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ABSTRACT 

Energy and water are consumed or contaminated during both the production and disposal 

of wasted food. To date, evaluations of water and energy resources associated with food waste 

have considered only resources used in food production. To allow for the full characterization of 

food waste within a Food Energy Water (FEW) nexus framework, this study addresses a 

fundamental knowledge gap related to the energy and water impacts of food waste after disposal. 

Fluxes of water and energy related to disposal of wasted food in landfills within the state of Florida 

were characterized. It is estimated that each metric ton (Mg) of landfilled food waste produces 

18.1 kWh of energy, while the energy needed for collection, leachate transport, and treatment totals 

126.5 kWh/Mg. These values equate to a net energy cost of 108.4 kWh/Mg, which is 110 Million 

kWh annually in Florida. It was observed that the water footprint of landfilled food waste is related 

to the assimilation of contaminated effluent and ranges from 2.5 to 58.5 m3 per metric ton of 

landfilled food waste, depending on the constituent of interest. Up to 58 Million m3 of water may 

be required annually to assimilate contamination related to landfilled food waste in Florida.  

We assessed the sensitivity of 14 variables used to estimate energy and water impacts and 

found that impacts are sensitive to the proportion of landfills collecting and utilizing landfill gas,  

concentration of constituents in leachate, and volume of effluent. Future research should be 

focused to improving the characterization of these influential parameters, and to similar FEW 

analysis of other food waste management technologies, such as composting or anaerobic digestion. 

Better understanding of water and energy impacts of food waste could inform societal decision 

making regarding investment in FEW-efficient waste management technologies. 
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CHAPTER ONE: INTRODUCTION 

Food waste is a national and global challenge, with consequences to food security and 

environmental sustainability. Food waste is a significant energy and nutrient rich waste stream. 

Energy and water are consumed and produce contaminants both during the production of wasted 

food and in the management process. Carbon and other nutrients generated from food waste are 

potentially problematic and contaminants require energy intensive processes to treat along with 

large volume of water to assimilate.  

 

When food is wasted, there is little thought to the resources lost or the environmental 

impacts of waste management. Energy is a typical metric when quantifying the resources wasted 

when conducting a life-cycle assessment. Another factor that needs to be considered is the water 

associated with food production, processing, consumption, and disposal. The food-energy-water 

(FEW) nexus recognizes that these resources are interconnected. Within the FEW nexus, energy 

and water costs of food production are conceptually understood and as economic commodities 

relatively well-described. Food production requires resources which include land, energy, and 

water and is identified as one of the earth’s most energy-intensive industries (Chameides et al., 

1994) ranking third behind steel production and petroleum refining (Heichel,1976). To better 

understand the potential impacts of wasted food within the FEW nexus, estimates of water and 

energy related to food waste disposal and management of food waste nutrients are needed.  

 

The objective of this study is to identify locations, directions, and magnitudes of energy 

and water fluxes related to landfilled food waste in the State of Florida. This analysis is the first to 
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quantify impacts of food waste management within the FEW nexus, and is visually depicted in 

Figure 1. This thesis focuses on landfilling since this is the primary management option for 

handling food waste in the United States. Therefore, the fluxes related to landfilled food waste will 

be quantified, but also  a conceptual framework will be presented that can be used to evaluate the 

water and energy impacts of alternative management options. This nexus study will provide a 

better understanding of landfilling as a food waste management option in the context of the FEW 

nexus. This conceptual framework can also provide a scientific approach to quantify the water and 

energy for other food waste management techniques such as anaerobic digestion, composting, and 

incineration. The outcomes of this framework are aimed at reducing the quantities of wasted food 

and providing recommendations on the most efficient management options for food waste. 

 

Figure 1: Research framework 
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CHAPTER TWO: LITERATURE REVIEW 

Food waste is a subset of organic waste, which includes manure, yard debris, food 

processing and post consumer wastes, and agricultural wastes. Definitions of food waste presented 

by different organizations around the globe vary considerably based on materials included, 

management approaches, and means of production. (Thyberg and Tonjes, 2016). A composite of 

these organizations and their respective definitions is in Table 1.  Notably, wastes generated during 

pre- and post-consumer phases are not consistently delineated within various definitions. For 

instance, Food and Agriculture Organization (FAO) and the European Commission definitions 

include both food losses and food waste from multiple phases of the value chain, while others 

define food waste solely within the post-consumer phase. Food loss is the amount of food which 

could potentially be used for consumption but which is not eaten. Whereas food waste involves 

the amount disregarded and not consumed by humans which refers to spoil or throw away before 

disposal. (Thyberg and Tonjes, 2016). 
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Table 1 Definitions of food waste 

Organization Definition 

United Nations Food and 

Agriculture Organization 

Food lost or wasted in the production chain leading to “edible 

products going to human consumption” 

European Commission Food (including inedible parts) lost from the food supply chain, 

not including food diverted to material uses such as bio-based 

products, animal feed, or sent for redistribution 

United States 

Environmental Protection 

Agency 

Uneaten food and food preparation wastes from residences, 

commercial and institutional establishments 

US Department of 

Agriculture 

 

A subset of food losses; occurs when an item still edible at the 

time of disposal is not consumed 

World Resources 

Institute 

Food fit for human consumption that is discarded—either before 

or after it spoils; either the result of negligence or a conscious 

decision to throw food away 

 

Several studies have estimated the percentage of food that is wasted. For example, 

Silvennoinen et al.,2015 found that around 20% of food served is wasted from the Finnish food 

service system in the process of preparation and handling. Betz et al.,2014 estimated that storage, 

preparation, and serving losses, combined with plate waste in Switzerland, totaled around 18% of 

food grown.  In the United States, approximately 31% of food grown was wasted in 2010 (Buzby 

et al., 2014). This study also found that 61% of food waste occurs in the consumption phase, 17% 

is generated in the production phase, and the remainder is lost during handling, storage, processing, 

packaging, distribution, and marketing. This total food waste in the United States represents a loss 

of 1,520 Kcal/per capita/per day out of an available 3,976 Kcal/per capita/per day grown globally 

(WRI, 2013; Buzby et al., 2014) The variability in reported food waste estimates may reflect the 

multiple  definitions of food waste, or, possibly the true variability in behavior among locations. 

For example, it is estimated that 56% of the total global food waste is generated in developed 
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countries (defined as North America, Europe, Oceania and industrialized parts of Asia covering 

China, Japan and Korea), with the remaining 44% generated in the developing world (WRI, 2013).   

 

The United States spends about one billion dollars per year in disposal of wasted food 

(USEPA, 2014). Wasted food is one of the largest components of the waste stream by weight in 

the United States, comprising over 14.5% of the total municipal solid waste (MSW) generated (by 

product category and by material volume) in American households. The primary mechanism for 

managing food waste in the Unites States is landfill disposal. Less than 3% of food waste is 

recovered annually through composting (USEPA, 2014). In 2013, around 2.1% of generated food 

waste was processed by anaerobic digestion (EREF, 2015). An unknown quantity of food waste is 

disposed of in garbage disposal systems which enter the sewer system for treatment at a wastewater 

treatment facility. The remainder of this waste was combusted at waste-to-energy facilities. The 

decomposition of food and other organic waste in landfills and anaerobic digesters produces 

methane, a greenhouse gas 21 times more potent to the environment relative to carbon dioxide. 

Uncontrolled landfill gas is the third largest human-related source of methane in the United States, 

accounting for 34% of all methane emissions (USEPA, 2014). To improve food security and 

conserve resources, the United States Environmental Protection Agency and United States 

Department of Agriculture have established a national goal to halve food waste by 2030. 

 

Food production requires resources which include land, energy, and water and is identified 

as one of the earth’s most energy-intensive industries (Chameides et al., 1994) ranking third behind 

steel production and petroleum refining (Heichel,1976). In the U.S., energy used in food 
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production varies from 10% to 17% of total energy production (Steinhart,1974; Hirst,1974; Heller  

and Keoleian, 2000; Pimentel,2008). For example, the energy production cost for corn grown in 

the US is approximately 4,200 kWh/Mg (Pimentel and Patzek, 2005). In Florida, the average 

energy requirement for agricultural production varies between 5,000 to 25,000 kWh/Mg (Fluck, 

1979). It is estimated that domestic energy used for food production is increasing (Khan et 

al.,2009). For example, in the U.S. energy for food production grew by a factor of six between 

1997 and 2002 (Canning et al., 2010). The main sources of energy for food production in the U.S. 

are petroleum and natural gas (Pimentel et al., 2008).  

 

Water required to produce food has been quantified by numerous researchers (Durning and 

Brough, 1991; Beckett and Oltjen,1993; Mekonnen and Hoeksrta, 2010; Kreith, 1991; Aldrich et 

al., 1978; Pimental, 2001). On a global scale nearly 35% of the annual world water budget is 

required for agricultural food production (Chen and Chen, 2013). It is estimated that 67% of the 

global freshwater withdrawals are used for agricultural irrigation (Doll and Siebert, 2002; Foley et 

al., 2005,). The water footprint is a tool used to quantify the water used to grow, process, produce, 

and dispose of food (Hoekstra and Hung, 2002; Hoekstra, 2003; Chapagain and Hoekstra, 2007; 

Hoekstra et al., 2009). A total water footprint is conceptualized as the sum of three components: 

blue (e.g., surface and groundwater withdrawals), green (e.g., soil moisture), and grey (e.g., water 

used to assimilate contaminants) (Hoekstra et al., 2009). For example, the water footprint of rice 

production is estimated as 1,325 m3/Mg broken down by 48% green, 44% blue, and 8% grey 

(Chapagain and Hoekstra, 2007). In the U.S., the total water footprint for agricultural goods is 

estimated to be 1,192 m3/capita/year for domestic water footprint to produce goods and services 
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(Hoekstra and Chapagain, 2007).  The water footprint of various horticultural products varies 

widely: sugar crops (roughly 200 m3/Mg), vegetables (300 m3/Mg), roots and tubers (400 m3/Mg), 

fruits (1000 m3/Mg), cereals (1,600 m3/Mg), oil crops (2,400 m3/Mg) to pulses (4,000 m3/Mg) 

(Mekonnen and Hoekstra, 2011). Researchers have identified the energy and water impacts 

associated with the production of wasted food. For example, around 2% of total energy generated 

in the United States is consumed in production of wasted food (Cuellar & Webber, 2010) and 225 

m3 to 3,500m3 of water is consumed in producing each metric ton of wasted food, (Abhat, 2015). 

However, research to this point has only quantified the water and energy costs related to producing 

wasted food (Levis et al., 2011, Kummu et al., 2012) but have not quantified the water and energy 

costs incurred in the post-consumer phase.  

 

The traditional way to manage food waste in the post-consumer phase is landfilling (Levis 

et al., 2011).  In the United States, nearly 53.8% of municipal solid waste is discarded to a landfill. 

(USEPA, 2014). In the United States the recycling and recovery rate is 34.5% and thermal 

conversion with energy recovery is 11.7 % of municipal solid waste.  (USEPA, 2011) The other 

ways to manage food in post-consumer phase are incineration processes, composting, and 

anaerobic digestion. Waste collection is the first step to move any solid waste to a waste 

management facility. Global statistics show that up to 95% of municipal solid waste are moved to 

landfills (Diamadopoulos, 1994; Kurniawan and Chan, 2006) with up to 97% of food waste being 

discarded to landfills (Levis et al., 2011). Methane is generated from landfills from the 

biodegradable part of solid waste (50-60% of volume) (Shin et al., 2005; USEPA 2012). Nearly 

40% of landfill gas is composed of carbon dioxide. Municipal solid waste (MSW) landfills are the 
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third-largest source of human-related methane emissions in the United States, accounting for 

approximately 18.2 percent of these emissions in 2014 (USEPA, 2016). At the same time, methane 

emissions from landfills represent a lost opportunity to capture and use a significant energy 

resource (USEPA, 2016). Landfill gas also consists of other compounds at lower concentrations 

such as oxygen, nitrogen, sulfur compounds, water vapor, and non-methane organic compounds 

(USEPA, 2000; Shin et al., 2005). Landfill gas can be a source of energy (i.e. alternative vehicular 

fuel proposed by Mainmoun et al., 2016 or  contribution to electricity grid, Heller et al., 2004; 

Hirschberg, 1999; Dones et al., 2003; Boyle, 1997). To directly utilize the landfill gas in energy 

production, landfill gas needs to be converted to pipeline quality gas that requires a high energy 

content process requiring separation of carbon dioxide and other constituents from the gas stream 

(Hesson, 2008; USEPA, 2000).   

 

A major concern of landfilling food waste is the leachate generation. Leachate is the liquid 

generated from landfilled wastes which is affected by the waste composition and amount of 

infiltrating precipitation (Duggan, 2005). Landfill leachate must be treated to meet state and 

national regulatory standards before discharged to the environment. The main constituents of 

concern include biochemical oxygen demand (BOD), chemical oxygen demand (COD), total 

ammonia-nitrogen (TAN), organic nitrogen, phosphorous, sulfate, sodium, potassium and metals 

(e.g. chromium, cadmium, cobalt, copper, lead, mercury, nickel, and zinc) (Kjeldsen et al., 2002).  

A study by WRAP,2010 suggested that food waste contains primarily BOD, TAN, chromium, 

cadmium, mercury, nickel and selenium. The treatment and assimilation of landfill leachate 

involves both water and energy intensive processes.   The concentrations of the heavy metals in 
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food waste vary across samples around the world as presented in Table 2. The metals are relatively 

low in concentration and do not contribute significantly to landfill leachate. 

 

Table 2 Concentration of metals in food waste, based on dry mass 

Source Unit Cd Cr Pb Hg Ni Se 

Bozym et al., 

2015 

mg kg-1  0.5 1.0 1.0 - 1.0 - 

WRAP (2010) mg kg-1  <0.4 <2 3.6 <2 <1.4 <1 

Pollak et al., 2004 mg kg-1  0.001-

2.17 

0.04-

10 

<0.001-

0.87 

0.02-

0.38 

<0.001 

- 9.55 

- 

Fisgativa et al., 

2016 

mg kg-1  0.3 0.28 18 0.3 10 - 

Luo et al., 2010 mg kg-1  0.26-

1.17 

9.66-

19 

73.3-

134 

- 7.04-

10.3 

- 

 

Leachate is predominantly co-treated with domestic wastewater at a wastewater treatment 

plant  (Abbas et al., 2009).    Methods published to treat leachate include combined treatment with 

domestic sewage; biological processing (anaerobic and anaerobic); chemical/physical treatment 

(flotation, coagulation/flocculation, chemical precipitation, adsorption, ammonium stripping, 

chemical oxidation, ion exchange and Electrochemical treatment), and membrane filtration 

(microfiltration, ultrafiltration, nanofiltration and reverse osmosis) (Abbas et al., 2009 and Renou 

et al., 2008). These studies found that biological treatment is most effective for treating landfill 

leachate. During aerobic biological treatment, oxygen is supplied to oxidize organic matter and 

nitrogen (Abbas et al., 2009; Renou et al., 2008). Heavy metals are assumed to be treated in the 

biological treatment by sorption onto the biomass. (Abbas et al., 2009). The released heavy metal 

in leachate treatment effluent is not well described. Talaraj, 2015 found that the release of heavy 

metals from a typical Polish MSW landfill ranges from 0.025% to 1.685% of its original 
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concentration of leachate. Although this concentration of heavy metals is low, a significant volume 

of water is required to assimilate (Talalaj, 2015) these parameters to ambient concentrations.  

 

There have been multiples study on the LCA for solid waste management facilities which 

involve energy and water quantification and interdependencies. Denison,1996 used LCA to 

compare landfilling incineration based on solid waste output, energy use, and pollution released to 

the air and water. This study suggested that based on LCA incineration was favorable over 

landfilling considering the energy implications. Morris,2005 reviewed the energy tradeoffs 

between thermal conversion and landfilling. It was reported that the energy input was low for both 

processes (i.e., landfilling and thermal conversion) compared to the production energy costs. Arena 

et al.,2004 focused on the LCA of paper disposal in landfills. This study found that a significant 

amount of water was required to manage this waste.   Recycling of food waste was shown to have 

lower water requirements. Despite the attempts to use LCA to make decisions regarding solid 

waste management there are still knowledge gaps regarding  the interdependencies of water-energy 

interconnection during food waste management.  

 

Modeling of energy and water impacts is subject to uncertainty due to the combined effects 

of data variability, measurements, estimations, unrepresentative values, missing data, and 

modeling assumptions (Clavreul et al., 2012). A sensitivity analysis can describe the influence of 

input variables in a model (Clavreul et al., 2012). Many researchers have identified different 

approaches for uncertainty analysis applied to solid waste management. Huang et al., 1992 applied 

a grey linear programming approach in solid waste management to address model stipulations and 
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coefficients. An updated programming technique,grey fuzzy linear programming, addresses solid 

waste management planning considering these model uncertainties (Huang et al., 1993). Maqsood 

and Huang (2003) applied a stochastic programming model for planning purposes. Cheng et al. 

(2003) applied linear programming for the selection of a landfill location. Lo et al., 2004 applied 

a Bayesian Monte Carlo Method to evaluate treatment options in LCA for greenhouse gas 

generation by addressing chemical compositions of constituents and heavy metals. Finnveden and 

his colleagues (Finnveden et al., 2005; Morberg et al., 2005) have applied uncertainty analysis for 

energy generation from solid waste management.  All these studies are focused on total solid waste 

management and  not food waste. Considering food waste and its management approach, there is 

a need to address this uncertainty. In the interaction of energy and water when considering food 

waste disposal options, uncertainty analysis is required to quantify the dynamics of the system. 

 

The goal of this study is to identify the water-energy interdependencies of food waste 

disposal through landfilling. This goal will be achieved by quantifying the energy and water 

requirements to management food waste disposed of in the state of Florida using literature values 

(e.g., methane generation rate and potential, Florida contributory landfills and uncertainty). 
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CHAPTER THREE: METHODOLOGY 

3.1 Background 

This study focuses on water and energy usage and trade-offs for food waste management 

in Florida landfills. In the post-consumer phase of food waste management, energy or water have 

the potential to be either consumed and/or produced. The pathways are identified for landfill 

management and then mapped related to the water and energy fluxes for landfills which is the 

primary food waste disposal mechanism in the United States and Florida. To understand the 

potential energy and water footprint of wasted food, the fate of food waste carbon and nutrients 

during treatment was considered. Carbon and nutrients entering landfills as food waste are 

separated into gaseous (NH3, CO2, CH4, NOx) and liquid emissions (leachate), or stored within the 

landfill (Figure 2). During anaerobic degradation of food waste in a landfill, complex organic 

materials (e.g., carbohydrates, lipids, proteins) are hydrolyzed to soluble products and then 

converted to methane and carbon dioxide through methanogenesis. 
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Figure 2: Fate of food waste carbon and nitrogen entering landfills  

 

Energy can be consumed or produced if food waste is managed in a landfill as shown in 

Figure 3. To quantify the energy and water impacts of food waste disposal in a landfill, a 

conceptual map was developed of the pathway for this material from the point of disposal through 

the treatment and assimilation of leachate while identifying energy and water fluxes at each step. 

Energy production occurs through the generation of landfill gas during anaerobic degradation. The 

collection of waste and transportation of the solid waste to the landfill, trucking of leachate to a 

WWTP, and subsequent treatment consumes energy. If the landfill gas is collected and utilized, 

this energy production (WARM, 2015) can contribute positively to the energy grid. Lastly, 

treatment of landfill leachate requires both energy and/or water-intensive treatment before 

effluents can be discharged to the environment. 
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Figure 3: Landfilled food waste in the FEW Nexus 

3.2 Study location 

The geographical boundary for the conceptual treatment of food waste through landfilling 

is the state of Florida. In 2015, The State of Florida is ranked 2nd in energy generation and 3rd in 

energy consumption in the U.S. (USDOE, 2016). In 2015, nearly 2.3 x 1011 kWh energy is 

generated among which 5.3x109 kWh are renewables (USEIA, 2016). Total consumption for 

electricity was 1.21 x 1012 kWh. Freshwater withdrawal was around 2 x 1010 m3. (USGS, 2016). 

On average, 39% of total available fresh water was used in agricultural and public water supply in 

Florida (FDEP, 2014). Florida was chosen due to the availability of local data from numerous 

studies focused on landfill gas production (Amini and Reinhart, 2011; Amini et al., 2011), leachate 

generation and management (Maimoun et al., 2013; Maimoun et al., 2016; Bolyard and Reinhart, 

2016; Bolyard, 2016), and water footprints related to MSW landfills (Maimoun, 2015). Amini and 
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Reinhart, 2011 determined the significance of food waste in energy potential for the State of 

Florida and found that diversion of food waste from landfills could result in 9% decrease in 

methane generation, while only 1% decline in energy production potential due to the difficulty in 

capturing methane from the rapidly degrading, labile fractions of food waste. Leachate from 

various landfills across Florida was characterized by Bolyard, 2016. Maimoun, 2015 calculated 

the transportation and collection costs of waste management as well as the associated water 

footprints. Energy and water accounting is limited to food waste management by landfilling and 

not extended to the quantification of water and energy consumed through the construction of the 

landfill, transportation vehicles, and the subsequent treatment of leachate at a wastewater treatment 

plant (WWTP). 

 

3.3 Energy footprint calculation 

The quantity of energy (kWh) that must be expended to return contaminated discharges to 

ambient background concentrations. To understand net impact to the energy sector, both the energy 

costs and benefits of disposed food are quantified as in Eq. 1. For the quantification procedure, 

more than twenty parameters are introduced and used (Table 4).   

 

E = EP − (EL + EC + ET)                                                                                                      (1) 

Where, 

E  =  net energy (kWh/Mg) 

EP = energy production (kWh/Mg)  
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EL = energy for leachate treatment (kWh/Mg) 

EC = energy for food waste collection (kWh/Mg) 

ET = energy for transportation of leachate to a WWTP (kWh/Mg) 

3.3.1 Energy cost for food waste collection 

The energy used for food waste collection was quantified using the procedure developed 

by Maimoun et al., 2015. Although different assumptions were made regarding travel time, 

distance, and speed from the household to the landfilling site. For example, Mainmoun et al., 2015 

assumed an average distance from household to household to be around 22.3 meters and the 

associated collection time to be approximately 8 seconds with a speed of 10 km/hr for the State of 

Florida. The distance the collection vehicle was required to travel to the landfill was around 19km 

over a 20-minute period. Fuel consumption rates for collection vehicles vary depending on 

operational condition; for example, collection vehicle operation frequency or whether the waste is 

collected in urban or rural areas. The annual energy costs (EC, kWh/Mg) associated with collection 

and transportation of food waste was calculated using Eq. 2:  

Ec = αfcεf                                                                                                                   (2) 

Where,  

αfc= fuel consumption rate (L/Mg)  

εf = fossil fuel energy potential (kWh/L).  

3.3.2 Energy production from landfill gas generated by food waste 

Potential energy production is calculated from gas produced per metric ton (Mg) of food 

waste disposed in conventional Florida landfills (i.e., no leachate recirculation). We estimated the 
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volume of methane gas that can be collected from each unit of food waste using Eq. 3 (Amini and 

Reinhart, 2011, Amini et al., 2011): 

Qc = ∑ ∑ k
ij

(
MFW,i

10
)L0e−ktzj

1

j=0.1

n

i=1

                                                           (3) 

Where, 

Qc = Collected methane (m3/Mg)  

k = Methane generation constant of food waste (year-1).  

Lo = Methane generation potential of food waste (m3/Mg)  

j = 1/10 time increments (year) 

z = time period of LFG generation from waste disposal in year i (year)  

tzj = age of jth section of waste MFW in year z (year) 

MFW,i = Mass of landfilled food waste disposed in year i, (Mg)  


ij
= Efficiency in methane gas collection (m3/m3) 

As methane generation will vary with time since disposal, we compute mean methane collection 

over the period of peak methane production, the first three years after disposal. Only 22 out of the 

163 landfills in Florida currently collect landfill gas (LFG) (USEPA, 2016).  After accounting for 

facilities at which LFG collection is infeasible, an upper bound of 70% of Florida landfills have 

the potential to contribute to the energy sector. We estimate methane energy production from food 

waste (Ep, kWh/Mg) using Eq. 4, 

Ep = εCH4
φ1φ2φ3Qc                                                                                                      (4) 

Where, 

1 = Methane to energy capacity factor (fraction, m3/m3);  
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2 = Electrical efficiency (fraction, kWh/kWh);  

φ3 = Proportion of landfills collecting LFG (fraction) 

εCH4
= Methane energy potential (kWh/m3)  

3.3.3 Energy cost of leachate treatment 

Presumably the BOD and TAN concentrations in leachate produced strictly by food waste 

(food waste leachate) are different from values reported for MSW leachate (e.g. Bolyard, 2016). 

In order to account for these differences, we estimate leachate BOD and TAN concentrations 

attributed to food waste by scaling concentrations observed in MSW leachate by the proportion of 

carbon and nitrogen in food waste relative to the biodegradable fraction of MSW to (Eq 5-8, Figure 

4). 

BODFW =
MFW

MMSW
∗

MCFW
MFW

⁄

MCMSW
MMSW

⁄
∗ BODMSW                                                      (5) 

Where: 

BODFW = BOD concentration of leachate attributed to food waste (mg/L) 

BODMSW = BOD concentration of MSW leachate (mg/L) 

MFW = Mass of food waste (Mg) 

MMSW = Mass of municipal solid waste (Mg) 

MCFW = Mass of carbon in food waste (Mg) 

MCMSW = Mass of carbon in municipal solid waste (Mg) 

 

The carbon and nitrogen content in MSW (Table 3) can be calculated from Eq.6 and Eq.8.  
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MCMSW =
∑ CiWi

n
i=1

∑ Wi
n
i=1

                                                                                                     (6) 

Where: 

Ci = Carbon content in municipal solid waste (Mg) of biodegradable component, i  

Wi = Contribution of biodegradable component, i in MSW (fraction) 

 

TANFW =
MFW

MMSW
∗

MNFW
MFW

⁄

MNMSW
MMSW

⁄
 TANMSW                                                         (7) 

Where: 

TANFW = TAN concentration of leachate attributed to food waste (mg/L) 

TANMSW = TAN concentration of MSW leachate (mg/L) 

MNFW = Mass of nitrogen in food waste (Mg) 

MNMSW = Mass of nitrogen in municipal solid waste (Mg) 

 

MNMSW =
∑ NiWi

n
i=1

∑ Wi
n
i=1

                                                                                                    (8) 

Where: 

Ni = Nitrogen content in municipal solid waste (Mg) of biodegradable component, i  
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Table 3 Carbon and nitrogen in biodegradable part of MSW and their contributions in MSW 

Component 

Carbon 

content in 

waste stream 

i , Ci (Mg of  

Carbon / Mg 

of waste, i) 

 Nitrogen 

content in 

waste stream 

i , Ni (Mg of  

Nitrogen / Mg 

of waste, i) 

Source 

Percent 

of 

MSW,Wi 

(%) 

Source 

Biodegradable components of MSW 

Food waste 0.480 0.026 Worrell 

and 

Vesilind 

(2011) 

14.9 USEPA, 

2016 Paper 0.435 0.003 26.6 

Cardboard 0.440 0.003 26.7 

Textiles 0.550 0.046 3.2 

Rubber 0.780 0.020 3.2 

Leather 0.600 0.100 3.2 

Yard wastes 0.478 0.034 13.3 

Wood 0.495 0.002 6.2 

 

 

Figure 4 BOD and TAN concentrations in MSW leachate (measured) and 

attributable to food waste (calculated) 

 

The amount of leachate generated by landfills varies with regional precipitation, landfilled area 

exposed to precipitation, and operational phase (USEPA, 2011). We estimate the generation rate 

of leachate (QMSW,T, m3/Mg) from a MSW landfill during the phase of active landfilling (daily 
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cover only), estimating an active phase length of 10 years (USEPA, 2011), (Eq. 9, Camobreco et 

al., 1999) as: 

 

QMSW,T =
FP

Dρ
t                                                                                                                 (9) 

Where: 

QMSW,T= Leachate generation (m3/Mg) 

F= fraction of precipitation collected as leachate (m/m);  

P = annual mean precipitation (m/year) 

 = Density of landfilled MSW (Mg/m3) 

D = Waste Depth (m) 

t = time of leachate generation (years) 

 

The energy that is utilized for treatment to return contaminated discharges to concentrations that 

may be permitted to discharge to the environment was calculated based on regulatory standards. 

The energy costs (kWh/Mg) of treating leachate can be estimated using Eq. 10. 

 

EL = QMSW,T EO2
[(BODFW − BODReg)K1 + (TANFW − TANReg)K2]                         (10) 

Where:  

K1 = Oxygen requirement for BOD treatment (kg/kg) 

K2 = Oxygen requirement for TAN treatment (kg/kg) 

EO2
= Energy requirement for oxygen supply (kWh/Mg) 
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BODReg = Regulatory standard of BOD in receiving waterbody (mg/L) 

TANReg = Regulatory standard of TAN in receiving waterbody (mg/L) 

 

3.3.4 Energy cost of leachate transport  

It is assumed that leachate is collected from the landfill and transported to a local WWTP. 

Generally, leachate is carried by a heavy-duty truck to a WWTP if there is no option for discharge 

through the sewer system. USEPA, 2011 has estimated that the fuel consumption rate of heavy 

duty truck for leachate transport with a default distance of around 25km (15 miles) is 0.89 L for 

per Mg of leachate transported. Here, we consider a ratio of mass of MSW leachate  to the mass 

of total MSW to convert the energy requirement in each Mg of waste. In this case, the limitation 

is not to consider the amount of leachate attributable to food waste.  Instead, the energy considered 

here is the value to transport the leachate generated from municipal solid waste. Here, it is assumed 

that the energy required for leachate attributable to food waste is similar as the energy required for 

transporting municipal solid waste. The annual energy costs (ET, kWh/Mg) associated with 

transportation of food waste leachate was estimated using as Eq. 11.  

ET = αfT εf   
QMSW 

ρleachate
                                                                                         (11) 

Where:   

αfT= fuel consumption rate (L/Mg of leachate) 

QMSW = annual volume of leachate produced (m3/Mg) (QMSW,T / t) 

ρleachate = Density of MSW leachate (Mg/m3)  
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Table 4 Energy footprint baseline parameter values  

Parameter Value  Unit Source(s) 

Energy production by landfill gas (kWh/Mg) 

Methane generation rate (k) 0.35 Year-1 Machado et al. (2009), 

Amini and Reinhart 

(2011), IPCC (2006) 

Methane generation potential(Lo) 300.7 m3/Mg Stanley and Barlaz 

(2011); Amini and 

Reinhart (2011) 

Gas collection efficiency (ij) 0.67 Fraction Amini and Reinhart 

(2011) 

Capacity factor (1) 0.83 Fraction Amini and Reinhart 

(2011) 

Electrical efficiency (2) 0.35 Fraction Amini and Reinhart 

(2011) 

Proportion of landfills collecting LFG (3) 0.13 Fraction USEPA (2016) 

Energy potential (CH4) 10.4 kWh/m3 Amini and Reinhart 

(2011) 

Energy cost of food waste collection (kWh/Mg) 

Fuel consumption rate, food waste 

collection (fc) 

11.1 L/Mg Maimoun et al.  (2015) 

Fossil fuel energy potential (f) 11.1 kWh/L Packer (2011) 

Energy cost for leachate transport (kWh/Mg) 

Fuel consumption rate, leachate transport 

(fT) 

0.89 L/Mg USEPA (2011), Maimoun 

(2015) 

Density of landfilled MSW-leachate 

(leachate) 

1120 Kg/m3 USEPA (2016), Souza et 

al., (2014) 

Mass of landfilled MSW (MMSW) 2 

x107 

Mg/year FDEP (2014) 

Energy cost for leachate treatment (kWh/Mg) 

BOD and TAN of leachate attributed to food waste 

Dry mass of carbon content of food waste 

(CFW) 

48 % Worrell and Vesilind 

(2011) 

Dry mass of carbon content of MSW 

(CMSW) 

48.6 % Calculated, Eq. 5 

BOD in leachate (BODMSW) 651 mg/L Bolyard (2016) 

BOD in leachate attributed to FW (BODFW) 96 mg/L Calculated 

Dry mass of Nitrogen content of food 

waste 

2.6 % Worrell and Vesilind 

(2011) 

Dry mass of nitrogen content of MSW 

(CMSW) 

2.1 % Calculated, Eq. 7 
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Parameter Value  Unit Source(s) 

TAN in MSW leachate (TANMSW) 1020 mg/L Bolyard (2016) 

TAN in leachate attributed to FW (TANFW) 191 mg/L Calculated 

Fraction of precipitation collected as 

leachate (Ft) 

20 % USEPA (2011), Maimoun 

(2015) 

Annual precipitation (P) 1250 mm NCDC (2015) 

Density of landfilled MSW () 708 Kg/m3 Worrell and Vesiland 

(2011) 

Waste Depth (D) 15 m Maimoun (2015) 

Time for leachate generation (t) 10 years USEPA (2011) 

Regulatory standard of BOD in receiving 

water (BODReg) 

20 mg/L FDEP (2016a) 

Regulatory standard of TAN in receiving 

water (TANReg) 

8.75 mg/L Bloetscher and Gokgoz 

(2001) 

Energy requirement for O2 supply (EO2) 14.2 kWh/Kg City of Union,SC (2011) 

O2 requirement for BOD treatment (K1) 1.5 Kg/Kg Environmental Dynamics 

International (2005) O2 requirement for TAN treatment (K2) 4.0 Kg/Kg 

 

3.4 Water footprint calculation 

The grey water footprint (Hoekstra et al., 2009) of wasted food was calculated to estimate the 

quantity of water needed to assimilate leachate contaminents attributed to food waste. The grey 

water footprint can be directly quantified using a mass balance in the form of a 2-end member 

mixing model (Figure 5).  
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Figure 5 Illustration of 2-end member mixing model for grey water footprint 

calculation 

 

Effluent from a WWTP (Qeff) with some concentration of constituent i (CL, i) is dischared into the 

free flowing water body (with concentration of Cact, i) and the mixing criteria is the maximum 

acceptable concentration of constrituents according to regulatory standards (Cmax) (Figure 5).  

Applying 2-end member mixing model (1st end member is actual discharge; 2nd end member is 

effluent discharge) for the particular system, the following equations (Eq.12 and Eq.13) using 

conservation of mass can be found,  

Qnew = Qact +  Qeff                                                                                                       (12) 

QactCact,i +  QeffCL,i = (Qact + Qeff)Cmax,i                                                               (13) 

Where, 

Qnew = Mixed discharge (m3/s) 

Qeff= Effluent discharge (m3/s) 

Qact= Actual flow (m3/s) 
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CL,i = Permitted concentration of contaminant i in wastewater discharge (mg/L) 

Cmax,i = Maximum acceptable concentration of contaminant i (mg/L) in receiving 

waterbody 

Cact,i = Actual concentration of contaminant i (mg/L) in receiving waterbody 

Combining Eqs.12 and 13,  

Qact =
Qeff(CL,i − C𝑚𝑎𝑥,i)

(Cmax,i − Cact,i)
                                                                               (14) 

By definition, grey water is amount of water required for waste assimilation (Hoekstra et al., 2009 

Hoekstra et al. ,2011); thus, according to laws of mass conservation Qact is the grey water footprint. 

Using the leachate generation rate for each Mg of waste,  Eq.14 can be rewritten for grey water 

footprint of each metric ton of food waste (m3/Mg, WFGrey) as in Eq.15. 

WFGrey =
QMSW,T(CL,i − Cmax,i)

(Cmax,i − Cact,i)
                                                                     (15) 

 

Actual contentrations of constituents in natural water bodies may vary in time and over space. It 

is thus challenging to estimate a single actual concentration of constituents representative of the 

all receiveing waterbodies in the state of Florida. Assuming the waterbody is in compliance with 

regulatory standards, actual concentrations of constituents should beless than the maximum 

acceptable concentration and is expected to be higher than natural concentration of contaminant 

of the receiving water body. The natural concentration of constituents refers to representative 

concentrations where there is no anthropogenic impact in a water body (Hoekstra et al., 2011). We 
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estimate the actual concentration as a triangular fuzzy number, ranging from the background 

concentration to the maximum acceptable concentration and including the in the mid-point value.  

The water footprint model is parametrized according to permitted concentrations in wastewater 

effluents (nutrients and heavy metals) as outlined by the Florida Administrative Code (FAC, 

Chapter 62-4, FDEP, 2016a). The maximum concentration of BOD that may be discharged to 

receiving waters is 20 mg/L (FDEP, 2016a). As TAN concentrations are dynamic, varying with 

temperature and pH (Chapman, 1996), no firm standard is applied to all state waters. Rather, the 

determination of permitted discharge concentration is conducted by local administrative bodies 

and requires site-specific negotiations. It is assumed that mean concentration of TAN is 8.75 mg/L 

discharged to water bodies, based upon the average TAN concentration observed in secondary 

effluents for South Florida water bodies (Bloetscher and Gokgoz, 2001) (Table 5).  

 

In Florida, BOD concentration is regulated such that dissolved oxygen (DO) shall not be depressed 

below the permitted limit (FDEP, 2016a). As DO varies with season, water column depth, and 

characteristics of the specific water body, there is not a single regulatory concentration for BOD 

applied to all Florida waterbodies, at all times. The statewide screening level concentration for 

BOD is 2.0 mg/L which is the 70th percentile of all data across the State of Florida from 1970 to 

1987 (FDEP, 2008; FDEP, 2013). Chapman,1996 reported that unpolluted water typically has a 

BOD value of 2 mg/L, while Hand,2004 calculated a typical BOD value of Florida surface waters 

ranges from 0.50 mg/L to 3.40 mg/L with a mean value of 1.30 mg/L. Based on the available 

literature, we use 2.0 mg/L as our maximum acceptable concentration of BOD. We modeled a 

representative maximum TAN concentration for Florida waters given ranges of temperature and 
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pH for Florida streams (Hand, 2004) using relations provided by FAC Chapter 62-302.500 (FDEP, 

2016b). Mean TAN concentration over a 30-day period in a Florida waterbody should be equal or 

less than 1.4 mg/L. Maximum acceptable concentrations of nutrients and heavy metals in a water 

body are given by the FAC (FAC, Chapter 62-302, FDEP, 2016b) for surface waters (Table 5). 

We apply estimates of background concentration for BOD, TAN and metals from Hand, 2004 

(Table 5).  
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Table 5 Water footprint baseline parameter values 

Parameter Value  Unit Source(s) 

Leachate volume (QMSW,T) 0.23 m3/Mg See Table 4; Section 3.3.4 

Biochemical Oxygen Demand (BOD) 

CL,BOD  20 mg/L FDEP 2016(a) 

Cmax,BOD 2 mg/L FDEP 2016(b) 

Cbackground,BOD 0.5 mg/L Hand (2004) 

Total Ammonium-Nitrogen (TAN) 

CL,TAN  8.75 mg/L Bloetscher and Gokgoz (2001) 

Cmax,TAN 1.4 mg/L FDEP 2016(b) 

1.0-1.8 

(range) 

mg/L 

Cbackground,TAN 10 g/L Hand (2004) 

15 g/L Franke el al. (2014) 

Cadmium (Cd) 

CL,Cd 0.1 mg/L FDEP 2016(a) 

Cmax,Cd 8.8 g/L FDEP 2016(b) 

Cbackground,Cd 0.0 mg/L Hand (2004) 

0.001 g/L Franke el al. (2014) 

Chromium (Cr) 

CL,Cr  0.5 mg/L FDEP 2016(a) 

Cmax,Cr 0.011 mg/L FDEP 2016(b) 

Cbackground,Cr 0.0 mg/L Hand (2004) 

0.1 g/L Franke et al. (2014) 

Lead (Pb) 

CL,Pb  0.5 mg/L FDEP 2016(a) 

Cmax,Pb 8.5 g/L FDEP 2016(b) 

Cbackground,Pb 0 mg/L Hand (2004) 

0.4 g/L Franke et al. (2014) 

Mercury (Hg) 

CL,Hg 1.5 g/L FDEP 2016(a) 

Cmax,Hg 0.012 g/L FDEP 2016(b) 

Cbackground,Ni 0 mg/L Hand (2004) 

Nickel (Ni) 

CL,Ni  1 mg/L FDEP 2016(a) 

Cmax,Ni 8.3 g/L FDEP 2016(b) 

Cbackground,Ni 0 mg/L Hand (2004) 

0.4 g/L Franke et al. (2014) 

Selenium (Se) 

CL,Se  0.1 mg/L FDEP 2016(a) 

Cmax,Se 5.0 g/L FDEP 2016(b) 

Cbackground,Se 0 mg/L Hand (2004) 
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3.5 Sensitivity analysis 

Sensitivity analysis is performed based on the variability of parameters in context to water 

and energy footprint. We introduce thirty parameters for energy quantification and five parameters 

for water quantification. Among the thirty parameters, fourteen are selected for sensitivity analysis 

in energy quantification (Cases: A-N) as the other sixteen parameters are assumed to be constant 

and four of them for water sensitivity analysis.  

3.6 Uncertainty analysis 

In this section, tentative direction towards addressing uncertainty is approached. The 

following framework (Figure 6) is introduced to quantify uncertainty within the FEW nexus.  

 

 

Figure 6 Uncertainty analysis framework within FEW nexus 

An uncertainty range was estimated for energy and water footprint using the modeling 

approach in the previous sections for this case study. Monte Carlo simulation calculates the models 

for a specified number of times, each time using different randomly-selected values. A Monte 

Carlo computational method is introduced to determine uncertainty of output values for energy 

and water footprint using the most sensitive parameters values and from a specified range and 
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probability distribution for input parameters, i.e. BOD and TAN concentrations, contributory 

landfills proportionality and leachate generation rate. All the parameter values are adjusted to 

minimum and maximum values so that while applying those values in the above equations, actual 

data points fell within the energy and water quantification. All these parameters are assumed to be 

normally distributed (Figure 7). 

  

  
Figure 7 Normal distribution of sensitive parameters 

 

The Monte-Carlo analysis is simulated for 10000 runs. The analysis produces 10000 

combinations for water and energy footprint values. 
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CHAPTER FOUR: RESULTS 

4.1 Energy footprint 

It is estimated that the collected methane generated by each metric ton of food waste in 

Florida MSW landfills has potential to produce 18.1 kWh of energy. However, the estimated 

energy required for food waste collection and leachate transportation to a WWTP was 123.2 

kWh/Mg and  0.2 kWh/Mg, respectively. Each megagram of waste disposed in a landfill generates 

approximately 0.23 m3 of leachate. It requires 3.1 kWh of energy is to treat leachate from each 

megagram of food waste to the maximum permitted standards before discharging to a receiving 

water body. The total energy required is therefore approximately 126.5 kWh/Mg while energy 

expected from landfill gas utilization is around 18.1 kWh/Mg. We estimate a net 108.4 kWh of 

energy is required to manage each megagram of landfilled food waste in Florida (Table 6), for a 

total annual energy cost of 1.1 x 108 kWh. If every landfill in Florida were collecting and utilizing 

landfill gas to its full potential (3= 0.70), net energy cost after managing each megagram of 

landfilled food waste is 33.1 kWh, for a total annual energy of 3.24 x 107 kWh.  

Table 6 Energy consumption and offsets of landfilled food waste 

Sector 

Energy 

(kWh/Mg) 

Leachate treatment energy cost, EL 3.1 

Food waste Collection energy cost, EC 123.2 

Leachate transport to WWTP energy cost, ET 0.2 

Methane energy production, EP 18.1 

Net energy cost, E 108.4 
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4.2 Water footprint 

It is estimated that up to 58.5 m3/Mg of high-quality water may be required to dilute treated 

effluents of leachate attributed to food waste to background concentrations with respect to 

constituents of concern (Figure 8). In our calculation, mercury (Hg) is the limiting constituent. 

Concentrations of BOD and TAN in leachate are reduced considerably by treatment. Assuming 

leachate is treated prior to discharge, up to 3.5 m3/Mg of water will fully assimilate remaining 

BOD and TAN concentrations in discharged effluent. However, should untreated leachate be 

discharged to a water system, up to 63.1 m3 of water will be required to assimilate BOD and TAN 

concentrations. The water-energy trade-off for leachate treatment can thus be estimated as 59.6 

m3/Mg of water saved for a net energy requirement of 3.1 kWh/Mg. 

 

Figure 8: Water footprint of treated food waste leachate 
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Figure 9 Range of variability in water footprint calculation due to actual 

concentration in receiving waterbody 

 

Variation of actual concentration creates a significant fluctuation in water footprint 

calculation (Figure 9). If actual concentration is equal to the background concentration, the water 

footprint is 29.2 m3/Mg; mercury is the limiting consituent. If the actual concentration is near to 

the maximum acceptable concentration, the water cost for waste assimilation becomes 2919 m3 

for each megagram of food waste; indicates the pollution level of a certain water system. The wide 

range indicates uncertainty in water footprint calculation due to actual concentration. 
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4.3 Sensitivity analysis 

Sensitivity analysis indicates that energy footprints are particularly sensitive to the 

following parameters: proportionality of actual landfills (3), collection efficiency (1),  fuel 

consumpsion rate for food waste collection (fc) (Table 7, Figure 10). The net energy footprint 

across all parameter sets varied from 33.1kWh to 152.0 kWh of energy requirement to manage 

each megagram of food waste disposed of in a landfill. Whether landfills collect and utilize landfill 

gas (3, case F) is particularly influential, as energy cost varies from 33.1 kWh/Mg if all landfills 

harvest gas to 126.5 kWh/Mg of energy loss if none do. The energy model is also sensitive to 

collection efficiency (ij ;Case A). The net energy cost ranges from 101.5 kWh/Mg at minimum 

to 126.5 kWh/Mg at the maximum value. Also, fuel consumpsion rate for food collection (Case:E) 

points out a fluctuation of 65.5 kWh/Mg of minimum energy cost to 152 kWh/Mg of maximum 

energy cost. The BOD and TAN concentration in MSW (BODMSW,TANMSW; Case:G-H) causes a 

daviation of energy cost from 105.9 kWh to 112.7 kWh to manage each metric ton of food waste. 

Finally, generation of leachate, which depends on several parameters (Cases: I-L), is somewhat 

influential, as energy costs range from 105.7 – 111.3 kWh/Mg (Table 7, Figure 10).The model is 

only marginally sensitive to all other parameters, resulting in maximum ranges of 103.9 -108.9 

kWh/Mg.  

 

Also, sensitivity analysis for water footprint indicates that water footprints are particularly 

sensitive to leachate volume (Table 8, Figure 11). The net water requirement across all parameter 

sets varied from 8.80 m3 to 100.1 m3 to manage each megagram of landfilled food waste. Changing 
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the background concentration by 30% provides a maximum water footprint of 58.6 m3 for 

managing each megagram of food waste after treatment. Permitted concentration and maximum 

allowable concentrations are regulated by FAC. As discussed, TAN concentrations vary across 

water bodies and other properties of the water body. The sensitivity of TAN concentration in 

permitted and allowable concentrations vary from 0.20 m3 to 3.70 m3 for managing per megagram 

of food waste.  

 

Figure 10: Sensitivity of water footprint parameters 
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Figure 11: Sensitivity of water footprint parameters 
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Table 7 Sensitivity of energy footprint parameters 

Case Parameters  Range 

 

 

Unit 

Net energy cost 

(kWh/Mg) 

Maximum Minimum 

A Gas collection efficiency (ij) 0-95 Fraction 126.5 101.5 

B Capacity factor (1) 0.83-1 Fraction 108.4 105.3 

C Electrical efficiency (2) 0.35-0.45 Fraction 108.4 103.9 

D 
Proportion of landfills 

collecting LFG (3) 
0-0.70 Fraction 126.8 33.1 

E 
Fuel consumption rate, food 

waste collection (fc)  
7.2-15 L/Mg 152.0 65.5 

F 
Fuel consumption rate, 

leachate transport (fT) 
0.79-1.02 L/Mg 108.8 108.3 

G 
BOD in MSW leachate 

(BODMSW) 
68-3730 mg/L 111.0 108.3 

H 
TAN in MSW leachate 

(TANMSW) 
98-2300 mg/L 112.7 105.9 

I 
Fraction of precipitation 

collected as leachate (Ft)  
6.5-20 % 108.4 106.3 

J Precipitation (P) in Florida 1085-1350 mm 109.0 108.3 

K Density of MSW () 413-1003 kg/m3 111.3 107.7 

L Waste Depth (D) 10-100 m 110.5 105.7 

M 
O2 requirement for BOD 

treatment (k1) 
1.4-2.0 kg/kg 108.9 108.3 

N 
O2 requirement for TAN 

treatment (k2) 
4.0-5.0 kg/kg 108.7 106.2 
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Table 8 Sensitivity of water footprint parameters 

 

Parameter/constituent 

 

Range 

 

Unit 

Water footprint (m3/Mg) 

Minimum Maximum 

Leachate generation rate, 

QMSW,T 0.035-0.404 m3/Mg  
BOD -- -- 0.5 5.8 

TAN -- -- 0.4 4.2 

Cadmium  -- -- 0.7 8.4 

Chromium -- -- 3.1 35.6 

Lead  -- -- 4.1 46.5 

Mercury -- -- 8.8 100.1 

Nickel -- -- 8.1 92.0 

Selenium -- -- 1.3 15.3 

Background concentration, Cbackground,i 

BOD 0.35-0.65 mg/L 3.1 3.4 

TAN 10.5 – 19.5 g/L 1.3 2.4 

Cadmium  
0.0007 – 

0.0013 g/L 2.4 4.9 

Chromium 0.07-0.13 g/L 10.6 20.7 

Lead  0.028-0.052 g/L 13.7 27.1 

Mercury 0 mg/L 29.2 58.6 

Nickel 0.28-0.52 g/L 30.0 53.7 

Selenium 0 mg/L 4.5 8.9 

Permitted concentration, CL,i 

BOD 14-26 mg/L 2.3 4.5 

TAN 8.75-10 mg/L 1.6 3.3 

Cadmium  0.07-0.13 mg/L 3.3 6.5 

Chromium 0.35-0.65 mg/L 14.4 27.1 

Lead  0.35-0.65 mg/L 18.8 35.4 

Mercury 1.05-1.95 g/L 40.7 76.0 

Nickel 0.7-1.3 mg/L 37.4 69.9 

Selenium 0.07-0.13 mg/L 6.1 11.8 
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4.4 Uncertainty analysis 

The simulation indicates that the water and energy footprint are normally distributed 

(Figure 12). Different statistical parameters are shown in the Table 9. The analysis shows that the 

estimated net energy cost using the baseline parameter set is 28% more than the average value and 

the estimated water footprint using the baseline parameter set is 2% less than the average value 

calculated from the Monte Carlo simulation. This approach was applied to see the effect of 

uncertainty on the system. Further research should include more advanced approach to integrate 

the uncertainty within the FEW nexus such as quantifying and characterizing the data set and its 

distribution, advanced algorithm in addressing uncertainty etc. 

   

 

Figure 12 Energy (a) and water (b) footprint (Monte-Carlo Simulation) 

 

Table 9 Statistics of simulated results from Monte-Carlo simulation 

 Net energy cost (kWh/Mg) Net water cost (m3/Mg) 

Maximum 121 67 

Minimum 20 47 

Average 76 57 

 

The uncertainty analysis, introduced here is an attempt to address within the FEW nexus. 

There are some limitations in the assessment. In this analysis, it is assumed that all the sensitive 

parameters are uniformly distributed. But the distribution of these parameters is unknown. It is 

a 
b 
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required to define the distribution using a large dataset. Also, more advanced techniques need to 

defined for this system. 
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CHAPTER FIVE: DISCUSSION 

The estimated annual energy cost to Florida’s energy sector is 1.1 x 108 kWh. Per capita energy 

cost is nearly 5.0 kWh/year. This represents 0.05% of Florida’s total energy generation (USEIA, 

2016), or around 2% of Florida’s 2015 renewable energy production (USEIA, 2016). In terms of 

energy consumption, the estimated energy cost of landfilled food waste is 0.03% of Florida’s total 

residential energy consumption (USEIA, 2016). 

The annual volume of water required for assimilating food waste leachate in Florida is up 

to 5.8 x 107 m3. At 2.9 m3 of water per capita, this is 0.67% of the per capita water consumption 

in Florida (440m3 in 2012, USGS, 2016) and nearly 0.65% of the total freshwater withdrawn in 

Florida in 2012. 

5.1 Energy and water footprint of wasted food and food waste management  

The estimates of the post-disposal energy and water impacts of food waste allow for the 

first comprehensive estimate of food waste impact within the FEW nexus, considering resources 

needed both in producing wasted food and managing food waste after disposal. A total energy 

impact is estimated as 1.4 x 1010 kWh to produce if wasted food is managed by landfill disposal. 

The energy footprint of landfill disposal varies nearly 0.76 to 1.16% of the energy needed to 

produce wasted food. 

 

Water footprint is also calculated if food waste is managed by landfill disposal. The water 

impact is nearly 1.5 x 1010 m3 to produce. The estimated water footprint of managing wasted food 

varies nearly 0.40% to 1.75% of the water needed to produce wasted food. 
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5.2 Sensitivity analysis 

Sensitivity analysis indicated that the landfill contribution to energy production and 

contaminant loading affects the water and energy footprint. Only 13% of Florida landfills 

producing landfill gas and contributes to the energy production. If full utilization (70%) of landfill 

gas is considered, it is found that nearly 72% decrease in energy needed to manage landfilled food 

waste. Even in the full utilization scenario, the energy potential of landfilled food waste does not 

fully offset consumption.  

Contaminant loadings are determined by the combination of leachate generation rate and 

constituent (e.g. BOD and TAN) concentrations attributable to food waste. Among the parameters 

controlling leachate generation rate, density and annual precipitation vary the leachate generation 

rate significantly. It was not tested about the influence of other parameters (temperature, soils etc.) 

which may affect the leachate generation rate (Maimoun, 2015), given the relative uniformity of 

these factors within the system boundaries. Concentrations of constituents in MSW leachate that 

are attributable to food waste cannot be observed directly. To estimate the contribution of food 

waste to MSW leachate concentrations, this research includes scaled concentrations of BOD and 

TAN observed in MSW leachate per carbon and nitrogen proportionality.  

5.3 Water energy tradeoff 

Using the FEW nexus framework, tradeoffs in water and energy with regard to leachate 

treatment can be estimated. For example, up to 3.5 m3 of high quality water is required to assimilate 

BOD and TAN from each metric ton of food waste after leachate is treated at a WWTP. If leachate 

is not treated, up to 63.1 m3 of water per metric ton of food waste is required for assimilation of 

carbon and nutrients in food waste. Therefore, leachate treatment can ideally save up to 59.6 m3 
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of water at the cost of 3.1 kWh of energy in each metric ton of food waste. The water footprint of 

this quantity of energy is negligible (0.0031 m3) assuming WWTPs are operated by electricity 

produced by natural gas (USEIA, 2016) and the water footprint of gas produced energy is 1000 

m3/kWh (DHI, 2008). The water footprint of energy required for leachate treatment is smaller than 

the water footprint of direct discharge to the environment. Beyond validating the rationality of 

wastewater treatment, the energy and water tradeoff presented can potentially inform valuation of 

waste assimilation as an ecosystem service. 

5.4 Water for pollution assimilation 

The grey water footprint returns the volume of water needed to fully assimilate a pollutant 

load, and therefore does not represent a fully consumptive use of water. However, direct 

comparison of grey water footprints with consumptive uses (blue and green water footprints) is 

common. For example, Shao and Chen, 2013 compared the grey and blue water footprints in 

China, finding that the water required for waste assimilation exceeded consumptive uses. Liu et 

al., 2012 introduced the grey water footprint for anthropogenic emissions to the waterbody and 

describes the impact on how grey water footprint can impact the freshwater withdrawal. Morera 

et al., 2016 has identified the grey water contribution as the significant water use in a wastewater 

treatment plant as compared to green and blue water. Impact of the grey water footprint is perhaps 

best conceptualized through an ecosystem services framework. For instance, it is estimated that 

59.6 m3 of grey water can be offset by 3.1 kWh of electricity for treating nutrients associated with 

each metric ton of landfilled food waste. Assuming the cost of commercial energy in Florida is 

$0.08/kWh. (USEIA, 2016) and applying our derived energy-water tradeoff, we estimate an 

assimilation service value of around $0.004/m3 per cubic meter of assimilation water. The annual 
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ecosystem value of assimilating nutrients from landfilled food waste in Florida is therefore around 

$0.22 million. This rough valuation via an energy-water tradeoff likely underestimates the value 

of assimilation water, as the valuation may not take into account true energy costs, nor the capital 

cost of treatment infrastructure. The value of assimilation water estimated by a water-energy 

tradeoff is low as compared to values estimated globally. For example, Costanza et al., 1997 has 

estimated the value of wastewater assimilation as $0.59/m3; assuming 1m of water height and 

considering the inflation rate from 1997 to 2017 (US Inflation Calculator, 2017). Using this 

valuation, it is estimated that the annual ecosystem value of assimilating nutrients from landfilled 

food waste in Florida as $35 Million.  

5.5 Grey water footprint  

The formulation grey water footprint calculation is hard to comceptualize. Different 

researchers has identified grey water footprint in different approaches. Hoekstra et al., 2009 has 

used background concentration to find out the assimilation capacity. Again, Hoekstra et al., 2011 

has introduced actural concentration to calculate the grey water footprint. Morera et al. 2016, has 

introduced mass-balance concept to find the grey water for waste water treatment plant but limited 

to use the actual concentration in the receiving water. These three different approaches are difficult 

and introduce ambiguity in grey water footprint calculation. Moreover, the actual concentration in 

grey water footprint calculation is distrinct in pattern from one waterbody to another and varies 

temporally. The actual concentration needs to be addressed properly while calculating the grey 

waterfootprint for a particular region.  
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5.6 FEW implications for food waste management 

Herein it is estimated that the post-disposal FEW impact deriving from the portion of 

Florida’s food waste that is managed by landfill disposal, which is around 54% of Florida’s food 

waste (FDEP, 2014). The remainder is managed via alternative waste management technologies 

which include composting, anaerobic digestion, and thermal conversion. The FEW impacts of 

these alternative technologies have not been estimated, and may differ from those of landfilling. It 

is possible that further analyses of FEW impact could inform societal decision making and 

investments regarding food waste management technologies. For instance, should subsequent 

analyses characterize the FEW impact of waste management alternatives, comparison of 

technologies could suggest best management alternatives for food waste based on minimizing 

FEW impacts.  
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CHAPTER SIX: FUTURE STUDIES 

In this analysis, energy and water tradeoffs were calculated for landfilling, a traditional approach 

for food waste management. A parallel approach to addressing the water and energy costs of food 

waste could involve changing the management paradigm for organics in the solid waste stream. 

For instance, alternative pathways for food waste nutrients and carbon could include diversion 

from landfills to composting or energy generation through anaerobic digestion. However, best 

management practices towards food waste management require a complete understanding of food 

waste within the FEW nexus. Specifically, information comparing the water costs of various 

management alternatives which does not exist. Future studies should address a framework for other 

food waste management techniques and then quantify the water and energy footprint. 

The water footprint calculated in this research did not include the water which is required 

for energy production used in transporting leachate and waste and treating leachate . Only pollutant 

assimilation is considered in the water footprint calculation but water is required to produce any 

form of energy (Lundie and Peters, 2005; Finnveden et al., 2005; Berglund and Borjesson., 2006). 

Further study should extend system boundaries to include the water footprint of energy used in 

food waste management.   

There is undeniable uncertainty associated with the method of estimation for BOD and TAN 

concentration in food waste stream. Given the importance of leachate concentrations to both 

energy and water footprints, it is recommended further research to more precisely characterize the 

likely contribution of contaminants to MSW leachate. 
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In this research, ecosystem service is addressed through service cost of water and energy 

and compared with global estimate of waste water assimilation. Future research should address the 

detailed ecosystem service framework of wastewater assimilation within the FEW nexus.  
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CHAPTER SEVEN: CONCLUSIONS 

To address deficiencies in understanding food waste within the FEW nexus, this research 

made the first attempt at quantifying food waste impacts related to post-disposal management and 

estimating the energy and water needed to manage Florida’s landfilled food waste. Food waste 

management by landfilling in Florida consumes around 5.8 x 107 m3 of water (0.7% of annual 

fresh water withdrawal in Florida) in 2014 and 1.1 x 108 kWh (0.05% of annual Florida electricity 

production) in 2014. This estimation of water and energy fluxes was found to be sensitive to 

landfill gas utilization rates, volumes of MSW leachate generated, and the concentration of 

contaminants in leachate that is derive from food waste. These parameters should be carefully 

characterized in future FEW studies.  

 The estimates of the post-disposal energy and water impacts of food waste allows for the 

first comprehensive estimate of food waste impact within the FEW nexus, considering resources 

needed both in producing wasted food and managing food waste after disposal. It was found that 

resources needed to manage landfilled food waste varies from up to 1.16% of the energy and up 

to 1.75% of water needed to produce the wasted food. Society can perhaps reduce the impact of 

wasted food by reducing food waste or by choosing more FEW-efficient management 

technologies. Further studies and comparisons of the FEW impacts related to alternative food 

waste management technologies (e.g. composting, thermal conversion, anaerobic digestion) have 

the potential to guide investments and decisions related to more sustainable food waste 

management.  
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