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ABSTRACT 

Crash frequency analysis is a crucial tool to investigate traffic safety problems. With the 

objective of revealing hazardous factors which would affect crash occurrence, crash frequency 

analysis has been undertaken at the macroscopic and microscopic levels. At the macroscopic 

level, crashes from a spatial aggregation (such as traffic analysis zone or county) are considered 

to quantify the impacts of socioeconomic and demographic characteristics, transportation 

demand and network attributes so as to provide countermeasures from a planning perspective. 

On the other hand, the microscopic crashes on a segment or intersection are analyzed to identify 

the influence of geometric design, lighting and traffic flow characteristics with the objective of 

offering engineering solutions (such as installing sidewalk and bike lane, adding lighting). 

Although numerous traffic safety studies have been conducted, still there are critical limitations 

at both levels. In this dissertation, several methodologies have been proposed to alleviate several 

limitations in the macro- and micro-level safety research. Then, an innovative method has been 

suggested to analyze crashes at the two levels, simultaneously.  

At the macro-level, the viability of dual-state models (i.e., zero-inflated and hurdle models) were 

explored for traffic analysis zone based pedestrian and bicycle crash analysis. Additionally, 

spatial spillover effects were explored in the models by employing exogenous variables from 

neighboring zones. Both conventional single-state model (i.e., negative binomial) and dual-state 

models such as zero-inflated negative binomial and hurdle negative binomial models with and 

without spatial effects were developed. The model comparison results for pedestrian and bicycle 

crashes revealed that the models that considered observed spatial effects perform better than the 

models that did not consider the observed spatial effects. Across the models with spatial spillover 
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effects, the dual-state models especially zero-inflated negative binomial model offered better 

performance compared to single-state models. Moreover, the model results clearly highlighted 

the importance of various traffic, roadway, and sociodemographic characteristics of the TAZ as 

well as neighboring TAZs on pedestrian and bicycle crash frequency.  

Then, the modifiable areal unit problem for macro-level crash analysis was discussed. Macro-

level traffic safety analysis has been undertaken at different spatial configurations. However, 

clear guidelines for the appropriate zonal system selection for safety analysis are unavailable. In 

this study, a comparative analysis was conducted to determine the optimal zonal system for 

macroscopic crash modeling considering census tracts (CTs), traffic analysis zones (TAZs), and 

a newly developed traffic-related zone system labeled traffic analysis districts (TADs). Poisson 

lognormal models for three crash types (i.e., total, severe, and non-motorized mode crashes) 

were developed based on the three zonal systems without and with consideration of spatial 

autocorrelation. The study proposed a method to compare the modeling performance of the three 

types of geographic units at different spatial configuration through a grid based framework. 

Specifically, the study region was partitioned to grids of various sizes and the model prediction 

accuracy of the various macro models was considered within these grids of various sizes. These 

model comparison results for all crash types indicated that the models based on TADs 

consistently offer a better performance compared to the others. Besides, the models considering 

spatial autocorrelation outperformed the ones that do not consider it. Finally, based on the 

modeling results, it is recommended to adopt TADs for transportation safety planning. 

After determining the optimal traffic safety analysis zonal system, further analysis was 

conducted for non-motorist crashes (pedestrian and bicycle crashes). This study contributed to 
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the literature on pedestrian and bicyclist safety by building on the conventional count regression 

models to explore exogenous factors affecting pedestrian and bicyclist crashes at the 

macroscopic level. In the traditional count models, effects of exogenous factors on non-motorist 

crashes were investigated directly. However, the vulnerable road users’ crashes are collisions 

between vehicles and non-motorists. Thus, the exogenous factors can affect the non-motorist 

crashes through the non-motorists and vehicle drivers. To accommodate for the potentially 

different impact of exogenous factors we converted the non-motorist crash counts as the product 

of total crash counts and proportion of non-motorist crashes and formulated a joint model of the 

negative binomial (NB) model and the logit model to deal with the two parts, respectively. The 

formulated joint model was estimated using non-motorist crash data based on the Traffic 

Analysis Districts (TADs) in Florida. Meanwhile, the traditional NB model was also estimated 

and compared with the joint model. The results indicated that the joint model provides better data 

fit and could identify more significant variables. Subsequently, a novel joint screening method 

was suggested based on the proposed model to identify hot zones for non-motorist crashes. The 

hot zones of non-motorist crashes were identified and divided into three types: hot zones with 

more dangerous driving environment only, hot zones with more hazardous walking and cycling 

conditions only, and hot zones with both.  

At the microscopic level, crash modeling analysis was conducted for road facilities. This study, 

first, explored the potential macro-level effects which are always excluded or omitted in the 

previous studies. A Bayesian hierarchical model was proposed to analyze crashes on segments 

and intersection incorporating the macro-level data, which included both explanatory variables 

and total crashes of all segments and intersections. Besides, a joint modeling structure was 

adopted to consider the potentially spatial autocorrelation between segments and their connected 
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intersections. The proposed model was compared with three other models: a model considering 

micro-level factors only, one hierarchical model considering macro-level effects with random 

terms only, and one hierarchical model considering macro-level effects with explanatory 

variables. The results indicated that models considering macro-level effects outperformed the 

model having micro-level factors only, which supports the idea to consider macro-level effects 

for micro-level crash analysis. Besides, the micro-level models were even further enhanced by 

the proposed model. Finally, significant spatial correlation could be found between segments and 

their adjacent intersections, supporting the employment of the joint modeling structure to analyze 

crashes at various types of road facilities.  

In addition to the separated analysis at either the macro- or micro-level, an integrated approach 

has been proposed to examine traffic safety problems at the two levels, simultaneously. If 

conducted in the same study area, the macro- and micro-level crash analyses should investigate 

the same crashes but aggregating the crashes at different levels. Hence, the crash counts at the 

two levels should be correlated and integrating macro- and micro-level crash frequency analyses 

in one modeling structure might have the ability to better explain crash occurrence by realizing 

the effects of both macro- and micro-level factors. This study proposed a Bayesian integrated 

spatial crash frequency model, which linked the crash counts of macro- and micro-levels based 

on the spatial interaction. In addition, the proposed model considered the spatial autocorrelation 

of different types of road facilities (i.e., segments and intersections) at the micro-level with a 

joint modeling structure. Two independent non-integrated models for macro- and micro-levels 

were also estimated separately and compared with the integrated model. The results indicated 

that the integrated model can provide better model performance for estimating macro- and 

micro-level crash counts, which validates the concept of integrating the models for the two levels. 
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Also, the integrated model provides more valuable insights about the crash occurrence at the two 

levels by revealing both macro- and micro-level factors. Subsequently, a novel hotspot 

identification method was suggested, which enables us to detect hotspots for both macro- and 

micro-levels with comprehensive information from the two levels. It is expected that the 

proposed integrated model and hotspot identification method can help practitioners implement 

more reasonable transportation safety plans and more effective engineering treatments to 

proactively enhance safety.  
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CHAPTER 1: INTRODUCTION 

1.1 Overview 

Traffic safety is considered one of the most critical issues of the transportation system. The 

consistent efforts of government officials and transportation engineers have ensured that 

fatalities from traffic collisions have gradually declined in the recent decades in the United States. 

However, traffic fatalities rose in 2012 and 2015 highlighting the challenge faced by the safety 

community. Particularly, the nation lost 35,092 people in traffic crashes during 2015, a 7.2-

percent increase from 32,744 in 2014. The increase is the largest percentage increase in nearly 50 

years (NHTSA., 2016). Thus, it is necessary to devote many efforts to reduce traffic crashes and 

enhance road safety. The continued efforts of traffic safety analysis are required to identify 

hazardous factors affecting crash occurrence. 

One of the most widely used approaches to investigate traffic safety is crash frequency modeling, 

which can quantify exogenous factors contributing to the number of traffic crashes. At the 

macroscopic level, crashes from a spatial aggregation (such as traffic analysis zone or county) 

are considered to quantify the impacts of socioeconomic and demographic characteristics, 

transportation demand and network attributes so as to provide countermeasures from a planning 

perspective. On the other hand, the microscopic crashes on a segment or intersection are 

analyzed to identify the influence of geometric design, lighting and traffic flow characteristics 

with the objective of offering engineering solutions (such as installing sidewalk and bike lane, 

adding lighting).  
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Many macroscopic and microscopic safety researches have been conducted to facilitate the 

implementation of traffic safety plans or roadway engineering solutions. The macro-level crash 

safety researches have been conducted based on different zonal systems such as traffic analysis 

zone, census tract, county, and state. Since these zonal systems were developed for different 

usages and criteria, the statistical inference and interpretation derived from the zones would be 

also various, referring as the modifiable areal unit problem. Hence, it is necessary to suggest 

clear guidelines for the appropriate zonal system selection for macro-level safety analysis.  

Walking and bicycling are two active forms of transportation, which can offer an 

environmentally friendly and physically active alternative for short distance trips. A strong 

impediment to universal adoption of active forms of transportation, particularly in North 

America, is the inherent safety risk for active modes of transportation. Towards developing 

counter measures to reduce safety risks, it is essential to study the influence of exogenous factors 

on pedestrian and bicycle crashes at the macro-level.   

At the micro-level, the effects of traffic characteristics and road features on crashes of segments 

and intersections have been identified. Most of crash frequency studies at the micro-level have 

omitted the effects of macro-level factors. It would be reasonable to claim that the road facilities 

which are located in the same zone should share certain zonal factors, which may affect crash 

occurrence through driving behaviors and transportation modes. 

Previous studies have explored traffic safety at either macroscopic or microscopic level, i.e., no 

study has investigated the two levels. If traffic safety research is conducted for the same study 

area, macro- and micro-level crash analyses would investigate the same crashes but by different 
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aggregation levels. Hence, we can assume that the crash counts at the two levels are correlated. 

Particularly, the total number of crashes in each zone (macro-level) is supposed to be the same as 

the total number of crashes from all road entities including segments and intersections (micro-

level) located in the zone of interest. Hence, it would be beneficial if the integrated traffic safety 

modeling analysis can be conducted for the two levels. This approach can simultaneously exam 

the traffic safety problems for different zones and road facilities by employing the data 

aggregated at the two levels. Such integrated approach is supposed to identify hazardous factors 

at both macro- and micro-levels. Subsequently, the incorporated countermeasures can be 

proposed to extensively reduce crashes. It is expected it can be easier to achieve the goal of a 

traffic safety plan with effective safety improvement of roadway infrastructure. Meanwhile, the 

engineering countermeasures can be more appropriate with the guidance of traffic safety plans.  

Therefore, the objective of this study is to explore possible limitations of individual macroscopic 

or microscopic crash analysis, and subsequently develop integrated hierarchical models to 

investigate traffic safety problems at the two levels, simultaneously. Based on the integrated 

models, a guideline with comprehensive perspectives will be suggested to enhance traffic safety 

at both levels.  

1.2 Research Objectives 

The dissertation focuses on suggesting appropriate methodologies to explore hazardous factors 

affecting crash occurrence at either macroscopic or microscopic level and develop a novel 

methodology to integrate traffic safety analysis at the two levels. The specific objective will be 

achieved by the following procedures: 
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1. Conducting preliminary pedestrian and bicycle safety studies at the macroscopic level; 

2. Determining the optimal zonal system for macroscopic traffic safety analysis; 

3. Suggesting appropriate methods to analyze crashes based on the determined optimal 

zonal system; 

4. Exploring the potential macro-level effects in micro-level crash analysis, and; 

5. Integrating macroscopic and microscopic traffic safety analysis using hierarchical models. 

The first objective has been achieved in Chapter 3 by the following tasks: 

a) Discussing the excess-zero problems for the pedestrian and bicycle crashes based on 

traffic analysis zones; 

b) Exploring the viability of dual-state models for pedestrian and bicycle crash analysis. 

The second objective has been achieved in Chapter 4 by the following tasks: 

c) Selecting different zonal systems including traffic analysis zones, census tracts, and 

traffic analysis districts which are transportation-related geographic units or have been 

widely used for macro-level crash analysis;  

d) Developing multiple crash frequency models based on different zonal systems for 

different crash types; 

e) Suggesting a grid-based method to compare modeling performance based on different 

zonal systems; 
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f) Adopting appropriate goodness-of-fit measures to compare performance of models based 

on different zonal systems and suggesting the most appropriate zonal system for macro-

level crash analysis. 

The following tasks have been implemented in Chapter 5 to achieve the third objective: 

g) Analyzing pedestrian and bicycle crashes based on the optimal zonal systems suggested 

in Chapter 4; 

h) Developing a joint model for pedestrian and bicycle crashes to recognize effects of 

explanatory variables on vehicle drivers and non-motorists; 

i) Suggesting a joint screening method to identify hot zones of non-motorist crashes with 

more details. 

The fourth objective has been achieved in Chapter 6 by the following tasks: 

j) Developing a Bayesian hierarchical model to investigate macro-level effects for micro-

level crash analysis; 

k) Considering the potentially spatial correlation between segments and intersection by 

adopting a joint modeling structure; 

l) Estimating three other models at the micro-level and comparing them with the proposed 

model. 
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The last objective has been achieved in Chapter 7 by the following tasks: 

m) Aggregating crashes from the same area at the macro- and micro-levels and examining 

the potential correlation between macro- and micro-level crashes; 

n) Suggesting a hierarchical integrated model which could simultaneously analyze crashes 

at the macro and micro-levels based on the spatial interactions; 

o) Comparing the proposed integrated model with the non-integrated models at both levels 

to validate the concept of integrating the models for the levels; 

p) Proposing a novel screening method which could detect hotspots for both macro- and 

micro-levels with comprehensive information from the two levels. 

1.3 Dissertation Organization 

The organization of the dissertation is as follows: Chapter 2, following this chapter, summarizes 

literature review about previous macroscopic and microscopic traffic safety analyses, current 

issues of the safety researches, and related studies. Additionally, the statistic methodology for the 

safety analysis has been also discussed. Chapter 3 addresses the excess-zero issue for pedestrian 

and bicyclist crashes based on traffic analysis zone (TAZ) by adopting two-stage models. 

Chapter 4 compares different zone systems for macroscopic traffic crash modeling and 

recommends the optimal zone system. Chapter 5 develops a joint model for non-motorist crashes 

to identify different impacts of exogenous variables on vehicle drivers and non-motorists. 

Chapter 6 suggests a Bayesian hierarchical model to investigate the macro-level effects on 

micro-level crashes. Chapter 7 formulates an integrated model to analyze traffic crashes at the 

macro- and micro-levels, simultaneously. Based on the spatial interaction between zones and 
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road entities, the expected crash counts at the macro- and micro-levels are linked by an 

adjustment factor. Additionally, the spatial autocorrelations at the macro-level and micro-level 

are also considered. Finally, Chapter 8 summarizes the overall dissertation and proposes a set of 

recommendations and follow-up studies.  
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CHAPTER 2: LITERATURE REVIEW 

2.1 General 

The review of literature is divided into three main sections: First, the previous traffic safety 

studies (crash frequency models) at the macroscopic level have been summarized. The different 

zonal systems used for the crash analysis and factors contributing to crash frequency have been 

discussed. Second, the past microscopic traffic safety researches have been discussed in detail. 

Particularly, the researches based on segments and intersections have been summarized. Finally, 

a review of the statistical methodology for the crash frequency analysis has been presented.  

2.2 Macroscopic Safety Study 

In the recent decade, there has been growing recognition to incorporate roadway safety in the 

long-term transportation planning process. Several planning acts have emphasized the 

importance of macroscopic crash analysis. Initially, the Transportation Equity Act for the 21st 

Century (Houston, 1998) suggested to consider safety in the transportation planning process. 

Later, Washington et al. (2006) discussed how to incorporate safety into transportation planning 

at different levels. Currently, the Moving Ahead for Progress in the 21st Century Act (MAP-21 

Act) (US Congress, 2012) and Fixing America’s Surface Transportation Act (FAST Act) (U.S. 

DOT, 2015) require the incorporation of transportation safety in the long-term transportation 

planning process. Generally, macroscopic safety studies are to quantify the statistical relation 

between characteristics and crashes at zonal levels. Also, various zonal systems have been 

explored for the macroscopic crash analysis. Thus, the following sub-chapters will briefly 

discuss about the different zonal systems and zonal characteristics in macroscopic studies. 
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2.2.1 Zonal Systems for Studies 

Most of previous macroscopic safety studies were conducted based on single type of zonal 

system. The zonal systems include: block groups (Levine et al., 1995), census tracts (LaScala et 

al., 2000; Loukaitou-Sideris et al., 2007; Wier et al., 2009; Wang and Kockelman, 2013), ZIP 

code areas (Lee et al., 2013; Lee et al., 2015a),  traffic analysis zones or TAZs (Hadayeghi et al., 

2003; Ladrón de Guevara et al., 2004; Hadayeghi et al., 2010; Abdel-Aty et al., 2011b; Lee et al., 

2013; Dong et al., 2015; Wang et al., 2016; Cai et al., 2016; Wang and Huang, 2016; Yasmin 

and Eluru, 2016), counties (Aguero-Valverde and Jovanis, 2006; Huang et al., 2010), states 

(Noland, 2003), and Grids (Kim et al., 2006b).  Most of these zonal systems were developed for 

different specific usages.  

(1) Block Groups and Census Tracts 

The block groups (BGs) and census tracts (CTs) are census based zonal systems developed for 

the collection and tabulation of decennial census data (CensusBureau, 1992). Both the BGs and 

CTs are developed based on the census blocks (CBs), which are the smallest geographic units 

used by United States Census Bureau. The census blocks (CBs) are very small, especially in the 

urban area. Besides, the detailed information is not available based on (CBs). Thus, CBs are not 

usually used for the macro-level safety studies.  

A BG is developed by combing CBs and each BG contains 39 CBs in average. Population in a 

BG is between 600 and 3,000 people. A CT is a combination of BGs and relatively permanent 

subdivisions of a county or equivalent entity to present statistical data such as poverty rates, 

income levels, etc. On average, a CT has about 4,000 inhabitants. CTs are designed to be 
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relatively homogeneous units with respect to population characteristics, economic status, and 

living conditions. Several macroscopic studies were conducted based on BGs and CTs. 

(2) ZIP Code 

ZIP codes are a system of postal codes used by the United States Postal Service (USPS). 

Basically, the ZIP codes are developed for mail delivery routing. However, besides tracking of 

mail, the ZIP codes are also used for gathering geographical statistics. The U.S. Census Bureau 

calculates approximate boundaries of ZIP codes areas, which is called ZIP Code Tabulation 

Areas (ZCTAs). Statistical data are provided based on ZCTAs. In the crash data, the ZIP codes 

are included as the residence information. Thus, several studies which focus on road users have 

been conducted based on ZIP codes.  

(3) Traffic Analysis Zones (TAZs) 

Traffic Analysis Zones (TAZs) are geographic entities delineated by state or local transportation 

officials to tabulate traffic-related data such as journey-to-work and place-of-work statistics 

(FHWA, 2014). TAZs are defined by grouping together census blocks, block groups, or census 

tracts. A TAZ usually covers a contiguous area with a 600-minimum population and the land use 

within each TAZ is relatively homogeneous (Abdel-Aty et al., 2013). Previously, since TAZs are 

the only traffic related zonal system, they have been most widely used in the macroscopic safety 

literature. However, considering that TAZs are not delineated for traffic crash analysis, there are 

possible limitations of TAZs for macroscopic safety analysis. Thus, it should be necessary to 

evaluate the viability of TAZs for safety study.  
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Besides TAZs, a new and higher-level zonal system, Traffic Analysis Districts (TADs), were 

developed for traffic analysis (FHWA, 2011a). TADs are built by aggregating TAZs, block 

groups or census tracts. In almost every case, the TADs are delineated to adhere to a 20,000 

minimum population criteria (FHWA, 2014) and more likely to have mixed land use. No 

research has been conducted based on TADs for safety analysis. In this study, the viability of 

TADs as a zonal system for macro-level crash modeling will be explored and the comparison 

between TAZs and TADs will be also conducted.  

(4) Counties and States 

Compared with zonal systems discussed above, counties and states are higher-level geographic 

units for macroscopic analysis. Both of them are polity related zonal systems. A state is an 

organized community living under a single political structure and government, sovereign or 

constituent while a county is an administrative division of the state in which its boundary is 

drawn. Several researches focusing on comparison between high-level zonal systems have been 

conducted based on counties or states.  

(5) Grids 

Since the study zonal systems are developed for specific purposes, their number of units, 

aggregation levels and zoning configuration can vary substantially across different zonal systems. 

Regarding this, Kim et al  (2006b) developed a uniform 0.1 square mile grid structure to explore 

the impact of socio-demographic characteristics such as land use, population size, and 

employment by sector on crashes. Compared with other existing geographic units, the grid 
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structure is uniformly sized and shaped which can eliminate the artifact effects. However, 

considering the availability and use of the various zonal systems for other transportation 

purposes creating a uniform grid structure would not be feasible from the perspective of state and 

regional agencies.   

Recently, besides single type of zonal system, several research studies have been conducted to 

compare different geographic units. Abdel-Aty et al.  (2013) conducted modeling analysis for 

three types of crashes (total, severe, and pedestrian crashes) with three different types of 

geographic units (block groups, TAZs, and census tracts). Inconsistent significant variables were 

observed for the same dependent variables, validating the existence of zonal variation. However, 

no comparison of modeling performance was conducted in this research. Lee et al.  (2014) 

aggregated TAZs into traffic safety analysis zones (TSAZs) based on crash counts. Four different 

goodness-of-fit measures (i.e., mean absolute deviation, root mean squared errors, sum of 

absolute deviation, and percent mean absolute deviation) were employed to compare crash model 

performance based on TSAZs and TAZs. The results indicated that the model based on the new 

zone system can provide better performance. Instead of determining the best zone system, Xu et 

al. (2014) created different zoning schemes by aggregating TAZs with a dynamical method. 

Models for total/severe crashes were estimated to explore variations across zonal schemes with 

different aggregation levels. Meanwhile, deviance information criterion, mean absolute deviation, 

and mean squared predictive error were calculated to compare different models. However, the 

employed measures for the comparison can be largely influenced by the number of observations 

and the observed values. Thus, the comparison results might be limited in the two studies (Lee et 

al., 2014; Xu et al., 2014) since the measures were calculated based on zonal systems with 

different number of zones.   
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2.2.2 Characteristics for Macroscopic Crash Analysis 

Various explanatory variables aggregated at zonal level have been investigated by macroscopic 

crash analysis. Generally, the variables can be grouped into five categories: traffic, road network, 

socioeconomic characteristics, commuting characteristics, and land use. The following parts will 

present discussion about different explanatory variables explored in macro-level safety studies.  

(1) Traffic 

Usually, two variables, Vehicle Miles Travelled (VMT) and proportion of heavy vehicle mileage 

are investigated in macro-level study.  The VMT is employed as exposure of traffic and always 

found to have positive effect on crash frequency (Lee et al., 2014; Dong et al., 2015). The 

increased proportion of heavy vehicle mileage reflects rural area where the exposure of traffic is 

comparatively low. Thus, the increased proportion will result in reducing crash frequency (Cai et 

al., 2016). 

(2) Road Network 

Several road networks related information are considered in macroscopic studies: roadway 

density, road functional classification, speed limit, number of lanes of road, lane width, 

pavement condition, intersection types, roundabout, sidewalk, and bike lane. Some variables 

(such as roadway density and proportion of different road functional classification) are found to 

have different impacts on different types of crashes. For example, some studies found that the 

roadway density has a positive relation with total crashes (Noland and Oh, 2004) and slight 
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injury crashes while has a negative association with fatalities (Noland and Quddus, 2004). With 

the increasing proportion of freeway, the total crash will decrease (Noland and Quddus, 2004) 

while the fatalities can increase (Li et al., 2013). Meanwhile, some consistent impacts can be 

observed for some variables. For example, it is revealed that proportion of roadway with poor 

pavement condition can increase crashes (Lee et al., 2015). Besides, the zones with numerous 

intersections would have more crashes (Amoros et al., 2003; Huang et al., 2010). The variables 

length of sidewalk and length of bike lane are usually adopted for pedestrian and bicycle crash 

analysis. Both of the two variables are found to have positive effects on pedestrian and bicycle 

crashes (Cho et al., 2009; Cai et al., 2016). 

(3) Socioeconomic Characteristics 

In terms of sociodemographic characteristics, five types of variables, population, age, gender, 

and land use, are usually employed for crash frequency analysis. The population density can 

reflect traffic exposure and is found to have positive relation with crashes (Ladron de Guevara et 

al., 2004; Permpoonwiwat and Kotrajaras, 2012). Also, Male and young drivers are more likely 

to increase crashes (MacNab, 2004; Li et al., 2013). On the other hand, the order people are tend 

to reduce total crash while they can cause more severe injury crashes (Noland, 2003). 

Furthermore, the impacts of land use have been investigated for different crash types (Noland 

and Quddus, 2004; Wier et al., 2009). Especially, the land use in zones has been associated with 

pedestrian and bicycle crashes-with increases predicted by increasing proportion of land use for 

commercial, mixed use, park, retail, or community uses (Geyer et al., 2006; Kim et al., 2006b; 

Wedagama et al., 2006; Loukaitou-Sideris et al., 2007; Wier et al., 2009).  
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The variables, employment and household income, are usually used as socioeconomic 

characteristics for the analysis. The impacts of different types of employment were explored in 

previous studies (Hadayeghi et al., 2010; Pulugurtha et al., 2013).  The positive effect of 

employment density on crashes was reflected in the studies (Loukaitou-Sideris et al., 2007; Wier 

et al., 2009). Meanwhile, the negative impact of median household income was always observed 

(Siddiqui et al., 2012; Xu and Huang, 2015; Huang et al., 2016).  

(4) Commuting Characteristics 

As for the commuting characteristics, proportion of commuters by different transportation modes 

and commute time are explored in the previous studies. The proportions of commuters by public 

transportation, walking, and bike are always employed for pedestrian and bicycle crash analysis 

and are found to have positive effects on crashes (Graham and Glaister, 2003; Wier et al., 2009; 

Cai et al., 2016). Longer commute time is likely to increase crash frequency since it increase the 

exposure (Abdel-Aty et al., 2013).  

(5) Land Use 

The impacts of different types of land use and proportion of urban area or distance to the nearest 

urban location are also studied for macro-level analysis. Some studies (Kim and Yamashita, 

2002; Wier et al., 2009; Ukkusuri et al., 2012) find that areas with commercial and residential 

land use have a higher frequency of crashes. Besides, urban location is found to be positively 

associated with the crashes, especially pedestrian and bicycle crashes (Siddiqui et al., 2012; Li et 

al., 2013).   
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2.3 Microscopic Safety Study 

As for the microscopic safety studies, wide arrays of researches have been conducted at different 

types of segments and intersections. The impacts of different characteristics such as traffic flow, 

geometry, and signal phase on crashes have been investigated in the previous studies. In the 

subchapter, the safety study at micro-level will be briefly presented.  

2.3.1 Road Facilities for Study 

(1)  Segment 

Abdel-Aty and Radwan  (2000) divided a 227 km long two-lane road into 566 segments based on 

homogeneous characteristics in terms of traffic flow and geometry and they found that the 

variables degree of horizontal curvature, shoulder and median widths, rural/urban classification, 

lane width and number of lanes are strongly related to the accident occurrence. Also, the research 

concluded that to obtain a reliable accident prediction model, sections should be 0.8 km or longer. 

Mayora and Rubio  (2003) developed models for two different types of segments of two-lane 

roads, 1-km fixed length segments and network links joining two consecutive nodes with 

variable lengths ranging from 3 km to 25 km. The significant correlations between crashes and 

access density, average sight distance, average speed limit and proportion of no passing zones 

were revealed in the study. 

Hauer et al.  (2004) analyzed crash frequency on undivided four-lane urban roads. The effects of 

various characteristics, AADT, percentage of trucks, degree and length of horizontal curves, 
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grade of tangents and length vertical curves, lane width, shoulder width and type, roadside 

hazard rating, speed limit, access points, etc, were evaluated. The finding showed that significant 

variables were: AADT, the number of driveways, and speed limit.  

Zhang and Ivan  (2005) evaluated the effects of roadway geometric features on occurrence of 

head-on crashes on two-lane rural roads. Variables found to influence of head-on crashes 

significantly were speed limit, sum of absolute change rate of horizontal curvature, maximum 

degree of horizontal curve, and sum of absolute change rate of vertical curvature. Meanwhile, all 

of these variables except speed limit have positive impacts on the number of head-on crashes. 

Kononov et al.  (2008) investigated the relationship between safety, congestion, and number of 

lanes on urban freeways. It is suggested that adding lanes may initially result in a temporary 

safety improvement that disappeared as congestion increases. Meanwhile, accident will increase 

at a faster rate than would be expected from a freeway with fewer lanes as annual average of 

daily traffic increases. 

Schneider IV et al.  (2010) explored the impacts of horizontal curvature and other geometric 

features on the frequency of single-vehicle motorcycle crashes along segments of rural two-lane 

highways. The findings show that the radius and length of each horizontal curve significantly 

influence the frequency of motorcycle crashes, as do shoulder width, annual average daily traffic, 

and the location of the road segment in relation to the curve.  

Haleem and Gan  (2011) identified and compared the factors that contribute to injury severity on 

urban freeways and arterials. Both traditional (such as traffic volume, speed limit, and road 
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surface condition) and nontraditional (such as crash distance to the nearest ramp location, 

detailed vehicle types, and lighting and weather conditions) factors are explored. The results 

reveal that the increase of the distance of crash to the nearest ramp junction/access point will 

significantly increases the severity of crashes. Also, other significant factors included traffic 

volume, speed limit, at-fault driver’s age, road surface condition, alcohol and drug involvement, 

and left and right shoulder widths are also observed.  

Wang et al.  (2015) analyzed traffic safety on urban arterials using variables including geometric 

design features, land use, traffic volume, and travel speeds. The average speed extracted from 

GPS data from taxi was used in the study. It is found that the higher average speeds are 

associated with higher crash frequencies during peak periods, but not during off-peak periods. 

Besides, several geometric design features including average segment length of arterial, number 

of lanes, presence of non-motorized lanes, number of access points, and commercial land use, are 

found to positively related to crash frequencies.  

(2) Intersection 

Poch and Mannering  (1996) estimated a negative binomial model of the crash frequency at 

intersections. The estimation results uncover important interactions between geometric and 

traffic-related elements and crash frequency.  

Vogt  (1999) explored crashes for different types of intersections on rural roads. The research 

revealed the variables having significant impacts on crashes: major and minor road traffic, peak 

major and minor road left-turning percentage, number of driveways, channelization, median 
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widths, and vertical alignment. As for the signalized intersections, the presence or absence of 

protected left-turn phases and peak truck percentage is also found significant.  

Kim and Washington  (2006) investigated the endogeneity problems for left-turn lanes at 

intersections. The research shows that without accounting for endogeneity, left-turn lanes appear 

to contribute to crashes; however, when endogeneity is accounted; left-turn lanes reduce angle 

crash frequencies as expected by engineering judgment.  

Wang et al.  (2006) studied crash risk at intersections with the consideration of time effects. The 

research identified the variables having significant effects on crash risk. Intersection with heavy 

traffic, a larger total number of lanes, a large number of phases per cycle, and high speed limits 

and those in high population were correlated with high crash frequencies. The intersections with 

more exclusive right-turn lanes with a partial left-turn protection phase had lower crash risks.  

Wang and Abdel-Aty  (2008) divided left-turn crashes at signalized intersections into nine 

patterns based on vehicle maneuvers and then were assigned to intersections approaches. The 

traffic flows to which the colliding vehicles belong are identified to be significant for each 

pattern. However, obvious differences in the other factors that cause the occurrence of different 

left-turn collision patterns were observed. The width of the crossing distance is associated with 

more left-turn traffic colliding with opposing through traffic, but with less left-turning traffic 

colliding with near-side crossing through traffic.  
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Ye et al.  (2009) developed a simultaneous equations model of crash frequencies by collision 

type at rural intersections. Based on the modeling results, the significant common unobserved 

factors across crash types were observed.  

Schneider et al.  (2010) conducted study for pedestrian crashes at intersections. By using 

negative binomial regression, the authors found that significantly more pedestrian crashes 

occurred at intersections with more right-turn-only lanes, more nonresidential driveways with 

50ft, more commercial properties with 0.1mi, and a greater percentage of residents with 0.25mi 

who were younger than age 18 years. Besides, raised medians on both intersecting streets were 

associated with lower number of pedestrian crashes.  

Haleem and Abdel-Aty  (2010) conducted analysis of crash injury severity at three- and four-

legged intersections in the state of Florida. Several important factors affecting crash severity 

were identified. These include the traffic volume on the major approach, the number of through 

lanes on the minor approach, among the geometric factors, the upstream and downstream 

distance to the nearest signalized intersection, shoulder width, number of left turn movements on 

the minor approach, and number of right and left turn lanes on the major approach. 

Pulugurtha and Sambhara  (2011) developed different models of pedestrian crashes at different 

signalized intersections. This study found that socio-demographic characteristics have significant 

effects on pedestrian crashes.  

Dong et al.  (2014a) developed multivariate regression models for crash frequencies by collision 

vehicle types at urban signalized intersections. The results suggest that traffic volume, truck 
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percentage, lighting condition, and intersection angle significantly affect intersection safety. 

Besides, the important differences in car, car-truck, and truck crash frequencies with respect to 

various factors are found to exist between models. 

Agbelie and Roshandeh  (2015) investigated the impacts of signal-related characteristics on crash 

frequency at urban signalized intersections. The study found the significant association between 

signal phase and crash frequency, i.e., a unit increase in the number of signal phases would 

increase crash frequency by 0.4. 

2.3.2 Characteristics for Microscopic Crash Analysis 

A wide array of variables at the microscopic level has been investigated for crash at road 

facilities. Generally, the variables can be grouped into four categories: traffic, geometric features, 

control types, and environment conditions. The following parts will present discussion about 

different explanatory variables explored in micro-level safety studies.  

(1) Traffic Characteristics 

Traffic variable can play a vital role in crash occurrence. Noland and Quddus (2004) used 

proximate variables to represent the different traffic flow scenarios on road segments. The results 

indicated that traffic flow has a high influence on increasing causalities.  

Wang et al. (2017) proposed a joint model to analyze the real-time crash risk and aggregated 

crash count by 5 minutes on freeway. The result suggested that the vehicle count in 5 minutes, 
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average speed, speed standard deviation, lane occupancy standard deviation, and truck 

percentage can affect the crash occurrence. Among the significant variables, the average speed is 

negatively related to crash risk while other variables have positive effects.  

At the intersections, the prior studies indicated that traffic volumes including the AADT at both 

the major and minor road are significant for intersection crashes and are positively correlated 

with crash occurrence (Lee and Abdel-Aty, 2005; Mitra and Washington. 2012; Xie et al., 2013; 

Wang et al., 2017; Lee et al., 2017). 

(2) Geometric Features 

As for geometric features, Miaou et al. (1992) developed a count model to explore the 

relationships between trucks accidents and key highway geometric design variables. The final 

model suggested that annual average daily traffic per lane, horizontal curvature, and vertical 

grade were significantly correlated with truck accident involvement but that shoulder width has 

comparably less correlation.  

Wang and Abdel-Aty (2006) investigate read-end crashes at signalized intersections. The study 

suggested that intersection having more right and left-turn lanes on the major roadway would 

like to have more rear-end crashes. On the other hand, intersections with three legs, having 

channelized or exclusive righr-turn lanes on the minor roadway, with protected left-turn on the 

major roadway, with medians on the minor roadway, and having longer signal spacing might 

have a lower frequency of rear-end crashes.  
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Park et al. (2015) assessed safety effects of different geometric feature related variables on urban 

roadway. The authors found that paved shoulder and wider median are significantly related lower 

crash frequency. 

(3) Control Types 

Roadway and intersection control types can definetely affect crash occurrence while the 

appropriate control types could help improve traffic safety (Cai et al., 2014; Wang et al., 2016). 

Wang and Abdel-Aty (2006) analyzed the rear-end crashes at signalized intersections 

considering the spatial correlation. It was found that intersections having a large number of 

phases per cycle (indicated by the left-turn protection on the minor roadway) and high speed 

limits on the major roadway were prone to have more rear-end crashes.  

Wang et al. (2015) adopted a before-after study of converting a stop-controlled to a signal-

control intersection and installing red light running cameras. The results of the signalization 

show that rear-end crashes were loewer at the early phase after the signalization but gradually 

increased from the 9
th

 month. On the other hand, the angle crashes became higher at the early 

phase after adding red light running cameras but decreased adter the 9
th

 month and then became 

stable.  

Huang et al. (2017) proposed a multivariate spatial model to jointly analyze motor vehicle, 

pedestrian, and bicycle crashes at intersections. The study found that the traffic signal indicator is 

positively associated with all the crash types while the speed limits at both major and minor 

roades only have significant effects on motor vehicle crashes.  
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(4) Environment Conditions 

The environment conditions especially the weather conditions are relevant to crash occurrence. 

Researchers have developed several ways to the effects of weather in the crash frequency models. 

Caliendo et al. (2007) adopted negative multinomial regression models to analyze crashes at a 

four-lane median-divided motorway in Italy. The effects of rain precipitation have been 

considered in this study by using hourly rainfall data and transforming them into binary 

indicators of daily status of the pavement surface (dry or wet). 

Malyshkina et al. (2009) considered multiple weather variables such as precipitation, snowfall 

amounts, temperature averaged over weeks. The results indicated that more crashes would like to 

occur with extreme temperatures (low during winter and high during summer), rain 

precipitations, snowfalls, and low visibility conditions.  

Usman et al. (2010) investigate the relationship between crash frequency during a snow storm 

event with the roadway surface conditions. Weather related variables including visibility, air 

temperature, and total precipitation were considered in the models. It was found that visibility 

was found to be significant with a negative sign in the models while air temperature and 

precipitation became insignificant.  

Yu et al. (2013) investigate mountainous freeway crash by incorporating real-time weather and 

traffic data. The study concluded that the weather condition variables, especially precipitation, 

played a key role in the crash occurrence models.  
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Wu et al. (2017) introduced real-time traffic and weather data to compare crash risk under fog 

and clear condition on freeway roads. The results indicated that crash risk would increase under 

fog conditions; especially the traffic volume was high and on the inner-most lane.  

It should be noted that some studies also included macro-level variables for the analysis of 

segments and intersections. Park et al. (2015) estimated segment-level crash models to evaluate 

the effectiveness of bicycle facilities. The authors included block-group based data including 

population density and income and found they are significantly related to the crash counts at 

segments.  

For the intersections, macroscopic variables such as population density, proportion of young 

population, proportion of old population, proportion of workers commuting by walking, median 

household income, proportion of urbanized area,  and school enrollment density have been 

adopted for the analysis of motor vehicle, pedestrian, and bicycle crashes (Wang et al., 2017; Lee 

et al., 2017). 

2.4  Statistical Methodology 

2.4.1 Statistical Models  

For both macroscopic and microscopic safety analysis, a wide array of statistical techniques has 

been developed. Lord and Mannering  (2010) and Mannering and Bhat  (2014) presented 

summary of the statistical methods for crash frequency analysis. In this proposal, mainly 

statistical models for crash counts have been addressed: Poisson model, negative binomial model, 

Poisson lognormal model, models dealing with spatial spillovers effects and excess zeros. 
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The crash aggregated at a certain level, with any given time interval, are non-negative integer 

events. These integer counts are examined employing count regression models. The Poisson 

model is the traditional starting model for crash frequency analysis (Jovanis and Chang, 1986; 

Joshua and Garber, 1990; Sheather and Jones, 1991; Miaou and Lum, 1993).  

The Poisson model can be calculated by: 

P(𝑦𝑦𝑖𝑖) =
𝐸𝐸𝐸𝐸𝐸𝐸(−𝜆𝜆𝑖𝑖)𝜆𝜆𝑖𝑖𝑦𝑦𝑖𝑖 𝑦𝑦𝑖𝑖!�   (2-1) 

where, P(yi) is the probability of entity i having 𝑦𝑦𝑖𝑖 crashes by given time period and λi is the 

Poisson parameter for the entity (zone, segment, intersection, etc) i, which is equal to entity i’s 

expected number of crashes per year, E[ yi ]. Poisson regression models are estimated by 

estimating the Poisson parameter λi  (the expected number of crashes) as a function of 

explanatory variables: 

𝜆𝜆𝑖𝑖 = 𝐸𝐸𝐸𝐸𝐸𝐸(𝛽𝛽𝐸𝐸𝑖𝑖)   (2-2) 

where, 𝐸𝐸𝑖𝑖 is a vector of explanatory variables and β is a vector of estimable parameters. 

The Poisson model assumes that the mean and variance of the distribution are the same. Thus, 

the Poisson model cannot deal with the over-dispersion (i.e. variance exceeds the mean).  

The negative binomial (NB) or Poisson-gamma is extension of the Poisson model to deal with 

the over-dispersion problem. The NB model relaxes the equal mean variance assumption of 
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Poisson model and allows for over-dispersion parameter by adding an error term,εi, to the mean 

of the Poisson model as: 

𝜆𝜆𝑖𝑖 = exp(𝛽𝛽𝑥𝑥𝑖𝑖 + 𝜀𝜀𝑖𝑖) (2-3) 

Usually, exp (εi) is assumed to be gamma-distributed with mean 1 and variance α so that the 

variance of the crash frequency distribution becomes λi(1 + αλi) and different from the mean λi.  
The NB model has been most widely employed in crash count analysis (Maycock and Hall, 1984; 

Persaud, 1994; Kumala, 1995; Karlaftis and Tarko, 1998; Abdel-Aty and Radwan, 2000; Carson 

and Mannering, 2001; Miaou and Lord, 2003; Alaluusua et al., 2004; Ladron de Guevara et al., 

2004; Lord et al., 2005b; Kim et al., 2006a; Wang et al., 2006; Graham et al., 2010; Abdel-Aty 

et al., 2011a). The NB model can generally account over-dispersion resulting from unobserved 

heterogeneity and temporal dependency, but may be improper for accounting for the over-

dispersion caused by excess zero counts (Rose et al., 2006).  

Recently, a Poisson-lognormal (PLN) model was adopted as an alternative to the NB model for 

crash count analysis.  The model structure of Poisson-lognormal model is similar to NB model, 

but the error term exp (θi) in the model is assumed lognormal distributed. In other words, θi can 

be assumed to have a normal distribution with mean 0 and variance σ2. Several crash studies 

have been conducted using PLN models (Miaou et al., 2003; Aguero-Valverde and Jovanis, 2008; 

Lord and Miranda-Moreno, 2008; Ma et al., 2008; El-Basyouny and Sayed, 2009; Haque et al., 

2010; Abdel-Aty et al., 2013; Lee et al., 2014; Lee et al., 2015). 
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2.4.2 Handling Spatial Spillover Effects 

In macroscopic and microscopic analysis, crashes occurring in a spatial unit or site are 

aggregated to obtain the crash frequency. The aggregation process might introduce errors in 

identifying the exogenous variables for the spatial unit or site. To accommodate for such spatial 

unit or site induced bias, spatial correlation should be considered in the crash model estimates. 

The inclusion of spatial correlation has two main advantages: 1) the spatial correlation model can 

realize the unobserved effects from neighboring sites, thereby improving model parameter 

estimation (Aguro-Valverde and Jovanis, 2008); and 2) spatial correlation can be a surrogate for 

unobserved but relevant covariates, which can reflect unmeasured confounding factors (Dubin, 

1988; Choiu et al., 2014). 

Two approaches to incorporate spatial correlation are considered: (1) spatial error correlation 

effects (unobserved exogenous variables at one location affect dependent variable at the targeted 

and neighboring locations) and (2) spatial spillover effects (observed exogenous variables at one 

location having impacts on the dependent variable at both the targeted and neighboring locations) 

(Narayanamoorthy et al., 2013). Several research efforts have accommodated for spatial random 

error or spatial spillover effects in safety literature (LaScala et al., 2000; Quddus, 2008; Ha and 

Thill, 2011). However, the utility of such spatially lagged dependent variable models, 

particularly for prediction, is limited since observed crash at neighboring spatial units is needed 

as an independent variable in the model.  

Another alternative approach to accommodate the spatial dependency of in the count model is 

the conditional autoregressive model (CAR) (Besag et al., 1991). The Conditional 
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Autoregressive (CAR) model takes account of both spatial dependence and uncorrelated 

heterogeneity with two random variables. Thus, the CAR model seems more flexible and 

appropriate for analyzing crash counts. Usually, the Poisson-lognormal Conditional 

Autoregressive (PLN-CAR) model, which adds a second error component (𝜑𝜑𝑖𝑖) as the spatial 

dependence (as shown below), was adopted for modeling.  

The model can be specified by: 

𝜆𝜆𝑖𝑖 = exp (𝛽𝛽𝑖𝑖𝑥𝑥𝑖𝑖 + 𝜃𝜃𝑖𝑖 + 𝜑𝜑𝑖𝑖) (2-4) 

𝜑𝜑𝑖𝑖  is assumed as a conditional autoregressive prior with Normal (𝜑𝜑𝚤𝚤� ,
𝛾𝛾2∑ 𝑤𝑤𝑘𝑘𝑖𝑖𝐾𝐾𝑖𝑖=1 ) distribution 

recommend by Besag et al.  (1991). The 𝜑𝜑𝚤𝚤�  is calculated by: 

𝜑𝜑𝚤𝚤� =
∑ 𝑤𝑤𝑘𝑘𝑖𝑖𝜑𝜑𝑖𝑖𝐾𝐾𝑖𝑖=1∑ 𝑤𝑤𝑘𝑘𝑖𝑖𝐾𝐾𝑖𝑖=1  (2-5) 

where 𝑤𝑤𝑘𝑘𝑖𝑖 is the adjacency indication with a value of 1 if 𝑖𝑖 and 𝑘𝑘 are adjacent or 0 otherwise.  

Efforts including Aguero-Valverde and Jovanis  (2008), Huang et al.(2010), Lee et al. (2015), 

Siddiqui et al. (2012), and Dong et al. (2016), examine the potentially spatial correlation among 

crash data by employing the CAR models based on traffic analysis zones. According to these 

studies, the spatial models can generally provide consistent results and can better fit the crash 

data based on traffic analysis zones. Cai et al., 2017(a) conducted global Moran’s I test to 

investigate whether spatial correlations existed among crash counts of different zonal systems 

including traffic analysis zone, census tract, and traffic analysis district. It was revealed that 

traffic analysis zone and traffic analysis district based crashes have strong spatial clustering 
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while crashes based on census tract were weakly spatial correlated. Hence, it is expected that the 

spatial CAR model can drastically improve data fit for crashes based on traffic analysis zone and 

traffic analysis district while no significant improvement can be obtained for the crashes based 

on census tract.  

Beside the macroscopic crash analysis, the CAR model has been also adopted for segments and 

intersections at microscopic level. Wang and Abdel-Aty (2006) used the generilized estimating 

equations with the negative binomial link function to model rear-end crash frequencies at 

signalized intersections with the consideration of the spatial correlation among the crash data. 

The modeling results showed that there are high correlations between the spatially correlated 

rear-end crashes. The same study was also conducted by Abdel-Aty and Wang (2006), which 

validated the findings.  

Aguero-Valverde and Jovanis (2008) explored the effect of spatial correlation in models of road 

crash frequency at the segment level. Different segment neighboring structures are tested to best 

fit the crash data. Compared with the model including only heterogeneity (random effects), the 

model with spatial correlation could have better goodness-of-fit. Also, based on the change in the 

estimate of the AADT coefficient and other parameters, the potential of spatial correlation would 

reduce the bias associated with the model misspecification.  

Huang et al. (2017) proposed a multivariate spatial model to simultaneously analye the motor 

vehicle, bicycle, and pedestrian crash frequency at urban intersections. The proposed model can 

account for both the correlation among different modes involved in crashes at individual 

intersection and spatial correlation between adjacent intersections. This study condirmed the 
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highly correlated heterogeneous residuals in modeling crash risk among motor vehicle, bicycle 

and pedestrian crashes.  

Beside the solely spatial correlation considered for either intersections or segments, Zeng and 

Huang (2014) suggested a joint spatial model which can consider the cross-entity spatial 

correlations. The spatial correlations between segments and the connceted intersection were 

found to be more significant than those solely between segments or between intersections. This 

joint modeling structure was also adopted by Wang and Huang (2016) and Huang et al. (2016). 

In addition to the two method presented above, recently, a new method named geographically 

weighted Poisson regression model (GWPR) has been adopted in the crash count studies. The 

GWPR model allows the parameters to vary over space to capture the spatially varying 

relationships in the crash data. The model has been used for traffic safety analysis at the traffic 

analysis zone (Hayayeghi et al. 2010; Zhang et al., 2012; Pirdavani et al., 2013; Zhang et al., 

2015; Xu and Huang, 2015; Shariat-Mohaymany et al., 2015; Amoh-Gyimah ) and county levels 

(Li et al., 2013). It was revealed that the method outperformed the traditional generalized linear 

model in capturing the spatially varying relationship between crash counts and predicting factors.  

2.4.3 Handling Excess Zeros 

One methodological challenge often faced in analyzing count variables is the presence of a large 

number of zeros. The classical count models (such as Poisson and NB) allocate a probability to 

observe zero counts, which is often insufficient to account for the preponderance of zeros in a 

count data distribution. In crash count variable models, the presence of excess zeros may result 
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from two underlying processes or states of crash frequency likelihoods: crash-free state (or zero 

crash state) and crash state (see (Shankar et al., 1997) for more explanation). The zero crash state 

can be a mixture of true zeros (where the zones are inherently safe (Shankar et al., 1997)) and 

sampling zeros (where excess zeros are results of potential underreporting of crash data (Miaou, 

1994)). In presence of such dual-state, application of single-state model (Poisson and negative 

binomial) may result in biased and inconsistent parameter estimates. 

In econometric literature, two potential relaxations of the single-state count models are proposed 

for addressing the issue of excess zeros. The first approach – the zero inflated (ZI) model - is 

typically used for accommodating the effect of both true and sampling zeros, and has been 

employed in several transportation safety studies (Shankar et al., 1997; Chin and Quddus, 2003). 

The second approach - the Hurdle model - is typically used in the presence of sampling zeros and 

has seldom been used in transportation safety literature. The two approaches differ in the 

approach employed to address the excess zeros. The appropriate framework for analysis might 

depend on the actual empirical dataset under consideration. In the traffic safety field, the zero-

inflated model has been often applied to explore the relationship between crash counts and the 

covariates. However, the hurdle model has rarely been adopted in traffic safety literature. Table 

2-1 presents a summary of previous studies that have considered zero-inflated and hurdle models 

to analyze crashes. The table provides information on type and severity of crash analyzed, spatial 

and temporal unit of analysis and the data collection duration. From the table, it is evident that all 

the existing zero-inflated and hurdle studies are conducted at a micro-level such as segment and 

intersection except for Brijs et al. (2006) and Cai et al., (2016), which conducted crash analysis 

at macro-level by assigning crashes to the closest weather station. Second, with the exception of 

study (Hu et al., 2011; Hosseinpour et al., 2013; Hosseinpour et al., 2014), the range of 
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observation of the study period is one year or less, that may explain the preponderance of zeros 

in the data (Lord et al., 2005a). Third, the zero-inflated model always offers better statistical fit 

to crash data.  

To be sure, several research studies have criticized the application of zero-inflated model for 

traffic safety analysis (Lord et al., 2005a; Lord et al., 2007; Kweon, 2011). The authors question 

the basic dual-state assumption for crash occurrence and have conducted extensive analysis at 

the micro-level and indicated that the development of models with dual-state process is 

inconsistent with crash data at the micro-level. While the reasoning behind the “non-applicability” 

is plausible for micro-level the reasoning does not necessarily carry over to the macro-level crash 

counts. For example, at the macro-level it is possible to visualize dual-state data generation with 

some macro-level units having zero pedestrian and bicyclist crashes – possibly because these 

spatial units have no pedestrian and bicycle demand (because of lack of walking and cycling 

infrastructure). In such cases the dual-state representation will allow us to identify spatial units 

that are likely to have zero cases as a function of exogenous variables (for example very low 

walking and cycling infrastructure might result in the higher probability of a zero state). Hence, 

we have considered the possible existence of dual-state models for pedestrian and bicycle 

crashes at the macro level in our research. If the data generation does support the dual-state 

models, ignoring the excess zeros and estimating traditional NB models will result in biased 

estimates.  
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Table 2-1 Summary of Previous Traffic Safety Studies Using Dual-State Models 

Methodology Study Crash types Spatial Unit Temporal Unit Number of Study Years 

Zero-inflated 

Shankar et al.  (1997) Total crashes Road segment 2 years 2 years 

Miaou  (1994) Truck crashes Road segment 1 year 5 years 

Chin and Quddus  (2003) Total/pedestrian/motorcycle crashes Signalized intersection 1 year 1 year 

Brijs et al.  (2006) Total crashes Weather station 1 hour 1 year 

Hu et al.  (2011) Total crashes Railroad-grade crossing 3 years 3 years 

Carson and Mannering  

(2001) 
Crashes in ice condition Road segment 1 year 3 years 

Lee and Mannering  (2002) Run-off-roadway crashes Road segment 1 month 3 years 

Mitra et al.  (2002) Head-to-side/head-to-rear crashes Signalized intersection 1 year 8 years 

Kumara and Chin  (2003) Total crashes Signalized intersection 1 year 9 years 

Shankar et al.  (2004) Pedestrian crashes Road segment 1 year 1 year 

Qin et al.  (2004) Single-vehicle/multi-vehicle crashes Road segment 1 year 4 years 

Huang and Chin  (2010) Total crashes Signalized intersection 1 year 8 years 

Jang et al.  (2010) Total crashes Road segment 1 year 1 year 

Dong et al.  (2014b) Truck/Car crashes Intersection 1 year 5 years 

Dong et al.  (2014c) Crashes by severity Intersection 1 year 5 years 

Hurdle 

Hosseinpour et al.  (2013) Pedestrian crashes Road segment 4 years 4 years 

Hosseinpour et al.  (2014) Head-on crashes Road segment 4 years 4 years 

Kweon  (2011) Total crashes Road segment < 1 hour 6 years 

 

34 

 



     

2.4.4 Handling Multilevel Effects 

A variety of factors can potentially affect the likelihood of crash occurrence including human 

elements such as gender, age, and driver-passenger-related behaviors, vehicle characteristics 

such as vehicle-type and model year, safety-feature indicators, road characteristics such as 

median barrier presence, type indicators, shoulder and lane widths, and curves, traffic 

characteristics such traffic volume, traffic vehicle mix, speed-related measurements, naturalistic 

driving data, environmental characteristics such as time of day, weather conditions, and lighting 

conditions (Mannering et al., 2016). The potential factors may be from multiple levels.  

Huang and Abdel-Aty (2010) proposed a five-level hierarchy (i.e., geographic region level, 

traffic site level, traffic crash level, driver vehicle unit level, and occupant level) to represent the 

general framework of multilevel data structures in crash data. This study suggested that factors 

affecting crash occurrence are from multiple levels and from both macroscopic and microscopic 

levels. The macroscopic level includes the top three levels: geographic region level, traffic site 

level, and traffic crash level while the microscopic level concerns the bottom three levels: traffic 

crash level, driver vehicle unit level, and occupant level. The hierarchical technique was 

suggested to account for the multilevel effects of crash frequency. The hierarchical modeling is a 

statistical technique which allows parameters estimates based on a multiple modeling structure 

(Gelman and Hill, 2007). 

Shankar et al. (1998) estimated a hierarchical model by including site –specific random effects 

and time indicators into the negative binomial model to evaluate the effect of median crossover 

on the crash occurrence. It was showed that the inclusion of site and time indicator can 
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significantly improve performance of modeling results. Remarkably, the model was the first 

application in traffic safety study. 

Jones and Jorgensen (2003) estimated hierarchical models for fatal and severe crashes in Norway. 

The benefits of using hierarchical modeling technologies to analyze crash data were discussed 

along with the limitations of traditional regression modeling approaches.  

Haque et al. (2010) estimated different hierarchical Poisson models for the crash data accounting 

for the site-specific correlation at signalized intersections. It was found that the hierarchical 

model allowing autoregressive lag-1 dependence specification in the error term is the most 

suitable.  

Ahmed et al. (2011) employed Bayesian hierarchical models to account for seasonal and spatial 

correlations at freeway segment. Such approach was also adopted by Yu et al. (2013) to 

investigate the real-time weather and traffic effects on the crashes of mountainous freeway in 

two different seasons. 

Wang and Huang (2016) developed a Bayesian hierarchical joint model for both segments and 

intersections. The proposed model accounted for two-level effects of microscopic variables 

related to road facilities and traffic volume and macroscopic variables such as socioeconomic, 

trip generation, and network density. In addition, spatial correlation between segments and 

intersections were considered in the proposed model. By comparing the prosed hierarchical 

model with the previous joint model and a negative binomial model, it was concluded that the 

hierarchical model outperforms the joint model and negative binomial model in terms of the 
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goodness-of-fit, which suggested the reasonableness of accounting for the multilevel effects in 

the crash data analysis.  

Lee et al. (2017) estimated multiple hierarchical models for total, severe, pedestrian, and bicycle 

crashes at intersections with macro-level data of several spatial units including census block, 

census block group, traffic analysis zone, census tract, ZIP-code tabulation area, traffic analysis 

district, census county division, and county. The results indicated that considering macro-level 

effects from ZIP-code tabulation area can provide best model performance for total, severe, and 

bicycle crashes, and including the census-tract-based effects can better explain the pedestrian 

crashes. It was also uncovered that the intersection crash models can be drastically improved by 

considering macro-level effects, even only including random effects for macro-level entities.  

2.4.5 Handling Correlations between Crash Types 

The frequency of different crash types occurred in the same zones and road facilities could be 

inter-related with each other. For example, all crashes with different types (head-on, rear-end, 

angular, collision with a stationary object, etc.) at the intersections could be affected by the 

signal control of the intersection and road geometry (Mannering and Bhat, 2014). In the previous 

literature, a variety of studies have adopted advanced multivariate for multiple crash types to 

recognize the correlation between the dependent variables.  

For example, Song et al. (2006) developed Bayesian multivariate models to account for the 

interaction in different crash types (i.e., intersection, intersection-related, driveway access, and 

non-intersection) at the county level.  
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Ma and Kockelman (2006) adopted a multivariate Poisson model to simultaneously analyze 

crash counts within different severity levels by using a Bayesian technology, which could 

provide a systematic approach to estimate count data correlated with each other.  

Park and Lord (2007) adopted the multivariate Poisson-lognormal model (MVPLN) to analyze 

crash frequency by severity levels. It was indicated that the MVPLN model would be able to 

account for the over-dispersion of the discrete crash data.  

The same approach was adopted by EI-Basyouny and Sayed (2009) to jointly investigate crash 

frequency for different severity levels. A comparison analysis was conducted with the univariate 

models by using the goodness-of-fit measures and hazardous location identification. The results 

indicated that the MVPLN model can provide better performance compared with the univariate 

models.  

Ye et al., (2009) also estimated multivariate Poisson models to analyze different crash types at 

the same time. The unobserved correlation effects have been recognized through the error 

covariance.  

Wang and Kockelman (2013) proposed and developed a multivariate Poisson log-normal CAR 

model for pedestrian crashes based on census tracts and revealed the correlation across different 

severity levels of pedestrian crashes.  
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Lee et al. (2015a) estimated multivariate Poisson-lognormal models to analyze motor-vehicle, 

pedestrian, and bicycle crashes. Within unobserved sheared factors of geographic units, the 

dependencies across the different crash types were recognized.  

Lee et al. (2015b) developed multivariate models to simultaneously analyze pedestrian crashes 

based on pedestrian crashes per crash location ZIP (ZIP code areas at which pedestrian crashes 

occurred) and crash-involved pedestrians per residence ZIP (ZIP code areas where the crash-

involved pedestrians resided in). It was revealed that the product of ‘Log of population’ and ‘Log 

of vehicle miles travelled (VMT)’ which can reflect both population and traffic volume at the 

same time was the best exposure variable for pedestrian crashes per crash location’s ZIP, 

whereas ‘Log of population’ was the best exposure variable for crash-involved pedestrian per 

residence ZIP. A random term was also found significant across the two models indicating the 

existence of correlation between the two dependent variables.  

Furthermore, Nashad et al. (2016) developed a multivariate model by adopting a copula based 

bivariate negative binomial model for pedestrian and bicyclist crash frequency analysis. The 

authors found that the pedestrian crash count and the bicyclist crash count are more highly 

correlated with each other in a zone with more public transit commuters and higher school 

enrollment density. 

Beside the multivariate modeling technology, Lee et al. (2016) proposed a framework where the 

impacts of exogenous variables are directly related to all count variables of interest 

simultaneously i.e. the framework where the observed propensities of crashes by different 
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transportation mode interact directly. The authors adopted a multinomial factional split model to 

explore the proportion of crashes (not frequency) by crash of different transportation modes.  

Meanwhile, Yasmin et al. (2016) explored the dependencies between crashes of different 

severity levels with the same approach. The factional split modeling approach can explore the 

interaction between different crash types by providing more insights on the impact of exogenous 

variables on crash proportions.  

In the earlier research, the interaction across different crash counts can be examined through 

either unobserved effects (count model) or exogenous variables (fractional split model). 

However, the direct interaction of crash counts still cannot be determined. For example, it is not 

clear the amount of total crashes in a zone can interact with the amount of pedestrian or bicycle 

crashes. 

2.4.6 Handling Unobserved Heterogeneity 

As introduced in the previous sections, a wide array of variables has been collected for the crash 

analysis. With commonly collected data, some of the factors which can affect crash occurrence 

may not available, resulting in variation in the impact of the effects of collected variables on the 

collision likelihood (Mannering et al., 2016). The unavailable factors would contribute to the 

unobservable heterogeneity in the crash modeling analysis. The effects of observable variables 

would be restricted to be the same across all observation if unobserved heterogeneity is ignored. 

Then, the model estimates could be biased and misleading. In the previous study, there are 
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generally two general approaches to account for unobserved heterogeneity: random parameter 

and latent segmentation.  

The random parameters approach has been widely adopted in the previous studies at both macro- 

and micro-levels. The idea of the random parameters approach is that the heterogeneity from one 

observation to another is considering by allowing each estimated parameter to vary across all 

observations based on specified continuous distribution (such as normal distribution). A simple 

random parameter model would only allow the constant term varies across alternative, which has 

been adopted in an abundance of researches (Shankar et al., 1998; Miaou and Lord, 2003; 

Flahuat et al., 2003; Miaou et al., 2009; Wang and Abdel-Aty, 2006; Aguero-Valverde and 

Jovanis, 2006; Kim et al., 2007; Aguero-Valverde and Jovanis, 2008; Li et al., 2008; Guo et al., 

2010; Aguero-Valverde and Jovanis, 2010; Ahmed et al., 2011; Yu et al., 2013; Yu and Abdel-

Aty, 2013; Xie et al., 2014; Lee et al., 2015a, Lee et al., 2015b; Cai et al., 2017 ). Other studies 

assumed that all parameters have different distributions and a variety of distributions can be 

tested to determine which would provide the best statistical fit (Anastasopoulos and Maneering, 

2009; EI-Basyouny and Sayed, 2009; Granowski and Maneer, 2011; Venkataraman et al., 2011; 

Ukkusuri et al., 2011; Mitra and Washington, 2012; Wu et al., 2013; Bullough et al., 2013; 

Castro et al., 2012; Naraysnamoorthy et al., 2013; Bhat et al., 2014a; Bhat et al., 2014b; 

Venkateraman et al., 2013; Chen and Tarko 2014; Xu and Huang, 2014;  Venkataraman et al., 

2014; Barua et al., 2015; Coruh et al., 2015; Barua et al., 2016; Buddhavarapu et al., 2016; Xu et 

al., 2017).  

On the other hand, the latent segmentation approach addresses the unobserved heterogeneity by 

assuming finite mixtures (latent classes). This approach, instead of assuming heterogeneity vary 
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across all observation, seeks to identify clusters of observations with homogeneous observable 

variable effects in each cluster. A parametric requires a parametric model structure such as 

negative binomial with a logit model. Such approach has been adopted in several studies to 

examine heterogeneity in crash data (Park and Lord, 2009; Park et al., 2010; Peng and Lord, 

2011; Zou et al., 2013; Zou et al., 2014; Yasmin et al., 2014; Yasmin et al., 2016; Buddhavarapu 

et al., 2016).  

It should be noted that several studies criticized that the modeling results accounting for 

unobserved heterogeneity will not be transferable to different locations since the individual 

parameter vector associated with each data observation is unique to another. To admit, the 

random parameter modeling result may be not very easy to be transformed from one data set to 

other data sets. However, the unobserved heterogeneity could be presented at the individual level 

by the random parameter model. As for the fixed-parameters model, the transferability could also 

be problematic since the model estimates would be likely to be biased and the bias will be a 

function of unobserved heterogeneity.  

2.5  Summary 

Considerable studies have been conducted to analyze traffic crashes at both macroscopic and 

microscopic levels. At the macroscopic level, many studies have been conducted for different 

modes-vehicle (automobiles and motorbikes), pedestrian and bicycle and based on different 

zonal systems such as block groups, census tracts, or traffic analysis zones. There are several 

issues in the macroscopic crash analysis: 1) spatial autocorrelation, 2) modifiable areal unit 

problem, 3) excess zeros, 4) unidentified effects of explanatory variables. First, spatial 
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autocorrelation generally exists among zones in close proximity and should be considered in the 

crash analysis. Second, clear guidelines for the appropriate zonal system selection for safety 

analysis should be suggested to deal with the modifiable areal unit problems. Third, appropriate 

models should be suggested to deal with traffic analysis zone based pedestrian and bicycle 

crashes, which have excess zeros. Lastly, the different effects of explanatory variables on drivers 

and pedestrians or bicyclists should be thoroughly explored for pedestrian and bicycle crashes. 

As for the microscopic crash analysis, the impacts of variables such as traffic, geometry, and 

signal control on crashes have been analyzed. However, most studies omitted the macroscopic 

data, which may result in biased and inconsistent parameter estimates. The hierarchical model 

might be appropriate to investigate the macro-level effects for the crash analysis for segments 

and intersections. Besides, the potentially spatial autocorrelation should be considered between 

segments and intersections. 

Previous studies have explored traffic safety at either the macroscopic or microscopic level, i.e., 

to the best of the author’s knowledge no study has integrated the two levels. If traffic safety 

research is conducted for the same study area, macro- and micro-level crash analyses would 

investigate the same crashes but by different aggregation levels. Hence, we can assume that the 

crash counts at the two levels are correlated. Therefore, an integrated crash frequency analysis 

would improve the model performance for both levels and can help in better understanding the 

crash mechanism as well.   
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CHAPTER 3: PEDESTRIAN AND BICYCLE CRASH ANALYSIS 

BASED ON TRAFFIC ANALYSIS ZONES 

3.1 Introduction 

As stated in the previous chapter, there are numerous studies to deal with preponderance of zeros 

in microscopic crash analysis. However, very limited analysis has been conducted for the excess 

of zero at macroscopic level. In this chapter, macroscopic analysis about non-motorized crashes 

is presented along two directions: (1) evaluate the viability of dual-state models for non-

motorized crash analysis at macro-level; and (2) introduction of spatial independent variables 

accounting for spatial spillover effects on crash frequency. Towards this end, conventional 

single-state model (i.e., NB) and two dual-state models (i.e., zero-inflated NB (ZINB) and hurdle 

NB (HNB)) with and without spatial independent variables are developed for both pedestrian and 

bicycle crashes at a TAZ level in Florida. Overall, 6 model structures are estimated for 

pedestrian and bicycle crashes - NB model without/with spatial effects (aspatial/spatial NB), 

ZINB model without/with spatial effects (aspatial/spatial ZINB), and HNB model without/with 

spatial effects (aspatial/spatial HNB). The model development process considers a sample for 

model calibration and a hold-out sample for validation. A comparison exercise is undertaken to 

identify the superior model in model estimation and validation. Finally, average marginal effects 

are computed for the best model to assess the effect of different factors, including the spatial 

variables on crash occurrence. 

This chapter is organized into six sections. The second section discusses the research 

methodology. The following section describes the data used. The forth section presents the 
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modeling results and the fifth section computes the marginal effects of the significant variables. 

Finally, the sixth section concludes this chapter.  

3.2  Methodology 

3.2.1 Single-state models 

The Poisson model is the traditional starting model for crash frequency analysis (Lord and 

Mannering, 2010). The Poisson model assumes that the mean and variance of the distribution are 

the same. Thus, the Poisson model cannot deal with the over-dispersion (i.e. variance exceeds the 

mean). The NB model relaxes the equal mean variance assumption of Poisson model and allows 

for over-dispersion parameter by adding an error term,εi, to the mean of the Poisson model as: 

𝜆𝜆𝑖𝑖 = exp(𝛽𝛽𝑖𝑖𝑥𝑥𝑖𝑖 + 𝜀𝜀𝑖𝑖) (3-1) 

where λi is the expected number of Poisson distribution for entity i, xi is a set of explanatory 

variables, and βi  is the corresponding parameter. Usually, exp (εi) is assumed to be gamma-

distributed with mean 1 and variance α so that the variance of the crash frequency distribution 

becomes λi(1 + αλi) and different from the mean λi. The NB model for the crash count yi of 

entity i is given by 

𝐸𝐸(𝑦𝑦𝑖𝑖)=
Г�𝑦𝑦𝑖𝑖+1𝛼𝛼�Г(𝑦𝑦𝑖𝑖+1)Г�1𝛼𝛼� � 𝛼𝛼𝜆𝜆𝑖𝑖1+𝛼𝛼𝜆𝜆𝑖𝑖�𝑦𝑦𝑖𝑖 (

11+𝛼𝛼𝜆𝜆𝑖𝑖)1𝛼𝛼 (3-2) 

where yi is the number of crashes yi of entity i and Г(∙) refers to the gamma function. The NB 

model can generally account over-dispersion resulting from unobserved heterogeneity and 

temporal dependency, but may be improper for accounting for the over-dispersion caused by 

excess zero counts (Rose et al., 2006).  
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3.2.2 Dual-state models  

(1) Zero-inflated model 

The zero-inflated models assume that the data have a mixture with a degenerate distribution 

whose mass is concentrated at zero (Lambert, 1992). The first part of the mixture is the extra 

zero counts and the second part is for the usual single state model conditional on the excess zeros. 

The zero-inflated NB model can be regarded as an extension of the traditional NB specification 

as: 

𝑦𝑦𝑖𝑖~ �0,               𝑤𝑤𝑖𝑖𝑤𝑤ℎ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑝𝑝𝑖𝑖𝑤𝑤𝑦𝑦 𝑝𝑝𝑖𝑖 𝑁𝑁𝑁𝑁,           𝑤𝑤𝑖𝑖𝑤𝑤ℎ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑝𝑝𝑖𝑖𝑤𝑤𝑦𝑦 1− 𝑝𝑝𝑖𝑖   (3-3) 

The logistic regression model is employed to estimate pi, 

𝑝𝑝𝑖𝑖 =
exp (𝛽𝛽𝑖𝑖′𝑥𝑥𝑖𝑖)

1 + exp (𝛽𝛽𝑖𝑖′𝑥𝑥𝑖𝑖) (3-4) 

where βi′ is the corresponding parameter.  

Substituting Eq. (3-2) into Eq. (3-3) we can define ZINB model for crash counts yi of entity 𝑖𝑖 as  

𝐸𝐸(𝑦𝑦𝑖𝑖) = ⎩⎪⎨
⎪⎧𝑝𝑝𝑖𝑖 + (1− 𝑝𝑝𝑖𝑖)(

1

1 + 𝛼𝛼𝜆𝜆𝑖𝑖)1𝛼𝛼,                                   𝑦𝑦𝑖𝑖 = 0

(1− 𝑝𝑝𝑖𝑖) Г �𝑦𝑦𝑖𝑖 +
1𝛼𝛼�Г(𝑦𝑦𝑖𝑖 + 1)Г �1𝛼𝛼� (𝛼𝛼𝜆𝜆𝑖𝑖)𝑦𝑦𝑖𝑖

(1 + 𝛼𝛼𝜆𝜆𝑖𝑖)(𝑦𝑦𝑖𝑖+1𝛼𝛼)
,              𝑦𝑦𝑖𝑖 > 0

 (3-5) 
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(2) Hurdle models 

The Hurdle models, proposed by Mullahy  (1986), can be regarded as two-part models. The first 

part is a binary model dealing with whether the response crosses the “hurdle”, and the second 

part is a truncated-at-zero count model. Assume that the first hurdle part of process is governed 

by function f1  and the second count process follows a truncated-at-hurdle function f2 . The 

Hurdle models are defined as follows: 

𝐸𝐸(𝑦𝑦𝑖𝑖) = �𝑓𝑓1(0) = 𝑝𝑝𝑖𝑖,                      𝑦𝑦𝑖𝑖 = 0

(1− 𝑓𝑓1(0))
𝑓𝑓2(𝑗𝑗)

1− 𝑓𝑓2(0)
, 𝑦𝑦𝑖𝑖 > 0

 (3-6) 

Hurdle NB model is obtained by specifying f2(∙) as the NB distribution. Substitution Eq. (3-2) 

into Eq. (6) will result in ZINB model as follows: 

𝐸𝐸(𝑦𝑦𝑖𝑖) = ⎩⎪⎨
⎪⎧𝑝𝑝𝑖𝑖,                                                                                                        𝑦𝑦𝑖𝑖 = 0

(1− 𝑝𝑝𝑖𝑖)(1− 1

(1 + 𝛼𝛼𝜆𝜆𝑖𝑖)1𝛼𝛼)
Г �𝑦𝑦𝑖𝑖 +

1𝛼𝛼�Г(𝑦𝑦𝑖𝑖 + 1)Г �1𝛼𝛼� (𝛼𝛼𝜆𝜆𝑖𝑖)𝑦𝑦𝑖𝑖
(1 + 𝛼𝛼𝜆𝜆𝑖𝑖)(𝑦𝑦𝑖𝑖+1𝛼𝛼)

, 𝑦𝑦𝑖𝑖 > 0
 (3-7) 

 As in the zero-inflated model, logistic regression will be applied for modeling pi. 
3.3  Data Preparation 

Pedestrian and bicycle involved crashes that occurred in Florida in the period of 2010-2012 were 

compiled for the analysis. The State of Florida has 8,518 TAZs, with about 16,240 pedestrian 

and 15,307 bicycle crashes recorded. Among the TAZs, as shown in Figure 3-1, 46.18% of them 

have zero pedestrian crash while 49.86% of them didn’t have any bicycle crashes. The 

explanatory variables considered for the analysis can be grouped into three categories: traffic 
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(such as VMT (Vehicle-Miles-Traveled), proportion of heavy vehicle in VMT), roadway (such 

as signalized intersection density, length of bike lanes and sidewalks,), and socio-demographic 

characteristics (such as population density, proportion of families without vehicle, etc.).  

As highlighted earlier, the current analysis focuses on accommodating the impact of neighboring 

TAZs on the crash frequency models. Towards this end, for every TAZ, the TAZs that are 

adjacent are identified. Based on the identified neighbors, a new variable based on the value of 

the each exogenous variable from surrounding TAZs is computed. The variables thus created 

capture the spatial spillover effects of the neighboring TAZs on crash frequency. The descriptive 

statistics of the crash counts and independent variables are summarized in the following table. 

Specifically, the table provides the values at a TAZ level as well as for the neighboring TAZ 

variables.  

  

Figure 3-1 Pedestrian and bicycle crashes based on TAZs 
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Table 3-1 Descriptive statistics of collected data  

Variables name 
Targeted TAZs Neighboring TAZs 

Mean S.D. Max
a
 Mean S.D. Max

a
 

Crash variables 

Pedestrian crash 1.907 3.315 39.000 - - - 

Bicycle crash 1.797 3.309 88.000 - - - 

Traffic & roadway variables 

VMT 31381.0 41852.3 684742.8 195519.7 169120.3 2103376.3 

Proportion of heavy vehicle in VMT 0.067 0.052 0.519 0.070 0.045 0.350 

Proportion of length of arterial roads 0.221 0.275 1.000 0.144 0.125 1.000 

Proportion of length of collectors 0.191 0.246 1.000 0.156 0.136 1.000 

Proportion of length local roads 0.572 0.329 1.000 0.680 0.200 1.000 

Signalized intersection density (number of  

signalized intersections per mile) 
0.227 0.578 8.756 0.378 5.552 495.032 

Length of bike lanes 0.303 1.096 28.637 1.909 3.847 38.901 

Length of sidewalks 0.993 1.750 25.683 6.304 6.745 77.720 

Socio-demographic  variables 

Population density 2520.3 4043.3 63069.0 2330.2 3489.7 57181.9 

Proportion of families without vehicle 0.095 0.123 1.000 0.095 0.108 1.000 

School enrollments density 775.02 5983.05 255147.24 684.22 2900.54 102285.73 

Proportion of urban area 0.722 0.430 1.000 0.650 0.434 1.000 

Distance to the nearest urban area 2.140 5.441 44.101 - - - 

Hotels, motels, and timeshare rooms density 172.49 941.71 32609.84 121.678 528.078 11397.148 

No of total employment 1140.10 1722.45 31932.15 6917.245 6725.135 76533.000 

Proportion of industry employment 0.176 0.232 1.000 0.183 0.177 1.000 

Proportion of commercial employment 0.299 0.235 1.000 0.305 0.177 1.000 

Proportion of service employment 0.525 0.257 1.000 0.495 0.186 1.000 

No of commuters by public transportation 18.813 54.273 934.000 119.582 246.299 3559.985 

No of commuters by cycling 5.894 19.804 775.000 90.869 128.399 1902.135 

No of commuters by walking 14.354 34.680 1288.000 37.566 74.484 1634.530 
a
 The minimum values for all variables are zero. 
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3.4 Modeling Results and Discussion 

3.4.1 Goodness of fit 

In this study, from the 8518 TAZs, 80% of them were randomly selected for models calibration 

and 20% were used for validation of the estimated models. The overall model estimation process 

involved estimating six models - 3 model types (NB, ZINB, and HNB models) with and without 

spatial independent variables of neighboring TAZs for pedestrian and bicycle crashes. Prior to 

discussing the model results, we present the goodness of fit measures of the estimated models in 

Table 4-2. The table presents the Log-likelihood, Akaike Information Criterion (AIC) and 

Bayesian Information Criterion (BIC) - for the 6 models for estimation and validation samples. 

Several observations can be made from the results presented in Table 4-2.. First, across 

pedestrian and bicycle crash models, the models with spatial independent variables offer 

substantially better fit compared to models without spatial independent variables. The results 

validate our hypothesis that characteristics of adjacent TAZs improve our understanding of crash 

frequency in the target TAZ. Second, the exact ordering alters between ZINB and HNB in some 

cases based on log-likelihood and AIC. However, the ZINB model offers the best fit across all 

model structures based on the BIC. Among aspatial and spatial models, the ZINB model always 

has the lowest BIC value indicating strong difference between ZINB and other models. The 

ZINB improves data fit with only a small increase in number of parameters. Hence, in terms of 

our results, we can conclude that the ZINB offers the best statistical fit for pedestrian and bicycle 

crashes. Third, in validation exercise, it is further reinforced that ZINB offers the best data fit.  
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Table 3-2 Comparison of goodness-of-fits between different models 

Pedestrian Crash 

 
NB ZINB HNB 

Calibration (N=6815) Aspatial Spatial Aspatial Spatial Aspatial Spatial 

No of parameters 15 17 20 22 24 28 

Log-likelihood   -9972.4 -9926.6 -9944.3 -9890 -9964.4 -9912.5 

AIC 19974.7 19887.3 19928.5 19824 19976.8 19881 

BIC 20077.1 20003.3 20065.1 19974.2 20140.7 20072.2 

Validation (N=1703) Aspatial Spatial Aspatial Spatial Aspatial Spatial 

No of parameters 15 17 20 22 24 28 

Log-likelihood   -2680.5 -2662.4 -2449.9 -2437.8 -2464.3 -2459.4 

AIC 5391 5358.8 4939.7 4919.5 4976.5 4974.8 

BIC 5472.6 5451.2 5048.5 5039.2 5107.1 5127.1 

Bicycle Crash 

 
NB ZINB HNB 

Calibration (N=6815) Aspatial Spatial Aspatial Spatial Aspatial Spatial 

No of parameters 14 19 18 22 25 33 

Log-likelihood   -9412.4 -9326.0 -9385.6 -9309.0 -9387.2 -9286.3 

AIC 18852.9 18689.9 18807.2 18662.1 18824.3 18638.6 

BIC 18948.5 18819.6 18930.1 18812.3 18995 18863.9 

Validation (N=1703) Aspatial Spatial Aspatial Spatial Aspatial Spatial 

No of parameters 14 19 18 22 25 33 

Log-likelihood   -2771.6 -2785.9 -2393.4 -2355.6 -2396.4 -2364.8 

AIC 5571.2 5609.8 4822.8 4755.2 4842.8 4795.7 

BIC 5647.4 5713.2 4920.7 4874.9 4978.8 4975.2 

 

3.4.2 Modeling Results 

The results of six models (3 model types with and without spatial independent variables of 

neighboring TAZs) for pedestrian and bicycle crashes are displayed in Table 3-3 and Table 3-4 

separately. The results for NB models only have the count frequency component. For zero-

inflated and hurdle models, the modeling results consist of two components: (1) logistic model 

component for zero state and (2) the count frequency component. While the results for all 6 
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models for pedestrians and bicycle crashes are presented, the discussion focuses on the ZINB 

model with spatial independent variables that offers the best fit.  

(1) Pedestrian crash models for TAZs 

For ZINB model with spatial independent variables, twelve independent variables of targeted 

TAZs and four spatial independent variables are significant in the count component. The VMT 

variable is a measure of vehicle exposure and as expected increases the propensity for pedestrian 

crashes. However, with increase in heavy vehicle VMT, the likelihood of pedestrian traffic in 

these TAZs drops substantially thus negatively influencing crash frequency. Population density 

and total employment variables are surrogate measures of pedestrian exposure (Siddiqui et al., 

2012). Hence, it is expected that these variables have positive impacts on crash frequency. The 

variables proportion of local roads by length, signalized intersection density, and length of 

sidewalks are reflections of pedestrian access and are likely to increase crash frequency. The 

number of hotels, motels and timeshare rooms reflects land use characteristics that are likely to 

encourage walking in the vicinity increasing pedestrian exposure. It is observed that in TAZs 

with higher number of commuters by walking and public transportation, the propensity for 

pedestrian crashes is higher. The commuters by walking and public transportation reflect zones 

with higher pedestrian activity resulting in increased crash risk (Abdel-Aty et al., 2013). As the 

distance of the TAZ centroid from the nearest urban region increases, pedestrian crash risk 

reduces – a sign of low pedestrian activity in the suburban regions.  

Among the significant spatial spillover variables, the proportion of service employment 

corresponds to land use characteristics that attract pedestrians. Interestingly, the impact of 
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signalized intersection density of neighboring TAZs is found to be negatively associated with 

pedestrian crash frequency. This result is in contrast to the impact of the same variable for the 

targeted TAZ. A plausible explanation could be that, in TAZs with increased signalization in the 

neighborhood, drivers are expecting pedestrians and are likely to be alert reducing potential 

crashes whereas in TAZs with high signal intersection density but lower signal density in the 

neighborhood zones, the drivers are not expecting pedestrians thus reducing the benefit of 

signalization. The proportion of families without vehicles in the vicinity of TAZ represents 

captive individuals that are forced to use public transit and pedestrian/bicycle modes. Thus 

increased presence of such families is likely to increase pedestrian crash risk. Higher number of 

commuters by public transportation in the neighboring TAZs results in increased impact on crash 

frequency.  

In the probabilistic component, only the length of sidewalks, number of total employment, and 

number of commuters by public transportation of the targeted TAZs are significant. As expected, 

these three variables are negatively associated with the propensity of zero pedestrian crashes. As 

these variables serve as surrogates for pedestrian activity, it is expected that TAZs with higher 

levels of these variables are unlikely to be assigned to the zero crash state. Interestingly, no 

spatial spillover effects are found to be significant in the probabilistic part. 
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Table 3-3 Models results for pedestrian crash of TAZs 

 
NB ZINB HNB 

Count Model Aspatial Spatial Aspatial Spatial Aspatial Spatial 

Parameter Est. S.E. Est. S.E. Est. S.E. Est. S.E. Est. S.E. Est. S.E. 

Intercept -4.513 0.139 -4.632 0.142 -4.202 0.159 -4.323 0.162 -3.504 0.187 -3.745 0.198 

TAZ independent variables 

Log (VMT) 0.145 0.009 0.142 0.009 0.155 0.009 0.154 0.009 0.112 0.011 0.103 0.011 

Proportion of heavy vehicle mileage in VMT -1.108 0.416 -1.123 0.413 -1.424 0.422 -1.522 0.416 -1.890 0.556 -1.656 0.547 

Log (population density) 0.124 0.011 0.105 0.011 0.102 0.011 0.093 0.011 0.115 0.014 0.097 0.014 

Log (number of total employment) 0.235 0.013 0.225 0.013 0.205 0.015 0.195 0.015 0.186 0.017 0.186 0.017 

Proportion of length of local roads 0.467 0.059 0.471 0.058 0.504 0.060 0.508 0.059 0.480 0.080 0.454 0.080 

Log (signalized intersection density)  0.291 0.028 0.267 0.028 0.256 0.030 0.267 0.031 0.274 0.038 0.286 0.040 

Log (length of sidewalks) 0.272 0.025 0.277 0.024 0.244 0.025 0.255 0.025 0.271 0.028 0.273 0.028 

Log (hotels, motels, and timeshare rooms density) 0.022 0.006 0.026 0.006 0.021 0.006 0.030 0.006 0.030 0.007 0.037 0.007 

Log (number of commuters by public transportation) 0.194 0.009 0.129 0.012 0.189 0.009 0.125 0.012 0.205 0.011 0.134 0.014 

Log (number of commuters by walking) 0.067 0.011 0.065 0.011 0.052 0.012 0.056 0.012 0.057 0.013 0.060 0.013 

Log (number of commuters by cycling) 0.027 0.011 0.031 0.011 0.027 0.011 0.030 0.011 - - - - 

Log (distance to nearest urban area) -0.027 0.006 -0.024 0.006 -0.028 0.006 -0.025 0.006 - - - - 

Proportion of families without vehicle - - - - 0.717 0.136 - - - - - - 

Proportion of service employment 0.314 0.062 0.221 0.068 0.296 0.062 - - - - - - 

Spatial Independent Variables 

Proportion of service employment of neighboring TAZs - - 0.253 0.091 - - 0.301 0.083 - - 0.376 0.103 

Log (signalized intersection density of neighboring TAZs) - - - - - - -0.291 0.063 - - -0.211 0.073 

Proportion of families without vehicle of neighboring TAZs - - - - - - 1.29 0.172 - - - - 

Log (number of commuters by public transportation of neighboring TAZs) - - 0.099 0.011 - - 0.091 0.011 - - 0.108 0.014 

Dispersion 0.445 0.020 0.423 0.020 0.393 0.022 0.367 0.021 0.419 0.028 0.386 0.026 

Probabilistic Model Aspatial Spatial Aspatial Spatial Aspatial Spatial 

Intercept - - - - 0.070 0.413 -0.047 0.431 5.733 0.237 5.791 0.238 

TAZ independent variables 

Log (VMT) - - - - - - - - -0.188 0.015 -0.184 0.015 

Log (length of sidewalks) - - - - -2.143 0.729 -1.995 0.715 -0.500 0.064 -0.502 0.064 

Log (number of total employment) - - - - -0.240 0.070 -0.232 0.072 -0.299 0.023 -0.295 0.023 

Log (number of commuters by walking) - - - - -0.527 0.153 -0.501 0.148 -0.138 0.027 -0.136 0.027 

Proportion of length of local roads - - - - - - - - -0.510 0.104 -0.516 0.104 

Log (signalized intersection density) - - - - - - - - -0.331 0.054 -0.319 0.054 

Log (population density) - - - - - - - - -0.164 0.019 -0.155 0.019 

Proportion of service employment - - - - - - - - -0.405 0.126 -0.413 0.127 

Log (number of commuters by public transportation) - - - -     -0.247 0.025 -0.192 0.030 

Log (number of commuters by cycling) - - - - - - - - -0.074 0.032 -0.074 0.032 

Log (distance to nearest urban area) - - - - - - - - 0.030 0.008 0.027 0.008 

Spatial Independent Variables 

Log (number of commuters by public transportation of neighboring TAZs) - - - - - - - - - - -0.075 0.022 

All explanatory variables are significant at 95% confidence level
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(2) Bicycle crash models for TAZs 

In the ZINB model with spatial variables presented in Table 3-4 eleven variables for the TAZs 

and five variables of neighboring TAZs affect bicycle crash frequency. The impacts of 

exogenous variables in the bicycle crash frequency model are very similar to the impact of these 

variables in the pedestrian crash frequency model. This is not surprising because, TAZs that are 

likely to experience high pedestrian activity are also likely to experience high bicyclist activity. 

For the count component, the exogenous variables for the TAZ that increase the crash propensity 

are VMT, population density, total employment, proportion of local roads by length, signalized 

intersection density, length of sidewalks, proportion of commuters by walking as well as cycling, 

and proportion of service employment. The exogenous variables for the TAZ that reduce crash 

propensity are proportion of heavy vehicle mileage and the distance of the TAZ centroid from 

the nearest urban region. There are three main difference in the TAZ variable impacts between 

pedestrian and bicyclist crash frequency. First, the number of commuters by public transportation 

does not impact crash frequency as it is possible that public transportation and bicycling are not 

as strongly correlated as is the case with public transportation and pedestrians. Second, the 

density of hotel, motel and time share rooms does not impact bicycle crash frequency as tourists 

are unlikely to be bicyclists. Third, the number of service employment in the TAZ affects bicycle 

crash frequency while affecting pedestrian crash frequency as a spillover effect. While, the exact 

reason for the result is unclear, it could be a manifestation of differences of how land-use affects 

pedestrians and bicyclists. 
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In terms of spatial spillover effects, the significant variables vary between pedestrian and 

bicyclists. Specifically, the high proportion of industry employment in neighboring TAZs has a 

negative influence on crash propensity as these regions are unlikely to have significant bicyclist 

exposure. The signalized intersection density exhibits the same relationship as described for 

pedestrian crashes. On the other hand, from the neighboring TAZs, population density, number 

of commuters by public transit and cycling are likely to increase bicycle crash propensity. These 

variables are surrogates for bicycle exposure and are expected to increase crash risk. 

In the probabilistic component, only three explanatory variables of targeted TAZs variables are 

significant. The length of sidewalks, population density and total employment variables, as 

expected, have negative influence on assigning a TAZ to a zero-crash state. The bicycle crash 

probabilistic component also does not have any statistically significant spatial variables. 
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Table 3-4 Models results for bicycle crash of TAZs 

 
NB ZINB HNB 

Count Model Aspatial  Spatial Aspatial Spatial Aspatial Spatial 

Parameter Est. S.E. Est. S.E. Est. S.E. Est. S.E. Est. S.E. Est. S.E. 

Intercept -4.650 0.154 -4.672 0.167 -4.090 0.181 -4.673 0.190 -3.620 0.220 -4.031 0.237 

TAZ independent variables 

Log (VMT) 0.190 0.009 0.162 0.010 0.186 0.010 0.164 0.010 0.168 0.013 0.148 0.013 

Proportion of heavy vehicle mileage in VMT -4.260 0.485 -3.306 0.490 -4.244 0.487 -2.787 0.496 -4.115 0.665 -2.949 0.660 

Log (population density) 0.152 0.013 0.130 0.013 0.133 0.014 0.087 0.015 0.131 0.018 0.084 0.020 

Log (number of total employment) 0.193 0.014 0.194 0.014 0.157 0.016 0.161 0.016 0.142 0.018 0.134 0.018 

Proportion of length of local roads 0.535 0.062 0.441 0.064 0.517 0.063 0.525 0.063 0.422 0.086 0.401 0.085 

Log (signalized intersection density) 0.196 0.030 0.234 0.032 0.172 0.031 0.203 0.033 0.125 0.041 0.184 0.044 

Log (length of sidewalks) 0.284 0.026 0.271 0.025 0.214 0.027 0.228 0.026 0.219 0.030 0.217 0.029 

Log (number of commuters by public transportation) 0.106 0.010 0.086 0.012 0.107 0.010 - - 0.096 0.012 0.084 0.012 

Log (number of commuters by walking) 0.087 0.012 0.085 0.012 0.090 0.012 0.104 0.012 0.101 0.014 0.099 0.014 

Log (number of commuters by cycling) 0.109 0.011 0.070 0.012 0.110 0.011 0.088 0.012 0.108 0.012 0.071 0.013 

Log (distance to nearest urban area) -0.103 0.011 -0.098 0.011 -0.097 0.011 -0.074 0.011 -0.092 0.024 -0.065 0.023 

Proportion of service employment 0.205 0.066 0.153 0.067 0.192 0.066 0.173 0.067 - - -    - 

Spatial Independent Variables 

Proportion of  industry employment of neighboring TAZs - - -0.361 0.106 - - -0.242 0.106 - - - - 

Log (signalized intersection density of neighboring TAZs) - - -0.319 0.075 - - -0.473 0.069 - - -0.545 0.095 

Log (population density of neighboring TAZs) - - - - - - 0.113 0.018 - - 0.109 0.023 

Log (number of commuters by public transportation of neighboring TAZs) - - 0.035 0.012 - - 0.068 0.010 - - - - 

Log (number of commuters by cycling of neighboring TAZs) - - 0.093 0.012 - - 0.073 0.012 - - 0.098 0.014 

Proportion of length of local roads of neighboring TAZs - - 0.354 0.125 - - - - - - - - 

Dispersion 0.481 0.022 0.443 0.021 0.425 0.022 0.397 0.021 0.454 0.031 0.406 0.028 

Probabilistic Model Aspatial Spatial Aspatial Spatial Aspatial  Spatial 

Intercept - - - - 1.565 0.489 1.296 0.509 5.452 0.241 5.700 0.279 

TAZ independent variables 

Log (VMT) - - - - - - - - -0.222 0.016 -0.217 0.017 

Log (length of sidewalks) - - - - -4.455 1.272 -4.819 1.563 -0.676 0.066 -0.681 0.066 

Log (population density) - - - - -0.149 0.05 -0.135 0.053 -0.177 0.021 -0.102 0.024 

Log (number of total employment) - - - - -0.328 0.058 -0.313 0.060 -0.236 0.023 -0.216 0.024 

Proportion of heavy vehicle mileage in VMT - - - - - - - - 5.347 0.836 4.258 0.861 

Proportion of length of local roads - - - - - - - - -0.709 0.109 -0.696 0.112 

Log (signalized intersection density) - - - - - - - - -0.286 0.054 -0.243 0.056 

Log (number of commuters by public transportation) - - - - - - - - -0.210 0.025 -0.147 0.031 

Log (number of commuters by walking) - - - - - - - - -0.081 0.028 -0.079 0.028 

Log (number of commuters by cycling) - - - - - - - - -0.158 0.032 -0.099 0.035 

Log (distance to nearest urban area) - - - - - - - - 0.098 0.013 0.082 0.013 

Spatial Independent Variables 

Proportion of length of arterial of neighboring TAZs - - - - - - - - - - 1.337 0.290 

Log (population density of neighboring TAZs) - - - - - - - - - - -0.096 0.033 

Log (hotels, motels, and timeshare rooms density of neighboring TAZs) - - - - - - - - - - -0.041 0.018 

Log (number of commuters by public transportation of neighboring TAZs) - - - - - - - - - - -0.069 0.026 

Log (number of commuters by cycling of neighboring TAZs) - - - - - - - - - - -0.082 0.025 

All explanatory variables are significant at 95% confidence level 
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3.5 Marginal effects 

The ZINB has two components, the probabilistic and the count component with exogenous 

variables possibly affecting both components. Thus, it is not straight-forward to identify the 

exact magnitude of the variable impact. Hence, to facilitate a quantitative comparison of variable 

impacts, marginal effects for the ZINB for pedestrians and bicyclists are computed. The marginal 

effects capture the change in the dependent variable in response to a small change in the 

independent variables. The results of the marginal effect calculation are presented in Table 3-5. 

As is expected, the sign of the marginal effects closely follow the sign from model results 

described in Table 10 and11.   

The following observations can be made based on the results presented. First, the impact of 

spatial spillover effects on the crash models is significant and is comparable to the influence of 

other exogenous variables. Hence, it is important that analysts consider such observed spatial 

spillover effects in crash frequency modeling. Second, the exogenous variable impacts on 

pedestrian and bicycle crash models are similar for a large number of variables including VMT, 

population density, total employment, number of commuters by walking, proportion of local 

road in length, and number of public transportation commuters in neighboring TAZs. Third, the 

exogenous variables such as proportion of heavy vehicle VMT, proportion of service 

employment, number of commuters by public transportation and cycling, proportion of families 

without vehicles in the neighboring TAZs, service employment and industry employment in 

neighboring TAZs have significantly different marginal impacts across the two models. Finally, 

as indicated by the marginal effects of the signalized intersection density the exogenous variable 
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for TAZ and neighboring TAZs could exhibit distinct effects both in sign and magnitude. The 

allowance of such non-linear impacts accommodates for heterogeneity in the data. 

Table 3-5 Average marginal effect for ZINB model with spatial independent variables 

   Pedestrian Bicycle 

 Variables dy/dx S.E dy/dx S.E 

TAZ independent variables 

Log (VMT) 0.292 0.018 0.291 0.018 

Proportion of heavy vehicle mileage in VMT -2.888 0.791 -4.937 0.885 

Log (population density) 0.176 0.021 0.162 0.027 

Log (number of total employment) 0.382 0.027 0.302 0.027 

Proportion of length of local roads 0.965 0.114 0.930 0.113 

Log (signalized intersection density) 0.506 0.06 0.359 0.059 

Log (length of sidewalks) 0.587 0.05 0.671 0.077 

Log (hotels, motels, and timeshare rooms density) 0.056 0.011 - - 

Log (number of commuters by public transportation) 0.238 0.022 - - 

Log (number of commuters by walking) 0.131 0.021 0.184 0.021 

Log (number of commuters by cycling) 0.057 0.02 0.156 0.021 

Log (distance to nearest urban area) -0.047 0.011 -0.132 0.019 

Proportion of service employment - - 0.307 0.118 

Spatial Independent Variables 

Proportion of service employment of neighboring TAZs 0.572 0.158 - - 

Proportion of  industry employment of neighboring TAZs - - -0.428 0.189 

Log (signalized intersection density of neighboring TAZs) -0.552 0.119 -0.838 0.124 

Proportion of families without vehicle of neighboring T AZs 2.447 0.329 - - 

Log (population density of neighboring TAZs) - - 0.200 0.033 

Log (number of commuters by public transportation of neighboring TAZs) 0.173 0.021 0.120 0.019 

Log (number of commuters by cycling of neighboring TAZs) - - 0.130 0.021 

3.6  Summary and Conclusion 

With growing concern of global warming and obesity concerns, active forms of transportation 

offer an environmentally friendly and physically active alternative for short distance trips. A 

strong impediment to universal adoption of active forms of transportation, particularly in North 
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America, is the inherent safety risk for active modes of transportation. Towards developing 

counter measures to reduce safety risks, it is essential to study the influence of exogenous factors 

on pedestrian and bicycle crashes. This study contributes to safety literature by conducting a 

macro-level planning analysis for pedestrian and bicycle crashes at a Traffic Analysis Zone 

(TAZ) level in Florida. The study considers both single state (negative binomial (NB)) and dual-

state count models (zero-inflated negative binomial (ZINB) and hurdle negative binomial (HNB)) 

for analysis. In addition to the dual-state models, the research proposes the consideration of 

spatial spillover effects of exogenous variables from neighboring TAZs. The model development 

exercise involved estimating 6 model structures each for pedestrians and bicyclists. These 

include NB model with and without spatial effects, ZINB model with and without spatial effects 

and HNB with and without spatial effects. The estimated model performance was evaluated for 

the calibration sample and the validation sample using the following measures: Log-likelihood, 

Akaike Information Criterion and Bayesian Information Criterion.  

The model comparison exercise for pedestrians and bicyclists highlighted that models with 

spatial spillover effects consistently outperformed the models that did not consider the spatial 

effects. Across the three models with spatial spillover effects, the ZINB model offered the best 

fit for pedestrian and bicyclists. The model results clearly highlighted the importance of several 

variables including traffic (such as VMT and heavy vehicle mileage), roadway (such as 

signalized intersection density, length of sidewalks and bike lanes, and etc.) and socio-

demographic characteristics (such as population density, commuters by public transportation, 

walking and cycling) of the targeted and neighboring TAZs. To facilitate a quantitative 

comparison of variable impacts, marginal effects for the ZINB for pedestrians and bicyclists are 

computed. The results revealed the importance in sign and magnitude of the spatial spillover 
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effect relative to other exogenous variables. Further, the marginal effects computation allowed us 

to identify factors that substantially increase crash risk for pedestrians and bicyclists. In terms of 

actionable information, it is important to identify zones with high public transit, pedestrian and 

bicyclist commuters and undertake infrastructure improvements to improve safety. 

To be sure, the study is not without limitations. While the influence of spatial spillover effects is 

considered, we do not consider the impact of spatial unobserved effects. Extending the current 

approach to accommodate for unobserved spatial terms will be useful. Also, it is possible to 

hypothesize that there might be common unobserved factors that affect pedestrian and bicyclists. 

Future research extensions might consider such unobserved effects in the model structure. 
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CHAPTER 4: EXPLORING ZONE SYSTEMS FOR TRAFFIC CRASH 

MODELING 

4.1 Introduction 

As shown in the literature review, previous studies have made remarkable contribution to explore 

MAUP effects on macro-level crash analysis. However, the employed measures for the 

comparison can be largely influenced by the number of observations and the observed values. 

Thus, the comparison results might be limited in the studies (Lee et al., 2014; Xu et al., 2014) 

since the measures were calculated based on zonal systems with different number of zones.   

To address the limitation, one possible solution is to compute the measures based on a third-party 

zonal system so that the calculation would have the same observations. Towards this end, a grid 

structure that uniformly delineates the study region is suggested as a viable option. Specifically, 

the crash models developed for the various zonal systems will be tested on the same grid 

structure. To ensure that the result is not an artifact of the grid size, several grid sizes ranging 

from 1 to 100 square miles will be considered.  

This chapter will present study to compare different geographic units for macroscopic crash 

modeling analysis. Towards this end, both aspatial model (i.e., Poisson lognormal (PLN) and 

spatial model (i.e., PLN conditional autoregressive (PLN-CAR)) are developed for three types of 

crashes (i.e., total, severe, and non-motorized mode crashes) based on census tracts, traffic 

analysis zones, and a newly developed zone system – traffic analysis districts (see the following 

section for detailed information). Then, a comparison method is proposed to compare the 
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modeling performance with the same sample sizes by using grids of different dimensions. By 

using different goodness-of-fit measures, superior geographic units for crash modeling are 

identified.  

4.2 Comparison between CTs, TAZs, and TADs 

In Florida, the average area of CTs, TAZs, and TADs are 15.497, 6.472, and 103.314 square 

miles, respectively. Across the three geographic units, which are shown in Figure 4-1, a TAD is 

considerably larger than a CT and TAZ while a TAZ is most likely to have the smallest size. CTs 

boundaries are generally delineated by visible and identifiable features, with the intention of 

being maintained over a long time. On the other hand, both TAZs and TADs are developed for 

transportation planning and are always divided by physical boundaries, mostly arterial roadways. 

Usually, CTs and TAZs nest within counties while TADs may cross county boundaries, but they 

must nest within Metropolitan Planning Organizations (MPOs) (FHWA, 2011a) 
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Figure 4-1 Comparison of CTs, TAZs, and TADs 

4.3 Data Preparation 

Multiple geographic units were obtained from the US Census Bureau and Florida Department of 

Transportation (FDOT). The state of Florida has 4,245 CTs, 8,518 TAZs, and 594 TADs. 

Crashes that occurred in Florida in 2010-2012 were collected for this study. A total of 901,235 

crashes were recorded in Florida among which 50,039 (5.6%) were severe crashes and 31,547 

(3.5%) were non-motorized mode crashes. In this study, severe crashes were defined as the 

combination of all fatal and incapacitating injury crashes while non-motorized mode crashes 
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were the sum of pedestrian and bicyclist involved crashes. On average, TADs have highest 

number of crashes since they are the largest zonal configuration. Given the large number of 

crashes in the Florida data, units with zero count are observed for CTs and TAZs. However, 

within a TAD no zero count units exist for the time period of our analysis. A host of explanatory 

variables are considered for the analysis and are grouped into three categories: traffic measures, 

roadway characteristics, and socio-demographic characteristics. For the three zonal systems, 

these data are collected from the Geographic information system (GIS) archived data from 

Florida Department of Transportation (FDOT) and U.S. Census Bureau (USCB). The traffic 

measures include VMT (Vehicle-Miles-Traveled), proportion of heavy vehicle in VMT. 

Regarding the roadway variables, roadway density (i.e., total roadway length per square mile), 

proportion of length roadways by functional classifications (freeways, arterials, collector, local 

roads, signalized intersection density (i.e., number of signalized intersection per total roadway 

mileage), length of bike lanes, and length of sidewalks were selected as the explanatory variables. 

Concerning the socio-demographic data, the distance to the nearest urban area, population 

density (defined as population divided by the area), proportion of population between 15 and 24 

years old, proportion of population equal to or older than 65 years old, total employment density 

(defined as the total employment per square mile), proportion of unemployment, median 

household income, total commuters density (i.e., the total commuters per square mile), and 

proportion of commuters by various transportation modes (including car/truck/van, public 

transportation, cycling, and walking). It is worth mentioning that the distance to the nearest 

urban area is defined as the distance from the centroid of the CTs, TAZs, or TADs to the nearest 

urban region. So the distance will be zero if the zone is located in urban area. Also, it should be 

noted that the proportion of unemployment is computed by dividing the number of total 

unemployed people by the whole population. A summary of the crash counts and candidate 

explanatory variables on different zonal systems is also presented in Table 4-1. 
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Table 4-1. Descriptive statistics of collected data 

Variables 
Census tracts (N=4245) Traffic analysis zones (N=8518) Traffic analysis districts (N=594) 

Mean S.D. Min. Max. Mean S.D. Min. Max. Mean S.D. Min. Max. 

Area (square miles)  15.50 63.43 0.04 1581.94 6.47 24.80 0.00 885.32 103.31 259.86 2.62 3095.52 

Crash variables 

Total crashes 212.31 234.96 0 4554.00 105.80 142.25 0 1507.00 1517.23 1603.29 188.00 15094.00 

Severe crashes 11.79 11.78 0 141.00 5.87 7.94 0 111.00 84.24 60.34 4.00 534.00 

Non-motorized mode crashes 7.43 7.96 0 76.00 3.70 6.08 0 121.00 53.11 60.09 1.00 562.00 

Traffic & roadway variables 

VMT 91953.02 121384.56 0 1618443.43 31381.04 41852.30 0 684742.78 599646.92 428747.16 38547.00 4632468.60 

Proportion of heavy vehicle in VMT 0.06 0.04 0 0.38 0.07 0.05 0 0.52 0.07 0.04 0.01 0.29 

Road density 9.34 6.96 0 32.87 9.40 28.40 0 2496.05 7.61 5.31 0.07 24.56 

Proportion of length of arterials 0.14 0.16 0 1.00 0.22 0.28 0 1.00 0.11 0.06 0.00 0.48 

Proportion of length of collectors 0.13 0.14 0 1.00 0.19 0.25 0 1.00 0.11 0.07 0.00 0.60 

Proportion of length of local roads 0.69 0.24 0 1.00 0.57 0.33 0 1.00 0.75 0.11 0.08 0.93 

Signalized intersection density 4.09 227.17 0 14771.18 2.90 86.10 0 6347.67 0.12 0.13 0.00 1.36 

Length of bike lanes 0.62 1.82 0 34.99 0.30 1.10 0 28.64 4.38 6.74 0.00 65.30 

Length of sidewalks 1.73 2.27 0 20.84 0.99 1.75 0 25.68 12.93 11.94 0.00 87.18 

Socio-demographic variables 

Distance to the nearest urban area 0.87 3.60 0 66.27 2.14 5.44 0 44.10 1.31 3.85 0.00 31.50 

Population density 3255.00 3975.05 0 48304.10 2520.34 4043.35 0 63070.45 1998.61 1969.81 7.68 15341.30 

Proportion of population age 15-24 0.13 0.08 0 1.00 0.13 0.08 0 1.00 0.13 0.06 0.03 0.69 

Proportion of population age ≥ 65 0.18 0.14 0 0.94 0.17 0.12 0 0.94 0.17 0.09 0.03 0.66 

Total employment density 2671.41 3350.12 0 45468.48 1770.29 2725.02 0 45468.48 1617.08 1609.59 6.84 13007.10 

Proportion of  unemployment 0.39 0.15 0 1.00 0.40 0.14 0 1.00 0.38 0.09 0.15 0.76 

Median household income 59070.89 26477.95 0 215192.00 57389.53 24713.50 0 215192.00 59986.00 17747.51 21636.65 131664.42 

Total commuters density 1477.99 2025.32 0 33066.11 926.73 1350.12 0 20995.26 900.67 904.09 3.60 6936.09 

Proportion of commuters by vehicle 0.87 0.15 0 1.00 0.87 0.12 0 1.00 0.90 0.05 0.54 0.97 

Proportion of commuters by public 

transportation 
0.02 0.04 0 0.69 0.02 0.04 0 0.69 0.02 0.03 0.00 0.20 

Proportion of commuters by cycling 0.01 0.03 0 1.00 0.01 0.03 0 1.00 0.01 0.01 0.00 0.17 

Proportion of commuters by walking 0.02 0.04 0 1.00 0.02 0.04 0 0.46 0.01 0.02 0.00 0.14 
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4.4 Preliminary Analysis of Crash Data 

The crash counts of different zonal systems were explored to investigate whether spatial 

correlations existed by using global Moran’s I test. The absolute Moran’s I value varies from 0 to 

1 indicating degrees of spatial association. Higher absolute value represents higher spatial 

correlation while a zero value means a random spatial pattern. As shown in Table 4-2, all crash 

types based on different zonal systems have significant spatial correlation. TAZs and TADs 

based crashes have strong spatial clustering (Moran’s I > 0.35) while crashes based on CTs were 

weakly spatial correlated (Moran’s I < 0.1). It is not surprising since the TAZs and TADs were 

delineated based on transportation related activities. Thus, spatial dependence should be 

considered for modeling crashes, especially for TAZs and TADs.  

Table 4-2 Global Moran's I Statistics for Crash Data 

Crash types Total crashes Severe crashes Non-motorized crashes 

Zonal systems CT TAZ TAD CT TAZ TAD CT TAZ TAD 

Observed Moran’s I  0.06 0.52 0.58 0.05 0.40 0.36 0.05 0.424 0.447 

P-value <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

Spatial Autocorrelation Y Y Y Y Y Y Y Y Y 

 

4.5 Statistical Models 

Before comparison across different zonal systems, both aspatial and spatial models were 

employed to analyze the crash data based on each zonal system. The technology of models is 

briefly discussed below.   
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4.5.1 Aspatial Models 

In the previous study about crash count analysis, the classic negative binomial (NB) model has 

been widely used (Lord and Mannering, 2010). The NB model assumes that the crash data 

follows a Poisson-gamma mixture, which can address the over-dispersion issue (i.e., variance 

exceeds the mean). A NB model is specified as follows: 

yi~ Poisson (λi) (4-1) 𝜆𝜆𝑖𝑖 = exp (𝛽𝛽𝑖𝑖𝑥𝑥𝑖𝑖 + 𝜃𝜃𝑖𝑖) (4-2) 

where yi is the number of crashes in entity i, λi is the expected number of Poisson distribution for 

entity i, 𝑥𝑥𝑖𝑖 is a set of explanatory variables, 𝛽𝛽𝑖𝑖 is the corresponding parameter, 𝜃𝜃𝑖𝑖 is the error term. 

The 𝑒𝑒𝑥𝑥𝑝𝑝 (𝜃𝜃𝑖𝑖) is a gamma distributed error term with mean 1 and variance α2.  

Recently, a Poisson-lognormal (PLN) model was adopted as an alternative to the NB model for 

crash count analysis (Lord and Mannering, 2010).  The model structure of Poisson-lognormal 

model is similar to NB model, but the error term exp (θi) in the model is assumed lognormal 

distributed. In other words, θi can be assumed to have a normal distribution with mean 0 and 

variance σ2. In our current study, the Poisson-lognormal model consistently outperformed the 

NB model. Hence, for our analysis, we restrict ourselves to Poisson-lognormal model 

comparison across different geographical units.  
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4.5.2 Spatial Models 

Generally, two spatial model specifications were commonly adopted for modeling spatial 

dependence: the spatial autoregressive model (SAR) (Anselin, 2013) and the conditional 

autoregressive model (CAR) (Besag et al., 1991). The SAR model considers the spatial 

correlation by adding an explanatory variable in the form of a spatially lagged dependent 

variable or adding spatially lagged error structure into a linear regression model while the 

Conditional Autoregressive (CAR) model takes account of both spatial dependence and 

uncorrelated heterogeneity with two random variables. Thus, the CAR model seems more 

appropriate for analyzing crash counts (Quddus, 2008; Wang & Kockelman, 2013). A Poisson-

lognormal Conditional Autoregressive (PLN-CAR) model, which adds a second error component 

(φi) as the spatial dependence (as shown below), was adopted for modeling.  

𝜆𝜆𝑖𝑖 = exp (𝛽𝛽𝑖𝑖𝑥𝑥𝑖𝑖 + 𝜃𝜃𝑖𝑖 + 𝜑𝜑𝑖𝑖) (4-3) 

φi  is assumed as a conditional autoregressive prior with Normal (φı���,
γ2∑ wkiKi=1 ) distribution 

recommend by Besag et al. (1991). The φı��� is calculated by: 

𝜑𝜑𝚤𝚤� =
∑ 𝑤𝑤𝑘𝑘𝑖𝑖𝜑𝜑𝑖𝑖𝐾𝐾𝑖𝑖=1∑ 𝑤𝑤𝑘𝑘𝑖𝑖𝐾𝐾𝑖𝑖=1  (4-4) 

where wki is the adjacency indication with a value of 1 if i and k are adjacent or 0 otherwise.  

In this study, both aspatial Poisson-lognormal model (PLN) and Poisson-lognormal Conditional 

Autoregressive model (PLN-CAR) were estimated. Deviance Information Criterion (DIC) was 

computed to determine the best set of parameters for each model and to compare aspatial and 
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spatial models based on the same zonal system. However, it is not appropriate for comparing 

models across different zonal systems since they have different sample size. Instead, a new 

method should be proposed for the comparison.  

4.6 Method for Comparing Different Zonal Systems 

4.6.1 Development of Grids for Comparison 

Based on the estimated models, the predicted crash counts can be obtained for the three zonal 

systems. One simple method to compare the models based on different geographic units is to 

analyze the difference directly between the observed and predicted crash counts for each 

geographic unit. However, this method is not really comparable across the different geographical 

units due to differences in sample sizes. In this study, a new method was proposed to use grid 

structure as surrogate geographic unit to compare the performance of models based on different 

zonal systems. As shown in Figure 4-2, the grid structure, unlike the CT, TAZ, or TAD, is 

developed for uniform length and shape across the whole state without any artifact impacts. 

Furthermore, the numbers of grids remain the same for all models thereby providing a common 

comparison platform. To implement the procedure for comparison, the first step is to count the 

observed crash counts in each grid by using Geographic Information System (GIS). Then, the 

predicted crash counts of the three zonal systems are transformed separately to the grid structure 

based on a method is presented in detail in the next section. For each grid, six different values of 

the transformed crash counts (2 model types × 3 zonal systems) can be obtained. The difference 

between observed and transformed crash counts for each grid structure will be analyzed. Finally, 

by comparing the difference of different geographic units, the superior geographic unit between 

CTs, TAZs, and TADs can be obliquely identified for crash modeling with the same sample size.  

Additionally, to avoid the impact of grid size on the comparison results, we consider several 
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sizes for grids. Specifically, based on the average area of the three geographic units, ten levels of 

grid structures with side length from 1 to 10 miles were created.  Table 3 summarizes the average 

areas and observed crash counts of CTs, TAZs, TADs, and different grid structures. The Grid 

L×L means the grid structure with side length of L miles. Based on the number of zones and 

average crash counts, it can be concluded that the CTs, TAZs, and TADs are separately 

comparable with Grid 4×4, Grid 3×3, and Grid 10×10, respectively.    

 

Figure 4-2.  Grid structure of Florida (10×10 mile
2
) 
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Table 4-3 Crashes of CTs, TAZs, TADs, and Grids 

Geographic 

units 

Average area 

(mile
2
) 

Number of 

zones 

Total crash Severe crash Non-motorized mode crash 

Mean S.D. Min Max Mean S.D. Min Max Mean S.D. Min Max 

CT 15.497 4245 212.305 234.964 0 4554 11.788 11.775 0 141 7.432 7.964 0 76 

TAZ 6.472 8518 105.804 142.253 0 1507 5.875 7.944 0 111 3.704 6.084 0 121 

TAD 103.314 594 1517.230 1603.290 188 15094 84.241 60.344 4 534 53.109 60.093 1 562 

Grid 1×1 1 76640 11.759 61.598 0 2609 0.653 2.614 0 90 0.412 2.484 0 182 

Grid 2×2 4 19652 45.860 206.461 0 5321 2.546 8.513 0 271 1.605 7.862 0 209 

Grid 3×3 9 8964 100.539 425.753 0 10531 5.582 17.295 0 448 3.519 15.634 0 310 

Grid 4×4 16 5124 175.885 712.317 0 16307 9.766 28.997 0 650 6.157 26.161 0 609 

Grid 5×5 25 3355 268.624 1084.990 0 25230 14.915 42.962 0 727 9.403 39.150 0 914 

Grid 6×6 36 2364 381.233 1459.970 0 24617 21.167 57.821 0 749 13.345 52.004 0 842 

Grid 7×7 49 1766 510.326 1889.670 0 29553 28.335 74.121 0 715 17.864 65.854 0 985 

Grid 8×8 64 1362 661.700 2465.000 0 41463 36.739 95.446 0 966 23.162 84.708 0 1107 

Grid 9×9 81 1094 823.798 2956.390 0 50371 45.739 114.678 0 1218 28.836 103.396 0 1352 

Grid 10×10 100 907 993.644 3637.200 0 50989 55.170 141.544 0 1592 34.782 128.862 0 2185 
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4.6.2 Method to transform predicted crash counts  

The method to obtain transformed crash counts of grids is introduced by taking TAZ and Grid 

5×5 as an example. As shown in Figure 4-3, the red square is one grid (named as Grid A) which 

intersects with four TAZ units (named as TAZ 1, 2, 3, and 4). The four corresponding intersected 

entities are named as Region 1, 2, 3, and 4. It is assumed that the proportion of each region’s 

predicted crash frequency in the TAZ is equal to the corresponding proportion of the same 

region’s observed crash in the same TAZ. Hence, the predicted crash counts for each region can 

be determined by: 

𝑦𝑦𝑅𝑅𝑖𝑖′ = 𝑦𝑦𝑇𝑇𝑖𝑖′ ∗ 𝐸𝐸𝑅𝑅i′  (4-5) 

where yRi′  and yTi′  are the predicted crash counts in Region i and TAZ i, PRi′  is the proportion of 

Region i’s observed crash frequency in TAZ i. 

Obviously, the crashes that happened in Gird A should be equal to the sum of crashes that 

happed in the four intersected regions (Region 1, 2, 3, and 4). Then the predicted crash counts of 

the four TAZs can be transformed into Grid A by adding up the predicted crash counts of all the 

four intersected regions. Based on this method, the predicted crash counts of models based on 

CTs, TAZs, and TADs can be transformed into the same grids.  

4.6.3 Comparison criteria 

Two types of measures, Mean Absolute Error (MAE) and Root Mean Squared Errors (RMSE), 

were employed to compare the difference between observed crash counts based on grids and six 

corresponding transformed predicted values. The two measures can be computed by: 
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𝑀𝑀𝑀𝑀𝐸𝐸 =
1𝑁𝑁� |𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑖𝑖′|𝑁𝑁
𝑖𝑖=1  (4-6) 

𝑅𝑅𝑀𝑀𝑅𝑅𝐸𝐸 = �1𝑁𝑁�(𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑖𝑖′)2𝑁𝑁
𝑖𝑖=1  (4-7) 

where N is the number of observations, yi  and yi′  are the observed and transformed predicted 

values of crashes for entity i of different levels of grids. The smaller values of the two measures 

indicate the better performance of estimated models based on CTs, TAZs, and TADs. Also, in 

order to better compare the measure values across different levels of grids, the weighted MAE 

and RMSE are computed by dividing MAE and RMSE by the areas of grids.  

 

Figure 4-3. Method to transform predicted crash counts   
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4.7 Modeling Results 

In this study, overall 18 models – 2 model types (PLN and PLN-CAR models), with and without 

considering spatial correlation based on 3 zonal systems (CTs, TAZs and TADs), were estimated 

for total, severe and non-motorized crashes. The results of estimated models are displayed in 

Tables 4-6, separately. Significant variables related to total, severe and non-motorized mode 

crashes at 95% significant level were analyzed. The Deviance Information Criterion (DIC) and 

the Moran’s I values of residual are also presented in the tables. It is observed that for each zonal 

system, the spatial models except for non-motorized crashes based on CTs offer substantially 

better fit compared to the aspatial models. The results remain consistent with the previous 

comparative analysis results. Also the residual of spatial models of crashes based on TAZs and 

TADs have weaker spatial correlation except for non-motorized crash based on TAZs, which 

may be due to the excess zeros. However, for the crashes based on CTs, the Moran’s I values of 

residual have no difference between the aspatial and spatial models. It is known that models with 

spatially correlated residuals may lead to biased estimation of parameters, which may cause 

wrong interpretation and conclusion. That could explain that several significant variables in 

aspatial models become insignificant in the spatial models based on TAZs and TADs while 

parameters in the aspatial and spatial models vary based on CTs. Moreover, for different crash 

types, the TAZs and TADs have more significant traffic/roadway related variables compared to 

CTs. On the contrary, more socio-demographic variables are significant in CTs based models. 

These are as expected since CTs are designed for socio-demographic characteristics collection 

while TAZs and TADs are created according to traffic/roadway information.  
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In addition to the observations, the following subsections present the detailed discussion focused 

on the PLN-CAR model that offers better fit for total, severe, and non-motorized mode crashes. 

4.7.1 Total Crash 

Table 4 presents the results of model estimation for total crashes based on CTs, TAZs, and TADs. 

The VMT variable, as a measure of vehicular exposure, is significant in all models and as 

expected increases the propensity for total crashes. Besides, the models share a common 

significant variable length of sidewalk, which consistently has positive effect on crash frequency. 

The length of sidewalk can be an indication of more pedestrian activity and thus exposure. 

Additionally, the variable proportion of heavy vehicle in VMT is found to be negatively 

associated with total crashes in TAZs and TADs based models. On the other hand, the population 

of the old age group over 65 years old was significant in models based on CTs and TADs. Since 

the variable is an indication of fewer trips, it is found to have negative relation with crash 

frequency.  

4.7.2 Severe Crash 

Modeling results for severe crashes for the three geographic units are summarized in Table 5. 

The VMT and length of sidewalks are still significant in the three models. Higher median 

household income results in decreased severe crashes for TAZs and TADs.  Also proportion of 

unemployment and proportion of commuters by public transportation are found significant in 

CTs and TAZs. Finally, various variables such as proportion of heavy vehicle mileage in VMT, 
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roadway density, proportion of length of arterials and length of bike lanes are significant solely 

in the TAZs based model. 

4.7.3 Non-motorist Crash 

The results of the non-motorized mode crashes are shown in Table 6. The models based on the 

three geographic units have expected variables such as VMT, proportion of heavy vehicle in 

VMT, length of local roads, length of sidewalks, population density, commuters by public 

transportation and cycling. As mentioned above, the VMT, a measure of vehicular exposure, is 

expected to have positive impact on non-motorized mode crashes frequency. However, the 

proportion of heavy vehicle VMT has a negative impact since the likelihood of non-motorists 

drops substantially in the zones with increase in heavy vehicle VMT. The variables proportion of 

local roads by length and length of sidewalks are reflections of pedestrian access and are likely to 

increase crash frequency (Cai et al., 2016). The population density is a surrogate measure of non-

motorists exposure and is likely to increase the propensity for non-motorized mode crashes. 

Across the three geographic units, it is observed that the zones with higher proportion of 

commuters by public transportation and cycling have higher propensity for non-motorized mode 

crashes. The commuters by public transportation and cycling are indications of zones with higher 

non-motorists activity resulting in increased non-motorized mode crash risk (Abdel-Aty et al., 

2013). 

77 

 



 

Table 4-4 Total crash model results by zonal systems 

Zonal systems CT TAZ TAD 

Variables 
PLN PLN-CAR PLN PLN-CAR PLN PLN-CAR 

Mean S.D. Mean S.D. Mean S.D. Mean S.D. Mean S.D. Mean S.D. 

Intercept 
1.163 0.026 0.751 0.078 3.35 0.044 1.187 0.057 -1.554 0.023 -0.155 0.689 

(1.119, 1.207) (0.589, 0.911) (3.285, 3.409) (1.066, 1.274) (-1.591, -1.511) (-1.674, 1.255) 

Log (VMT) 
0.261 0.002 0.271 0.006 0.22 0.013 0.287 0.006 0.655 0.001 0.754 0.024 

(0.257, 0.264) (0.261, 0.282) (0.199, 0.240) (0.275, 0.302) (0.654, 0.656) (0.713, 0.800) 

Proportion of heavy vehicle 
mileage in VMT 

- - - - -2.189 0.29 -1.532 0.355 -2.32 0.322 -4.009 0.457 

- - (-2.655, -1.497) (-2.202, -0.904) (-2.798, -1.796) (-4.819, -2.953) 

Log (signalized intersection 
density) 

- - - - - - - - 0.579 0.056 0.685 0.162 

- - - - (0.455, 0.682) (0.203, 0.971) 

Log (length of sidewalks) 
0.331 0.007 0.342 0.017 0.495 0.047 0.519 0.022 0.085 0.006 0.082 0.01 

(0.316, 0.345) (0.297, 0.379) (0.383, 0.546) (0.475, 0.573) (0.075, 0.095) (0.061, 0.101) 

Log (distance to nearest urban 
area) 

- - - - -0.513 0.023 -0.181 0.027 - - - - 

- - (-0.560, -0.479) (-0.274, -0.109) - - 

Log (population density) 
- - - - - - - - 0.168 0.002 0.083 0.006 

- - - - - - - - (0.163, 0.171) (0.071, 0.097) 

Proportion of population age 
15-24 

- - 0.733 0.16 - - - - - - - - 

- (0.398, 1.076) - - - - 

Proportion of population age 65 
or older 

-1.469 0.056 -1.07 0.087 -1.079 0.206 -0.003 0.001 - - - - 

(-1.560, -1.350) (-1.234, -0.893) (-1.354, -0.608) (-0.006, -0.001) - - 

Proportion of unemployment 
- - - - -1.505 0.082 - - - - - - 

- - (-1.680, -1.380) - - - 

Log (Commuters density) 
0.144 0.002 0.167 0.006 - - - - - - - - 

(0.140, 0.148) (0.154, 0.180) - - - - 

Proportion of commuters by 
public transportation 

2.778 0.231 2.486 0.285 2.422 0.413 - - 5.464 0.312 2.427 0.995 

(2.376, 3.230) (1.834, 2.996) (1.929, 3.257) - (4.975, 6.146) (0.432, 4.378) 

Proportion of commuters by 
walking 

1.06 0.231 - - - - - - - - - - 

(0.698, 1.634) - - - - - 

Log (median household 
income) 

- - - - -0.06 0.004 - - -0.123 0.002 -0.301 0.063 

- - (-0.068, -0.054) - (-0.126, -0.123) (-0.419, -0.160) 

S.D. of θ 
0.695 0.003 0.339 0.064 1.033 0.006 0.378 0.04 0.388 0.001 0.136 0.01 

(0.691, 0.702) (0.241, 0.519) (1.024, 1.046) (0.308, 0.467) (0.385, 0.391) (0.117, 0.154) 

S.D. of φ 
- - 0.213 0.028 - - 0.393 0.083 - - 0.14 0.011 

- (0.166, 0.275) - (0.306, 0.591) - (0.118, 0.161) 

DIC 36898.300 36854.800 64441.000 64147.960 6446.200 6435.659 

Moran’s I of residual* 0.053 0.006 0.460 -0.020 0.412 -0.153 

*All explanatory variables are significant at 95% confidence level;       All Moran’s I values are significant at 95% confidence level 
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Table 4-5 Severe crash model results by zonal systems 

Zonal systems CT TAZ TAD 

Variables 
PLN PLN-CAR PLN PLN-CAR PLN PLN-CAR 

Mean S.D. Mean S.D. Mean S.D. Mean S.D. Mean S.D. Mean S.D. 

Intercept 
-2.493 0.094 -1.57 0.097 -1.344 0.069 -1.745 0.127 2.137 0.101 2.92 0.749 

(-2.704, -2.376) (-1.768, -1.379) (-1.466, -0.217) (-2.024, -1.466) (1.971, 2.279) (1.375, 4.447) 

Log (VMT) 
0.402 0.007 0.339 0.009 0.364 0.005 0.33 0.007 0.591 0.01 0.529 0.025 

(0.388, 0.418) (0.322, 0.357) (0.354, 0.371) (0.318, 0.345) (0.576, 0.606) (0.476, 0.583) 

Proportion of heavy vehicle 

mileage in VMT 

- - - - -2.383 0.277 -0.935 0.300 -1.671 0.349 - - 

- - (-2.908, -1.859) (-1.570, -0.312) (-2.391, -1.098) - 

Log (roadway density) 
- - - - -0.024 0.011 -0.108 0.016 - - - - 

- - (-0.050, -0.003) (-0.140, -0.076) - - 

Proportion of length of 

arterials 

- - - - -0.604 0.044 -0.591 0.045 - - - - 

- - (-0.686, -0.518) (-0.678, -0.502) - - 

Proportion of length of 

collectors 

- - -0.283 0.083 - - - - - - - - 

- (-0.452, -0.123) - - - - 

Proportion of length of local 

roads 

0.263 0.043 - - - - - - 0.851 0.076 - - 

(0.184, 0.352) - - - (0.701, 0.989) - 

Log (length of bike lanes) 
- - - - 0.082 0.028 0.113 0.028 - - - - 

- - (0.026, 0.134) (0.061, 0.166) - - 

Log (length of sidewalks) 
0.183 0.016 0.238 0.018 0.245 0.024 0.354 0.021 0.116 0.02 0.104 0.018 

(0.154, 0.214) (0.203, 0.273) (0.187, 0.282) (0.313, 0.393) (0.084, 0.151) (0.068, 0.141) 

Log (distance to nearest urban 

area) 

- - 0.201 0.018 - - - - - - - - 

- (0.168, 0.238) - - - - 

Proportion of unemployment 
-0.222 0.07 -0.444 0.081 -0.766 0.079 -0.152 0.089 - - - - 

(-0.343, -0.063) (-0.605, -0.278) (-0.935, -0.614) (-0.330, 0.032) - - 

Proportion of commuters by 

public transportation 

1.423 0.268 1.554 0.269 1.724 0.256 1.015 0.33 - - - - 

(0.862, 1.934) (1.032, 2.048) (1.244, 2.206) (0.423, 1.670) - - 

Proportion of commuters by 

walking 

0.976 0.273 - - - - - - - - - - 

(0.450, 1.525) - - - - - 

Log (median household 

income) 

- - - - -0.037 0.003 -0.021 0.009 -0.589 0.007 -0.536 0.062 

- - (-0.043, -0.030) (-0.039, -0.004) (-0.604, -0.576) (-0.659, -0.412) 

S.D. of θ 
0.614 0.007 0.218 0.049 0.835 0.008 0.393 0.045 0.458 0.006 0.116 0.006 

(0.601, 0.628) (0.166, 0.329) (0.819, 0.852) (0.304, 0.470) (0.447, 0.469) (0.107, 0.129) 

S.D. of φ 
- - 0.191 0.025 - - 0.519 0.024 - - 0.152 0.02 

- (0.148, 0.247) - (0.278, 0.749) - (0.123, 0.199) 

DIC 23958.000 23835.000 38158.200 37470.090 4741.080 4696.724 

Moran’s I of residual 0.065 -0.007 0.397 0.040 0.370 -0.096 

*All explanatory variables are significant at 95% confidence level;      * All Moran’s I values are significant at 95% confidence level 
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Table 4-6 Non-motorized mode crash model results by zonal systems 

Zonal systems CT TAZ TAD 

Variables 
PLN PLN-CAR PLN PLN-CAR PLN PLN-CAR 

Mean S.D. Mean S.D. Mean S.D. Mean S.D. Mean S.D. Mean S.D. 

Intercept 
-2.539 0.062 -2.256 0.129 -3.612 0.157 -3.503 0.144 0.176 0.063 4.737 1.221 

(-2.664, -2.388) (-2.510, -1.996) (-3.812, -3.301) (-3.800, -3.200) (0.069, 0.285) (2.412, 7.038) 

Log (VMT) 
0.172 0.007 0.161 0.008 0.297 0.005 0.283 0.007 0.345 0.004 0.252 0.038 

(0.161, 0.186) (0.145, 0.177) (0.289, 0.307) (0.268, 0.298) (0.336, 0.352) (0.179, 0.331) 

Proportion of heavy 

vehicle mileage in VMT 

-1.858 0.330 -2.262 0.389 -4.389 0.432 -4.803 0.391 -3.639 0.440 -2.969 0.854 

(-2.459, -1.134) (-3.053, -1.478) (-5.083, -3.520) (-5.518, -4.068) (-4.548, -2.884) (-4.519.-1.511) 

Log (roadway density) 
- - - - 0.154 0.016 0.143 0.020 - - - - 

- - (0.128, 0.189) (0.106, 0.182) - - 

Proportion of length of 

local roads 

0.377 0.043 0.367 0.061 0.717 0.044 0.752 0.047 0.679 0.101 - - 

(0.279, 0.453) (0.245, 0.488) (0.623, 0.794) (0.661, 0.845) (0.517, 0.838) - 

Log (length of sidewalks) 
0.48 0.017 0.488 0.019 0.506 0.022 0.558 0.022 0.283 0.015 0.306 0.027 

(0.450, 0.516) (0.454, 0.524) (0.458, 0.545) (0.516, 0.602) (0.257, 0.315) (0.252, 0.360) 

Log (population density) 
0.243 0.005 0.225 0.010 0.234 0.006 0.175 0.010 0.22 0.009 0.165 0.024 

(0.234, 0.252) (0.206, 0.247) (0.225, 0.246) (0.158, 0.192) (0.205, 0.237) (0.125, 0.215) 

Proportion of population 

age 65 or older 

-0.691 0.098 -0.761 0.094 - - - - - - - - 

(-0.890, -0.519) (-0.947, -0.582) - - - - 

Log (Commuters 

density) 

- - - - -0.635 0.075 -0.398 0.099 - - - - 

- - (-0.766, -0.450) (-0.587, -0.199) - - 

Proportion of 

commuters by public 

transportation 

3.532 0.260 3.565 0.292 3.467 0.258 2.949 0.282 7.525 0.606 4.802 1.286 

(3.011, 4.049) (3.011, 4.102) (2.919, 3.974) (2.375, 3.457) (6.544, 8.900) (2.676, 7.015) 

Proportion of 

commuters by cycling 

3.955 0.492 3.892 0.441 1.078 0.471 - - 7.000 1.703 8.566 2.258 

(2.901, 4.918) (3.069, 4.792) (0.076, 1.960) - (4.180, 10.670) (3.955, 12.758) 

Proportion of 

commuters by walking 

2.476 0.329 2.595 0.306 1.877 0.280 1.757 0.294 - - - - 

(1.874, 3.116) (1.998, 3.145) (1.321, 2.405) (1.189, 2.325) - - 

Log (median household 

income) 

- - - - -0.075 0.014 -0.047 0.01 -0.336 0.005 -0.565 0.094 

- - (-0.098, -0.056) (-0.066, -0.026) (-0.344, 0.326) (-0.745, -0.384) 

S.D. of θ 
0.605 0.009 0.361 0.090 0.790 0.011 0.518 0.144 0.456 0.008 0.222 0.023 

(0.588, 0.622) (0.196, 0.531) (0.769, 0.814) (0.224, 0.715) (0.440, 0.472) (0.181, 0.263) 

S.D. of φ 
- - 0.053 0.008 - - 0.037 0.058 - - 0.198 0.028 

- (0.042, 0.072) - (0.010, 0.152) - (0.147, 0.261) 

DIC 21032.300 21033.730 30244.700 29926.930 4317.540 4302.187 

Moran’s I of residual 0.028 0.021 0.286 0.325 0.092 -0.088 

*All explanatory variables are significant at 95% confidence level;      * All Moran’s I values are significant at 95% confidence level
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4.8 Comparative Analysis Results 

Based on the estimated models of the three zonal systems, the predicted crash counts for each 

crash type of the three geographic units can be computed and then transformed into the 

correspondingly intersected grids. Weighted MAE and RMSE for each grid structure were 

calculated with the observed crash counts and transformed predicted crash counts based on 

different geographic units. The comparison results are as shown in Table 3-7 and several 

observations can be made. (1) The MAE and RMSE values consistently increase with the grid 

size, validating the previous discussion that the comparison measures can be influenced by the 

number of observations and observed values. (2) For each zonal system, the spatial (PLN-CAR) 

models substantially improve the performance over the aspatial (PLN) models for predicting 

crash counts. The results are consistent with the previous analysis results that the crash counts 

are spatially correlated and the model considering the spatial dependency can provide better 

understanding of crash frequency. Also, the improvements based on TAZs and TADs are much 

greater than that based on CTs which should be related to the spatial correlation levels. (3) 

Among aspatial and spatial models, the TADs always have the best performance indicating the 

advantages of TADs over the other two zonal systems. Meanwhile, CTs based on aspatial models 

can consistently perform better than the models based on TAZs. However, the exact ordering 

alters between spatial models based on CTs and TAZs according to MAE and RMSE.  

The CTs are designed to be comparatively homogenous units with respect to socio-demographic 

statistical data. Thus, it is not surprising that CT-based models do not show the best performance. 

TAZs are the base zonal system of analyses for developing travel demand models and have been 

widely used by metropolitan planning organizations for their long-range transportation plans. 
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However, one of the major zoning criteria for TAZs is to minimize the number of intra-zonal 

trips (Meyer & Miller, 2001) which results in small area size for each TAZ. Due to the small size, 

a crash occurring in a TAZ might be caused by the driver from another TAZ, i.e., the 

characteristics of drivers who cause the crashes cannot be observed by the models based on 

TAZs. Also, as TAZs are often delineated by arterial roads and many crashes occur on these 

boundaries. The existence of boundary crashes may invalidate the assumptions of modeling only 

based on the characteristics of a zone where the crash is spatially located (Lee et al, 2014; 

Siddiqui et al., 2012).  Hence, although TAZs are appropriate for transportation demand 

forecasting, they might be not the best option for the transportation safety planning. The TADs 

are another transportation-related zonal system with considerably larger size compared with 

TAZs.  There should be more intra-zonal trips in each TAD and the drivers who cause crashes in 

a TAD will be more likely to come from the same TAD. Therefore, it seems reasonable that 

TADs are superior for macro-level crash analysis and transportation safety planning.  

In summary, considering the rationale for the development of different zonal systems and the 

modeling results in our study, it is recommended using CTs for socio-demographic data 

collection, employing TAZs for transportation demand forecasting, and adopting TADs for 

transportation safety planning.  
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Table 4-7 Comparison results based on grids 

 

Total Crashes Severe Crashes Non-motorized Crashes 

PLN PLN_CAR PLN PLN_CAR PLN PLN_CAR 

CT TAZ TAD CT TAZ TAD CT TAZ TAD CT TAZ TAD CT TAZ TAD CT TAZ TAD 

Weighted MAE 

Grid 1×1 4.70 6.12 3.43 4.45 3.34 2.30 0.28 0.33 0.22 0.26 0.23 0.18 0.17 0.19 0.15 0.17 0.18 0.12 

Grid 2×2 4.22 5.61 3.25 3.95 2.62 2.03 0.25 0.30 0.21 0.23 0.19 0.15 0.14 0.17 0.14 0.14 0.16 0.11 

Grid 3×3 3.87 5.23 3.10 3.59 2.19 1.85 0.23 0.28 0.20 0.21 0.17 0.14 0.13 0.16 0.13 0.13 0.15 0.10 

Grid 4×4 3.63 4.97 3.01 3.36 1.93 1.61 0.21 0.26 0.20 0.19 0.15 0.12 0.12 0.15 0.12 0.12 0.14 0.09 

Grid 5×5 3.42 4.74 2.79 3.16 1.81 1.39 0.20 0.25 0.19 0.18 0.14 0.10 0.11 0.14 0.11 0.11 0.13 0.08 

Grid 6×6 3.30 4.57 2.72 3.03 1.65 1.20 0.19 0.24 0.19 0.17 0.14 0.10 0.10 0.14 0.10 0.10 0.12 0.07 

Grid 7×7 3.18 4.43 2.68 2.94 1.55 1.17 0.18 0.23 0.18 0.17 0.13 0.09 0.10 0.13 0.10 0.10 0.12 0.07 

Grid 8×8 3.06 4.31 2.58 2.82 1.49 1.08 0.18 0.23 0.17 0.16 0.13 0.08 0.09 0.13 0.09 0.09 0.11 0.06 

Grid 9×9 2.99 4.23 2.53 2.74 1.47 0.94 0.17 0.22 0.17 0.15 0.12 0.07 0.09 0.13 0.09 0.09 0.11 0.06 

Grid 10×10 2.84 4.08 2.41 2.60 1.38 0.94 0.16 0.21 0.17 0.15 0.12 0.07 0.09 0.12 0.08 0.09 0.11 0.05 

AVE 3.52 4.83 2.85 3.26 1.94 1.45 0.21 0.25 0.19 0.19 0.15 0.11 0.11 0.15 0.11 0.11 0.13 0.08 

Weighted RMSE 

Grid 1×1 31.84 39.77 27.82 29.41 20.54 19.56 1.40 1.66 1.31 1.35 1.07 1.11 1.12 1.37 1.49 1.11 1.22 1.33 

Grid 2×2 25.54 32.53 22.64 23.27 12.60 14.61 1.07 1.30 1.02 1.03 0.73 0.74 0.77 0.96 1.00 0.76 0.85 0.87 

Grid 3×3 22.38 28.99 18.89 20.19 9.31 11.23 0.91 1.13 0.88 0.87 0.57 0.67 0.62 0.79 0.81 0.62 0.70 0.61 

Grid 4×4 20.30 26.18 16.78 18.16 7.68 7.65 0.83 1.04 0.80 0.79 0.51 0.55 0.54 0.72 0.59 0.54 0.64 0.46 

Grid 5×5 19.53 25.41 16.06 17.54 6.53 7.28 0.73 0.95 0.70 0.70 0.44 0.34 0.48 0.66 0.57 0.48 0.57 0.43 

Grid 6×6 18.30 23.92 15.10 16.34 5.50 5.25 0.66 0.86 0.65 0.61 0.39 0.31 0.44 0.60 0.48 0.43 0.52 0.35 

Grid 7×7 17.43 22.58 14.72 15.46 4.81 5.51 0.58 0.79 0.59 0.55 0.34 0.25 0.39 0.54 0.40 0.39 0.46 0.27 

Grid 8×8 17.43 22.65 14.24 15.41 4.68 4.86 0.59 0.79 0.58 0.55 0.35 0.24 0.36 0.52 0.38 0.36 0.44 0.25 

Grid 9×9 16.10 21.23 12.85 14.23 4.35 3.56 0.53 0.73 0.54 0.50 0.32 0.22 0.35 0.51 0.35 0.35 0.43 0.21 

Grid 10×10 15.45 21.18 12.79 13.71 3.89 4.03 0.49 0.71 0.49 0.47 0.31 0.17 0.32 0.50 0.31 0.32 0.40 0.18 

AVE 20.43 26.44 17.19 18.37 7.99 8.35 0.78 0.99 0.76 0.74 0.50 0.46 0.54 0.72 0.64 0.54 0.62 0.50 
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4.9 Summary and Conclusion 

Macro-level safety modeling is one of the important objectives in transportation safety planning. 

Although various geographic units have been employed for macro-level crash analysis, there has 

been no guidance to choose an appropriate zonal system. One of difficulties is to compare 

models based on different geographic units of which number of zones is not the same. This study 

proposes a new method for the comparison between different zonal systems by adopting grid 

structures of different scales. The Poisson lognormal (PLN) models without and Poisson 

lognormal conditional autoregressive model (PLN-CAR) with consideration of spatial 

correlation for total, severe, and non-motorized mode crashes were developed based on census 

tracts (CTs), traffic analysis zones (TAZs), and a newly developed traffic-related zone system - 

traffic analysis districts (TADs). Based on the estimated models, predicted crash counts for the 

three zonal systems were computed. Considering the average area of each geographic unit, ten 

sizes of grid structures with dimensions ranging from 1 mile to 100 square miles were created for 

the comparison of estimated models. The observed crash counts for each grid were directly 

obtained with GIS while the different predicted crash counts were transformed into the grids that 

each geographic unit intersects with. The weighted MAE and RMSE were calculated for the 

observed and different transformed crash counts of different grid structures. By comparing the 

MAE and RMSE values, the best zonal system as well as model for macroscopic crash modeling 

can be identified with the same sample size. 

The comparison results indicated that the models based on TADs offered the best fit for all crash 

types. Based on the modeling results and the motivation for developing the different zonal 

systems, it is recommended CTs for socio-demographic data collection, TAZs for transportation 
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demand forecasting, and TADs for transportation safety planning. Also, the comparison results 

highlighted that models with the consideration of spatial effects consistently performed better 

than the models that did not consider the spatial effects. The modeling results based on different 

zonal systems had different significant variables, which demonstrated the zonal variation. 

Besides, the results clearly highlighted the importance of several explanatory variables such as 

traffic (i.e., VMT and heavy vehicle mileage), roadway (e.g., proportion of local roads in length, 

signalized intersection density, and length of sidewalks, etc.) and socio-demographic 

characteristics (e.g., population density, commuters by public transportation, walking as well as 

cycling, median household income, etc.).  

This study focuses on the comparison of zonal systems for crash modeling and transportation 

safety planning. However, only three zonal systems were adopted for the validation of the 

proposed comparison method. Extending the current approach to compare other zonal systems 

(e.g., census block and counties) could be meaningful. Also, it is possible that the trip distance 

might be related to the size of appropriate geographic units for crash modeling. Future research 

extension might consider such relationship. 

85 

 



 

CHAPTER 5: JOINT APPROACH OF FREQUENCY AND 

PROPORTION MODELING AT MACRO-LEVEL 

5.1 Introduction 

With the growing concern of global warming and increasing obesity among adults and children, 

walking and bicycling are highly promoted by many communities. However, pedestrians and 

bicyclists are more vulnerable than automobile occupants and transportation safety has become a 

big concern for people to choose walking or bicycling. According to the National Highway 

Traffic Safety Administration, in 2015, totally about 6,100 pedestrians and bicyclists (i.e., non-

motorists) were killed from traffic crashes which accounted for nearly 18% of all traffic fatalities 

in the United States (NHSTA, 2015). In order to encourage people to walk and bicycle, it is 

necessary to put considerable efforts to enhance road safety for pedestrians and bicyclists. An 

efficient approach is the application of macroscopic crash modeling, which can investigate the 

effects of zonal factors on non-motorist safety (Wei & Lovegrove, 2012; FMCSA, 2012) and 

identify hot (unsafe) zones which have safety concerns as impediments for people to adopt 

walking or bicycling as a preferred transportation mode to private vehicles. By understanding the 

impact of zonal factors on pedestrian and bicyclist safety, planning-level strategies could be 

proposed to proactively improve traffic safety. 

This study aims to enhance pedestrians and bicyclists’ safety by suggesting a joint model to 

examine non-motorist crashes at the macroscopic level. More specifically, this study investigates 

the impact of macro-level characteristics on non-motorist crashes (i.e., crashes between vehicles 

and non-motorists (pedestrians or bicyclists)). It was found that the crashes between vehicles and 
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pedestrians and crashes between vehicles and bicyclist were highly correlated and shared a vast 

of significant variables with the same impacts (Eluru et al., 2008; Siddiqui et al., 2012; Kaplan 

and Prato, 2013; Lee et al., 2015a; Zhang et al., 2015; Cai et al., 2016; Nashad et al., 2016) and it 

should be reasonable to combine the two types of crashes for the analysis. Several exogenous 

variables including traffic flow characteristics, transportation network characteristics, socio-

demographic characteristics, and commuting variables are considered in the model development. 

The suggested model development would allow us to identify important determinants of non-

motorist crashes, and also provide valuable insights on the appropriate model framework for the 

macro-level non-motorist crash analysis. 

5.2 Statistical Methodology 

5.2.1 Standard Count Model 

The negative binomial (NB) model has been widely used in previous crash count studies (Lord 

and Mannering, 2010).  The model assumes that the crash data follows a Poisson-gamma mixture 

which can address the over-dispersion issue (i.e., variance exceeds the mean). A NB model is 

specified as follows: 

𝑦𝑦𝑖𝑖𝑁𝑁𝑁𝑁𝑁𝑁~𝐸𝐸𝑝𝑝𝑖𝑖𝑃𝑃𝑃𝑃𝑝𝑝𝑃𝑃 (𝑢𝑢𝑖𝑖𝑁𝑁𝑁𝑁𝑁𝑁) (5-1) 

log(𝑢𝑢𝑖𝑖𝑁𝑁𝑁𝑁𝑁𝑁) = 𝛽𝛽𝑁𝑁𝑁𝑁𝑁𝑁 ∗ 𝑥𝑥𝑁𝑁𝑁𝑁𝑁𝑁 + 𝜀𝜀𝑖𝑖 (5-2) 

where yiNON is the number of non-motorist crashes in zone i, uiNON is the expectation of yiNON, 

xNON is a set of explanatory variables, βNON is the corresponding parameter, θi is the error term. 

The exp (εii) is a gamma distributed error term with mean 1 and variance α2. Based on the NB 

model, the variables having significant effects on the non-motorist crash counts can be identified. 
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However, it is not clear whether the significant variables contribute to the vehicle drivers (more 

total crashes) or just non-motorists (higher proportion of non-motorist crashes).  

5.2.2 Joint Model 

The non-motorist crashes are the result of collisions between vehicles and non-motorists. The 

zonal factors can affect the non-motorist crashes through either drivers, or non-motorists, or both. 

The zones with high non-motorist crash risk may be because of more dangerous vehicle drivers 

or driving environment and incautious non-motorist or hazardous walking and bicycling 

conditions. The total crash count can reflect drivers’ behavior and the driving environment since 

all crashes should be vehicle related and most of crashes are among vehicles. Meanwhile, the 

proportion of non-motorist crashes can indicate the transportation safety level for non-motorists 

in each zone. Specifically, it would be dangerous to walk or bicycle instead of other 

transportation modes in zones with high proportions of non-motorist crashes. Thus, in the joint 

model we convert the non-motorist crash count into the product of the total crash count 

(representing vehicle drivers) multiplied by the proportion of non-motorist crashes. As for the 

total crash counts, a log link between the dependent and explanatory variables is specified in the 

modeling regression. Meanwhile, a logit transformation is applied for the proportion of non-

motorist crashes to restrict the dependent variable between 0 and 1. Thus, the specific structure 

of the joint model for non-motorist crashes can be expressed as follows: 

log (𝑢𝑢𝑖𝑖𝑁𝑁𝑁𝑁𝑁𝑁)= log (𝑢𝑢𝑖𝑖𝑇𝑇𝑁𝑁𝑇𝑇 ∗ 𝑝𝑝𝑖𝑖𝑁𝑁𝑁𝑁𝑁𝑁) + 𝜀𝜀𝑖𝑖 (5-3) 𝑦𝑦𝑖𝑖𝑇𝑇𝑁𝑁𝑇𝑇~𝐸𝐸𝑝𝑝𝑖𝑖𝑃𝑃𝑃𝑃𝑝𝑝𝑃𝑃 (𝑢𝑢𝑖𝑖𝑇𝑇𝑁𝑁𝑇𝑇) (5-4) 
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where 𝑢𝑢𝑖𝑖𝑇𝑇𝑁𝑁𝑇𝑇 is the expected total crash counts yiTOT in zone i,  piNON is the expected proportions 

of non-motorist crashes in zone i. To keep the same structure as the NB model, an error term 

with the same distribution in the NB model is also used in the equation. The expected total crash 

counts and proportion of non-motorist crashes can be estimated by: 

log (𝑢𝑢𝑖𝑖𝑇𝑇𝑁𝑁𝑇𝑇) = 𝛽𝛽𝑇𝑇𝑁𝑁𝑇𝑇 ∗ 𝑥𝑥𝑇𝑇𝑁𝑁𝑇𝑇 + 𝜃𝜃𝑖𝑖 (5-5) 

𝑝𝑝𝑝𝑝𝑙𝑙𝑖𝑖𝑤𝑤(𝐸𝐸𝑖𝑖𝑁𝑁𝑁𝑁𝑁𝑁) =  𝛽𝛽𝑃𝑃_𝑁𝑁𝑁𝑁𝑁𝑁 ∗ 𝑥𝑥𝑃𝑃_𝑁𝑁𝑁𝑁𝑁𝑁 + 𝜑𝜑𝑖𝑖 (5-6) 

where xTOT and xP_NON denote the explanatory variables for total crash counts and proportion of 

non-motorist crashes. βTOT  and βP_NON  represent the corresponding regression coefficients. θi 
and φi  are random error terms representing normal heterogeneity of total crash count and 

proportion of non-motorists crashes.  

5.3 Data Preparation 

Data from 594 Traffic Analysis Districts (TADs) in Florida (see Figure 1) were used for the 

analysis. The TADs are newly developed transportation-related geographic units by combining 

Traffic Analysis Zones (TAZs) (FHWA, 2011). TAZs have been widely employed in many 

macro-level traffic safety studies. However, TAZs are often delineated by arterial roads and thus 

many crashes occur on these boundaries. The existence of boundary crashes may invalidate the 

assumptions of modeling only based on the characteristics of a zone where the crash is spatially 

located (Lee, 2014; Lee et al, 2014; Siddiqui et al., 2012). Also, the size of a TAZ is small and 

thus a driver who causes a crash in a TAZ is likely to come from other TAZs. It means the 

characteristics of the driver may not be considered in the TAZ-based models. In Florida, the 

average area of TADs (103.3 mi2) is considerably larger than that of TAZs (6.5 mi2). Therefore, 
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it is deduced that there should be more intra-zonal trips in each TAD and the drivers who cause 

crashes in a TAD would be more likely to come from the same TAD. Therefore, it is reasonable 

to use TADs for macro-level crash analysis (Abdel Aty et al., 2016; Cai et al., 2017).  The 

crashes that occurred in Florida during 2010-2012 were collected from the Crash Analysis 

Reporting System (CARS) database of the Florida Department of Transportation. A total of 

901,235 crashes were recorded in Florida among which 31,547 (3.5%) were non-motorist 

crashes. Given the large number of crashes in the Florida data and the sufficiently large TAD 

area, no zero count units exist for the time period of our analysis.  

 

Figure 5-1. Illustration of TADs in Florida 
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A host of explanatory variables are considered for the analysis and are grouped into four 

categories: traffic exposure (i.e., Vehicle-Miles-Traveled (VMT), proportion of heavy vehicle in 

VMT), roadway information (e.g., proportion of length of freeway, signalized intersection 

density, length of bike lanes, length of sidewalks, etc.), socio-demographic characteristics (e.g., 

distance to nearest urban area, population density, median household income, proportion of 

unemployment etc.), and commuting variables (e.g., total commuters density, proportion of 

commuters by public transportation, etc.). All the candidate variables have been widely 

investigated in the previous studies (Lovegrove and Sayed, 2006; Siddiqui et al., 2012; Lee et al., 

2015; Cai et al., 2017). It should be noted that the road density is defined as total roadway length 

per square mile which can be computed by dividing the total roadway length by the area of each 

TAD. The intersection density is the number of intersection divided by the length of total road 

length. The length of bike lanes and sidewalks is obtained from Florida Department of 

Transportation (FDOT) Roadway Characteristics Inventory (RCI). The bike lanes and sidewalks 

can be one-way or two-way. If bike lanes or sidewalks are present in both directions, the length 

would be added. Furthermore, the distance to the nearest urban area is defined as the distance 

from the centroid of the TADs to the nearest urban region. Thus, the distance would be zero if 

the zone is located in an urban area. The descriptive statistics of the crash counts and candidate 

explanatory variables are summarized in Table 1.  
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Table 5-1. Descriptive statistics of the collected data (N=594) 

Variables Mean S.D. Min. Max. 

Crash variables 

Non-motorist crash frequency 53 60 1 562 

Total crash frequency 1,517 1,603 188 15,090 

Proportion of non-motorist crashes 0.048 0.021 0.002 0.138 

Traffic and roadway variables 

VMT (vehicle*mile) 599,647 428,747 38,547 4,632,469 

Proportion of heavy vehicle in VMT 0.071 0.039 0.015 0.290 

Road density (mile per mile
2
) 7.613 5.311 0.074 24.560 

Proportion of length of freeways 0.022 0.032 0 0.317 

Proportion of length of arterials 0.111 0.060 0 0.478 

Proportion of length of collectors 0.112 0.066 0 0.603 

Proportion of length of local roads 0.755 0.108 0.077 0.935 

Signalized intersection density (number of 

signalized intersection per mile) 
0.121 0.126 0 1.363 

Length of bike lanes (mile) 4.384 6.743 0 65.300 

Length of sidewalks (mile) 12.930 11.937 0 87.180 

Socio-demographic variables 

Distance to the nearest urban area (mile) 1.313 3.847 0 31.500 

Population density (number of people per 

mile
2
) 

1,998.610 1,969.808 6.680 15,341.300 

Proportion of population aged 15-24 0.135 0.058 0.034 0.694 

Proportion of population aged  65 or over 0.167 0.089 0.032 0.660 

Total employment density (number of 

total employment per mile
2
) 

1,617.080 1,609.586 6.840 13,007.100 

Median household income (dollars) 59,986 17,748 21,637 131,664 

Commuting variables 

Total commuters density (number of total 

commuters per mile
2
) 

900.670 904.087 3.601 6,936.093 

Proportion of commuters by car 0.900 0.046 0.544 0.969 

Proportion of commuters by public 

transportation 
0.017 0.026 0 0.196 

Proportion of commuters by cycling 0.061 0.010 0 0.168 

Proportion of commuters by walking 0.014 0.015 0 0.142 
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5.4 Modeling Results 

WinBUGS was used to estimate the NB model and the proposed joint model. Before the 

estimation of models, the correlation tests for the independent variables are conducted. To avoid 

the adverse impact of significant correlation, the variables with high correlation were not 

employed in the model at the same time. The significant independent variables were determined 

based on 95% certainty of Bayesian credible intervals (BCIs). Deviance information criterion 

(DIC) was computed to determine the best set of parameters for each model. Besides, the DIC 

was also employed to compare the two models. Models with smaller DIC value are preferred. 

Roughly, differences over 10 might indicate the model with lower DIC is significantly better (El-

Basyouny and Sayed, 2009).  

Tables 2 and 3 show the modeling results of the NB model and proposed joint model, 

respectively. It was revealed that the joint model has lower DIC value and the difference is more 

than 120, indicating that the proposed model offers significantly better performance over the NB 

model. The result of the NB model only has the count frequency component for non-motorist 

crashes. On the other hand, the joint model consists of two components: 1) count frequency 

model for total crashes; 2) logit model for the proportion of non-motorist crashes. Thus, it is as 

expected more different variables (e.g., signalized intersection density and proportion of 

population aged 65 or over) are significant in the proposed model compared with the NB model.  

Meanwhile, all significant variables in the NB model can also be found significant in the joint 

model which clearly indicates that these variables have effects on either vehicle drivers (total 

crash part) or non-motorists (proportion of non-motorist crash part). While the results for the two 
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models are presented in Tables 2 and 3, the following discussion about parameters focuses on the 

joint model which has better fit and more significant variables.   

Table 5-2 NB model results 

Variable 

NB model 

Mean S.D. 
BCI 

2.5% 97.5% 

Intercept 0.520 0.001 0.517 0.522 

Traffic characteristics 

Log(VMT) 0.332 0.001 0.330 0.334 

Proportion of heavy vehicle mileage in VMT -5.036 0.001 -5.038 -5.034 

Roadway characteristics 

Proportion of length of local road 0.524 0.001 0.522 0.525 

Log(length of sidewalks) 0.320 0.001 0.318 0.322 

Socio-demographic characteristics 

Log(population density) 0.151 0.001 0.149 0.153 

Log(median household income) -0.288 0.001 -0.29 -0.287 

Commuting characteristics 

Proportion of commuters by public transportation 8.38 0.001 8.378 8.382 

Proportion of commuters by bicycle 8.973 0.001 8.971 8.975 

Over-dispersion parameter 3.939 0.221 3.505 4.386 

DIC 4327.320 
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Table 5-3 Joint model results 

Variable 

Joint model 

Mean S.D. 
BCI 

2.5% 97.5% 

Count model part 

Intercept -1.544 0.001 -1.546 -1.542 

Traffic characteristics 

Log(VMT) 0.654 0.001 0.652 0.655 

Proportion of heavy vehicle mileage in VMT -2.483 0.001 -2.485 -2.481 

Roadway characteristics 

Log(signalized intersection density) 0.508 0.001 0.506 0.510 

Log(length of sidewalks) 0.115 0.001 0.113 0.117 

Socio-demographic characteristics 

Log(population density) 0.158 0.001 0.156 0.160 

Log(median household income) -0.116 0.001 -0.117 -0.114 

Commuting characteristics 

Proportion of commuters by public transportation 6.010 0.001 6.008 6.012 

Proportion model part 

Intercept 1.595 0.001 1.593 1.596 

Traffic characteristics 

Log(VMT) -0.349 0.001 -0.352 -0.348 

Roadway characteristics 

Proportion of length of local road 0.541 0.001 0.539 0.543 

Log(signalized intersection density) 0.761 0.001 0.759 0.763 

Log(length of sidewalks) 0.116 0.001 0.114 0.118 

Socio-demographic characteristics 

Proportion of population aged 65 or over 0.873 0.001 0.871 0.875 

Log(median household income) -0.114 0.001 -0.116 -0.112 

Commuting characteristics 

Proportion of commuters by bicycle 5.568 0.001 5.566 5.570 

Over-dispersion parameter 5.291 0.554 4.292 6.425 

S.D. of  𝜃𝜃𝑖𝑖 7.838 0.690 6.571 9.351 

S.D. of  𝜑𝜑𝑖𝑖 5.048 0.510 4.157 6.133 

DIC 4206.800 
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5.4.1 Count Model Part 

Overall seven independent variables were found to have significant effects on vehicle drivers in 

the count model part. The variable VMT is a measure of vehicular exposure and the number of 

total crashes including non-motorist crashes increases as the VMT increases. The variable 

proportion of heavy vehicle mileage in VMT has a negative effect. A high proportion of heavy 

vehicle mileage might indicate the areas where the traffic exposure is comparatively lower and 

drivers are likely driving more carefully. In terms of roadway characteristics, the signalized 

intersection density and the length of sidewalks are significant in the count model part. The 

increase in the two variables could increase the crash risk and indicate more conflicts. Also, 

improper driving decision due to the dilemma zones can lead to more crashes at the signalized 

intersections (Wu et al., 2014). It should be noted that the variable signalized intersection density 

is not significant in the NB model, which may be due to the correlation effects with other 

variables. The socio-demographic characteristics exhibit significant influences on crashes. 

Population density could be considered as a surrogate measure of traffic and thus it has a positive 

impact. As an indication of economic deprivation status, the higher median household income 

can improve the roadway condition for travelers and thus reduce the crashes. Also, it might be 

difficult for people from deprived areas to obtain enough information about traffic safety 

(Martinez and Veloz, 1996). Furthermore, the proportion of commuters by public transportation 

is found to have a positive effect in the count model. A possible explanation is that the area with 

higher proportion of commuters by public transportation should have more bus stops where 

vehicles may have conflicts with buses. 
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5.4.2 Proportion Model Part 

There were seven explanatory variables which had significant impacts on pedestrians and 

bicyclists in the proportion model part. Although it was found that the VMT has positive effect 

in the frequency model part, the increased VMT would result in the decrease of non-motorists 

and the proportion of non-motorist crashes. Three roadway variables including proportion of 

length of local roads, signalized intersection density, and length of sidewalks are positively 

related to the proportion of non-motorist crashes. Zones with increased local roads, signalized 

intersections, and sidewalks may attract more pedestrians and bicyclists and are likely to increase 

the conflicts between vehicles and non-motorists. Also, more interaction between vehicles and 

non-motorists exist at intersections with signal controls and hence more crashes are prone to 

occur. Moreover, the variable proportion of population equal to or older than 65 years old has a 

positive effect on the proportion of non-motorist crashes. The result seems reasonable since older 

people are more likely to walk. However, it would be difficult for old pedestrians and bicyclists 

to across the road, increasing the probability to be hit by vehicles. The median household income 

is found to be negatively associated with the proportion of non-motorist crashes. It might be 

because the people from households with lower economic status tend to walk or ride bicycles 

rather than driving. Furthermore, in zones with increased proportion of commuters by bicycle, 

the exposure of bicycling increases and hence the proportion of non-motorists crashes increases.   

5.5 Elasticity Effects 

The parameters of the exogenous variables in Table 3 do not directly provide the magnitude of 

the effects on the macro-level non-motorists crash frequency. Thus, we compute the elasticity 
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effects of exogenous variables for both the standard NB model and the proposed joint model. 

The elasticity effects are calculated by evaluating the change in non-motorist crash frequency in 

response to increasing the value of each exogenous variable by 10% (see Eluru and Bhat (2007) 

for more details for computing elasticities). The computed elasticities are presented in Table 4 

and the numbers presented in the table represent the expected percentage change in non-motorist 

crash frequency in response to the change in exogenous variables. For example, the elasticity 

effect for Vehicle Miles Travelled (VMT) based on the proposed joint model indicates that the 

expected crashes could increase by 3.075% with an increase in 10% of VMT.  

Based on the elasticity effects of NB and joint models, several observations can be made. First, 

the elasticity effects of the same variables (such as VMT, proportion of heavy vehicle mileage in 

VMT, proportion of length of local road, etc.) retain the same signs in the two models. Second, 

although the signs of parameters for VMT in the count and the proportion parts are different in 

the proposed joint model, its elasticity effect is finally positive which supports previous studies 

(Lee et al., 2015b; Cai et al., 2016). Third, the elasticity effects of two additional variables 

signalized intersection density and proportion of population equal to or older than 65 years old 

can be observed in the proposed model, which further demonstrate the advantage of the joint 

model. Finally, the elasticity analysis could help provide a clear picture of the exogenous factors’ 

impact on zonal non-motorist crash counts, providing an illustration on how the proposed model 

can be applied. 
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Table 5-4 Elasticity effect of independent variables 

 Variable NB model Joint model 

VMT 3.215 3.075 

Proportion of heavy vehicle mileage in VMT -3.484 -1.738 

Proportion of length of local road 4.036 4.006 

Length of sidewalks 3.097 2.184 

Population density 1.450 1.517 

Median household income -2.708 -2.129 

Proportion of commuters by public transportation 1.445 1.029 

proportion of commuters by bicycle 0.555 0.326 

Signalized intersection density - 12.542 

Proportion of population aged 65 or over - 1.411 

 

5.6 Hot Zone Identification Analysis 

One potential application of the model results in to allow identification of hot zones experiencing 

high crash risk based on the detected variables to support long term transportation planning to 

enhance traffic safety. Based on the joint model, we propose a joint method to identify hot zones 

for non-motorist crashes. The proposed joint model has two components corresponding to the 

two modeling targets: crash frequency and crash proportion. As for the crash frequency, the 

Highway Safety Manual (HSM) (AASHTO, 2010) suggests to employ Excess Predicted Average 

Crash Frequency (EPF) or Potential for Safety Improvement (PSI) based on Safety Performance 

Functions (SPFs). The measure can be calculated by the difference between the expected and 

predicted crash counts. The expected number of crashes is calculated by adjusting the observed 

number of crashes based on the estimated SPFs to eliminate the fluctuation in the observed 

number of crashes. Since Bayesian models are used in this study, the expected number of crashes 

can be computed by the estimated SPFs with random terms (Aguero-Valverde and Jovanis, 

2007). Thus, the excess predicted average total crash frequency in the count part of the joint 

model can be calculated as: 
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𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖𝑇𝑇𝑁𝑁𝑇𝑇 = 𝑁𝑁𝑖𝑖𝐸𝐸𝐸𝐸𝑃𝑃−𝑇𝑇𝑁𝑁𝑇𝑇 − 𝑁𝑁𝑖𝑖𝑃𝑃𝑅𝑅𝑃𝑃−𝑇𝑇𝑁𝑁𝑇𝑇 (5-7) 𝑁𝑁𝑖𝑖𝐸𝐸𝐸𝐸𝑃𝑃−𝑇𝑇𝑁𝑁𝑇𝑇 = exp (𝛽𝛽𝑇𝑇𝑁𝑁𝑇𝑇 ∗ 𝑥𝑥𝑇𝑇𝑁𝑁𝑇𝑇 + 𝜃𝜃𝑖𝑖) (5-8) 𝑁𝑁𝑖𝑖𝑃𝑃𝑅𝑅𝑃𝑃−𝑇𝑇𝑁𝑁𝑇𝑇 = exp (𝛽𝛽𝑇𝑇𝑁𝑁𝑇𝑇 ∗ 𝑥𝑥𝑇𝑇𝑁𝑁𝑇𝑇) (5-9) 

where, EPFiTOT is the excess predicted average total crash frequency for the count part at zone i . 

 NiEXP−TOT and NiPRD−TOTare the expected and predicted number of total crashes, respectively. 

As for the crash proportion, Lee et al. (2016) proposed the Excess Predicted Proportion (EPP) as 

a macroscopic screening performance measure by subtracting the predicted proportion from the 

observed proportion. Similar to the excess predicted average crash frequency, if EPP exceeds 

zero, the zone has higher proportion of non-motorist crashes than predicted. On the other hand, 

the proportion of non-motorist in the zone is lower than predicted if the EPP is smaller than zero. 

In this study, since the proportion is estimated based on the Bayesian model, the expected 

proportion can be used instead of observed proportion for the EPP computation. Then, the excess 

predicted average proportion of non-motorist crashes in the joint model can be calculated as: 

𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖 = 𝐸𝐸𝑖𝑖𝐸𝐸𝐸𝐸𝑃𝑃 − 𝐸𝐸𝑖𝑖𝑃𝑃𝑅𝑅𝑃𝑃 (5-10) 𝐸𝐸𝑖𝑖𝐸𝐸𝐸𝐸𝑃𝑃 = 𝑒𝑒𝑥𝑥𝑝𝑝(𝛽𝛽𝑃𝑃_𝑁𝑁𝑁𝑁𝑁𝑁 ∗ 𝑥𝑥𝑃𝑃_𝑁𝑁𝑁𝑁𝑁𝑁 + 𝜑𝜑𝑖𝑖)/(1 +  𝑒𝑒𝑥𝑥𝑝𝑝(𝛽𝛽𝑃𝑃_𝑁𝑁𝑁𝑁𝑁𝑁 ∗ 𝑥𝑥𝑃𝑃_𝑁𝑁𝑁𝑁𝑁𝑁 + 𝜑𝜑𝑖𝑖)) (5-11) 𝐸𝐸𝑖𝑖𝑃𝑃𝑅𝑅𝑃𝑃 = 𝑒𝑒𝑥𝑥𝑝𝑝(𝛽𝛽𝑃𝑃_𝑁𝑁𝑁𝑁𝑁𝑁 ∗ 𝑥𝑥𝑃𝑃_𝑁𝑁𝑁𝑁𝑁𝑁)/(1 +  𝑒𝑒𝑥𝑥𝑝𝑝(𝛽𝛽𝑃𝑃_𝑁𝑁𝑁𝑁𝑁𝑁 ∗ 𝑥𝑥𝑃𝑃_𝑁𝑁𝑁𝑁𝑁𝑁) (5-12) 

where, EPPi is the excess predicted average crash proportion of non-motorist crashes at zone i. 

PiEXP and PiPRD are the corresponding expected and predicted proportion of non-motorist crashes, 

respectively.  
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According to equations (5-7)-(5-12), the excess predicted average non-motorist crash frequency 

based on the two parts in the joint model can be calculated as 

𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖𝑁𝑁𝑁𝑁𝑁𝑁 = 𝑁𝑁𝑖𝑖𝐸𝐸𝐸𝐸𝑃𝑃−𝑇𝑇𝑁𝑁𝑇𝑇 ∗ 𝐸𝐸𝑖𝑖𝐸𝐸𝐸𝐸𝑃𝑃 ∗ exp (𝜀𝜀𝑖𝑖)− 𝑁𝑁𝑖𝑖𝑃𝑃𝑅𝑅𝑃𝑃−𝑇𝑇𝑁𝑁𝑇𝑇 ∗ 𝐸𝐸𝑖𝑖𝑃𝑃𝑅𝑅𝑃𝑃 (5-13) 

where, EPFiNONis the excess predicted average non-motorist crash frequency based on the joint 

model at zone i.  

Based on the joint model, three different excess predicted average values can be obtained: EPF 

of the non-motorist crashes, EPF of the total crashes, and EPP of the proportion of non-motorist 

crashes.  According to the EPF of non-motorist crashes, all TADs in this study could be 

classified into three categories based on each average value: hot (‘H’), warm (‘W’), and cold 

(‘C’). Specifically, a TAD was classified as a hot zone if the value is among the top 10%, a warm 

zone if the value is between 0 and less than the top 10%, or a cold zone if the value is less than 0. 

The hot zones have much more non-motorist crashes than other zones with similar characteristics. 

The warm zones are less risky than the hot zones but still have some room for the non-motorist 

safety improvement. As for the cold zones, they experience less non-motorist crashes compared 

to other similar zones. Also, all TADs can be classified into the three categories with the same 

approach based on the EPF of total crashes and the EPP of the proportion of non-motorist 

crashes. The TADs classified as hot zones for total crashes indicated the zones were with more 

dangerous driving environment while the TADs classified as hot zones for proportion of non-

motorist crashes should be more hazardous for walking and cycling. Since both dangerous 

driving environment and hazardous walking  and cycling condition can contribute to hot zones of 

non-motorist crashes, the three target results were combined together to provide a broad 

spectrum perspective for hot zones for non-motorists crashes. The combined classification results 
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are illustrated in Table 5.  The first letter represents the classification results based on the EPFs 

of non-motorist crashes while the second and third letters represent the classification results 

based on the EPFs of total crashes and EPPs of proportion of non-motorist crashes, respectively.   

Table 5-5 Example of screening results based on joint model 

TAD 

ID 

Excess Predicted Average 

Values 
Ranking Percent (%) Classification Results 

EPF_ 

NON 

EPF_ 

TOT 
EPP 

EPF_ 

NON 

EPF_ 

TOT 
EPP 

EPF_ 

NON 

EPF_ 

TOT 
EPP Combined 

1 0.55 58 0.00 36 32 39 W W W WWW 

2 6.15 87 0.01 28 28 23 W W W WWW 

: : : : : : : : : : : 

11 78.30 455 0.02 3 9 4 H H H HHH 

: : : : : : : : : : : 

594 -1.23 -11 0.00 41 44 57 C C C CCC 

With the 3 targets and 3 traffic safety levels, totally 27 joint classifications could be obtained. 

However, only twelve combined classifications can be obtained for the 594 TADs as shown in 

Table 6. Overall, 60 (10%) hot zones of non-motorist crashes were classified, which is top 

priority for non-motorist safety treatment. These zones have at least dangerous driving 

environment or hazardous walking and cycling conditions. There are 30 (5.05%) ‘HHH’ zones 

identified, which require treatments for driving environment as well as walking and cycling 

condition. Ninteen (3.20%) ‘HHW’ zones and 11 (1.85%) ‘HWH’ zones were also identified. 

For these zones, the highest priority treatments should be for drivers or non-motorists only. 

There were 166 (27.94%) warm zones which have moderate risk of non-motorist crashes. For the 

warm zones of non-motorist crashes, 9 (1.52%) ‘WHW’, 1(0.17%) ‘WHC’, and 18(3.03%) 

‘WWH’ zones are categorized. The ‘WHW’ and ‘WHC’ zones have dangerous driving 

environment, but the non-motorists are not particularly exposed to traffic crashes. On the other 

hand, the driving environment in the ‘WWH’ zones is moderately safe, whereas the walking and 

cycling conditions in these zones are dangerous. Also, there were 133(22.39%) ‘WWW’ and 

5(0.84%) ‘WCW’ zones which do not have serious problems for either the driving environment 
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or the walking and cycling conditions. Furthermore, more than half of the zones (61.95%) were 

classified as cold zones. In these 368 zones, 12(2.02%) ‘CWW’, 16(2.69%) ‘CWC’, 57(9.60%) 

‘CCW’, and 283(47.64%) ‘CCC’ zones were recognized. In these zones, the non-motorists are 

relatively safer since neither the driving environment nor the walking and cycling conditions are 

very dangerous.  

Based on the combined classification results, the screening result is presented in Figure 2. Since 

the warm and cold zones of non-motorist crashes are relatively safe, they were combined as 

‘WARM’ and ‘COLD’ zones, respectively. In order to better understand the spatial pattern of the 

classified zones, the urban areas in Florida are also presented. As shown in Figure 2, a clustered 

pattern of different classified zones can be clearly observed.  There are several clusters 

containing multiple ‘HHH’ zones. These clusters are in the South and Center Florida areas which 

are mostly mixtures of residence, commerce, and tourism land use. On the other hand, most of 

the ‘COLD’ zones formed clusters in the rural areas and also some ‘COLD’ zones clustered in 

the Northeast Florida urban area. Furthermore, several clusters having ‘WARM’ zones can be 

observed in the rural areas across the whole Florida.  

Table 5-6 Number of zones by hot zone classification 

Hot zones of non-motorist crashes 

(N=60) 

Warm zones of non-motorist crashes 

(N=166) 

Cold zones for non-motorist crashes 

(N=368) 

Category 
Number 

of Zones 

Percentage 

(%) 
Category 

Number 

of Zones 

Percentage 

(%) 
Category 

Number 

of Zones 

Percentage 

(%) 

HHH 30 5.05 WHH 0 0 CHH 0 0 

HHW 19 3.20 WHW 9 1.52 CHW 0 0 

HHC 0 0 WHC 1 0.17 CHC 0 0 

HWH 11 1.85 WWH 18 3.03 CWH 0 0 

HWW 0 0 WWW 133 22.39 CWW 12 2.02 

HWC 0 0 WWC 0 0 CWC 16 2.69 

HCH 0 0 WCH 0 0 CCH 0 0 

HCW 0 0 WCW 5 0.84 CCW 57 9.60 

HCC 0 0 WCC 0 0 CCC 283 47.64 

103 

 



 

  

(a) Hot zones distribution (b) Ubran areas distribution 

Figure 5-2. Hot zone identification based on the joint model 1 

 2 

  3 
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5.7 Summary and Conclusion 

With a growing challenge of global warming and traffic congestion, non-motorist transportation 

modes such as walking and cycling have been promoted as an environmentally friendly and 

physically active alternative for short distance trips. However, a strong impediment to universal 

adoption of non-motorist transportation is the inherent safety risk. Thus, it is necessary to make 

any effort to enhance the safety of pedestrians and bicyclists. The macro-level crash analysis 

allows identification of unsafe zones for non-motorists and detection of zonal factors which 

affect the non-motorist crash occurrences. This paper formulated and estimated models based on 

count and proportion models to investigate the effects of exogenous factors on pedestrian and 

bicycle crashes at the Traffic Analysis District (TAD) level in Florida. In order to identify 

potentially different impacts of exogenous variables on vehicle drivers and non-motorists, we 

formulated the joint model combining the negative binomial (NB) model and the logit model. 

More specifically, the NB model part is for the total crash counts to explore the effects on 

vehicle drivers while the logit model part is for the proportion of non-motorist crashes to 

investigate the influences on non-motorists. The model was estimated employing a 

comprehensive set of exogenous variables: traffic measures, roadway information, socio-

demographic characteristics, and commuting variables. Also, a traditional NB model was 

developed and compared with the joint model.  

The results of the joint model obviously highlighted the existence of different impact of 

exogenous factors on drivers and non-motorists for pedestrian and bicyclist crashes. The model 

comparison indicates that the proposed joint model can provide better performance over the NB 

model. In addition, more significant variables such as signalized intersection density and 
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proportion of population age 65 or over could be observed in the proposed model. Moreover, the 

result of the joint modeling emphasized that the importance of several other variables including 

traffic (e.g., VMT, proportion of heavy vehicle mileage, etc.), roadway (e.g., length of local road, 

length of sidewalk, etc.), socio-demographic characteristics (e.g., population density, median 

household income, etc.), and commuting variables (e.g., commuters by public transportation and 

those by bicycle). To provide a clear quantitative comparison of the variables’ impact, elasticity 

effects for the NB and joint models are computed. The results revealed that the same significant 

variables in the two models would have the same signs of elasticity effects on the non-motorist 

crashes. Also, the elasticity effect calculation allows us to determine the factors that substantially 

increase crash risk for crashes involving pedestrians and bicyclists.  

Subsequently, a novel joint method to identify hot zones of non-motorist crashes was proposed 

based on the joint model results. The hot zones of non-motorist crashes were classified into three 

categories: hot zones with dangerous driving environment only, hot zones with hazardous 

walking and cycling condition only, and hot zones with both dangerous driving environment and 

hazardous walking and cycling condition. According to the different categories, the appropriate 

treatments should be provided correspondingly to improve the driving environment, the walking 

and cycling conditions, or both. 

Based on our study, it is clear that analysis of non-motorist crashes should explore the different 

effects of exogenous factors on both drivers and non-motorists. Despite of the contributions of 

this study, there are some limitations that are expected to be addressed in future research. In the 

proposed model, the spatial correlation among adjacent zones has not explored yet. Further study 

is required to accommodate for the spatial correlation as well in the proposed joint model. 
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Besides, the formulated model was estimated using traffic exposure, roadway information, socio-

demographic characteristics, and commuting variables. The model performance can be improved 

if more variables reflecting the driving, walking, and cycling environment and increasing non-

motorist crash occurrences could be included in the future study. The proposed model can also 

be adopted to explore crashes of different severity levels and other crash characteristics such as 

single-vehicle crashes and head-on crashes. Further, the proposed joint model can be extended to 

a multivariate modeling structure if researches want to simultaneously analyze the crashes of 

different severity levels or crash types.   

107 

 



 

CHAPTER 6: INVESTIGATING MACRO-LEVEL EFFECTS IN 

MICRO-LEVEL CRASH ANALYSIS  

6.1 Introduction 

Segments and intersections are two major parts of road network to carry traffic demands. In the 

previous literature, numerous traffic crash prediction models have been developed at the micro-

level for the two types of road facilities. The choice of appropriate analytical models and the 

selection of representative variables would be the two crucial factors to obtain accurate modeling 

results. With various advanced statistical methodology such as spatial and temporal 

autocorrelation, finite mixture/latent class, zero inflation, random effects/parameters, and 

multilevel approaches, the effects of road features and traffic characteristics on the crashes of 

road facilities have been recognized and included in the micro-level crash prediction models. 

Beside the micro-level factors, the road facilities should share certain macro-level factors, which 

may affect travel behaviors, traffic modes, and further affect the crash occurrences. Although the 

crash studies at macro-level have suggested that the zonal factors such as socioeconomic 

characteristics have sustainable effects on traffic safety, only few studies have included macro-

level data for micro-level safety analysis. Omission of important explanatory variables at macro-

level may result in biased and inconsistent parameter estimates (Wang et al., 2017; Mannering et 

al., 2016). 

The study of this chapter aims to investigate the potential macro-level effects on crashes at the 

micro-level. Toward this end, a hierarchical joint model is proposed to analyze crashes at both 

segments and intersections by incorporating both macro-level data. Besides, the spatial 
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autocorrelation between segments and intersection is also considered in the proposed model. The 

suggested model development would enable us to better understand crash occurrence at the 

micro-level by considering the macro-level effects. 

The following parts of this chapter are organized into four sections. The following section 

introduces a new hierarchical joint model to incorporate macro-level factors in micro-level crash 

analysis models. The third section presents the collected data used in this chapter while the 

fourth section discusses the model results. Finally, the fifth section summarizes the findings of 

this chapter.  

6.2 Methodology 

The traditional Poisson and negative binomial models have been widely used to analyze the 

discrete, random and non-negative crash data. Nevertheless, the models assume that the 

observations are independent from each other and do not consider the potential correlation of the 

traffic crash counts, which may lead to poorly estimated results (Skinner et al., 1989; Goldstein, 

1995; Lord and Mannering, 2010). Generally, two types of correlations may exist in the crash 

data: (1) macro-level correlation; (2) spatial correlation. First, it would be reasonable to claim 

that the road entities located in the same zone should share certain macro-level factors, which 

may affect crash occurrence through driving behaviors and transportation modes. Hence, 

considering the macro-level effects would enhance the crash analysis models at the micro-level 

(Wang et al., 2016; Lee et al., 2017). If both micro- and macro-level data are considered for the 

analysis, the data used naturally has a two-level hierarchy. Hence, it would be appropriate to 

adopt a hierarchical modeling technology, which allows multilevel data structures to be properly 
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estimated and specified (Gelman and Hill, 2007; Yu et al., 2013). In addition, road entities may 

share unobserved spatial effects if they are in close proximity (Lord and Mannering, 2010). 

Compared with solely spatial autocorrelation between segments or intersections, the spatial 

correlation effects between adjacent segments and intersections may be more significant if they 

are directly connected with each other. Therefore, a two-level hierarchical joint model 

incorporating spatial effects is proposed in this study. Specifically, the hierarchical model is 

composed of a micro-level model (level-1 model) and a macro-level model (level-2 model) in a 

Bayesian framework.  

The level-1 model accounts for both micro-level factors and spatial autocorrelation in crashes 

between road entities. To consider the potentially spatial correlations between different types of 

road entities (segments and intersections), Zeng and Huang (2014) introduced a spatial joint 

model with a Conditional Autoregressive (CAR) prior, which was subsequently used by Wang 

and Huang (2016) and Huang et al. (2017). The level-1 model can be expressed as follows: 

𝑦𝑦𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑦𝑦~ 𝐸𝐸𝑝𝑝𝑖𝑖𝑃𝑃𝑃𝑃𝑝𝑝𝑃𝑃 (𝜆𝜆𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑦𝑦) (6-1) 

log�𝜆𝜆𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑦𝑦� =  𝛾𝛾𝑖𝑖𝑖𝑖 × �𝛽𝛽𝑠𝑠𝑒𝑒𝑠𝑠𝑥𝑥𝑖𝑖𝑖𝑖𝑠𝑠𝑒𝑒𝑠𝑠 + 𝑝𝑝𝑝𝑝𝑙𝑙�𝑝𝑝𝑒𝑒𝑃𝑃𝑙𝑙𝑤𝑤ℎ𝑖𝑖𝑖𝑖𝑠𝑠𝑒𝑒𝑠𝑠� + 𝑣𝑣𝑖𝑖𝑠𝑠𝑒𝑒𝑠𝑠� + �1 − 𝛾𝛾𝑖𝑖𝑖𝑖�
× �𝛽𝛽𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖 + 𝑣𝑣𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖� + 𝜃𝜃𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑦𝑦 + 𝜙𝜙𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑦𝑦 

 

(6-2) 

where, 𝑦𝑦𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑦𝑦 is the observed crash frequency of road entity i in zone j with the underlying 

Poisson mean 𝜆𝜆𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑦𝑦. 𝑥𝑥𝑖𝑖𝑖𝑖𝑠𝑠𝑒𝑒𝑠𝑠 and 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖 denote the set of explanatory variables of segments and 

intersections while βseg and βinter are the corresponding parameters. If road entity ij is a segment, 𝛾𝛾𝑖𝑖𝑖𝑖 = 1, otherwise, 𝛾𝛾𝑖𝑖𝑖𝑖 = 0. log(𝑝𝑝𝑒𝑒𝑃𝑃𝑙𝑙𝑤𝑤ℎ𝑖𝑖𝑖𝑖𝑠𝑠𝑒𝑒𝑠𝑠) is logarithm of the length of road entity ij if it is a 
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segment, otherwise it is zero. 𝑣𝑣𝑖𝑖𝑠𝑠𝑒𝑒𝑠𝑠and 𝑣𝑣𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖 are two intercepts, which are used to denote macro-

level effects for segments and intersection, respectively. 𝜃𝜃𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑦𝑦 is a random effect accounting 

for the unstructured over-dispersion that follows a normal distribution: 

𝜃𝜃𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑦𝑦~𝑁𝑁(0,
1𝜏𝜏ℎ)  (6-3) 

where τh is the precision parameter (the inverse of the variance) which follows a prior gamma 

(0.001, 0.001).  

𝜙𝜙𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑦𝑦 represents the random effect which is used to deal with the spatial autocorrelation effect. 

If two road entities directly connect with each other the weight in the spatial proximity matrix is 

set to be 1, otherwise, the weight is 0. This approach in the joint model can not only capture the 

spatial correlation of road entities of the same type but also the two different types of road 

entities including segments and intersections. 𝜙𝜙𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑦𝑦follows a normal distribution with CAR 

prior suggested by Besag et al. (1991): 

𝜙𝜙𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑦𝑦~N(
∑𝑤𝑤𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑦𝑦 𝜙𝜙𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑦𝑦∑ 𝑤𝑤𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑦𝑦𝑖𝑖≠𝑖𝑖 ,

1𝜏𝜏𝑐𝑐 ∑𝑤𝑤𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑦𝑦)  (6-4) 

where 𝑤𝑤𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑦𝑦 is the spatial proximity weight.  τc is the precision parameter, which follows a 

prior gamma (0.001,0.001). 

The level-2 model accounts for the macro-level effects shared by road entities. In the previous 

study, the macro-level effects were quantified by using a random term (Ahmed et al., 2011； 

Usman et al., 2012; Yu et al., 2013; Yu and Abdel-Aty, 2013a; Yu and Abdel-Aty, 2013b), or a 
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set of macro-level explanatory variables (Wang et al., 2016; Huang et al., 2016; Lee et al., 2017). 

Given that road entities in a zone share not only macro-level explanatory variables but also total 

crashes occurring at all road entities in the same zone, it may be better to quantify the macro-

level effects by considering the total crash frequency of the specific zones. Then, the level-2 

model can be specified as follows: 

𝑦𝑦𝑖𝑖𝑠𝑠𝑒𝑒𝑠𝑠~ 𝐸𝐸𝑝𝑝𝑖𝑖𝑃𝑃𝑃𝑃𝑝𝑝𝑃𝑃 (𝜆𝜆𝑖𝑖𝑠𝑠𝑒𝑒𝑠𝑠) (6-5) 𝑦𝑦𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖~ 𝐸𝐸𝑝𝑝𝑖𝑖𝑃𝑃𝑃𝑃𝑝𝑝𝑃𝑃 (𝜆𝜆𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖) (6-6) 𝑣𝑣𝑖𝑖𝑠𝑠𝑒𝑒𝑠𝑠 = 𝛿𝛿𝑠𝑠𝑒𝑒𝑠𝑠𝑥𝑥𝑖𝑖𝑠𝑠𝑒𝑒𝑠𝑠 + 𝜃𝜃𝑖𝑖𝑠𝑠𝑒𝑒𝑠𝑠 + 𝜙𝜙𝑖𝑖𝑠𝑠𝑒𝑒𝑠𝑠 (6-7) 𝑣𝑣𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖 = 𝛿𝛿𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖 + 𝜌𝜌 ∗ 𝜃𝜃𝑖𝑖𝑠𝑠𝑒𝑒𝑠𝑠 + 𝜃𝜃𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖 + 𝜙𝜙𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖 (6-8) 𝑝𝑝𝑝𝑝𝑙𝑙 (𝜆𝜆𝑖𝑖𝑠𝑠𝑒𝑒𝑠𝑠) = ℎ𝑠𝑠𝑒𝑒𝑠𝑠𝑣𝑣𝑖𝑖𝑠𝑠𝑒𝑒𝑠𝑠 (6-9) 𝑝𝑝𝑝𝑝𝑙𝑙 (𝜆𝜆𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖) = ℎ𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑣𝑣𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖 (6-10) 

where  yjseg and yjinter are the total crashes in all segments or intersections in the same zone j 

with the underlying Poisson means λjseg and λjinter . xjseg  and xjinter  are the macro-level 

explanatory variables for the segments and intersections, respectively. δseg  and δinter  are the 

corresponding parameters. θjseg  and θjinter  are random effects accounting for the unstructured 

over-dispersion. θjseg  with coefficient ρ  is used to realize the potential correlation between 

macro-levels effects on segments and intersections. In addition to the equivalence relation 

presented in Equations (6-7) and (6-8), the macro-level effects on segments and intersection are 

also linked to the total expected crashes at all segments and intersections in the specific zones 

with an adjustment factor ℎ𝑠𝑠𝑒𝑒𝑠𝑠 and ℎ𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖 . Notably, although the expected crash counts of all 

segments and intersection in each zone are used for the model estimation, they are not included 
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in the final prediction model for road entities. Instead, they serve as additional constraints, which 

can help better recognize the macro-level effects.  

In order to validate the performance of the proposed model, two other hierarchical models were 

estimated: one has random terms only and one has macro-level explanatory variables but does 

not consider the total expected crashes of all segments and intersections in the same zone. In 

addition, a base model only having micro-level explanatory variables was also estimated.  

All models were run considering a non-informative normal (0,106) prior for all coefficients. To 

avoid the adverse impact of significant correlation, the variables with high correlation were not 

employed in the model at the same time. The significant explanatory variables were determined 

based on 95% certainty of Bayesian credible intervals (BCIs). The optimal set of parameters for 

each model was determined based on DIC (deviance information criterion). The DIC was also 

used to compare models’ performance. Roughly, differences of more than ten might indicate that 

the model with lower DIC performs better (El-Basyouny and Sayed, 2009). Besides DIC, two 

other measures were employed to for the comparison: MAE (mean absolute error) and RMSE 

(root mean squared error). The formulae for the two measures are as follows: 

𝑀𝑀𝑀𝑀𝐸𝐸 =
1𝑁𝑁� |𝑦𝑦𝑖𝑖𝑖𝑖 − 𝑦𝑦𝑖𝑖𝑖𝑖′ |

𝑁𝑁
𝑖𝑖𝑖𝑖=1  (6-11) 

𝑅𝑅𝑀𝑀𝑅𝑅𝐸𝐸 = �1𝑁𝑁�(𝑦𝑦𝑖𝑖𝑖𝑖 − 𝑦𝑦𝑖𝑖𝑖𝑖′ )2𝑁𝑁
𝑖𝑖𝑖𝑖=1  (6-12) 
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where 𝑁𝑁 is the number of observations, 𝑦𝑦𝑖𝑖𝑖𝑖  and 𝑦𝑦𝑖𝑖𝑖𝑖′  are the observed and predicted number of 

crashes of road facility ij.  

6.3 Data Preparation 

In this study, totally 3,316 road facilities including 2,434 segments and 882 intersections in 

Orlando, Florida, were selected for the empirically analysis of the proposed models (Figure 6-

1(a)). Seventy-eight traffic analysis districts (TADs), zones where the road entities were located, 

were also selected for the analysis (Figure 6-1(b)). The TADs are newly developed 

transportation-related zones by combing existing traffic analysis zones (TAZs) (FHWA, 2011). 

In the earlier studies, the TAZs have been widely adopted for crash analysis since they are easier 

to be adopted to integrate traffic safety with the transportation planning process. However, many 

road entities are near boundaries of TAZs since one of the zoning criteria of TAZs is to 

recognize physical boundaries such as arterial (Lee et al., 2014; Cai et al., 2017a). Hence, it 

might be difficult to recognize the zonal effects of TAZs since the excess road entities are near 

the boundaries. In Orlando, the area of TADs (on average 36.59 mile
2
) is considerably larger 

than that of TAZs. Therefore, it is deduced that most of road entities could be located inside of 

TADs (Lee et al., 2017). For the road entities on the boundaries of two or more TADs, a 

geospatial method was applied in this study to assign them into TADs. Specifically, each 

intersection was allocated into a TAD if the intersection is located within the digital boundary of 

the TAD. Meanwhile, each segment was assigned into a TAD if most part of the segment is in 

the corresponding TAD. Hence, each road facility has one corresponding TAD with the one-to-

one spatial relation between road entities and TADs. In this study, four types of data including 
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traffic crash data, traffic characteristics, road features, and zonal factors were collected for the 

analysis. 

Crash data in a three-year period (2010-2012) were obtained from the Florida Department of 

Transportation (FDOT) Crash Analysis Reporting System (CARS) and Signal Four Analytics 

(S4A). In the crash database, crashes were defined as “crashes at intersection” or “crashes 

influenced by intersection” if they occurred within 250 feet away from the intersection. Based on 

this principle, a 250 feet buffer around each intersection were created and crashes inside the 

buffers were defined as intersection-related crashes while others were categorized as segment-

related crashes. A total of 60,144 crashes were collected among which 14,873 (24.7%) were 

intersection-related crashes and 45,271 (75.3%) were segment-related crashes. The crashes were 

also aggregated based on TADs by summing up the crash count of all road facilities in the 

corresponding TAD according to the spatial relations.  

Ten segment variables and six intersection variables were collected from the FDOT Roadway 

Characters Inventory (RCI). Average Annual Daily Traffic (AADT), as an indicator of traffic 

exposure, was collected for both segments and intersections. For road features, segment variables 

considered in this study are functional class of roads, number of lanes, segment length, presence 

of median, and location of segments while intersection variables include presence of traffic 

signal, number of legs, and location of intersections.  

The segment and intersection variables were also aggregated into TADs in a similar way as 

crashes. It should be noted that the intersection density is the number of intersections divided by 

the length of total road length. The distance to the nearest urban are is defined as the distance 
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from the centroid of the TADs to the nearest urban region. Beside traffic and road characteristics, 

the socio-demographic data were attained by aggregating census-tract-based data from the U.S. 

Census Bureau. These census-tract-based data could be aggregated into TADs as a TAD is a 

combination of multiple census tracts (Cai et al., 2017a). Table 6-1 provides descriptive statistics 

of collected data based on road facilities and TADs.  

   
Figure 6-1 Road entities and TAD in Orlando, Florida 
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Table 6-1 Descriptive statistics of collected data 

Variables Definition Mean S.D. Min. Max. 

Segment variables 

CRASH Three-year  crash count for each segment  6.20 12.59 0 132 

AADT Average annual daily traffic (in thousand) 20.19 25.51 0.20 195.77 

LENGTH Segment length (mile) 0.75 1.35 0.10 30.91 

FREEWAY Freeway indicator: 1 if freeway, 0 otherwise 0.11 0.31 0 1 

ARTERIAL Arterial indicator: 1 if arterial, 0 otherwise 0.39 0.49 0 1 

COLLECTOR Collector indicator: 1 if collector, 0 otherwise 0.49 0.50 0 1 

LOCALROAD Local road indicator: 1 if local road, 0 otherwise 0.01 0.11 0 1 

MEDIAN Median barrier indicator: 1 if present, 0 otherwise 0.63 0.48 0 1 

LANE1_2 1 or 2 lanes indicator: 1 if yes, 0 otherwise 0.56 0.50 0 1 

LANE3_4 3 or 4 lanes indicator: 1 if yes, 0 otherwise 0.30 0.46 0 1 

URBAN Urban indicator: 1 if in urban area; 0 otherwise 0.93 0.26 0 1 

Intersection variables  

CRASH Three-year  crash count for each intersection 16.86 20.34 0 135 

MAJ_AADT AADT on major approach (in thousand) 23.72 15.76 0.60 81.50 

MIN_AADT AADT on minor approach (in thousand) 8.22 7.64 0.20 52.50 

SIGNAL Traffic signal indicator: 1 if present, 0 otherwise 0.76 0.43 0 1 

LEG3 3-Leg intersection indicator: 1 if yes, 0 otherwise 0.31 0.46 0 1 

LEG4 4-Leg intersection indicator: 1 if yes, 0 otherwise 0.69 0.46 0 1 

URBAN Urban indicator: 1 if in urban area; 0 otherwise 0.99 0.10 0 1 

TAD related variables 

CRASH Three-year crash count for each TAD 257.03 213.17 18 1038 

DVMT Daily vehicle-miles traveled (in thousand) 494.53 440.19 23.30 2210.21 

P_HVMT Proportion of heavy vehicle in DVMT 0.08 0.03 0.04 0.19 

ROAD_LENGTH Total road length in each TAD (mi) 23.60 29.72 1.53 248.65 

P_FREEWAY Proportion of segment length of freeway 0.14 0.17 0 0.71 

P_ARTERIAL Proportion of segment length of arterial 0.40 0.21 0 0.74 

P_COLLECTOR Proportion of segment length of collector 0.46 0.22 0 1 

P_LOCALROAD Proportion of segment length of local road 0.01 0.03 0 0.23 

P_LANE1_2 Proportion of segment length with 1 or 2 lanes 0 0 0 0.03 

P_LANE3_4 Proportion of segment length with3 or 4 lanes 0.39 0.22 0 0.87 

P_LANE5MORE Proportion of segment length with 5 lanes or over 0.16 0.17 0 0.74 

INTER_DENS Number of intersections per mile (/mile) 1.70 0.57 1 4.33 

P_SINGAL Proportion of signalized intersections 0.78 0.24 0 1 

P_LEG3 Proportion of intersections with 3 legs 0.32 0.17 0 0.73 

P_LEG4 Proportion of intersections with 4 legs 0.67 0.18 0 1 

POP_DENS Population density (in thousand) 2.38 1.49 0.02 6.56 

P_AGE1524 Proportion of population aged 15-24 0.16 0.05 0.09 0.38 

P_AGE65MORE Proportion of population aged 65 or over 0.10 0.03 0.04 0.18 

MEDIAN_INC Median household income (in thousand) 63.40 19.47 33.99 122.77 

DIS_URBAN Distance to the nearest urban area (mi) 1.40 1.71 1 14.12 
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6.4 Model Results 

6.4.1 Model Performance 

As discussed in the previous section, totally four models were estimated in this study as follows: 

• Base model: crash prediction model only having micro-level explanatory variables; 

• Hierarchical model (1): crash prediction model having micro-level explanatory variables 

and considering macro-level effects with random terms; 

• Hierarchical model (2): crash prediction model having micro-level explanatory variables 

and considering macro-level effects with explanatory variables; 

• Hierarchical model (3): crash prediction model having micro-level explanatory variables 

and considering macro-level effects with both explanatory variables and total crashes of 

segments and intersections. 

Prior to discussing the model results, the model performance was summarized and presented in 

Table 6-2. Several observations can be made from the results. First, it was found that the three 

hierarchical models consistently outperform the base model without considering the macro-level 

effects on the micro-level crashes. The differences of DIC between the base model and 

hierarchical models are at least 15, which indicates a substantial improvement by considering the 

macro-level effects. The results validate our hypothesis that the road entities share macro-level 

factors which can affect the crash occurrence in segments and intersections. Second, the exact 

ordering alters among three hierarchical models based on DIC, MAE, and RMSE. The 

hierarchical model (3) can provide significantly smaller DIC compared with other two 

hierarchical models (El-Basyouny and Sayed, 2009). The goodness-of-fit for the third 
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hierarchical model is also improved by at least 14.51% and 10.45% based on the values of MAE 

and RMSE. Third, although hierarchical model (2) can provides slightly better model 

performance compared with hierarchical model (1), the differences are not significant. Hence, in 

terms of the results, we can conclude that the proposed hierarchical model, which not only 

considers macro-level explanatory variables but also uses total crash of zones as priors in the 

model, offers the best statistical fit for micro-level crashes. The findings are somewhat not 

surprising since the hierarchical model (3) analyzes the crash frequency for road entities with the 

prior information that how many total segment- or intersection- crashes occur in the zones. Such 

prior information serves as a constraint which can help better realize the macro-level effects.  

Table 6-2 Comparison results of model performance 

Category DIC MAE RMSE 

Base model 17524.30 10.16 24.43 

Hierarchical model (1) 17509.50 7.92 18.29 

Hierarchical model (2) 17501.00 7.79 17.90 

Hierarchical model (3) 17472.00 6.66 16.03 

 

6.4.2 Modeling Result 

The results of four models (i.e., one base model and three hierarchical models) for crashes of 

segments and intersections are displayed in Table 6-3. The results of the base model and 

hierarchical model (1) only present the micro-level variables with significant effects and random 

terms while the hierarchical models (2) and (3) results are composed of variables from both 

micro- and macro-levels. Same significant micro-level variables can be found in the four models 

with consistent signs of parameter. Meanwhile, more macro-level variables are found significant 

in hierarchical model (3). Furthermore, the variance of the macro-level random effect in the 
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hierarchical model (1) is statistically significant, which confirms the existence of within-zone 

homogeneities. While the results summarized in Table 6-3, the following discussions about the 

parameters estimates focuses on the hierarchical model (3) which has best fit and more 

significant variables.  

(1) Level-1 (Micro-Level) Variables 

As shown in Table 6-3, totally 8 micro-level variables are statistically significant for crashes of 

segments or intersections with 95% BCIs. The variables related to traffic volumes (i.e., AADT of 

segments, MAJ_AADT and MIN_AADT of intersections) are measures of vehicle exposure and 

as expected have positive effects on the propensities of crashes for both segments and 

intersections.  

Three other variables are found to significantly affect crash occurrence on segments: functional 

class of roadway is arterial (ARTERIAL), number of lanes is 1 or 2 (LANE1_2), presence of 

median barrier (MEDIAN). Compared with other road types, arterials have partially limited 

accesses with comparatively higher traffic volumes. Hence, the arterial would have more traffic 

interactions and conflicts within the same road length. A road segment will have fewer crashes if 

it only has one or two lanes since interactions among vehicles are generally increased on roads 

with more lanes. As consistent with the previous studies (Anastasopoulos et al., 2012), the 

presence of median barriers will increase crash counts on the road segments.  

Concerning intersections, two additional critical variables are found to be significant, i.e., 

presence of traffic signal (SIGNAL), number of legs is 3 (LEG3). The signal control is usually 
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installed at intersections with higher traffic volumes which lead more traffic interaction (Wang et 

al., 2016). Also, the existence of dilemma zones due to the signalized control can lead to more 

crashes (Wu et al., 2015). As suggested in the previous studies (Wang and Huang, 2016; Huang 

et al., 2016), more crashes tend to occur at intersections with more legs. Therefore, the 3-leg 

intersection indicator is negatively associated with the crash frequency of intersections.  

(2) Level-2 (Macro-Level) Variables 

The result suggests a significantly positive association between macro-level effects on road 

facilities and the total crashes of specific zones for both segments and intersections. The finding 

is expected since crashes should be more likely to occur at the road facility which is located in 

the zone with more crashes.  

Both segments and intersections have five significant macro-level explanatory variables. Among 

these variables, three common variables are found for segments and intersections: daily vehicle 

miles travelled (DVMT), distance of TAD centroid to the nearest urban area (DIS_URBAN), and 

median household income (MEDIAN_INC). The DVMT can increase the likelihood of crash 

occurrences at both segments and intersections. It can be reasoned that increased DVMT are 

correlated with increases in the traffic volume of a road entity and the interactions with the 

connected segments or intersections. As the distance of TAD centroid to the nearest urban region 

increases, the traffic crash risk at segments and intersections is reduced- a sign of low traffic 

exposure in the suburban regions. Besides, the distance might be correlated with intensity of land 

use, which may be an underlying factor for some of the observed effects (Pulugurtha et al., 2013; 

Wang and Huang, 2016). Segments and intersections, which are located in the TAD with higher 
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median household income, would experience less traffic crashes. Several previous studies 

(Huang et al., 2010; Xu et al., 2014; Cai et al., 2017) focused on macro-level crash analysis 

found the similar effects and argued that individuals from relatively affluent area are more likely 

to be better educated and seek for safer driving behavior. Besides, drivers and passengers with 

higher income seem more willing to use seatbelts (Lerner et al., 2001) and their vehicles tend to 

be more advanced (Girasek and Taylor, 2010). 

For segments, two more macro-level variables are significant. The variable proportion of heavy 

vehicle in DVMT (P_HVMT) is negatively related to crash occurrence at segments. The variable 

could be a reflection of industry area with less traffic exposure (Lee et al., 2016). Besides, 

compared with passenger car drivers, heavy vehicle drivers should be more professional to avoid 

collisions at segments (Carrigan et al., 2014).  A segment would have more crashes if it is 

located in a TAD with high proportion of arterial (P_ARTERIAL), which is understandable since 

crash risk is relatively higher in arterials according to the previous study (Huang et al., 2010; 

Jiang et al., 2016). As discussed in the micro-level, traffic might be more complicated in arterials 

with partially limited access and high traffic volume. Hence, a segment would experience 

increased traffic interaction and conflicts if connected with arterials.  

For intersections, two additional variables intersection density (INTER_DENS) and proportion 

of population between age 15 and 24 (P_AGE1524). High intersection density can increase the 

likelihood of crash occurrences (Wang et al., 2014; Xu et al., 2014). A possible reason is that 

higher intersection density is correlated with more vehicles turning and lane changing maneuvers, 

which results in increased traffic collisions (Wang et al., 2016). The finding about the young 

drivers is consistent with the well-known fact that young drivers prone to be involved in crashes 
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due to the lack of driving experience (Huang et al., 2010). Also, the young drivers are more 

likely to engage in aggressive driving acts, including speeding and red light running (Simons-

Morton et al., 2005; Yan et al., 2005).  

(3) Random Effects 

In the level-1 model, the variance of spatial correlation is statistically significant in all models. 

This result confirms the existence of the intrinsic spatial autocorrelation between intersections 

and their connected segments, which is consistent with the previous researches (Zeng and Huang, 

2014; Wang and Huang, 2016; Huang et al., 2016). Besides, all hierarchical models can provide 

smaller variance due to unobserved factors and spatial correlation compared with the base model. 

This indicates that the macro-level variables can be used to explain parts of the unexplained 

variation. In addition, the hierarchical model (3) provides the smallest variance of random effects, 

which further suggested the proposed model can provide better analysis results for the micro-

level.  

At the level-2 model, the parameter ρ is significant, which implies that there exist common 

factors between the macro-level effects on segments and intersections in each TAD although 

they are unobserved. Furthermore, the variances of spatial effects for macro-level effects were 

found to be significant at the 5% level. It suggests that both macro-level effects on segments and 

intersections are spatially correlated among adjacent zones.  
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Table 6-3 Modeling Result 

   Base model Hierarchical model (1) Hierarchical model (2) Hierarchical model (3) 

Variable Mean 95% BCI Mean 95% BCI Mean 95% BCI Mean 95% BCI 

Level-1 (Micro-Level)                     

Segment           

Intercept -3.34 -3.47 -3.21 -3.42 0.01 -3.41 -2.34 -2.50 -2.16 -5.27 -5.44 -5.11 

AADT 0.55 0.54 0.56 0.57 0.00 0.57 0.54 0.53 0.55 0.56 0.55 0.57 

ARTERIAL 0.27 0.22 0.34 0.39 0.01 0.39 0.36 0.28 0.44 0.37 0.31 0.45 

LANE1_2 -0.41 -0.47 -0.34 -0.16 0.01 -0.16 -0.20 -0.30 -0.11 -0.16 -0.26 -0.06 

MEDIAN 0.11 0.05 0.16 0.18 0.01 0.18 0.24 0.13 0.34 0.19 0.10 0.29 

Intersection                     

Intercept -8.18 -8.35 -7.99 -8.31 0.02 -8.29 -7.65 -7.79 -7.37 -8.65 -8.97 -8.42 

MAJ_AADT 0.75 0.74 0.76 0.80 0.00 0.80 0.83 0.81 0.85 0.80 0.77 0.81 

MIN_AADT 0.29 0.27 0.31 0.27 0.00 0.27 0.27 0.25 0.29 0.24 0.22 0.28 

SIGNAL 0.45 0.38 0.53 0.34 0.01 0.35 0.48 0.27 0.67 0.43 0.29 0.54 

LEG3 -0.51 -0.59 -0.42 -0.54 0.01 -0.54 -0.50 -0.65 -0.36 -0.50 -0.63 -0.39 

Level-2 (Macro-Level)                       ℎ𝑠𝑠𝑒𝑒𝑠𝑠 -   -  -  -  -  - -   -  - 3.33 3.45 3.23 ℎ𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖  -   -  -  -  -  - -   -  - 12.50 16.67 9.09 

Segment            

Fixed effect -   -  -  -  -  - 0.25 0.02 0.47 -0.57 -0.59 -0.55 

DVMT -   -  -  -  -  - -   -  - 0.29 0.28 0.29 

P_HVMT -   -  -  -  -  - -0.74 -1.26 -0.14 -1.32 -1.72 -0.71 

P_ARTERIAL -   -  -  -  -  - 0.40 0.06 0.65 0.16 0.07 0.21 

DIS_URBAN -   -  -  -  -  - -   -  - -0.11 -0.19 -0.06 

MEDIAN_INC -   -  -  -  -  - -0.11 -0.13 -0.10 -0.11 -0.11 -0.11 

Intersection             
   

  

Fixed effect -   -  -  -  -  - -0.39 -0.77 -0.09 0.18 0.15 0.21 

DMVT -   -  -  -  -  - -   -  - 0.05 0.05 0.05 

INTER_DENS -   -  -  -  -  - -   -  - 0.14 0.12 0.15 

P_AGE1524 -   -  -  -  -  - -   -  - 0.15 0.05 0.31 

DIS_URBAN -   -  -  -  -  - -   -  - -0.04 -0.09 -0.01 

MEDIAN_INC -   -  -  -  -  - -0.07 -0.08 -0.07 -0.05 -0.05 -0.05 

Random effects                       

Micro-level            

SD[𝜃𝜃𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑦𝑦] 2.73 2.40 3.07 0.56 0.53 0.59 0.59 0.56 0.61 0.61 0.58 0.64 

SD[𝜙𝜙𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑦𝑦] 3.90 3.22 4.83 2.22 1.73 2.70 2.27 1.80 2.65 1.55 1.01 2.27 

Macro-level             

ρ -   -  -  -  -  - 2.35 -0.53 9.18 2.35 0.84 4.49 

SD[𝜃𝜃𝑖𝑖seg] -   -  - 0.26 0.21 0.31 0.42 0.10 0.73 0.21 0.12 0.34 

SD[𝜃𝜃𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖] -   -  - 0.13 0.05 0.21 0.32 0.02 1.28 0.36 0.12 0.54 

SD[𝜙𝜙𝑖𝑖𝑠𝑠𝑒𝑒𝑠𝑠] -   -  - -   -  - 1.51 1.02 2.08 0.30 0.20 0.37 

SD[𝜙𝜙𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖] -   -  - -   -  - 0.22 0.05 0.53 0.13 0.02 0.31 
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6.5 Summary and Conclusion 

The study in this chapter sought to examine the effects of macro-level factors on crashes at the 

micro-level. For this purpose, this study formulated a Bayesian hierarchical model for both 

segments and intersections accounting for both macro- and micro-level data. As for the macro-

level data, not only macro-level explanatory variables such as socio-economic characteristics but 

also the total crashes aggregated at macro-level were considered in the proposed model. 

Meanwhile, the road features and traffic characteristics at the micro-level were included in the 

proposed model. In addition, the study suggested considering the potentially spatial 

autocorrelation between segments and intersections by a joint modeling structure. Three models 

were also estimated for comparison: a base model only having micro-level explanatory variables, 

a hierarchical model having micro-level explanatory variables and considering macro-level 

effects with random terms only, and hierarchical model having micro-level explanatory variables 

and considering macro-level effects with both macro-level explanatory variables and total 

crashes. The crashes that occurred at both segments and intersections in Orlando, Florida during 

2010-2012 were collected for the analysis. The selected crashes were aggregated at both macro- 

and micro-levels and a comprehensive set of exogenous variables from the two levels were 

selected for the model estimation. The estimated model performance was evaluated based on the 

following measures: deviance information criterion, mean absolute error, and root mean squared 

error.  

The results clearly suggested that considering macro-level effects can improve the model 

performance for micro-level crash analysis. The model comparison exercise indicated that the all 

hierarchical models considering macro-level effects outperformed the base model. Among the 
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three hierarchical models, the proposed model considering both macro-level explanatory and 

total crashes of zones offered the best fit for the crash prediction for the micro-level. Besides, 

significant spatial autocorrelation can be observed between segments and intersections. 

Furthermore, the proposed hierarchical joint model results clearly highlighted the importance of 

several micro-level variables including segment-based variables (e.g., AADT, arterial indicator, 

1 or 2 lanes indicator), intersection-based variables (e.g., AADT on major and minor approaches, 

traffic signal control indicator). Finally, the results further indicated that macro-level, such as 

proportion of segment length of arterial, intersection density, proportion of population aged 15-

24, and median household income, have significant effects on crashes at segments and 

intersections.  
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CHAPTER 7: INTEGRATING MACRO AND MICRO LEVEL SAFETY 

ANALYSES 

7.1 Introduction 

In the last few decades, there has been a growing recognition of the importance of safety in 

transportation research. Initially, the Transportation Equity Act for the 21st Century (Houston, 

1998) suggested to consider safety in the transportation planning process. Later, Washington et 

al. (2006) discussed how to incorporate safety into transportation planning at different levels. 

Currently, the Moving Ahead for Progress in the 21st Century Act (MAP-21 Act) (US Congress, 

2012) and Fixing America’s Surface Transportation Act (FAST Act) (U.S. DOT, 2015) require 

the incorporation of transportation safety in the long-term transportation planning process.  

One of the most widely used approaches to investigate traffic safety is crash frequency modeling, 

which can quantify exogenous factors contributing to the number of traffic crashes. Traditionally, 

crash frequency analyses have been adopted for both macro- and micro-levels. However, 

previous studies have explored traffic safety at either the micro- or micro-level, i.e., to the best of 

our knowledge no study has integrated the two levels. If traffic safety research is conducted for 

the same study area, macro- and micro-level crash analyses would investigate the same crashes 

but by different aggregation levels. Hence, we can assume that the crash counts at the two levels 

are correlated. Particularly, the total number of crashes in each zone (macro-level) is supposed to 

be the same as the total number of crashes from all road entities including segments and 

intersections (micro-level) located in the zone of interest. Therefore, an integrated crash 

frequency analysis might improve the model performance and can help in better understanding 
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the crash mechanisms as well. As a result, more effective and efficient countermeasures can be 

provided for both macro and micro levels to enhance transportation safety. 

This study aims to propose an integrated model to deal with the following issues: (1) to 

investigate transportation safety problems at macro- and micro-levels, simultaneously; (2) to 

handle the potential correlation of crash counts between macro- and micro-levels based on the 

spatial interactions between the two different aggregation levels; (3) to consider the spatial 

autocorrelation of the road entities (i.e., segments and intersections) by employing a joint model 

structure at the micro-level. 

7.2 Methodology 

7.2.1 Bayesian non-integrated spatial model 

(1) Bayesian non-integrated spatial model at the macro-level 

Traditional Poisson and negative binomial models have been widely used in the previous macro-

level traffic safety literature. Nevertheless, the models do not consider a possible spatial 

correlation of traffic crash counts between adjacent zones, which may yield biased modeling 

results (Hadayeghi et al., 2010; Quddus, 2008). By incorporating an error term for possible 

spatial autocorrelation, the Bayesian spatial Poisson lognormal model with Conditional 

Autoregressive (CAR) prior can provide more appropriate analysis results and has been widely 

adopted in macro-level crash analysis (Miaou et al., 2003; Quddus, 2008; Huang et al., 2010; 

Siddiqui et al., 2012; Lee et al., 2015; Qing et al., 2017a).  

The spatial model for the macro-level can be expressed as: 
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𝑦𝑦𝑖𝑖𝑧𝑧𝑧𝑧𝑒𝑒𝑒𝑒~ 𝐸𝐸𝑝𝑝𝑖𝑖𝑃𝑃𝑃𝑃𝑝𝑝𝑃𝑃 (𝜆𝜆𝑖𝑖𝑧𝑧𝑧𝑧𝑒𝑒𝑒𝑒) (7-1) 

log (𝜆𝜆𝑖𝑖𝑧𝑧𝑧𝑧𝑒𝑒𝑒𝑒) = 𝛽𝛽𝑧𝑧𝑧𝑧𝑒𝑒𝑒𝑒𝑥𝑥𝑖𝑖𝑧𝑧𝑧𝑧𝑒𝑒𝑒𝑒 + 𝜃𝜃𝑖𝑖𝑧𝑧𝑧𝑧𝑒𝑒𝑒𝑒 + 𝜙𝜙𝑖𝑖𝑧𝑧𝑧𝑧𝑒𝑒𝑒𝑒 (7-2) 

where yizone is the number of total crashes in zone i, λizone is the expected value of yizone. xizoneis 

a set of explanatory variables while βzone is the corresponding parameters. θizone is a random 

effect accounting for the unstructured over-dispersion that follows a normal distribution: 

𝜃𝜃𝑖𝑖𝑧𝑧𝑧𝑧𝑒𝑒𝑒𝑒~𝑁𝑁(0,
1𝜏𝜏ℎ)  (7-3) 

where τh is the precision parameter (the inverse of the variance) which follows a prior gamma 

(0.001, 0.001).  

ϕizoneis a random effect term which is used to deal with the spatial autocorrelation among zones. ϕizonefollows a normal distribution with CAR prior suggested by Besag et al. (1991): 

𝜙𝜙𝑖𝑖𝑧𝑧𝑧𝑧𝑒𝑒𝑒𝑒~𝑁𝑁(
∑ 𝑤𝑤𝑖𝑖𝑖𝑖𝑧𝑧𝑧𝑧𝑒𝑒𝑒𝑒𝜙𝜙𝑖𝑖𝑧𝑧𝑧𝑧𝑒𝑒𝑒𝑒𝑖𝑖≠𝑖𝑖∑ 𝑤𝑤𝑖𝑖𝑖𝑖𝑧𝑧𝑧𝑧𝑒𝑒𝑒𝑒𝑖𝑖≠𝑖𝑖 ,

1𝜏𝜏𝑐𝑐 ∑ 𝑤𝑤𝑖𝑖𝑖𝑖𝑧𝑧𝑧𝑧𝑒𝑒𝑒𝑒𝑖𝑖≠𝑖𝑖 )  
(7-4) 

in which wijzone is the binary entries of proximity matrix with a value of 1 if zones i and j share 

border or 0 otherwise.  τc  is the precision parameter, which also follows a prior gamma 

(0.001,0.001). 

The proportion of variability in the random effects due to spatial autocorrelation can be 

calculated as: 

αzone =
sd(ϕizone)

sd(θizone) + sd(ϕizone)
 (7-5) 
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where sd(∙) represents the empirical marginal standard deviation function. 

(2) Bayesian non-integrated spatial model at the micro-level 

At the micro-level, road entities located in close proximity may also share similar factors, 

resulting in spatial autocorrelation of traffic crashes among road entities. Compared with solely 

spatial autocorrelation between segments or intersections, the spatial correlation effects between 

adjacent segments and intersections may be more significant if they are directly connected with 

each other. To this end, Zeng and Huang (2014) proposed a Bayesian spatial joint model that 

simultaneously analyzes the crash frequency of segments and intersections. The model 

introduced an indicator γm to distinguish whether a road entity is a segment or an intersection 

since the segments and intersections should have different exogenous factors affecting traffic 

safety. Specifically, the value of γm is 1 if road entity m is a segment and  γm is 0 if the road 

entity is an intersection. Then, the model at micro-level is as follows: 

𝑦𝑦𝑚𝑚𝐸𝐸𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑦𝑦~ 𝐸𝐸𝑝𝑝𝑖𝑖𝑃𝑃𝑃𝑃𝑝𝑝𝑃𝑃 (𝜆𝜆𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑦𝑦) (7-6) 

log�𝜆𝜆𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑦𝑦� =  𝛾𝛾𝑚𝑚 × �𝛽𝛽𝑠𝑠𝑒𝑒𝑠𝑠𝑥𝑥𝑚𝑚𝑠𝑠𝑒𝑒𝑠𝑠 + 𝑝𝑝𝑝𝑝𝑙𝑙(𝑝𝑝𝑒𝑒𝑃𝑃𝑙𝑙𝑤𝑤ℎ𝑚𝑚𝑠𝑠𝑒𝑒𝑠𝑠)� + (1− 𝛾𝛾𝑚𝑚) × �𝛽𝛽𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑥𝑥𝑚𝑚𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖� +𝜃𝜃𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑦𝑦 + 𝜙𝜙𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑦𝑦  

(7-7) 

where ymentity is the number of crashes at segment or intersection m. xmseg and xminter denote the set 

of explanatory variables of segments and intersections while βseg  and βinter  are the 

corresponding parameters. log(lengthmseg) is logarithm of the length of road entity m  if it is a 

segment, otherwise it is zero. Similar to the spatial model at the macro-level, θmentityand ϕmentity 

represent the two random effects which are used to account for the unstructured over-dispersion 

effect and spatial correlation effect, separately. The spatial random effect ϕmentity is also assumed 
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to have a CAR prior. If two road entities m and n directly connect with each other the weight in 

the spatial proximity matrix wmnentity is set to be 1, otherwise, the weight is 0. This approach in the 

joint model can not only capture the spatial correlation of road entities of the same type but also 

the two different types of road entities including segments and intersections.  

7.2.2 Bayesian integrated spatial model at the two levels 

Figure 1 presents three GIS layers illustrating the spatial relations between crashes, road entities 

(micro-level), and zones (macro-level). As shown in Figure 7-1, the same crashes in the study 

area are aggregated at the macro- and micro-levels for the crash analyses. Hence, the crash count 

of a zone is supposed to be the same as the total crashes of all road entities in the same zone of 

interest. Let a matrix W denote the relation of spatial interaction between zones and road entities. 

The spatial interaction matrix wmi is assigned a value of 1 if a road entity m is located in zone i 

or 0 otherwise. If ı̂ zones and m�  road entities included in the study, a  m� × ı̂ spatial dependence 

matrix can be generated. Then, the relation between observed crashes at the macro- and micro-

levels can be expressed as follows: 

yizone = � ymentitywmikm=1  (7-8) 
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Figure 7-1 Illustration of spatial relation among crashes, road entities, and zones 

Based on the equivalence relation presented in Equation (6-9), the non-integrated models for the 

macro- and micro-levels can be linked. However, the expected crash counts at the macro-level 

might not be the same as the total expected number of crashes at the micro-level since they are 

estimated at different levels with different explanatory variables. Therefore, an adjusted factor is 

introduced to relax the equivalence constraint. The link function between the macro- and micro-

levels can be specified as: 

𝑢𝑢𝑖𝑖𝑧𝑧𝑧𝑧𝑒𝑒𝑒𝑒 = � 𝜆𝜆𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑦𝑦𝑤𝑤𝑚𝑚𝑖𝑖𝑘𝑘𝑚𝑚=1  (7-9) 

𝜆𝜆𝑖𝑖𝑧𝑧𝑧𝑧𝑒𝑒𝑒𝑒 = 𝑢𝑢𝑖𝑖𝑧𝑧𝑧𝑧𝑒𝑒𝑒𝑒 × 𝑀𝑀𝐴𝐴𝐴𝐴𝑖𝑖 (7-10) 𝑀𝑀𝐴𝐴𝐴𝐴𝑖𝑖 = 𝑒𝑒𝑥𝑥𝑝𝑝(𝛽𝛽′𝑧𝑧𝑧𝑧𝑒𝑒𝑒𝑒𝑥𝑥𝑖𝑖′𝑧𝑧𝑧𝑧𝑒𝑒𝑒𝑒 + 𝜃𝜃𝑖𝑖′𝑧𝑧𝑧𝑧𝑒𝑒𝑒𝑒 + 𝜙𝜙𝑖𝑖′𝑧𝑧𝑧𝑧𝑒𝑒𝑒𝑒) (7-11) 

where uizone is the total expected crashes (λmentity) of all road entities in zone i and the λmentity can 

be estimated based on the non-integrated spatial model at the micro-level (Equation (7)). ADJi is 

the adjustment factor of uizone and λi is the expected number of crashes in zone i based on the 
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non-integrated spatial model at the macro-level (Equation (7-2)). The adjustment factor can 

represent that how many different crashes will happen in a zone given the same road network but 

with different socio-demographic characteristics. Hence, only macro-level socioeconomic 

variables are adopted for the estimation of the adjust factor ADJi. Also, θi′zone and ϕi′zone are two 

random terms to capture the unobserved and spatial autocorrelation effects at the macro-level. In 

the integrated approach, the expected crash counts of road entities (λmentity) are estimated by 

equation (7) subjected to the relation with the crash count of zones shown in equations (7-9) and 

(10). Meanwhile, the expected crash frequencies of zones are the product of the total expected 

crash counts of all road entities and the adjustment factors (see equations (7-10) and (7-11)). 

Hence, based on the integrated model structure with Equations (7-1), (7-6)-(7-8), and (7-9)-(7-

11), the crashes at the macro- and micro-levels can be investigated, simultaneously. 

All the models were coded and estimated by using WinBUGS, which is a popular programming 

platform for Bayesian inference. The significant explanatory variables were determined based on 

95% certainty of Bayesian credible intervals (BCIs). Deviance information criterion (DIC) was 

used to measure models’ performance and determine the best set of parameters for each model. 

DIC is a common measurement for Bayesian model comparison and a lower DIC value is 

preferred. Roughly, differences of more than ten might indicate that the model with lower DIC 

performs better (El-Basyouny and Sayed, 2009). 
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7.3 Measurement of model comparison 

Besides the DIC mentioned above, two additional measures were employed to compare the 

model performance at both the macro- and micro-levels. MAE (Mean Absolute Error) computes 

the mean of absolute errors with the following equation: 

𝑀𝑀𝑀𝑀𝐸𝐸 =
1𝑁𝑁� |𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑖𝑖′|𝑁𝑁
𝑖𝑖=1  (7-12) 

where N is the number of observations, yi  and yi′  are the observed and predicted number of 

crashes of site i at the macro- and micro-levels.  

Root Mean Squared Errors (RMSE) calculates the square root of the sum of the squared error 

divided by the number of observations as follows: 

RMSE = �1

N
�(yi − yi′)2N
i=1  (7-13) 

7.4 Empirical data 

Dataset were elaborately collected based on 78 TADs in Orlando, Florida to demonstrate the 

empirical application of the proposed model. In the same study area, totally 3,316 road entities 

including 2,434 segments and 882 intersections were identified for the analysis (Figure 7-2). It is 

noteworthy that there are more segments and intersections in the study area. Unfortunately, the 

traffic data were not available for all segments and intersections. Thus, only segments and 
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intersections with available traffic data were selected and crashes occurred on the selected road 

entities were aggregated at the macro- and micro- levels for the analysis. However, the proposed 

model can be easily extended to include all the crashes once all road entities have available 

explanatory data.  

 

Figure 7-2  Selected TADs and road network in Orlando, Florida: overall study area (left); TADs (upper 

right) and road network (bottom right) in Downtown Orlando 

The spatial interaction between TADs and road entities were processed by using ArcGIS 10.2 

(ESRI) based on the digital maps provided by the U.S. Census Bureau (USCB) and Florida 

Department of Transportation (FDOT). As noted above, a lot of segments and intersections are 

located on the boundaries of TAZs since one of the zoning criteria of TAZs is to recognize 

physical boundaries such as arterial (Lee et al., 2014; Cai et al., 2017a) and the size of a TAZ is 
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quite small (on average 5.50 square miles in Orlando). However, the TADs were developed by 

combining the existing TAZs and the size of a TAD is sufficiently larger (on average 36.59 

square miles). Hence, most of road entities could be located inside of TADs. If a road entity is 

located on the boundaries of two or more TADs, the geospatial method was applied to assign 

them into TADs. Specifically, each intersection was assigned into a TAD if the intersection is 

located within the digital boundary of the TAD. Meanwhile, each segment was allocated into a 

TAD if the segment is most proportionally in the corresponding TAD. Hence, the one-to-one 

spatial interaction between TADs (macro level) and road entities (micro level) can be obtained. 

A 3316 × 78 spatial dependence matrix can be generated corresponding to the 3316 road entities 

and 78 TADs. Also, the spatial autocorrelation matrix only for TADs or road entities can be 

obtained by applying spatial join features in ArcGIS. The descriptive statistics for the spatial 

relations are presented in Table 7-1. Remarkably, all TADs have adjacent TADs and each TAD 

has at least 5 road entities. Besides, the maximum number of neighbors among road entities is 21, 

which might be because some long segments connect a lot of intersections and other segments. 

Table 7-1 Descriptive statistics for spatial relations 

Variables Definition Mean S.D. Min. Max. 

Spatial autocorrelation between TADs 

N_TAD_NEI Number of neighbors among TADs 5.80 1.55 2 10 

Spatial autocorrelation between road entities 

N_ENTITY_NEI Number of neighbors among road entities 3.03 2.09 0 21 

Spatial dependence between TADs and road entities 

N_TAD_ENTITY Number of road entities in each TAD 42.51 29.13 5 189 

The crashes that occurred in Orlando during 2010-2012 were collected from the Florida 

Department of Transportation (FDOT)’s Crash Analysis Reporting System (CARS) and Signal 

Four Analytics (S4A) database. In the database, crashes occurring within 50 feet and 250 feet 

away from the intersection are defined as “crashes at intersection” and “crashes influenced by 
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intersection”, respectively. According to this principle, a 250 feet buffer around each intersection 

were created and crashes in the buffers were collected and classified as intersection-related 

crashes while other crashes were categorized as segment-related crashes. Then, the crashes in 

each TAD can be obtained by summing up the crash counts of all road entities in the 

corresponding TAD according to the spatial interaction.  

A host of explanatory variables were considered for the analysis, including traffic data, roadway, 

demographic, and socioeconomic factors. The traffic and road data in the road entities were first 

collected from FDOT and then spatially attached to the corresponding TADs in a similar way as 

crashes. The socio-demographic data were attained from the USCB. These census tracts-based 

data were aggregated to TADs since a TAD is a combination of multiple census tracts (Cai et al., 

2017a). The descriptive statistics of the collected data based on TADs and road entities are 

summarized in Tables 7-2 and 7-3, respectively. 
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Table 7-2 Descriptive statistics of collected data for TADs (macro-level) 

Variables Definition Mean S.D. Min. Max. 

CRASH Three-year  crash count for each TAD 257.03 213.17 18 1038 

DVMT Daily vehicle-miles traveled (in thousand) 494.53 440.19 23.30 2210.21 

Segment-related variables 

ROAD_LENGTH Total road length in each TAD (mi) 23.60 29.72 1.53 248.65 

P_FREEWAY Proportion of segment length of freeway 0.14 0.17 0 0.71 

P_ARTERIAL Proportion of segment length of arterial 0.40 0.21 0 0.74 

P_COLLECTOR Proportion of segment length of collector 0.46 0.22 0 1 

P_LOCALROAD Proportion of segment length of local road 0.01 0.03 0 0.23 

P_LANE1_2 Proportion of segment length with 1 or 2 lanes 0 0.00 0 0.03 

P_LANE3_4 Proportion of segment length with3 or 4 lanes 0.39 0.22 0 0.87 

P_LANE5MORE Proportion of segment length with 5 lanes or over 0.16 0.17 0 0.74 

P_MEDIANROAD Proportion of segment length having median 0.68 0.22 0.10 1 

Intersection-related variables 

INTER_DENS Number of intersections per mile (/mile) 1.70 0.57 1 4.33 

P_SINGAL Proportion of signalized intersections 0.78 0.24 0 1 

P_LEG3 Proportion of intersections with 3 legs 0.32 0.17 0 0.73 

P_LEG4 Proportion of intersections with 4 legs 0.67 0.18 0 1 

Socio-demographic variables 

POP_DENS Population density (in thousand) 2.38 1.49 0.02 6.56 

P_AGE1524 Proportion of population aged 15-24 0.16 0.05 0.09 0.38 

P_AGE65MORE Proportion of population aged 65 or over 0.10 0.03 0.04 0.18 

COMMUTERS_DENS Commuters density (/mi
2
) 1163.12 728.39 9.32 3103.77 

MEDIAN_INC Median household income (in thousand) 63.40 19.47 33.99 122.77 

DIS_URBAN Distance to the nearest urban area (mi) 1.40 1.71 1.00 14.12 
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Table 7-3 Descriptive statistics of collected data for road entities (micro-level) 

Variables Definition Mean S.D. Min. Max. 

Segment variables 

CRASH Three-year crash count for each segment  6.20 12.59 0 132 

LENGTH Segment length (mile) 0.75 1.35 0.10 30.91 

AADT Average annual daily traffic (in thousand) 20.19 25.51 0.20 195.77 

FREEWAY Freeway indicator: 1 if freeway, 0 otherwise 0.11 0.31 0 1 

ARTERIAL Arterial indicator: 1 if arterial, 0 otherwise 0.39 0.49 0 1 

COLLECTOR Collector indicator: 1 if collector, 0 otherwise 0.49 0.50 0 1 

LOCALROAD Local road indicator: 1 if local road, 0 otherwise 0.01 0.11 0 1 

MEDIAN Median barrier indicator: 1 if present, 0 otherwise 0.63 0.48 0 1 

LANE1_2 1 or 2 lanes indicator: 1 if yes, 0 otherwise 0.56 0.50 0 1 

LANE3_4 3 or 4 lanes indicator: 1 if yes, 0 otherwise 0.30 0.46 0 1 

LANE5MORE 5 or more lanes indicator: 1 if yes, 0 otherwise 0.15 0.36 0 1 

URBAN Urban indicator: 1 if in urban area; 0 otherwise 0.93 0.26 0 1 

Intersection variables  

CRASH Three-year  crash count for each intersection 16.86 20.34 0 135 

MAJ_AADT AADT on major approach (in thousand) 23.72 15.76 0.60 81.50 

MIN_AADT AADT on minor approach (in thousand) 8.22 7.64 0.20 52.50 

TRAFFIC_SIGNAL Traffic signal indicator: 1 if present, 0 otherwise 0.76 0.43 0 1 

LEG3 3-Leg intersection indicator: 1 if yes, 0 otherwise 0.31 0.46 0 1 

LEG4 4-Leg intersection indicator: 1 if yes, 0 otherwise 0.69 0.46 0 1 

URBAN Urban indicator: 1 if in urban area; 0 otherwise 0.99 0.10 0 1 

 

7.5 Model Estimation 

7.5.1 Model Comparison 

As discussed above, three models were estimated in this study, i.e., (1) a non-integrated model 

for the macro-level, (2) a non-integrated model for the micro-level, and (3) an integrated model 

for both levels. Prior to discussing the model results, we present the performance results of the 

estimated models in Table 4. The table presents the DIC, MAE, and RMSE for the two levels 

based on the results of non-integrated and integrated models. Several observations can be made 

according to the results presented in Table 7-4. At the macro-level, the integrated model can 

provide significantly smaller values of the three measures compared with the non-integrated 
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model. Specifically, the DIC difference for macro-level is 44.99, which indicates significant 

difference between the two models (El-Basyouny and Sayed, 2009).  Likewise, the prediction 

accuracy of crash frequency for macro-level in the integrated model is improved by 27.99% and 

18.57% respectively based on the MAE and RMSE. On the other hand, the integrated model can 

provide significantly smaller DIC for the micro-level compared with the non-integrated model as 

well. Besides, the goodness-of-fit for the micro-level is improved by 21.16% and 23.33% 

according to the values of MAE and RMSE, respectively. Hence, in terms of the comparison 

results, we can generally conclude that the proposed integrated model is preferable for crash 

frequency analysis at both macro- and micro-levels with better overall statistical fit.  

Table 7-4 Comparison results of model performance 

Measure 
Non-Integrated Model Integrated Model Difference between Models 

Macro-level Micro-level Macro-level Micro-level Macro-level Micro-level 

DIC 798.83 17524.30 753.84 17506.60 44.99 17.70 

MAE 161.41 10.16 116.23 8.01 45.18 2.15 

RMSE 242.28 24.43 197.30 18.73 44.98 5.70 

 

The model comparison results discussed above indicate that the proposed integrated model can 

improve the crash frequency prediction and analysis at the macro- and micro-levels. The findings 

are somewhat not surprising. At the macro-level, a possible explanation may be the less 

aggregated traffic and road variables from the micro-level were adopted for the zonal crashes 

estimation and the explanatory factors associated with the crash risk from the micro-level may be 

more direct and specific to crash circumstances (Huang et al., 2017). In comparison, the non-

integrated model for the macro-level crash frequency analysis adopts a list of aggregated traffic 

and roadway variables from the micro-level together with socio-demographic variables based on 
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the macro-level. Hence, the non-integrated model for macro-level cannot consider the 

heterogeneity of different road entities since the potential variation is neutralized by the 

aggregation of data. At the micro-level, a possible reason is that the integrated model analyzes 

the crash frequency with the prior information from the macro-level, which indicates the total 

crash counts of TADs where the road entities are located. Meanwhile, the macro-level socio-

demographic variables can affect the parameter estimation of micro-level variables through the 

adjusted factors which links crash frequencies of the two levels. In conclusion, the macro- and 

micro-level crash frequency models indeed support each other and the integrated model can 

consequently improve model performance for crash prediction and analyses at the two levels.  

7.5.2 Model Results 

The results of three models (i.e., two non-integrated models, one integrated model) for crashes at 

both macro- and micro-levels are displayed in Tables 7-5, 7-6, and 7-7. The results for two non-

integrated models only present the variables with significant effects on crash frequency at either 

macro- level or micro-level. On the other hand, the integrated model results consist of two 

components: (1) significant variables affecting the crash counts at the macro- and micro-levels; 

and (2) other socio-demographic variables at the macro-level adjusting the relation of the 

expected crash counts between the two levels. All micro-level significant variables in the 

integrated model can also be found significant in the micro-level non-integrated model. 

Meanwhile, the same significant socio-demographic variables can be obtained from the 

integrated model and the non-integrated model for the macro-level. All the significant variables 

are found to have consistent signs of parameter estimates in the integrated and non-integrated 

models. While the results summarized in the three tables, the discussions about the parameter 
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estimates at the two levels focuses on the integrated model which has better fit and more 

significant variables.   

As shown in Table 7-6, totally 8 micro-level variables are statistically significant for crash 

frequency with 95% BCIs: 5 segment-related variables (i.e., AADT (average annual daily traffic), 

functional class is arterial, number of lanes is 1 or 2, presence of median barrier) and 4 

intersection-related variables (i.e., AADT on major approach, AADT on minor approach, 

presence of traffic signal, number of legs is 3). The AADTs of segments and intersections are 

used as exposure variables of the crash frequency and expected to have positive effects on 

crashes. Compared with other road types, arterials have partially limited accesses with 

comparatively higher traffic volumes.  Given the same road length, the arterial is supposed to 

have more traffic interactions and conflicts. Unsurprisingly, a road segment will have fewer 

crashes if it only has one or two lanes. The presence of median barriers will increase crash counts 

on the road segments, which is consistent with the previous studies (Anastasopoulos et al., 2012). 

As for the intersections, a variable related to the intersection control type and a variable about 

number of legs are found significant. Intersections with signalized controls are more likely to 

have more crashes. The signal control is usually installed at intersections with higher traffic 

volumes where more traffic interactions occur (Wang et al., 2016). Also, the existence of 

dilemma zones can lead to more crashes at the signalized intersections (Wu et al., 2015). More 

crashes are prone to happen at intersections with more intersecting legs (Wang and Huang, 2016). 

Hence, the 3-leg intersection indicator is negatively associated with the crash frequency.  

As for the macro-level socio-demographic variables, the proportion of population aged 15-24 is 

positive while the median household income and distance to the nearest urban area are negatively 
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associated with crash counts for the macro-level crash counts. The finding about the young 

drivers is consistent with the well-known fact that young drivers prone to be involved in crashes 

due to the lack of driving experience (Huang et al., 2010).TADs having higher median household 

income would experience less traffic crashes since drivers and passengers with higher income 

are more likely to use seatbelts (Lerner et al., 2001) and their vehicles tend to be safer (Girasek 

and Taylor, 2010).  As the distance of the TAD centroid from the nearest urban region increases, 

total traffic crash risk is reduced - a sign of low traffic exposure in the suburban regions.  

The two random terms due to the spatial autocorrelation and unobserved heterogeneity are 

significant for crash frequency of both macro- and micro-levels. The proportions of variability 

due to the spatial autocorrelation at the macro- and micro-levels are 0.65 and 0.6, respectively, 

indicating the importance to consider the spatial effects in crash frequency analysis. Compared 

with the non-integrated model, the standard deviations of the spatial autocorrelation and 

unobserved heterogeneity for the crash frequency at the macro- and micro-levels are much 

smaller in the integrated model, which indicates that considering the spatial interaction between 

the two levels can reduce the effects of random terms.  
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Table 7-5 Non-Integrated model result at macro level 

Variable Definition Mean S.D. 
BCI 

2.50% 97.50% 

Intercept   -3.33 0.09 -3.47 -3.14 

DVMT Daily vehicle-miles traveled 0.91 0.01 0.90 0.92 

Segment-related variables 

P_ARTERIAL Proportion of segment length of arterial 0.66 0.11 0.44 0.85 

Intersection-related variables 

INTER_DENS Number of intersections per mile 0.58 0.11 0.35 0.78 

P_SINGAL Proportion of signalized intersections 0.40 0.13 0.21 0.67 

Socio-demographic variables 

P_AGE1524 Proportion of population aged 15-24 2.70 0.30` 2.06 3.27 

MEDIAN_INC Median household income -0.29 0.01 -0.31 -0.28 

DIS_URBAN Distance to the nearest urban area -0.21 0.06 -0.33 -0.10 

Random effects 

sd[𝜃𝜃𝑧𝑧𝑧𝑧𝑒𝑒𝑒𝑒] Standard deviation of  𝜃𝜃𝑧𝑧𝑧𝑧𝑒𝑒𝑒𝑒 0.11 0.05 0.03 0.20 

sd[𝜙𝜙𝑧𝑧𝑧𝑧𝑒𝑒𝑒𝑒] Standard deviation of  𝜙𝜙𝑧𝑧𝑧𝑧𝑒𝑒𝑒𝑒 0.36 0.02 0.30 0.40 𝛼𝛼𝑧𝑧𝑧𝑧𝑒𝑒𝑒𝑒 Proportion of variability due to spatial correlation 0.78 0.09 0.62 0.93 

 

Table 7-6 Non-Integrated model result at micro level 

Variable Definition Mean S.D. 
BCI 

2.50% 97.50% 

Segment 

Intercept   -3.34 0.09 -3.47 -3.21 

AADT Average annual daily traffic  0.55 0.01 0.54 0.56 

ARTERIAL Arterial indicator: 1 if arterial, 0 otherwise 0.27 0.03 0.22 0.34 

LANG1_2 1 or 2 lanes indicator: 1 if yes, 0 otherwise -0.41 0.03 -0.47 -0.34 

MEDIAN 
Median barrier indicator: 1 if present, 0 

otherwise 0.11 0.03 0.05 0.16 

Intersection 

Intercept   -8.18 0.08 -8.35 -7.99 

MAJ_AADT AADT on major approach  0.75 0.01 0.74 0.76 

MIN_AADT AADT on minor approach 0.29 0.01 0.27 0.31 

TRAFFIC_SIGNAL Traffic signal indicator: 1 if present, 0 otherwise 0.45 0.04 0.38 0.53 

LEG3 3-Leg intersection indicator: 1 if yes, 0 otherwise -0.51 0.04 -0.59 -0.42 

Random effects 

sd[𝜃𝜃𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑦𝑦]  Standard deviation of  𝜙𝜙𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑦𝑦 2.73 0.17 2.40 3.07 

sd[𝜙𝜙𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑦𝑦] Standard deviation of  𝜃𝜃𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑦𝑦 3.90 0.41 3.22 4.83 𝛼𝛼𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑦𝑦 
Proportion of variability due to spatial 

correlation 0.79 0.02 0.75 0.83 
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Table 7-7 Integrated model result at the two levels 

Variable Definition Mean S.D. 
BCI 

2.50% 97.50% 

Segment-related variables 

Intercept 
 -2.87 0.05 -2.95 -2.80 

AADT Average annual daily traffic 0.48 0.01 0.47 0.49 

ARTERIAL Arterial indicator: 1 if arterial, 0 otherwise 0.31 0.03 0.27 0.38 

LANG1_2 1 or 2 lanes indicator: 1 if yes, 0 otherwise -0.43 0.03 -0.48 -0.36 

MEDIAN 
Median barrier indicator: 1 if present, 0 

otherwise 0.19 0.04 0.12 0.24 

Intersection-related variables 

Intercept 
 -7.96 0.06 -8.06 -7.87 

MAJ_AADT AADT on major approach 0.74 0.01 0.72 0.76 

MIN_AADT AADT on minor approach 0.29 0.01 0.27 0.30 

TRAFFIC_SIGNAL Traffic signal indicator: 1 if present, 0 otherwise 0.45 0.06 0.35 0.57 

LEG3 
3-Leg intersection indicator: 1 if yes, 0 

otherwise -0.54 0.04 -0.62 -0.46 

Socio-demographic variables for adjusted factor 

Intercept 
 3.62 0.07 3.49 3.75 

P_AGE1524 Proportion of population aged 15-24 0.92 0.32 0.32 1.41 

MEDIAN_INC Median household income -0.34 0.01 -0.35 -0.33 

DIS_URBAN Distance to the nearest urban area -0.11 0.02 -0.16 -0.06 

Random effects 

sd[𝜃𝜃𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑦𝑦] Standard deviation of  𝜙𝜙𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑦𝑦 0.60 0.02 0.56 0.64 

sd[𝜙𝜙𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑦𝑦] Standard deviation of  𝜃𝜃𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑦𝑦 0.92 0.04 0.87 1.01 

sd[𝜃𝜃𝑧𝑧𝑧𝑧𝑒𝑒𝑒𝑒] Standard deviation of  𝜃𝜃𝑧𝑧𝑧𝑧𝑒𝑒𝑒𝑒 0.07 0.02 0.03 0.12 

sd[𝜙𝜙𝑧𝑧𝑧𝑧𝑒𝑒𝑒𝑒] Standard deviation of  𝜙𝜙𝑧𝑧𝑧𝑧𝑒𝑒𝑒𝑒 0.10 0.03 0.04 0.14 𝛼𝛼𝐸𝐸𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑦𝑦 
Proportion of variability due to spatial 

correlation at micro level 0.61 0.01 0.58 0.63 𝛼𝛼𝑧𝑧𝑧𝑧𝑒𝑒𝑒𝑒 
Proportion of variability due to spatial 

correlation at macro level 0.57 0.15 0.25 0.81 

 

7.6 Integrated Hotspots Identification Analysis 

One possible application of the proposed integrated model is to identify crash hotspot, which is a 

top priority for safety treatment. The crash hotspot should not be simply the one with the highest 

crash frequency; instead, it should be the one that experiences more crashes than similar sites as 

a result of site-specific deficiency (Xie et al., 2017).  A potential for safety improvement (PSI) 

was adopted in this study to identify hotspots, which is defined as the expected crash frequency 
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at the sites of interest minus the expected crashes in the similar sites (Aguero-Valverde and 

Jovanis, 2010). The spots with higher PSI are expected to have more reduced crashes after the 

implementation of the treatments. Based on the integrated spatial model, the PSIs for the two 

levels can be calculated as: 

𝐸𝐸𝐸𝐸𝐸𝐸𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑦𝑦 =  𝛾𝛾𝑚𝑚 × �𝛽𝛽𝑠𝑠𝑒𝑒𝑠𝑠𝑥𝑥𝑚𝑚𝑠𝑠𝑒𝑒𝑠𝑠 + 𝑝𝑝𝑝𝑝𝑙𝑙(𝑝𝑝𝑒𝑒𝑃𝑃𝑙𝑙𝑤𝑤ℎ𝑚𝑚𝑠𝑠𝑒𝑒𝑠𝑠)�+ (1− 𝛾𝛾𝑚𝑚) × �𝛽𝛽𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑥𝑥𝑚𝑚𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖� (7-14) 𝐸𝐸𝑅𝑅𝑃𝑃𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑦𝑦 = 𝜆𝜆𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑦𝑦 − 𝐸𝐸𝐸𝐸𝐸𝐸𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑦𝑦   (7-15) 𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖𝑧𝑧𝑧𝑧𝑒𝑒𝑒𝑒 = � 𝐸𝐸𝐸𝐸𝐸𝐸𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑦𝑦𝑤𝑤𝑚𝑚𝑖𝑖𝑘𝑘𝑚𝑚=1 ∗ exp (𝛽𝛽′′𝑧𝑧𝑧𝑧𝑒𝑒𝑒𝑒𝑥𝑥𝑖𝑖′𝑧𝑧𝑧𝑧𝑒𝑒𝑒𝑒) 
(7-16) 

𝐸𝐸𝑅𝑅𝑃𝑃𝑖𝑖𝑧𝑧𝑧𝑧𝑒𝑒𝑒𝑒 = 𝜆𝜆𝑖𝑖𝑧𝑧𝑧𝑧𝑒𝑒𝑒𝑒 − 𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖𝑧𝑧𝑧𝑧𝑒𝑒𝑒𝑒   (7-17) 

where EXPmentityand EXPizone are the expected number of crashes at micro and macro levels while λmentity, λizone are the predicted number of crashes at the two levels. PSImentity and PSIizone are the 

micro and macro PSIs. The coefficients and random terms in the equations can be obtained by 

Bayesian inference in the estimated model. The spots with positive PSIs could be considered as 

hazardous and should have the potential to be improved. However, given time and budget 

constraints, it is more efficient to identify hotspots which have the priority to implement 

treatments. In our study, all sites at the macro- and micro-levels are classified into three 

categories based on the calculated PSIs: hot (H), warm (W), and cold (C) sites. Hot sites are 

defined as those with top 10% PSIs, warm sites refer to be sites with positive PSIs but not the top 

10%, and the remaining sites are cold sites. It should be noted that 10% was commonly used as 

the threshold to identify hotspots (Cheng and Washington, 2008; Cai et al., 2017b), and it can be 

increased or decreased depending on researchers’ needs.  

The macro- and micro-level PSIs should recognize transportation safety problems with different 

aspects. In favor of providing an equivalent comparison of PSIs at the macro- and micro-levels, 
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the PSIs at the micro-level are aggregated into the macro-level. Figure 7-3(a) shows the 

difference between the hot TADs identified by PSIs based on the macro-level (PSI-TAD) and 

sum of PSIs based on the micro-level (PSI-SUM). In summary, 5 (6.41%) TADs were identified 

as hotspots by both the PSI-TAD and PSI-SUM, 3 (3.85%) TADs were identified by PSI-TAD 

only, and 3 (3.85%) TADs were identified by PSI-SUM only. As indicated in Figure 3(a), spatial 

clustering of high-risk TADs can be observed. Most of the identified hot TADs are located in the 

downtown Orlando area, especially hot TADs identified by both PSI-TAD and PSI-SUM. Figure 

3(b) illustrates the difference between the ranks by PSI-TAD and PSI-SUM. The X- and Y- axis 

show the rank in descending order of the PSI-TAD and PSI-SUM. The red line is the 45-degree 

reference line and the points on the red line represent that same ranking results can be obtained 

based on PSI-TAD and PSI-SUM. As shown in Figure 7-3(b), most of points are plotted around 

the reference line indicating that similar ranking results are obtained based on the PSIs at the two 

levels.  However, some TADs have clearly different ranking results based on PSI-TAD and PSI-

SUM, revealing that the hotspots identification based on single level may result in largely 

ignoring certain spots with excess crash frequency studies (Abdel-Aty et al., 2016; Huang et al., 

2016). Hence, it is necessary to develop an integrated approach to identify hotspots to overcome 

the shortcomings of individual identification analysis.  

At the macro-level, an integrated classification is suggested based on TADs to support policy 

making and long-term transportation planning. Given that three categories are adopted for the 

classification at the two levels, there are nine candidate combination classifications: HH, HW, 

HC, WH, WW, WC, CH, CW, and CC. The former letter represents the safety at the macro-level 

while the latter letter denotes the combined crash risk based on the micro-level. For example, the 

‘HH’ refers the TADs with serious safety problem at both macro- and micro-levels. Table 7-7 
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summarizes the number of TADs by the integrated category and only 6 classifications can be 

obtained for the 78 TADs. There are 5 (6.41%) TADs are classified as ‘HH’ which are the top 

priority for safety treatments since they have highest safety risks at the two levels. The integrated 

classification result is illustrated in Figure 5. Since the number of ‘HW’ and ‘WH’ TADs are 

small, they are merged together for the purpose of brevity. Hence, five categories are presented, 

i.e., ‘HH’, ‘HW/WH’, ‘WW’, ‘WC’, and ‘CC’. As demonstrated in Figure 7-4, spatial clustering 

of high-risk zones can be observed. Special attention should be paid in Downtown Orlando since 

most of zones with high crash risk are located in this area. The zones with moderate crash risk 

cluster in the north corner of the study area while the safe zones are rather spatially isolated.  

  

(a) (b) 
Figure 7-3 Comparisons of hot TADs identified by PSI at macro and micro levels 
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Beside integrated classification at the macro-level, an integrated classification analysis is also 

conducted at the micro-level to help provide appropriate engineering treatments to reduce 

crashes in specific road entities. Similar to the macro-level integration approach, all sites 

(segments and intersections) are classified into nine categories including two scale groups (micro 

and macro) and three risk levels (hot, warm, and cold). Hence, for example, the ‘HH’ indicates 

that a road entity has safety problem and it is located in a TAD with serious safety issues. For 

such road entity, both appropriate engineering treatments and enforcement strategies should be 

implemented. As summarized in Table 7-8, most road entities with high risk are in the dangerous 

area. Moreover, Figure 7-5 presents which road entities should be targeted in downtown Orlando 

since the area has most zones of interest.  

Table 7-8 TADs and road entities by integrated category7 

Sites Category HH HW WH HC CH WW WC CW CC 

TAD 
Counts 5 3 3 0 0 49 1 0 17 

Percentage 6.41% 3.85% 3.85% 0.00% 0.00% 62.82% 1.28% 0.00% 21.79% 

Intersection 
Counts 23 74 142 1 26 356 84 114 62 

Percentage 2.61% 8.39% 16.10% 0.11% 2.95% 40.36% 9.52% 12.93% 7.03% 

Segments 
Counts 83 146 295 5 34 913 249 397 312 

Percentage 3.41% 6.00% 12.12% 0.21% 1.40% 37.51% 10.23% 16.31% 12.82% 
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Figure 7-4 Spatial distribution of hot TADs based on the integrated classification 

 

Figure 7-5 Spatial distribution of road entities based on the integrated classification in Downtown 

Orlando 
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7.7 Summary and Conclusion 

The crash frequency modeling analysis plays an essential role in transportation safety as it can 

estimate the effects of macro- and micro-level factors on safety and identify hotspots, which 

have safety issues. This study formulated and estimated a Bayesian integrated spatial model to 

analyze crash frequency at the macro- and micro-levels, simultaneously. Based on the spatial 

interaction between zones and road entities, the expected crash counts at the macro- and micro-

levels were linked by an adjustment factor. The adjustment factor was estimate by using a set of 

macro-level socio-demographic variables, which indicates how many more crashes occur at the 

macro-level given the same road network but with the different socio-demographic 

characteristics. Besides the spatial interaction, the spatial autocorrelations at zones and road 

entities were considered in the model. Especially, the spatial autocorrelation at micro-level was 

considered for different types of road entities (i.e., segments and intersections) with a joint 

structure. Two independent non-integrated models were also estimated for comparison. The 

crashes that occurred on both segments and intersections in Orlando, Florida during 2010-2012 

were selected for the empirical analysis. Then, the selected crashes were aggregated at both 

macro- and micro-levels and a comprehensive set of exogenous variables from the two levels 

were selected for the model estimation.  

The results of the integrated model clearly highlighted the existence of spatial interaction 

between the macro- and micro-level crash counts and confirmed the benefit of integrating 

modeling analysis of crash counts for the two levels. The comparison results indicated that the 

integrated model significantly outperformed non-integrated model at the macro-level while the 

integrated model provided a slightly better model performance for micro-level crash frequency 
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analysis. The integrated model provided a combination of significant variables from both micro- 

and macro-levels including segment-based variables (e.g., AADT, arterial indicator, 1 or 2 lanes 

indicator), intersection-based variables (e.g., AADT on major and minor approaches, traffic 

signal control indicator), and TAD-based socioeconomic variables (e.g., proportion of population 

aged 15-24, median household income). The identification of significant macro-level variables 

can help undertake planning process to enhance transportation safety while we can suggest 

engineering solution to reduce traffic crashes based on micro-level contributing factors. 

Therefore, the proposed model can be employed as a useful tool that links the transportation 

safety planning and traffic engineering countermeasures.  

This study further contributed to the literature by proposing a novel integrated method to identify 

hotspots of crashes at both macro- and micro-levels. The PSI was adopted as a measure to 

identify the hotspots for the two levels. The macro-level hotspot identification can detect zones 

with area-wide planning-level safety problems while the micro-level approach is capable of 

identifying specific road entities with high risks. Since the sole hotspot identification may ignore 

certain spots with excess crash frequency, an integrated hotspot identification approach was 

suggested. Both TADs and road entities were classified into nine categories with the 

consideration of two levels (macro- and micro-levels) and three crash risk levels (hot, warm, and 

cold). With the integrated hotspot identification approach, better classification results can be 

obtained for both TADs and road entities with a comprehensive transportation planning and 

traffic engineering perspectives.  
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CHAPTER 8: CONCLUSIONS 

8.1 Summary 

This dissertation mainly focused on the crash frequency analysis at both the macroscopic and 

microscopic levels. The main objectives of this study are to 1) suggest statistical methodologies 

to improve macroscopic traffic safety analysis, 2) determine the optimal zonal system for macro-

level crash analysis, 3) investigate macro-level effects on the crashes at segments and 

intersections, and 4) develop an integrated model to simultaneously analyze macroscopic and 

microscopic crashes.  

The study in Chapter 3 contributes to safety literature by conducting a macro-level analysis for 

pedestrian and bicycle crashes at the traffic analysis zone (TAZ) level. The study considers both 

single-state (negative binomial (NB)) and dual-state count models (zero-inflated negative 

binomial (ZINB) and hurdle negative binomial (HNB)) for analysis. In addition, the research 

proposes the consideration of spatial spillover effects of exogenous variables from neighboring 

TAZs. The model development exercise involved estimating 6 model structures each for 

pedestrians and bicyclists. These include NB models with and without spatial effects, ZINB 

models with and without spatial effects and HNB models with and without spatial effects. The 

model comparison exercise for pedestrians and bicyclists highlighted that models with spatial 

spillover effects consistently outperformed the models that did not consider the spatial effects. 

Across the three models with spatial spillover effects, the ZINB model offered the best fit for 

pedestrian and bicyclists. The model results clearly highlighted the importance of several 

variables including traffic (such as VMT and heavy vehicle mileage), roadway (such as 
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signalized intersection density, length of sidewalks and bike lanes, etc.) and socio-demographic 

characteristics (such as population density, commuters by public transportation, walking and 

cycling) of the targeted and neighboring TAZs. 

In Chapter 4, a new method for the comparison between different zonal systems for macro-level 

crash analysis was suggested by adopting grid structures of different scales. The Poisson 

lognormal (PLN) models without and Poisson lognormal conditional autoregressive model 

(PLN-CAR) with consideration of spatial correlation for total, severe, and non-motorized mode 

crashes were developed based on census tracts (CTs), traffic analysis zones (TAZs), and a newly 

developed traffic-related zone system - traffic analysis districts (TADs). Based on the estimated 

models, predicted crash counts for the three zonal systems were computed. Considering the 

average area of each geographic unit, ten sizes of grid structures with dimensions ranging from 1 

mile to 100 square miles were created for the comparison of estimated models. The observed 

crash counts for each grid were directly obtained with GIS while the different predicted crash 

counts were transformed into the grids that each geographic unit intersects with. The weighted 

mean absolute error (MAE) and root mean square error (RMSE) were calculated for the observed 

and different transformed crash counts of different grid structures. By comparing the MAE and 

RMSE values, the best zonal system as well as model for macroscopic crash modeling can be 

identified with the same sample size. The comparison results indicated that the models based on 

TADs offered the best fit for all crash types. Based on the modeling results and the motivation 

for developing the different zonal systems, it is recommended TADs for transportation safety 

planning. Also, the comparison results highlighted that models with the consideration of spatial 

effects consistently performed better than the models that did not consider the spatial effects. The 

modeling results based on different zonal systems had different significant variables, which 

154 

 



 

demonstrated the zonal variation. Besides, the results clearly highlighted the importance of 

several explanatory variables such as traffic (i.e., VMT and heavy vehicle mileage), roadway 

(e.g., proportion of local roads in length, signalized intersection density, and length of sidewalks, 

etc.) and socio-demographic characteristics (e.g., population density, commuters by public 

transportation, walking as well as cycling, median household income, etc.).  

Chapter 5 conducted a further study about pedestrian and bicycle crashes based on traffic 

analysis districts (TADs), which are suggested as the optimal geographic units for crash analysis 

in Chapter 4. This paper formulated and estimated models based on count and proportion models 

to investigate the effects of exogenous factors on pedestrian and bicycle crashes at the Traffic 

Analysis District (TAD) level in Florida. In order to identify potentially different impacts of 

exogenous variables on vehicle drivers and non-motorists, a joint model combining the negative 

binomial (NB) model and the logit model was suggested. More specifically, the NB model part is 

for the total crash counts to explore the effects on vehicle drivers while the logit model part is for 

the proportion of non-motorist crashes to investigate the influences on non-motorists. The model 

was estimated employing a comprehensive set of exogenous variables: traffic measures, roadway 

information, socio-demographic characteristics, and commuting variables. Also, a traditional NB 

model was developed and compared with the joint model. The results of the joint model 

obviously highlighted the existence of different impact of exogenous factors on drivers and non-

motorists for pedestrian and bicyclist crashes. The model comparison indicates that the proposed 

joint model can provide better performance over the NB model. In addition, more significant 

variables such as signalized intersection density and proportion of population age 65 or over 

could be observed in the proposed model. Moreover, the result of the joint modeling emphasized 

that the importance of several other variables including traffic (e.g., VMT, proportion of heavy 
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vehicle mileage, etc.), roadway (e.g., length of local road, length of sidewalk, etc.), socio-

demographic characteristics (e.g., population density, median household income, etc.), and 

commuting variables (e.g., commuters by public transportation and those by bicycle). To provide 

a clear quantitative comparison of the variables’ impact, elasticity effects for the NB and joint 

models are computed. The results revealed that the same significant variables in the two models 

would have the same signs of elasticity effects on the non-motorist crashes. Also, the elasticity 

effect calculation allows us to determine the factors that substantially increase crash risk for 

crashes involving pedestrians and bicyclists.  

In Chapter 6, crash frequency analysis was conducted at the micro-level for both segments and 

intersections. A Bayesian hierarchical model was proposed to investigate the potential macro-

level effects on crashes at the micro-level. Macro-level factors including both macro-level 

explanatory variables such as socio-economic characteristics and the total crashes aggregated at 

macro-level were employed for the micro-level crash analysis. Besides, a joint modeling 

structure was introduced for the potentially spatial autocorrelation between segments and 

intersections. The results clearly suggested that considering macro-level effects can improve the 

model performance for micro-level crash analysis. The proposed model considering both macro-

level explanatory and total crashes of zones could further enhance the model performance. A set 

of variables from both macro- and micro-levels were found significant for crashes at segments 

and intersections including segment-based variables (e.g., AADT, arterial indicator, 1 or 2 lanes 

indicator), intersection-based variables (e.g., AADT on major and minor approaches, traffic 

signal control indicator), and macro-level variables (e.g., proportion of segment length of arterial, 

intersection density, proportion of population aged 15-24, median household income). 
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In Chapter 7, an integrated study was conducted at both the macro- and micro-levels. This study 

formulated and estimated a Bayesian integrated spatial model to analyze crash frequency at the 

macro- and micro-levels, simultaneously. Based on the spatial interaction between zones and 

road facilities, the expected crash counts at the macro- and micro-levels were linked by an 

adjustment factor. The adjustment factor was estimate by using a set of macro-level socio-

demographic variables, which indicates how many more crashes occur at the macro-level given 

the same road network but with the different socio-demographic characteristics. The results of 

the integrated model clearly highlighted the existence of spatial interaction between the macro- 

and micro-level crash counts and confirmed the benefit of integrating modeling analysis of crash 

counts for the two levels. The comparison results indicated that the integrated model 

significantly outperformed non-integrated model for crash frequency analysis at both the macro- 

and micro-level. Subsequently, a novel integrated method to identify hotspots of crashes at the 

two levels. Both TADs and road facilities were classified into nine categories with the 

consideration of two levels (macro- and micro-levels) and three crash risk levels (hot, warm, and 

cold). With the integrated hotspot identification approach, better classification results can be 

obtained for both TADs and road facilities with a comprehensive transportation planning and 

traffic engineering perspectives. 

It would be useful to note that the method to integrate the macro-level effect in micro-level crash 

analysis proposed in Chapter 6 could be also regarded as an integrated modeling analysis at the 

two levels. From the model performance in Chapter 6 and 7, it is indicated that the method 

suggested in Chapter 6 could provide better analysis result for micro-level crash analysis, which 

is expected since more macro-level factors will be used for micro-level crash analysis. 
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8.2 Implications 

The findings from Chapter 3 suggest that the dual-state models are appropriate to analyze macro-

level crashes with excess zeros. Although several researchers questioned the basic dual-state 

assumption for crash occurrence and have conducted analysis at the micro-level, which indicated 

that the development of models with dual-state process is not consistent with crash data at the 

micro-level. However, based on the results in Chapter 3, dual-state models should be applicable 

for macro-level crashes if excess zeros exist. With the appropriate model adopted, the 

importance of several variables for pedestrian and bicycle crashes were revealed including traffic 

(such as VMT and heavy vehicle mileage), roadway (such as signalized intersection density, 

length of sidewalks and bike lanes, etc.) and socio-demographic characteristics (such as 

population density, commuters by public transportation, walking and cycling) of the targeted and 

neighboring TAZs. Besides, this study suggested consideration of exogenous variables from 

neighboring zones for accounting for spatial autocorrelation. This approach, referred to as spatial 

spillover model, is easy to implement and allows practitioners to understand and quantify the 

influence of neighboring units on crash frequency. 

Chapter 4 has important implications for both researchers and practitioners. First, a novel method 

was suggested to compare different zonal system for macro-level crash frequency analysis. One 

of difficulties is to compare models based on different geographic units of which number of 

zones is not the same. This study proposes an innovative method for the comparison between 

different zonal systems by adopting a grid based framework. The number of grids remains the 

same for all models based on different zonal systems thereby providing a common comparison 

platform. Second, this study recommended traffic analysis districts (TADs), which are newly 
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developed traffic-related geographic units by aggregating existing traffic analysis zones, for 

researchers and practitioners to analyze crashes. 

Chapter 5 also carries two important implications for traffic safety researchers and practitioners: 

First, this study contributed to the study on pedestrian and bicycle safety by suggesting a joint 

model to explore exogenous factors effecting pedestrian and bicycle crashes at the macroscopic 

level. The proposed joint model could analyze pedestrian and bicycle crashes with a new 

perspective. Specifically, the results of the proposed joint model can identify potentially different 

impacts of exogenous variables on vehicle drivers and non-motorists. It is supposed that more 

efficient countermeasures can be suggested to enhance pedestrian and bicycle safety since more 

significant variables can be detected with more detailed information. Second, the joint screening 

results could reveal hot zones for non-motorists into three types: hot zones with more dangerous 

driving environment only, hot zones with more hazardous walking and cycling conditions only, 

and hot zones with both. Hence, the joint screening method could help decision makers, 

transportation officials, and community planners more proactively improve pedestrian and 

bicyclist safety. 

Chapter 6 conducted crash analysis at the micro-level, and suggested that considering macro-

level data for micro-level crash analysis could improve modeling performance and reduce the 

variance of random effects. Besides, more accurate models can be developed at the micro-level if 

both macro-level explanatory variables and total crashes aggregated based on zones are 

employed. Finally, although many studies considered spatial effects at the micro-level, few 

studies have considered the potentially spatial autocorrelation between segments and their 

connected intersections. The result in this chapter clearly suggested that spatial correlations exist 
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among segments and intersection, suggesting the employment of the joint modeling structure to 

analyze traffic safety for various types of road facilities.  

Chapter 7 provides many essential implications for traffic safety researchers. An innovative 

integrated model was suggested, which firstly linked the macroscopic and microscopic crash 

analysis. It was indicated that the crash analysis at the two levels can support each other. In other 

words, better analysis results by the integrated approach for both macro- and micro-levels. 

Besides, the integrated model revealed a combination of significant variables from both micro- 

and macro-levels including segment-based variables (e.g., AADT, arterial indicator, 1 or 2 lanes 

indicator), intersection-based variables (e.g., AADT on major and minor approaches, traffic 

signal control indicator), and TAD-based socioeconomic variables (e.g., proportion of population 

aged 15-24, median household income). The identification of significant macro-level variables 

can help undertake planning process to enhance transportation safety while we can suggest 

engineering solution to reduce traffic crashes based on micro-level contributing factors. 

Therefore, the proposed model can be employed as a useful tool that links the transportation 

safety planning and traffic engineering countermeasures. In addition, the results at the micro-

level further suggested, as highlighted in Chapter 6, that segments and intersections are spatially 

correlated. Finally, the integrated screening approach can provide a comprehensive perspective 

by balancing macroscopic and microscopic screening results. With the integrated screening 

approach, better classification results can be obtained for both macroscopic and microscopic 

levels with a comprehensive transportation planning and traffic engineering perspectives.  
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