomogeneities associated with the macroscopic level are ruled out either by averaging or

by using a mathematical model to represent a new domain that has fewer dimensions than the real

domain e.g., a two-dimensional problem with field-values averaged over the thickness (Lewis and
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Schrefler, 2000; Bear and Bachmat, 1990).

Due to the complex geometry of the pore structure of concrete, the governing equations that de-

scribe heat and mass transfer phenomena in concrete cannot be solved at the microscopic level. So,

a model at the macroscopic level is of interest. In such a model, part of the porous medium domain

is occupied by a persistent solid phase, called the solid matrix (cement and aggregate mixture).

The other part is the void space, which is occupied by the gaseous mixture (air and vapor) and the

liquid water. The main objective of this chapter is to present the continuum approach, which is

employed to establish the mathematical model that describes heat and mass transfer phenomena

in concrete at the macroscopic level. The governing equations for the heat and mass transfer of a

partially saturated concrete will then be presented and discussed in the subsequent sections.

3.2 The Continuum Approach to a Porous Medium

The continuum approach has been proven to be so useful and successful in treating single phase

problems, such as the case of solid, gas, or liquid phase. The same approach can be extended, after

certain modifications, to be applicable to the problem of a multiphase system, such as a porous

medium. The hypothesis of “overlapping continua” which means that all phases are supposed to

be present in the selected domain at the same time, is adopted. Accordingly, the interaction of

the individual phases with each other will be reflected on these continua. The overlapping con-

tinua occupies a space known as the macroscopic space, at which, the values of phase variables

are averaged over elementary volumes located at the center of each point within that space; re-

gardless of the fact that, in the real domain, these points might not even occur within that phase.

These average values are known as macroscopic values. Since an average value can be assigned to

each point by representing the whole porous domain with a moving elementary volume, fields of

macroscopic variables may then be obtained. Unlike the microscopic quantities, these macroscop-
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ic variables are characterized to be measurable, differentiable, and continuous which represent one

of the advantages of the continuum model of a porous medium (Bear and Bachmat, 1990).

Figure (3.1) illustrates the variation of porosity of different domains based on the size of the aver-

aging volume. The procedure for passing from the microscopic level to macroscopic one will be

briefly summarized and illustrated in the following subsection.

Figure 3.1: Variation of porosity as a function of the averaging volume, after (Bear and Bachmat,

1990)

3.2.1 Representative Elementary Volume (REV)

Theoretically, for passing from the microscopic level of description to the macroscopic one, any

arbitrary elementary volume (AEV) can be chosen. However, selecting different AEV’s for each

quantity of interest results in different averaged values for these quantities. So, the selection of
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an averaged volume must be made based on the model’s objective. On the other hand, the fact

that every averaged value is strongly related to the size of the selected AEV makes describing

these values by their AEV inevitable. Hence, there was a need for a universal criterion at which

the measurable characteristics of any porous media remain the same within a range of averaging

volumes. The Representative Elementary Volume (REV) is considered to belong to that range of

averaging volumes. A REV should be determined in such a way that regardless where it is placed

within the porous medium domain, a persistent solid phase as well as a void space will always

be present in that domain. Therefore, a REV of concrete should contain: (i) a solid phase of

aggregates, hydrated or non-hydrated cement, chemically bound water and gel water, (ii) a liquid

phase of free water in capillary pores, and (iii) a gaseous phase comprised of dry air and water

vapor, Figure (3.2).

Figure 3.2: Typical REV of a porous medium occupied by three phases, after (Lewis and Schrefler,

2000)
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3.2.2 Averaging Process

Having defined the REV as the first step required for passing from the microscopic to the macro-

scopic level, a brief review of the basic idea of the averaging approach is presented. For a con-

sidered porous medium domain, all parameters and variables associated with a given phase can be

defined based on average values taken over a REV at a mathematical point located at the center

of that REV. Each mathematical point is represented by its position vector x, while r denotes the

position of a microscopic volume element dvm, shown in Figure (3.2). By repeating the same pro-

cedure for all points within the considered domain, the real multiphase system that occupies the

porous medium domain can be represented by a continuum that is existed at every point in that

domain. The following presentation is based on the derivation presented by (Cheng, 1979) and

(Nield and Bejan, 2006).

If the case of two-phase flow in a porous medium is considered, such as the case in concrete, this

indicates that the domain in fact consists of three phases; the gas, liquid, and the solid phase. The

gaseous and liquid phases will be denoted by suffixes g and l, respectively while the suffix s refers

to the solid phase. The total volume V that is occupied by the liquid, gas, and the solid within a

REV is the sum of the partial volumes of each constituent α, so

V = Vl + Vg + Vs (3.1)

The phase average of some quantity Ψα in the α phase (α = l, g, or s) can be defined as

〈Ψα〉 ≡ V −1

∫

V

ΨαdV (3.2)

Where Ψα is the value of Ψ in the α phase and it is zero in the other phases. The intrinsic phase
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average of Ψα is defined as

〈Ψα〉α ≡ V −1
α

∫

Vα

ΨαdVα (3.3)

Since Ψα is zero in the other phases, then the above equation can be rewritten as

〈Ψα〉α ≡ V −1
α

∫

Vα

ΨαdV (3.4)

By comparing equation 3.3 and 3.4, it can be seen that

〈Ψα〉 = εα〈Ψα〉α (3.5)

Where εα is the volume fraction of α phase within the REV, and can be defined as

εα =
Vα
V

(3.6)

The total (volumetric) porosity ϕ of the porous medium in terms of the volume fractions of it’s

constituents (i.e., solid, liquid, and gaseous phase) can be written as ϕ = εl + εg and εs = 1 − ϕ.

The volume fraction of liquid water εl can also be defined in terms of the degree of saturation S as

εl = ϕS.

The deviations from the respective average values, for the α phase are

Ψ̃α = 〈Ψα〉 − 〈Ψα〉α , χ̃α = 〈χα〉 − 〈χα〉α (3.7)

and due to the fact that Ψ̃α and χ̃α are zero in the other phases, it can be seen that

〈Ψαχα〉α = 〈Ψα〉α〈χα〉α + 〈Ψ̃αχ̃α〉α (3.8)
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and

〈Ψαχα〉 = εα〈Ψα〉α〈χα〉α + 〈Ψ̃αχ̃α〉 (3.9)

By implementing integration over an elementary volume, the following theorems are derived. Av-

eraging theorem:

〈Ψα〉 = ∇〈Ψα〉+ V −1

∫

Aα

ΨαnαdS (3.10)

Modified averaging theorem:

〈Ψα〉 = εα∇〈Ψα〉α + V −1

∫

Aα

Ψ̃αnαdS (3.11)

Transport theorem:

〈∂Ψα

∂t
〉 = ∂

∂t
〈Ψα〉 − V −1

∫

Aα

ΨαwαnαdS (3.12)

where Aα represents the interfaces between the α and other phases, wα is the velocity vector at the

interface, and nα is the outward unit vector for α phase in the normal direction to the interface.

3.3 Macroscopic Balance Equations

The derivation of the macroscopic balance equations of mass and energy for each individual con-

stituent α in a multiphase mixture is reviewed briefly here. The presentation of Cheng (Cheng,

1979) is followed, which is based on the generic form of the microscopic balance equations of

these quantities.
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3.3.1 Conservation of Mass

The derivation of the macroscopic continuity equation of the liquid, gas, and solid phase is in-

troduced. To start with, the generic microscopic mass balance equation for each phase is defined

briefly. A detailed derivation; however, of the balance equations in the microscopic level can be

found in the literature (Bear and Bachmat, 1990; Hughes, 2012; Lewis and Schrefler, 2000).

3.3.1.1 The mass balance law for liquid phase

The microscopic mass conservation equation for the liquid phase is

∂ρl
∂t

+∇ · (ρlVl) = 0 (3.13)

Integrating the above equation over an elementary volume yields to

〈∂ρl
∂t

〉+ 〈∇ · (ρlVl)〉 = 0 (3.14)

Where ρl and Vl refer to the density and velocity of the liquid phase.

If the transport theorem is applied to the first term of equation (3.14) and the averaging theorem to

the second term, and by employing equation (3.5), the following equation is obtained

∂

∂t
(εl〈ρl〉l) +∇ · (〈ρl〉l〈Vl〉+ 〈ρ̃Ṽl〉)

+ V −1

∫

Alg

ρl(Vl −wlg) · nldS + V −1

∫

Als

ρl(Vl −wls) · nldS = 0 (3.15)

where Alg and Als are the liquid-gas and liquid-solid interfaces, and wlg and wls are the velocities

corresponding to the interfaces Alg and Als, respectively.
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The first integral in equation (3.15) represents the mass lost by change of phase from liquid to gas,

which may be replaced by ṁ. Furthermore, the second integral can be replaced by ṁdeh which

stands for the mass gained due to dehydration. Also, the dispersive term ρ̃l Ṽl is in general small,

and accordingly it can be neglected. Hence, equation (3.15) can be written as

∂

∂t
(εl〈ρl〉l) +∇ · (〈ρl〉l〈Vl〉) + ṁ− ṁdeh = 0 (3.16)

The above equation can be expressed in terms of the porosity and the liquid saturation as

∂

∂t
(ϕS〈ρl〉l) +∇ · (〈ρl〉l〈Vl〉) + ṁ− ṁdeh = 0 (3.17)

3.3.1.2 The mass balance law for gaseous phase

In this study, the gaseous phase is considered to be a perfect mixture of two ideal gas species,

dry air (labeled by the suffix a) and water vapor (labeled by the suffix v). The segregation of the

gaseous constituents occurs at the molecular scale, and they are assumed to be miscible. That is,

they occupy the same volume fraction εg. The bulk density of the gas mixture is the sum of the

partial densities of it’s components. Thus, the gas density is

ρg = ρv + ρa (3.18)

The composition of the gaseous species (i.e., the proportion of air and vapor in the gas mixture)

may be described in terms of the mass fraction

ωv =
ρv
ρg

(3.19)
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Also, the mass density and molar concentration of species can be related together in terms of their

molecular weight Mα as

Mα =
ρα
Cα

(3.20)

where Cα is the molar concentration of species α.

Furthermore, due to the fact that the total number of moles per unit volume of the mixture is equal

to the sum of the number of moles of each species, the following equation holds

ρg
Mg

=
ρv
Mv

+
ρa
Ma

(3.21)

where Mv , Ma, and Mg are the molecular weight of the vapor, air, and gas mixture, respectively.

Rewriting equation (3.21) in terms of mass fraction yields the following relationship

1

Mg

=
ωv

Mv

+
1− ωv

Ma

(3.22)

In a similar manner to the derivation of the liquid phase equation, the macroscopic continuity

equation for the vapor and air species may be written as

∂

∂t
(εg〈ρv〉v) +∇ · (〈ρv〉v〈Vv〉)− ṁ = 0 (3.23)

∂

∂t
(εg〈ρa〉a) +∇ · (〈ρa〉a〈Va〉) = 0 (3.24)

Equations (3.23) and (3.24) may be rewritten in terms of the saturation and the porosity as follows

∂

∂t
(ϕ(1− S)〈ρv〉v) +∇ · (〈ρv〉v〈Vv〉)− ṁ = 0 (3.25)
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∂

∂t
(ϕ(1− S)〈ρa〉a) +∇ · (〈ρa〉a〈Va〉) = 0 (3.26)

3.3.1.3 The mass balance law for solid phase

Based on the microscopic continuity equation for the solid phase, the macroscopic equation may

be formulated in the following form

∂

∂t
(εs〈ρs〉s) +∇ · (〈ρs〉s〈Vs〉) + ṁdeh = 0 (3.27)

In terms of the medium porosity and saturation, equation (3.27) can be expressed as,

∂

∂t
((1− ϕ)〈ρs〉s) +∇ · (〈ρs〉s〈Vs〉) + ṁdeh = 0 (3.28)

3.3.2 Conservation of Energy

The microscopic energy equation is, in general, formulated based on the conservation of internal

energy. However, the conservation of enthalpy can be used instead by neglecting the pressure

work, viscous dissipation, and any internal energy generation. The conservation of enthalpy of the

liquid phase can be written as

∂

∂t
(ρlhl) +∇ · (ρlhlVl − kl∇Tl) = 0 (3.29)

Where hl and kl are the enthalpy and thermal conductivity of the liquid phase. If the above equation

is integrated over a REV with the application of the transport theorem (equation (3.12)) to the first

term, equations (3.9) and (3.10) to the second term, and equation (3.11) to the last term gives to
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the second term,

∂

∂t
(εl〈ρl〉l〈hl〉l) +∇ · (〈ρl〉〈hl〉l〈Vl〉) +∇ · (εlk∗l ∇〈Tl〉l) +Qlv + Q́la + Q́lv + Q́ls = 0 (3.30)

where k∗l represents the effective thermal conductivity of the liquid in the presence of the solid

matrix. The terms Qlv, Q́lv, Q́la, and Q́ls can be defined as:

Qlv ≈ V −1

∫

Alv

ρlhl(Vl −wlv) · nldS (3.31)

Q́lv = V −1

∫

Alv

q · nldS (3.32)

Q́la = V −1

∫

Ala

q · nldS (3.33)

Q́ls = V −1

∫

Als

q · nldS = AlshlV
−1(Ts − Tl) (3.34)

Where q is the conduction heat flux at the interface and hl in equation (3.31) represents the aver-

aged heat transfer coefficient at the solid liquid interface.

In a similar fashion to the derivation of the energy equation for the liquid phase, the macroscopic

energy equation for the gaseous phase (air and vapor) and solid matrix may be written as follows

For air species

∂

∂t
(εa〈ρa〉a〈hl〉a) +∇ · (〈ρa〉a〈ha〉a〈Va〉)−∇ · (εak∗a∇〈Ta〉a) + Q́al + Q́as = 0 (3.35)
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For vapor species

∂

∂t
(εv〈ρv〉v〈hv〉v) +∇ · (〈ρv〉v〈hv〉v〈Vv〉)−∇ · (εvk∗v∇〈Tv〉v) +Qvl + Q́vl + Q́vs = 0 (3.36)

For the solid matrix

∂

∂t
(εs〈ρs〉s〈hs〉s) +∇ · (〈ρs〉s〈hs〉s〈Vs〉)−∇ · (εsk∗s∇〈Ts〉s) + Q́sl + Q́sa + Q́sv = 0 (3.37)

Where k∗g , and k∗s represent the effective thermal conductivity of the gaseous and solid phase.

Since

Qlv = −Qvl, Q́lv = −Q́vl, Q́la = −Q́al,

Q́ls = −Q́sl, Q́sa = −Q́as, Q́sv = Q́vs (3.38)

and by assuming local thermodynamic equilibrium between all phases, so that

〈Tl〉l = 〈Ta〉a = 〈Tv〉v = 〈Ts〉s (3.39)

so, adding equations (3.27), (3.33), (3.32), and (3.24) then yields

∂

∂t
[(1− ϕ)〈ρs〉s〈hs〉s + ϕ(1− S)(〈ρv〉v〈hv〉v + 〈ρa〉a〈ha〉a) + ϕS〈ρl〉l〈hl〉l]

+∇ · [〈ρs〉s〈hs〉s〈Vs〉+ 〈ρv〉v〈hv〉v〈Vv〉+ 〈ρa〉a〈ha〉a〈Va〉+ 〈ρl〉l〈hl〉l〈Vl〉]

−∇ · (keff∇〈T 〉) = 0 (3.40)

Where hα is the specific enthalpy for the α phase, and keff is the effective thermal conductivity of
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the porous medium. The first term in equation (3.40) represents the change of enthalpy with time,

the second term describes the enthalpy transport due to convection while the last term accounts for

the heat transfer by conduction with the use of Fourier’s law.

3.4 Velocity and Mass Flux

Having established the governing equations that describe heat and mass transfer phenomena in the

porous concrete, it is now necessary to define the velocities and mass fluxes of air and vapor species

within the porous media. Generally, it is more convenient to solve the mass transfer problems in

terms of a bulk velocity and a diffusive velocity. Hence, the mass flux of the gaseous mixture can

be defined in terms of the velocity of air (Va) and the velocity of vapor (Vv) as

ρgVg = ρaVa + ρvVv (3.41)

where Vg is the mass averaged velocity of the gas, and it is usually used to describe the bulk

velocity of the gaseous mixture. The mass fluxes of air and vapor species relative to the mass

averaged velocity of the gas can be defined, respectively as

ja = ρa(Va −Vg) =
ρaρv
ρg

(Va −Vg) (3.42)

jv = ρv(Vv −Vg) =
ρvρv
ρg

(Vv −Vg) (3.43)

Comparing equations (3.42) and (3.43), it can be seen that

jv = −ja (3.44)
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with the aid of equations (3.43) and (3.44), the mass fluxes can be rewritten as

ρaVa = ρaVg + ja (3.45)

ρvVv = ρvVg + jv (3.46)

3.5 Constitutive Equations for Fluids

To have a complete definition of the heat and mass transfer equations, additional information de-

scribed by constitutive equations should also be defined. The relationship between the fluxes and

the driving forces, for instance, represents one of these constitutive relationships. Another exam-

ple includes the computation of the fraction of free water by using the sorption isotherms. In the

following subsections, the complementary constitutive laws that are needed to describe the flow

and the state variables within the concrete will be discussed and presented.

3.5.1 State Equations for Ideal Gases

The vapor and air species are assumed to act as ideal gases, and the mixture is in thermal local

equilibrium. Based on Dalton’s law, the total pressure is the sum of the partial pressures of the

constituents, namely air and vapor.

Pg = Pa + Pv (3.47)

The mass density is related to the partial pressure of the constituent by the ideal gas law, so that

ρα =
PαMα

RT
(3.48)

for α = a, v, or g and R is the molar gas constant.
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3.5.2 Transport Laws

The mass transport phenomena in a porous media at elevated temperatures is governed by both

convection and diffusion that are induced by pressure and concentration gradients respectively.

These transport phenomena can be described based on Darcy’s and Fick’s laws.

3.5.2.1 Darcy’s Law

Darcy’s law represents a simplified expression of the averaged momentum balance equation. It

can be derived based on the equation of momentum conservation with the assumption that: (i) the

fluid is Newtonian, (i.e, the momentum transfer by shear stresses is negligible), and (ii) the body

force is due to gravity only, which has also been neglected in this study. Darcy’s law is usually

used to describe the flow in porous media due to the fact that it can accurately predict the flow

rate within such a medium, especially when the flow rate is low. However, a deviation in the

flow rates predicted using Darcy’s velocity has been observed when the fluid velocities are high

(Hassanizadeh and Gray, 1987; Zeng and Grigg, 2006).

In this study, it is assumed that Darcy’s law is invariably valid and it is used to model the bulk

velocity of the gas mixture Vg, which may be expressed in the following refined form

Vg = −kgk
µg

(∇Pg) (3.49)

where kg is the relative permeability of the gas phase through dry concrete, k is the intrinsic

permeability of dry concrete, and µg is the dynamic viscosity of the gaseous phase.
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3.5.2.2 Fick’s Law for Diffusion

Mass diffusion is defined as the process by which mass is transferred due to molecular diffusion

induced by a species concentration gradient. Fick’s law can be used to model the diffusive mass

fluxes of the two species (i.e., vapor and air). Accordingly, the diffusive mass flux of air into vapor

can be defined as

ja = −ρgDav∇(1− wv) (3.50)

Similarly, the diffusive heat flux of vapor into air is

jv = −ρgDva∇(wv) (3.51)

Comparing equations (3.44) and (3.51), it can be seen that Dav = Dva = Deff , where Dav is the

diffusion coefficient of air or vapor into the gas mixture. It may be noted, however, that the effect

of porosity and tortuosity in porous media should be taken into account within the mathematical

expression of the diffusion coefficient.

3.5.3 Sorption Isotherms

Due to the significant effect of the capillary pressure in concrete, the water content within the

concrete pores depends directly on the relative humidity. That behavior can be described by sorp-

tion curves, which relate the equilibrium moisture content of concrete material with the internal

relative humidity at a given temperature, Figure (3.3). (Bazant and Thonguthai, 1978; Bazant

and Kaplan, 1996) developed semi-empirical relations to predict the amount of free water inside

concrete, which are given by

εfw =

(

εcemρcem
ρl

)

·
(

εofwρ
o
l

εcemρcem
· Pv

Psat

)1/mt

for RH ≤ 0.96 (3.52)
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εfw =

(

εofwρ
o
l

ρl

)

·
[

1 + 0.12

(

Pv

Psat

− 1.04

)]

for RH ≥ 1.04 (3.53)

εfw = εfw(0.96) + (RH − 0.96)

(

εfw(1.04)− εfw(0.96)

0.08

)

for 0.96 ≤ RH ≤ 1.04 (3.54)

where RH = Pv/Psat, εcemρcem is the mass of anhydrous cement per unit volume of concrete, and

εofwρ
o
fw is the saturation free water content. The saturation pressure of vapor Psat can be calculated

using the Clausius-Clapeyron equation or from empirical correlations. The temperature-dependent

coefficient mt is given by

mt = 1.04− (T + 10)2

(T + 10)2 + 22.3(25 + 10)2
(3.55)

In order to make the slope of the sorption isotherms continuous, an empirical transition region

was introduced via equation (3.54), which represents a straight line joining the end points of the

interval (0.96 ≤ RH ≤ 1.04).
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Figure 3.3: Sorption Isotherms of concrete, after (Bažant and Thonguthai, 1979)

3.6 Summary of the Governing Equations

The governing equations that describe the multiphase flow in the porous concrete are defined in

equations (3.17), (3.25), (3.26), (3.28), and (3.40) with the assumption that the capillary pressure

is negligible and all phases are in thermodynamic equilibrium. Since the temperature is indepen-

dent of phases, the angle brackets in equation (3.40) can then be dropped. Also, the velocity Vα

represents the velocity for the α phase.
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Therefore, the governing equations can be rewritten once again with the substitution of equation

(3.45), and having the angle brackets for the intrinsic averages quantities dropped, so that the

governing equations will be in the following final form: The mass balance equation of liquid

species

∂

∂t
(ϕSρl) +∇ · (ρlVl) + ṁ− ṁdeh = 0 (3.56)

The mass balance equation of air species

∂

∂t
(ϕ(1− S)ρa) +∇ · (ρaVg + ja) = 0 (3.57)

The mass balance equation of vapor species

∂

∂t
(ϕ(1− S)ρv) +∇ · (ρvVg + jv)− ṁ = 0 (3.58)

The mass balance equation of solid matrix

∂

∂t
((1− ϕ)ρs) +∇ · (ρsVs) + ṁdeh = 0 (3.59)

The energy balance equation

∂

∂t
[(1− ϕ)ρshs + ϕ(1− S)(ρvhv + ρaha) + ϕSρlhl]

+∇ · [ρshsVs + hv(ρvVg + jv) + ha(ρaVg + ja) + ρlhlVl]−∇ · (keff∇T ) = 0 (3.60)
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CHAPTER 4: NUMERICAL MODELING OF TRANSPORT

PHENOMENA IN HEATED CONCRETE

4.1 Introduction

A numerical model to simulate the coupled heat and mass transfer phenomena in concrete at el-

evated temperatures is developed in this chapter. The model is based on the fully implicit finite

difference scheme. The control volume approach was used in the formulation of the partial differ-

ential equations. The nonlinear equations were solved using a Newton-Raphson iterative method,

with some modifications as discussed in the numerical algorithm section. The model was first

developed to simulate the one-dimensional coupled heat and mass transfer phenomena in heat-

ed concrete and then it was extended to be applicable in solving two-dimensional problems. Key

parameters that describe the hydro-thermal behavior of concrete at elevated temperatures were pre-

sented. The predicted values of temperature, pore pressure, and vapor density using the suggested

model were also illustrated at different times of heat exposure within the concrete cross section

and validated against experimental data.

4.2 Control Volume (CV) Approach

The control volume (CV) approach was adopted to develop the finite difference equations. Al-

though there is no unique claim that this approach would work better than other approaches, such

as the integral method, Taylor series expansion, and polynomial curve fitting, it appears that this

approach represents the best batting average (Roache, 1972).

One reason for this is that the basis of the control volume approach is more physical in its nature,
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and it conserves the specific physical quantity, such as mass or energy over the control volume

rather than using purely mathematical procedures. One of the main advantages of using this ap-

proach is its easy application to multidimensional problems, complicated boundary conditions, and

in situations at which variable meshes need to be used or variation in the physical properties exist

(Ozisik, 1994). Hence, this makes using the control volume approach in the formulation of the

coupled heat and mass transfer equations more attractive than other approaches.

The governing equations that are formulated using the control volume approach are characterized

to be fully conserving. This is due to the fact that fluxes between the control volumes are being

conserved which in turn satisfies the conservation principles for an assemblage of control volumes.

The depiction of a control volume located at x is shown in Figure (4.1). It should be noted that

the nodal value for any conserved quantity represents the average value for that quantity over the

control volume.

Figure 4.1: Control volume at point x
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4.3 Formulating the Governing Equations Using the CV Approach

To discretize the governing equations using the finite difference method, the equations were for-

mulated first based on the control volume approach; by applying conservation of mass and energy

to a control volume around the nodal region. Once the control volume equations are obtained, the

corresponding finite difference equations may then be formulated.

Since the direction of the flow is usually unknown, the fluxes on the left side of the CV were

assumed to be towards the nodes while they were assumed to be in the outward direction on the

other side of the CV, Figure (4.1). Thus, for any quantity ζ , ψ is the total amount of that quantity

within the CV. Accordingly, the total change of ψ in CV over time ∆t is,

∂ψ

∂t
=

(ζ)t+∆t
x ∆y∆z∆x− (ζ)tx∆y∆z∆x

∆t
(4.1)

The flux rate into the CV from the left side is (ζ)x−∆x/2∆y∆z. Similarly, the flux rate out of CV

at (x +∆x/2) is (ζ)x+∆x/2∆y∆z. The net flux into the CV thus is equal to (total flux entering) -

(total flux leaving), i.e., [(ζ)x−∆x/2 − (ζ)x+∆x/2]∆y∆z.

In a similar fashion, the governing equations for mass and heat transfer in concrete may be refor-

mulated using the CV approach by considering equations (3.56) - (3.60) and as illustrated in the

following section.

4.4 Finite Difference Discretization of The Governing differential Equations

The fully implicit finite difference method was used in the discretization of the differential equa-

tions in domain and time. Generally, in order to achieve an accurate solution, a sufficiently fine grid
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is needed. In addition, in certain applications, such as the case of heat and mass transfer problem,

the use of a non-uniform grid spacing usually represents a desirable choice. A finer grid size can

be used in regions where the variation in the variables is rather steep while a courser grid size may

be used in other regions where such a change is slow. This in turn results in a significant reduction

in the computational expense with no loss in solution accuracy. Hence, a variable grid size was

adopted in the discretization of the governing equations for the 1D model, whereas a uniform grid

size was used in the 2D simulations. The detailed derivation of the discretized form of the govern-

ing deferential equations will be presented in two main parts. In the first part, the finite difference

equations that are needed for the development of the 1D model are presented. The second part,

on the other hand, deals with the derivation of the finite difference equations for two-dimensional

systems.

4.5 Discretization of the Governing Equations for One-Dimensional Systems

In developing the general form of the finite difference equations for one dimensional systems, three

types of nodes may be encountered. The first type of nodes is the interior node, while the other

two nodes represent the surface and the symmetric nodes. The finite difference equations of the

three nodes will be presented in the next subsections. For the sake of simplicity, the temporal and

spatial discretization for both one dimensional and two-dimensional models will be presented in

two separate sections and as follows:

4.5.1 Temporal Discretization of The Governing Equations for One-Dimensional Systems

Since a fully implicit method was used in the derivation of the finite difference equations, the

time derivative was considered as a backward difference approximation and all the variables were
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expressed in terms of the new time step (p + 1) and the previous time step (p). The discretized

equations of all species along with the temporal discretization are presented here for the interior

node (m), Figure (4.2). For the other types of nodes, the finite difference equations will be pre-

sented in sections (4.7 and 4.8). As mentioned before, these discretized equations were formulated

based on the CV approach.

Figure 4.2: Nodal network in one dimensional systems

1. Mass Conservation Equations of Water Vapor Species

The mass balance equation of liquid phase may be expressed as

(

(ϕSρl)
p+1
m − (ϕSρl)

p
m

∆t

)

∆xi = (ρlVl)
p+1
m−1/2 − (ρlVl)

p+1
m+1/2 + (ṁdeh − ṁ)p+1∆xi (4.2)

Similarly, the mass balance equation for vapor species is

(

(ϕ(1− S)ρv)
p+1
m − (ϕ(1− S)ρv)

p
m

∆t

)

∆xi = (ρvVg+ jv)
p+1
m−1/2− (ρvVg+ jv)

p+1
m+1/2+ ṁ

p+1

(4.3)

The mass balances of liquid water and vapor (equations 4.2 and 4.3) can be summed together

to eliminate the mass source term associated with phase change. In addition, the dehydration
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term (ṁdeh) may be expressed in terms of the density of dehydrated water (ρd) as

ṁdeh =

(

(ρd)
p+1 − (ρd)

p

∆t

)

(4.4)

The resulting equation is described as moisture conservation equation and it is given by

(

(ϕSρl)
p+1
m − (ϕSρl)

p
m

∆t

)

∆xi +

(

(ϕ(1− S)ρv)
p+1
m − (ϕ(1− S)ρv)

p
m

∆t

)

∆xi− (4.5)

(

(ρd)
p+1
m − (ρd)

p
m

∆t

)

∆xi = (ρvVg + jv)
p+1
m−1/2 − (ρvVg + jv)

p+1
m+1/2+

(ρlVl)
p+1
m−1/2 − (ρlVl)

p+1
m+1/2 (4.6)

The superscript m denotes the x location of discrete points, (m−1/2) and (m+1/2) refer to

the interface regions between adjacent control volumes, Figure (4.2). Substituting equations

(3.49) and (3.51) into the above equation and assuming that the liquid water is immobile,

leads to

(

(ϕSρl)
p+1
m − (ϕSρl)

p
m

∆t

)

∆xi +

(

(ϕ(1− S)ρv)
p+1
m − (ϕ(1− S)ρv)

p
m

∆t

)

∆xi− (4.7)

(

(ρd)
p+1
m − (ρd)

p
m

∆t

)

∆xi = −
(

ρv
kgk

µg

∇Pg

)p+1

m−1/2

− (ρgDva∇wv)
p+1
m−1/2 +

(

ρv
kgk

µg

∇Pg

)p+1

m+1/2

+ (ρgDva∇wv)
p+1
m+1/2

2. Mass Conservation Equations of Air Species For air species, the mass balance equation is

given by

(

(ϕ(1− S)ρa)
p+1
m − (ϕ(1− S)ρa)

p
m

∆t

)

∆xi = (ρaVg + ja)
p+1
m−1/2 − (ρaVg + ja)

p+1
m+1/2 (4.8)
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Application of equations (3.49) and (3.50) into the right side terms of this equation yields

(

(ϕ(1− S)ρa)
p+1
m − (ϕ(1− S)ρa)

p
m

∆t

)

∆xi = −
(

ρa
kgk

µg

∇Pg

)p+1

m−1/2

− (4.9)

(ρgDav∇(1− wv))
p+1
m−1/2 +

(

ρa
kgk

µg

∇Pg

)p+1

m+1/2

+ (ρgDav∇(1− wv))
p+1
m+1/2

3. Mass Conservation Equations of The Solid Phase For the solid phase, the velocity of the

solid is negligible, hence Vs = 0, and the mass balance equation of the solid phase can be

written as

((1− ϕ)ρs)
p+1
m − ((1− ϕ)ρs)

p
m

∆t
+

(ρd)
p+1
m − (ρd)

p
m

∆t
= 0 (4.10)

4. Energy Balance Equation The energy balance equation can be defined as

[

((1− ϕ)ρshs)
p+1
m − ((1− ϕ)ρshs)

p
m

∆t
+

(ϕSρlhl)
p+1
m − (ϕSρlhl)

p
m

∆t
+

(ϕ(1− S)(ρvhv + ρaha))
p+1
m − (ϕ(1− S)(ρvhv + ρaha))

p
m

∆t

]

∆xi =

(hv(ρvVg + jv))
p+1
m−1/2 − (hv(ρvVg + jv))

p+1
m+1/2 + (ha(ρaVg + ja))

p+1
m−1/2−

(ha(ρaVg + ja))m+1/2 − (keff∇T )p+1
m−1/2 + (keff∇T )p+1

m+1/2 (4.11)

The change in enthalpy for all species can be defined as Faires (1950)

∆hα =

∫ T2

T1

cpα ∆T (4.12)

for α = a, l or v.

To simplify the aforementioned enthalpy equation and express all the quantities in terms of

temperature, equations (4.2), (4.3), (4.9), and (4.10) are substituted into the energy equation

and the definition of heat capacity in equation (4.12) is also employed. With the application
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of the Darcy’s velocity and Fick’s law, the energy equation can be then written as

∆xiρCp

(

T p+1
m − T p

m

∆t

)

=
1

2
(∆Tcpv)

p+1
m−1/2

[

(

ρv
kgk

µg

∇Pg

)p+1

m−1/2

+ (ρgDva∇wv)
p+1
m−1/2

]

+

1

2
(∆Tcpv)

p+1
m+1/2

[

(

ρv
kgk

µg

∇Pg

)p+1

m+1/2

+ (ρgDva∇wv)
p+1
m+1/2

]

+

1

2
(∆Tcpa)

p+1
m−1/2

[

(

ρa
kgk

µg

∇Pg

)p+1

m−1/2

+ (ρgDav∇(1− wv))
p+1
m−1/2

]

+

1

2
(∆Tcpa)

p+1
m+1/2

[

(

ρa
kgk

µg

∇Pg

)p+1

m+1/2

+ (ρgDav∇(1− wv))
p+1
m+1/2

]

−

(keff∇T )p+1
m−1/2 + (keff∇T )p+1

m+1/2 −∆xi[(ṁ)p+1
m λe − (ṁdeh)

p+1
m λd] (4.13)

where ρCp is the overall heat capacity, and it is given by

ρCp = (1− φ)pcp+1
ps ρps + φp(1− S)p(ρpac

p+1
pa + ρpvc

p+1
pv ) + (φS)pρpl c

p+1
pl (4.14)

The enthalpy of evaporation and dehydration, λe and λd, respectively, may be defined as

λe = hv − hl, λd = hv − hs (4.15)

It should be noted that the source term of dehydration in equation (4.13) may be replaced

by equation (4.4) while the evaporation term can be substituted for with the aid of equation

(4.2).

4.5.2 Spatial Discretization of The Governing Equations for One-Dimensional Systems

The spatial derivatives in the previously formulated equations were approximated here using the

finite difference scheme. The central difference was used to approximate the derivatives at the
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interface node between adjacent control volumes, particularly at (m+1/2) and (m− 1/2). Hence,

for any quantity uκ, the finite difference approximations of the first derivative at the interface nodes

may be defined as
(

∂uκ
∂x

)p+1

m+1/2

= 2
(uκ)

p+1
m+1 − (uκ)

p+1
m

∆xm +∆xm+1

(4.16)

and
(

∂uκ
∂x

)p+1

m−1/2

= 2
(uκ)

p+1
m − (uκ)

p+1
m−1

∆xm +∆xm−1

(4.17)

Where uκ, κ = 1, 2, 3, represents the gas pressure (Pg), temperature (T ), and the mass fraction of

vapor (wv), respectively. An average value between adjacent nodes at time (p + 1) is assumed to

represent the interface values, such as ρg, kg, Dav, and cp, etc. Thus, if ϑ describes an interface

value between adjacent control volumes, then it can be expressed as

(ϑ)p+1
m±1/2 =

(ϑ)p+1
m±1 + (ϑ)p+1

m

2
(4.18)

The substitution of the above expressions into the governing equations, namely equations (4.7),

(4.9), and (4.13), yields the final form of the finite difference equations.

4.6 Initial and Boundary Conditions

Having established the finite difference equations, it is necessary to define the associated initial

and boundary conditions. The initial conditions are described by the uniform distribution of gas

pressure, temperature, and vapor content at time zero, such that

Pg = P 0
g , T = T 0, ρv = ρ0v (4.19)
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The specific setting of boundary conditions depends mainly on the nature of the problem and

whether the surface is exposed to the fire loading or not. Generally, there are three kinds of bound-

ary conditions that are commonly encountered in heat and mass transfer problems. Herein, Γ is

used to denote a boundary in the problem. One kind of boundary condition is termed a Dirichlet

boundary condition or a boundary condition of the first kind. Accordingly, the Dirichlet boundary

condition on Γ1
i may be introduced as:

Pg = P̂g on Γ1
g, ρv = ρ̂v on Γ1

v, T = T̂ on Γ1
T (4.20)

where Γi is a part of boundary Γ in which a value of variable i is imposed.

The second kind of boundary condition is termed a Neumann boundary condition or a boundary

condition of the second kind, which can be defined as

(ρaVg + ja) · n = qa on Γ2
g (4.21)

(ρvVg + jv) · n = qv on Γ2
v (4.22)

(keff∇T ) · n = qT on Γ2
T (4.23)

where qa, qv, and qT are the imposed fluxes of dry air, vapor, and heat respectively, n is a unit

normal vector to the boundary surface.

The last kind of boundary conditions is termed a mixed (Cauchy’s) boundary condition, and may

be defined as

(ρgVg) · n = β(ρg − ρg,∞) on Γ3
g (4.24)

(ρvVg + jv) · n = β(ρv − ρv,∞) on Γ3
v (4.25)

(ρaVg + ja) · n = β(ρa − ρa,∞) on Γ3
a (4.26)

61



Performing an energy balance at the boundary surface leads to

keff
∂T

∂n
− (Hg −H0

g )(ρgVg) · n+ β(Hg −H0
g )(ρg − ρg,∞)− λeρlVl+ (4.27)

hc(T − T∞) + eσ0(T
4 − T 4

∞
) on Γ3

g

where Hg and H0
g are the enthalpies of the gaseous mixture at the current and ambient conditions

respectively, hc and β are the coefficients of convective heat and mass transfer, e is the emissivity

of the interface, σ0 is the Stefan-Boltzman constant, and ρα,∞, (α = a, v, or g), T∞ are mass

concentrations and temperature in the surrounding environment.

It may be also assumed that upon fire exposure, the exposed surface of the structure will dry out in

a very short time compared to other deeper sections, or it’s already dried during the service life of

the structure. Hence the liquid flux term ρlVl can be set to zero. By comparing equations (4.24) and

(4.27), It can be seen that equation (4.27) reduces to the conventional form used in heat transfer

analysis:

−keff
∂T

∂n
= hc(T − T∞) + eσ0(T

4 − T 4
∞
) on Γ3

g (4.28)

4.7 Application of The Boundary Conditions to The Surface Node

For now, a general form of the finite difference equations that describes heat and mass transfer

phenomena in heated concrete has been developed. However, these equations are applicable only

to the nodes located inside the concrete cross section, i.e., interior nodes, and hence they cannot be

used for boundary nodes. Based on the CV approach, the finite difference formulations requires

computing heat and mass fluxes that enter and leave the control volume. Accordingly, the fluxes

that pass through the surface node need to be computed based on boundary conditions, and thus the

finite difference equations of surface nodes must be formulated separately. Generally, this can be
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done by applying the energy and mass balance equations to the control volume about the boundary

node in a like manner to the interior node, Figure (4.3).

Figure 4.3: Surface node with convection

Since developing the finite difference equations of surface nodes, particularly in the case of a fire

scenario, is of interest, the mixed boundary conditions were considered in such a formulation. For

the sake of simplicity, only the final form of the conservation equation will be presented.

The mass conservation equation of moisture is given by

(

(ϕSρl)
p+1
m − (ϕSρl)

p
m

∆t

)

∆x1 +

(

(ϕ(1− S)ρv)
p+1
m − (ϕ(1− S)ρv)

p
m

∆t

)

∆x1− (4.29)

(

(ρd)
p+1
m − (ρd)

p
m

∆t

)

∆x1 = β(ρv,∞ − (ρv)
p+1
m ) + (ρv)

p+1
m+1/2

(

kgk

µg

∇Pg

)p+1

m+1/2

+

(ρgDva∇(wv))
p+1
m+1/2
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The mass conservation equations for air species is

(

(ϕ(1− S)ρa)
p+1
m − (ϕ(1− S)ρa)

p
m

∆t

)

∆x1 = β(ρa,∞ − (ρa)
p+1
m )+ (4.30)

(ρa)
p+1
m+1/2

(

kgk

µg

∇Pg

)p+1

m+1/2

+ (ρgDav∇(1− wv))
p+1
m+1/2

The energy conservation equation can be expressed as

∆x1ρCp

(

T p+1
m − T p

m

∆t

)

= hc(T
p+1
m − T∞) + eσ0(T

4 p+1
m − T 4

∞
)+

1

2
(∆Tcpv)

p+1
m+1/2

[

(

ρv
kgk

µg

∇Pg

)p+1

m+1/2

+ (ρgDva∇(wv))
p+1
m+1/2

]

−

− 1

2
(∆Tcpa)

p+1
m−1/2

[

(

ρa
kgk

µg

∇Pg

)p+1

m−1/2

+ (ρgDav∇(1− wv))
p+1
m−1/2

]

−

1

2
(∆Tcpa)

p+1
m+1/2

[

(

ρa
kgk

µg

∇Pg

)p+1

m+1/2

+ (−ρgDav∇(1− wv))
p+1
m+1/2

]

−

(keff∇T )p+1
m−1/2 + (keff∇T )p+1

m+1/2 −∆x1[(ṁ)p+1
m λe − (ṁdeh)

p+1
m λd] (4.31)

As with the interior nodes, the substitution of equations (4.16), (4.17), and (4.18) into equations

(4.29), (4.30), and (4.31), yields the final form of the finite difference equations for the boundary

nodes.

4.8 Treating The Interior Nodes at The Symmetry Line as Insulated Boundary Nodes:

The Mirror Image Concept

In problems that possess symmetrical distribution of temperature and mass concentration about the

mid-plane section, it is always convenient to treat the plane of symmetry as an insulated boundary

with zero heat and mass fluxes and consider only one half of the medium in the analysis, Figure
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(4.4). The solution of the other half is the mirror image of the solution computed for the first half.

Accordingly, in the case of symmetry, only one half of the medium may be considered and the

finite difference equations of the nodes located on the plane of symmetry can be formulated by

using the finite difference equations of an interior node with considering ζp−1 = ζp+1, where ζ

may represent any quantity.

Figure 4.4: Schematic of a node on an insulated boundary

4.9 Discretization of The Governing Equations for Two-Dimensional Systems

In developing the general form of the finite difference equations for two-dimensional systems, nine

types of nodes may be encountered based on the location of their control volume and the imposed

boundary conditions, Figure(4.5). Since the case of fire exposure is of great interest, the finite

difference equations were formulated to be applicable for this particular situation. The temporal
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and spatial discretizations of the finite difference equations for each type of nodes will be presented

in the following subsections.

Figure 4.5: Nodal network in two-dimensional systems

4.9.1 Temporal Discretization of The Governing Equations for Two-Dimensional Systems

As in one-dimensional systems, the time derivative was considered as a backward difference ap-

proximation and all the variables were expressed in terms of the new time step (p+1) and the pre-

vious time step (p). In addition, by following a similar procedure to the one used in the derivation

of the finite difference equations in 1-D systems, the two-dimensional finite difference equations
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may then be derived. For the sake of brevity, only the final form of these equations will be pre-

sented here. Further details, however, will be given for the case of the interior node to gain more

insight into the derivation procedure. Accordingly, the discretized equations of all species and for

each type of nodes may be given as follows:

1. Case 1-Interior Node

(a) Mass Conservation Equations of Water Vapor Species

After the application of the conservation of mass to the control volume represented by

the node (m,n) and the four neighboring nodes (m-1,n),(m+1,n) ,(m,n+1), and (m,n-1)

in both x and y directions, the finite difference form of the conservation equation of

moisture species for 2-D systems may be expressed as

[

(ϕSρl)
p+1
m,n − (ϕSρl)

p
m,n

∆t
+

(ϕ(1− S)ρv)
p+1
m,n − (ϕ(1− S)ρv)

p
m,n

∆t
−

(ρd)
p+1
m,n − (ρd)

p
m,n

∆t

]

∆xm,n∆ym,n = [(ρvVg + jv)
p+1
m−1/2,n + (ρlVl)

p+1
m−1/2,n]∆ym,n+

[(ρvVg + jv)
p+1
m,n−1/2 + (ρlVl)

p+1
m,n−1/2]∆xm,n − [(ρvVg + jv)

p+1
m+1/2,n + (ρlVl)

p+1
m+1/2,n]∆ym,n−

[(ρvVg + jv)
p+1
m,n+1/2 + (ρlVl)

p+1
m,n+1/2]∆xm,n (4.32)

The superscriptsm,n denote the x, y location of discrete points respectively, (m−1/2),

(m + 1/2), (n + 1/2), and (n − 1/2) refer to the interface regions between adjacent

control volumes in x and y directions, Figure (4.6). Substituting equations (3.49) and

(3.51) into the above equation and assuming that the liquid water is immobile, leads to:
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[

(ϕSρl)
p+1
m,n − (ϕSρl)

p
m,n

∆t
+

(ϕ(1− S)ρv)
p+1
m,n − (ϕ(1− S)ρv)

p
m,n

∆t
−

(ρd)
p+1
m,n − (ρd)

p
m,n

∆t

]

∆xm,n∆ym,n = −
[(

ρv
kgk

µg

∇Pg

)p+1

m−1/2,n

+

(ρgDva∇wv)
p+1
m−1/2,n

]

∆ym,n −
[

(

ρv
kgk

µg

∇Pg

)p+1

m,n−1/2

+ (ρgDva∇wv)
p+1
m,n−1/2

]

∆xm,n+

[

(

ρv
kgk

µg

∇Pg

)p+1

m+1/2,n

+ (ρgDva∇wv)
p+1
m+1/2,n

]

∆ym,n+

[

(

ρv
kgk

µg

∇Pg

)p+1

m,n+1/2

+ (ρgDva∇wv)
p+1
m,n+1/2

]

∆xm,n (4.33)

(b) Mass Conservation Equations of Air Species

For air species, the mass balance equation is given by

[

(ϕ(1− S)ρa)
p+1
m,n − (ϕ(1− S)ρa)

p
m,n

∆t

]

∆xm,n∆ym,n = [(ρaVg + ja)
p+1
m−1/2,n]∆ym,n+

[(ρvVg + ja)
p+1
m,n−1/2]∆xm,n − [(ρaVg + ja)

p+1
m+1/2,n]∆ym,n − [(ρvVg + ja)

p+1
m,n+1/2]∆xm,n

(4.34)

Application of equations (3.49) and (3.50) into the right side terms of this equation

yields
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[

(ϕ(1− S)ρa)
p+1
m,n − (ϕ(1− S)ρa)

p
m,n

∆t

]

∆xm,n∆ym,n = −
[(

ρa
kgk

µg

∇Pg

)p+1

m−1/2,n

+

(ρgDav∇(1− wv))
p+1
m−1/2,n

]

∆ym,n −
[(

ρa
kgk

µg

∇Pg

)p+1

m,n−1/2

+

(ρgDav∇(1− wv))
p+1
m,n−1/2

]

∆xm,n+

[

(

ρa
kgk

µg

∇Pg

)p+1

m+1/2,n

+ (ρgDav∇(1− wv))
p+1
m+1/2,n

]

∆ym,n+

[

(

ρa
kgk

µg

∇Pg

)p+1

m,n+1/2

+ (ρgDav∇(1− wv))
p+1
m,n+1/2

]

∆xm,n (4.35)

(c) Energy Balance Equation

The energy balance equation can be defined as

[

(ϕ(1− S)(ρvhv + ρaha))
p+1
m,n − (ϕ(1− S)(ρvhv + ρaha))

p
m,n

∆t
+

((1− ϕ)ρshs)
p+1
m,n − ((1− ϕ)ρshs)

p
m,n

∆t
+

(ϕSρlhl)
p+1
m,n − (ϕSρlhl)

p
m,n

∆t

]

∆xm,n∆ym,n =

(hv(ρvVg + jv))
p+1
m−1/2,n + (ha(ρaVg + ja))

p+1
m−1/2,n−

(keff∇T )p+1
m−1/2,n + (hv(ρvVg + jv))

p+1
m,n−1/2

+ (ha(ρaVg + ja))
p+1
m−1/2,n − (keff∇T )p+1

m,n−1/2 − (hv(ρvVg + jv))
p+1
m+1/2,n

− (ha(ρaVg + ja))
p+1
m+1/2,n + (keff∇T )p+1

m+1/2,n − (hv(ρvVg + jv))
p+1
m,n+1/2

− (ha(ρaVg + ja))
p+1
m+1/2,n + (keff∇T )p+1

m,n+1/2 (4.36)

To simplify the aforementioned enthalpy equation and express all the quantities in

terms of temperature, equations (4.33, (4.35), and (4.10) are substituted into the en-

ergy equation and the definition of heat capacity in equation (4.12) is also employed.

With the application of the Darcy’s velocity and Fick’s law, the energy equation can be
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then written as

∆xm,n∆ym,n ρCp

(

T p+1
m − T p

m

∆t

)

=
∆ym,n

2

[

(∆Tcpv)
p+1
m−1/2,n

[

(

ρv
kgk

µg

∇Pg

)p+1

m−1/2,n

+

(ρgDva∇wv)
p+1
m−1/2,n

]

+ (∆Tcpv)
p+1
m+1/2,n

[(

ρv
kgk

µg

∇Pg

)p+1

m+1/2,n

+

(ρgDva∇wv)
p+1
m+1/2,n

]

+ (4.37)

(∆Tcpa)
p+1
m−1/2,n

[

(

ρa
kgk

µg

∇Pg

)p+1

m−1/2,n

+ (ρgDav∇(1− wv))
p+1
m−1/2,n

]

+

(∆Tcpa)
p+1
m+1/2,n

[

(

ρa
kgk

µg

∇Pg

)p+1

m+1/2,n

+ (ρgDav∇(1− wv))
p+1
m+1/2,n

]]

+

∆xm,n

2

[

(∆Tcpv)
p+1
m,n−1/2

[(

ρv
kgk

µg

∇Pg

)p+1

m,n−1/2

+ (ρgDva∇wv)
p+1
m,n−1/2

]

+

(∆Tcpv)
p+1
m,n+1/2

[

(

ρv
kgk

µg

∇Pg

)p+1

m,n+1/2

+ (ρgDva∇wv)
p+1
m,n+1/2

]

+

(∆Tcpa)
p+1
m,n−1/2

[

(

ρa
kgk

µg

∇Pg

)p+1

m,n−1/2

+ (ρgDav∇(1− wv))
p+1
m,n−1/2

]

+

(∆Tcpa)
p+1
m,n+1/2

[

(

ρa
kgk

µg

∇Pg

)p+1

m,n+1/2

+ (ρgDav∇(1− wv))
p+1
m,n+1/2

]]

−

∆xm,n

[

(keff∇T )p+1
m,n−1/2 − (keff∇T )p+1

m,n+1/2

]

− (4.38)

∆ym,n

[

(keff∇T )p+1
m−1/2,n − (keff∇T )p+1

m+1/2,n

]

−∆xm,n∆ym,n[(ṁ)p+1
m,nλe − (ṁdeh)

p+1
m,nλd]

Where ρCp is the overall heat capacity, and it is given by equation (4.14).

2. Case 2-Node at an external corner with convection

For the case of the external corner, the control volume is represented by three nodes: the

node (m,n) and the two neighboring nodes (m+1,n) and (m,n+1). The geometry of the node

is depicted in Figure(4.7)
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Figure 4.6: An interior node and its adjoining nodes

(a) Mass Conservation Equations of Water Vapor Species

[

(ϕSρl)
p+1
m,n − (ϕSρl)

p
m,n

∆t
+

(ϕ(1− S)ρv)
p+1
m,n − (ϕ(1− S)ρv)

p
m,n

∆t
−

(ρd)
p+1
m,n − (ρd)

p
m,n

∆t

]

∆xm,n∆ym,n =
[

β(ρv,∞ − (ρv)
p+1
m,n)

]

(∆xm,n +∆ym,n)+

[(

ρv
kgk

µg

∇Pg

)p+1

m+1/2,n

+ (ρgDva∇(wv))
p+1
m+1/2,n

]

∆ym,n+

[

(

ρv
kgk

µg

∇Pg

)p+1

m,n+1/2

+ (ρgDva∇(wv))
p+1
m,n+1/2

]

∆xm,n (4.39)

(b) Mass Conservation Equations of Air Species

[

(ϕ(1− S)ρa)
p+1
m,n − (ϕ(1− S)ρa)

p
m,n

∆t

]

∆xm,n∆ym,n =
[

β(ρa,∞ − (ρa)
p+1
m,n)

]

(∆xm,n +∆ym,n) +

[

(

ρa
kgk

µg

∇Pg

)p+1

m+1/2,n

+ (ρgDav∇(1− wv))
p+1
m+1/2,n

]

∆ym,n+

[

(

ρa
kgk

µg

∇Pg

)p+1

m,n+1/2

+ (ρgDav∇(1− wv))
p+1
m,n+1/2

]

∆xm,n (4.40)
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(c) Energy Balance Equation The energy balance equation can be defined as

∆xm,n∆ym,nρCp

(

T p+1
m − T p

m

∆t

)

=
[

hc(T
p+1
m,n − T∞) + eσ0(T

4 p+1
m,n − T 4

∞
)
]

(∆ym,n +∆xm,n)+

∆ym,n

2

[

(∆Tcpv)
p+1
m+1/2,n

[

(

ρv
kgk

µg

∇Pg

)p+1

m+1/2,n

+ (ρgDva∇wv)
p+1
m+1/2,n

]

+

(∆Tcpa)
p+1
m+1/2

[

(

ρa
kgk

µg

∇Pg

)p+1

m+1/2,n

+ (ρgDav∇(1− wv))
p+1
m+1/2,n

]]

+

∆xm,n

2

[

(∆Tcpv)
p+1
m,n+1/2

[

(

ρv
kgk

µg

∇Pg

)p+1

m,n+1/2

+ (ρgDva∇wv)
p+1
m,n+1/2

]

+

(∆Tcpa)
p+1
m,n+1/2

[

(

ρa
kgk

µg

∇Pg

)p+1

m,n+1/2

+ (ρgDav∇(1− wv))
p+1
m,n+1/2

]]

+

∆xm,n[(keff∇T )p+1
m,n+1/2] + ∆ym,n[(keff∇T )p+1

m+1/2,n]−∆xm,n∆ym,n[(ṁ)p+1
m,nλe − (ṁdeh)

p+1
m,nλd]

(4.41)

3. Case 3-Node at the x surface with convection

For the node located at the x surface, the control volume is represented by the node (m,n)

and three adjacent nodes (m,n-1), (m,n+1), and (m+1,n) and as shown in Figure (4.8).

Figure 4.7: Node at an external corner with convection
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(a) Mass Conservation Equations of Water Vapor Species

[

(ϕSρl)
p+1
m,n − (ϕSρl)

p
m,n

∆t
+

(ϕ(1− S)ρv)
p+1
m,n − (ϕ(1− S)ρv)

p
m,n

∆t
− (4.42)

(ρd)
p+1
m,n − (ρd)

p
m,n

∆t

]

∆xm,n∆ym,n =
[

β(ρv,∞ − (ρv)
p+1
m,n)

]

(∆xm,n)−
[(

ρv
kgk

µg

∇Pg

)p+1

m−1/2,n

+

(ρgDva∇wv)
p+1
m−1/2,n

]

∆ym,n +

[

(

ρv
kgk

µg

∇Pg

)p+1

m+1/2,n

+ (ρgDva∇wv)
p+1
m+1/2,n

]

∆ym,n+

[

(

ρv
kgk

µg

∇Pg

)p+1

m,n+1/2

+ (ρgDva∇wv)
p+1
m,n+1/2

]

∆xm,n (4.43)

(b) Mass Conservation Equations of Air Species

[

(ϕ(1− S)ρa)
p+1
m,n − (ϕ(1− S)ρa)

p
m,n

∆t

]

∆xm,n∆ym,n =
[

β(ρa,∞ − (ρa)
p+1
m,n)

]

(∆xm,n)−
[(

ρa
kgk

µg

∇Pg

)p+1

m−1/2,n

+ (ρgDav∇(1− wv))
p+1
m−1/2,n

]

∆ym,n+

[

(

ρa
kgk

µg

∇Pg

)p+1

m+1/2,n

+ (ρgDav∇(1− wv))
p+1
m+1/2,n

]

∆ym,n+

[

(

ρa
kgk

µg

∇Pg

)p+1

m,n+1/2

+ (ρgDav∇(1− wv))
p+1
m,n+1/2

]

∆xm,n (4.44)
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Figure 4.8: Node at the x surface with convection

(c) Energy Balance Equation

∆xm,n∆ym,nρCp

(

T p+1
m − T p

m

∆t

)

=
[

hc(T
p+1
m,n − T∞) + eσ0(T

4 p+1
m,n − T 4

∞
)
]

(∆xm,n)+

∆ym,n

2

[

(∆Tcpv)
p+1
m−1/2,n

[

(

ρv
kgk

µg

∇Pg

)p+1

m−1/2,n

+ (ρgDva∇wv)
p+1
m−1/2,n

]

+

(∆Tcpv)
p+1
m+1/2,n

[

(

ρv
kgk

µg

∇Pg

)p+1

m+1/2,n

+ (ρgDva∇wv)
p+1
m+1/2,n

]

+

(∆Tcpa)
p+1
m−1/2,n

[

(

ρa
kgk

µg

∇Pg

)p+1

m−1/2,n

+ (ρgDav∇(1− wv))
p+1
m−1/2,n

]

+

(∆Tcpa)
p+1
m+1/2,n

[

(

ρa
kgk

µg

∇Pg

)p+1

m+1/2,n

+ (ρgDav∇(1− wv))
p+1
m+1/2,n

]]

+

∆xm,n

2

[

(∆Tcpv)
p+1
m,n+1/2

[

(

ρv
kgk

µg

∇Pg

)p+1

m,n+1/2

+ (ρgDva∇wv)
p+1
m,n+1/2

]

+

(∆Tcpa)
p+1
m,n+1/2

[

(

ρa
kgk

µg

∇Pg

)p+1

m,n+1/2

+ (ρgDav∇(1− wv))
p+1
m,n+1/2

]]

+

∆xm,n

[

(keff∇T )p+1
m,n+1/2

]

−∆ym,n

[

(keff∇T )p+1
m−1/2,n − (keff∇T )p+1

m+1/2,n

]

−

∆xm,n∆ym,n[(ṁ)p+1
m,nλe − (ṁdeh)

p+1
m,nλd] (4.45)
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4. Case 4-Node at the top right corner with convection

For the case of the node located at the top right corner, the node occurs at the symmetry line

too, and hence it can be treated as an insulated boundary condition with considering only

half of the medium in the formulation, Figure(4.9).

(a) Mass Conservation Equations of Water Vapor Species

[

(ϕSρl)
p+1
m,n − (ϕSρl)

p
m,n

∆t
+

(ϕ(1− S)ρv)
p+1
m,n − (ϕ(1− S)ρv)

p
m,n

∆t
−

(ρd)
p+1
m,n − (ρd)

p
m,n

∆t

]

∆xm,n∆ym,n =
[

β(ρv,∞ − (ρv)
p+1
m,n)

]

(∆xm,n)−

2

[

(

ρv
kgk

µg

(∇Pg

)p+1

m−1/2,n

+ (ρgDva∇wv)
p+1
m−1/2,n

]

∆ym,n+

[

(

ρv
kgk

µg

∇Pg

)p+1

m,n+1/2

+ (ρgDva∇wv)
p+1
m,n+1/2

]

∆xm,n (4.46)

Figure 4.9: Node at the top right corner with convection
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(b) Mass Conservation Equations of Air Species

[

(ϕ(1− S)ρa)
p+1
m,n − (ϕ(1− S)ρa)

p
m,n

∆t

]

∆xm,n∆ym,n =
[

β(ρa,∞ − (ρa)
p+1
m,n)

]

(∆xm,n)−

2

[(

ρa
kgk

µg

∇Pg

)p+1

m−1/2,n

+ (ρgDav∇(1− wv))
p+1
m−1/2,n

]

∆ym,n+

[

(

ρa
kgk

µg

∇Pg

)p+1

m,n+1/2

+ (ρgDav∇(1− wv))
p+1
m,n+1/2

]

∆xm,n (4.47)

(c) Energy Balance Equation

∆xm,n∆ym,nρCp

(

T p+1
m − T p

m

∆t

)

=
[

hc(T
p+1
m,n − T∞) + eσ0(T

4 p+1
m,n − T 4

∞
)
]

(∆xm,n)+

∆ym,n

2

[

(∆Tcpv)
p+1
m−1/2,n

[

(

ρv
kgk

µg

∇Pg

)p+1

m−1/2,n

+ (ρgDva∇wv)
p+1
m−1/2,n

]

+

(∆Tcpa)
p+1
m−1/2,n

[

(

ρa
kgk

µg

∇Pg

)p+1

m−1/2,n

+ (ρgDav∇(1− wv))
p+1
m−1/2,n

]]

+

∆xm,n

2

[

(∆Tcpv)
p+1
m,n+1/2

[

(

ρv
kgk

µg

∇Pg

)p+1

m,n+1/2

+ (ρgDva∇wv)
p+1
m,n+1/2

]

+

(∆Tcpa)
p+1
m,n+1/2

[

(

ρa
kgk

µg

(∇Pg)

)p+1

m,n+1/2

+ (ρgDav∇(1− wv))
p+1
m,n+1/2

]]

+

∆xm,n

[

(keff∇T )p+1
m,n+1/2

]

−∆ym,n2
[

(keff∇T )p+1
m−1/2,n

]

−

∆xm,n∆ym,n[(ṁ)p+1
m,nλe − (ṁdeh)

p+1
m,nλd] (4.48)

5. Case 5-Node at the y surface with convection

For the node located at the y surface, the control volume is represented by the node (m,n)

and three adjacent nodes (m,n+1), (m+1,n), and (m-1,n) and as shown in Figure (4.8).
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(a) Mass Conservation Equations of Water Vapor Species

[

(ϕSρl)
p+1
m,n − (ϕSρl)

p
m,n

∆t
+

(ϕ(1− S)ρv)
p+1
m,n − (ϕ(1− S)ρv)

p
m,n

∆t
−

(ρd)
p+1
m,n − (ρd)

p
m,n

∆t

]

∆xm,n∆ym,n =
[

β(ρv,∞ − (ρv)
p+1
m,n)

]

(∆ym,n)−
[

(

ρv
kgk

µg

∇Pg

)p+1

m,n−1/2

+ (ρgDva∇wv)
p+1
m,n−1/2

]

∆xm,n+

[

(

ρv
kgk

µg

∇Pg

)p+1

m+1/2,n

+ (ρgDva∇wv)
p+1
m+1/2,n

]

∆ym,n+

[

(

ρv
kgk

µg

∇Pg

)p+1

m,n+1/2

+ (ρgDva∇wv)
p+1
m,n+1/2

]

∆xm,n (4.49)

Figure 4.10: Node at the y surface with convection
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(b) Mass Conservation Equations of Air Species

[

(ϕ(1− S)ρa)
p+1
m,n − (ϕ(1− S)ρa)

p
m,n

∆t

]

∆xm,n∆ym,n =
[

β(ρa,∞ − (ρa)
p+1
m,n)

]

(∆ym,n)−
[

(

ρa
kgk

µg

∇Pg

)p+1

m,n−1/2

+ (ρgDav∇(1− wv))
p+1
m,n−1/2

]

∆xm,n+

[

(

ρa
kgk

µg

∇Pg

)p+1

m+1/2,n

+ (ρgDav∇(1− wv))
p+1
m+1/2,n

]

∆ym,n+

[

(

ρa
kgk

µg

∇Pg

)p+1

m,n+1/2

+ (ρgDav∇(1− wv))
p+1
m,n+1/2

]

∆xm,n (4.50)

(c) Energy Balance Equation

∆xm,n∆ym,nρCp

(

T p+1
m − T p

m

∆t

)

=
[

hc(T
p+1
m,n − T∞) + eσ0(T

4 p+1
m,n − T 4

∞
)
]

(∆ym,n)+

∆ym,n

2
(∆Tcpv)

p+1
m+1/2,n

[

(

ρv
kgk

µg

∇Pg

)p+1

m+1/2,n

+ (ρgDva∇wv)
p+1
m+1/2,n

]

+

(∆Tcpa)
p+1
m+1/2,n

[

(

ρa
kgk

µg

(∇Pg)

)p+1

m+1/2,n

+ (ρgDav∇(1− wv))
p+1
m+1/2,n

]

+

∆xm,n

2

[

(∆Tcpv)
p+1
m,n−1/2

[(

ρv
kgk

µg

∇Pg

)p+1

m,n−1/2

+ (ρgDva∇wv)
p+1
m,n−1/2

]

+

(∆Tcpv)
p+1
m,n+1/2

[

(

ρv
kgk

µg

∇Pg

)p+1

m,n+1/2

+ (ρgDva∇wv)
p+1
m,n+1/2

]

+

(∆Tcpa)
p+1
m,n+1/2

[

(

ρa
kgk

µg

(∇Pg)

)p+1

m,n+1/2

+ (ρgDav∇(1− wv))
p+1
m,n+1/2

]]

−

∆xm,n

[

(keff∇T )p+1
m,n−1/2 − (keff∇T )p+1

m,n+1/2

]

−∆ym,n

[

−(keff∇T )p+1
m+1/2,n

]

−

∆xm,n∆ym,n[(ṁ)p+1
m,nλe − (ṁdeh)

p+1
m,nλd] (4.51)

6. Case 6-Node at the symmetry line in the y direction

Due to symmetry, the node here can be treated as an interior node with an insulated bound-

ary condition; hence the control volume was represented by the node (m,n) and the three
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neighboring nodes (m-1,n), (m,n+1), and (m,n-1) and as shown in Figure(4.11).

(a) Mass Conservation Equations of Water Vapor Species

[

(ϕSρl)
p+1
m,n − (ϕSρl)

p
m,n

∆t
+

(ϕ(1− S)ρv)
p+1
m,n − (ϕ(1− S)ρv)

p
m,n

∆t
−

(ρd)
p+1
m,n − (ρd)

p
m,n

∆t

]

∆xm,n∆ym,n = −2

[(

ρv
kgk

µg

(∇Pg

)p+1

m−1/2,n

+

(ρgDva∇wv)
p+1
m−1/2,n

]

∆ym,n −
[

(

ρv
kgk

µg

∇Pg

)p+1

m,n−1/2

+ (ρgDva∇wv)
p+1
m,n−1/2

]

∆xm,n+

[

(

ρv
kgk

µg

∇Pg

)p+1

m,n+1/2

+ (ρgDva∇wv)
p+1
m,n+1/2

]

∆xm,n (4.52)

(b) Mass Conservation Equations of Air Species For air species, the mass balance equation

is given by

[

(ϕ(1− S)ρa)
p+1
m,n − (ϕ(1− S)ρa)

p
m,n

∆t

]

∆xm,n∆ym,n = −2

[(

ρa
kgk

µg

∇Pg

)p+1

m−1/2,n

+

(ρgDav∇(1− wv))
p+1
m−1/2,n

]

∆ym,n −
[(

ρa
kgk

µg

∇Pg

)p+1

m,n−1/2

+

(ρgDav∇(1− wv))
p+1
m,n−1/2

]

∆xm,n +

[(

ρa
kgk

µg

∇Pg

)p+1

m,n+1/2

+

(ρgDav∇(1− wv))
p+1
m,n+1/2

]

∆xm,n (4.53)
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Figure 4.11: Node at the symmetry line in the y direction

(c) Energy Balance Equation

∆xm,n∆ym,nρCp

(

T p+1
m − T p

m

∆t

)

= ∆ym,n

[

(∆Tcpv)
p+1
m−1/2,n

[

(

ρv
kgk

µg

∇Pg

)p+1

m−1/2,n

+

(ρgDva∇wv)
p+1
m−1/2,n

]

+ (∆Tcpa)
p+1
m−1/2,n

[(

ρa
kgk

µg

∇Pg

)p+1

m−1/2,n

+

(ρgDav∇(1− wv))
p+1
m−1/2,n

]

]

+
∆xm,n

2

[

(∆Tcpv)
p+1
m,n−1/2

[(

ρv
kgk

µg

∇Pg

)p+1

m,n−1/2

+

(ρgDva∇wv)
p+1
m,n−1/2

]

−∆xm,n∆ym,n[(ṁ)p+1
m,nλe − (ṁdeh)

p+1
m,nλd]+

(∆Tcpv)
p+1
m,n+1/2

[

(

ρv
kgk

µg

∇Pg

)p+1

m,n+1/2

+ (ρgDva∇wv)
p+1
m,n+1/2

]

+

(∆Tcpa)
p+1
m,n−1/2

[

(

ρa
kgk

µg

∇Pg

)p+1

m,n−1/2

+ (ρgDav∇(1− wv))
p+1
m,n−1/2

]

+

(∆Tcpa)
p+1
m,n+1/2

[

(

ρa
kgk

µg

(∇Pg)

)p+1

m,n+1/2

+ (ρgDav∇(1− wv))
p+1
m,n+1/2

]]

−

∆xm,n

[

(keff∇T )p+1
m,n−1/2 − (keff∇T )p+1

m,n+1/2

]

− 2∆ym,n

[

(keff∇T )p+1
m−1/2,n

]

(4.54)
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7. Case 7-Node at the bottom left corner with convection

For the case of the node located at the bottom left corner, the node occurs at the symmetry

line too, and hence it cab be treated as an insulated boundary condition with considering

only half of the medium in the formulation, Figure(4.12).

(a) Mass Conservation Equations of Water Vapor Species

[

(ϕSρl)
p+1
m,n − (ϕSρl)

p
m,n

∆t
+

(ϕ(1− S)ρv)
p+1
m,n − (ϕ(1− S)ρv)

p
m,n

∆t
−

(ρd)
p+1
m,n − (ρd)

p
m,n

∆t

]

∆xm,n∆ym,n =
[

β(ρv,∞ − (ρv)
p+1
m,n)

]

(∆ym,n)−

2

[

(

ρv
kgk

µg

∇Pg

)p+1

m,n−1/2

+ (ρgDva∇wv)
p+1
m,n−1/2

]

∆xm,n+

[

(

ρv
kgk

µg

∇Pg

)p+1

m+1/2,n

+ (ρgDva∇wv)
p+1
m+1/2,n

]

∆ym,n (4.55)

Figure 4.12: Node at the bottom left corner with convection
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(b) Mass Conservation Equations of Air Species

[

(ϕ(1− S)ρa)
p+1
m,n − (ϕ(1− S)ρa)

p
m,n

∆t

]

∆xm,n∆ym,n =
[

β(ρv,∞ − (ρv)
p+1
m,n)

]

(∆ym,n)−

2

[

(

ρa
kgk

µg

∇Pg

)p+1

m,n−1/2

+ (ρgDav∇(1− wv))
p+1
m,n−1/2

]

∆xm,n+

[

(

ρa
kgk

µg

∇Pg

)p+1

m+1/2,n

+ (ρgDav∇(1− wv))
p+1
m+1/2,n

]

∆ym,n (4.56)

(c) Energy Balance Equation

∆xm,n∆ym,nρCp

(

T p+1
m − T p

m

∆t

)

=
[

hc(T
p+1
m,n − T∞) + eσ0(T

4 p+1
m,n − T 4

∞
)
]

(∆ym,n)+

∆ym,n

2

[

(∆Tcpv)
p+1
m+1/2,n

[

(

ρv
kgk

µg

∇Pg

)p+1

m+1/2,n

+ (ρgDva∇wv)
p+1
m+1/2,n

]

+

(∆Tcpa)
p+1
m+1/2,n

[

(

ρa
kgk

µg

(∇Pg)

)p+1

m+1/2,n

+ (ρgDav∇(1− wv))
p+1
m+1/2,n

]]

+

∆xm,n

[

(∆Tcpv)
p+1
m,n−1/2

[(

ρv
kgk

µg

∇Pg

)p+1

m,n−1/2

+ (ρgDva∇wv)
p+1
m,n−1/2

]

+

(∆Tcpa)
p+1
m,n−1/2

[

(

ρa
kgk

µg

∇Pg

)p+1

m,n−1/2

+ (ρgDav∇(1− wv))
p+1
m,n−1/2

]

−

2∆xm,n

[

(keff∇T )p+1
m,n−1/2

]

+∆ym,n

[

(keff∇T )p+1
m+1/2,n

]

−

∆xm,n∆ym,n[(ṁ)p+1
m,nλe − (ṁdeh)

p+1
m,nλd] (4.57)
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8. Case 8-Node at the symmetry line in the x direction As in case 6, the node here was treated

as an interior node with an insulated boundary condition because of the symmetry and the

control volume was represented by the node (m,n) and the three neighboring nodes (m-1,n),

(m+1,n), and (m,n-1) and as shown in Figure(4.13).

(a) Mass Conservation Equations of Water Vapor Species

[

(ϕSρl)
p+1
m,n − (ϕSρl)

p
m,n

∆t
+

(ϕ(1− S)ρv)
p+1
m,n − (ϕ(1− S)ρv)

p
m,n

∆t
−

(ρd)
p+1
m,n − (ρd)

p
m,n

∆t

]

∆xm,n∆ym,n = −
[

(

ρv
kgk

µg

(∇Pg

)p+1

m−1/2,n

+ (ρgDva∇wv)
p+1
m−1/2,n

]

∆ym,n − 2

[(

ρv
kgk

µg

∇Pg

)p+1

m,n−1/2

+ (ρgDva∇wv)
p+1
m,n−1/2

]

∆xm,n+

[

(

ρv
kgk

µg

∇Pg

)p+1

m+1/2,n

+ (ρgDva∇wv)
p+1
m+1/2,n

]

∆ym,n (4.58)

Figure 4.13: Node at the symmetry line in the x direction
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(b) Mass Conservation Equations of Air Species

[

(ϕ(1− S)ρa)
p+1
m,n − (ϕ(1− S)ρa)

p
m,n

∆t

]

∆xm,n∆ym,n = −
[(

ρa
kgk

µg

∇Pg

)p+1

m−1/2,n

+

(ρgDav∇(1− wv))
p+1
m−1/2,n

]

∆ym,n − 2

[(

ρa
kgk

µg

∇Pg

)p+1

m,n−1/2

+

(ρgDav∇(1− wv))
p+1
m,n−1/2

]

∆xm,n +

[(

ρa
kgk

µg

∇Pg

)p+1

m+1/2,n

+

(ρgDav∇(1− wv))
p+1
m+1/2,n

]

∆ym,n (4.59)

(c) Energy Balance Equation

∆xm,n∆ym,nρCp

(

T p+1
m − T p

m

∆t

)

=
∆ym,n

2

[

(∆Tcpv)
p+1
m−1/2,n

[

(

ρv
kgk

µg

∇Pg

)p+1

m−1/2,n

+

(ρgDva∇wv)
p+1
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]

+ (∆Tcpv)
p+1
m+1/2,n
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ρv
kgk

µg

∇Pg
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m+1/2,n

+

(ρgDva∇wv)
p+1
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]
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p+1
m,nλd]+

(∆Tcpa)
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[

(

ρa
kgk

µg

∇Pg

)p+1

m−1/2,n

+ (ρgDav∇(1− wv))
p+1
m−1/2,n

]

+

(∆Tcpa)
p+1
m+1/2,n

[

(

ρa
kgk

µg

(∇Pg)

)p+1

m+1/2,n

+ (ρgDav∇(1− wv))
p+1
m+1/2,n

]]

+

∆xm,n

[

(∆Tcpv)
p+1
m,n−1/2
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kgk

µg

∇Pg

)p+1

m,n−1/2

+ (ρgDva∇wv)
p+1
m,n−1/2

]

+

(∆Tcpa)
p+1
m,n−1/2

[

(

ρa
kgk

µg

∇Pg

)p+1

m,n−1/2

+ (ρgDav∇(1− wv))
p+1
m,n−1/2

]]

−

2∆xm,n

[

(keff∇T )p+1
m,n−1/2

]

−∆ym,n

[

(keff∇T )p+1
m−1/2,n − (keff∇T )p+1

m+1/2,n

]

(4.60)

9. Case 9-Node at the interior corner
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(a) Mass Conservation Equations of Water Vapor Species

[

(ϕSρl)
p+1
m,n − (ϕSρl)

p
m,n

∆t
+

(ϕ(1− S)ρv)
p+1
m,n − (ϕ(1− S)ρv)

p
m,n

∆t
− (4.61)

(ρd)
p+1
m,n − (ρd)

p
m,n

∆t

]

∆xm,n∆ym,n = −2

[(

ρv
kgk

µg

(∇Pg

)p+1

m−1/2,n

+

(ρgDva∇wv)
p+1
m−1/2,n

]

∆ym,n − 2

[

(

ρv
kgk

µg

∇Pg

)p+1

m,n−1/2

+ (ρgDva∇wv)
p+1
m,n−1/2

]

∆xm,n

(b) Mass Conservation Equations of Air Species

[

(ϕ(1− S)ρa)
p+1
m,n − (ϕ(1− S)ρa)

p
m,n

∆t

]

∆xm,n∆ym,n = −2

[(

ρa
kgk

µg

∇Pg

)p+1

m−1/2,n

+

(ρgDav∇(1− wv))
p+1
m−1/2,n

]

∆ym,n − 2

[(

ρa
kgk

µg

∇Pg

)p+1

m,n−1/2

+

(ρgDav∇(1− wv))
p+1
m,n−1/2

]

∆xm,n (4.62)

(c) Energy Balance Equation

∆xm,n∆ym,n ρCp

(

T p+1
m − T p

m

∆t

)

= ∆xm,n

[

(∆Tcpv)
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m−1/2,n

[
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ρv
kgk

µg

∇Pg
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+

(ρgDva∇wv)
p+1
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]

+ (∆Tcpa)
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m−1/2,n
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µg
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+

(ρgDav∇(1− wv))
p+1
m−1/2,n

]
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m,nλe − (ṁdeh)

p+1
m,nλd]+
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[
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kgk

µg

∇Pg
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p+1
m,n−1/2

]

+

(∆Tcpa)
p+1
m,n−1/2

[

(

ρa
kgk

µg

∇Pg

)p+1

m,n−1/2

+ (ρgDav∇(1− wv))
p+1
m,n−1/2

]]

−

2∆xm,n

[

(keff∇T )p+1
m,n−1/2

]

− 2∆ym,n

[

(keff∇T )p+1
m−1/2,n

]

(4.63)
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Figure 4.14: Node at the interior corner

4.9.2 Spatial Discretization of The Governing Equations for Two Dimensional Systems

To solve the nonlinear coupled heat and mass transfer problem, the aforementioned partial differen-

tial equations need to be simplified more, particularly the spatial derivatives terms associated with

pressure, vapor ratio, and temperature. The central difference form, which is a second order accu-

rate, was used in the approximation of the domain derivatives at the interface points of the control

volume. These interface points include (m+1/2, n), (m− 1/2, n), (m,n+1/2) and (m,n− 1/2).

Due to similarity between 1-D and 2-D systems, the definitions given for the first derivative at the

interface nodes in the 1-D system (equations 4.48 and 4.49) will be modified here to be applicable

for 2-D systems. Accordingly, for any quantity uα, the finite difference approximations of the first

derivative at the interface nodes may be defined as

(

∂uα
∂x

)p+1

m+1/2,n

= 2
(uα)

p+1
m+1,n − (uα)

p+1
m,n

∆xm,n +∆xm+1

(4.64)
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(

∂uα
∂x

)p+1

m−1/2,n

= 2
(uα)

p+1
m,n − (uα)

p+1
m−1,n

∆xm,n +∆xm−1

(4.65)

(

∂uα
∂y

)p+1

m,n+1/2

= 2
(uα)

p+1
m,n+1 − (uα)

p+1
m,n

∆ym,n +∆yn+1

(4.66)

(

∂uα
∂y

)p+1

m,n−1/2

= 2
(uα)

p+1
m,n − (uα)

p+1
m,n−1

∆ym,n +∆yn−1

(4.67)

Where uα, α = 1, 2, 3, represents the gas pressure (Pg), temperature (T), and the mass fraction

of vapor (wv), respectively. As in 1-D systems, an average value between adjacent nodes at time

(p + 1) is assumed to represent the interface values, such as ρg, kg, Dav, and cp, etc. Thus, if ϕ

describes an interface value between adjacent control volumes, then it can be expressed as

(ϕ)p+1
m±1/2,n =

(ϕ)p+1
m±1,n + (ϕ)p+1

m,n

2
(4.68)

(ϕ)p+1
m,n±1/2 =

(ϕ)p+1
m,n±1 + (ϕ)p+1

m,n

2
(4.69)

The substitution of the above expressions into the aforementioned partial differential equations

yields the final form of the finite difference equations for two dimensional systems.
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4.10 Parametric Properties at Elevated Temperatures

The aforementioned governing equations contain several parameters describing material and trans-

port properties at elevated temperatures. These parameters are characterized of being highly de-

pendent on temperature and thus they need to be defined as a function of temperature. In this

section, the definition of the transport and material properties will be presented in three main parts.

In the first part, the gas properties, such as permeability and diffusivity will be defined while the

second part will address the liquid properties. The last part will focus on the thermal properties of

concrete at elevated temperatures and associated dehydration phenomenon.

4.10.1 Properties of Vapor and Air Species

4.10.1.1 Permeability

Permeability of concrete is known to increase significantly with the increase of temperature and

pore pressure. Although many attempts have been made so far to model the variation of permeabil-

ity of concrete at elevated temperatures, until now, such behavior is not quite understood. Based

on experimental results obtained by (Schneider and Herbst, 1989), the change of the intrinsic per-

meability of concrete with the increase of temperature and gas pressure may be described by an

expression suggested by (Gawin et al., 1999):

k = k0 × 10Ak(T−T0)

(

Pg

P0

)Bk

(4.70)

where Ak and Bk are constants that depend on the concrete type and k0 is the initial permeability

at the reference temperature T0 = 293.15 K and reference pressure P0 = 101325 Pa. For silicate

concrete, Ak = 0.005, and Bk = 0.368.
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Based on an empirical relation developed by (Luckner et al., 1989), the relative permeability of

gas can be expressed as

kg =
√
1− S

(

1− S1/m
)2m

(4.71)

where m is a constant equal to 0.439.

4.10.1.2 Diffusion Coefficient

The diffusion process in porous media is highly affected by the pore space of such media. General-

ly, concrete is characterized of having a very complex structure; such an effect is usually considered

by introducing the constrictivity and tortuosity factors. The tortuosity factor accounts for the in-

creasing of the averaged path of the diffusing particles whereas the constrictivity factor takes into

account the change of the diameter of the connected pore space, Figure (4.15).

Figure 4.15: Schematic of tortusity and constrictivity

The diffusion coefficient of vapor inside the pores of partially saturated concrete may be described
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as a function of temperature and gas pressure (Atkinson and Nickerson, 1984):

Dav = D
δ

τ 2
φ(1− S) (4.72)

where δ and τ are the constrictivity and tortuosity coefficients, respectively. Approximate values of

these coefficients may be taken as δ =0.5 and τ =3. D is the diffusion coefficient of vapor species

into air in the free space and it is given by (Cengel and Hernán Pérez, 2004)

D = 1.87× 10−5 (273.15 + T )2.072

Pg

(4.73)

where Pg is in Pa and T is in degrees Celsius.

4.10.1.3 Mass Transfer Coefficient

The convective mass flux between the heated specimen and its surroundings can be captured by the

mass transfer coefficient β, which is usually obtained based on empirical relationships, such as the

one given in (Bejan, 2013). The corresponding case is a horizontal plate with hot surface facing

upward. The mass transfer coefficient is found to be a function of temperature and is given by

β = ShDav/L (4.74)

where L is length of the heated wall and it is taken as a unit and Sh is the Sherwood number which

is given by the following empirical relation

Sh = 0.15(GrSc)
(1/3) (4.75)
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Gr is the Grashof number:

Gr =
g βt(Tw − Tamb)L

3

ν2
(4.76)

where g is the acceleration gravity (9.81 m/s2), Tamb is the surrounding temperature in degrees

Celsius, Tw is the temperature of the heated wall, βt is the volumetric thermal expansion coefficient

of air in 1/K , and ν is the air viscosity in m2/s. The thermal expansion coefficient and air viscosity

are obtained by fitting tabulated data from (Weber, 2012) as

βt = −0.58765× 10−11T 3 + 0.12375× 10−7T 2 − 0.93493× 10−5T + 3.5565× 10−3 (4.77)

ν = −0.13883× 10−13T 3 + 0.9347× 10−10T 2 + 0.92053× 10−7T + 1.339× 10−5 (4.78)

In addition, Sc in equation 4.75 is the Schmidt number and can be evaluated as

Sc = ν/Dav (4.79)

It should be noted that the aforementioned air properties are supposed to be computed based on

the mean temperature between the heated wall and the surroundings.

4.10.1.4 Heat Capacity, Viscosity, and Molecular Weight

The heat capacity of vapor and air species are temperature dependent. Based on polynomial fitting

to tabulated values from (VDI, 2007), heat capacities can be expressed as (Weber, 2012)

cpa = 941.46 + 0.19518T (4.80)

cpv = 2210.4− 0.8127T + 0.00089167T 2 (4.81)
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where cpa, cpv are in J/(kg K) and the temperature is in Kelvin.

The dynamic viscosity of air and vapor are also fitted to tabulated data from (VDI, 2007) and may

be written in the form (Weber, 2012)

µa = 4.9728× 10−6 + 4.8919× 10−8T − 1.0406× 10−11T 2 (4.82)

µv = −2.8334× 10−6 + 4.0444× 10−8T (4.83)

where the dynamic viscosity is in Pa-s and the temperature is in Kelvin.

The dynamic viscosity of the gaseous mixture depends upon the dynamic viscosity of its con-

stituents and it is given by (Gawin et al., 1999)

µg = µv + (µa − µv)(xa)
0.608 (4.84)

where xa = Pa/Pg is the molar fraction of air.

The molecular weights of vapor and air are: molecular weight of vapor, Mv = 18.016 kg/kmol, and

molecular weight of air Ma = 28.952 kg/kmol.

4.10.1.5 Phase Change Properties

The saturation pressure may be obtained by using the Clausius-Clapeyron equation

Psat = Patm exp

(

Mvλe
R

[

1

Tboil
− 1

T

])

(4.85)

where Tboil is the boiling temperature in Kelvin, and λe is the latent heat of evaporation at the

boiling point, which can be taken as 2257 kJ/kg.
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The enthalpy of evaporation is temperature dependent and may be obtained by using the Watson

formula (Forsyth and Simpson, 1991; Baggio et al., 1995)

λe = 2.672× 105(Tcr − T )0.38 (4.86)

where Tcr = 647.3 K is the critical temperature of water, above which the liquid water cannot exist.

4.10.1.6 Properties of Liquid Water

The change in the heat capacity of liquid water with temperature may be assumed to be negligible

and thus it can be considered as a constant value cpl = 4.2 kJ/(kg K). On the other hand, the

state equation of water should account for the significant nonlinear decrease of water density with

temperature increase until temperature reaches the critical point of water. The density of water

may be obtained by using the following formula (Weber, 2012)

ρl = 738.2 + 1.972T − 0.00372T 2 (4.87)

where the temperature is in Kelvin and the density of water is in kg/m3.
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4.10.2 Concrete Properties

4.10.2.1 Thermal Conductivity and Specific Heat

The effective thermal conductivity of partially saturated concrete can be expressed as a function of

temperature and degree of saturation (Gawin et al., 1999; Baggio et al., 1993)

keff = kd(T )

(

1 +
4ρlφS

(1− φ)ρs

)

(4.88)

where kd(T ) is the thermal conductivity of dry concrete. For carbonate aggregate concrete, the

thermal conductivity may be approximated as (Schaffer, 1992)

kd(T ) = 1.355, 0◦C ≤ T ≤ 293◦C (4.89)

kd(T ) = −0.001241T + 1.7162, T > 293◦C

The thermal capacity of concrete may be determined by using the ASCE model (Schaffer, 1992)

ρscps = 2.566× 106, 0◦C ≤ T ≤ 400◦C (4.90)

ρscps = (0.1765T − 68.034)× 106, 400◦C ≤ T ≤ 410◦C

ρscps = (−0.05043T + 25.00671)× 106, 410◦C ≤ T ≤ 445◦C

ρscps = 2.566× 106, 445◦C ≤ T ≤ 500◦C

ρscps = (0.01603T − 5.44881)× 106, 500◦C ≤ T ≤ 635◦C

ρscps = (0.16635T − 100.90225)× 106, 635◦C ≤ T ≤ 715◦C

ρscps = (−0.22103T + 176.07343)× 106, 715◦C ≤ 785◦C

ρscps = 2.566× 106, T > 785◦C
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where ρscps is in J/m3K.

4.10.2.2 Mass of Dehydrated Water

The mass of dehydrated water can be obtained based on a simplified method proposed by (Bazant

and Kaplan, 1996), in which the cement is assumed to be fully hydrated. Accordingly, the mass of

dehydrated water is given as (Dwaikat and Kodur, 2009)

ρd = 0, T ≤ 100◦C (4.91)

ρd = 0.04εcemρcem

(

T − 100

100

)

, 100◦C ≤ T ≤ 700◦C

ρd = 0.24εcemρcem, T ≥ 700◦C

The heat of dehydration is taken as (Bazant and Kaplan, 1996) λd = 24× 106 J/kg.

4.10.2.3 Porosity of Concrete

Based on experimental results carried out by Schneider et al Schneider and Herbst (1989) on three

types of concrete, the change of porosity with temperature was approximated by a linear relation-

ship (Gawin et al., 1999):

φ = φ0 + Aφ(T − T0) (4.92)

where φ0 is the porosity at the reference temperature and Aφ is a constant that depends on the type

of concrete. For limestone concrete Aφ = 0.000165K−1.
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4.11 Solution Algorithm

Several methods are available to solve systems of nonlinear equations. Simplified methods, such

as a procedure known as lagging the coefficients may be used. The nonlinear coefficients are

quasi-linearized by evaluating these coefficients at the previous time step p. An iterative updated

procedure can then be used to update these coefficients and evaluate them at the current time level

p + 1 until some convergence criterion is satisfied (Abdel-Rahman and Ahmed, 1996; Mahmoud

and Abdel-Rahman, 2013). Although such methods might yield an accurate solution of nonlinear

equations, numerical difficulties may also be encountered in some cases, such as the constraint of

maintaining diagonal dominance (Pletcher et al., 2012).

Hence, in this study, the coupled nonlinear finite difference equations were solved simultaneously

by using the well-known Newton-Raphson method. In order to develop the iteration scheme, the

nonlinear equations are written in vector form as

F(w) = 0 (4.93)

and its Taylor series expansion is given by

F(wk+1) = F(wk) + (
∂F

∂w
)(wk+1 −wk) + .... (4.94)

Where the subscript k here denotes the iteration number.

Now, considering only the first two terms of the expansion, and by setting F(θk+1) = 0, equation

(4.94) is reduced to

F(wk) + (
∂F

∂w
)(wk+1 −wk) = 0 (4.95)
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which can be solved for θk+1 as

wk+1 = wk − (
∂F

∂w
)−1F(wk) (4.96)

However, one of the disadvantages that is accompanied by using Newton’s method in solving a

system of nonlinear equations is the computational expense that results from computing the Ja-

cobian matrix at every iteration. When the Jacobian is formulated analytically, it is logical to

update the Jacobian at every iteration for each time step, which has been demonstrated to achieve

quadratic convergence. For the finite difference form of the governing equations in which many of

the parameters implicitly depend on the degrees of freedom, it was not practical to formulate an

analytical Jacobian. Therefore, in this study, the Jacobian is computed numerically using finite d-

ifference perturbations. However, this makes using Newton’s method at every iteration impractical

and inefficient.

Thus, an alternative quasi-Newton method known as Broyden’s method (Broyden, 1965) was used

with the standard Newton iterations to solve the coupled nonlinear equations. In Broyden’s method,

a low-rank (rank one) update of the Jacobian matrix is performed based on state at the previous

iteration. Broyden’s method can also be used in conjunction with the Sherman-Morrison formula to

directly update the inverse of the Jacobian, thereby eliminating the possible issues with factorizing

the Jacobian. The initial Jacobian was computed using finite differences, and periodically updated

as necessary based on the convergence performance of Broyden’s method. Should the number of

iterations required to converge exceed a certain threshold, such as 200 iterations, the step was then

repeated using the standard Newton-Raphson method.

The algorithm procedure of the incremental nonlinear solution is as follows:

∗ Initialize: w = w0, (w = T, ρv, ρa)
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∗ Fire load Increment: n = 1, 1, 2, ....., nmax

Update prescribed field variables, w

√
Initialize Broyden’s method: w0 = wn

√
Iterate k = 0, 1, 2, ....kn

Solve for Fw(w
k
n)+

∂Fw(w
k
n)

∂wk
n

(wk+1
n −wk

n) = 0

Compute the whole Jacobian,
∂Fw

∂wk
n

Compute responses, wk
n+1 = (∂Fw

∂wk
n

)−1.[F(wk
n)]

T

Update the Jacobian based on the FD approximation,
∂Fw

∂wk
n

= Broyden update

if k > kmax ,

√
Initialize N-R method

Compute the Jacobian,
∂Fw

∂wk
n

Compute responses, wk
n+1 = (∂Fw

∂wk
n

)−1.[F(wk
n)]

T

√
End of iteration loop

√
Accept if wn+1 = wk

∗ End of load increment step.

4.12 Assembling Nonlinear Equations

The implementation was developed in Matlab (MATLAB and Release, 2012) using object-oriented

code. The selection of the control volume approach and the object abstractions were made to easily
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study the coupling effect of heat and mass transport phenomena in heated concrete with both 1D

and 2D cross sections. The individual realizations of the control volume nodes were derived from

an abstract node class. The concrete node classes perform initialization, state determination, and

evaluation of the finite difference equations. The different types of nodes (exterior node, interi-

or node, symmetric boundary node, etc.) contain explicit dependency matrices. These matrices

identify the adjacent nodes (in the x and y directions generally for the 2D case) with a relative

numbering scheme that is rectified by the graph object. The individual nodes can return different

degrees of freedom (both in the sense of the number and nature of the degrees of freedom). The

abstract methods are implemented by both the 1D and 2D nodes, the only dimensions of the de-

pendency matrix and in the implementation of the nonlinear equations (that depend on differential

lengths in both directions). The node objects store a structure for the current state (at) and the

previous state (prev). The structures contain fields for all the variables of interest (ρg, Pv, εfw,

etc.).

Communication between the nodes, assembly of the system of equations, and the solution of the

equations at each iteration is facilitated by the graph object, and functions independently of the

formulation of the nodes. The concrete base classes for the 1D and 2D graph are the same, except

for the dimensions of the object properties. The graph stores the graph size, nodal location matrix,

cell array containing the node objects, an ID array to identify the nodal degrees of freedom in the

graph degree of freedom numbering system, the current Jacobian, the current vector of nonlinear

equations, and the current solution vector. The graph handles the set and get operations that define

the state (current values of the degrees of freedom), and passes the information to similar methods

in the node classes based on the identification of the nodal degrees of freedom using the ID array.

The graph also has methods to evaluate the nonlinear equations and populate the right-hand side

vector in the system of equations, as well as compute the Jacobian. The Jacobian need not be

updated explicitly based on finite differences (as mentioned previously), the graph has methods
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to update the Jacobian using either a Broyden or BFGS update that require only matrix-vector

operations on the existing graph state.

4.13 Numerical Analysis

To validate the proposed model, a transient hygro-thermal analysis was performed to simulate the

coupled heat and mass transfer phenomena in heated concert. The developed numerical model,

which has been coded in MATLAB environment (MATLAB and Release, 2012), was validated

first for one-dimensional systems by comparing the predicted results from the numerical simulation

with experimental results carried out by Kalifa et al. in the framework of BHP2000 (Kalifa et al.,

2000) and with tests implemented at the National Research Council of Canada test facility by

(Ahmed and Hurst, 1997). Then, the validity of the 2-D model was established by comparing the

predicted temperature distributions with experimental data (Kodur et al., 2003), and as illustrated

in the subsections that follow.

4.13.1 Case Study I: one side heated RC slab

A series of experimental tests was carried out by Kalifa et al. (Kalifa et al., 2000) on prismatic

concrete slabs (30×30×12 cm3) exposed to thermal load on one face and thermally isolated on

the other two lateral faces by using porous ceramic blocks. A radiant heater placed 3 cm above

the surface of specimens was used to provide heating (up to 5 kW and 600◦C) and the thermal

load was applied as a step signal. Apparently, the heat flow is unidirectional in this case, which

can be regarded as an effectively one-dimensional problem. Furthermore, a grid size of 120 space

increments with time step equal to 0.5 sec were used in the analysis.

Pressure and temperature were measured by using six gauges instrumented at different locations
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within the specimen thickness. Five of these gauges were placed at 10, 20, 30, 40, 50 mm from

the heated surface whereas the sixth gauge was positioned at 2 mm from the heated surface. High

performance concrete (HPC) in the class of 100 MPa was selected for the validation purpose with

characteristic parameters given in Table (4.1).

Table 4.1: Characteristic properties of concrete M100 at ambient temperature

Parameter Symbol Value

Porosity φ 0.094

Degree of saturation S 0.77

Apparent density ρs (kg/m3) 2590

Weight of cement εcemρcem (kg/m3) 377

Intrinsic permeability k (m2) 2.5× 10−19

Figure 4.16: Predicted air temperature outside the specimen
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4.13.1.1 Initial and Boundary conditions

The initial conditions of the concrete are described by a uniform distribution of temperature, pres-

sure, and vapor content. That is, the initial temperature T 0 is considered to be equal to 20◦C, and

the initial gas pressure P 0
g is assumed to be at atmospheric pressure. In addition, the initial vapor

pressure inside the pores is taken equal to the initial saturation pressure of vapor, which corre-

sponds to 100% relative humidity. Hence, the initial vapor content ρ0v can be obtained through the

ideal gas law.

Due to the specific set up of the experiment, a challenge arises when trying to define the boundary

conditions of the heated side. While heating, a layer of high temperature air is developed between

the heater and the specimen, and thus heat will be transferred by both convection and radiation.

However, air temperature within that surface boundary layer is different from the ambient tem-

perature. Apparently, imposing a heating ramp with plateau at 600◦C as a thermal loading would

overestimate the predicted temperature significantly. Same argument is still valid with respect to

the rear face, at which air temperature will be also affected by the external thermal loading applied

to the front face. Therefore, to overcome this problem, the temperature curves of the heated and

non heated surfaces are used as a prescribed temperature in the analysis and the thermal loading

curves are predicted instead as illustrated in Figure (4.16).

The prediction of the thermal loading curves are still of interest, since they are utilized in obtaining

the outside vapor content during heating process with the aid of the ideal gas law. Average values

of heat and mass transfer coefficients of the heated and non-heated sides are used. For the heated

side: hc = 25 W/m2 K and β =0.019 m/s. For the non-heated side: hc = 10 W/m2 K and β = 0.0063

m/s. The emissivity coefficient is taken as ε = 0.7.

In the context of the boundary conditions, it is assumed that the atmospheric pressure is maintained
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on both faces of the specimen at all times during the heating process. In addition, the partial

pressure of vapor Pv outside the specimen can be computed based on the ambient relative humidity

(RH) and ambient temperature:

Pv = RH · Psat(Tamb) (4.97)

A relative humidity of 50% is assumed in the numerical analysis. At the non-heated side, the

ambient vapor pressure can be readily obtained using the aforementioned relation. At the heated

side, however, a reduction in the relative humidity is expected with temperature increase besides

an increasing in the value of the saturation pressure of vapor. Nevertheless, an isobaric condition is

assumed herein, in which the partial pressure of vapor will remain the same. It should be noted that

this assumption neglects any potential production of vapor that may result from the combustion of

fuel in the testing furnace, such as in the case of fire tests.

4.13.1.2 Results and Analysis

Using the mathematical model proposed in this study, the temperatures, and pore pressures histo-

ries of the tested slab are calculated. The predicted distributions from the numerical analysis are

compared with the measured values at various depths as illustrated in Figure (4.18) and (4.17). As

can be seen in Figure (4.18), the predicted and measured temperatures are in good agreement.

In Figure (4.17), calculated and measured pore pressures are compared at three different depth-

s, namely, at x = 10, 20, and 40 mm. It can be seen that, with the exception of the pressures

measured after reaching the peak pressures, there is a close agreement between the predicted and

measured values. This pressure behavior may be attributed to the internal damage of concrete

structure, which plays a major rule in permeability increase (Gawin et al., 2003). Although the

numerical model accounts for the permeability increase with temperature, the damage effect has

not been taken into account yet. Accordingly, the deviation of pressures at later stages appears to
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be the result of a such damage. At earlier stages, however, which are more important in predicting

the occurrence of spalling, a good agreement can be seen between the predicted and measured

pressures.
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Figure 4.17: Pressure distribution with time at different locations

4.13.2 Case Study II: 1-D analysis of a concrete column exposed to fire from all sides

Tests on carbonate aggregate columns with cross section 406 mm × 406 mm were carried out by

(Ahmed and Hurst, 1997) to study the performance of high strength concrete (HSC) at elevated

temperatures. The columns were subjected to ASTM E119 standard fire curve (American Society

for Testing and Materials, 2001) from all four sides which in turn results in a two-dimensional

problem. Therefore, in order to reduce the problem from 2D to 1D, only a rectangular section

with an arbitrary width is considered in the numerical simulation as illustrated in Figure (4.19). In

addition, due to the symmetry of the column geometry and the imposed boundary conditions, only
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Figure 4.18: Temperature distribution with time at different locations

a half of the column needs to be considered in the analysis. Several grid sizes were used, namely,

50, 100, 150, and 250 space increments. Based on a comparative study a grid size of 150 space

increment was used with time step equal to 0.5 second.

Thermocouples were placed at locations normal to the surface and along the centerline of the

columns, particularly at distances 12.7, 31.8, and 76.2 mm from the surface. As a test specimen, a

carbonate aggregate column HS-1 was chosen to validate the temperature results obtained from the

numerical model. The physical properties of the concrete column used in the numerical simulation,

are summarized in Table (4.2).
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Figure 4.19: Plan view of the test problem

Table 4.2: Characteristic properties of the concrete column HS-1 at ambient temperature

Parameter Symbol Value

Porosity φ 0.06

Degree of saturation S 1

Apparent density ρs (kg/m3) 2400

Weight of cement εcemρcem (kg/m3) 300

Intrinsic permeability k (m2) 10−19

4.13.2.1 Initial and Boundary conditions

As was mentioned in the definition of the initial conditions in the previous case study, the initial

conditions are defined as a uniform distribution of temperature, pressure, and vapor content, in

which (T 0 = 25◦C, Pg = Patm). The initial vapor content can be defined through the ideal gas

law by assuming that the concrete pores are fully saturated with vapor, and thus the initial vapor

pressure is equal to the initial saturation pressure.

The heat transfer process between the concrete column and the surrounding is defined by convec-
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tive and radiative heat fluxes, in which the heat transfer coefficient is assumed as a constant value

equal to 25 W/m2 K with an emissivity coefficient equal to 0.7; the values of these coefficients are

recommended by the Eurocode 2 (Eurocode, 2004). In addition, the relative humidity outside the

concrete column is taken as 50%. The boundary condition for the vapor content is defined by the

vapor mass flux. A variable mass transfer coefficient, which is based on the calculations described

in subsection (4.10.1.3), was used in the analysis and compared with a representative constant

value of mass transfer coefficient equal to 0.01 m/s. It was noted that the general responses of tem-

perature and pressure are insensitive to the change in mass transfer coefficient with temperature

and thus a constant value may be used with no significant loss in accuracy. Figure 4.20 illustrates

the variation of mass transfer coefficient as a function of temperature and time for an hour of fire

exposure.

4.13.2.2 Effect of Air on the Heat and Mass Transfer Analysis

As mentioned before, when concrete is exposed to temperatures higher than standard ones, convec-

tion will have a significant role in the heat transfer process. In which the vapor and air will transfer

in two ways; either toward the outside surface where they leave or toward the inside regions where

vapor condenses, while the remaining amount of air accumulates for some time until it is eventu-

ally evacuated. Several studies have neglected the effect of air in the thermal and spalling analyses

(Lie and Woollerton, 1988; Dwaikat and Kodur, 2009; Capua and Mari, 2007). This is due to the

fact that the mass of air inside the heated concrete is considered negligible compared with the mass

of vapor. In addition, the air transport phenomenon is not usually associated with any phase change

such as the one related to the water vapor species, which is typically has a considerable effect on

the temperatures distribution within the concrete element.

To investigate the validity of this assumption and to quantify the effect of air on the coupled heat
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and mass transfer analysis, two analyses are carried out. In the first analysis, the effect of air

transport is included while in the second analysis the air is assumed to be immobile, i.e., the air is

maintained at its initial condition. The results of these analyses will be discussed in the following

section.

Figure 4.20: Variation of mass transfer coefficient with time and temperature

4.13.2.3 Results and Analysis

Results from the numerical model were compared with the experimental data in Figure (4.22), in

which the temperature distributions, as a function of time, were obtained at three different loca-

tions. That is, at distances x = 12.7, 31.8, and 76 mm. It can be seen that there is a good agreement

between the predicted and the measured temperatures. Furthermore, it may be noted that the con-

duction model did not capture the trend behavior of the measured temperature distributions, while

such behavior was adequately captured with the coupled heat and mass transfer model. This due

to the fact that the pure heat transfer models lack the ability to model the migration of vapor and
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evaporation of the free water content, which in turn results in an overestimation of temperature

development at later stages of heating. This behavior becomes more pronounced when moving

deeper towards the concrete core. The minor discrepancies, particularly at the initial stages of the

fire course may be attributed to many reasons. One reason is the effect of hydration process. In

the model, the cement is assumed to be fully hydrated at the room temperature and thus the effect

of hydration is not considered in the analysis. However, this is not always true. Studies showed

that significant amounts of water may become hydrated if the temperature is raised up slowly up to

100◦C. Although the heating rate during a fire scenario is relatively high, there is still a potential

amount of water that may become hydrated before reaching a 100◦C, which in turn leads to an

increase in the temperature of concrete at the initial stages of heating.

Another reason is the differences in the thermal properties, namely, thermal conductivity and spe-

cific heat, which are considered as a major cause for discrepancies between measured and predicted

temperatures. It is well established that these thermal properties depend on many factors, such as

the mix proportion, type of aggregate, and moisture content. Such effects are not accounted for in

the constitutive models suggested by codes and other standards. Finally, some of the substantial

properties of the tested concrete are not given, for instance, initial porosity and moisture content.

The values of these properties have been assumed by the original authors and so in the present

study which may have an effect on the predicted temperatures.

To demonstrate the effectiveness of the developed model, the predicted temperatures obtained by

using the conventional heat conduction model are also compared with the test results in Figure

(4.22). It can be seen that a notable enhancement of the predicted results is achieved in terms

of trends and values by using the current model. Another important attribute of the proposed

model besides the more accurate prediction of temperature distributions is its ability to predict

pore pressure developed in concrete while heating. This is in fact considered as a major factor in

spalling process.
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Figure 4.21: Temperature distributions at various times
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Figure 4.22: Temperature distributions with time at different locations
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The effect of air transport is also studied herein by implementing two types of analyses. The

first analysis considers the mobility of air, while in the second analysis the air is assumed to be

immobile. It can be seen that air transport has a negligible effect on both temperature and moisture

content distributions, Figures (4.22,4.23(e) and 4.23(f)). However, moisture content appears to be

more affected by air transfer for deeper sections. In addition, it may be noticed that there is a

drop (about 0.4 kg/m3, MPa) of vapor content and pressure peaks when air transfer is considered,

as shown in Figures (4.23(a) to 4.23(d)). Therefor, for the case under study, the assumption of

neglecting the effect of air in the heat or even in the spalling analysis can generally be considered

as a valid assumption. The overestimate of pressure may be accounted for by assuming a higher

value of permeability.

As mentioned before, there is a coupling relationship between heat and mass transport phenomena.

This coupling relationship can be illustrated through Figures (4.21 and 4.23(f)). At a given time,

such as 30 minutes has been chosen for illustration purposes. In Figure (4.23(f)), it can be noted

that at this time the concrete reaches its maximum moisture content about a depth of 32 mm and

it becomes completely dry at depth of 20 mm. The portion of the curve that corresponds to the

moisture content variation from its maximum to zero represents the zone experiencing the highest

level of evaporation as shown in Figure (4.23(d)).

Moreover, an increase in the amount of free water content can also be observed in Figures (4.23(e)

and 4.23(f)), which corresponds to the so-called region “moisture clog” (Harmathy, 1965; Ulm

et al., 1999a). That increase of water content is attributed to the vapor condensation that occurs

when vapor migrates towards the cooler regions of the concrete. Generally, the moisture clog

moves towards the interior region of the column when the pore pressure builds up. In cross ref-

erencing pressure plots as a function of time and distance, namely, Figure (4.23(b)) and (4.23(a)),

to the vapor content plots, Figures, and (4.23(c)) respectively, it is obvious that the peaks of pore

pressure occur along the peaks of vapor content. The tremendous increase of the amount of va-
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por content is because of the high rate of evaporation that exceeds the rate of mass transfer by

convection and diffusion; which in turn results in pore pressure build up.

On close inspection to Figure (4.21), a sharp increase in the slope of temperature curves is noticed

at the locations where the drying front occurs. This is due to the fact that there is no more available

water to absorb the heat and slow down the temperature rise. All these interactions between the

pore pressure, water content and temperature confirm the coupling relationship that governs heat

and mass transfer phenomena in heated concrete.

4.13.3 Comparison between 1D and 2D numerical analysis of the coupled heat and mass

transfer phenomena

Generally, when confronted with multi-directionality of the heat and mass transfer processes, the

use of 1D treatment cannot be considered appropriate anymore as it might oversimplify such prob-

lems significantly. Hence, it becomes inevitable to account for the multidimensional effect in these

situations. On the other hand, it is also expected that the 1D solution can represent the coupled

heat and mass transfer phenomena accurately in situations involving symmetric boundary condi-

tions and cross section. Accordingly, the aim of this case study is to demonstrate the ability of the

code to reproduce the 1D heat and mass transfer solution. In this context, the same case study con-

sidered in subsection (4.13.2) was studied here, but as a two-dimensional coupled heat and mass

transfer problem. The same initial and boundary conditions assumed in the 1D analysis were used

for the 2D simulation. A uniform grid size of 25 space increment in each direction was selected to

represent one quarter of the column in the 2D simulation compared to 150 space increment along

a half of the column in the 1D analysis. The time step was identical in both simulations, which is

0.5 sec.

Figures (4.24 and 4.25) show the calculated temperatures, as a function of time and distance and
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Figure 4.23: Distribution of pore pressure; vapor content; and fraction of free water at times t= 10,

30, and 60 min; at locations x = 10, 20, and 30 mm
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obtained using both 1D and 2D models. As it can be seen, the 1D and 2D predicted temperature

distributions are very consistent. However, the moisture content and consequently the vapor pres-

sure appear to be more sensitive to the type of the analysis, Figures (4.26 and 4.27). These minor

discrepancies between both simulations can be mainly attributed to the sensitivity to the mesh size

of the 2D analysis. In addition, as it may be observed from Figure (4.26), the 2D analysis did not

fully capture the 1D evaporation front besides the first plateau in the moisture content distributions

which indicates that a more refinement in mesh size is needed in this region, namely the region

that undergo a steep change in moisture content and pressure. As indicated by (Bazant and Ka-

plan, 1996; Bažant et al., 1982), if the solution is required for a long time, the zone of the sharp

change in moisture and pressure will eventually reach the deeper regions of the concrete section,

and hence the whole cross section must be refined. Unfortunately, such excessive mesh refinement

is currently hard to be implemented due to the high computational cost. The current mesh size,

however, seems to yield a reasonably good match with the 1D model results. In addition, to reduce

the computational cost associated with the 2D analysis, the air was considered to be immobile in

all 2D simulations assuming no significant loss in accuracy.

4.13.4 Case Study III: 2-D analysis of a concrete column exposed to fire from all sides

An experimental program was conducted by (Kodur et al., 2003) to study the fire resistance of

five reinforced concrete columns with cross section 305 mm × 305 mm under both thermal and

external applied loadings. The tests were carried out by applying concentric loads first (about 45

min before the start of the fire test) and then the columns were exposed to ASTM E119 (American

Society for Testing and Materials, 2001) standard fire from all sides. The temperature distribution

is considered to be uniform along the length of the column, and hence the problem can be reduced

to a 2-D problem.

114



0 10 20 30 40 50 60

Time, min

0

100

200

300

400

500

600

700

T
em

pe
ra

tu
re

 o
C

Test data
1D model prediction
2D model prediction

x = 12.7 mm from surface

x = 31.8 mm

x = 76.2 mm

x = 12.7 mm from surface

x = 31.8 mm

x = 76.2 mm

x = 12.7 mm from surface

x = 31.8 mm

x = 76.2 mm

x = 12.7 mm from surface

x = 31.8 mm

x = 76.2 mm

x = 12.7 mm from surface

x = 31.8 mm

x = 76.2 mm

Figure 4.24: Temperature distributions with time at different locations

Thermocouples were attached at columns midheight along the centerline of each column, partic-

ularly at distances 19, 74, 101, 152.5 mm from the surface. A NSC column (TNC1) made with

siliceous aggregate was selected as a test specimen to validate the temperature predictions obtained

from the 2-D model. In addition, the same column cross section (designated as TNC2) with an i-

dentical length, and reinforcement details was tested by (Lie et al., 1984) . The column was also

made with siliceous aggregate. While exposing to the ASTM fire loading, the temperature was

measured at three different locations, particularly, at 25, 64, and 152 mm. The temperature results

from the numerical analysis were also compared with the measured values from this fire test.

Furthermore, since the amount of the steel reinforcement is small compared with the concrete

cross sectional area, that is, the reinforcement ratio is less than 0.04, the effect of steel bars on the

temperature profile may be neglected (Ellingwood and Lin, 1991; Eurocode, 2004; Uy et al., 2009).

Therefore, the presence of steel reinforcement was neglected in the analysis. In regard to mesh
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Figure 4.25: Temperature distributions at various times

distribution, several uniform grid sizes were investigated, namely, 15, 20, and 25 space increments

in each direction. Based on a comparative study a uniform grid size of 20 space increments in

each side of one quarter of the column was selected with time step equal to 0.5 sec. The physical

properties of the concrete columns used in the numerical simulation are summarized in Table (4.3).

Table 4.3: Characteristic properties of the concrete column TNC1 and TNC2 at ambient tempera-

ture

Parameter Symbol TNC1 TNC2

Porosity φ 0.11 0.1

Degree of saturation S 0.95 0.5

Apparent density ρs (kg/m3) 2400 2403

Weight of cement εcemρcem (kg/m3) 355 355

Intrinsic

permeability
k (m2) 10−17 10−17

Relative humidity % RH 90 5
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Figure 4.26: Fraction of free water distributions at various times

4.13.4.1 Initial and Boundary conditions

As in the one-dimensional example problems, the initial conditions here are given by a uniform

distribution of temperature, pressure, and relative humidity throughout the entire flow domain,

in which the initial temperature is assumed to be 20◦C and the initial gas pressure equal to the

atmospheric pressure with 100% relative humidity.

Due to symmetry of the column with respect to geometry and loading, only one quarter of the

column was considered in the analysis, as illustrated in Figure 4.28. The boundary conditions of

the fire exposed surface were modeled as convective and radiant heat fluxes, whereas the surfaces

that occur along the symmetric centerline of the concrete cross section were considered as an

insulated boundary with zero mass and heat fluxes. A constant value of the heat transfer coefficient

was assumed in the analysis, which was equal to 25 W/m2. On the other hand, the mass transfer
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Figure 4.27: Vapor pressure distributions at various times

coefficient was calculated at each time step and as described in (4.10.1.3).

4.13.4.2 Results and Analysis

To establish the validity of the proposed 2-D model, the temperature histories obtained from the

numerical model were compared with experimental data (Kodur et al., 2003) at three different

locations, which are: 19, 74, and 101 mm. From the temperature distributions in Figure (4.29), it

may be noted that the predicted values are in a good agreement with the measured data.

In addition, it is worth mentioning that although the mix of column (TNC1) was made of siliceous

aggregate, it was noted that the thermal conductivity model given by the ASCE Manual of Practice

(Lie, 1992) for carbonate aggregate gives a much better agreement with the experimental values,

and hence it was adopted in the analysis. As discussed before in (4.13.2.3), the thermal properties,
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Figure 4.28: Plan view of the test problem

namely, thermal conductivity and specific heat are considered as a major cause for discrepancies

between measured and predicted temperatures. This is due to the fact that these thermal properties

are highly affected by many factors besides the aggregate type, such as the mix proportion, and

moisture content. Such effects are not accounted for in the current constitutive models suggested

by codes and other standards, and hence these models are not usually capable to fully capture the

thermal behavior of concrete at elevated temperatures.

Figure (4.31) shows the predicted and the measured temperatures as a function of time for column

(TNC2). The calculations were made for 5% moisture content and for dry concrete. The latter

nearly represents the state of the tested column, i.e the concrete was considered to be fully dry

due to the fact that the relative humidity of the column is very low (5%). From Figure (4.31),

it can be seen that model predictions compare well with the experimental results over the entire
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time of fire exposure. Furthermore, it may be noted how the effect of free water starts to be more

obvious at deeper sections, particularly, at the center of the column, at which the temperature at

5% moisture content begins to deviate from the temperature of dry concrete at approximately 110

min. This deviation between the two temperatures corresponds the time at which the free water

starts to evaporate.

Figures (4.30, 4.32, and 4.33) are used to demonstrate the coupling relationship between temper-

ature, pressure, and moisture content in the radial direction of the column. As can be seen from

these figures, there is a consistency of the trend behavior between temperature, pressure, and mois-

ture distributions, which in turn confirms the coupling relationship and indicates the effectiveness

of the proposed model.

Moreover, as indicated by (Ahmed and Hurst, 1999), when the maximum pressure reaches the

center of the column, which occurs here between 135 and 180 min, there will be no further accu-

mulation of free water and all the moisture starts to be driven out of the column through its surfaces

and hence, the pressure begins to decline. This behavior can readily be captured in Figure (4.32),

in which a drop of pressure at 180 min is noticed.

To further demonstrate the capability of the proposed model to simulate the coupled heat and mass

transfer phenomena over the entire flow domain, the contour plots of the temperature, pressure,

and moisture for one quadrant of the column are presented for two specific time, Figures (4.36

to 4.35). In the first three figures, the contour plots are given for time equal to 30 min, while the

last figures are given for a later time equal to 90 min. As it may be observed from these figures,

the maximum values of temperature, pressure, and moisture content occur in the corner zone of

the column, in which the pore pressure builds up right next to the moisture pocket towards the

column center. Furthermore, by cross referencing the contour plots of moisture and pressure at

time 30 and 90 min, Figures (4.36 and 4.38) and (4.37 and 4.39) respectively, it can be seen how
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the maxima of pore pressure and the moisture content are moving in the direction of the column

center, leaving the surface regions of the column at atmospheric pressure and in a completely dry

condition. After a sufficient time of fire exposure, the region of the maximum pore pressure and

moisture will eventually reach the center of the column.
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Figure 4.29: Temperature distribution with of column TNC1
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Figure 4.31: Temperature distribution with time of column TNC2
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Figure 4.33: Fraction of free water distributions in the radial direction
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Figure 4.35: Temperature contours after 90 min of fire exposure,◦C
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Figure 4.36: Fraction of free water contours after 30 min of fire exposure
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Figure 4.37: Pore pressure contours after 30 min of fire exposure, MPa
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Figure 4.38: Fraction of free water contours after 90 min of fire exposure
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Figure 4.39: Pore pressure contours after 90 min of fire exposure, MPa
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4.13.5 Case Study IV: 2-D analysis of a beam exposed to fire from three sides

Fire tests of eleven full scale reinforced concrete beams with rectangular cross section (305 mm ×

355 mm) were carried out by (Lin et al., 1981), in which the beams were subjected to concentrated

loads forty minutes before fire exposure. The beam was then exposed to ASTM E119 (American

Society for Testing and Materials, 2001) fire load from three sides with thermocouples installed at

different locations, such as the top and bottom bars at midspan and between midspan and support.

However, only the average temperature of the bottom bars was reported by the authors. In addition,

since the thermal load was applied uniformly along the whole length of the member, the problem

can be considered as an effectively 2-D problem.

A NSC beam specimen (B-124) made with carbonate aggregate was selected here as a case study

to demonstrate the effectiveness of the proposed 2-D model in predicting temperature distributions

in situations involving non symmetric boundary conditions, which in this case represents fire expo-

sure on three sides of the beam. It should be noted, however, that the effect of steel reinforcement

on temperature distribution was neglected in the analysis. A uniform grid distribution was used in

the simulation, in which 20 space increments was used for one half of the beam width, while the

height was represented by 30 space increments. The time step was equal to 0.5 sec. The physi-

cal properties of the concrete beam that are assumed in the numerical analysis are summarized in

Table (4.4).

Table 4.4: Characteristic properties of the concrete beam B-124 at ambient temperature

Parameter Symbol Value

Porosity φ 0.1

Degree of saturation S 0.75

Apparent density ρs (kg/m3) 2400

Weight of cement εcemρcem (kg/m3) 401

Intrinsic permeability k (m2) 10−17
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4.13.5.1 Initial and Boundary conditions

In a similar fashion to the definition of the initial conditions in the previous case studies, the

initial conditions here were defined as a uniform distribution of temperature, pressure, and relative

humidity throughout the entire flow domain. In addition, the fact that the fire was applied only on

three sides of the column results in non fully symmetric boundary conditions, and hence half of the

cross section should be considered in the analysis. Accordingly, the surface that occurs along the

symmetric centerline of the concrete cross section was modeled as an insulated boundary, while

the boundary conditions of the other three sides were considered as mixed (Cauchy’s) boundary

conditions. It should be noted, however, that the non heated side of the beam was assumed to be

exposed to the ambient conditions. The values of the heat transfer coefficient at the heated and non

heated sides were 25 and 10 W/m2 respectively, while the mass transfer coefficient was calculated

as in (4.10.1.3). The beam boundary conditions with the specified mesh is given in Figure (4.40).

4.13.5.2 Results and Analysis

The validity of the proposed 2-D model to simulate the coupled heat and mass transfer phenomena

in the cases involving different boundary conditions was investigated here by comparing the nu-

merical results obtained from the 2-D analysis against experimental data. Figure (4.41) shows the

predicted and the measured average temperature of the bottom bars at the midspan of the beam. It

can be seen that the predicted temperature is in good agreement with the measured one.

The contour plots of temperature, pressure, and moisture content for time equal to 80 min are also

given in Figure (4.42, 4.43, and 4.44). As it can be expected, the pore pressure builds up right next

to the moisture pocket and they are both heading (pressure and moisture) towards the cooler corner

of the beam, which is here represents the top right corner. The consistency of the predicted results
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along with the compatibility of the calculated and measured temperatures, all lend credibility to

the proposed model.

Figure 4.40: Plan view of the test problem
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Figure 4.41: Average temperature of bottom bars at midspan
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Figure 4.42: Temperature contours after 80 min of fire exposure,◦C
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Figure 4.43: Fraction of free water contours after 80 min of fire exposure
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CHAPTER 5: STRUCTURAL MODELING: THEORY AND

IMPLEMENTATION

5.1 Introduction

Evaluating fire performance of structural components is an importance aspect in fire safety de-

sign. For that reason, fire tests are conducted to assess fire resistance and endurance of building

elements and assemblies. However, these tests have many drawbacks, such as expense, specimen

size limitations, and other limitations associated with end conditions and loading. An alternate is

to construct numerical models that are capable of predicting the overall structural response and

capture the realistic behavior of structures under fire loading. To that end, a three-dimensional

fiber beam model was developed in this study to compute the mechanical responses of reinforced

concrete structures at elevated temperatures by using the well-known sectional analysis approach.

The temperature distributions obtained from the 2-D coupled heat and mass transfer analysis were

used as an input to the strength analysis.

The major part of this chapter will concentrate on the development and the calibration of the pro-

posed model. In addition, the mechanical properties of concrete and steel at elevated temperatures

will be presented. Various strain components that include mechanical and non-mechanical strains

(fire induced strains) of both concrete and reinforcement steel will also be described in this chapter.

In order to validate the proposed model, the predicted results obtained from the numerical analyses

were compared with experimental data previously published in the literature.
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5.2 Constitutive Models of Concrete and Steel at Elevated Temperatures

In order to predict the mechanical response of the reinforced concrete members under fire exposure,

the constitutive models that describe their structural behavior at elevated temperatures must be

determined. Generally, these constitutive models are expressed in terms of the mechanical and

the deformation properties of the material. In the following subsections, the definition of the

constitutive models that govern the concrete and the steel behavior at elevated temperatures will be

presented in two main parts. In the first part, the general stress-strain relationship is defined, while

the second part focuses on the definition and the calculation of the strains associated with elevated

temperatures.

5.2.1 Concrete Constitutive Models

Generally, the constitutive relation of concrete at elevated temperatures may be defined as (Ander-

berg and Thelandersson, 1976)

εtot = εσ(σ, T ), T (t), σ
′ (5.1)

Where εtot is the total strain at time t, σ is the stress, T is the temperature, and σ′ is the stress

history.

An appropriate definition of the model can be determined if the principle of superposition of the

different stain components of heated concrete is applied, in which the total strain may be expressed

as the sum of the four strain components. These strain components are: (i) instantaneous stress-

related strain εσ(σ, T ), (ii) unrestrained thermal strain εth(T ), (iii) creep strain εcr(σ, T, t), and (iv)

transient creep strain εtr(σ, T ). Hence, at temperature T , the total strain of concrete may be given
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in the form:

εtot = εσ(σ
′, σ, T ) + εth(T ) + εcr(σ, T, t) + εtr(σ, T ) (5.2)

The definition and the calculation of these strains are presented in the following.

5.2.1.1 Instantaneous stress-related strain

The instantaneous stress-related strain (mechanical strain) is the strain that occurs when applying

load on a heated specimen and it is clearly a function of the temperature and the applied load.

The relationship between the mechanical strain and the stress is defined through the constitutive

law of the stress-strain relation. Therefore, this relation should accurately describe the behavior

of the material with respect to the change of stress. Generally, the stress-strain relationship of

concrete can be expressed either using the implicit or the explicit formulation. The first type of

these formulations accounts for the transient creep strain implicitly within the stress-strain model,

such as the formulation used in the Eurocode model.

The second type, on the other hand, considers only the mechanical strain in the stress-strain rela-

tionship and hence the transient creep strain should be defined explicitly. One of the advantages

of using the explicit formulation is that only the elastic strain is recovered when the material is

unloaded, while when using the implicit models, the transient strain is also recovered. Material

unloading can occur not only when the stress and/or temperature is decreasing, but also in the

cases when having a continuous increase in temperatures with constant loads, in which differ-

ential thermal expansions cam cause a reduction in the stresses in some of the concrete section.

Thus, it is usually recommended to use the explicit models in describing the concrete stress-strain

relationship at elevated temperatures (Gernay and Franssen, 2012; Gernay, 2012).

Accordingly, the explicit model developed by (Gernay and Franssen, 2012) is adopted in this study.
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The model is based on the Eurocode model, yet the strains values were calibrated to give the same

response as in the Eurocode model. The stress-strain curve in the compressed concrete at elevated

temperature may then be defined as

σ

f ′
c

=
n εexplicitσ

εc1,T [(n− 1) + ( ε
explicit
σ

εc1,T
)n]

(5.3)

Where n is a parameter to be determined (a value of 3 was used here, which corresponds the value

used in the Eurocode model), and εexplicitσ is the peak stress strain. The descending branch of the

stress-strain model was represented as a linear relation from the compressive strength to zero.

The stress-strain relationship of concrete in tension was modeled as two linear branches that can

be expressed as equation (5.4) (Terro, 1998)

σ = E εσ 0 < εσ ≤ εtu (5.4)

σ = σt
u(εcrack − εσ)/σ

t
u(εcrack − εtu) εtu < εσ ≤ εcrack

σ = 0 εσ ≤ εcrack

Where σt
u is the ultimate tensile strength, εtu is the ultimate strain at tensile strength, εcrack is the

cracking strain and assumed to be equal to 0.004.

Strain at Peak Stress

Regardless of the fact that the strain at peak stress is highly affected by the prehistory of stress

(Anderberg and Thelandersson, 1976; Schneider, 1988), it is commonly expressed as a function of

temperature only. The strain at peak stress εc can be expressed by using the model proposed by
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(Franssen, 2005):

εc = 2.5 ∗ 10−3 + 4.1 ∗ 10−6(T − 20) + 5.5 ∗ 10−9(T − 20)2 ≤ 10−2 (5.5)

Compressive Strength

The compressive strength of concrete at elevated temperatures is affected by many factors, such as

the type of aggregate, cement to aggregate ratio, and the degree of loading. The Eurocode tabulated

data (Eurocode, 2004) was used to describe the strength-temperature relationship of concrete at

elevated temperatures which may be defined as

f ′

c,T = a1f
′

c,o (5.6)

Where f ′

c,o is the concrete compressive strength at ambient temperature and a1 is a parameter that

depends on the temperature and the type of aggregate (Eurocode, 2004).

Tensile Strength

The reduction of tensile strength of concrete with temperature may be expressed as (Eurocode,

2004)

ft,T = ft 0◦C ≤ T ≤ 100◦ (5.7)

ft,T = (1− (T − 100)/500)ft 100◦C ≤ T ≤ 600◦

Where ft is the concrete tensile strength at ambient temperature, and T is the temperature in Celsius

degree.
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5.2.1.2 Thermal Strain

The thermal strain of concrete is in general influenced by many factors, such as type of aggregate,

moisture content, load level, and rate of heating. However, thermal expansion is predominated by

the type of aggregate and hence, it is usually expressed as a function of temperature and aggregate

type. In addition, it typically accounts for both the drying shrinkage and the thermal expansion

components. Thermal strain increases with temperature increase, yet it is not a linear function with

temperature. This nonlinear behavior may be partly attributed to the chemical or physical changes

of aggregate at elevated temperatures or due to thermal incompatibilities between the aggregate

and the matrix (Purkiss and Li, 2013). Based on aggregate type, the thermal strain of concrete may

be adequately determined using the Eurocode model (Eurocode, 2004), which is given by

For siliceous aggregate

εth = −1.8 ∗ 10−4 + 9 ∗ 10−6T + 2.3 ∗ 10−11T 3 20◦C ≤ T ≤ 700◦

εth = 14 ∗ 10−3 700◦C ≤ T ≤ 1200◦ (5.8)

For calcareous aggregate

εth = −1.2 ∗ 10−4 + 6 ∗ 10−6T + 1.4 ∗ 10−11T 3 20◦C ≤ T ≤ 805◦

εth = 12 ∗ 10−3 805◦C ≤ T ≤ 1200◦ (5.9)

5.2.1.3 Creep Strain

Creep of concrete is affected by various parameters, such as degree of hydration, cement mix,

aggregate properties, stress, and temperature. The last two parameters are considered to be the

most important ones (Lie, 1992). Therefore, creep is usually assumed as a function of temperature,
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time, and stress level. Generally, creep seems to have a minor contribution to the total amount of

concrete strain compared with the other strain components and hence, it is sometimes neglected or

considered implicitly within the transient creep strain. However, for temperatures above 400◦C,

studies show that the effect of creep could be significant (Anderberg and Thelandersson, 1976;

Cruz, 1968). Accordingly, in order to perform an accurate simulation of the structural behavior of

concrete members, the creep strain was modeled explicitly in this study using the model developed

by (Anderberg and Thelandersson, 1976). The model is based on experimental results carried out

under constant stress and temperature with different procedures of load application, and it can be

expressed in the following form:

εcr = β1
σ

f ′

c,T

√
t ed(T−293) (5.10)

Where β1 = 6.28 ∗ 10−6, d = 2.658 ∗ 10−6K−1, and t is the time in s.

5.2.1.4 Transient Creep Strain

The transient strain occurs during the first heating cycle of loaded concrete specimen and it repre-

sents by far one of the largest components of concrete strain. It results from the incompatibilities

between the aggregate and the cement matrix due to elevated temperatures (Purkiss and Li, 2013)

and hence, it is irrecoverable strain. Based on experimental data, (Anderberg and Thelandersson,

1976) proposed a model, in which the transient creep strain is linearly correlated to the thermal

strain and stress ratio as follows:

εtr = −k2
σ

f ′
c,o

ǫth (5.11)
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Where k2 = 2.35. It is worth mentioning that in spite of the reduction of concrete stiffness with

temperature increase, the transient and creep strains will result in stress relaxation. Namely, a

favorable stress redistribution will be brought in as a result of the development of these strains.

5.2.2 Steel Constitutive Models

The constitutive relation of steel at elevated temperatures may be defined in a similar fashion to

that of heated concrete by using Equation (5.1). In addition, as in the concrete, the total strain of

steel at elevated temperatures may be expressed as the sum of its strain components which include

thermal, creep, and the stress-related strain. Accordingly, at temperature T , the total strain of steel

is given by

εtot,s = εσ,s(σ
′, σ, T ) + εth,s(T ) + εcr,s(σ, T, t) (5.12)

Where εtot,s is the total strain, εσ,s is the stress-related strain, and εcr,s is the steel creep strain.

The definition and the calculation of these strains will be given in the following subsections.

5.2.2.1 Instantaneous stress-related strain

The constitutive law that describes the relation between the stress related strain and the correspond-

ing stress of the reinforcement steel at elevated temperatures may be defined by using the ASCE

model (Lie, 1992) and as follow:

σs =
f(0.001)

0.001
εs εs ≤ εp (5.13)

σs =
f(0.001)

0.001
εp + f(T, εs − εp + 0.001)− f(T, 0.001) εs > εp
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f(T, x) = 6.9(50− 0.04T ) ∗ [1− exp((−30 + 0.03T )
√
x)] (5.14)

εp = 4 ∗ 10−6 fy20 (5.15)

Where σs is the stress in reinforcing steel in MPa and fy20 is the yield strength of steel at room

temperature.

5.2.2.2 Thermal Strain

As in concrete, the thermal strain of steel may be correlated to the temperature through the coef-

ficient of thermal expansion. Generally, all types of structural steel exhibit similar thermal expan-

sion, which in turn increases with temperature increase almost linearly up to temperature of 600◦C

(Anderberg, 1983; Schaffer, 1992). The thermal strain of reinforcing steel may be defined using

the Eurocode model (Eurocode, 2004) and as follows:

εth,s = −2.416 ∗ 10−4 + 1.2 ∗ 10−5T + 0.4 ∗ 10−8T 2 20◦C ≤ T ≤ 750◦

εth,s = 11 ∗ 10−3 750◦C ≤ T ≤ 860◦ (5.16)

εth,s = −6.2 ∗ 10−3 + 2 ∗ 10−5T 860◦C ≤ T ≤ 1200◦

5.2.2.3 Creep Strain

At normal temperature, creep strain of steel plays a minor role with respect to the total amount of

strain. However, at elevated temperatures, particularly, at temperatures above 450◦C it becomes

more significant (Schaffer, 1992; Purkiss and Li, 2013). The creep of steel at elevated temperatures
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is characterized by three stages: primary, secondary, and tertiary. Since the strain level after the

secondary stage is considered unacceptable, only the first two stages are usually included in the

analysis. It is customary to use the Dorn temperature compensated time approach to analyze creep

data of steel and express the secondary creep in terms of Zener-Hollomon parameter. Accordingly,

the extended Dorn-Harmathy model is used in the analysis (Harmathy, 1967), which is given by

εcr,s =
εcr,o
ln 2

cosh−1(2Zθ/εcr,o) θ ≤ θo

εcr,s = εcr,o + Z θ θ > θo (5.17)

Where εcr,o is the coefficient of primary creep, z is Zener-Hollomon parameter, inmm mm−1min−1,

and θ is the temperature compensated time in min, which can be defined as

θ =

∫ t

0

e−∆H/RTdt (5.18)

Where ∆H/R is the activation energy of creep, Kelvin.

The temperature compensated time θo represents the transitional value between the primary and

secondary creep and it can be obtained as

θo =
εcr,o
Z

(5.19)

The values of Z and εcr,o depend on the metallurgical characteristics of steel and they can be

expressed empirically as a function of steel stress as

εcr,o = AσB (5.20)
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Z = CσD σ ≤ σ1

Z = HeDσ σ > σ1 (5.21)

Where A,B,C,H , and D are empirical constants of various dimensions. Typical values of these

parameters are given in (Purkiss and Li, 2013).

5.3 Structural Analysis of Reinforced Concrete Members at Elevated Temperatures

Generally, to predict the structural behavior of reinforced concrete members exposed to elevated

temperatures, a nonlinear coupled thermo-mechanical analysis must be performed, in which the

temperature distribution obtained from thermal analysis is used as an input to the subsequent me-

chanical analysis. Clearly, conducting such an analysis is not an easy task and its complexity can

take many forms depending on the modeling level and the degree of the refinement. The use of

general purpose FE programs has been proven to be a powerful tool to asses the overall response

of concrete structures exposed to elevated temperatures, yet they tend to be very complicated, ex-

pensive, and time consuming. In addition, it is always necessary to assume that these FE programs

are flawless and the numerical analysis is invariably adequate. While such models can account for

complex geometry problems, the inputs and outputs of the numerical analysis are usually hard to

interpret and verify. Moreover, the fact that the multiaxial constitutive models of concrete at elevat-

ed temperatures are not maturely developed makes the three-dimensional modeling not appealing

and of no interest.

An alternate is to use a reliable and computationally efficient sectional-based analysis to predict the

mechanical response of reinforced concrete members at elevated temperatures.The development of

such a model can, in turn, be utilized as an effective tool for the prompt assessment of the integrity

of the structure during emergency situations, such as fire events.
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The idea of using sectional-based analysis at ambient temperature is a familiar topic to designers

and engineers. However, at elevated temperatures, fiber-based models have been used only recently

by some researchers, such as (Kodur et al., 2009; El-Fitiany and Youssef, 2009), and hence, more

research is required in this area. Accordingly, a three-dimensional fiber based beam model was

developed in this study so that it can be applicable at elevated temperatures. The model also

accounts for the various strain components that might generate in concrete and steel due to the

effect of high temperatures.

5.4 Model Assumptions

The main assumptions that are made in the developed fiber beam model include the following:

1. The fibers are assumed to have a uniaxial state of stress.

2. The Bernoulli hypothesis holds, that is, a plane section before deformation remains plane

after deformation. This assumption was originally made for sectional analysis at ambient

temperature. However, research has shown that this assumption is still valid at elevated

temperatures (Collins et al., 1987; Tassios and Chronopoulos, 1991).

3. The bond-slip between the reinforcement steel and concrete is considered to be negligible.

This is a quite reasonable assumption for concrete under compression. However, when con-

crete is under tension, a loss in the bond strength between the steel and concrete may occur,

which in turn results in a slipping of the reinforcement steel. That being said, the average

strain of concrete and steel over a cracked element can generally be considered equal with

no significant loss in accuracy.

4. Shear deformation is neglected. For this assumption to be accurate, the shear span of the

structural member has to be at least twice its depth. Otherwise the sectional analysis will be
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rather conservative.

5. The net stress in the transverse direction is negligible. Thus, at any point through the ele-

ment depth, the steel and the concrete forces must be in balance. This assumption can be

considered to be a valid one at the regions that are far away from the load and support points.

On the other hand, at the regions near these points, a transverse stress will develop due to the

application of the load.

Finally, it is worth mentioning that the developed fiber model has the capability to account for

geometrical nonlinearity (P −∆ effect) by using the co-rotational transformation formulation.

5.5 Solution Algorithm

The developed 3-D numerical model utilizes the sectional approach to assess the structural behav-

ior of reinforced concrete structures at elevated temperatures. In this model, the RC member is

divided into a discrete number of elements located along its length and each element is subdivided

into longitudinal fibers, as shown in Figure (5.1). The position of these elements coincides with

the integration points of the numerical integration method that are used in the formulation of the

element. In this study, the Gauss-Lobatto quadrature rule was used for the numerical integration.

An important advantage of this method includes allowing the end sections of the elements to ex-

actly correspond two of the integration points, which helps to monitor the nonlinear behavior of

the responses at these points. The load control integrator was used in the analysis with the aid of

the well known Newton-Raphson method to implement the iterations at the structural level.

The first step in the mechanical analysis is to read the cross-sectional temperature distribution from

the thermal analysis as a predefined field. In the second step, the sectional analysis is carried out,

which in turn, can be broken up into two sub-steps. First, the sectional response due to applied
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loads are determined. After that, the forces of local sections at various locations are computed.

Figure 5.1: Fiber model discretization

As mentioned before, when RC structural members are exposed to elevated temperatures, such as

the case of a fire event, the stiffness and strength of both steel and concrete will decrease with

temperature increase. In addition, due to the effect of temperature, different types of strain will

develop, such as thermal and transient strains. These changes in the mechanical and deformation

properties of the material besides the degradation of the structural member that occurs due to

cracking or crushing, all result in a continual forces redistribution. The stress σ at any point

within the cross section can be expressed as a function of the instantaneous stress related strain

and temperature as

σ = σ(εσ, T ) = σ(εt − εth − εtr − εcr, T ) (5.22)

Since the thermal strain is a function of the temperature only, it can be readily obtained. However,
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it should be noted that the creep and transient strains are functions of the current stress, hence, an

assumption has to be made regarding the stress values. This in turn leads to an iterative procedure

that starts with the previous stress value as an initial guess. Once the thermal, creep, and transient

strain components are evaluated, the stress-related strain can then be computed by subtracting

these strains from the total strain value. Based on the mechanical strain values, the stresses may

be evaluated by using the temperature dependent stress-strain constitutive relationships described

in sections (5.2.1.1) and (5.2.2.1), in which the mechanical properties of both concrete and steel

are simultaneously updated with temperature change at every time step. Typically, describing the

mechanical properties, such as the compressive and yield strengths as a function of temperature is

of particular interest. This is due to the fact that such properties can account for the deterioration

that occurs in the material because of the effect of high temperatures.

5.6 Numerical Analysis

In order to establish the validity of the developed fiber model, a sequentially coupled thermo me-

chanical analysis was implemented, in which RC members are exposed to both thermal and me-

chanical loads. The developed numerical model has been coded in MATLAB environment (MAT-

LAB and Release, 2012). Predictions from the model are compared with experimental results for a

set of case studies that represent the most common types of structural members, which are columns

and beams. The cross sectional temperature distributions of these members were obtained by using

the 2-D coupled heat and mass transfer model developed in chapter (4). In addition, a fixed time

step equal to 50 sec was adopted in the mechanical analysis.
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5.6.1 Case Study I: 3-D analysis of RC columns exposed to thermal and axial loads

In this section, the predicted results were compared with measured data taken from full scale fire

tests carried out on RC columns exposed to an axial load. The first two columns (designated as

column I and column II) were tested by (Lie et al., 1984), while the third column (designated as

column III) was examined by (Kodur et al., 2003). All the columns are made of siliceous aggregate

with cross section of 305 mm × 305 mm and 3810 mm long, Figure (5.2). The end conditions of

the columns were fixed-fixed and the fire exposed length of the column was approximately 3000

mm. The tests were carried out by applying concentric loads first (about 45 min before the start of

the fire test) (Kodur et al., 2003) and then the columns were exposed to ASTM E119 (American

Society for Testing and Materials, 2001) standard fire from all sides. In addition, the cross sectional

thermal profile that had been evaluated previously in (4.13.4) for 5% moisture content was utilized

here as a predefined field in the mechanical analysis of column II. A uniform mesh size equal to 24

elements in each side of the column cross section was used in the analysis. Details of the material

properties and load level are given in Table (5.1).

Table 5.1: Characteristic properties of the RC columns at ambient temperature

Property column I column II column III

Description
tested by lie et al

(Lie et al., 1984)

tested by lie et al

(Lie et al., 1984)

tested by kodur et al

(Kodur et al., 2003)

Applied load (kN) 800 1067 930

Compressive strength f ′

c 34.8 36.8 40.2

Yield strength fy 444 444 420

Relative humidity % 70 74 90
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Figure 5.2: Elevation and cross section of the column

5.6.1.1 Results and Analysis

Generally, when RC columns exposed to both thermal and external loads, the resulting axial de-

formation are usually governed by two competing factors: the thermal expansion of concrete and

reinforcement steel and the degradation of their stiffness due to the effect of high temperatures.

During the initial stages of heat exposure, the structural behavior of the RC columns is dictated by

the thermal strains and hence the concrete column undergoes expansion. At that point, the strength

loss and stiffness deterioration of concrete and steel due to elevated temperatures are not significant

yet. After the thermal expansion reaches its maximum value, the column starts to contract grad-

ually because of substantial decline of concrete and steel stiffness with the temperature increase.

Accordingly, the effect of the applied load becomes more dominant than the effect of thermal ex-

pansion. The decrease in the material strength will continue with the temperature increase until

failure. It should be noted that this illustration holds true regardless of the value of the loading
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ratio.

The behavior explained above was further demonstrated in Figure (5.3, 5.4, and 5.5), in which, a

comparison between the measured and the predicted vertical displacement at the top of the column

and as a function of time was presented for column I, II, and III respectively. From these figures,

it can be seen that the axial deformation-time curve clearly describes the typical behavior of RC

columns at elevated temperatures.

Moreover, to quantify the contribution of the non-mechanical strain components of concrete on

the structural behavior of the columns, several analyses were performed, Figure (5.3, 5.4, and

5.5). In the first analysis, which represents case A, only thermal strain was considered. It can

be observed that the predicted axial deformation in this case is greatly overestimated compared to

the measured displacement. In case B, on the other hand, where the transient creep strain is also

considered in the analysis, a substantial change in the displacement prediction may be noticed and

the numerical solution gets closer to the experimental curve. The fact that the transient creep strain

has a significant impact on the structural behavior was also supported by previous research findings

(Anderberg and Thelandersson, 1976; Terro, 1998). The effect of creep strain was additionally

accounted for in the calculations through case C. As it can be seen, the creep strain also noticeably

contributes to the contraction of the column. Clearly, the last case that consider all the strain

components provides the best match to the measured data among the other analyses.

An inspection of Figure (5.3, 5.4, and 5.5) indicates a reasonably good agreement between the

measured and the predicted results. Differences between the predicted and measured results could

be attributed to several reasons. One reason is the material models. Previous studies showed that

the use of different models result in different predictions (Youssef and Moftah, 2007; Bamonte and

Monte, 2015). The discrepancies between these different material models tend to be more sizable

after the peak, where the reduction in the material strength is dominant (Bamonte and Monte,
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2015).

Another reason may be attributed to the transient creep model used in the analysis. As indicated

by (Anderberg and Thelandersson, 1976), the accuracy of the model after 550◦C is questionable.

This discrepancy in the model at temperatures exceeding 550◦C could in turn result in differences

between the numerical solution and the experimental data.

Finally, the difference between the predicted and the measured temperature might also affect the

numerical results. For example the measured temperature of column I and II with a RH = 70%

and 74% respectively was not reported. The temperature of a similar column but in an almost dry

condition (RH=5%) was given instead. Although the temperature for 5% moisture level was used

in the analysis, which should corresponds the relative humidity of the tested columns, it is still

expected that there is some difference between the predicted and the measured temperature.
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Figure 5.3: Predicted and measured axial deformation of column I
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Figure 5.4: Predicted and measured axial deformation of column II

To show the development of temperature, concrete strains, and stress with time, the contour plots

of these components are presented for two different times of fire exposure. Particularly at time 30

and 200 min and as shown in Figures (5.6 and 5.7). From these plots , it can be seen that during the

earlier stages of heat exposure, specifically, at 30 min, the highest value of the mechanical strain

occurs along the surface regions of the column cross section, Figure (5.6(d)). Furthermore, these

regions of maximum values of mechanical strain continue to move towards the column center over

time as it may be observed in Figure (5.7(d)), where the mechanical strain reaches its maximum

value at about 100 mm from the column center. The other strain components, on the other hand,

prevail at the surface area of the concrete cross section. The reason that the creep strain components

are higher in the surface can be attributed to the fact that these strains are function of both stress

and temperature; apparently the effect of temperature is far more dominant than the effect of the

stress and hence they are maximal at the boundaries. In addition, it can be noted that the stress
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Figure 5.5: Predicted and measured axial deformation of column III

of the concrete at 30 min of fire exposure follows a very similar pattern to the mechanical strain

distribution. Clearly, the effect of temperature on the column stiffness at this stage is not significant

yet. However, at 200 min, the stress is more affected by the temperature and hence it is higher in

the central regions where the temperature is much lower than the surface areas, Figure (5.7(c)).
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Figure 5.6: Isolines of the various strain components and stress in concrete for column II at 30 min
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Figure 5.7: Isolines of the various strain components and stress in concrete for column II at 200

min
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CHAPTER 6: CONCLUSIONS AND RECOMMENDATIONS

6.1 Summary and Conclusions

Based on well established physical laws, a new numerical model to simulate the coupling effect

of heat and mass transfer phenomena in heated concrete was developed. The model utilizes the

principles of thermodynamic and the conservations laws. The differential equation that govern the

transport phenomena were derived and formulated using the finite difference method.

The control volume approach was used in the formulation of the finite difference equations due

to its several advantages. Several phenomena have been taken into account, such as evaporation,

condensation, and dehydration process. Temperature, pressure, and moisture content dependent

properties of both the gaseous and solid phases were also considered. Two numerical case studies

that deal with the case of an extremely rapid heating condition of concrete have been presented.

Based on the results obtained from the numerical simulations, it can be observed that heat transfer

process in concrete at elevated temperatures is highly affected by mass transfer phenomena and

its associated phase change process. In addition, it may be noted that unlike the pure conduction

model, the trend behavior of the temperature distributions predicted using the currently proposed

heat and mass transfer model is very consistence with the experimental trends. This due to the fact

that such conventional models lack the ability to model the migration of vapor and evaporation of

the free water content, which in turn results in an underestimation of temperature development at

early stages of heating and an overestimation of temperature at later stages. This behavior becomes

more pronounced when moving deeper towards the concrete core. Moreover, the proposed model

is capable of predicting pore pressure values with a sufficient accuracy, which is important for

the prediction of spalling and fire resistance of concrete. Simulation results also indicated that air

transport has a negligible effect on both temperature and moisture content distributions for the case
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of a column exposed to fire from all sides.

The one-dimensional coupled heat and mass transfer model was further extended to be applicable

in solving the two-dimensional problems. The validity of the proposed 2-D model was established

by comparing the predicted temperature distributions against experimental data. Based on the

numerical predictions, it can be concluded that the 2-D coupled heat and mass transfer model is

capable of accurately predicting the temperature distributions over the entire cross sectional area.

In addition, it can be noted that the trend behavior of the other quantities, such as pressure and

moisture content, is consistent with the physical laws. The validity of the proposed 2-D model to

simulate the coupled heat and mass transfer phenomena in the cases involving different boundary

conditions was also investigated by comparing the temperature obtained from the 2-D analysis

with measured data. Good agreement was noted between the predicted and measured tempera-

ture. Furthermore, the 1D and 2D solutions were compared for the case of column exposed to

fire from all sides. Simulation results indicate a general good consistency between the 1D and 2D

predictions although a more refinement in mesh size is needed in regions undergo steep changes

in moisture content and pressure. Accordingly, the consistency of the predicted results along with

the compatibility of the calculated and measured temperatures all lend credibility to the proposed

model. Finally, a three-dimensional fiber beam model was developed in this study to compute

the mechanical responses of reinforced concrete structures at elevated temperatures by using the

well-known sectional analysis approach. Due to the simplicity, reliability, and efficiency of this

approach, the development of such a fiber beam model can be utilized as an effective tool for the

prompt assessment of the integrity of the structure during emergency situations, such as fire events.

The temperature distributions obtained from the 2-D coupled heat and mass transfer analysis were

utilized in the subsequent step to perform the structural analysis, where the transient temperature

field is applied as thermal loading. The various strain components that develop in concrete and

steel due to the effect of high temperatures were also accounted for. These strain components in-
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clude mechanical, thermal, creep, and transient creep strain The constitutive models that describe

the structural behavior of both concrete and steel at elevated temperatures were presented. The va-

lidity of the proposed fiber model was established by implementing a two-step nonlinear numerical

analysis of reinforced concrete members exposed to elevated temperatures. The numerical results

obtained using the fiber model were compared against measured data with good qualitative agree-

ment. The results of the study also illustrated the relative effect of the various strain components

on the integral response of the columns. It was demonstrated that both basic and transient creep

strains have a considerable impact on the structural behavior of the RC columns.

6.2 Recommendations for Future Work

The current research has highlighted a number of topics that can be further improved by consider-

ing the following points:

1. Improving the constitutive models of the thermal properties of concrete at elevated tempera-

tures. Unlike the existing models that account for the type of aggregate only, the developed

models must be based on extensive experimental programs to further account for other sig-

nificant factors, such as, but not limited to moisture content and mix proportion.

2. The developed one and two-dimensional coupled heat and mass transfer models currently

neglect the liquid transfer. Therefore, the developed models can be further improved by con-

sidering the mobility of water in the mass conservation equation of the water-vapor species

and studying the effect of capillary pressure on the total pressure. Studies showed that ne-

glecting liquid transfer can lead to a crude approximation of the moisture transfer in porous

media (Baggio et al., 1997, 1995; Gawin et al., 1995).

3. Considering the effect of the additional stresses that result from the pore pressure build up in
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the concrete at elevated temperatures in the mechanical analysis and investigating the effect

of these stresses on the structural behavior of the RC members.

4. Spalling of concrete at elevated temperatures is considered one of the major concerns related

to the use of concrete. Thus, the research can be extended to study and predict concrete

spalling that occurs at elevated temperatures and to determine the fire resistance of concrete.

5. Permeability of concrete is known to increase significantly with the increase of temperature

and pore pressure. Although many attempts have been made so far to model the variation

of permeability of concrete at elevated temperatures, until now, such behavior is not quite

understood. One of the factors that affects the permeability of heated concrete is the internal

damage that occurs in the concrete due to elevated temperatures. Studying the effect of such

a damage is very important for a more accurate estimate of pore pressure values.

6. Considering the effect of the reinforcement steel on the coupled heat and mass transfer phe-

nomena. Reinforcement steel may play a significant role in the moisture transfer of heated

concrete. This is due to the fact that steel bars form a barrier through which water cannot

be permeated, and thus results in water trapping. Consequently, the water is forced to flow

around the bars resulting in an increase in the pore pressure at some regions of the concrete,

which in turn increases the possibility of spalling occurring.

7. The current research can be further extended to study the fire resistance of RC members.

Several factors may be considered here, such as spalling effect and different fire scenarios.

8. Studying the structural behavior at elevated temperatures for other types of RC structures,

such as beams and also at the structural level by implementing a nonlinear analysis for frame

structures.
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