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ABSTRACT 

ABSTRACT 

Crash frequency analysis is the most critical tool to investigate traffic safety problems. Therefore, 

an accurate crash analysis must be conducted. Since traffic continually fluctuates over time and 

this effects potential of crash occurrence, shorter time periods and less aggregated traffic factors 

(shorter intervals than AADT) need to be used. In this dissertation, several methodologies have 

been conducted to elevate the accuracy of crash prediction.  

The performance of using less aggregated traffic data in modeling crash frequency was explored 

for weekdays and weekends.  Four-time periods for weekdays and two time periods for weekends, 

with four intervals (5, 15, 30, and 60 minutes). The comparison between AADT based models and 

short-term period models showed that short-term period models perform better.  

As a shorter traffic interval than AADT considered, two difficulties began. Firstly, the number of 

zero observations increased. Secondly, the repetition of the same roadway characteristics arose. 

To reduce the number of zero observations, only segments with one or more crashes were used in 

the modeling process. To eliminate the effect of the repetition in the data, random effect was 

applied. The results recommend adopting segments with only one or more crashes, as they give a 

more valid prediction and less error. 

Zero-inflated negative binomial (ZINB) and hurdle negative binomial (HNB) models were 

examined in addition to the negative binomial for both weekdays and weekends. Different 

implementations of random effects were applied.  Using the random effect either on the count part, 

on the zero part, or a pair of uncorrelated (or correlated) random effects for both parts of the model. 

Additionally, the adaptive Gaussian Quadrature, with five quadrature points, was used to increase 
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accuracy. The results reveal that the model which considered the random effect in both parts 

performed better than other models, and ZINB performed better than HNB. 
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CHAPTER 1: INTRODUCTION 

1.1 Overview 

Traffic safety including hotspot identification is among the most critical issues of the transportation 

system. Many transportation engineering and government officials' efforts were considered to 

reduce the number of fatality crashes or its severity in the United States. However, according to 

the (NHTSA., 2017) data, 37,461 people died in traffic fatality crashes in 2016 with an increase of 

5.6 percent from the calendar year 2015. Thus, it is essential to dedicate more effort to reduce this 

number by accurately identifying the hotspots on the roadway and utilize the safety resources 

wisely. Crash frequency analyses are the most important tools to predict the number of traffic 

crashes and quantify the significant contributing factors that cause these crashes.   

In 2010, the first edition of the Highway Safety Manual (HSM) had been released by the American 

Association of State Highway and Transportation Officials (AASHTO). A six-step safety 

management process has been introduced by the HSM to provide safety engineers with a scientific 

and systematic approach to managing road safety. Network screening is the first and the essential 

step in this process to identify the hotspot locations that need to be treated to improve the roadway 

safety. The output obtained from the network screening is a list of high concentration locations of 

crashes. By ranking these locations based on their potential for safety improvement, the road 

authorities will be able to allocate their limited resources to the most critical locations. The network 

screening methods that are suggested by the HSM and other research are mainly based on the 

Safety Performance Functions (SPFs) which is based on the Average Annual Daily Traffic 

(AADT) to estimate the predicted number of crashes. Though these methods have been proven to 

be effective, using high aggregated traffic data may cause five problems. First, the AADT along 



2 
 

the segments cannot represent the traffic condition at the time of the crash. Two expressways or 

freeways one with high traffic volume during the peak hours would have a different effect on crash 

occurrence than another one with the same AADT but even hourly traffic distribution. Second, 

AADT does not account for the variation in traffic volume in each direction. Third, it is impossible 

to know the impact of the temporal factors by using AADT, e.g., morning peak, off-peak, evening 

peak, and nighttime (Mensah & Hauer, 1998; B. Persaud & Dzbik, 1993). Fourth, there is a 

different traffic pattern on weekdays and weekends that AADT does not account for (Yu & Abdel-

Aty, 2013a). AADT is not based on the whole year data collection. Based on the SPFs with the 

AADT we cannot know when the riskiest time during the day and in which direction it is and what 

the practical, useful, and official ways are to treat these locations and utilize the safety resources 

efficiently. 

In the past few decades, traffic detection technology is the main data source of any Intelligent 

Transportation System (ITS); on freeways and expressways, there is a wide range of vehicle 

detection devices in use than ever before. Start from the loop detectors to video and radar-based 

detectors. Traditionally, traffic engineering management has heavily used the traffic data that is 

generated from these detection devices. However, these data can be easily used to support and add 

further improvement to one of the most important and basic concerns of the transportation system 

which is the traffic safety. The efficiency of the whole transportation system could be improved 

and enhanced by improving the traffic safety. Researchers in traffic safety have been focusing on 

the contributing factors leading to crashes in hope to better understand the crash mechanisms that 

would aid professionals to come up with better traffic system design. To uncover the crash patterns, 

more detailed data is required especially regarding traffic patterns during a different time of the 
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day per direction not for both directions together. These days with the broad application of ITS 

technologies, more detailed data are available. 

Traffic safety researchers are particularly interested in freeways and expressways, as they provide 

a high degree of mobility and connection between different parts of the metropolitan area and are 

necessary with the development and expansion of many areas. Freeways and expressways carry 

out a significant amount of traffic traveling at high speed between different areas. These types of 

roads are considered as the spine of modern society. Safety on these types of roads is so important 

to keep the mobility and prevent farther delay and congestion. 

The Central Florida Expressway Authority (CFX) equipped the expressways with Microwave 

Vehicle Detection Sensors (MVDS) and other detectors that provide a very detailed data of these 

expressways. Regional Integration Transportation Information System (RITIS) has many detectors 

that are mainly radar detectors that provide traffic data for other roadway types. Sufficient 

Utilization of these resources of data is expected to lead to more accurate hotspot identification 

and better utilization of the resources to improve the safety on these roads.   

Therefore, the objective of this study is to utilize the available less aggregated traffic data to 

investigate traffic safety problems by different time intervals for weekdays and weekend with 

consideration of both directions and to enhance hotspot identification. Also, offering more clear 

insight to the traffic engineers to select better solutions by different intervals and better utilization 

of the resources. 

1.2 Research Objectives 

The current work of this study focuses on investigating the viability of using less aggregated traffic 

data to get more accuracy modeling estimation and to find the crash contributing factors for the 
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expressway (SR 408) based on currently available traffic detection data, then identifying hotspot 

locations on this road. The detailed objectives will be achieved by the following tasks; 

Does the less aggregated traffic data that is provided by ITS detectors give a better prediction and 

better hotspot identification? So, a preliminary analysis was conducted by using less aggregated 

traffic data; 

Addressing the zero-inflated and repeated measurements in the data and develop several full SPFs 

for different intervals with different time periods for each direction for weekdays and weekends 

and suggested appropriate way to overcome these issues to improve the prediction and hotspot 

identification, and;   

Explore the potential of using dual-state models with different proposed random effect 

implementation and recommend the best model to use. Also, identify the significant factors 

affecting crash occurrence for different time intervals. 

Each of the above objectives has been achieved by the following tasks. Objective 1 has been 

achieved in Chapter 3: 

Filtering the data, dividing it into weekdays and weekends then divided each of them into different 

intervals (5 minutes, 15 minutes, 30 minutes, and 60 minutes) for different time periods (morning 

peak, off-peak, evening peak, and night time) for weekdays and high volume and low volume 

periods for weekends.  

Developing SPFs for a 21-mile expressway segment on SR 408 that has the largest traffic and 

crashes on the CFX expressway system for different time periods and intervals. Traffic data from 

MVDS (only the volume in this stage has been used) with crash data (total crashes) and geometric 
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data (speed limit, the existence of curvature, the existence of auxiliary lane, and the number of 

lanes). 

Adopt appropriate hotspot identification method to compare the less aggregated suggested data 

with the traditional method and suggest the best time interval. 

Objective 2 has been achieved by the following tasks, and it is presented in Chapter 4: 

Prepare different datasets: 

• A dataset that has the data of the segments that at least one crash occurred on them during 

the study period. 

• A dataset that has the data of the segments that at least two crashes occurred on them during 

the study period. 

• A dataset that has the data of the segments that at least three crashes occurred on them 

during the study period in addition to the whole data.  

 Develop multiple SPFs for all the prepared data. 

Comparing the modeling results and recommend the best dataset.  

The following tasks have been implemented to achieve the last objective: 

Developing several dual-state models with the consideration of the implementation of random 

effect in several suggested ways in the models. 

Adopting appropriate goodness of fit measures to compare the models' performance and suggest 

the best one.  
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1.3 Dissertation Organization 

The structure of the dissertation is as follows: Chapter 2 provides a literature review on factors 

contributing to crash occurrences, hourly traffic volume studies, real-time crash studies, then 

network screening studies. Chapter 3 gives a brief description about the expressway of interested, 

data collection, data preparation, methodology and finding of the PSI conducted on SR 408. 

Chapter 4 develops several full SPFs for the different proposed data set. Then a comparison 

between the developed models was presented. In chapter 4, two zero-inflated models were 

developed and compared, then the best model was suggested. Finally, Chapter 5, summarizes the 

overall dissertation work. 
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CHAPTER 2: LITERATURE REVIEW 

2.1 Crash Frequency Studies 

Road safety studies have been a continuously researched topic in the past few decades. Researchers 

have extensively conducted research to gain a better understanding of crash occurrence 

mechanisms at both macro and micro levels. Micro-level traffic safety studies examine the 

occurrence of vehicle crashes on specific locations (e.g., roadway segments and intersections).  

Crash frequency distribution has commonly been presented using Poisson (Joshua & Garber, 1990; 

Miaou, 1994) and Negative Binomial NA (Hauer & Hakkert, 1988; Miaou & Lord, 2003; Poch & 

Mannering, 1996). Lord and Mannering (2010) summarized the advantages and disadvantages of 

the existing frequency models. In this proposal, the main statistical technique adopted is the 

Negative Binomial model. 

 El-Basyouny and Sayed (2013) investigated the relationship between collisions and conflicts.  In 

his study, he used the lognormal model for predicting the conflicts using traffic volume, some 

geometric-related variables, and area type as the covariate.  He then predicted collusion using 

conflicts-based negative binomial (NB) safety performance function. They found from the scaled 

deviance and Pearson X2 goodness of fit that the proposed NB has adequately fitted the data. El-

Basyouny and Sayed (2010) used measurement error (ME) model conjected with Negative 

Binomial SPF to overcome the bias in predicting the number of crashes; then compared the results 

with the traditional NB technique. They found that both approaches give comparable results when 

the variance in volume between years is small.  
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2.2 Factors Contributing to Crash Occurrence 

Various factors such as driver characteristics, roadway geometric, traffic condition, and 

weather can affect on roadway safety (Huang & Abdel-Aty, 2010; Yu & Abdel-Aty, 2013a). 

Identification of these factors helps traffic engineering to select the best countermeasures. The 

effects of traffic variables (speed, volume, and occupancy) on crash occurrence have been 

incorporated in traffic safety studies. One of the most widely used traffic data sources are the loop 

detectors (Golob et al., 2008; Lee & Abdel-Aty, 2008; Lee et al., 2006; Pande & Abdel-Aty, 2006; 

Xu et al., 2013). Loop detectors can provide traffic data (speed, volume, and occupancy) based on 

60 or 30 seconds. However, loop detectors perform weakly in adverse weather condition, such as 

heavy rain, during which the accuracy of data could be greatly reduced. Additionally, the 

maintenance of the loop detectors could be very complicated. Recently developed traffic detection 

systems enable newly developed nonintrusive detection devices such as: Video Detectors 

(Hourdos et al., 2006; Laureshyn et al., 2010; Versavel, 1999; G. Zhang et al., 2007), Automatic 

Vehicle Indemnification (AVI) sensors (Abdel-Aty et al., 2012; Ahmed et al., 2012), Microwave 

Vehicle Detection System (MVDS) (Ahmed & Abdel-Aty, 2013; Akin et al., 2011; Yu et al., 

2013), and Regional Integrated Transportation Information System (RITIS) (Pack et al., 2008; 

Smith & Venkatanarayana, 2007) to be used for traffic data collection. MVDS traffic data provides 

similar traffic information as the loop detectors. MVDS recognizes the length of passing vehicles 

and classifies them into four categories: less than 10 ft, between 10 ft and 24 ft, between 24 and 

54 ft, and greater than 54 ft. The advantage of MVDS data compared to loop detectors is that 

MVDS is installed along the side of the road. Therefore, its maintenance is easier, and it's not 

greatly affected by adverse weather conditions. MVDS also provides time mean speed. 

 



9 
 

2.2.1 Traffic Characteristics 

Numerous studies have explored the effect of traffic characteristics on crash occurrence. 

Most of the studies explore the effect of speed, and the variance of speed, on the crash occurrence. 

Several study results confirm that higher speed will lead to a higher number of crashes or higher 

crash rates. Taylor et al. (2002) implemented cross-sectional analysis on rural road segment in 

Britain. The results show a positive relationship between crash frequency and average speed. Other 

researchers found that increased speed leads to more severe crashes (Hauer, 2009; Kockelman & 

Kweon, 2002; O'Donnell & Connor, 1996; Shankar & Mannering, 1996; Xu et al., 2013). Nilsson 

(2004) found in his study, a positive relationship between the number of crashes and changes in 

speed with different magnitude depends on crash types. Aarts and Van Schagen (2006) found that 

high speed led to higher crash rates when they reviewed the relationship between the driving speed 

and the risk of road crashes.  Several researchers (Ahmed et al., 2011; Baruya, 1998; Yu et al., 

2013) found an opposite effect of speed on crash occurrence. In their studies, they found that the 

likelihood of crashes increased when average speed decreased 5 – 10 minutes before the crash 

occurred. Generally speaking, speed has different effects on the likelihood of crash occurrence. 

Other studies focused on the speed variation instead of speed itself. In an early study by Garber 

and Gadirau (1988) about the effect of speed variance on the crash occurrence, they found that the 

crash rate does not necessarily increase with an increase in average speed; but does increase with 

an increase in speed variance. Golob and Recker (2003) found that on urban freeway left-lane 

crashes are more likely caused by volume effects, while right-lane crashes are more likely induced 

by adjacent lane speed variance. Lave (1985) found fatality rate was strongly associated with speed 

variance rather than average speed. 
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Annual Average Daily Traffic has been widely used as a traffic flow indicator. Most traffic 

safety studies have used this variable as an exposure factor.  Traffic safety studies found that traffic 

flow is positively related to crash frequencies (Chin & Quddus, 2003; Hauer et al., 2002; Wang et 

al., 2009; Zhang et al., 2012). Recent works begin to explore the potential of whether a surrogate 

measure of disaggregate volume is worth investigation and if it could be used as an alternative to 

aggregated volume indicators such us AADT. Yu and Abdel-Aty (2013a) used traffic volume on 

weekdays and weekends to compare and reveal the features of crashes between weekdays and 

weekends. Hossain and Muromachi (2013) used high-resolution traffic data to identify factors 

influencing crashes on an urban expressway. They found that congestion level and speed 

difference, upstream and downstream, have the highest influence on crash and crash types. 

  

2.2.2 Roadway Geometric Characteristics  

Roadway geometric design plays a major role in traffic safety. Many studies have taken 

geometric characteristics into account when performing traffic safety evaluation. The geometric 

information could be, in most cases, gathered in two ways: fixed length segment (Shankar et al., 

1995) or homogenous segments (Milton & Mannering, 1998).  In this case of fixed length segment, 

the roadway section is divided into equal segments.  For homogenous segments, a new segment 

will be considered if any of the geometric characteristics have changed. Both segmentation 

methods have disadvantages. Fixed length segment could have different geometric characteristics 

within it. Homogenous segments could be too short for traffic safety analysis. Crash locations are 

reported to the nearest milepost, and with short segments, this could lead to misplacement of the 

crash. Recently, researchers have used the homogeneous segmentation method but combined the 
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too short segments with the most appropriate adjacent segment, as illustrated by Ahmed et al. 

(2011). 

 Miaou et al. (1992) investigated the relationships between trucks crashes and the highway 

geometric design variables by developing a count model. The results showed that there were 

significant correlations between the number of truck crashes and the average annual daily traffic 

per lane, vertical grade, and horizontal curvature. 

  Shankar et al. (1995) found the maximum grade and the number of horizontal curves had 

a positive relationship with accident frequency in Seattle.  

 Milton and Mannering (1998) found that sharp horizontal curves and narrow lanes (less 

than 3.5m) decrease crash frequency in Eastern Washington. 

 Abdel-Aty and Radwan (2000) modeled traffic crash occurrence and involvement on SR 

50 in Central Florida. They found that narrow lane width, narrow shoulder width, reduced median 

width, and a larger number of lanes increased the likelihood of crash involvement. Also, it was 

found that crash occurrence was positively related to horizontal curvature. 

 Noland (2003a, 2003b) utilized county-level highway crash data from 1987 to 1990 in the 

state of Illinois and found that fatality crashes increased when the number of lanes and lane width 

increases.  However, increasing the outside shoulder width decreased the crashes. 

 (Haynes et al., 2007; Haynes et al., 2008) suggested that more curved roads in an area 

resulted in fewer road crashes; furthermore, they showed that road curvature has an inverse effect 

on fatal crashes. Curvature was found to be a protective factor. 
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In Kononov et al. (2008) study about urban freeways. They found that an increase in the 

number of lanes increased the number of crashes. 

 Park and Lord (2009) studied the effect of freeway design on safety.  They found that the 

number of lanes and curvatures were positively associated with crash frequencies; while the 

median width has a negative relationship with the crash occurrence. 

 Ahmed et al. (2011) and Yu et al. (2013) investigated the hazardous factors on a 

mountainous freeway segment in Colorado. They found that vertical curves have a great effect on 

crash occurrence. Also, they found that crash likelihood is negatively affected by the wider median 

width, increased number of lanes, and a higher degree of curvatures. 

For several roadway geometric characteristics, consistent conclusions of their effect on 

traffic safety were reached; such as the number of lanes, the median width, lane width, and 

shoulder width. In contrast, the effect of the curvature is not consistent. 

2.3 Hourly Volume Traffic Safety Studies 

Precious findings on crash prediction, based on hourly volume, are presented in this subsection. 

Gwynn (1967) collected 5-years data from a 3.8-mile US Route, where there were no traffic signals 

and grade crossings. The study tried to find the relationship between hourly volume and accident 

rates. The result showed that highest crash rates occurred in the low and high volume level, and 

lowest crash rate occurred in the mediate volume level. These results would not be achievable if 

AADT data were used. The whole section of road had the same traffic exposure (i.e., ADT) since 

it did not have any access. 
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 Persaud and Mucsi (1995) used the hourly traffic volumes for estimating crash number on two-

lane rural roads. They calibrate their model based on different time periods (all day, daytime, and 

nighttime) and geometric characteristics (e.g., shoulder width, lane width) for total crashes and 

F+I. Their result proved that effect of day/night was different for single- and multi-vehicle crash. 

 Zhou and Sisiopiku (1997) investigate the relationship between the hourly volume-to-capacity 

ratio (V/C) and crash rates on an urban freeway.  When considering the day of the week (weekday 

and weekend), different crash type (turnover, rear-end, and fixed object), different severity level 

(PDO, F+I); they found that the relationship between total crash rates and hourly V/C ratio 

followed a general U-shaped pattern. That is to say, the crash rates were high when V/C ratio was 

either high or low, but crash rates were low when the V/C was in between. 

 Chang et al. (2000) used five years of freeway data to examine the relationship between crash rate 

and hourly V/C ratio. In their research, three different freeway sections were studied: basic freeway 

section, tunnel section, and toll gate section. They found that the relationship between crash rates 

and V/C ratio had a U-shape relationship; however, the U shape of these three sections was not the 

same.  For example, the toll gate section U-shape was above the other two (when the V/C was the 

same, crash rate of toll gate section was higher). The author's recommended to include more 

geometric and other traffic factors in the model since the R2 values (0.4209 to 0.5161) were low. 

 Martin (2002) studied the relationship between the crash rate and hourly traffic volume with the 

consideration of time of day (night or day), the day of the week (weekday or weekend) and the 

number of lanes. He found that Property Damage Only (PDO) and injury crash rates were high 

when the hourly traffic volume was low. During the night, there were more severe crashes when 

the hourly traffic volume was low. 
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 Lord et al. (2005) investigated the effect of hourly traffic parameters, e.g., volume, density, and 

V/C ratio on the crashes upon rural and urban freeway segments. They found that the higher 

density and V/C ratio caused increased crash count. The authors recommended that a separate 

function formula for single- and multi-vehicle crashes should be developed. The authors also 

suggested that crash rate should not be used in the crash prediction model since nothing proved 

that crash rates follow a normal distribution. 

 Kononov et al. (2012) investigate the relationship between hourly crash rate and hourly speed 

along with density for urban freeways. The result showed that crash rate increased when the density 

was high, and the speed did not decrease.  Additionally, the crash rate stayed stable when the speed 

was high, and the density was between low and moderate.  

2.4 Real-time Crash Prediction 

There have been numerous studies on real-time crash prediction models to find the 

likelihood of crashes with less aggregated traffic data (Madanat & Liu, 1995). With the 

development of traffic detection technique, short time traffic data generated on 30 or 60 seconds 

enables researchers to look at a crash with microscopic traffic data more easily. Common 

predictors in the real-time crash predictions include average speed, the standard deviation of speed, 

and coefficient of variation of speed, traffic volume, and occupancy aggregated at upstream and 

downstream detector locations. Recent research has seen real-time information incorporated and 

their effects were found significant, especially in areas where inclement weather conditions are 

common. 

 Abdel-Aty and Pande (2007) identified and classified crash propensity factors using real-

time traffic and crash data for the I-4 corridor in Orlando. The authors found that 70% of the 
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crashes could be identified based on the 10 to 15 minutes speed variation before the crash occurs. 

A real-time crash risk assessment model for lane-change and rear-end crashes have been developed 

by (Abdel-Aty et al., 2007).  The authors used loop detector data collected from I-4 for four years 

to assess the crash risk on a real-time basis. Lee et al. (2006) also used 4-years of crash data from 

I-4 freeway in Orlando and developed logistic regression models to identify real-time indicators 

for rear-end and sideswipe crashes. The authors found that the variation in traffic flow and peak 

and off-peak periods are correlated and have an important effect on sideswipe crashes.  

Numerous studies have addressed the modeling of crash risk prediction for freeways and 

linked the crash risk with several real-time traffic flow characteristics. Lee et al. (2003) used real-

time traffic data and log-linear models to estimate crash risk. The results showed that the crash 

risk is significantly correlated with variation in speed, the difference in speed between upstream 

and downstream, and the traffic density. (Abdel-Aty & Pande, 2005; Abdel-Aty et al., 2004) 

utilized the matched case-control logistic regression method to predict crashes in real-time. The 

matched case-control analysis was employed to explore the effects of traffic flow variables while 

controlling the effects of other confounding variables through the design of the study. The authors 

noticed that multi-vehicle crashes on freeways under high- and low-speed traffic conditions 

differed in severity and mechanisms. Two separate models were evaluated in the matched-case 

control framework. They concluded that the low-speed crashes occurred mostly in persisting 

congestions; however, the queues resulted from the crash dissipated quickly. In contrast, high-

speed crashes often occurred under smooth traffic conditions; therefore, disruptive traffic 

conditions originating from downstream could cause driving errors. 
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 Zheng et al. (2010) studied the impact of traffic oscillations, which was also known as 

stop and-go driving, on freeway crashes in real-time. The matched case-control model showed 

that speed deviation was a significant variable, and it had a positive impact on crash occurrence. 

 Pande and Abdel-Aty (2006) used a classification tree and a neural network to develop a 

crash risk prediction model to identify real-time traffic conditions that are prone to lane-change 

crashes. The results showed that average speeds upstream and downstream, the difference in 

occupancy on adjacent lanes, and standard deviation of volume, and speed downstream of the crash 

location were significantly correlated with the lane-change crash risk.  

Recently, Xu et al. (2012) conducted a k-means clustering analysis to test the connection 

between the traffic flow states and the crash risk on freeways. Crash risk prediction models were 

developed for these states. The results revealed that traffic flow characteristics have different 

impacts on the crash risk for different traffic states. Ahmed and Abdel-Aty (2012) developed a 

matched case-control logistic regression model for real-time crash prediction. The results showed 

that the average speed and the standard deviation of speed are statistically related to the crash 

likelihood. Yu and Abdel-Aty (2013a) conducted a multi-level traffic analysis to reveal the 

different characteristics of weekday and weekend crashes based on real-time traffic data. The 

results exhibited that the weekday crashes occurred mostly during the peak period while the 

weekend crashes occurred during free flow conditions. Ahmed et al. (2012) built a Bayesian 

logistic regression model and combined the space mean speed collected in real-time data from an 

Automatic Vehicle Identification (AVI) system, and real-time weather and geometric data to 

investigate the effect of these variables on the occurrence of crashes on a mountainous freeway. 

The results indicated that roadway geometrics, real-time weather, and AVI data have a 

considerable effect on the crash occurrence. Yu et al. (2013) employed Bayesian random effect 



17 
 

models to incorporate real-time weather, traffic data, and geometric variables in their crash 

frequency study. The results showed that crash mechanisms between single and multi-vehicle 

crashes were different and based on different seasons, so different active traffic management 

strategies should be applied. Xu et al. (2013) developed a sequential logit model to link the 

likelihood of crash occurrence at different levels to the various traffic flow characteristics collected 

from loop detectors on I-880 in California. The results showed that the contribution of traffic flow 

characteristics on the likelihood of crashes was quite different for different severity levels. Hassan 

and Abdel-Aty (2013) used loop detectors and radar sensor data from freeways to investigate 

whether real-time traffic data can be used to predict the crash occurrence during reduced visibility 

conditions. The authors also wanted to compare the significant variables that contributed to crashes 

in reduced visibility conditions versus those in clear visibility.  The results revealed that the 

contributing factors for crashes during reduced visibility are slightly different from those for 

crashes during clear visibility.  

 Hourdos et al. (2006) employed video data to identify crash-prone conditions at freeway 

high-crash locations in Minnesota. The logistic regression model was used to find indicators of 

crash- prone conditions. Average speed, speed variation, wet pavement, and reduced visibility 

were found to be significant factors increasing the crash likelihood. The model achieved a 58% 

accurate detection rate. One weakness of logistic regression is it has no control over other potential 

factors besides the ones being tested. 

Bayesian matched-case logistic regressions have been employed in the study of visibility 

related crashes by Abdel-Aty et al. (2012). The advantages of using the Bayesian approaches, as 

the authors pointed out, include (1) it provides a natural and principled way of combining prior 

information with the data to yield a posterior belief, (2) it presents a full distributional profile of 
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parameters rather than single coefficient estimates to fully account for the uncertainty associated 

with single parameter estimates in classical statistics and (3) small sample inference proceeds in 

the same manner of a large sample. Both loop detector data and AVI data were used in this study, 

it was found that the model estimated from loop detector data indicated the average speed observed 

at the nearest downstream station along with the coefficient of variation in speed observed at the 

nearest upstream station at 5-10 minutes prior to the crash time, were significant to visibility related 

crashes. The AVI data suggested only the coefficient of variation in speed was significant. 

 Yu and Abdel-Aty (2013b) employed Bayesian multi-level logistic regression to study the 

single- and multi-vehicle crash mechanisms on a mountainous freeway segment. The modeling 

approach enabled the authors to account for the seasonal variations, crash-unit-level diversity, and 

segment-level random effects on crash occurrence. The author stated that by Bayesian inference 

techniques, more unobserved heterogeneity could be captured and the better classification ability 

the model would have. 

Random forests method is an ensemble classifier that consists of many decision trees. 

Compared with traditional classification trees, the random forest could obtain unbiased error 

estimates with no need for a separate cross-validation test data set. Ahmed and Abdel-Aty (2012) 

implemented the random forest technique to identify the significant traffic factors affecting crash 

occurrence using AYI data on OOCEA's system. The authors concluded that AYI data were 

promising in providing a measure of crash risk in real time. However, they suggested it is useful 

when AVI segments are within 1.5 miles on average. 
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2.5 Statistical Models 

Many statistical models have been developed and used in crash frequency analyses. A summary 

of the main statistical models that were used in the crash frequency analysis was presented by Lod 

and Mannering (2010) and Mannering and Bhat (2014). Crash counts are non-negative integer 

events. The traditional starting modeling for crash frequency analysis is the Poisson model 

(Jovanis and Chang, 1986; Joshua and Garber, 1990; Sheather and Jones, 1991; Miaou and Lum, 

1993). The Poisson model assumes that there is no difference between the mean and variance; for 

this reason, the Poisson model cannot be used with the data that is over-dispersed (i.e., the variance 

is more than the mean). 

An alternative to the Poisson model is the negative binomial (NB) model which is an extension of 

the Poisson model and can deal with the over-dispersion problem. The NB model adds an error 

term ei to relax the equal mean variance assumption of the Poisson model. Numerous crash 

frequency analyses have been conducted using the NB model (Maycock and Hall, 1984; Persaud, 

1994; Kumala, 1995; Karlaftis and Tarko, 1998; Abdel-Aty and Radwan, 2000; Carson and 

Mannering, 2001; Miaou and Lord, 2003; Alaluusua et al., 2004; Ladron de Guevara et al., 2004; 

Lord et al., 2005b; Kim et al., 2006a; Wang et al., 2006; Graham et al., 2010; Abdel-Aty 

et al., 2011a). The NB model can handle the over-dispersion resulting from temporal dependency 

and unobserved heterogeneity, but it may not properly account the over-dispersion caused by 

excess zero counts (Rose et al., 2006). 

 

Analyzing zero-inflated count variables is one of the challenging methodologies. Poisson and NB 

models are insufficient to account for the zero inflated count data. The underlying assumption of 
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the presence of zero counts may come from two states: inherently safe state (where there are no 

crashes) and non-zero state (where there is a crash). The non-safe state can be either a true zero 

(safe location) or sampling zeros (where excess zeros are results of underreporting crash data) 

(Shankar et al., 1997; Miaou,1994). 

To account the issue of excess zero in the count data, two possible relaxations of the single-state 

count models were proposed. The first one – the zero inflated (ZI) model – is used to account for 

both true and sampling zero, and has been used by several crash frequency analysis studies 

(Shankar et al., 1997; Chin and Quddus, 2003). The second one – the hurdle model – which has 

rarely been used in transportation safety studies, is used to account for the sampling zeros.  

 
2.6 Hotspot Identification Studies 

Network screening is defined as the identification of crash hazardous locations; it is also referred 

to as crash hotspots, hazardous road locations, and accident-prone locations, sites with promise, 

black spots, high-risk locations, or priority investigation locations. Network screening is the most 

important first step in the highway safety management process. Network screening is a vital step 

to identify crash hotspots. Identifying safe spots as unsafe spots will let to waste the resources on 

locations that are incorrectly identified as unsafe while those that are true unsafe locations will 

remain untreated so the wasting will be more than twice. From a methodology perspective, 

different methods have been used to identify hotspots.   

 Monsere et al. (2007) used five ranking methods (frequency, critical rate by functional class, 

critical rate by functional class and climate zone, potential for crash reduction, and expected 

frequency adjusted by empirical Bayes) to present the empirical analysis of screening and ranking 

on rural one-mile sections highway in Oregon for a specific crash type (speed and ice related 



21 
 

crashes). Safety Performance Function for Empirical Bayes using Negative Binominal model was 

developed. Top twenty-one-mile sections were identified for each method and compered. The 

results showed similar rank-order segments identified by rate-base methods, EB-based method and 

simple frequency method identified well-compared segments. But they could not specify which 

method was superior. 

 Montella (2010) compared between several hotspot identification methods (crash frequency (CF), 

equivalent property damage only (EPDO) crash frequency, crash rate (CR), proportion method 

(P), empirical Bayes estimate of total-crash frequency (EB), empirical Bayes estimate of severe 

crash frequency (EBs), and potential for improvement (PFI) using five years of crash data and four 

testing methods (the site consistency test, the method consistency test, the total rank differences 

test, and the total score test). The results showed that the EB method performed better than other 

hotspot identification methods. 

 Cheng and Washington (2005) evaluated three hotspot identification methods (simple ranking, 

confidence interval, and Empirical Bayes) using experimentally derived simulated data. The 

results showed that the Empirical Bayes significantly outperforms ranking and confidence interval 

techniques. 

 Chung and Ragland (2009) introduced a new method called (Continuous Risk Profile CRP) to 

detect high collision concertation locations. The new method is not affected by the spatial 

correlation and does not require roadway segmentation. They proved that this method has a lower 

false positive rate (identified safe spots as unsafe spot) than the commonly used methods (sliding 

window and peak searching methods).   
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 Kwon et al. (2012) evaluated the performance of the most three network screening methods 

(Sliding Moving Window SMW, Peak Searching PS, and continuous risk profile CRP). Traffic 

crash data were used to estimate excess expected average crash frequency with Empirical Bayes 

using SPF. The study found that CRP performed better than other methods.  

In the previous researchers used mostly the Annual Average Daily Traffic (AADT) to develop 

SPFs, which does not account for the variation in traffic flow by time periods and direction. In my 

proposal, some models have been developed for different time periods for weekdays and weekends 

for each direction using shorter time intervals to investigate more precisely the locations and time 

of the hotspots on the roadway.  

2.7 Summary 

Considerable crash frequency analysis studies have been conducted to find the relationship 

between the number of crashes and traffic and geometric characteristics of the roadways. These 

studies were either considering AADT in their studies which is very aggregated traffic data that 

does not represent the real traffic conditions when the crash happened, or a very real-time traffic 

data to find the most hazardous variables that may cause a crash to happen. Compared the highly 

aggregated traffic data studies with the safety analysis using microscopic traffic data, i.e., real-

time traffic data, traffic safety studies utilizing microscopic traffic data performs better in 

providing a valuable detail about crash mechanisms. There are plenty of real-time crash analysis 

and very limited number of hourly safety studies that do not count for different time periods, 

intervals, different directions, and weekdays and weekends. Regarding the methods that were used 

in the microscopic analyses, the dominant model is the NB for the hourly crash frequency analysis, 

while for the real-time crash studies the dominant model is the logistic regression model. 
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CHAPTER 3: SYSTEM OVERVIEW AND PSI CALCULATION FOR SR 

408 

3.1 SR 408 Expressway Road 

To explore the viability of using less aggregated traffic data from the traffic detection system in 

crash frequency analyses, one of the most important expressways in the East-Central Florida that 

is located in a very densely area has been selected. The toll roads in the East-Central Florida Area 

are managed by the Central Florida Expressway Authority CFX. Currently, the CFX manages 

partly or completely five toll roads. State Road 408, is considered the backbone expressway out of 

109 miles of the expressway. Its length is 22 miles starts from Florida's Turnpike in Ocoee and 

ends at State Road 50. It severs an estimated 125,000 – 135,000 vehicles per day 

(https://www.cfxway.com/TravelersExpressways/Expressways/CurrentExpressways/408EastWe

stExpressway.aspx). 

Figure 3.1 shows the selected Expressway (SR 408). 

https://www.cfxway.com/TravelersExpressways/Expressways/CurrentExpressways/408EastWestExpressway.aspx
https://www.cfxway.com/TravelersExpressways/Expressways/CurrentExpressways/408EastWestExpressway.aspx
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Figure 3-1: The Selected Expressways SR 408 (2014). 

 

3.2 Traffic Data 

Comprehensive time and effort have been made to collect and filter the data from the detections 

system. In 2012, CFX installed the Microwave Vehicle Detection System MVDS sensors on their 

system which is designed for traffic monitoring. The traffic data from the installed MVDS sensors 

have been collected for this study from July 2013 to July 2014. Figure 3.2 displays the MVDS 

sensors on SR 408.   
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Figure 3-2: MVDS Sensors on SR 408. 

In total, 110 detectors are installed in both directions of the SR 408. The traffic information 

includes speed, volume, occupancy and vehicle type per lane at the installed locations. These data 

are generated based on one-minute interval. The traffic data that is provided by MVDS sensors is 

very rich. It contains the record of the total traffic volume and original speed not for just the 

mainline traffic, but also for the traffic at the ramps and toll plazas. In this study, only mainline 

traffic was considering. MVDS recognizes the length of passing vehicles and classifies them under 

four groups: the vehicles which are less than 10 ft long belong to group 1; between 10 and 24 ft to 

group 2; between 24 and 54 ft to group 3; and greater than 54 ft to group 4. The average spacing 

between MVDS is 0.385 miles. Table 3-1 shows the number of MVDS sensors on each direction 

with the average spacing between the sensors. 

 Table 3-1: MVDS sensors on each direction and the spacing between them. 

Route 
Length 

(mi) 
Direction 

MVDS Detectors 

Total  
Mainline (including TP 

Express) 

The average spacing between adjacent detectors 

Mean Std Dev Min Max 

SR 408 21.4 
EB 57 55 0.38 0.18 0.1 1 

WB 56 55 0.39 0.18 0.1 1 
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3.3 Roadway Geometric Data (RCI Data) 

Efficient roadway geometric design has a significant impact on the roadway operation and safety, 

and this has been verified in previous research and study (M. Ahmed, Huang, et al., 2011; 

Christoforou et al., 2011; Hossain & Muromachi, 2012; Le & Porter, 2012; Milton & Mannering, 

1998; Park & Lord, 2009; Shankar et al., 1995; Venkataraman et al., 2011; Yu & Abdel-Aty, 

2013b). We have collected the roadway geometry data for 2013. The Road Characteristics 

Inventory (RCI) database has been maintained by the Florida Department of Transportation 

(FDOT), and it has the complete roadway geometry data in addition to other relevant information. 

The RCI records 323 features and characteristics of the roadway system. For the data preparation, 

only some relevant variables were chosen, including AADT, number of lanes, auxiliary lane, 

horizontal degree of curvature, and speed limit. The expressway is divided into homogenous 

segments based on the selected variables. When the segment length is too short (shorter than 0.1 

miles), this segment combined with the adjacent segment that shares almost the same 

characteristics.  

3.4 Crash Data (S4A) 

Florida has two types of crash reports, namely long-form crash report and short form crash report. 

The long form crash report involves crashes including but not limited: fatal or injury crashes, hit 

– and – run, criminally related crashes, DUI, and government vehicle-related crashes. When the 

crash does not meet the criteria under the long form crash report, short form crash reports are used 

to document the traffic crash. Having the two data sets together, we will have the most complete 

and accurate crash data which is currently available. We collect the crash data since January 1st, 

2011 till December 30th, 2014 from the Signal Four Analytics online database (S4A). S4A 
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provides many important information (i.e., time of the crash, crash coordinate (longitude and 

latitude information), number of vehicles involved, type and severity of the crash, the number of 

injuries and/or fatalities involved, weather, road surface and light condition, etc.).  However, it did 

not provide the milepost of crashes and the direction. To locate these crashes on the selected 

expressway and specify their direction, ArcGIS has been used.   

3.5 Data Preparation 

To achieve the research objectives, data from a 19-mile section of one of the main expressways in 

Central Florida have been collected. The studied expressway (SR-408) sections start from the 

cumulative milepost 0.907 to the milepost 14.57 and from 17.376 to 21.958. The other segments 

have been removed because these segments were under improvement (widening) at some point 

during the study period. Both directions of the expressway are used in this study. Traffic data have 

been collected, organized, and prepared for the short-term aggregation (e.g., 5 minutes, 15 minutes, 

30 minutes, and 60 minutes) and AADT analysis. 

3.5.1 Short-term Aggregation Data for Developing SPFs 

Each direction of the expressway has 55 detectors installed on the studied segments. The average 

spacing between the detectors is less than 1 mile. The real-time traffic data were obtained from the 

Microwave Vehicle Detection System (MVDS) which is maintained by the Central Florida 

Expressway Authority (CFX). Traffic data from July 2013 to the end of March 2014; and from 

May 2014 to the end of July 2014 were obtained for the analysis (April 2014 data were not 

archived). 

To develop SPFs and to validate the results, the traffic data has been divided into two data sets. 

The first data set was used to develop SPFs and covers six months from July 2013 to December 
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2013. The remaining six months' traffic data were used for validation. Figures 3-3 and 3-4 show 

the traffic volume variation (based on 15 minutes accumulated volume for all segments) for the 

eastbound and westbound directions during weekdays and weekends, respectively. It also shows 

that it is worth investigating the weekdays and weekends, separately. In Figure 3A, the volume of 

all segments for the whole weekdays have been summed and plotted with time to present the 

variation in volume with time and the same has been done for the other (Figures 3-3B, 3-4A, and 

3-4B). 

Sixteen sets of traffic data were prepared to develop different SPFs for different time intervals (5 

minutes, 15 minutes, 30 minutes, and 60 minutes) for both weekdays and weekends for both 

directions. For weekdays, each set has been divided into four time periods (Morning Peak 7:00 am 

– 8:59 am, Off Peak 9:00 am – 3:59 pm, Evening Peak 4:00 pm – 5:59 pm, and Night Time 6:00 

pm – 8:59 am). Figures 3-5 to 3-8 depict the variation in traffic volume based on 15-min intervals 

for weekdays and weekends for both directions. Figure 3-9 illustrates the traffic volume based on 

AADT.  

While for weekends, since there is no significant variation in traffic volume as, during weekdays, 

only two time periods (High volume and Low volume) were considered. Since the traffic variations 

on each side is different, two different high volume and low volume duration were considered for 

each direction, eastbound-weekends (High volume 10:00 am – 10:59 pm and Low Volume 11:00 

pm – 9:59 am) and westbound-weekends weekends (High volume 8:00 am – 10:59 pm and Low 

Volume 11:00 pm – 9:59 am) as shown in Figure 3-4.  

The volume for each time interval (5 min., 15 min., 30 min., and 60 min.) has been calculated by 

aggregated all the volume during this time interval for the whole weekdays and weekends for each 
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segment for each direction, separately. Then these aggregated volumes have been divided into 

different time periods and used to develop the models.   

The crash data have been collected for four years from 2011 until the end of 2014. The crash data 

from 2011 to 2013 were used to develop SPFs, and the crash data in 2014 were used for validation. 

Crashes that occurred between Saturday 12:00 a.m. and Monday 12:00 a.m. were considered as 

weekend crashes while the other crashes labeled weekday crashes. From 2011 to 2014, there were 

2090 crashes (740 crashes on the eastbound in weekdays, 217 crashes on the eastbound on 

weekends, 939 crashes on the westbound on weekdays, and 194 crashes on the westbound on 

weekends).  

Roadway geometric characteristics' data were downloaded from the Roadway Characteristics 

Inventory (RCI) database which is maintained by the Florida Department of Transportation 

(FDOT). The collected roadway geometric data include the number of lanes, speed limit, auxiliary 

lanes, horizontal curvature, and AADT. The expressway is divided into 68 homogeneous segments 

based on these geometric characteristics. Most of these segments have one detector, some have 

more than one detector, and some have no detectors. In case there is more than one detector in the 

segment, the average of the traffic data has been calculated to represent this segment, while in case 

there is no detector in the segment, the traffic data of the closest detector to this segment has been 

used. After dividing the expressway into 68 homogenous segments based on the geometric data 

and combining them with the real-time traffic data and crash data, SPFs have been developed for 

all time periods and intervals for both weekdays and weekends and both directions. 
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Figure 3-3: Traffic volume variation for all segment combined during (A) eastbound-weekdays 
and (B) westbound-weekdays. 
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Figure 3-4: Traffic volume variation for all segment combined during (A) eastbound-weekends 
and (B) westbound-weekends. 
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Figure 3-5: The 15 Minute Traffic Volume for each Segment during the Day Eastbound-
Weekdays (A and B show different views). 
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Figure 3-6: The 15 Minute Traffic Volume for each Segment during the Day Westbound-
Weekdays (A and B show different views). 
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Figure 3-7: The 15 Minute Traffic Volume for each Segment during the Day Eastbound-
Weekends (A and B show different views). 
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Figure 3-8: The 15 Minute Traffic Volume for each Segment during the Day Westbound-
Weekends (A and B show different views). 
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Figure 3-9: The Average Traffic Volume per Day (AADT) for each Segment during the Day. 

 

3.5.2 Short-term Aggregate Data for Validation 

The same data structure that has been used to develop SPFs for the short-term aggregated data is 

used, but the real-time traffic data is from January 2014 to March 2014 and from May 2014 to July 

2014 (data for April 2014 was not available), while the crash data covers the entire year (2014). 

During 2014 there were 208 crashes for the eastbound direction (161 crashes during the weekdays 

and 48 crashes during the weekends) and 320 for westbound direction (270 crashes during the 

weekdays and 50 crashes during the weekends). 
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3.5.3 Aggregate Data for SPF Modeling 

The aggregated traffic data (AADT) for 2013 has been collected from the RCI database. In addition 

to the traffic data, the directional distribution factor and other roadway geometric characteristics 

were collected from the same database. The crash data that has been collected for the disaggregated 

data has also been used.  

3.5.4 Aggregate Data for SPF Validation 

Traffic, roadway geometric, and crash data for 2014 have been collected from the RCI database 

and Signal 4 Analytics to validate the modeling results. Crashes have been assigned to each 

homogeneous segment and for the specific time interval. Crash data that conducted from S4A has 

the time of the crash, crash coordinate, number of vehicles involved, type of severity, etc. To 

identify the crash location for each road, based on the crash coordinate, ArcGIS software was used. 

After the process, all the crash data and identify the milepost of each crash, each crash assigned to 

the specific segment based on the mile post that we got from the ArcGIS and the time that is 

already included in the archived data.  

3.6 Safety Performance Function Estimation 

The Negative Binomial (NB) modeling approach was adopted in this study as recommended by 

the current Highway Safety Manual (HSM). The number of crashes is not normally distributed, 

due to the non-negative integers’ characteristics of Poisson regression models, Poisson regression 

models were used to analyze crash frequency data (Jovanis & Chang, 1986). These models are 

easy to estimate and straightforward to explain. However, these models were criticized because of 

their lack of ability to handling the over-dispersion problem (M. Ahmed, Huang, et al., 2011; Guo 

et al., 2010; Miaou & Lord, 2003; Shankar et al., 1998; Yu et al., 2013). The previously mentioned 
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studies used NB models and assumed a log-linear relationship between crash frequency and the 

explanatory variables. Kononov et al. (2011) had specified sigmoid and other non-linear 

relationship between crash frequency and explanatory variables to get a more accurate SPF. 

However, these models are sophisticated and difficult to estimate and explain (Lord & Mannering, 

2010). For simplicity and to account for the over-dispersion problem and to be consistent with 

HSM (Manual, 2010), NB models are used in this study. Equation (1) shows the log-linear 

relationship between the crash frequency and the exposure variable: 

𝑁𝑠𝑝𝑓 = 𝑒[𝑎 + 𝑏 ∗ 𝐿𝑛(𝑋)+𝐿𝑛(𝐿)] (3-1) 

 

Where Nspf = the total expected number of crashes for a roadway segment, X is either the AADT 

or the volume on the segment, L the length of the roadway segment (miles), a and b are the 

regression coefficients. 

The value of the over-dispersion that is associated with the calculated Nspf is determined as a 

function of the segment’s length, equation (2) shows the over-dispersion formula: 

𝑘 =  1𝑒[𝑐+𝐿𝑛(𝐿)] (3-2) 

 

Where k = the over-dispersion parameter associated with the roadway segment length, L = the 

length of the roadway segment, and c = a regression coefficient used to compute the over-

dispersion parameter.  
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To compare the performance of using different time intervals and periods for both weekdays and 

weekends with the performance of using only the AADT, SPFs have been developed by using the 

collected and prepared data. 

Figure 3-10 shows the developed SPF for SR 408; the green rectangular refers to significant SPF 

while red rectangular indicates the SPF was either not significant or the model did not converge. 

Tables 3-2 to 3-5 show the details of the developed SPFs for all the suggested time periods and 

intervals for weekdays and weekends, respectively. For the weekdays, all the developed SPFs’ 

independent variables are significant at the 95% confidence level. While for the weekend, only the 

30 and 60 minutes interval have both High and Low Volume models significant at the 95% 

confidence level. 
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Figure 3-10: The Developed Models for SR 408. 
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Table 3-2. SPFs for different time periods and intervals for weekdays (Eastbound). 

 5 minutes 
Parameters Morning-Peak 

(7:00 a.m.-8:59a.m.) 
Off-Peak 

(9:00 a.m.-3:59 p.m.) 
Evening-Peak 

(4:00 p.m.-5:59 p.m.) 
Night-Time 

(6:00 p.m.-6:59 a.m.) 
Intercept -7.1836 (<.0001) -6.6350 (<.0001) -8.2492 (<.0001) -7.2171 (<.0001) 

LogVol. 0.6368 (0.0267) 0.4713 (0.0087) 0.8421 (<.0001) 0.6127 (<.0001) 

c 0.6903 (0.4699) 14.4669 (0.8800) 2.2229 (0.3715) 0.4029 (0.5766) 

 15 minutes 
Parameters Morning-Peak 

(7:00 a.m.-8:59a.m.) 
Off-Peak 

(9:00 a.m.-3:59 p.m.) 
Evening-Peak 

(4:00 p.m.-5:59 p.m.) 
Night-Time 

(6:00 p.m.-6:59 a.m.) 
Intercept -7.2820 (0.0003) -6.0617 (<.0001) -7.9877 (<.0001) -6.8008 (<.0001) 

LogVol. 0.6979 (0.0198) 0.4762 (0.0078) 0.8304 (<.0001) 0.6148 (<.0001) 

c 1.4072 (0.0070) 12.7300 (0.8903) 1.1868 (0.0600) 0.6638 (0.2105) 

 30 minutes 
Parameters Morning-Peak 

(7:00 a.m.-8:59a.m.) 
  Off-

Peak 
(9:00 a.m.-3:59 p.m.) 

Evening-Peak 
(4:00 p.m.-5:59 p.m.) 

Night-Time 
(6:00 p.m.-6:59 a.m.) 

Intercept -7.2657 (0.0006) -6.0217 (<.0001) -7.4920 (<.0001) -6.4759 (<.0001) 

LogVol. 0.7202 (0.0114) 0.5214 (0.0081) 0.7799 (0.0001) 0.6074 (<.0001) 

c 13.4574 (0.9014) 1.2059 (0.0143) 1.2744 (0.0092) 1.7926 (0.0437) 

 60 minutes 
Parameters Morning-Peak 

(7:00 a.m.-8:59a.m.) 
Off-Peak 

(9:00 a.m.-3:59 p.m.) 
Evening-Peak 

(4:00 p.m.-5:59 p.m.) 
Night-Time 

(6:00 p.m.-6:59 a.m.) 
Intercept -7.2596 (0.0040) -6.9286 (<.0001) -7.3679 (<.0001) -6.0489 (<.0001) 

LogVol. 0.7062 (0.0261) 0.6916 (0.0003) 0.7757 (0.0002) 0.5893 (<.0001) 

c 13.7140 (0.9200) 1.6035 (0.0007) 1.4545 (0.0005) 2.3649 (0.0204) 

Parameters AADT 

Intercept -4.9636 (0.0059) 

LogAADT 0.6897 (0.0001) 

c 2.8897 (<.0001) 

 c = a regression coefficient to calculate the over-dispersion parameter (see Equation 2) 
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Table 3-3. SPFs for different time periods and intervals for weekdays (Westbound). 

 5 minutes 
Parameters Morning-Peak 

(7:00 a.m.-8:59a.m.) 
Off-Peak 

(9:00 a.m.-3:59 p.m.) 
Evening-Peak 

(4:00 p.m.-5:59 p.m.) 
Night-Time 

(6:00 p.m.-6:59 a.m.) 
Intercept -9.8807 (<.0001) -9.0901 (<.0001) -7.0806 (<.0001) -5.7661 (<.0001) 

LogVol. 1.2354 (<.0001) 0.9144 (<.0001) 0.5891 (0.0088) 0.2917 (<.0001) 

c 0.6993 (0.0245) 0.5455 (0.3996) 0.6674 (0.5430) -0.9645 (0.0046) 

 15 minutes 
Parameters Morning-Peak 

(7:00 a.m.-8:59a.m.) 
Off-Peak 

(9:00 a.m.-3:59 p.m.) 
Evening-Peak 

(4:00 p.m.-5:59 p.m.) 
Night-Time 

(6:00 p.m.-6:59 a.m.) 
Intercept -10.3117 (<.0001) -9.9697 (<.0001) -6.4463 (<.0001) -4.7622 (<.0001) 

LogVol. 1.2583 (<.0001) 1.0655 (<.0001) 0.5640 (0.0143) 0.2437 (0.0012) 

c 0.4420 (0.0743) 0.6142 (0.1046) 0.8544 (0.2426) 0.2107 (0.6223) 

 30 minutes 
Parameters Morning-Peak 

(7:00 a.m.-8:59a.m.) 
Off-Peak 

(9:00 a.m.-3:59 p.m.) 
Evening-Peak 

(4:00 p.m.-5:59 p.m.) 
Night-Time 

(6:00 p.m.-6:59 a.m.) 
Intercept -10.2884 (<.0001) -11.0883 (<.0001) -6.5424 (0.0008) -3.8953 (<.0001) 

LogVol. 1.2254 (<.0001) 1.2195 (<.0001) 0.6209 (0.0144) 0.1805 (0.0225) 

c 0.6233 (0.0207) 0.2051 (0.3762) 0.4970 (0.2419) 0.6957 (0.1134) 

 60 minutes 
Parameters Morning-Peak 

(7:00 a.m.-8:59a.m.) 
Off-Peak 

(9:00 a.m.-3:59 p.m.) 
Evening-Peak 

(4:00 p.m.-5:59 p.m.) 
Night-Time 

(6:00 p.m.-6:59 a.m.) 
Intercept -11.3299 (<.0001) -12.2198 (<.0001) -5.3456 (0.0121) -3.0205 (<.0001) 

LogVol. 1.3157 (<.0001) 1.3553 (<.0001) 0.5049 (0.0484) 0.1339 (0.0981) 

c 0.7023 (0.0333) 0.2283 (0.2688) 0.6572 (0.0770) 1.5188 (0.0067) 

Parameters AADT 

Intercept -6.1321 (0.0074) 

LogAADT  0.8227 (0.0002) 

c 1.9243 (<.0001) 

c = a regression coefficient to calculate the over-dispersion parameter (see Equation 2) 
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Table 3-4. SPFs for different time periods and intervals for the weekends (Eastbound). 

 5 minutes 
Parameters High Volume (10:00 a.m.-10:59 p.m.) Low Volume- (11:00 p.m.-9:59 a.m.) 

Intercept -7.2566 (<.0001) -6.3976 (<.0001) 

LogVol. 0.5618 (0.0243) 0.5550 (0.0009) 

c 1.9489 (0.2206) 0.9615 (0.1890) 

 15 minutes 
Parameters High Volume (10:00 a.m.-10:59 p.m.) Low Volume (11:00 p.m.-9:59 a.m.) 

Intercept -7.9930 (<.0001) -6.6596 (<.0001) 

LogVol. 0.5885 (0.0125) 0.4803 (0.0021) 

c 12.5527 (-) 11.7087 (-) 

 30 minutes 
Parameters High Volume (10:00 a.m.-10:59 p.m.) Low Volume- (11:00 p.m.-9:59 a.m.) 

Intercept -7.9684 (<.0001) -6.6057 (<.0001) 

LogVol. 0.6212 (0.0100) 0.5382 (0.0006) 

c 12.6000 (0.9193) 2.2959 (0.4785) 

 60 minutes 
Parameters High Volume (10:00 a.m.-10:59 p.m.) Low Volume- (11:00 p.m.-9:59 a.m.) 

Intercept -7.2566 (<.0001) -6.3976 (<.0001) 

LogVol. 0.5618 (0.0243) 0.5550 (0.0009) 

c 1.9489 (0.2206) 0.9615 (0.1890) 

Parameters AADT 

Intercept -4.9636 (0.0059) 

LogAADT 0.6897 (0.0001) 

c 2.8897 (<.0001) 

#Not significant at 10%. 

Numbers in parenthesis are p-values. 

Models in the shaded area were not converged. 

- Values not acquired 
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Table 3-5. SPFs for different time periods and intervals for the weekends (Westbound). 

 5 minutes 
Parameters High Volume (8:00 a.m.-10:59 p.m.) Low Volume- (11:00 p.m.-8:00 a.m.) 

Intercept -7.2518 (<.0001) -6.6250 (<.0001) 

LogVol. 0.3990 (0.0103) 0.2744 (0. 2351)# 

c -1.1622 (0.0342) -2.7522 (<.0001) 

 15 minutes 
Parameters High Volume (8:00 a.m.-10:59 p.m.) Low Volume- (11:00 p.m.-8:00 a.m.) 

Intercept -6.3982 (<.0001) -6.0932 (<.0001) 

LogVol. 0.3682 (0.0194) 0.3274 (0.0928) 

c -0.3224 (0.5344) -1.8196 (0.0001) 

 30 minutes 
Parameters High Volume (8:00 a.m.-10:59 p.m.) Low Volume- (11:00 p.m.-8:00 a.m.) 

Intercept -6.0115 (<.0001) -6.1757 (<.0001) 

LogVol. 0.3722 (0.0248) 0.4316 (0. 0601) 

c -0.2689 (0.5177) -0.9282 (0. 0576) 

 60 minutes 
Parameters High Volume (8:00 a.m.-10:59 p.m.) Low Volume- (11:00 p.m.-8:00 a.m.) 

Intercept -5.9703 (<.0001) -5.9412 (<.0001) 

LogVol. 0.4175 (0.0180) 0.4699 (0.0377) 

c 0.01244 (0.9746) -0.3525 (0. 4505) 

Parameters AADT 

Intercept -6.1321 (0.0074) 

LogAADT  0.8227 (0.0002) 

c 1.9243 (<.0001) 

#Not significant at 10%. 

Numbers in parenthesis are p-values. 

Models in the shaded area were not converged. 

- Values not acquired 

 

3.7 Potential for Safety Improvement (PSI) 

Excess Expected Average Crash Frequency with Empirical Bayes (EB) Adjustment was used as a 

performance measure for network screening.  This performance measure is also known as the 

Potential for Safety Improvement (PSI). The Empirical Bayes is one of the accepted methods for 

obtaining a reliable expected number of crashes using weights calculated from the over-dispersion 
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parameter. PSI represents the difference between the expected and the predicted number of crashes 

for the same location as in equation 3-3.  

PSI = Expected number of crashes – Predicted number of crashes (3-3) 

                                        

The expected number of crashes was driven from the predicted number of crashes as illustrated in 

equation 3-4: 

𝑁𝑒𝑥𝑝. = 𝑤𝑖 ∗  𝑁𝑝𝑟𝑒𝑑. + (1 − 𝑤𝑖) ∗  𝑁𝑜𝑏𝑠. (3-4) 

 

where Nexp. = the expected number of crashes, Npred. = the predicted number of crashes from SPF, 

Nobs. = the observed number of crashes, and w is calculated as shown in equation 3-5: 

𝑤𝑖 = 11 + 𝑘𝑖 ∗  (∑ 𝑁𝑝𝑟𝑒𝑑.𝐴𝑙𝑙 𝑠𝑡𝑢𝑑𝑦 𝑦𝑒𝑎𝑟𝑠  ) (3-5) 

       

Where ki = the over-dispersion parameter for the associated SPF for the specific segment (i) that 

was used to estimate Npred. and is calculated using Equation (3-2). 
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3.8 Comparison between the AADT Based PSI and Disaggregate Volumes Based PSI 

Two different goodness-of-fit measures were used for the comparison as shown in Table 3-3. Mean 

Absolute Deviation (MAD) calculate mean absolute difference between the observed and the 

predicted values using equation 3-6 as follows: 

𝑀𝐴𝐷 =   |(∑ (∑ 𝑦𝑗  −  ∑ �̂�𝑗𝑛𝑗=1𝑛𝑗=1 )𝑚𝑖=1 )| 𝑚⁄  
(3-6) 

 

Where m is the total number of observations for all segments. n is the observations in segment i, 

and  yj and ŷj are the observed and predicted values for i, respectively.  

Mean Square Prediction Error (MSPE) calculates mean square of the difference between the 

observed and the predicted values using equation 3-7: 

𝑀𝑆𝑃𝐸 = {[∑ (∑ 𝑦𝑗 − ∑ �̂�𝑗𝑛𝑗=1𝑛𝑗=1 )𝑚𝑖=1 ]2} 𝑚⁄  
(3-7) 

 

For the weekend, 30 minutes intervals have been used to calculate the PSI since it was the shortest 

time interval that has converted and significant models for both High and Low Volume. To be 

consistent with Highway Capacity Manual (HCM), to reduce the possibility of noise in the data 

when using less aggregated data and since there is no big difference between the 5 and 15 min 

time intervals in term of MAD and MSPE as shown in Table 5-6, the 15 minutes SPFs have been 

selected for weekdays then the hotspot locations specified by these SPFs were compared with the 

hotspot locations that are specified by the AADT SPF.  
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Table 3-6. The MAD and the MSPE for Weekday, Weekend, and AADT for different time 
intervals (Eastbound). 

  Weekday 

  5 Minutes 15 Minutes 30 Minutes 60 Minutes AADT 

MAD 1.3714 1.3721 1.3728 1.3913 1.7495 

MSPE 4.7712 4.7802 4.7902 4.9431 6.0586 

  Weekend 

  5 Minutes 15 Minutes 30 Minutes 60 Minutes AADT 

MAD N/A N/A 0.6105 0.6101 1. 7495 

MSPE N/A N/A 0.7268 0.7260 6. 0586 

 

Table 3-7. The MAD and the MSPE for Weekday, Weekend, and AADT for different time 
intervals (Westbound). 

  Weekday 

  5 Minutes 15 Minutes 30 Minutes 60 Minutes AADT 

MAD 2.7720 2.7747 2.7771 2.8128 3.2282 

MSPE 39.4825 39.3675 39.4146 38.8716 47.3518 

  Weekend 

  5 Minutes 15 Minutes 30 Minutes 60 Minutes AADT 

MAD N/A N/A 0.6623 0.6601 3.2282 

MSPE N/A N/A 1.2724 1.2708 47.3518 

 

3.9 Hotspot Identification 

  AADT based PSI and different time periods based PSI for weekdays and weekends were 

compared. Since we selected 15 minutes time intervals for weekdays, then for each segment there 

are fore expected numbers for crashes and four observed crash in one hour (i.e., one expected 

number of crashes in each 15-minute interval). While for weekends, there is two expected number 

of crashes and two observed crash in one hour since 30-minute interval has been selected. As it 

was mentioned before, there are four time periods for the weekdays and two time periods for the 

weekends, thus to obtain the time periods based PSI for each segment for each time period, the 

summation of all the expected number of crashes within that time period for that segment has been 
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subtracted from the summation of all the predicted number of crashes within the same time period 

for the same segment.  The AADT based PSI has been calculated by dividing the expected number 

of crashes based on AADT by 24 then multiplying it by the number of hours in each time period 

then the result subtracted from the total number of crashes during that time period. Figures 8 

through 13 show the comparison between AADT based PSI and the different time periods based 

PSI. The blue line represents different time periods based PSI, and the orange line represents 

AADT based PSI. During the study time period, the section from the milepost 15.066 to the 

milepost 17.265 experienced construction and thus not considered. The comparison between the 

AADT based PSI and different time periods based PSI shows considerable differences in some 

periods. For example, during the morning-peak, the PSIs are significantly higher than the AADT 

based PSI. Some of the segments have negative AADT based PSI while they have positive 

morning-peak based PSI. The time period approach with 15 minutes interval for weekdays and 30 

minutes interval for weekends is more specific and is able to capture the variation in traffic volume 

and the potential for safety improvement more accurately than the common approach which is 

based on the average volume for the whole day that does not account for the variation in traffic 

volume and the different pattern of crashes between weekdays and weekends.  

Generally, AADT based PSI is insensitive and has smaller absolute values whereas specific time 

periods based PSI is more sensitive and relatively larger absolute values. Figures 3-11 to 3-16 

show the comparison between the AADT based PSI and the summation of the different time 

periods based PSIs. In these Figures, the blue line represents the summation of the PSI for different 

time periods while the orange line is the AADT based PSI. Comparing the PSI value between 

weekday and weekend of the same segment shows that there are differences between them. For 

example, in Figure 3-15 at milepost 20, during the weekday, the weekday PSI value is lower than 
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the AADT PSI value, while during the weekend, the AADT PSI is lower than the weekday PSI. 

Also, there are some considerable differences between directions’ PSIs. For example, at milepost 

11.5, AADT PSIs for eastbound for both weekdays and weekends are higher than the weekday or 

weekend PSI, while the case is opposite for the westbound direction. 

The morning peak PSIs, which has the highest volume, are always more sensitive compared to its 

counterpart regardless of direction. Except for the weekday morning peak hours, the sensitivity 

heavily depends on its direction. The PSIs from specific temporal SPFs are more sensitive for the 

eastbound direction; however, they are less sensitive for the westbound, compared to AADT PSIs. 

This might be because that the volume distribution within the same interval for different segments 

is not consistence.   
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Figure 3-11. The Comparison between AADT based PSI and different time periods based PSI for 
eastbound weekdays. 



51 
 

 

Figure 3-12. The Comparison between AADT based PSI and different time periods based PSI for 
Eastbound Weekends. 
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Figure 3-13. The Comparison between AADT based PSI and different time periods based PSI for 
Westbound Weekdays. 
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Figure 3-14. The Comparison between AADT based PSI and different time periods based PSI for 
Westbound Weekends. 
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Figure 3-15. The Comparison between AADT based PSI and the summation of different time 
periods based PSI for weekdays and weekends (Eastbound). 
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Figure 3-16. The Comparison between AADT based PSI and the summation of different time 
periods based PSI for weekdays and weekends (Westbound). 

 

3.10 Conclusions 

Although developing Safety Performance Functions (SPFs) are among the most important steps in 

traffic safety analysis, they usually have been developed using highly aggregated traffic and crash 

data, which may result in failure of understanding of the effect of variation in traffic volume on 

the crash occurrence, and their temporal relationship. Thus, a dynamic hotspot identification 

method is proposed in this paper using time period specific SPFs developed from less aggregated 

data. 
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The current approach for identifying hotspot locations on a roadway segment requires developing 

a SPF which is based on the aggregated traffic volume AADT. The disadvantage of using AADT 

can be listed in three points: a) AADT fails to account for the variation in traffic volume for each 

direction; b) It does not distinguish between the pattern of crashes and traffic during weekdays 

versus weekends; and c) also fails to capture the variation in the traffic volume during the different 

time periods in weekdays or weekends. The results from both AADT and short-term period models 

suggest that short-term period models perform better. Using less aggregated traffic data improved 

the accuracy of hotspot identification especially during the weekend in term of MAD and MSPE. 

Both MAD and MSPE for PSI based short-term periods have lower values than PSI based AADT. 

Also, in many cases, the PSI based on AADT were less sensitive to identify the hotspot locations 

during different time periods. Failing to identify true hotspots is much worse than identifying a 

safe spot as a hotspot. Also, by considering only the AADT, two different roadways with the same 

AADT but different traffic variance will be treated similarly. However, such different traffic 

pattern can be easily captured by using disaggregate traffic data.  
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CHAPTER 4: IMPACT OF USING SEGMENTS WITH ONE OR MORE 

CRASHES IN THE MODELING PROCESS ON THE ACCURACY OF THE 

PREDICTION 

4.1 Introduction 

In the previous chapter, it was found that using less aggregated traffic data improve the accuracy 

of the hotspot identification and reduce the error term. However, two difficulties were noticed 

when we considered shorter time intervals. First, as the considered time intervals get smaller, the 

more zero observations were observed. Second, the repeated measurement data. In this chapter, 

several Safety Performance Functions (SPFs) were developed with different scenarios: first, 

several full SPFs were developed for the whole data, in these models, a random effect was 

considered in the modeling process to account for the repetition in the data. Then, to reduce the 

number of zero observations, several Full SPFs were developed using either (segments with one 

or more crashes, segments with two or more crashes, or segments with three or more crashes) with 

the consideration of random effect to overcome the repetition in the data. Then, in term of error, a 

comparison between the hotspot identification based on the developed SPFs for the entire segments 

was adopted to identify the superior models. 

4.2 Data Preparation 

For the purpose of this study, traffic data (MVDS) have been collected from (July 2013 to July 

2014). MVDS does not return traffic information for an individual vehicle. They aggregated and 

recorded traffic flow data for each lane where they are installed at one-minute interval bases. 

Different types of vehicles were defined by the MVDS based on their lengths: 
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1- Type I: vehicles 0 to 10 feet in length. 

2- Type II: vehicles 10 to 24 feet in length. 

3- Type III: vehicles 24 to 54 feet in length. 

4- Type IV: vehicles longer than 54 feet in length. 

The recorded traffic data include traffic volume, traffic volume by length, time mean speed, and 

lane occupancy. Also, the MVDS data include the timestamp when the sensor has recoded the 

data. The sensor is recorded every one minute. Additional information from the MVDS data 

contained sensor identifier, lane identifier, milepost, and direction. The number of lanes is counted 

from the inner of the roadway (the median) to the outside of the roadway (the shoulder). The 

roadway lanes fall into four different categories:  

Mainline.  

• Mainline. 

• Mainline TP Express. 

• Mainline TP Cash, and 

• Ramp. 

The types of lanes and number of lanes at each MVDS detection location can be seen in Appendix 

B. 

There are 110 detectors on both sides of the SR 408 (55 detectors on each side). These detectors 

supposed to poll the traffic data every one minute for each lane in the section where they have 

been installed. Before starting using these data, several procedures have been made to check if the 

detectors were working properly for the whole day. Here are the procedures that have been done 

to erase all the abnormal data and incomplete daily archived data: 
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1- Average speed per minute should not exceed 120 mph, so any recorded average speed data 

that is exceeded this number considered abnormal reading and been deleted. 

2- The relationship between the speed and flow of the collected data has been plotted and 

examined. The relationship between the speed and the volume (veh/min/lane) is presented 

in Figure 4-1. This Figure shows that there are several abnormal data after the volume per 

minute per lane exceed 60 (veh/min/ln). So, to eliminate these abnormal data, any recorded 

volume that exceeds 60 veh/min/lane have been deleted. 

 

Figure 4-1 Speed-Flow Relationship. 

3- Another check for the volume has been done. In the archived data, there are 4 volume 

categories based on the length of the detected vehicle. The summation of all four categories 

should be equal to the total number of the vehicle detected. The summation of the four 
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categories has been checked with the total number of the vehicle, and in case the summation 

is not matched, these data have been removed. 

4- In some cases, there is a recorded volume, but there is no recorded speed, this data has been 

removed. 

5- As it has been mentioned before, the data has been archived on a one-minute base, so this 

issue also have been checked and several repeated recorded data for the same milepost for 

the same day and time has been found, in this case, only one reading data has been kept. 

6- The data also consist the ramp data, so all the ramp data has been excluded since this study 

is focusing on segments. 

7- In some cases, for one or more lanes, there is no volume recorded, but there is a speed 

record for that lane, the speed recorded for that lane has been adjusted to be equal to zero, 

and the average speed for that section is calculated with this consideration.  

8- After removing all the uncorrected and unreliable recorded data, only full correct recorded 

days were kept and used in the data analysis (i.e., since the data is polled on a one minute 

bases, there should be "60 min.*24 hr. = 1440" recorded data per day to consider it a full 

recorded day). 

After filtering the data form the abnormal observation, a comparison between actual daily volume 

(based on the actual collected data from the detectors) and the AADT (from RCI for 2014) for 

each direction has been done. The comparison shows that there is a big difference between the 

daily volume based on the collected data and the AADT for the same year. Figures 4-2 and 4-3 

show the daily volume per direction for both the collected data from the detectors and the AADT 

from the RCI. As the Figures show, there is a significant difference in the daily volume from the 

milepost ten till fourteen (the Orlando downtown area). With this big different in the volume and 



61 
 

with the availability of the real data, it is not recommended to use the AADT to develop SPFs and 

identify hotspot locations. In addition to that, AADT does not give information about the variation 

in the traffic during the whole day. 

 

Figure 4-2 Daily volume for Eastbound (2014). 
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Figure 4-3 Daily volume westbound (2014). 
 

Crashes that have occurred on SR 408 from 2011 till the end of 2013 were compiled for the analysis 

while the crashes that had occurred in 2014 were used for validation.  

4.2.1 Short-term Aggregation Data preparation for Developing SPFs 

The filtered traffic and geometric data that were used in the previous chapter with same time 

periods and intervals are used here to develop several full SPFs with the consideration of using the 

random effect. But for the SPFs development procedure and to erase the effect of excessive zero 

observations, some additional procedures have been done to the data before using it in developing 

the SPFs, so three data sets were prepared. First data set has only segments that have one or more 

crashes within the analysis period (i.e., excluding safe segments from the data), the second data 

set includes only segments with two or more crashes during the analysis period, and the last data 

set has only segments with three or more crashes from 2011 to 2013. Table 4-1 shows the 
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percentage of non-zero observations for different time periods for different datasets. Figure 4-3 

shows the percentage of non-zero observations. 

The above-mentioned data sets were only used for developing SPFs. 

4.2.2 Short-term Aggregation Data preparation for Validation SPFs 

In total, 16 data sets were prepared to be used in the validation processes for different time intervals 

(5, 15, 30, and 60) minutes for both weekdays and weekends for both directions. These data sets 

were combined with the crash data for 2014 then the whole data that consist all segments (i.e. 

segments that have crashes and segments that have no crashes) were considered and used in the 

validation process for 24 models (i.e. 4 time intervals by 4 time periods "morning peak, off-peak, 

evening peak, and night time" for the weekdays and 4 time intervals by 2 time periods "heavy 

traffic and low traffic" for the weekends).   
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Table 4-1: Percentage of Non-Zero observations for different datasets. 

Whole Data 

 AMP Off Peak PMP NT HV LV 

 5 15 30 60 5 15 30 60 5 15 30 60 5 15 30 60 5 15 30 60 5 15 30 60 

0 3025 833 285 11 11246 3574 1656 697 3146 954 406 132 21060 6812 3250 1469 22880 7528 3690 1771 16334 5382 2644 1275 

Non 

Zero 
263 263 263 263 262 262 262 262 142 142 142 142 312 312 312 312 148 148 148 148 94 94 94 94 

Total 3288 1096 548 274 11508 3836 1918 959 3288 1096 548 274 21372 7124 3562 1781 23028 7676 3838 1919 16428 5476 2738 1369 

Non 

Zero% 
8% 24% 48% 96% 2% 7% 14% 27% 4% 13% 26% 52% 1% 4% 9% 18% 1% 2% 4% 8% 1% 2% 3% 7% 

Segments with One or More Crashes 

0 1717 464 173 43 7639 2386 1089 457 1567 443 174 49 16869 5439 2590 1174 11402 3707 1786 827 6400 2074 994 458 

Non 

Zero 
227 184 151 119 257 246 227 201 137 125 110 93 291 281 270 256 142 141 138 135 92 90 88 83 

Total 1944 648 324 162 7896 2632 1316 658 1704 568 284 142 17160 5720 2860 1430 11544 3848 1924 962 6492 2164 1082 541 

Non 

Zero% 
12% 28% 47% 73% 3% 9% 17% 31% 8% 22% 39% 65% 2% 5% 9% 18% 1% 4% 7% 14% 1% 4% 8% 15% 

Segments with Two or More Crashes 

0 935 226 71 9 5232 1603 712 283 647 163 54 9 10979 3501 1640 718 6809 2194 1043 469 2651 845 395 174 

Non 

Zero 
193 150 117 85 228 217 198 172 97 85 70 53 253 243 232 218 115 114 111 108 61 59 57 52 

Total 1128 376 188 94 5460 1820 910 455 744 248 124 62 11232 3744 1872 936 6924 2308 1154 577 2712 904 452 226 

Non 

Zero% 
17% 40% 62% 90% 4% 12% 22% 38% 13% 34% 56% 85% 2% 6% 12% 23% 2% 5% 10% 19% 2% 7% 13% 23% 

Segments with Three or More Crashes 

0 583 130 35 2 3018 900 386 142 339 78 24 4 6818 2148 989 418 3132 997 466 201 1316 413 189 80 

Non 

Zero 
161 118 89 60 174 164 146 124 69 58 44 30 202 192 181 167 72 71 68 66 40 39 37 33 

Total 744 248 124 62 3192 1064 532 266 408 136 68 34 7020 2340 1170 585 3204 1068 534 267 1356 452 226 113 

Non 

Zero% 
22% 48% 72% 97% 5% 15% 27% 47% 17% 43% 65% 88% 3% 8% 15% 29% 2% 7% 13% 25% 3% 9% 16% 29% 
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Figure 4-4 Segments with Different Number of Crashes within 3 Years. 
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4.3 Methodology 

Observations are typically assumed to be independent in crash frequency models with a yearly 

data structure. But, when using short time periods with repeated measures, this assumption is 

violated. Correlation between those repeated measures may occur and to deal with this issue, 

random effect models are usually adopted. To reduce the number of zero observations and to 

account for the correlation and the repetition in the data, several SPFs were developed for different 

data sets that include only segments with one or more crashes and compare with SPFs for the 

whole data. The random effect negative binomial model adds an error term i to the Poisson model 

mean to overcome the assumption of Poisson model (the equal mean and variance assumption) 

and to account for the over-dispersion as: 

𝜆𝑖 = 𝐸𝑥𝑝(𝛽𝑖𝑥𝑖 + 𝜀𝑖 + 𝑅𝑖) (4-1) 

Where 𝜆𝑖 is the Poisson distribution expected number for subject i, 𝛽𝑖 is the vector of regression 

coefficients, 𝑥𝑖 is the vector of the explanatory variables, 𝜀𝑖 is the error term which is assumed to 

be gamma distributed with mean 1 and variance α, and 𝑅𝑖 is the random effect which is assumed 

to be normally distributed with mean 0 and variance 𝜎.  

4.4 Modeling Results and Discussion 

4.4.1 Modeling results 

The modeling results of 96 models for different time intervals and different time periods for both 

weekdays and weekends for all the prepared data are presented in Tables 4-2 to 4-9. As shown in 

these tables, 10 independent variables have been used, Log (volume), standard deviation of the 

volume ‘SD(Volume)', average speed ‘(Speed)', standard deviation of speed ‘SD(Speed)', the 

speed limit ‘Speed limit', a dummy variable for auxiliary lane (1 when there is an auxiliary lane), 
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the degree of the curvature when there is a curve ‘Horizontal Curve', percentage of heavy vehicles 

‘% of Heavy Vehicle', number of lanes in the section ‘Number of lanes', and a dummy variable for 

the direction (1 when the direction is eastbound) ‘Direction'. The modeling results show that for 

different time periods there are different significant variables.  
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Table 4-2: Modeling Results for different time intervals and periods using the whole data (Weekdays). 

 Whole Data 

 Weekday Models 

 Morning Peak Off Peak Evening Peak Night Time 

Parameters 
5 

Min. 

15 

Min. 

30 

Min. 

60 

Min. 

5 

Min. 

15 

Min. 

30 

Min. 

60 

Min. 

5 

Min. 

15 

Min. 

30 

Min. 

60 

Min. 

5 

Min. 

15 

Min. 

30 

Min. 

60 

Min. 

Intercept 
1.7029 

(0.5139) 

0.9452 

(0.7411) 

-0.5022 

(0.8741) 

-1.8322 

(0.6179) 

-7.8737 

(0.0003) 

-7.9244 

(<0.0001

) 

-7.7266 

(0.0024) 

-7.3421 

(0.0067) 

-0.5632 

(0.8573) 

-0.3504 

(0.9182) 

0.03419 

(0.9925) 

0.2581 

(0.9475) 

-2.2835 

(0.1521) 

-2.0068 

(0.2195) 

-1.4371 

(0.3836) 

-1.0051 

(0.5582) 

Log(Volume

) 

0.9257 

(0.0029) 

1.0788 

(0.0006) 

1.2161 

(0.0003) 

1.4421 

(<0.0001

) 

1.2158 

(<0.0001

) 

1.1928 

(<0.0001

) 

1.1538 

(<0.0001

) 

1.1028 

(<0.0001

) 

0.7952 

(0.0089) 

0.7722 

(0.0116) 

0.7200 

(0.0216) 

0.7528 

(0.0167) 

0.5054 

(<0.0001

) 

0.5072 

(<0.0001

) 

0.5029 

(<0.0001

) 

0.4720 

(<0.0001

) 

SD(Volume) - - - - - - - - - - - - -    

Speed 
-0.05489 

(0.0017) 

-0.05175 

(0.0031) 

-0.04355 

(0.0190) 

-0.04900 

(0.0457) 
- - - - 

-0.1168 

(0.0014) 

-0.1142 

(0.0020) 

-0.1120 

(0.0032) 

-0.1168 

(0.0033) 

-0.06145 

(0.0143) 

-0.05736 

(0.0241) 

-0.06061 

(0.0178) 

-0.05879 

(0.0269) 

SD(Speed) -  - - - - - - - - - - - - - - 

Speed limit 
-0.07232 

(0.0029) 

-0.07381 

(0.0018) 

-0.07525 

(0.0015) 

-0.07368 

(0.0024) 

-0.03406 

(0.0998) 

-0.03477 

(0.0926) 

-0.03568 

(0.0842) 

-0.03728 

(0.0711) 
- - - - - - - - 

Auxiliary 

Lane 
- - - - - - - - - - - - 

0.2792 

(0.0681) 

0.2783 

(0.0676) 

0.2845 

(0.0619) 

0.2786 

(0.0684) 

Horizontal 

Curve 

-0.3159 

(0.0231) 

-0.3030 

(0.0260) 

-0.2905 

(0.0326) 

-0.2898 

(0.0328) 
- - - - - - - - - - - - 

% of Heavy 

Vehicle  
- - - - - - - - 

0.03242 

(0.0788) 

0.03239 

(0.0793) 

0.03316 

(0.0779) 

0.03503 

(0.0615) 
- - - - 

Number of 

lanes 

-0.3712 

(0.0053) 

-0.4542 

(0.0006) 

-0.4567 

(0.0006) 

-0.5814 

(<0.0001

) 

- - - - - - - - - - - - 

Direction 

-0.9533 

(<0.0001

) 

-0.9682 

(<0.0001

) 

-0.9853 

(<0.0001

) 

-0.9926 

(<0.0001

) 

-0.03922 

(0.8346) 

-0.03944 

(0.8332) 

-0.03866 

(0.8359) 

-0.03973 

(0.8309) 

-0.3622 

(0.1436) 

-0.3532 

(0.1529) 

-0.3466 

(0.1669) 

-0.3439 

(0.1665) 

-0.1400 

(0.3251) 

-0.1382 

(0.3281) 

-0.1403 

(0.3209) 

-0.1371 

(0.3343) 

SD 

-0.8056 

(<0.0001

) 

-0.7628 

(<0.0001

) 

0.7384 

(<0.0001

) 

-0.7405 

(<0.0001

) 

-0.6835 

(<0.0001

) 

-0.6779 

(<0.0001

) 

-0.6637 

(<0.0001

) 

0.6562 

(<0.0001

) 

-0.7373 

(<0.0001

) 

-0.7361 

(<0.0001

) 

0.7665 

(<0.0001

) 

-0.7276 

(<0.0001

) 

-0.3702 

(0.0006) 

-0.3532 

(0.0013) 

0.3513 

(0.0016) 

0.3726 

(0.0005) 

Gamma 
7.2991 

(0.8786) 

12.5625 

(0.9048) 

3.6709 

(0.0003) 

14.1649 

(0.8826) 

11.7657 

(0.9445) 

3.7549 4 

(0.1089) 

2.8919 

(0.0022) 

3.2826 

(0.0039) 

13.1778 

(0.9211) 

14.9669 

(0.8027) 

13.4135 

(0.8389) 

4.4573 

(0.2142) 

-0.2494 

(0.4390) 

0.7020 

(0.0484) 

1.3637 

(0.0012) 

2.3638 

(0.0005) 

-2 Log 

Likelihood 
2560.16 1761.6 1341.12 955.68 3804.32 2912.8 2379.2 1879.52 1760.8 1296.64 1031.36 788 4909.6 3862.08 3214.88 2601.76 

AIC 2588.96 1790.4 1369.92 984.48 3823.52 2932 2398.4 1898.24 1783.2 1319.04 1053.76 810.4 4932 3884.48 3237.28 2624.16 

BIC 2631.04 1832.48 1412 1026.56 3851.52 2960 2426.4 1926.24 1815.84 1351.84 1086.56 843.04 4964.64 3917.12 3269.92 2656.8 
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Table 4-3: Modeling Results for different time intervals and periods using the whole data 
(Weekends). 

 Whole Data 

 Weekend Models 

 High Volume Low Volume 

Parameters 
5 

Min. 

15 

Min. 

30 

Min. 

60 

Min. 

5 

Min. 

15 

Min. 

30 

Min. 

60 

Min. 

Intercept 
0.8689 

(0.7223) 

2.1713 

(0.3683) 

2.3898 

(0.3250) 

3.2316 

(0.1842) 

-2.4257 

(0.4012) 

-2.8452 

(0.3314) 

-3.3862 

(0.2639) 

-3.1189 

(0.3277) 

Log(Volume) - - - - 
1.0607 

(0.0003) 

1.0791 

(0.0001) 

1.1234 

(<0.0001) 

1.0255 

(0.0004) 

SD(Volume) - - - - 

-

0.06965 

(0.0030) 

-

0.02329 

(0.0020) 

-0.01195 

(0.0015) 

-

0.00563 

(0.0035) 

Speed 
-0.09302 

(0.0153) 

-0.09579 

(0.0114) 

-0.08835 

(0.0199) 

-0.09064 

(0.0171) 

-

0.09256 

(0.0390) 

-

0.08914 

(0.0406) 

-0.08544 

(0.0499) 

-

0.08268 

(0.0600) 

Auxiliary Lane 
0.6822 

(0.0066) 

0.6882 

(0.0049) 

0.6816 

(0.0054) 

0.6844 

(0.0052) 
- - - - 

Horizontal 

Curve 
-0.2297 

(0.0854) 

-0.2278 

(0.0824) 

-0.2255 

(0.0858) 

-0.2254 

(0.0856) 
- - - - 

Direction 
-0.2992 

(0.2133) 

-0.2997 

(0.2012) 

-0.2957 

(0.2074) 

-0.2960 

(0.2067) 

0.2296 

(0.4103) 

0.2208 

(0.4095) 

0.2143 

(0.4230) 

0.2440 

(0.3634) 

SD 
-0.7996 

(<0.0001) 

-0.7512 

(<0.0001) 

-0.7468 

(<0.0001) 

-0.7433 

(<0.0001) 

-0.7483 

(0.0001) 

-0.6431 

(0.0004) 

-0.6368 

(0.0006) 

-0.6027 

(0.0022) 

Gamma 
-0.4001 

(0.3993) 

0.5786 

(0.2420) 

1.0762 

(0.0354) 

1.7045 

(0.0026) 

0.2904 

(0.7502) 

1.1377 

(0.2903) 

1.7802 

(0.1712) 

1.4200 

(0.0791) 

-2 Log 

Likelihood 
2739.68 2238.4 1924.48 1609.6 1747.52 1425.6 1222.72 1029.28 

AIC 2762.08 2260.8 1946.88 1632 1769.92 1448 1245.12 1051.68 

BIC 2794.72 2293.44 1979.52 1664.64 1802.72 1480.8 1277.92 1084.48 
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Table 4-4: Modeling Results for different time intervals and periods using the data that has one or more crashes (Weekdays). 

 Segments with One or More Crashes Data Set 

 Weekday Models 

 Morning Peak Off Peak Evening Peak Night Time 

Parameters 
5 

Min. 

15 

Min. 

30 

Min. 

60 

Min. 

5 

Min. 

15 

Min. 

30 

Min. 

60 

Min. 

5 

Min. 

15 

Min. 

30 

Min. 

60 

Min. 

5 

Min. 

15 

Min. 

30 

Min. 

60 

Min. 

Intercept 
2.1187 

(0.3852) 

1.9125 

(0.4850) 

1.0931 

(0.7193) 

0.1052 

(0.1941

) 

-8.2640 

(<0.0001

) 

-8.8737 

(<0.0001

) 

-9.0809 

(<0.0001

) 

-8.4588 

(0.0017) 

1.1252 

(0.6798

) 

1.6281 

(0.5784

) 

2.0522 

(0.5082

) 

2.3685 

(0.4690) 

0.2964 

(0.8516) 

0.7552 

(0.6428) 

1.2498 

(0.4480) 

1.6603 

(0.3335) 

Log(Volume) 
0.5486 

(0.0709) 

0.6807 

(0.0289) 

0.7831 

(0.0168) 

0.9466 

(0.0088

) 

1.0514 

(0.0019) 

1.1649 

(0.0007) 

1.1721 

(0.0009) 

1.0552 

(0.0059) 

0.4829 

(0.0617

) 

0.4618 

(0.0740

) 

0.4181 

(0.0986

) 

0.4438 

(0.0912) 

0.5304 

(<0.0001

) 

0.5362 

(<0.0001

) 

0.5287 

(<0.0001

) 

0.4956 

(<0.0001

) 

Speed 
-0.04580 

(0.0056) 

-0.04411 

(0.0084) 

-0.03673 

(0.0367) 

-

0.03443 

(0.0948

) 

- - - - 

-

0.09907 

(0.0042

) 

-

0.09591 

(0.0057

) 

-

0.09163 

(0.0096

) 

-0.09353 

(0.0093) 

-0.09471 

(0.0002) 

-0.09361 

(0.0002) 

-0.09631 

(0.0002) 

-0.09494 

(0.0004) 

SD(Speed) -  - - 
-0.2779 

(0.0134) 

-0.2887 

(0.0131) 

-0.2672 

(0.0222) 

-0.2649 

(0.0254) 
- - - - - - - - 

SD(Occupancy

) 
- - - - 

0.03125 

(0.0016) 

0.01082 

(0.0019) 

0.005236 

(0.0053) 

0.002955 

(0.0095) 
- - - - - - - - 

Speed limit 
-0.05477 

(0.0176) 

-0.05564 

(0.0154) 

-0.05820 

(0.0115) 

-

0.05956 

(0.0123

) 

- - - - - - - - - - - - 

Auxiliary Lane - - - - - - - - - - - - 
0.3070 

(0.0293) 

0.3066 

(0.0297) 

0.3084 

(0.0289) 

0.2969 

(0.0357) 

Horizontal 

Curve 
- - - - 

0.1755 

(0.0777) 

0.1772 

(0.0716) 

0.1774 

(0.0711) 

0.1735 

(0.0777) 
- - - - - - - - 

% of Heavy 

Vehicle  
- - - - 

0.02841 

(0.0249) 

0.02832 

(0.0239) 

0.02923 

(0.0199) 

0.02976 

(0.0181) 
- - - - - - - - 

Number of 

lanes 

-0.2708 

(0.0324) 

-0.3427 

(0.0068) 

-0.3406 

(0.0080) 

-0.4124 

(0.0031

) 

-0.2642 

(0.0161) 

-0.3105 

(0.0050) 

-0.3090 

(0.0053) 

-0.2826 

(0.0127) 
- - - - 

-0.1306 

(0.0403) 

-0.1444 

(0.0241) 

-0.1325 

(0.0367) 

-0.1155 

(0.0710) 

Direction 
-0.7490 

(0.0012) 

-0.7550 

(0.0010) 

-0.7661 

(0.0008) 

-0.7862 

(0.0007

) 

-0.09926 

(0.5502) 

-0.09783 

(0.5506) 

-0.09822 

(0.5489) 

-0.09288 

(0.5733) 

-0.1592 

(0.4775

) 

-0.1468 

(0.5116

) 

-0.1268 

(0.5710

) 

-0.1343 

(0.5484) 

-0.1043 

(0.4141) 

-0.1061 

(0.4066) 

-0.1055 

(0.4100) 

-0.1042 

(0.4183) 

SD 

0.6480 

(<0.0001

) 

0.6365 

(<0.0001

) 

0.6148 

(<0.0001

) 

0.6282 

(<.0001

) 

-0.4348 

(<0.0001

) 

0.4171 

(<0.0001

) 

0.4060 

(<0.0001

) 

-0.4110 

(<0.0001

) 

-0.4093 

(0.0002

) 

-0.4085 

(0.0002

) 

0.4126 

(0.0002

) 

0.4079 

(<0.0002

) 

-0.1876 

(0.1511) 

-0.1832 

(0.1642) 

0.1894 

(0.1406) 

0.2203 

(0.0556) 

Gamma 
8.2933 

(0.9458) 

13.4331 

(0.8810) 

3.8951 

(0.0006) 

15.6325 

(0.7626

) 

12.4570 

(0.9420) 

4.5592 

(0.3322) 

3.3219 

(0.0086) 

4.2806 

(0.0880) 

14.3850 

(0.7639

) 

14.2828 

(0.8931

) 

14.3924 

(0.8794

) 

15.2658 

(0.9444) 

-0.1178 

(0.7200) 

0.8651 

(0.0208) 

1.6105 

(0.0007) 

2.7772 

(0.0016) 

-2 Log 

Likelihood 
2428.16 1627.84 1208.16 824.64 3620.8 2727.36 2196.96 1699.04 1568.64 1269.78 839.2 596.16 4775.84 3727.04 3080.64 2468.32 

AIC 2453.92 1653.44 1233.76 850.24 3652.8 2759.36 2228.96 1731.04 1587.84 1291.86 858.4 615.36 4801.44 3752.64 3106.24 2493.92 

BIC 2484.32 1684.16 1264.32 880.8 3693.6 2800 2269.6 1771.84 1609.6 1316.75 880.16 637.12 4836 3787.2 3140.8 2528.48 
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Table 4-5: Modeling Results for different time intervals and periods using the data that has one 
or more crashes (Weekends). 

 Segments with One or More Crashes Data Set 

 Weekend Models 

 High Volume Low Volume 

Parameters 
5 

Min. 

15 

Min. 

30 

Min. 

60 

Min. 

5 

Min. 

15 

Min. 

30 

Min. 

60 

Min. 

Intercept 
2.6075 

(0.2519) 

3.8681 

(0.0907) 

4.1455 

(0.0720) 

4.9873 

(0.0311) 

-3.9874 

(0.1734) 

-4.2421 

(0.1667) 

-4.7146 

(0.1365) 

-4.2512 

(0.2022) 

Log(Volume) - - - - 
1.0361 

(0.0003) 

1.0398 

(0.0002) 

1.0760 

(0.0001) 

0.9865 

(0.0005) 

SD(Volume) - - - - 

-

0.06459 

(0.0046) 

-0.02145 

(0.0033) 

-0.01095 

(0.0026) 

-

0.00516 

(0.0051) 

Speed 
-0.1176 

(0.0014) 

-0.1198 

(0.0012) 

-0.1131 

(0.0022) 

-0.1157 

(0.0017) 

-0.1074 

(0.0072) 

-0.1070 

(0.0077) 

-0.1041 

(0.0095) 

-0.1037 

(0.0114) 

Speed limit - - - - 
0.05336 

(0.0349) 

0.05452 

(0.0310) 

0.05529 

(0.0280) 

0.05400 

(0.0347) 

Auxiliary Lane 
0.5885 

(0.0072) 

0.5944 

(0.0063) 

0.5906 

(0.0068) 

0.5925 

(0.0066) 

0.7308 

(0.0038) 

0.7299 

(0.0038) 

0.7198 

(0.0042) 

0.7359 

(0.0042) 

Horizontal 

Curve 
- - - - 

0.2214 

(0.0560) 

0.2248 

(0.0523) 

0.2268 

(0.0488) 

0.2272 

(0.0549) 

% of Heavy 

Vehicle  
0.03776 

(0.0600) 

0.03595 

(0.0733) 

0.03471 

(0.0866) 

0.03607 

(0.0748) 
- - - - 

Direction 
0.09382 

(0.6607) 

0.08923 

(0.6742) 

0.08525 

(0.6881) 

0.08883 

(0.6756) 

-

0.09788 

(0.6741) 

-0.1120 

(0.6308) 

-0.1189 

(0.6086) 

-

0.09686 

(0.6809) 

SD 
-0.4394 

(0.0008) 

-0.4275 

(0.0012) 

0.4242 

(0.0014) 

0.4226 

(0.0016) 

0.4325 

(0.0015) 

0.4521 

(0.0125) 

0.4784 

(0.0158) 

0.4158 

(0.0114) 

Gamma 
-0.3222 

(0.4953) 

0.7242 

(0.1473) 

1.2576 

(0.0175) 

1.9426 

(0.0014) 

0.4530 

(0.6227) 

1.6777 

(0.2082) 

2.7916 

(0.2514) 

2.4352 

(0.0709) 

-2 Log 

Likelihood 
2553.6 2050.24 1737.44 1422.24 1563.84 1239.52 1036.64 845.12 

AIC 2576 2072.64 1759.84 1444.64 1595.84 1271.52 1068.64 877.12 

BIC 2600.8 2097.6 1784.64 1469.44 1627.36 1303.04 1100.16 908.64 
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Table 4-6: Modeling Results for different time intervals and periods using the data that has two or more crashes (Weekdays). 

 Segments with Two or More Crashes Data Set 

 Weekday Models 

 Morning Peak Off Peak Evening Peak Night Time 

Parameters 
5 

Min. 

15 

Min. 

30 

Min. 

60 

Min. 

5 

Min. 

15 

Min. 

30 

Min. 

60 

Min. 

5 

Min. 

15 

Min. 

30 

Min. 

60 

Min. 

5 

Min. 

15 

Min. 

30 

Min. 

60 

Min. 

Intercept 
-0.9599 

(0.6856) 

-1.6840 

(0.5305) 

-2.5300 

(0. 4032) 

-4.3502 

(0. 2180) 

-6.6701 

(0.0002

) 

-7.1038 

(0.0012

) 

-7.4843 

(0.0031) 

-6.5180 

(0.0334) 

0.7437 

(0.8518

) 

1.1564 

(0.7849

) 

1.3083 

(0.7659

) 

0.8303 

(0.8580

) 

0.1770 

(0.9152) 

0.6848 

(0.6894) 

1.2022 

(0.4890) 

1.6195 

(0.3686) 

Log(Volume) 
0.8439 

(0.0233) 

1.0584 

(0.0055) 

1. 1813 

(0. 0037) 

1.4660 

(0. 0015) 

0.8520 

(0.0219

) 

0.9792 

(0.0099

) 

1.0317 

(0.0092) 

0.8701 

(0.0463) 

0.8026 

(0.0309

) 

0.7923 

(0.0340

) 

0.6879 

(0.0656

) 

0.7521 

(0.0490

) 

0.5544 

(<0.0001

) 

0.5608 

(<0.0001

) 

0.5502 

(<0.0001

) 

0.5237 

(<0.0001

) 

Speed         

-0.1834 

(0.0005

) 

-0.1857 

(0.0005

) 

-0.1711 

(0.0014

) 

-0.1690 

(0.0019

) 

-0.09495 

(0.0003) 

-0.09488 

(0.0005) 

-0.09793 

(0.0003) 

-0.09751 

(0.0006) 

SD(Speed)     

-0.4594 

(0.0039

) 

-0.5234 

(0.0016

) 

-0.4864 

(0.0052) 

-0.4698 

(0.0102) 
        

SD(Occupancy

) 
    

0.04641 

(0.0004

) 

0.01735 

(0.0002

) 

0.00835

3 

(0.0010) 

0.00447

7 

(0.0025) 

        

Speed limit 
-0.06865 

(0.0083) 

-0.07119 

(0.0055) 

-0.07179 

(0.0054) 

-0.07373 

(0.0033) 
    

0.05381 

(0.0699

) 

0.05404 

(0.0693

) 

0.05144 

(0.0815

) 

0.05214 

(0.0786

) 

    

Auxiliary Lane         

0.8663 

(0.0051

) 

0.8715 

(0.0049

) 

0.8440 

(0.0062

) 

0.8376 

(0.0068

) 

0.4585 

(0.0030) 

0.4601 

(0.0029) 

0.4568 

(0.0033) 

0.4430 

(0.0042) 

Horizontal 

Curve 
    

0.2109 

(0.0370

) 

0.2064 

(0.0383

) 

0.2092 

(0.0361) 

0.2016 

(0.0453) 

0.4990 

(0.0263

) 

 

0.4944 

(0.0277

) 

0.4799 

(0.0316

) 

0.4978 

(0.0267

) 

0.1622 

(0.0904) 

0.1634 

(0.0888) 

0.1613 

(0.0940) 

0.1578 

(0.0978) 

% of Heavy 

Vehicle  
    

0.02946 

(0.0181

) 

0.02930 

(0.0176

) 

0.02957 

(0.0169) 

0.03018 

(0.0159) 

0.03454 

(0.0977

) 

0.03455 

(0.1083

) 

0.03591 

(0.0925

) 

0.03620 

(0.0922

) 

0.01805 

(0.0525) 

0.01744 

(0.0636) 

0.01651 

(0.0801) 

0.01773 

(0.0573) 

Number of 

lanes 

-0.3413 

(0.0369) 

-0. 4679 

(0. 0042) 

-0. 4935 

(0. 0036) 

-0. 6451 

(0. 0005) 

-0.3507 

(0.0025

) 

-0.4054 

(0.0006

) 

-0.4116 

(0.0006) 

-0.3638 

(0.0029) 
    

-0.1601 

(0.0181) 

-0.1759 

(0.0100) 

-0.1602 

(0.0176) 

-0.1467 

(0.0300) 

Direction 
-0.7729 

(0.0082) 

-0. 7655 

(0. 0079) 

-0. 7466 

(0. 0095) 

-0. 7696 

(0. 0067) 

-0.1600 

(0.3395

) 

-0.1531 

(0.3530

) 

-0.1508 

(0.3588) 

-0.1453 

(0.3830) 

-0.4652 

(0.1339

) 

-0.4655 

(0.1350

) 

-0.3806 

(0.2192

) 

-0.3977 

(0.2040

) 

-0.1490 

(0.2712) 

-0.1514 

(0.2649) 

-0.1511 

(0.2687) 

-0.1530 

(0.2620) 

SD 

0.6548 

(<0.0001

) 

0. 6360 

(<0.0001

) 

0. 6182 

(<0.0001

) 

-0. 6060 

(<0.0001

) 

0.3196 

(0.0007

) 

0.2983 

(0.0019

) 

-0.2796 

(0.0071) 

-0.2913 

(0.0060) 

0.2746 

(0.1085

) 

-0.2746 

(0.1096

) 

0.2677 

(0.1209

) 

0.2703 

(0.1178

) 

-0.1248 

(0.4840) 

0.1234 

(0.4902) 

-0.1401 

(0.3820) 

0.1717 

(0.1997) 

Gamma 
5.4862 

(0.5011) 

11.9523 

(0.9890) 

3. 7517 

(0.0003) 

16.2117 

(0. 7528) 

13.0535 

(0.8474

) 

4.2428 

(0.2285

) 

3.2174 

(0.0063) 

3.9799 

(0.0413) 

14.6192 

(0.8226

) 

13.5650 

(0.9018

) 

13.9891 

(0.8773

) 

13.6532 

(0.9043

) 

-0.1375 

(0.6756) 

0.8772 

(0.0215) 

1.6485 

(0.0009) 

2.9046 

(0.0037) 

-2 Log 

Likelihood 
1930.08 1247.04 897.92 581.44 3054.08 2258.56 1793.76 1363.04 971.84 646.4 474.4 320.8 3998.56 3082.72 2520.64 1988.64 

AIC 1952.48 1269.44 920.32 603.84 3086.08 2290.56 1825.76 1395.04 1003.84 678.4 506.4 352.8 4030.56 3114.72 2552.64 2020.64 

BIC 1973.12 1290.08 940.96 624.48 3120.96 2325.28 1860.64 1429.92 1026.72 701.28 529.44 375.68 4067.04 3151.04 2589.12 2057.12 
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Table 4-7: Modeling Results for different time intervals and periods using the data that has two 
or more crashes (Weekends). 

 Segments with Two or More Crashes Data Set 

 Weekend Models 

 High Volume Low Volume 

Parameters 
5 

Min. 

15 

Min. 

30 

Min. 

60 

Min. 

5 

Min. 

15 

Min. 

30 

Min. 

60 

Min. 

Intercept 
2.3023 

(0.3922) 

3.7331 

(0.1667) 

3.9071 

(0.1525) 

4.7872 

(0.0807) 

-8.0663 

(<0.0001) 

-8.2493 

(<0.0001) 

-8.3794 

(<0.0001) 

-7.8316 

(0.0005) 

Log(Volume)     
1.2972 

(0.0012) 

1.2277 

(0.0013) 

1.2084 

(0.0014) 

1.0817 

(0.0045) 

SD(Volume)     
-0.07335 

(0.0088) 

-0.02256 

(0.0101) 

-0.01071 

(0.0123) 

-

0.00498 

(0.0222) 

Speed 
-0.1106 

(0.0105) 

-0.1153 

(0.0077) 

-0.1072 

(0.0135) 

-0.1105 

(0.0109) 
    

SD(Speed)         

SD(Occupancy)         

Speed limit         

Auxiliary Lane 
0.8124 

(0.0020) 

0.8144 

(0.0019) 

0.8153 

(0.0020) 

0.8176 

(0.0019) 
    

Horizontal 

Curve 
    

0.5771 

(0.0180) 

0.5823 

(0.0170) 

0.5838 

(0.0160) 

0.5807 

(0.0217) 

% of Heavy 

Vehicle  
0.04177 

(0.0696) 

0.03875 

(0.0916) 

0.03900 

(0.0931) 

0.04098 

(0.0778) 
    

Number of 

lanes 
        

Direction 
-0.04530 

(0.8550) 

-0.05246 

(0.8315) 

-0.05390 

(0.8274) 

-0.04772 

(0.8469) 

0.1950 

(0.5196) 

0.1880 

(0.5344) 

0.1836 

(0.5418) 

0.2273 

(0.4637) 

SD 
0.4268 

(0.0044) 

0.4185 

(0.0056) 

0.4166 

(0.0063) 

0.4148 

(0.0069) 

0.5214 

(0.0214) 

0.4245 

(0.0254) 

0.4215 

(0.0031) 

0.3215 

(0.0025) 

Gamma 
-0.3374 

(0.4789) 

0.7128 

(0.1590) 

1.2412 

(0.0215) 

1.9231 

(0.0022) 

0.4645 

(0.6213) 

1.6291 

(0.2244) 

2.6115 

(0.2362) 

2.1450 

(0.0703) 

-2 Log 

Likelihood 
1985.6 1576.96 1323.36 1067.84 952.32 739.68 607.36 484.64 

AIC 2008 1599.36 1345.76 1090.24 974.72 762.08 629.76 507.04 

BIC 2027.2 1618.56 1364.96 1109.44 987.04 774.4 642.08 519.36 
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Table 4-8: Modeling Results for different time intervals and periods using the data that has three or more crashes (Weekdays). 

 Segments with Three or More Crashes Data Set 

 Weekday Models 

 Morning Peak Off Peak Evening Peak Night Time 

Parameters 
5 

Min. 

15 

Min. 

30 

Min. 

60 

Min. 

5 

Min. 

15 

Min. 

30 

Min. 

60 

Min. 

5 

Min. 

15 

Min. 

30 

Min. 

60 

Min. 

5 

Min. 

15 

Min. 

30 

Min. 

60 

Min. 

Intercept 
-1.0634 

(0.7138) 

-2.9532 

(0.3675) 

-3.8757 

(0.2964) 

-6.9811 

(0.1211) 

-4.9268 

(0.0608) 

-5.6051 

(0.0614) 

-5.9499 

(0.0732) 

-5.4804 

(0.1468) 

4.5002 

(0.3250) 

4.6519 

(0.3421) 

4.0552 

(0.4109) 

3.1778 

(0.5378) 

0.9761 

(0.6223) 

1.7519 

(0.3856) 

2.4041 

(0.2294) 

3.9813 

(0.0576) 

Log(Volume) 
0.9055 

(0.0561) 

1.3000 

(0.0085) 

1.4631 

(0.0063) 

1.8680 

(0.0026) 

1.0702 

(0.0105) 

1.2224 

(0.0044) 

1.2612 

(0.0044) 

1.1648 

(0.0122) 

1.0200 

(0.0304) 

0.9849 

(0.0371) 

0.8816 

(0.0583) 

0.9576 

(0.0457) 

0.5547 

(<0.0001) 

0.5065 

(<0.0001) 

0.4646 

(<0.0001) 

0.4124 

(<0.0001) 

Speed         
-0.1957 

(0.0056) 

-0.1948 

(0.0066) 

-0.1729 

(0.0124) 

-0.1672 

(0.0164) 

-0.1049 

(0.0010) 

-0.1057 

(0.0012) 

-0.1086 

(0.0008) 

-0.1238 

(0.0003) 

SD(Speed)             
0.1119 

(0.0523) 

0.1668 

(0.0229) 

0.2046 

(0.0073) 

0.2794 

(0.0020) 

Speed limit 
-0.07157 

(0.0185) 

-0.07205 

(0.0144) 

-

0.07675 

(0.0096) 

-0.07433 

(0.0089) 

-0.3430 

(0.0986) 

-

0.03651 

(0.0699) 

-

0.03657 

(0.0688) 

-

0.03718 

(0.0692) 

        

Auxiliary Lane             
0.6119 

(0.0007) 

0.6330 

(0.0005) 

0.6415 

(0.0004) 

0.6488 

(0.0005) 

Horizontal 

Curve 
    

0.3357 

(0.0147) 

0.3439 

(0.0098) 

0.3452 

(0.0096) 

0.3375 

(0.0119) 
    

0.2157 

(0.0780) 

0.2237 

(0.0719) 

0.2298 

(0.0635) 

0.2368 

(0.0503) 

% of Heavy 

Vehicle  

0.03624 

(0.0582) 

0.03660 

(0.0497) 

0.03328 

(0.0807) 

0.03205 

(0.0814) 
            

Number of lanes 
-0.4832 

(0.0273) 

-0.6916 

(0.0018) 

-0.7497 

(0.0014) 

-0.9390 

(0.0002) 

-0.4240 

(0.0017) 

-0.4909 

(0.0004) 

-0.5148 

(0.0003) 

-0.4734 

(0.0011) 
    

-0.1967 

(0.0103) 

-0.2076 

(0.0074) 

-0.1827 

(0.0151) 

-0.1714 

(0.0206) 

Direction 
-0.8212 

(0.0277) 

-0.8787 

(0.0158) 

-0.8938 

(0.0141) 

-0.9952 

(0.0052) 

-0.2738 

(0.1776) 

-0.2683 

(0.1700) 

-0.2624 

(0.1790) 

-0.2778 

(0.1599) 

-0.4635 

(0.2699) 

-0.4468 

(0.2889) 

-0.3568 

(0.3829) 

-0.3686 

(0.3718) 

-0.2153 

(0.1578) 

-0.2172 

(0.1581) 

-0.2133 

(0.1624) 

-0.2336 

(0.1218) 

SD 
0.5658 

(<0.0001) 

0.5316 

(<0.0001) 

0.5101 

(0.0002) 

0.4914 

(<0.0001) 

0.3110 

(0.0052) 

-0.2714 

(0.0226) 

-0.2526 

(0.0468) 

-0.2668 

(0.0310) 

-0.4940 

(0.0129) 

0.4977 

(0.0131) 

0.4687 

(0.0134) 

0.4560 

(0.0222) 

0.03251 

(0.7523) 

0.02155 

(0.5641) 

0.05368 

(0.6874) 

0.08278 

(0.7896) 

Gamma 
4.6261 

(0.2107) 

4.8851 

(0.1482) 

3.5572 

(0.0003) 

14.5583 

(0.8794) 

11.6807 

(0.9432) 

4.2735 

(0.2602) 

3.2303 

(0.0115) 

4.0390 

(0.0656) 

13.7659 

(0.8693) 

14.2369 

(0.8864) 

13.9651 

(0.9409) 

5.0376 

(0.5202) 

0.06167 

(0.8692) 

1.0016 

(0.0167) 

1.8599 

(0.0019) 

3.7213 

(0.0904) 

-2 Log 

Likelihood 
1529.12 955.84 668.8 417.92 2219.2 1610.24 1254.56 931.84 646.4 418.24 305.44 207.68 3045.12 2307.68 1857.44 1438.56 

AIC 1554.72 981.44 694.4 443.52 2244.8 1635.84 1280.16 957.44 665.6 437.44 324.64 226.88 3077.12 2339.68 1889.44 1470.56 

BIC 1573.12 999.84 712.64 461.76 2265.76 1636 1301.12 978.4 673.6 445.44 332.64 234.72 3106.08 2368.48 1918.4 1499.52 
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Table 4-9: Modeling Results for different time intervals and periods using the data that has three 
or more crashes (Weekends). 

 Segments with Three or More Crashes Data Set 

 Weekend Models 

 High Volume Low Volume 

Parameters 
5 

Min. 

15 

Min. 

30 

Min. 

60 

Min. 

5 

Min. 

15 

Min. 

30 

Min. 

60 

Min. 

Intercept 
3.9076 

(0.3453) 

5.1731 

(0.2237) 

5.0574 

(0.2473) 

5.4489 

(0.2246) 

2.2030 

(0.5623) 

2.4969 

(0.5195) 

2.3900 

(0.5452) 

2.9094 

(0.4876) 

Log(Volume)     
0.5965 

(0.0540) 

0.6118 

(0.0503) 

0.6503 

(0.0423) 

0.6024 

(0.0643) 

Speed 
-0.1327 

(0.0473) 

-0.1368 

(0.0449) 

-0.1238 

(0.0739) 

-0.1237 

(0.0798) 

-0.1311 

(0.0379) 

-0.1299  

(0.0376) 

-0.1272 

(0.0404) 

-0.1272 

(0.0463) 

SD(Speed) 
0.3031 

(0.0399) 

0.4005 

(0.0204) 

0.4294 

(0.0512) 

0.6419 

(0.0172) 
    

Auxiliary Lane 
0.8075 

(0.0400) 

0.7658 

(0.0554) 

0.7495 

(0.0658) 

0.6827 

(0.0989) 
    

Direction 
-0.3443 

(0.3620) 

-0.3292 

(0.3935) 

-0.3347 

(0.3961) 

-0.2657 

(0.5152) 

-0.03619 

(0.9360) 

-0.04407 

(0.9218) 

-0.07008 

(0.8764) 

-

0.02456 

(0.9574) 

SD 
0.5119 

(0.0048) 

0.5370 

(0.0041) 

0.5530 

(0.0036) 

0.5963 

(0.0027) 

0.3548 

(0.2587) 

0.3144 

(0.3651) 

0.2987 

(0.2145) 

0.3478 

(0.3255) 

Gamma 
-0.2282 

(0.6577) 

0.8390 

(0.1317) 

1.3117 

(0.0290) 

2.1726 

(0.0048) 

1.0236 

(0.4973) 

2.6944 

(0.4210) 

3.6040 

(0.5544) 

2.8326 

(0.2675) 

-2 Log 

Likelihood 
1176.96 916.96 762.72 599.2 591.2 450.56 365.12 286.4 

AIC 1199.36 939.36 785.12 621.6 610.4 469.76 384.32 305.6 

BIC 1210.08 950.08 795.68 632.32 614.08 473.6 388 309.44 

 

4.4.2 Performance Measure for the Road 

To evaluate the suggested approach, Potential for Safety Improvement (PSI) with Empirical Bays 

(EB) adjustment has been used as a performance measure for the new approach. This performance 

measure has been explained in Chapter 3.  

4.4.3 Comparison Between the Original Data Based PSI and Suggested Data Based PSI 

Tables 4-10 show the results of two different goodness of fit. The table presents the Mean Absolute 

Deviation (MAD) (i.e., equation 6 in chapter 3) and the Mean Square Prediction Error (MSPE) 

(i.e., equation 7 in chapter 3). For the weekdays, the results show that using the data that has 

segments with one or more crashes in the modeling process and the 15 minutes time interval gives 

the best results in term of both MAD and MSPE. While for the weekends, the results show using 

data that has one or more crashes and the 60 minutes time interval give the best results in term of 
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MSPE, while using the same time interval with the original data gives the best results in term of 

MAD.
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Table 4-10: The Results of Two Different Goodness of Fit. 

 Weekdays 

 5 minutes 15 minutes 30 minutes 60 minutes 

 Original >=1 >=2 >=3 Original >=1 >=2 >=3 Original >=1 >=2 >=3 Original >=1 >=2 >=3 

MAD 1.742 1.743 2.389 3.066 1.632 1.603 2.684 3.086 1.751 2.092 2.666 3.118 1.774 2.101 2.682 3.271 

MSPE 10.909 5.030 8.734 16.933 8.791 3.819 14.110 17.266 10.892 10.931 13.982 18.388 10.935 11.042 14.260 24.439 

 Weekends 

 5 minutes 15 minutes 30 minutes 60 minutes 

 Original >=1 >=2 >=3 Original >=1 >=2 >=3 Original >=1 >=2 >=3 Original >=1 >=2 >=3 

MAD 0.639 0.766 1.121 1.376 0.637 0.787 1.252 1.456 0.636 0.774 1.252 1.498 0.635 0.765 1.258 1.839 

MSPE 1.025 0.814 1.784 3.342 1.014 0.878 3.272 4.074 1.011 0.841 3.257 4.535 1.006 0.812 3.339 9.252 
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CHAPTER 5: DUAL-STATE MODELS VS SINGLE-STATE MODELS 

5.1 Introduction 

As stated in the previous chapters, as the adopted time intervals get smaller, two major 

methodological challenges arise (i.e., more zero observations and repeated measures problems). 

Two relaxations methods have been proposed for the single state count models (Poisson and 

negative binomial) to account for the excessive zero observations. The first proposed approach is 

the zero-inflated model. Several transportation safety studies have been conducted using this 

approach (Shankar et al., 1997; Chin and Quddus, 2003). The second approach is the Hurdle 

model. The two models differ in their implementation to deal with the excessive zero observations. 

On the other hand, to account for the unobserved heterogeneity, the random parameter has been 

proposed. However, for transportation safety studies, no study has been tested whether the random 

parameters have to be used in the first part or the second part of the zero-inflated models and in 

case of using two random parameters in both parts, a correlation between them should be 

considered or not. In this chapter, the most common models with different random parameters 

implemented are adopted. Overall, 32 models are developed (NB/Hurdle models with random 

effects in the count part, NB/Hurdle models with random effects in the count part, NB/Hurdle 

models with random effects with no correlation between them in two parts, and NB/Hurdle models 

with random effects with a correlation between them in two parts) for different time periods. The 

best models have been suggested based on the Bayesian information criterion (BIC).  
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5.2 Methodology 

The term Zero inflation is referring to a data which has a higher number of zero observations than 

what is expected from a standard Poisson distribution and often results to an over-dispersion. When 

analyzing any count data, the starting point is usually Poisson distribution. However, when the 

data is zero-inflated, this distribution cannot be used since its conditional mean cannot vary 

independently with its corresponding variance, and this may lead to a biased estimate. Other 

models have been developed to overcome these problems such as negative binomial, hurdle, and 

zero-inflated models. Negative binomial can account for the over-dispersion, zero-inflated Poisson 

and zero-inflated hurdle models can account for excesses zeros but not the over-dispersion whereas 

the zero-inflated negative binomial and hurdle models have shown more reliable ability to account 

for both excess zeros and over-dispersion issues. 

To account for the correlations between repeated measures, these models were extended by 

including random effects (Hall, 2000; Yau et al. 2004) There are different suggested ways to 

extend these models with random effects. One way is to add random effects to the second part of 

the zero-inflated Poisson/negative binomial models. Another way which has been proven to be 

more efficient is to add a pair of uncorrelated or correlated random effects for both parts of the 

model (Min and Agresti, 2005; Yau et al. 2004). Models for zero-inflated count data: to account 

for the zero-inflated observation, different models have been used such as negative binomial, zero-

inflated Poisson, zero-inflated negative binomial, hurdle Poisson, and hurdle negative binomial. 

However, in the current version of SAS 9.4, there are no straightforward methods to fit these 

models. One of the most commonly used methods for integral approximation of maximum 

likelihood is the adaptive Gaussian Quadrature center at the conditional mode of the random 

effects. This method with one quadrature point is equivalent to Laplace approximation (Aitkin, 
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1999; Pinherio and Bates, 1995). As the number of quadrature increase the accuracy of the 

estimation increase and the computational time increase. Literature for the adaptive Gaussian 

Quadrature suggested at least five quadrature points to increase the accuracy of the estimation (Liu 

and Pierce, 1994; Rabe-Hesheth et al., 2002).  

The variance of the zero-inflated Poisson or the zero-inflated negative binomial models can never 

exceed the mean, and for this reason, they cannot accommodate for under-dispersion, while hurdle 

model can account for both under-dispersion and over-dispersion.  

In this study, SAS 9.4 has been used to develop the suggested models. Adding random effects to 

zero-inflated or hurdle models make the statistical modeling process more complex than the 

commonly used SAS procedures. A procedure that can implement random effects in the modeling 

process in SAS is the PROC NLMIXE; however, this procedure needs to specify the initial values 

for the coefficient to reduce the modeling process time and to avoid overflow and arithmetic 

exceptions in the process of computation of the objective function and its derivatives. To get the 

initial values to be used in the zero-inflated negative binomial and Hurdle modeling procedure, 

Generalized Linear Mixed Model (GLMM) has been implemented first, and the coefficients from 

this model were considered the initial values for zero-inflated negative binomial and Hurdle 

models. Since the random effects variance may be hard to be approximate, grid search has been 

used to choose the optimal value based on a range of values. The range was set from 0.1 to 20.1 

by 1. The number of the quadrature points has been set to 20 for all models. 
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5.3 Data preparation 

The whole filtered traffic data that has been prepared in the previous chapter and the geometric 

data has been used here. Crashes that occurred on SR408 in the period of 2011-2015 were compiled 

with the traffic and geometric data for the analyses. 

5.4 Models for Zero Inflated Count Data 

Two well-known zero inflated count data models have been selected and used with different 

implementation of random effects. 

5.4.1 Zero Inflated Negative Binomial 

The zero-inflated negative binomial model consists of two parts, the first part is the zero part and 

the second part is the normal negative binomial models conditional on the first part. The zero-

inflated negative binomial model can be considered as an extension of the traditional negative 

binomial as: 

𝑦𝑖 = {0                                                         𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑝𝑖 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙         𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 1 − 𝑝𝑖  
(5-1) 

Where 𝑝𝑖 represents the logistic regression and is estimated as: 

𝑝𝑖 = 𝑒𝑥𝑝(𝛽𝑖𝑥𝑖)1 + 𝑒𝑥𝑝(𝛽𝑖𝑥𝑖) (5-2) 

Where 𝛽𝑖  is the corresponding coefficient parameter and 𝑥𝑖 is the parameter. 

Zero inflated negative binomial can be defined as: 
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𝑃(𝑦𝑖) =
{  
  𝑝𝑖 + (1 − 𝑝𝑖) ( 11 + 𝛼𝜆𝑖)1𝛼                                     𝑦𝑖 = 0
(1 − 𝑝𝑖) Γ (𝑦𝑖 + 1𝛼)Γ(𝑦𝑖 + 1)Γ (1𝛼) (𝛼𝜆𝑖)𝑦𝑖(1 + 𝛼𝜆𝑖)(𝑦𝑖+1𝛼)         𝑦𝑖 > 0

 (5-3) 

 

 

 

5.4.2 Hurdle Model 

The Hurdle models consist two parts too. The difference between it and the zero-inflated negative 

binomial is that the zero part is a binary model and the count part is truncated at zero count model. 

The hurdle negative binomial models having the following form: 

𝑃(𝑦𝑖) = {  
  𝑝𝑖                                                                                                              𝑦𝑖 = 0(1 − 𝑝𝑖) (1 − 1(1 + 𝛼𝜆𝑖)1𝛼) Γ (𝑦𝑖 + 1𝛼)Γ(𝑦𝑖 + 1) (1𝛼) (𝛼𝜆𝑖)𝑦𝑖(1 + 𝛼𝜆𝑖)(𝑦𝑖+1𝛼)      𝑦𝑖 = 0 (5-4) 

   

5.5 Modeling Results and Discussion 

The results of the 32 models (zero-inflated negative binomial using random effect in the count 

part, zero-inflated negative binomial using random effect in the zero part, zero-inflated negative 

binomial using a pair of uncorrelated random effects in both part, zero-inflated negative binomial 

using a pair of correlated random effects in both parts, and same has been applied for hurdle 

negative binomial for different time periods) are presented in Tables 5-1 to 5-6. 
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As it is shown in the tables, ten variables were used in each part of the models.  Log of volume/  

per lane ‘log (volume/lane’, log standard deviation of volume ‘SD(Volume)’, log average of speed 

‘log(Speed)’, log standard deviation of speed ‘SD(Speed)’, log speed limit ‘Speed limit’, dummy 

variable for auxiliary lane existence (1 when there is an auxiliary lane) ‘Auxiliary lane’, dummy 

variable for the existence of a horizontal curve ‘Horizontal curve’, log of the segment length 

‘log(length)’, and dummy variable for the direction (1 when the direction is eastbound). The 

modeling results for the both zero-inflated negative binomial and Hurdle with a correlated pair of 

random effects for "evening peak and night time" time period were not converted.
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Table 5-1: Zero-inflated Negative Binomial and Hurdle Negative Binomial Results (Morning Peak). 

 Weekday Models (Morning Peak) 

Parameters 
15 

Min. (ZINB) 
15 

Min. (HNB) 
15 

Min. (ZINB) 
15 

Min. (HNB) 
15 

Min. (ZINB) 
15 

Min. (HNB) 
15 

Min. (ZINB) 
15 

Min. (HNB) 
Count Part         

Intercept 17.0135 (0.0017) 5.7353 (0.0735) 16.2377 (<.0001) 12.4927 (0.0056) -8.4952 (<.0001) 5.7239 (0.0745) -7.7427 (<.0001) 6.1264 (0.0600) 

Log(Volume/lane) 1.3818 (<.0001) 1.1098 (<.0001) 1.2445 (<.0001) 1.1754 (<.0001) 1.6049 (<.0001) 1.1129 (<.0001) 1.3930 (<.0001) 0.9753 (<.0001) 

SD(Volume) - - - - - - - - 

Log(Speed) -2.1931 (0.0060) -2.8918 (<.0001) -1.7945 (0.0002) -2.2401 (0.0002) - -2.8936 (<.0001) - -2.9441 (<.0001) 

SD(Speed) 0.2299 (0.0789) - - - - - - - 

Speed limit -3.813 (0.0026)  -3.7622 (<.0001) -2.3664 (0.0455) - - - - 

Auxiliary Lane - -0.6855 (0.0033) - -0.7109 (0.0001) - -0.6854 (0.0034) -0.5951 (0.0216) - 

Horizontal Curve -0.295 (0.0179) - -0.4301 (0.0021) - - - - - 

% of Heavy 

Vehicle  
- - - - - - - - 

Log(length) 0.7031 (<.0001) - 0.2240 (0.0238) - 0.6947 (0.0002) - - - 

Direction - - - - - - - - 

Zero Part         

Intercept 8.8977 (0.0214) -15.7697 (0.0004) -2.7220 (0.0372) -16.0155 (0.0097) -30.0073 (0.1074) -14.8880 (0.0171) -33.9049 (0.0213) 11.2410 (<.0001) 

Log(Volume/lane) - -0.7867 (0.0038) - -0.8054 (0.0231) - -0.9101 (0.0111) - -1.3695 (<.0001) 

SD(Volume) -2.525 (0.0231) -0.5770 (0.0090) - -0.6110 (0.0409) -1.3547 (0.0256) -0.6097 (0.0441) -0.8342 (0.2290) -0.7031 (0.0203) 

Speed - - - - - - - - 

SD(Speed) - -0.5339 (<.0001) -1.0782 (0.0015) -0.5967 (0.0003) -0.7539 (0.0931) -0.5728 (0.0006) -0.9702 (0.0239) -0.4641 (0.0029) 

Speed limit - 5.4938 (<.0001) - 5.6381 (<.0001) 8.5544 (0.0470) 5.5087 (0.0001) 8.4526 (0.0105) - 

Auxiliary Lane - - - - - - -1.5417 (0.0701) - 

Horizontal Curve - 0.2525 (0.0109) 0.7482 (0.0083) 0.3135 (0.0204) 0.6526 (0.0440) - 0.5752 (0.0277) - 

% of HV  - - - - - - - - 

Log(length) - -0.8233 (<.0001) -1.4342 (0.0271) -0.8462 (<.0001) - -0.9207 (<.0001) -2.0346 (0.0032) -0.6743 (0.0033) 

Direction - - 2.1612 (0.0003) 0.9978 (0.0140) - 0.9107 (0.0247) 1.2883 (0.0679) - 

Alpha 0.0569 (0.4339) - 0.1142 (0.1789) 0.1515 (0.1905) 0.05579 (0.4219) 0.04131 (0.5814) 0.05397 (0.4255) 0.04153 (0.5872) 

Variance I 0.5484 (0.0002) - - - 0.5990 (0.0009) 0.1789 (0.0936) 0.2789 (0.0168) 0.2947 (0.0338) 

Variance II - - 2.9680 (0.0256) 0.5595 (0.0061) 0.4894 (0.6418) 0.6003 (0.0053) 1.5546 (0.2362) 0.8920 (0.0012) 

Correlation - - - - - - -0.1846 (0.6190) -0.5127 (0.0011) 

-2 Log Likelihood 1684.7 1688.7 1673.1 1671.6 1658.7 1674.1 1675.7 1687.4 

AIC 1706.7 1716.7 1699.1 1701.6 1680.7 1702.1 1705.7 1711.4 

BIC 1738.8 1757.6 1737.0 1745.4 1712.8 1743.0 1749.5 1746.4 
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Table 5-2: Zero-inflated Negative Binomial and Hurdle Negative Binomial Results (Off-Peak). 

 Weekday Models (Off Peak) 

Parameters 
15 

Min. (ZINB) 
15 

Min. (HNB) 
15 

Min. (ZINB) 
15 

Min. (HNB) 
15 

Min. (ZINB) 
15 

Min. (HNB) 
15 

Min. (ZINB) 
15 

Min. (HNB) 
Count Part         

Intercept 14.0535 (0.1093) 20.3367 (0.0482) 14.0603 (0.0343) 16.3251 (0.0818) -8.2813 (<.0001) 16.0304 (0.1127) -8.9077 (<.0001) 
-16.0099 

(<.0001) 

Log(Volume/lane) 1.2326 (<.0001) 1.3752 (0.0287) 1.3847 (<.0001) 1.2267 (0.0782) 0.7516 (0.0018) 1.5308 (0.0137) 0.9059 (0.0092) 2.7696 (<.0001) 

SD(Volume) - - - 0.6190 (0.0828) 0.8095 (<.0001) - 0.6388 (0.0016) - 

Log(Speed) -5.2596 (0.0107) - -5.2454 (0.0006) - - - - - 

SD(Speed) - 0.7035 (0.0028 - - - 0.6075 (0.0109) - - 

Speed limit - -7.1101 (0.0011) - -6.9455 (0.0005) - -6.5893 (0.0019) - - 

Auxiliary Lane - - - - - - - - 

Horizontal Curve - 0.3526 (0.0283) - 0.4305 (0.0033) - 0.4118 (0.0088) - - 

% of Heavy 

Vehicle  
- - - 0.7862 (0.0324) - 0.6126 (0.0982) - - 

Log(length) 0.4282 (0.0582) 0.4265 (0.0938) 0.2792 (0.0191) 0.5857 (0.0204) 0.6974 (<.0001) 0.5730 (0.0283) - 0.6033 (0.0220) 

Direction - - - -0.5681 (0.0620) - - -0.2913 (0.1451) - 

Zero Part         

Intercept 2.4342 (0.2104) -7.4866 (0.0240) 2.5171 (0.0756) -6.2673 (0.2725) -2.5843(<.0001) -3.7067 (0.5176) -42.2112 (0.0797) 9.7432 (<.0001) 

Log(Volume/lane) -1.0874 (0.0195) -0.5306 (0.0317) -0.7910 (0.0145) -0.6331 (0.0860) - -0.6978 (0.0591) - -1.6940 (<.0001) 

SD(Volume) - -0.7227 (<.0001) - -0.8478 (<.0001) - -0.8421 (<.0001) - - 

Speed - - - - - - 9.2734 (0.0979) - 

SD(Speed) - - - - -0.8628 (0.0063) - - - 

Speed limit - 3.4063 (<.0001) - 3.4073 (0.0073) - 2.8623 (0.0241) - - 

Auxiliary Lane - - - - - - - - 

Horizontal Curve - - - - - - - - 

% of HV  - - - - - - - - 

Log(length) -0.8582 (0.0929) -0.7817 (<.0001) -1.0391 (0.0090) -0.9135 (<.0001) - -0.9064 (<.0001) -2.1604 (0.0057) -0.9395 (<.0001) 

Direction - 0.2482 (0.0228) - - - - - - 

Alpha 0.006210 

(0.9604) 

0.1780 (0.5801) 0.006210 

(0.9506) 

0.6483 (0.3662) 0.1013 (0.2745) 0.1878 (0.5839) 0.006210 

(0.9585) 

0.2585 (0.4847) 

Variance I 1.0448 (0.0007) 0.2642 (0.2545) - - 0.5633 (<.0001) 0.1600 (0.4474) 0.5077 (0.0064) 0.9981 (0.0512) 

Variance II - - 3.0412 (0.0176) 0.7295 (<.0001) 8.9683 (0.0006) 0.7331 (<.0001) 1.0834 (0.5545) 0.9456 (<.0001) 

Correlation - - - - - - -0.3498 (0.3270) -0.9715 (0.0005) 

-2 Log Likelihood 2747.7 2840.1 2804.3 2734.9 2745.4 2735.3 2742.1 2755.9 

AIC 2765.7 2868.1 2822.3 2764.9 2763.4 2765.3 2764.1 2775.9 

BIC 2792.0 2909.0 2848.5 2808.7 2789.7 2805.1 2796.3 2809.1 
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Table 5-3: Zero-inflated Negative Binomial and Hurdle Negative Binomial Results (Evening Peak). 

 Weekday Models (Evening Peak) 

Parameters 
15 

Min. (ZINB) 

15 

Min. (HNB) 

15 

Min. (ZINB) 

15 

Min. (HNB) 

15 

Min. (ZINB) 

15 

Min. (HNB) 

15 

Min. (ZINB) 

15 

Min. (HNB) 

Count Part         

Intercept -6.8881 (0.0021) -10.1539 (0.0274) -7.3097 (<.0001) -6.3250 (0.0284) -6.8791 (0.0005) -10.1433 (0.0096)   

Log(Volume/lane) 1.1493 (0.0032) 1.7199 (0.0286) 1.3361 (<.0001) 0.9625 (0.0643) 1.2115 (0.0004) 1.7443 (0.0102)   

SD(Volume) - - - - - -   

Log(Speed) - - - - - -   

SD(Speed) - - - 0.7644 (0.0007) - -   

Speed limit - - - - - -   

Auxiliary Lane - - - - - -   

Horizontal Curve - - - - - -   

% of Heavy 

Vehicle  
- - - - - -   

Log(length) 0.5671 (0.0269) 0.5929 (0.0743) 0.4898 (0.0013) 0.4980 (0.0068) 0.5705 (0.0099) 0.5610 (0.0529)   

Direction - - - - - -   

Zero Part         

Intercept -37.2850 (0.0359) 6.9120 (<.0001) -37.2096 (0.0260) 5.6220 (0.0168) -37.2718 (0.0666) 6.9606 (0.0011)   

Log(Volume/lane) - -1.1983 (<.0001) - -0.8374 (0.0540) - -1.2164 (0.0016)   

SD(Volume) - - - - - -   

Speed 8.6443 (0.0451) - 8.7792 (0.0289) - 8.7029 (0.0764) -   

SD(Speed) - - - -0.6842 (0.0006) - -   

Speed limit - - - - - -   

Auxiliary Lane - - - - - -   

Horizontal Curve - - - - - -   

% of HV  - - - - - -   

Log(length) -0.6415 (0.0989) -0.8346 (<.0001) -0.8432 (0.0571) -0.9399 (<.0001) -0.6686 (0.0918) -0.9976 (<.0001)   

Direction - - - - - -   

Alpha 0.006172 

(0.9885) 

0.006172 

(0.9892) 

0.06963 (0.6402) 0.2223 (0.4961) 0.006135 

(0.9892) 

0.006134 

(0.9816) 

  

Variance I 0.9144 (0.0043) 1.0565 (0.1130) - - 0.9892 (0.0574) 0.7118 (0.0952)   

Variance II - - 2.1713 (0.0318) 0.8727 (0.0016) 2.0959 (0.5506) 0.6838 (0.0018)   

Correlation - - - - - -   

-2 Log Likelihood 1274.3 1314.2 1296.6 1286.0 1268.8 1273.0   

AIC 1292.3 1330.2 1312.6 1304.0 1284.8 1293.0   

BIC 1318.6 1353.5 1336.0 1330.3 1308.1 1322.2   
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Table 5-4: Zero-inflated Negative Binomial and Hurdle Negative Binomial Results (Night time). 

 Weekday Models (Night Time) 

Parameters 
15 

Min. (ZINB) 

15 

Min. (HNB) 

15 

Min. (ZINB) 

15 

Min. (HNB) 

15 

Min. (ZINB) 

15 

Min. (HNB) 

15 

Min. (ZINB) 

15 

Min. (HNB) 

Count Part         

Intercept 16.2995 (0.0074) 20.3696 (0.0591) 19.6445 (0.0005) 21.2356 (0.0214) 12.4837 (0.2457) 20.4066 (0.0587)   

Log(Volume/lane) 0.5868 (<.0001) 0.5825 (0.0025) 0.5846 (<.0001) 0.4479 (0.0237) 0.5780 (0.0024) 0.5824 (0.0025)   

SD(Volume)         

Log(Speed) -4.8394 (0.0011)  -2.9283 (0.0240)      

SD(Speed)    0.6462 (0.0597)     

Speed limit  -6.3035 (0.0189) -2.7014 (0.0005) 7.1081 (0.0006) -4.5387 (0.0842) -6.3126 (0.0187)   

Auxiliary Lane 0.4196 (0.0125)        

Horizontal Curve         

% of Heavy 

Vehicle  
        

Log(length) 0.9805 (<.0001)  0.7459 (<.0001)      

Direction         

Zero Part         

Intercept -0.09190 (0.8045) -11.7060 (0.0183) 0.1076 (0.7985) -12.0680 (0.0627) 5.6252 (<.0001) 5.6181 (<.0001)   

Log(Volume/lane)  -0.6269 (<.0001)  -0.5827 (<.0001) -0.5563 (<.0001) -0.5553 (<.0001)   

SD(Volume)         

Speed  3.7959 (0.0017)  3.9288 (0.0123)     

SD(Speed) -1.7443 (0.0011)  -1.3980 (0.0006) -0.4720 (0.0003) -0.6940 (<.0001) -0.6936 (<.0001)   

Speed limit         

Auxiliary Lane    -0.4433 (0.0049)     

Horizontal Curve         

% of HV          

Log(length)  -0.9857 (<.0001)  -1.0570 (<.0001)     

Direction         

Alpha 0.2355 (0.2394) 1.4231 (0.5968) 0.4401 (0.0532) 60.9015 (0.8092) 1.0501 (0.5483) 1.4228 (0.5954)   

Variance I 0.3506 (0.0002) 0.9588 (0.0969)   1.7081 (0.0780) 0.9593 (0.0969)   

Variance II   1.8142 (0.0527) 0.2329 (0.0087) 0.6896 (<.0001) 0.6796 (<.0001)   

Correlation         

-2 Log Likelihood 3171.5 3162.8 3156.2 3182.8 3128.2 3126.5   

AIC 3191.5 3180.8 3176.2 3200.8 3146.2 3150.5   

BIC 3220.7 3207.0 3205.4 3227.1 3172.5 3185.5   
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The modeling computational time is dramatically increased when a correlated pair of random 

effect was included in the model process. Also, in this modeling process, the adaptive Gaussian 

Quadrature with 20 points was considered to increase the accuracy of the modeling results. The 

results also show that using a pair of random effects in both the zero part and the count part improve 

the models. The Bayesian Information Criterion (BIC) of these models were always lower than 

the (BIC) value for other models. It is also found that zero-inflated negative binomial performs 

better than the hurdle negative binomial. The results validate other researches studies regarding 

zero-inflated count data. Different significant variables were found for different models, in general, 

the log (volume per lane) and the log (segment length) were the most common significant 

variables. Log of average speed and speed limit variables were found to have a negative impact on 

the number of crashes (i.e., as the average speed or the speed limit increase, less crashes occurs). 

Comparing the best zero-inflated models (zero-inflated negative models and hurdle negative 

binomial models) with the modeling results of the negative binomial models in Chapter 4 shows 

that the zero-inflated negative binomial is better than the negative binomial models and it is the 

best. 
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CHAPTER 6: SUMMARY AND CONCLUSIONS 

6.1 Summary 

This dissertation focuses on determining the viability of using less aggregated traffic data to find 

a better relationship between the traffic status and the crash occurrence, find the crash contribution 

factors for the expressway (SR 408) based on currently available traffic detection data for different 

time periods, and then hotspot identification on this road. 

In Chapter 3, the viability of using less aggregated traffic data to improve the crash frequency and 

hotspot identification were considered. In this chapter, several SPFs for different time intervals (5, 

15, 30 and 60) minutes and time periods (Morning peak, off-peak, evening peak, and night time 

for the weekdays and heavy traffic and low traffic for the weekend) were developed. Also, the 

hotspot locations based on the proposed SPFs and the traditional SPF (AADT based SPF) were 

conducted. The comparison results clearly highlighted that the proposed SPFs improve the 

accuracy of hotspot identification in term of error. It was shown that the 15 minutes time interval 

is the best in term of error (reducing the error term) time interval for the weekdays, while the 60 

minutes interval is the best interval for the weekends.  

In Chapter 4, two difficulties were noticed when we considered shorter time intervals. These 

difficulties were the excessive number of zeros as the time interval gets smaller, and the repeated 

measures problem.  

Several Safety Performance Functions (SPFs) were developed with different scenarios: first, the 

whole data was used to develop several full SPFs, in these models, a random effect was considered 

in the modeling process to account for the repetition in the data. Then, to reduce the number of 

zero observations, several Full SPFs were developed using different data sets. Three different data 
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sets were prepared and used in addition to the whole data set. These three-data set reduced the 

number of zero observation by including only either segments that have one or more crashes or 

two or more crashes or three or more crashes. A comparison between the hotspot identification 

between the full data and the proposed data set impose that the data set that has only the segments 

with one or more crashes give the best results in reducing the error term (i.e., the Mean Absolute 

Error "MAD" and the Mean Square Predicted Error "MSPE"). 

In Chapter 5, two zero-inflated count data models were used to develop several full SPFs with the 

consideration of implementing the random effect in 4 suggested ways (use the random effect either 

with the zero part, or count part, or uncorrelated (or correlated) pair in both parts). Additionally, 

to increase the accuracy of the models, the adaptive Gaussian Quadrature with 20 quadrature points 

were used to improve the accuracy of the estimation with the consideration of using grid search 

for the variance of the random effects to choose the optimal value. The results show that using two 

uncorrelated random effects in both parts or the zero-inflated models improve the estimations. 

Also, the results show that the zero-inflated negative binomial was better than hurdle negative 

binomial in term of AIC and BIC. 

6.2 Conclusion and Implications 

The findings from Chapter 3 show that using less aggregated traffic data is more appropriate and 

accurate to identify hotspot locations. Using less aggregated traffic data present better relationship 

between the contributing factors of crashes and the crash occurrence. We show the importance of 

treating the weekdays and the weekends separately and dividing the weekdays into four time 

periods (morning peak, off-peak, evening peak, and night time) and the weekends into two time 

periods (high volume and low volume) in addition to separating the two directions.  We revealed 
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that different variables affect the occurrence of crashes by different time periods for different 

weekdays or weekends. This approach with the availability of such a detailed data is important to 

implement, and it allows practitioners to understand the influence of the traffic pattern on the crash 

frequency. 

Chapter 4 presents an important implication for traffic safety researchers and practitioners, as we 

consider shorter time intervals to present more accurately the influence of the traffic condition on 

the crash occurrence, two important difficulties arising. First, as the considered time interval get 

shorter, more zero observations occur. Second, the repeated measurement problem. Thus we 

suggest using a data set that has only the data of the segments that have one or more crashes within 

the study period. This suggested way gives better results than the previous chapter. 

 Chapter 5 conducted crash analysis using two most commonly used models that can account for 

the excess zeros in the data, and suggested different ways to implement the random effect to 

account for the repeated measurement and unobserved heterogeneity and to improve the accuracy 

of the models. The results clearly suggested that using zero-inflated negative binomial with a pair 

of random effects give the best results, suggesting the implementation of using this model to 

analyze such traffic data.   

For the traffic safety practitioners, several important implications can be done based on this study. 

This study examined different contributing factors on a crash occurrence for different (time 

intervals, time periods, directions) that can give a good understanding of the significant 

contributing factors that effect on the crash occurrence. These finding could help the practitioner 

to wisely utilize the traffic safety sources and focus on one time period or direction with some 

regulations that will reduce the crash occurrence and increase the level of service of the road. Using 



92 
 

less aggregated traffic data also provide engineers the ability to apply different countermeasure at 

different times to improve traffic safety. ITS technologies can provide several promising 

countermeasures that could be used in real time based on the location and time such as ramp-

metering, Variable Speed Limit (VSL), Dynamic Message Signs (DMS), and High-Occupancy 

Toll (HOT) lanes. 
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Table A-1: SR 408 Eastbound Detectors 

  Number of lanes   Number of lanes 

ID Milepost 
Mainline (w/ TP 

Express) 
TP Cash ID Milepost 

Mainline (w/ TP 
Express) 

TP Cash 

1 1.2   30 11.5 5  

2 1.4 2  31 12.1 5  

3 1.7 2  32 12.5 5  

4 2.2 3  33 12.9 5  

5 2.4 3  34 13.3 5  

6 2.7 3 2 35 13.7 3 3 

7 3.2 2 1 36 14.2 3 2 

8 3.6 2  37 14.5 4  

9 4.3 3  38 14.7 4  

10 4.6 4  39 15 5  

11 4.9 3  40 15.7 4  

12 5.3 3  41 15.8 4  

13 6 3 2 42 16.1 4  

14 6.4 3 1 43 16.5 5  

15 6.8 3  44 17.3 3  

16 7 3  45 17.7 2  

17 7.4 3  46 18 2  

18 7.6 3  47 18.4 2  

19 8 3  48 18.8 2  

20 8.4 3  49 19 2 2 

21 8.9 3  50 19.4 2 1 

22 9.2 3  51 19.5 2  

23 9.4 4  52 20.1 2  

24 9.6 3  53 20.3 2  

25 9.7   54 20.8 2  
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26 10.3 3  55 21.8 2  

27 10.6 4  56 22.3 2  

28 10.8 5  57 22.7 2  

29 11.2 5      
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Table A-2: SR 408 Westbound Detectors. 

  Number of lanes   Number of lanes 

ID Milepost 
Mainline (w/ TP 

Express) 
TP 

Cash 
ID Milepost 

Mainline (w/ TP 
Express) 

TP 
Cash 

1 1.2   29 11.6 4  

2 1.4 2  30 12.1 5  

3 1.6 3  31 12.6 5  

4 2 3  32 13 5  

5 2.4 3  33 13.3 3 2 

6 2.7 2 1 34 13.6 3 4 

7 3.2 2 2 35 14.2 5  

8 3.6 2  36 14.4 4  

9 4.3 3  37 14.5 5  

10 4.6 4  38 15.2 5  

11 4.9 3  39 15.7 5  

12 5.3 3  40 15.9 4  

13 5.9 3 2 41 16.1 4  

14 6.3 3 2 42 16.5 5  

15 6.8 3  43 17 3  

16 7.3 3  44 17.8 3  

17 7.4 4  45 18 3  

18 7.6 3  46 18.4 2  

19 8.1 3  47 18.8 2  

20 8.4 3  48 19 2 1 

21 8.9 3  49 19.4 2 2 

22 9.2 3  50 19.7 3  

23 9.7 3  51 19.9 2  

24 9.9 2  52 20.7 3  

25 10.3 3  53 20.8 2  
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26 10.6 4  54 21.8 2  

27 10.9 4  55 22.3 2  

28 11.3 5  56 22.7 2  
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