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ABSTRACT 

In recent years, traffic agencies have begun to place emphasis on the importance of pedestrian 

safety. In the United States, nearly 70,000 pedestrians were reported injured in 2015. Although the 

number only account for 3% of all the people injured in traffic crashes, the number of pedestrian 

fatalities is still around 15% of total traffic fatalities.  Furthermore, the state of Florida has 

consistently ranked as one of the worst states in terms of pedestrian crashes, injuries and fatalities. 

Therefore, it is befitting to focus on the pedestrian safety. This dissertation mainly focused on 

pedestrian safety at both midblock crossings and intersections by using micro-simulation and 

driving simulator.  

First, this study examined if the micro-simulation models (VISSIM and SSAM) could estimate 

pedestrian-vehicle conflicts at signalized intersections. A total of 42 video-hours were recorded at 

seven signalized intersections for field data collection. The observed conflicts from the field were 

used to calibrate VISSIM and replicate the conflicts. The calibrated and validated VISSIM model 

generated the pedestrian-vehicle conflicts from SSAM software using the vehicle trajectory data 

in VISSIM. The mean absolute percent error (MAPE) was used to determine the optimum TTC 

and PET thresholds for pedestrian-vehicle conflicts and linear regression analysis was used to 

study the correlation between the observed and simulated conflicts at the established thresholds. 

The results indicated the highest correlation between the simulated and observed conflicts when 

the TTC parameter was set at 2.7 and the PET was set at 8.  

Second, the driving simulator experiment was designed to assess pedestrian safety under different 

potential risk factors at both midblock crossings and intersections. Four potential risk factors were 

selected and 67 subjects participated in this experiment. In order to analyze pedestrian safety, the 

surrogate safety measures were examined to evaluate these pedestrian-vehicle conflicts.  
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Third, by using the driving simulator data from the midblock crossing scenario, typical examples 

of drivers’ deceleration rate and the distance to crosswalk were summarized, which exhibited a 

clear drivers’ avoidance pattern during the vehicle pedestrian conflicts. This pattern was 

summarized into four stages, including the brake response stage, the deceleration adjustment stage, 

the maximum deceleration stage, and the brake release stage. In addition, the pedestrian-vehicle 

conflict prediction model was built to predict the minimum distance between vehicle and 

pedestrian. 

Finally, this study summarized the three different kinds of data that were to evaluate the pedestrian 

safety, including field data, simulation data, and driving simulator data. The process of combining 

of field data, simulation data, and simulator data was proposed. The process would show how the 

researches could evaluate the pedestrian safety by using the field observations, micro-simulation, 

and driving simulator.  
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CHAPTER ONE: INTRODUCTION 

 

1.1 Background 

 

In recent years, traffic agencies have begun to place emphasis on the importance of pedestrian 

safety. Between 2006 and 2009, pedestrian fatalities in the United States declined from 4795 to 

4109. However, the downward trend had halted and there were 4302 pedestrian deaths in 2010, 

increasing to 4457 in 2011 and 4743 in 2012 (Williams, 2013). Meanwhile, nearly 76,000 

pedestrians were reported injured in 2012. Although the number only accounts for 3% percent of 

all the people injured in traffic crashes, the number of pedestrian fatalities is still around 14% of 

total traffic fatalities (National Highway Traffic Safety Administration, 2014). Furthermore, the 

state of Florida has consistently ranked as one of the worst states in terms of pedestrian crashes, 

injuries and fatalities (National Highway Traffic Safety Administration, 2012). Ernst (2011) also 

indicated that four metro areas in Florida (Orlando-Kissimmee, Tampa-St. Petersburg-Clearwater, 

Jacksonville, Miami-Fort Lauderdale-Pompano) were considered the most dangerous for 

pedestrians among all the United States. Therefore, pedestrian safety is of particular concern to 

Florida. 

 

In order to better understand the causation of pedestrian crashes, some researchers have tried to 

assess pedestrian safety by using the field crash data, which is the traditional and frequent method 

(Haleem et al., 2015; Zhang et al., 2008; Jarrett and Saul, 1998; Lefler and Gabler, 2004). However, 

it often takes years to collect sufficient crash data to support statistically valid analyses, particularly 
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for locations with infrequent crash events. In addition, the lack of complete reporting of pedestrian 

crashes also resulted in much smaller population of data to use. Therefore, traffic conflict analyses 

provided an alternative to investigate safety and develop prediction models for cases where crashes 

are infrequent (Zhang et al., 2014; Zhang et al., 2012; Alomodfer et al., 2015).  A traffic conflict 

is defined as an event involving two or more road users, in which the action of one user causes the 

other user to make an evasive maneuver to avoid a collision (Parker and Zegger, 1989). Conflict 

analysis can be significant for evaluating roadway design alternatives, pedestrian safety, traffic 

signal control, freeway management options, and other designs that have not been widely 

implemented. However, there is little previous work that has developed prediction models for 

pedestrian conflicts. The micro-simulation model may be used to estimate the number of potential 

conflicts for alternative designs and permit the development of safety prediction models. The work 

completed thus far indicates that this approach is a valid surrogate measure to estimate safety and 

a promising method for predicting crashes (Gettman et al., 2008; Fan et al., 2013). However, there 

is no published literature that document the use of this method to assess the pedestrian crashes. 

Moreover, a driving simulator is also one of the effective tools that can also be used to identify 

pedestrian-vehicle conflicts and evaluate the pedestrian safety. In this dissertation, the purpose is 

to use both micro-simulation model and driving simulator to develop the pedestrian-vehicle 

conflict model and analyze the pedestrian safety. 
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1.2 Research Approaches 

 

Firstly, a literature review of relevant domain information was conducted, including pedestrian 

safety issues, risk factors that related to pedestrian crashes, and simulation and simulator studies 

related to pedestrian safety. 

 

Secondly, VISSIM and SSAM were used to estimate the number of potential conflicts between 

pedestrians and vehicles. In addition, several sites were selected to collect data from the field for 

the purpose of calibrating and validating VISSM and SSAM.  

 

Thirdly, a series of scenarios were designed in the UCF driving simulator to collect data on drivers’ 

behaviors that react to pedestrian crossing the street at both mid-block crossings and intersections. 

A total of 67 participants were selected to participate in the experiment. Several software packages 

including Microsoft EXCEL, SPSS, Minitab, and R were used to analyze the data and build 

statistical models to identify vehicle-pedestrian conflicts and estimate the pedestrian safety with 

different potential factors. 

 

Fourthly, the driver’s avoidance pattern was summarized based on the driving simulator 

experiment. In addition, the pedestrian-vehicle conflicts prediction model was developed to 

estimate the minimum distance between the pedestrian and the vehicle. The driver’s characteristics, 

potential risk factors, and the basic vehicle information were included in the model. 
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Finally, the process of pedestrian safety evaluation based on the field data, micro-simulation data, 

and driving simulator data was summarized. 

 

1.3 Research Objectives 
 

The main objectives of this research are as follows: 

(1) Use micro-simulation model to identify vehicle-pedestrian conflicts and assess the pedestrian 

safety. First, collect the field data at seven signalized intersections and develop the VISSIM 

simulation models, using the field data, to replicate similar conditions in a simulated environment. 

Then, the calibrated and validated VISSIM simulation models were used to obtain the pedestrian 

and vehicle trajectory files, and SSAM was then used to extract the pedestrian-vehicle conflicts.  

 

(2) Use the driving simulator to design the pedestrian-vehicle conflict scenarios to evaluate the 

pedestrian safety with different risk factors. First, set up several scenarios in the driving simulator 

to test the drivers’ behavior that react to the pedestrian crossing the street at both midblock 

crossings and signalized intersections and find out the potential risk factors that related to the 

pedestrian safety. Then, by processing the simulator data, selected surrogate safety measures for 

the pedestrian-vehicle conflict can be extracted and used to analyze the pedestrian safety with 

different risk factors. 

 

(3) Use driving simulator data to explore the driver’s avoidance pattern and build the pedestrian-

vehicle conflict prediction model. 
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(4) Based on the analysis before, summarize the process of pedestrian safety evaluation based on 

the field data, micro-simulation data, and driving simulator data. 

 

1.4 Proposal Organization 
 

This chapter presents an introduction to the subject matter to be discussed as well as a description 

of the research approaches and objectives. Chapter 2 delves into literature to discuss the framing 

of the problem addressed by this research. Chapter 3 describes how to build the pedestrian-vehicle 

conflict model in VISSM and extract the data from SSAM. In addition, the data collected from the 

field will be used to calibrate and validate the VISSIM and SSAM model. Finally, the simulated 

conflicts generated by SSAM will be used to compare to the conflicts observed in the field to 

identify if the VISSIM and SSAM can be used to predict the pedestrian-vehicle conflicts. Chapter 

4 describes the driving simulator study methodology, including experimental design, experiment 

procedure, subjects and data collection. Chapter 5 analyzes the midblock scenario and the 

intersection scenario by using simulator data and discuss the pedestrian safety measurements in 

each. Chapter 6 uses the driving simulator experiment data to explore the driver’s avoidance 

pattern and develop the pedestrian-vehicle conflict prediction model. Chapter 7 summarizes three 

different kinds of data, including the field data, micro-simulation data, and driving simulator data. 

In addition, this Chapter proposes the process of pedestrian safety evaluation based on the field 

data, the micro-simulation data, and driving simulator data. Chapter 8 serves as the summary 

chapter. 
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CHAPTER TWO: LITERATURE REVIEW 

 

In this chapter, a literature review of pedestrian safety was conducted, including pedestrian safety 

issues, potential risk factors that related to pedestrian crashes, microsimulation and driving 

simulator studies related to pedestrian safety. In addition, the UCF driving simulator was 

introduced at the end of this chapter.  

 

2.1 Safety Issues Related to Pedestrian Crashes 

 

A number of reports related to pedestrian safety issues have been released in the United States and 

all over the world in recent years. By analyzing the pedestrian crash data, governmental agencies 

addressed the pedestrian safety issues and determined the potential factors related to the pedestrian 

safety in order to provide useful information to guide countermeasure choices.  

 

2.1.1 National Pedestrian Safety Reports 

 

There have been numerous reports that were devoted to investigate and evaluate the pedestrian 

safety at the national level. The United State Department of Transportation (USDOT) produced 

the National Pedestrian Crash Report in 2008 using the fatal pedestrian crash data from Fatality 

Analysis Reporting System (FARS) and the other pedestrian crash data from the General Estimates 

System (GES) in the National Automotive Sampling System (Chang, 2008). The purpose of the 

report was to analyze the latest trends in pedestrian fatalities and to identify the probability of 

different contributing factors. The report mainly presented descriptive statistics and considered 
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five potential factors, including long-term trends, crash locations, crash time, pedestrian 

characteristics and driver characteristics. Similar reports published by the USDOT also 

demonstrated the pedestrian safety in 2011(National Highway Traffic Safety Administration, 

2013). 

 

The National Highway Traffic Safety Administration (NHTSA) collected the pedestrian crash data 

for two years at six different sites in the United States (Chidester & Isenberg, 2001). By using the 

video camera recording and contour gauge techniques, a total of 521 pedestrian crashes were 

collected. The study provided pedestrian crash trends and summarize the scope and character of 

pedestrian accidents. 

 

Governors Highway Safety Association (GHSA) addressed pedestrian safety by using the 

pedestrian fatality data (Williams, 2013). They also proposed some potential reasons for the 

increase in pedestrian deaths in 2010 through 2012. The possible explanations included the 

economic recession that might increase the walking, changes in demographics that led to 

pedestrians unfamiliar with road, and warmer weather pattern that might increase the pedestrian 

exposure.  

 

The Federal Highway Administration (FHWA) provided a distance-based methodology to 

estimate annual pedestrian and bicyclist exposure in an urban environment (Molino et al., 2012). 

Pedestrian volume data was collected through personnel who observed pedestrian movements 

while standing on the sidewalk. The travel distances were measured with tape and remote distance-
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measuring equipment. By combining the two measurements, a linear regression model was 

developed to estimate annual pedestrian exposure. 

 

The Transportation for America also examined the pedestrian fatalities for each state from 2000 

to 2009 to identify the common thread on the roads (Ernst et al., 2011). The Pedestrian Danger 

Index (PDI) was used to rank the country’s largest metropolitan areas according to their relative 

risk to walkers. The analysis concluded that Orlando tops the list of most dangerous places due to 

its high pedestrian fatality rate of 3 per 100,000 people, followed by Tampa, Jacksonville and 

Miami areas. They suggested that more funding should be used for the safer roads and a complete 

street policy should be adopted for pedestrians and bicyclists.  

 

2.1.2 Statewide and Local Pedestrian Safety Reports 

 

The New York Bicycling Coalition (NYBC) utilized two main databases to find pedestrian and 

bicyclist accident rates (Brustman, 1999). One of the databases was “Hospitalizations Due To 

Bicyclist and Pedestrian Injuries” from the Department of Health (DOH), which was more 

reflective of the actual injury situation. Another database was the “Summary of Bicycle and 

Pedestrian Accidents on State Highways” from the Department of Transportation (DOT), which 

looked for clusters of accidents on state highway routes. Through these two databases, researchers 

analyzed contributory factors in bicycle and pedestrian accidents. They employed a descriptive 

research method, which used the ratio of each factor to analyze bicycle and pedestrian accident 

rates. The report also provided suggestions for improving the local and statewide data collection, 
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such as redefining bicycle accident reporting criteria and offering financial assistance for the data 

collection system upgrades. 

 

Thomas et al. (2009) used five years of state crash data from Traffic Engineering Accident 

Analysis System (TEAAS) and the perception data from 400 intercept survey respondents to 

identify the general trends in pedestrian and drivers’ characteristics in North Carolina. The kernel 

density analysis method was used to identify high risk locations in GIS and exploited Ripley’s K-

function test to decide whether crashes were clustered randomly. 

 

Ballesteros et al. (2004) examined how pedestrian injury was associated with the vehicle type and 

integrated two pedestrian accident databases to reclassify pedestrian accidents. The severely 

injured pedestrian accident types were classified into life threatening, potentially life threatening 

and dead prior to arriving the hospital. The other type was considered as non-life threatening. It 

was concluded that the increased danger due to sport utility vehicles and pick-up trucks to 

pedestrians was explained by larger vehicle masses and faster speeds. Through calculations of the 

severity of the pedestrians’ injury, it was found that the vehicle type might contribute to different 

injury patterns. 

 

The City of Chicago (2011) published a summary report for pedestrian crash analysis for 2005-

2009 crash data. The report provided descriptive analysis about the crash types, locations and 

severity. Pedestrian crash fatality rates per 100,000 residents were also used to compare with other 

US cities. In addition, crash maps were also provided to analyze where pedestrian crashes generally 

occurred in central business district and neighborhoods. 
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An overall technical guide for pedestrian safety assessments was introduced for California cities 

(Meghan et al., 2008). First, California cities were divided into several population groups based 

on the population size. Then, the rates of the different population groups were calculated per 

10,000 populations to identify the high pedestrian accident cities.  

 

Dumbaugh et al. (2012) mainly focused on the relationship between the environment and 

pedestrian crash accidents in Texas. Negative binomial regression models were used to fit the data 

and it was concluded that the environmental factors associated with pedestrian crashes were 

combination of traffic conflicts and the vehicle speed. 

 

Oregon Department of Transportation (ODOT) utilized network screening methods, which 

complemented the crash frequency and severity screening by identifying risk factors, to identify 

locations for safety improvements where crashes had not been reported (Braughton and Griffin, 

2014). A segment scoring system was also developed to estimate each risk factor and the GIS 

software summarized the pedestrian score of segments to identify the crash frequency and severity 

network for each Oregon region. 

 

A pedestrian safety report published by Florida Department of Transportation pointed out why 

pedestrian fatality rates in Florida was higher than other states (Dewey et al., 2003). A multivariate 

regression model was used to analyze specific factors that related to the pedestrian fatality, 

including environmental factors and accidents locations. It was found that Florida residents walked 

more often in places that were exposed to traffic compared to other U.S. residents because of the 
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warm winter, the natural timing of summer and winter sunlight. Besides, there were millions of 

tourists visiting Florida every year, which led to more exposure to traffic. Moreover, elderly 

residents, the interstate shortfall, and poverty rate explained over 70% of Florida’s pedestrian 

fatalities. Another FDOT pedestrian safety report analyzed 6434 pedestrian crashes on roads 

during 2008-2010 in Florida (Alluri et al., 2013). A mixed logit model was developed to identify 

factors contributing to pedestrian injury severity at signalized and non-signalized locations. 

Statewide crash patterns, causes, and contributing factors were used to have a better understanding 

of pedestrian injury severity. Several countermeasures at both nonsignalized and signalized 

locations were suggested to reduce pedestrian crash frequency and severity. 

 

2.2 Risk Factors Related to Pedestrian Crashes 

 

There have been numerous studies that attempted to identify significant factors related to 

pedestrian accidents. The main factors discussed in this study include environmental factors, 

roadway characteristics factors, human factors, vehicle characteristics factors and special locations. 

 

2.2.1 Environmental Factors 

 

The environmental factors included time, weather, area type, and so on. First, the City of Chicago 

found that that 26% of pedestrian crashes occurred from 3 p.m. to 6 p.m. in Chicago, which was 

the period with most occurrences (Chang, 2008). However, NHTSA found that 24.7% percent of 

pedestrian deaths happened between 6 pm and 9 pm, which was the highest number of pedestrian 

deaths of the whole day (National Highway Traffic Safety Administration, 2013). Weather and 
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lighting condition factors were also of common concern. Other studies showed that poor lighting 

conditions increased the likelihood of pedestrian injuries (Clifton et al., 2009; Mohamed et al, 

2013). However, weather was not a significant factor in several studies (Clifton et al., 2009; Dai, 

2012). 

 

Noland and Quddus (2004) analyzed whether the different income areas were associated with 

pedestrian safety. They used the negative binomial model and found that areas with lower income 

were more prone to pedestrian crashes, which concurred with the study by Kravetz and Noland 

(Daniel & Noland, 2012). In addition, it was also found that areas with lower population density 

experienced more fatalities compared to those areas with higher population densities. Ukkusuri et 

al. (2012) showed that a greater fraction of residential land use decreased pedestrian crashes 

compared to the industrial, commercial and open land use type in New York City. Other related 

studies concluded that low density residential areas were more dangerous than compact residential 

areas (Cho et al., 2009; Zajac & Ivan, 2003). 

 

Some research studied the factor of urban and rural areas as locations of interest. Zhu et al. (2008) 

gathered information on 35,732 pedestrian accidents and used Poisson distribution to calculate the 

95% of confidence interval of an adjusted rate ratio (aRR) of pedestrian-vehicle crash and 

pedestrian injury according to resident years and miles walked in either urban or rural areas. 

Pedestrian crash rates were calculated per 100,000 person years and per million miles walked 

according to the region size. The analysis showed that hot accident spots were closer to urban areas, 

especially for small to mid-size. 
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2.2.2 Roadway Characteristics Factors 

 

Several studies also focused on investigating roadway characteristics factors that impacted 

pedestrian safety. Turner et al. (2006) investigated roadway factors in an urban area in New 

Zealand. It was found that 56% of accidents occurred at mid-block locations, which were the 

highest among urban pedestrian accident locations. The second highest locations were at 

intersections which accounted for 38% of accidents. Brustman (1999) found that municipal streets 

had a higher probability of accidents involving a pedestrian compared to state roads, county roads, 

town roads and limited access highways. 

 

Tarko and Azam (2011) developed the bivariate ordered probit model to identify how the roadway 

type affected the pedestrian injury severity by using the linked police-hospital data. It was found 

an increased likelihood of a pedestrian injury severity on rural roads and high-speed urban roads. 

Lee and Abdel-Aty (2005) used four years of vehicle-pedestrian crashes data from 1999 to 2002 

in Florida to identify roadway characteristics that were correlated with high pedestrian crashes 

using a log-linear model. It was found that undivided roads with a greater number of lanes were 

more dangerous than divided roads with fewer lanes. 

 

Ukkusuri et al. (2012) developed pedestrian accident frequency models for New York City and 

found that more pedestrian crashes were associated with larger road width and road width was 

related to operating speeds, length of crosswalks and traffic volume. 
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Hanson et al. (2013) also studied roadway characteristics which included the presence of sidewalks, 

buffers between the road and the sidewalk, number of travel lanes, the presence of medians, traffic 

control at intersections, and posted speed limits. The Google Street View imagery was used to 

collect data. The results showed that the presence of sidewalks could reduce the severity of 

pedestrian crashes. Lack of buffers between the road and the sidewalk and higher speed limits were 

found to be associated with higher pedestrian severe causalities and fatality rates. However, the 

number of travel lanes and presence of medians were not statistically significant for the pedestrian 

crashes. Moreover, crosswalks at traffic-controlled intersections was the only significant factor 

among the traffic control at intersections. Other related factors, like crosswalk at intersection, 

control only, control at intersection and control and crosswalk, appeared not to be significant. 

 

2.2.3 Human Factors 

 

There have been numerous studies that aimed at identifying significant human factors related to 

pedestrian crashes. Human factors included age, gender, race and alcohol involvement. According 

to different areas, crash distributions of different age groups were distinct. For example, an age-

specific study of death rates due to pedestrian accidents in the city of Montreal was conducted in 

which the inner city was compared to the outer parts of the cities in four contiguous areas (Allard, 

1982). It was found that the rates were the highest in downtown and decreased progressively in 

the outlying areas.  In addition, since it was observed that older pedestrians had difficulty in 

crosswalk situations, the crossing time at signalized intersections should be extended, especially 

in areas with large population of elders.  
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In Chicago, crash rates of the ages between 15 and 18 was the highest among all age groups (City 

of Chicago, 2011). However, Lee and Abdel-Aty found that middle-age male drivers and 

pedestrians were more involved in pedestrian accidents than other groups when analyzing age and 

gender factors in Florida (Lee & Abdel-Aty, 2005). The similar findings were also observed by 

Eluru et al. (2008), Tarko and Azam (2011), LaScala et al. (2000), and Dai (2012). 

 

Another study used walking exposure (kilometers walked per person-year), vehicle-pedestrian 

collision risk (number of collisions per kilometers walked) and vehicle-pedestrian collision case 

fatality rate (number of deaths per collision) to study the male-female discrepancy (Zhu et al., 

2008). The results showed that the pedestrian death rate per person year for men was 2.3 times 

more than the women’s and was attributed to a higher fatality per collision rate among male 

pedestrians. 

 

Chang (2008) analyzed ethnic groups of pedestrian fatalities and found that nearly 60% of 

pedestrian fatalities were white, 15% were black, and 18% were Hispanic, which concurred with 

the study by Ukkusuri (2011). 

 

Other studies claimed that pedestrian’s alcohol involvement was an important human factor 

affecting pedestrian crashes. Noland and Quddus (2004) suggested that alcohol involvement 

increased the risk of a fatal crash, which was also proved by Mohamed et al. (2013) and Miles-

Doan (1996). Zajac and Ivan (2003) stressed that both driver alcohol involvement and pedestrian 

alcohol involvement were found to significantly increase pedestrian injury severity. 
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In addition to these human factors, researchers recently started looking into the effects of 

pedestrian distraction when talking or texting on their cell phones. Nasar and Troyer (2013) used 

the National Electronic Injury Surveillance System (NEISS) database in hospital emergency rooms 

from 2004 to 2010. Pedestrian injuries were found to be higher in the case of distraction using cell 

phones compared to no distraction. Byington and Schwebel (2013) utilized virtual pedestrian 

streets to examine hazards for pedestrians while crossing a street and checked whether the 

distracted by cell phone influenced the pedestrian behaviors. It was found that pedestrian behavior 

was considered to be more dangerous using cell phones than crossing the street without distractions. 

 

2.2.4 Vehicle Characteristic Factors 

 

Several studies had investigated vehicle types in pedestrian crashes. In the NHTSA Pedestrian 

Crash Data Study (PCDS), 68% of the involved vehicles were passenger cars and 32% were other 

vehicles, including light trucks, vans, and utility vehicles (Chidester & Isenberg, 2001). However, 

although the truck was not the highest number in vehicle types, the influence of truck flow at 

intersections with high pedestrian activity was found to be one of the significant factors associated 

with the most severe injuries (Mohamed et al., 2013). Satiennam and Tanaboriboon (2003) used 

chi-square tests to study types of vehicles and ages of pedestrian fatalities in traffic accidents in 

Thailand. The results indicated that more than 60% of pedestrian fatalities were motorcycle crashes, 

which was the highest frequency of pedestrian accidents. 

 

In recent years, many studies have focused on the vehicle speed for pedestrian crashes and 

pedestrian injury severities. Han et al. (2012) used two finite element pedestrian models and four 
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finite element models for vehicles with different front-end shapes to evaluate pedestrian injury 

severities. It was found that vehicle speed was the significant factor in injury severity and the speed 

below 30 km/h could reduce all injury parameters, which was similar to the findings of Pitt et al. 

(1990). 

 

2.2.5 Location Factors 

 

Many researchers have attempted to perceive the pedestrian safety in some special locations, such 

as parking lots, school zones and highway-rail crossings. Boot et al. (2013) investigated pedestrian 

crash data for parking lots based on pedestrian age in West Central Florida. The data were collected 

from west central region between 2004 and 2008. They observed that pedestrian crashes in small 

parking lots and residential parking lots had a greater effect on crash rates than in large parking 

lots and other types of parking lots, such as retail and gas station. Moreover, older pedestrian group 

(age>75) were more involved in backward driving (cars in reverse) crashes while the younger 

pedestrian group (age<14) were more involved in forward driving crashes. However, parking 

space angle and attention patterns such as head turns and eye fixation while walking in crosswalks 

were found as non-significant factors when related to pedestrian crash frequency. 

 

Warsh et al. (2009) used five-year police-reported collision data and geographic information 

systems (GIS) to assess child pedestrian crashes in school zones. It was found that school zones 

were the most dangerous locations for child pedestrians and those crashes decreased as distance 

from school increase. Also, 37.3% of collisions happened among 10-14 years old. 
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Using the 2007-2010 highway-rail grade crossings (HRGC) crash data, Khattak (2013) employed 

the ordered probit model to investigate different variables that contributed to the severity level of 

pedestrian injuries. Model results showed that higher train speeds were associated with more 

severe injuries. Female pedestrians had higher injury severity when compared to others. Pedestrian 

crashes at HRGCs in commercial areas were more severe compared to other land uses (e.g., open 

space, residential, etc.) and lower crash severity levels at HRGCs with greater number of crossing 

highway lanes, with standard flashing light signals and in clear weather. 

 

2.3 Simulation and Simulator Study Related to Pedestrian Safety 

 

2.3.1 VISSIM 

 

Many researchers have attempted to use VISSIM to evaluate and analyze pedestrian safety in the 

road network. Ishaque and Noland (2005) used the vehicle following model to simulate pedestrian 

flow characteristics in urban traffic networks and demonstrated that VISSIM could be used for 

multimodal network analysis by coding pedestrians as a vehicle, which was very important to 

allow full consideration of pedestrians in traffic policies by using traffic simulation software. 

Besides, they also set up a complex network in VISSIM to analyze pedestrian exposure to vehicle 

emissions and the role played by signal timings (Ishaque & Noland, 2008; Ishaque & Noland, 

2009). The results showed that longer signal cycles could result in less vehicle emission, but cause 

longer pedestrian delay.  
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Boenisch and Kretz (2009) simulated pedestrians crossing a street with a lane for each direction in 

VISSIM. They found that a vehicle demand of 700 to 800 vehicles per hour and showed the 

maximum travel time for pedestrians. A study by Chen et al. (2010) attempted to develop a 

pedestrian delay estimation model for both signalized and unsignalized intersection considering 

vehicle-pedestrian conflicts. The pedestrian delay model was built by field data, but the 

effectiveness of the model was checked in VISSIM by simulating the two actual intersections.  

 

In addition to the intersection, researchers recently started considering pedestrian behavior for 

roundabout by using VISSIM. Astrid et al. (2011) investigated how well the Rodegerdts and 

Blackwelder model could affect levels of service when pedestrians and bicycles crossed the exit 

of roundabout. Redegerdts and Blackwelder model calculated a percentage capacity loss for the 

approach situated closest to the exit being blocked, which was more suitable for analytical traffic 

model. By comparing the result from a microscopic simulation in VISSIM, it was found that the 

total travel time increased if the pedestrians and bicycles were included in the model. Besides, a 

high vehicle pedestrian flow seemed to be more affected by small changes in pedestrian flow 

according to the simulation results. Another study also used VISSIM to simulate roundabouts 

(Rouphail et al, 2005). First, they used observational data to validate the pedestrian gap parameter 

for blind and sighted pedestrians. And then, the pedestrian crossing treatment, which was the use 

of an upstream/downstream (midblock) pedestrian-activated signal and crosswalk, were proposed 

and tested in the simulation, indicating that it would guarantee a crossable gap and minimize any 

negative impact at roundabout. 
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2.3.2 Cellular Automata Micro Simulation 

 

A cellular automata model is a discrete model studied in compatibility theory, mathematics, 

physics, complexity science, theoretical biology and microstructure modelling (Chopard, 1998). 

As the cellular automata model could characterize traffic flow’s discreteness feature and easy to 

simulate in computer, it has been used to simulate traffic by many researches (Rickert et al., 1996; 

Maerivoet & De Moor, 2005; Meng & Weng, 2011). 

 

In recent years, the cellular automata model has been applied to investigate pedestrian movements 

and behaviors. Blue and Adler (2001) used cellular automata model to simulate three modes of bi-

directional pedestrian flow, including flows in directionally separated lanes, interspersed flow, and 

dynamic multilane flow. They found that the pedestrian emergent behavior from cellular automata 

model was consistent with the empirical data. Another study by Li et al. (2012) attempted to 

investigate pedestrian conflicts with vehicles at a crosswalk of a signalized intersection using 

cellular automata simulation. The simulation results showed the effects of different pedestrian 

signal timing and crosswalk widths on the crosswalk capacity, the number of traffic conflicts 

between pedestrians and vehicles, and pedestrian delay due to the conflicts. Besides, they also 

demonstrated that the cellular automata simulation could realistically capture the behaviors and 

characteristics of pedestrian-vehicle flows, which are similar to the findings of Zhang and Chang 

(2014) and Yue et al. (2010).  
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2.3.3 Driving Simulator 

 

The driving simulator is another important tool for researchers to analyze traffic events. It can 

provide a well-controlled experimental condition and can collect the data, which are difficult to 

achieve in the real world as well.  Mostly, driving simulators are used to analyze driving behaviors 

under different conditions (Kolisetty et al., 2006; Lee and Abdel-Aty, 2008; Wu et al., 2016; Yan 

et al., 2016). However, some studies also involve pedestrians in the driving simulator experiments 

in order to find out the interaction effects between pedestrians and vehicles. 

 

Yuan et al. (2013) combined driving simulator and computer simulation to reconstruct the process 

of pedestrian-vehicle crash. The purpose of this study was to find out the relation between drivers’ 

various emergency measures and pedestrians’ injury severity. The findings indicated that the most 

effective way to reduce injury severity was steering with braking. Boot et al. (2013) invited 63 

participants to do the driving simulator experiment in order to test the new pedestrian marking, 

which was called special emphasis marking. All the participants were divided into three different 

age groups and a 3D model of an intersection was created in the driving simulator. The results 

showed that drivers could recognize the special emphasis marking much more quickly than the 

normal crosswalk marking. Moreover, when there was a pedestrian crossing the street, drivers 

were not affected by the special emphasis marking.  
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2.4 Driving Simulator Issues 

 

2.4.1 Advantages and Disadvantages of Driving Simulator Research 

 

In recent years, the driving simulator have been widely used in the safety research. The modern 

driving simulator is usually built with the simulation software using a sophisticated driver 

environment which can give drivers on board impression that drivers feel that they drive in an 

actual vehicle. In addition, driving simulator usually include the visual system, audio system, and 

vibration system, which provide a realistic feel of all controls. Therefore, a driving simulator is 

one of the research tools which enables researchers to conduct multi-disciplinary investigations 

and analyses on a wide range of issues (Abdel-Aty et al., 2006; Godley et al., 2002; Zhang et al., 

2015).  

 

The use of a driving simulator for human factors research has many advantages. First, the driving 

simulator has controllability, reproducibility, and standardization compared to real vehicles (Yan, 

2005). The behaviour of vehicles, pedestrian and other environmental conditions can be controlled 

based on the research purposes. Especially, the driving simulator has the ability to simulate 

dangerous driving situations in a safe environment, which makes researchers easier to test driving 

behaviors (Underwood et al., 2011; Tu et al., 2015; Yan et al., 2016; Chang et al., 2009). Second, 

the data can be collected accurately and efficiently (De Winter et al., 2009;  Wu, 2014). It is 

difficult to collect the accurate data when a real vehicle is in the world. Compared to the real 

vehicle, the driving simulator could output the data less than a second. The researchers can get an 

accurate data up to 100 data points per second based on the different types of driving simulators. 
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Third, the driving simulator can test novel instructions and functions for feedback (Yan & Wu, 

2014; Yan et al., 2015; Larue et al., 2015). Some new technologies and instructions cannot be 

easily tested in the real vehicles because of the safety issue. Therefore, the driving simulator is an 

alternative to achieve the feedback of new technologies and instructions. 

 

However, there are also some disadvantages of driving simulator researches. First, the simulator 

fidelity is one of factors that impact the research result. Some researches pointed out that some 

low-fidelity simulators may evoke unrealistic driving behaviour so that the research outcomes may 

be invalid (De Winter et al., 2012). In order to reduce the fidelity impact, a high-fidelity simulator 

is used in this study. Another important disadvantage is simulator motion sickness (Kennedy et al., 

1992; Frank et al., 1988; Brooks et al., 2010). The data collected from the simulator may be biased 

due to the sickness symptoms. Even worse, some participants could not complete the experiments 

because of the motion sickness, especially for the older participants. In this study, the participant 

takes less than 10 mins in each scenario and they also need to have a rest between scenarios in 

order to alleviate the sickness problem. 

 

2.4.2 UCF Driving Simulator 

 

This study used a driving simulator for the experiment and data collection, which was located in 

University of Central Florida, in the United States (see Fig. 1). This driving simulator is produced 

by NADS – the National Advanced Driving Simulator group from the University of Iowa, which 

provides a high fidelity driving testing environment. It includes a visual system (three 42” flat 

panel displays), a quarter-cab of actual vehicle hardware including a steering wheel, pedals, 
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adjustable seat, and shifter from a real vehicle, a digital sound simulation system and the central 

console. The software, including Tile Mosaic Tool (TMT), Interactive Scenario Authoring Tool 

(ISAT) and Minisim, can be applied for researchers to create driving scenarios with the virtual 

traffic environments and the virtual road networks. The data sampling frequency is up to 60 Hz. 

In addition, a recording system was also installed. Five cameras were installed to ensure subjects’ 

safety in the driving simulator and to capture the participants’ performance while driving in the 

simulator.  

 

 

Figure 1 :UCF driving simulator 
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CHAPTER THREE: MICRO-SIMULATION APPLICATION TO 

PEDESTRIAN-VEHICLE CONFLICTS  

 

In this chapter, three main tasks are included. First, collect field data at seven signalized 

intersections. Second, develop calibrated and validated VISSIM simulation models at seven 

signalized intersections. Third, compare simulated conflicts generated by SSAM to the conflicts 

observed in the field and determine whether VISSIM and SSAM could provide reasonable 

estimates for pedestrian-vehicle conflicts at signalized intersections. 

 

3.1 Field Data Collection  

 

3.1.1 Experimental Sites 

 

The data collection in the field was used to develop, calibrate, and validate the VISSIM and SSAM 

models. Seven intersections were selected from urban areas in Orlando, Florida. Four criteria were 

considered in the site selection process: (1) high pedestrian activity; (2) high traffic volume; (3) 

urbanized location, but outside the CBD or downtown area; (4) appropriate number of pedestrian 

crashes during the 5-year reporting period. The selected intersections are listed in Table 1. Orange 

Ave & Central Blvd is located in a downtown area where a large number of pedestrian activity 

occur during lunch hour. Sand Lake Rd & I-Drive is located in a tourist area where a high volume 

of pedestrian activity exists. Martin Luther King & US 92 is located near the university campus in 

Daytona Beach in Volusia County. Furthermore, selections of the remaining intersections were 
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done according to the severity of pedestrian crashes. Silver Star & Hiawassee Rd had one fatality 

out of 20 pedestrian crashes as well as Kirkman Rd & Conroy Rd with two fatalities out of 13 

pedestrian crashes. 

 

Table 1: List of seven test intersections 

a. 5-year Ped Crashes are from June 2009 to May 2014. 

 

3.1.2 Data Collection Procedures 

 

Several steps were implemented in order to extract the data from the field. First Google Maps were 

utilized to extract the network geometry, such as link lengths, number of lanes, and connectors 

between links to model turning movements. Second, cameras were set up in each intersection to 

record the traffic volume, pedestrian volume, pedestrian crossing behavior, maximum queue 

length, and pedestrian-vehicle conflicts. One camera was set up on top of the roadside to achieve 

adequate viewing height to cover the functional area of the intersections. However, three 

No. Intersection Name 5-year Ped Crashesa Location County 

1 Primrose Dr & Colonial Dr 9 Orlando Orange 

2 Silver Star & Hiawassee Rd 20 Pine Hills Orange 

3 Sand Lake Rd & I-Drive 6 Orlando Orange 

4 Kirkman Rd & Conroy Rd 13 Orlando Orange 

5 Martin Luther King & US 92 7 Daytona Beach Volusia 

6 Orange Ave & Kaley St 8 Orlando Orange 

7 Semoran Blvd & Pershing Ave 8 Orlando Orange 
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intersections, Sand Lake Rd at I-Drive, Kirkman Rd at Conroy Rd, and Semoran Blvd at Pershing 

Ave were too large to cover the whole intersection with one camera. Therefore, two video cameras 

in opposite corners were set up for each of these intersections. Furthermore, field data collection 

was conducted during the weekday peak hours under dry weather condition. The data was collected 

from 9:00 am to 12:00 noon, and 3:00 pm-6:00 pm in the afternoon for each intersection. The data 

collection schedule is given in Table 2. In total, 6 hours of data were recorded for each signalized 

intersection.  

 

Table 2: The data collection schedule 

 

The recorded videos were later reviewed for evaluation and analysis in the laboratory. For traffic 

volume and pedestrian volume, data was recorded in 15-min time intervals. Maximum queue 

length was recorded for further validation of driver behavior in the VISSIM model. Furthermore, 

the camera angles allowed only one or two approaches to capture the queue length of each 

intersection. Pedestrian behavior was collected to calibrate and validate VISSIM model for 

No. Intersection Name Days  Time Hours 

1 Primrose Dr & Colonial Dr 1 9am-12pm, 3pm-6pm 6 

2 Silver Star & Hiawassee Rd 1 9am-12pm, 3pm-6pm 6 

3 Sand Lake Rd & I-Drive 1 9am-12pm, 3pm-6pm 6 

4 Kirkman Rd & Conroy Rd 1 9am-12pm, 3pm-6pm 6 

5 Martin Luther King & US 92 1 9am-12pm, 3pm-6pm 6 

6 Orange Ave & Kaley St 1 9am-12pm, 3pm-6pm 6 

7 Semoran Blvd & Pershing Ave 1 9am-12pm, 3pm-6pm 6 
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pedestrian behaviors. The parameters of pedestrian behavior observed included the directions, 

platoon number, waiting time, crossing time, and violation. Pedestrian conflicts between 

pedestrians and vehicles were recorded from the video by identifying pedestrian or vehicle evasive 

actions meaning the potential occurrence of a vehicle crashing into a pedestrian. Two trained 

observers were designated to review and analyze all the videotapes as well as record the 

information for each conflict.  

 

The pedestrian-vehicle conflicts observed in the field are classified into two types, (a) vehicle-

yield-pedestrian and (b) pedestrian-yield-vehicle, as shown in Figure 2. If the vehicle decelerates 

in order to avoid the crossing pedestrian, (which means the pedestrian arrives at the conflict point 

first), this is the type (a) conflict called vehicle-yield-pedestrian conflict. In contrast, if the vehicle 

arrives at the conflict point first and the immediate arrival of the pedestrian comes afterward, then 

this is the type (b) conflict called pedestrian-yield-vehicle. In practice, the vehicle-yield-pedestrian 

conflict is more dangerous than the pedestrian-yield-vehicle conflict. This is due to the fact that 

when the pedestrian yield to the vehicle at the signalized intersection, the pedestrian always stands 

still until the vehicle passes the potential conflict point. Under this condition, the TTC of 

pedestrian-yield-vehicle conflict is infinite. However, the TTC of vehicle-yield-pedestrian is 

always small so that it is a potential collision. Therefore, vehicle-yield-pedestrian conflict is more 

likely to lead to a traffic crash. In addition, the previous studies also defined the pedestrian-vehicle 

conflict, which only referred to the vehicle-yield-pedestrian conflict (Parker and Zegeer, 1989; Wu 

et al., 2106). Accordingly, this study only focuses on analyzing the vehicle-yield-pedestrian 

conflicts as the most hazardous.  
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Figure 2: The pedestrian-vehicle conflict types observed in the field 

 

3.1.3 Data Description  

 

Table 3 summarizes the pedestrian crossing number recorded during the data collection period. As 

there are some pedestrians who did not use the crosswalk to cross the street, those pedestrian counts 

were disregarded and eliminated from the analysis. Therefore, the number of pedestrian volume in 

this section may slightly differ in comparison to the total pedestrian volume count. There were a 

total of 2610 pedestrian crossings at seven intersections observed in the field. 40.8% (1067 out of 

2610) at intersections of the pedestrian crossing behaviors are single pedestrian crossing behaviors. 

The following subsections explained the pedestrian crossing behaviors for intersections in further 

details. 
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Table 3: Summary of pedestrian crossings at intersections 

No. Intersection Name Total Crossings Single Two or More 

1 Primrose Dr & Colonial Dr 214 152 28 

2 Silver Star & Hiawassee Rd 305 148 65 

3 Sand Lake Rd & I-Drive 1310 264 352 

4 Kirkman Rd & Conroy Rd 299 192 46 

5 Martin Luther King & US 92 140 107 16 

6 Orange Ave & Kaley St 150 95 24 

7 Semoran Blvd & Pershing Ave 192 109 32 

 
Total 2610 1067 563 

 

The basic statistical descriptions of pedestrian crossing behavior at intersections are shown in 

Table 4. A total of 2863 pedestrian crossings were recorded at the seven signalized intersections. 

The average speed of all pedestrians was 1.62m/s (5.31 ft/sec). In addition, 8.8% of pedestrians 

have violation behaviors of which most of the violations were running the red light. 64% of 

pedestrians stopped on red and the average waiting time for all pedestrians were 51 seconds. 
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Table 4: Descriptive statistical results of pedestrian crossing behavior at intersections 

No. Intersection 
Number of 

observations 
Walking 

Speed (m/s) 
Viola
tion 

Stop 
on Red 

Waiting Time 
(Seconds) 

1 
Primrose Dr & 

Colonial Dr 
180 1.70 19 53 47 

2 
Silver Star & 
Hiawassee Rd 

213 1.65 43 138 44 

3 
Sand Lake Rd & I-

Drive 
616 1.57 9 484 66 

4 
Kirkman Rd & 

Conroy Rd 
238 1.66 15 146 62 

5 
Martin Luther 
King & US 92 

123 1.87 32 48 38 

6 
Orange Ave & 

Kaley St 
119 1.42 12 67 41 

7 
Semoran Blvd & 

Pershing Ave 
141 1.49 13 106 59 

 

Table 5 shows the statistical results of observed conflicts at the seven signalized intersections. A 

total of 708 conflicts were observed at seven signalized intersections and the average post-

encroachment time (PET) for each conflict was 4.05 seconds with a standard deviation of 1.56. 

The definition of PET is covered in section 3.3. 
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Table 5: Descriptive statistical results of pedestrian crossing behavior at intersections 

No. Intersection Number of conflicts PET (Seconds) 

1 Primrose Dr & Colonial Dr 64 4.44 

2 Silver Star & Hiawassee Rd 86 4.24 

3 Sand Lake Rd & I-Drive 295 3.93 

4 Kirkman Rd & Conroy Rd 94 3.81 

5 Martin Luther King & US 92 34 3.59 

6 Orange Ave & Kaley St 62 3.57 

7 Semoran Blvd & Pershing Ave 73 5.00 

 

3.2 Calibrated and Validated VISSIM Model 

 

In this study, VISSIM version 7 was used to develop the vehicle/pedestrian simulation model at 

signalized intersections. Wiedemann 74 car-following model was used since it was recommended 

for urban traffic (PTV, 2011). The first step of developing the VISSIM model was to draw the 

network. Second, traffic volume and pedestrian volume for each direction were allocated to each 

lane group. In addition, the traffic volume also included 2% heavy vehicles on all approaches. 

Third, signal timing was coded in the VISSIM simulation model according to the field signal 

timing data. Last, conflict areas and priority rules were needed in the simulation model in order to 

simulate the vehicle and pedestrian movements more appropriately. 

 

The VISSIM model cannot provide the necessary results until the model is calibrated and validated 

(Cunto and Saccomanno, 2008; Sun et.al, 2007; Li et al., 2011). VISSIM provides numerous 
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calibration parameters that could be modified. In this study, average standstill distance (1,2,3,4,5), 

additive part of desired safety distance (2,3,4), multiple part of desired safety distance (2,3,4), the 

minimum headway (2,5,8) and the minimum gap time (2,3,4) were selected as the calibration 

parameters. The number of conflicts and the average TTC was used to calibrate these parameters. 

Finally, it was found that changing the calibration parameters didn’t impact the number of conflicts 

and the average TTC. Therefore, in this case, the default value of parameters was used. In other 

words, average standstill distance was 2 meters, additive part of desired safety distance was 3 

meters, multiple part of desired safety distance was 3 meters, the minimum headway gap was 5 

meters, and the minimum gap time was 3 seconds.  Then, the calibrated models were then validated 

with a new set of field data, including the pedestrian volumes, and the vehicle volumes. The 

average percent difference for all scenarios of pedestrian volume and vehicular traffic volume are 

3.6% and 1.3%, respectively. Furthermore, animation of the VISSIM simulation models were 

checked for any unusual events. Finally, VISSIM was calibrated and validated. The intersection 

of Sand Lake Road and I Drive is shown in Figure 3. 
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Figure 3: VISSIM simulation model for Sand Lake Rd & I-Drive 

 

Furthermore, the simulation was run for 3600 seconds (1 hour) with additional warm up period of 

15 minutes in each scenario. A total of 10 runs with different seeding values for each one-hour 

time interval per intersection were completed for each scenario and the average of the runs was 

reported. For example, six hours of simulated data were collected at the seven intersections, then 

the VISSIM model was run for 10*6*7=420 times. 

 

3.3 Surrogate Safety Assessment Model (SSAM) Calibration 

 

SSAM software can automate conflict analysis by directly processing vehicle trajectory data from 

VISSIM. It can provide a summary of the total number of conflicts broken down by type of conflict. 

In addition, SSAM could also calculate some surrogate safety measures for each event (Radwan 
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et al., 2016). Five measures were relevant to evaluate the traffic safety, which are TTC, PET, MaxS, 

DeltaS, DR and MaxD. Each surrogate safety measure is defined as follows: 

• TTC (Time to collision): the time distance to a collision of two road users if they keep 

their directions and velocities. The shorter the TTC, the more dangerous the situation. 

• PET (Post-encroachment time): the period of time from the moment when the first road 

user is leaving the conflict area until the second road user reaches it.  

• MaxS: the maximum speed of either vehicle throughout the conflict measured in meter 

per second. 

• DeltaS: is the difference in vehicle speeds as observed at the simulation time where the 

minimum TTC value for this conflict was observed measured in meter per second. 

• DR: the initial deceleration of the second vehicle measured in meter per square second. 

• MaxD: the maximum deceleration of the second vehicle measured in meter per square 

second. 

 

SSAM software can automate conflict analysis by directly processing vehicle trajectory data from 

VISSIM. However, SSAM was not explicitly designed for pedestrian conflict analysis, so there is 

no vehicle or entity type available in the trajectory file format by which to identify pedestrian 

conflicts. In other words, SSAM cannot estimate the pedestrian-to-vehicle conflicts without 

simulating the pedestrian as vehicles in VISSIM (Wu et al., 2017). Therefore, to identify 

pedestrian-to-vehicle conflicts from all kinds of conflicts, the csv file exported by SSAM can be 

of help. From the csv file, the pedestrian-vehicle conflict can be filtered based on the “vehicle” 

length. The length of pedestrian is usually defined between 0.3 and 0.5 meter. In comparison, the 

length of vehicle is usually defined over 3.5 meters. 
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At the time this research was conducted the current version of SSAM only permitted vehicle to 

vehicle conflicts yet VISSIM allowed the vehicle to pedestrian interactions. An alternative 

approach to the one described above was to use VISSIM for simulating the vehicle-pedestrian 

activities, store the trajectory files, then produce video of the simulation activities. Playing the 

video back and manually observe the TTC and PET using the internal clock of the video would 

produce the needed data. 

 

Two threshold values for surrogate measures of safety were used in SSAM to detect the conflicts, 

which are maximum TTC and maximum PET. TTC is defined as the time distance to a collision 

of two road users if they keep their directions and velocities. PET is defined as the period of time 

from the moment when the first road user is leaving the conflict area until the second road user 

reaches it. For example, if the maximum TTC is set as 1.5, then SSAM will only generate the 

conflict data that contains TTC value less than 1.5. In general, SSAM utilizes a default maximum 

TTC value of 1.5 seconds and maximum PET value of 5 seconds to delineate the vehicle-vehicle 

conflicts. However, the pedestrian-vehicle conflict is totally different from the vehicle-vehicle 

conflicts. That’s why the maximum TTC and PET thresholds need to be established for pedestrian-

vehicle conflicts. 

 

A number of trials were investigated to get the optimum thresholds for TTC and PET that would 

define a vehicle-pedestrian conflict. Finally, it was found that when the TTC threshold ranged from 

2 to 3 and the PET ranged from 5 to 9, SSAM provided a better estimate of the number of conflicts 

that matched the field data. Therefore, further analysis was needed to determine the exact value of 
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TTC and PET for pedestrian-vehicle conflicts. Consequently, the TTC threshold was set at 2.0, 

2.3, 2.5, 2.7, 3 for 5 levels, and the PET threshold was set at 5, 6, 7, 8, 9 for additional five levels 

and 5*5=25 combinations of pedestrian-vehicle conflicts were generated by SSAM. The mean 

absolute percent error (MAPE) was used to measure the differences between the mean PET 

observed in the field and the mean PET simulated in VISSIM and SSAM. The lower MAPE, the 

smaller the difference between the simulated conflicts and observed conflicts. The MAPE value 

can be calculated by the following equation: 

MAPE =  1𝑛 ∑ | 𝑐𝑠𝑖 − 𝑐𝑜𝑖𝑐𝑜𝑖
𝑛

𝑖=1 | 
Where n represents the number of intersections, 𝑐𝑠𝑖  represents the mean PET of the simulated 

conflicts for one intersection, and 𝑐𝑜𝑖  represents the mean PET of the observed conflicts for one 

intersection. 

 

MAPE value with different maximum TTC and PET thresholds is shown in Table 6. The MAPE 

value for the total conflicts varied from 12.7% to 73.2% for different maximum TTC and PET 

thresholds. In addition, the contour plot for MAPE is shown in Figure 4. It is found that when the 

TTC ranges from 2.6 to 2.8 seconds and PET threshold ranges from 8 to 9, the best goodness-of-

fit between the observed and the simulated conflict of mean PET is achieved with MAPE value 

under 13%. Therefore, the maximum TTC and PET thresholds for pedestrian-vehicle conflicts 

were identified at 2.7 and 8, respectively. The following analysis is based on the maximum TTC 

threshold set as 2.7 and the maximum PET threshold set as 8. 
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Table 6: MAPE with different maximum TTC and PET thresholds 

Maximum PET 
threshold 

Maximum TTC threshold 

2 2.3 2.5 2.7 3 

5 0.1473 0.1365 0.1438 0.1256 0.2885 

6 0.1402 0.1382 0.1439 0.1394 0.1549 

7 0.1475 0.1409 0.1421 0.1420 0.1551 

8 0.1678 0.1399 0.1344 0.1273 0.1399 

9 0.1922 0.1410 0.1378 0.1301 0.1467 

 

 

Figure 4: Contour plot for MAPE value with different TTC and PET threshold 
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3.4 Relationship between Simulated Conflicts and Observed Conflicts 

 

After both VISSIM and SSAM were calibrated, the conflicts were generated and identified by 

SSAM at the maximum TTC threshold of 2.7 and the maximum PET threshold of 8. The average 

number of simulated conflicts for each three-hour interval (am hours or pm hours) was summarized 

and compared to the observed conflicts in the field, as shown in Table 7. A linear regression model 

was developed to study the relationship between simulated and observed conflicts. Figure 5 shows 

the regression analysis results of the linear regression model between observed conflicts and 

simulated conflicts. 

 

Table 7: The number of simulated conflicts and observed conflicts 

No. Intersection Name Time Simulated Conflicts Observed Conflicts 

1 Primrose Dr & Colonial Dr 
am 7 23 
pm 12 41 

2 Silver Star & Hiawassee Rd 
am 36 35 
pm 53 51 

3 Sand Lake Rd & I-Drive 
am 116 139 
pm 174 156 

4 Kirkman Rd & Conroy Rd 
am 14 32 
pm 39 62 

5 Martin Luther King & US 92 
am 13 13 
pm 35 21 

6 Orange Ave & Kaley St 
am 33 33 
pm 50 29 

7 Semoran Blvd & Pershing Ave 
am 16 35 
pm 30 38 
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Figure 5: Relationship between simulated conflicts and observed conflicts 

 

According to the linear regression results, it is found that the p-value of independent variable is 

0.00, indicating that number of simulated conflicts is significantly correlated with the number of 

observed conflicts. In addition, the R2 value for the model was 0.8825, which means that 88.25% 

of the variability in the observed conflicts can be explained by the variation in the simulated 

conflicts. For each one additional unit increase in the number of simulated conflicts, the mean of 

the observed conflicts is estimated to increase by 0.84. Although there is a significant statistical 

relationship between simulated conflicts and observed conflicts, at some locations, the number of 

simulated conflicts estimated by the VISSIM model and SSAM is less than the number of conflicts 

observed in the field. This was attributed to the fact that pedestrians don’t always adhere to the 

rules of the traffic signals in the field and the analysis showed that 8.77% of the pedestrians had 

illegal behavior while crossing the intersection such as jay walking and pedestrian signal violation 

which cannot be simulated in VISSIM. This illegal behavior may increase the conflicts between 
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pedestrians and vehicles thus resulting in the simulated conflicts being lower than the observed 

conflicts in the field.  
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CHAPTER FOUR: DRIVING SIMULATOR EXPERIMENT 

METHODOLOGY FOR ESTIMATING PEDESTRIAN SAFETY  

 

According to the literature, there is no related research that focuses on investigating the potential 

risk factors of pedestrian conflicts from the drivers’ point of view in driving simulator. In order to 

test driver’s behavior against pedestrian conflicts with different potential factors, this chapter 

documented an experiment study based on the UCF driving simulator. The purposes are to build 

the vehicle-pedestrian conflicts for both midblock crossings and intersections in driving simulator 

and to evaluate the pedestrian safety with different potential risk factors by using the traffic conflict 

analysis.  

 

4.1 Midblock Crossing Experimental Design 

 

According to the literature, there are several factors that affect pedestrian safety at midblock 

crossings. In this section, the midblock crossing scenario is designed in driving simulator to test 

the different potential risk factors at midblock crossings and to estimate pedestrian safety using 

these factors.  

 

4.1.1 Factors Description 

 

This experiment utilized a within-subjects repeated measures full factorial design to test potential 

risk factors that related to pedestrian safety at midblock crossing (Wu et at., 2016). Four 
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experimental factors are selected from the literature, including time of day, crosswalk marking, 

number of lanes, and pedestrian visibility factors, described in Table 8. Each factor has two levels. 

First, crash data show 77.2% (392 out of 508) of the pedestrians’ fatalities happened during the 

dark time in Florida District 5 area. Only 19.1% of the pedestrians’ fatalities happened during the 

daylight time. Therefore, time of day is one of the most important factors included in this study. 

The two levels of this factor are daytime and night. Second, Zegeer et al. (2001) pointed out that 

the crosswalk marking was very important to the pedestrian. Those who cross the street without 

the marking have a higher crash rate than those who cross the street using the marking. Therefore, 

pedestrian crossing the street with or without the marking should be one of the potential factors. 

Third, almost 38% of fatal pedestrian crashes occurred on four-lane roadways and 22% of fatal 

pedestrian crashes occurred on two-lane roadway in Florida (Florida Department of Highway 

Safety and Motor Vehicles, 2010). Drivers have varying sight based on different type of roads, so 

gathering drivers’ response with different numbers of lanes is important. In this study, two-lane 

road for each direction and one-lane road with one parking lane are two levels of this factor. Last, 

the pedestrian visibility represents the pedestrian dressing color. The literature showed that 

pedestrian in dark clothing were more likely to be struck. Therefore, two levels of pedestrian 

visibility factor are pedestrian dressing in dark color or in bright color. Finally, the factorial 

manipulation of the four factors described above resulted in 16 unique midblock crossings. 
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Table 8: List of factors used in the midblock crossing scenario 

Factor Description 

Levels 

Low Value (-1) High Value (+1) 

Time of day 
The time in the 

scenario 
Night Daytime 

Crosswalk marking 

Whether the 
pedestrian uses 

crosswalk to 
cross the street 

No Yes 

Roadway type 

The roadway type 
when participants 

meet the 
pedestrian 

One traveling lane 
with one parking 

lane for each 
direction 

Two lanes for each 
direction 

Pedestrian visibility 
The color of the 

pedestrian clothes 
Dark Bright 

 

4.1.2 Experimental Design 

 

The midblock crossing scenario was designed to investigate drivers’ behaviors when drivers 

reacted to a potential conflict between the simulator and a pedestrian at midblock crossings, as 

illustrated in Figure 6. In order to create a potential conflict between pedestrian and simulator, a 

road trigger was used in this scenario. First, a roadside pedestrian was designed to walk across the 

street at a speed of 3.5 ft/s, which was based on Manual on Uniform Traffic Control Devices 

(MUTCD). The distance between pedestrian and potential conflict point was 30 ft. Then the 

pedestrian walking time (𝑡𝑝𝑒𝑑) was calculated during this period:  𝑡𝑝𝑒𝑑 = 30𝑓𝑡3.5𝑓𝑡/𝑠 = 8.57𝑠  

 

The speed limits were set at 40 mph in all roads. Therefore, the estimate distance between the road 

trigger and the potential conflict point (𝐿𝑣) was calculated as follows: 
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𝐿𝑣 = 𝑡𝑝𝑒𝑑 ∗ 𝑉 = 8.57𝑠 ∗ 40 𝑚𝑝ℎ = 503 𝑓𝑡  

 

Therefore, the roadside pedestrian was activated to cross the street when the simulator vehicle was 

503 ft way from the path of the crossing pedestrian. Meanwhile, there were no other vehicles 

before the simulator vehicle to interfere with the drivers’ behavior and judgement. Thus, if 

participants kept 40 mph speed along their presumed path to the potential conflict point, there 

would be a pedestrian-vehicle crash. If participants noticed the pedestrian and made a deceleration, 

there would be a pedestrian-vehicle conflict.  

 

 

Figure 6: The midblock crossing scenario design for pedestrian-vehicle conflict 

 

With different factors, a total of 16 test midblock crossings were added in the driving simulator. 

Among those, half of the midblock crossings were in the daytime sub-scenario and the other 8 

midblock crossings were in the night sub-scenario. In each sub-scenario, the midblock crossing 

with different factors was randomly assigned to the scenario. In addition, there were additional 
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midblock crossings, intermingled with the test midblock crossings. The total length of each 

scenario is around 3.5 miles, and participants need to drive around 10 mins to finish each sub-

scenario.  

 

4.2 Intersection Scenario Design 

 

Based on the literature, there are several factors that affect pedestrian safety at intersections. In 

this section, the experiment was designed to test the different potential risk factors at intersections 

and to estimate pedestrian safety using these factors.  

 

4.2.1 Factors Description 

 

This experiment utilized a within-subjects repeated measures full factorial design to test potential 

risk factors that related to pedestrian safety at intersections. Four experimental factors are selected 

from the literature, including time of day, vehicle movement, pedestrian movement, and pedestrian 

visibility factors, described in Table 9. Each factor has two levels. First, the literature pointed out 

that vehicle movement directions impact the pedestrian safety (Hubbard et al., 2009). Pedestrian 

crossing the signalized intersections may have two potential conflicts with turning vehicles: right 

turn on green (RTOG), and permitted left turns on green (LTOG). These potential conflicts 

between pedestrians and vehicles are difficult to address. In order to mitigate the pedestrian safety 

risk, enforcement of pedestrian right-of-way laws was applied. However, some research proved 

that the enforcement of pedestrian right-of-way was useless in many circumstances. Second, the 

pedestrian movement is also every important. Varying the side of approach provided natural 
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variation in the angular size of the pedestrian. Different directions of pedestrian movement may 

affect the driver perception. Therefore, gathering driver response data with different pedestrian 

movement is important. 

 

Table 9: List of factors used in the intersection scenario 

Factor Description 
Levels 

Low Value (-1) High Value (+1) 

Time of day 
The time in the 

scenario 
Night Daytime 

Vehicle movement 
Whether the 

vehicle makes left 
turn or right turn 

Left Right 

Pedestrian movement 

Pedestrian cross 
the intersection 
from the right 
side or the left 

side 

Left Right 

Pedestrian visibility 
The color of the 

pedestrian clothes 
Dark Bright 

 

4.2.2 Experimental Design 

 

The intersection scenario was designed to investigate drivers’ behaviors when drivers reacted to a 

potential conflict between the simulator vehicle and the pedestrian at intersections, as illustrated 

in Figure 7. The traffic light in this intersection has permitted left-turn signal. When the driver 

arrived at the intersection, the traffic light on the driver’s side is always green. A pedestrian was 

designed to walk across the intersection at a speed of 3.5 ft/s. When the driver arrived at the stop 

line, a road trigger was activated. Then, the pedestrian start to cross the intersection. Meanwhile, 

there were no other vehicles before the simulator vehicle to interfere with the drivers’ behavior 

and judgement.  
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Figure 7: The intersection scenario design for pedestrian-vehicle conflict 

 

With different factors, a total of 16 test intersections were added in this scenario. Among those, 

half of the intersections were in the daytime sub-scenario and the other 8 intersections were in the 

night sub-scenario. In each sub-scenario, the intersection with different factors was randomly 

assigned to the scenario. In addition, there were two additional intersections, intermingled with the 

test intersections. The total length of each scenario is around 3.5 miles, and participants need to 

drive around 10 mins to finish each sub-scenario.  

 

4.3 Subjects 

 

A total of 67 subjects, who had regular driver licenses, were selected to participate in this 

experiment. They were chosen from students, faculty, and staff of the University of Central Florida 

and volunteers from outside of the university. Since 8 subjects could not complete the experiment 

because of the motion sickness, finally, 59 subjects (28 Males and 31 females) finished the 
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experiment successfully. In addition, all the participants were divided into two age groups. The 

age of the younger group ranges from 20 to 40 years. The age of the older group ranges from 40 

to 60 years. Finally, 36 participants are in the younger group and 23 participants are in the older 

group. The distribution of the participants is shown in Table 10. 

 

Table 10: The ideal number of participants recruited in the formal experiment 

Age 
Gender 

Total 
Male Female 

Under 40 20 16 36 

Over 40 11 12 23 

Total 31 28 59 

 

4.4 Experiment Procedure 

 

Upon arrival, all participants were asked to read and sign an informed consent form (per IRB 

protocol), which is shown in Appendix A. Each participant was asked to take short survey before 

and after the experiment. The survey is shown in Appendix B. Before starting the experiment, each 

participant was asked to take a short training session, including the Traffic Regulation Education, 

the Safety Notice, and the Familiarity Training. In the Traffic Regulation Education session, all 

participants were advised to drive and behave as they normally do and follow traffic rules as they 

do in real-life situations. In the Safety Notice session, each participant was told that they could 

quit the experiment at any time if they had any motion sickness symptoms or any kind of 

discomfort. In the Familiarity Training session, each participant was given at least 10 minutes 
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training to familiarize them with the driving simulator operation, such as straight driving, 

acceleration, deceleration, left/right turn turning, and other basic driving behaviors. 

 

After completing the short training course, participants would start the formal experiment and test 

two scenarios in a random sequence so as to eliminate the time order effect. In addition, all 

participants were recommended to rest at least 15 minutes between the scenarios. 

 

4.5 Data Collection 

 

4.5.1 Simulator Data Collection Procedure 

 

The driving simulator data included the experiment sampling time, vehicle speed, acceleration, 

vehicle position, steering angle and many other related parameters. The data sampling frequency 

is up to 60 Hz, and the collected raw data was stored in DAQ type file. The DAQ file could only 

be opened through Nadstools in Matlab, which was developed by NADS. First of all, DAQ files 

could be read through Nadstools in Matlab and then output to the EXCEL type files. In order to 

organize and easily process the raw data generated from the experiments, a program was developed 

to automatically extract the experiment data from the EXCEL files (See Appendix C).  

 

4.5.2 Midblock Crossing Scenario Data Collection 

 

To assess the pedestrian-vehicle conflicts at midblock crossings, the data were recorded starting 

from 500 ft in advance of each midblock crossing. However, the drivers sometimes did not yield 
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to the pedestrian and they accelerated to pass the conflict point before the pedestrian arrived at the 

conflict point. Since the previous studies defined the pedestrian-vehicle conflict, which only 

referred to the vehicle-yield-pedestrian conflict (Parker and Zegger, 1989), the cases illustrated 

above were excluded in the following analysis. Finally, 59 participants resulted in 908 experiments 

records. Among those, only 53 collisions were observed. A value of P<0.05 is adopted as the level 

for significance. The related dependent measures were defined as follows: 

• Maximum Deceleration (ft/s2): The maximum deceleration during the pedestrian-vehicle 

conflict period. 

• Maximum Deceleration Location (ft): The distance between the conflict point and the 

point where the driver has the maximum deceleration during the pedestrian-vehicle 

conflict period. 

• Minimum Distance (ft): The minimum distance between the driver and the pedestrian 

during the pedestrian-vehicle conflict period. 

• PET (s): Post-encroachment time for the pedestrian-vehicle conflict. 

• Minimum TTC (s): The minimum TTC during the pedestrian-vehicle conflict period. 

 

4.5.3 Intersection Scenario Data Collection 

 

To assess the pedestrian-vehicle conflicts at intersections, the data were recorded starting from 

stop line of each intersection. However, the drivers sometimes did not yield to the pedestrian and 

they accelerated to pass the conflict point before the pedestrian arrived at the conflict point. 

Therefore, the cases illustrated above were excluded in the following analysis. Finally, 59 

participants resulted in 884 experiments records. Among those, only 21 collisions were observed. 
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A value of P<0.05 is adopted as the level for significance. The related dependent measures were 

defined as follows: 

• Entrance Speed (mph): The vehicle’s operating speed when the vehicle arrives at the stop 

line.   

• Minimum Distance (ft): The minimum distance between the driver and the pedestrian 

during the pedestrian-vehicle conflict period. 

• PET (s): Post-encroachment time for the pedestrian-vehicle conflict. 

• Minimum TTC (s): The minimum TTC during the pedestrian-vehicle conflict period. 
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CHAPTER FIVE: DRIVING SIMULATOR EXPERIMENT RESULTS AND 

DATA ANALYSES 

 

This chapter is to analyze the pedestrian-vehicle conflicts based on the driving simulator 

experiment at both midblock crossings and intersections. Several surrogate measures were 

extracted to evaluate the pedestrian-vehicle conflicts with potential risk factors, such as maximum 

deceleration, time-to-collision, and post-encroachment time.  

 

5.1 Midblock Crossing Scenario Data Analyses 

 

5.1.1 Maximum Deceleration 

 

The mixed model was used to analyze whether the potential risk factors impacted the maximum 

deceleration during the pedestrian-vehicle conflict period. A mixed model is a typically statistical 

model, which usually contains fixed effects and random effects (Little et al., 2006). Fixed factors 

are the primary interests of the model and would be used again for the multiple observations per 

subject. Random effects are not the primary intersects, however, they are thought of as a random 

selection from the dataset, such as subject effect. In general, ANOVA is the common statistical 

models to analyze the differences among group means and their associated procedures. However, 

multiple measurements per subject generally result in the correlated errors that are explicitly 

forbidden by the assumptions of ANOVA and regression models. Mixed models could handle 
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these correlated errors by adding the fixed effects and random effects. In addition, ANOVA cannot 

be used when any subject has missing values, while the mixed model allows the missing values in 

the dataset. Therefore, the mixed model was used to analyze the relationship between independent 

variables and dependent variables in this study. 

 

Four potential risk factors and two driver characteristic factors are chosen as independent variables. 

The four risk factors include time of day, crosswalk marking, number of lanes, and pedestrian 

visibility factors. Two driver characteristic factors include gender and age group. The maximum 

deceleration is chosen as the dependent variables. The basic statistical descriptions of experiment 

results are shown in Table 11. Table 12 shows final mixed model of the maximum deceleration. 

Hypothesis test with a 0.05 significance level is used to decide on the significant factors for the 

models. 
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Table 11: Descriptive statistics of the maximum deceleration for the midblock crossings 
scenario 

Factors 
The maximum deceleration (ft/s2) 

Count Mean 
Standard 
Deviation 

Percentile 
05 

Percentile 
95 

Age group 
Under 40 555 -16.87 8.39 -34.03 -5.32 

Over 40 353 -19.35 9.07 -34.16 -7.68 

Gender 
Male 473 -16.70 8.40 -34.10 -7.37 

Female 435 -19.07 8.94 -34.11 -5.09 

Time of day 
Night 452 -19.01 9.23 -34.14 -5.35 

Daytime 456 -16.67 8.06 -34.03 -7.37 

Crosswalk 
marking 

Yes 455 -17.30 8.13 -33.99 -7.92 

No 453 -18.37 9.29 -34.13 -4.50 

Roadway 
type 

One lane 447 -17.38 8.12 -34.10 -7.98 

Two 
lanes 

461 -18.27 9.29 -34.09 -3.86 

Pedestrian 
visibility 

Dark 456 -19.67 9.56 -34.16 -3.33 

Bright 452 -15.97 7.38 -33.94 -8.00 
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Table 12: Summary of the mixed model of the maximum deceleration for the midblock 
crossings scenario 

Term Estimate 
Std. 

Error 
DF 

t 
Ratio 

Prob>|t| 

Intercept -18.11 0.53 56.1 -33.62 <0.0001 

Age 1.17 0.54 56.2 2.17 0.0339 

Gender 1.07 0.53 56.1 2.04 0.0465 

Time of day -1.18 0.25 848.9 -4.69 <0.0001 

Pedestrian visibility -1.85 0.25 848.3 -7.35 <0.0001 

 

According to the results, age, gender, time of day and pedestrian visibility are significantly related 

to the maximum deceleration. Since there is no two-way interaction effect found between each 

factor for the maximum deceleration. Female drivers have a larger maximum deceleration than 

male drivers and drivers who are over 40 years old also have a larger maximum deceleration than 

drivers who are under 40 years old. The maximum deceleration of driving at night is larger than 

that of driving in the daytime (t=-4.69, p-value<0.0001). The possible reason is that drivers have 

low visibility when driving at night. Therefore, when they notice a pedestrian crossing the street 

at night, they would have a harder brake than the daytime. Moreover, the average maximum 

deceleration of pedestrian dressing the dark color clothes is 19.67 ft/s2, whereas the average 

maximum deceleration of pedestrian dressing the bright color clothes is 15.97 ft/s2. The final 

mixed model indicates that there is a significant difference between the dark color clothes and 

bright color clothes of the pedestrian clothes in average maximum deceleration (t=-7.35, p-

value<0.0001). When pedestrians have the dark clothes, drivers usually have a harder brake. 

However, there is no interaction effect found between time of day and pedestrian visibility, 
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indicating that pedestrians with bright color clothes contribute to the maximum deceleration no 

matter it is at night or in the daytime.  

 

5.1.2 Maximum Deceleration Location 

 

The maximum deceleration location is another measurement that can reflect the pedestrian safety. 

The maximum deceleration is measured as the distance between the conflict point and the point 

where the driver has the maximum deceleration during the pedestrian-vehicle conflict period. Four 

factors are chosen as the potential factor that might impact the maximum deceleration location, 

including time of day, crosswalk marking, number of lanes, and pedestrian visibility factors. The 

basic statistical descriptions of experiment results are shown in Table 13. Table 14 shows final 

mixed model of the maximum deceleration location. Finally, all parameters’ P-values are less than 

0.05. 
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Table 13: Descriptive statistics of the maximum deceleration location for the midblock 
crossings scenario 

Factors 
Maximum deceleration location (ft) 

Count Mean 
Standard 
Deviation 

Percentile 
05 

Percentile 
95 

Age group 
Under 40 555 179.70 92.81 57.45 355.80 

Over 40 353 219.19 103.88 66.66 427.30 

Gender 
Male 473 172.50 91.70 52.30 355.80 

Female 435 219.57 101.09 67.24 412.37 

Time of day 
Night 452 172.28 85.33 51.88 286.57 

Daytime 456 217.62 106.45 71.68 424.43 

Crosswalk 
marking 

Yes 455 206.38 93.80 78.30 377.21 

No 453 183.67 103.00 47.31 420.31 

Roadway 
type 

One lane 447 185.07 85.90 68.64 344.64 

Two 
lanes 

461 204.73 109.62 51.59 420.31 

Pedestrian 
visibility 

Dark 456 157.78 85.50 45.49 312.56 

Bright 452 232.65 97.73 88.40 424.43 
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Table 14: Summary of the mixed model of the maximum deceleration location for the 
midblock crossings scenario 

Term Estimate Std. Error DF t Ratio Prob>|t| 

Intercept 200.96 4.75 54.2 42.28 <0.0001 

Age group -17.54 4.76 54.3 -3.68 0.0005 

Gender -21.69 4.65 54.2 -4.66 <0.0001 

Time of day -23.31 2.51 841.4 -9.27 <0.0001 

Crosswalk marking 10.69 2.51 840.6 4.26 <0.0001 

Roadway type -10.17 2.51 840.0 -4.05 <0.0001 

Pedestrian visibility -37.44 2.51 840.7 -14.90 <0.0001 

 

The final results show that all of the main effects are significant factors. First, it is found that the 

maximum deceleration location of male drivers usually is nearer to the conflict point compared to 

female drivers (t=-4.66, p-value<0.0001). Also, younger drivers tend to brake late than older 

drivers. Figure 8 shows the comparison of four potential risk factors. It indicates that distance 

between the conflict point and the maximum deceleration location for drivers driving in the 

daytime is far more than that for drivers driving at night, indicating that the drivers’ maximum 

deceleration location is near to the pedestrian at night (t=-9.27, p-value<0.0001). The crosswalk 

with pavement marking have a larger value of the maximum deceleration locations, indicating that 

the marked crosswalk could alert the drivers to brake earlier (t=4.26, p-value<0.0001). The 

maximum deceleration location of one-lane road is 185.07 ft far from the conflict point, whereas 

the maximum deceleration location of two-lane road is 204.73 ft. This finding indicates that one 

lane road may lead to higher pedestrian crash risk based on the maximum deceleration location. In 

addition, pedestrian visibility also exhibits a statistically significant effect on the maximum 
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deceleration location (t=-14.90, p-value<0.0001). Not surprisingly, pedestrian with the dark color 

clothes leads to the shorter distance between the maximum deceleration location and the conflict 

point, which may increase the risk of the pedestrian crash. 

 

Figure 8: Comparison of maximum deceleration location of time of day, crosswalk 

marking, roadway type, and pedestrian visibility for the midblock crossings scenario 

 

Moreover, four two-way interaction terms are found to be significantly related to the maximum 

deceleration location, which is shown in Table 15. Figure 9 shows the plots of interaction terms. 

First, the time of day has interaction effects with crosswalk marking and roadway type. For the 

night time, the maximum deceleration location of marked crosswalk is almost the same as no 

marked crosswalk. However, in the daytime, the marked crosswalk would increase the distance 

between the maximum deceleration location and the conflict point. In addition, for the night time, 

the maximum deceleration location for one lane roadway is almost the same as two lanes roadway. 

However, when the pedestrian-vehicle conflicts happen in the daytime, the maximum deceleration 
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location of the one lane roadway is significantly lower than that of the two lanes roadway. Second, 

pedestrian visibility has interaction effects with crosswalk marking and roadway type. If the 

pedestrian wears the bright color clothes, there is no significant difference in crosswalk marking. 

However, if the pedestrian wears the dark color clothes, the marked crosswalk would help drivers 

to brake earlier than unmarked crosswalk. In addition, if pedestrian wears dark color clothes, 

roadway type is not related to the maximum deceleration location. However, if pedestrian wears 

bright color clothes, there is a significant difference in roadway type. As shown in Figure 5, it is 

found that drivers would make the maximum deceleration earlier on the two lanes road than one 

lane road. 

 

Table 15: Summary of the interaction effects of the maximum deceleration location for the 
midblock crossings scenario 

Term Estimate 
Std. 

Error 
DF 

t 
Ratio 

Prob>|t| 

Time of day* Crosswalk 
marking 

-5.81 2.51 840 -2.31 0.0209 

Time of day* Roadway type 11.66 2.51 841.7 4.64 <0.0001 

Crosswalk marking* 
Pedestrian visibility 

11.41 2.51 840.6 4.54 <0.0001 

Roadway type*Pedestrian 
visibility 

8.24 2.51 840.0 3.28 0.0011 



 62 
 

 

 

Figure 9: Plot of interactions of the maximum deceleration location for the midblock 
crossings scenario 

 

5.1.3 Minimum Distance 

 

The distance between the driver and the pedestrian changes during the pedestrian-vehicle conflict 

period and a minimum distance exists during this process. The minimum distance is not only used 

to estimate the occurrence of a collision between the driver and the pedestrian, but also used as a 

safety threshold reflecting the temporal buffer that drivers allow themselves for interaction with 

the pedestrian. Four potential risk factors (time of day, crosswalk marking, number of lanes, and 

pedestrian visibility factors) and two driver characteristic factors (gender and age group) are 

chosen as the independent variables and the minimum distance is chosen as the dependent 

variables. The basic statistical descriptions of experiment results are shown in Table 16. Table 17 
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shows final mixed model of the maximum deceleration location. Finally, roadway type and 

pedestrian visibility are the only significant factors. There is no interaction found in the final model. 

 

Table 16: Descriptive statistics of the minimum distance for the midblock crossings 
scenario 

Factors 
Minimum distance (ft) 

Count Mean 
Standard 
Deviation 

Percentile 
05 

Percentile 
95 

Age group 
Under 40 555 23.60 5.41 14.33 32.52 

Over 40 353 24.00 5.91 15.64 33.05 

Gender 
Male 473 23.61 5.42 14.55 32.46 

Female 435 23.91 5.81 14.49 33.68 

Time of day 
Night 452 23.81 6.03 13.06 32.79 

Daytime 456 23.70 5.16 15.71 33.03 

Crosswalk 
marking 

Yes 455 23.55 4.89 15.74 31.60 

No 453 23.96 6.24 13.43 34.53 

Roadway 
type 

One lane 447 23.11 4.87 15.25 31.30 

Two 
lanes 

461 24.38 6.18 14.30 33.68 

Pedestrian 
visibility 

Dark 456 22.77 5.79 12.56 31.71 

Bright 452 24.75 5.24 16.59 33.68 
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Table 17: Summary of the mixed model of the minimum distance for the midblock 
crossings scenario 

Term Estimate Std. Error DF t Ratio Prob>|t| 

Intercept 23.81 0.47 58.1 49.64 <0.0001 

Roadway type -0.63 0.13 846.3 -4.64 <0.0001 

Pedestrian visibility -0.99 0.13 846.5 -7.32 <0.0001 

Roadway type* 
Pedestrian visibility 

0.98 0.13 846.3 7.22 <0.0001 

 

According to the results, the minimum distance between the driver and the pedestrian for one lane 

road and two lanes road are 23.11 ft and 24.38 ft, respectively. This result shows the significant 

difference in roadway type (t=-4.64, p-value<0.0001). The possible reason is that when drivers 

drive in the wide road, they are more cautious and notice the pedestrian more easily. In comparison, 

it is hard for them to notice the pedestrian in the narrow road, especially there is a parking lane 

beside the traveling lane. Therefore, the minimum distance is shorter for one lane road. Similarly, 

the pedestrian wearing bright color clothes have a positive impact on the minimum distance. When 

pedestrians wear the bright color clothes, it is much easier for drivers to notice them and take action 

to avoid the collision. However, when pedestrians wear dark color clothes, the minimum distance 

is significant shorter, which increases the risk of pedestrian crashes.  

 

5.1.4 Post encroachment time 

 

Post encroachment time (PET) is the time between the departure of the encroaching vehicle or 

pedestrian from the conflict point and the arrival of the vehicle or pedestrian. In this case, vehicles 
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need to yield to the crossing pedestrian, so the pedestrian usually cross the street first and then 

drivers pass the conflict point. The basic statistical descriptions of experiment results are shown in 

Table 18. The average PET of all the pedestrian-vehicle conflicts is 6.98 seconds with a standard 

deviation of 2.64. The mixed model is used to check the difference between each group in PET. 

The results show that time of day and pedestrian visibility have significant impact on PET, which 

is shown in Table 19. For the night time, the mean of PET is 6.65 seconds with a standard deviation 

of 2.62; for the daytime, the mean of PET is 7.18 seconds with a standard deviation of 2.57. There 

is a significant difference between nighttime and daytime (t=-4.29, p-value<0.0001). In addition, 

pedestrian visibility also has significant influence on PET (t=-6.27, p-value<0.0001). The average 

PET of pedestrians with dark color clothes is significantly smaller than that of pedestrians with 

bright color clothes, which also indicates that pedestrians wearing dark color clothes have a higher 

risk of crash.  
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Table 18: Descriptive statistics of PET for the midblock crossings scenario 

Factors 
PET (sec) 

Count Mean 
Standard 
Deviation 

Percentile 
05 

Percentile 
95 

Age group 
Under 40 555 6.85 2.52 0.00 10.68 

Over 40 353 7.02 2.73 0.00 11.38 

Gender 
Male 473 6.81 2.49 0.00 10.67 

Female 435 7.03 2.72 0.00 11.38 

Time of day 
Night 452 6.65 2.62 0.00 10.68 

Daytime 456 7.18 2.57 2.80 11.22 

Crosswalk 
marking 

Yes 455 7.04 2.34 3.85 10.87 

No 453 6.79 2.84 0.00 11.38 

Roadway 
type 

One lane 447 7.00 2.29 3.97 10.67 

Two 
lanes 

461 6.84 2.88 0.00 11.28 

Pedestrian 
visibility 

Dark 456 6.54 2.77 0.00 10.68 

Bright 452 7.29 2.37 4.13 11.08 

 

Table 19: Summary of the mixed model of PET for the midblock crossings scenario 

Term Estimate 
Std. 

Error 
DF 

t 
Ratio 

Prob>|t| 

Intercept 6.95 0.23 58 29.17 <0.0001 

Time of day -0.26 0.06 847.6 -4.29 <0.0001 

Pedestrian visibility -0.39 0.06 847.4 -6.27 <0.0001 
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5.1.5 Minimum TTC 

 

Time to collision (TTC) has been widely used to evaluate the traffic environment in terms of safety 

in recent researches (Vogel, 2003; Ward et al., 2015; Shahdah et al., 2015). In this case, the 

minimum TTC is measured during the pedestrian-vehicle conflict. Table 20 shows the descriptive 

statistics of the minimum TTC. The mixed model is also used to analyze the potential risk factors, 

including time of day, crosswalk marking, roadway type, and pedestrian visibility. The model 

results show in Table 21. 
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Table 20: Descriptive statistics of TTC for the midblock crossings scenario 

Factors 
Minimum TTC (sec) 

Count Mean 
Standard 
Deviation 

Percentile 
05 

Percentile 
95 

Age group 
Under 40 555 4.31 1.93 0.00 7.57 

Over 40 353 5.10 2.27 0.00 9.13 

Gender 
Male 473 4.20 1.90 0.00 7.57 

Female 435 5.07 2.21 0.00 8.92 

Time of day 
Night 452 4.06 1.89 0.00 7.58 

Daytime 456 5.17 2.15 1.65 9.03 

Crosswalk 
marking 

Yes 455 4.79 1.89 1.77 8.30 

No 453 4.44 2.28 0.00 8.95 

Roadway 
type 

One lane 447 4.52 1.84 1.80 7.80 

Two 
lanes 

461 4.71 2.33 0.00 8.75 

Pedestrian 
visibility 

Dark 456 3.90 1.99 0.00 7.23 

Bright 452 5.33 1.97 2.78 8.93 
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Table 21: Summary of the mixed model of the minimum TTC for the midblock crossings 

scenario 

Term Estimate 
Std. 

Error 
DF 

t 
Ratio 

Prob>|t| 

Intercept 4.75 0.15 55.3 31.58 <0.0001 

Age group -0.35 0.15 55.3 -2.35 0.0224 

Gender -0.39 0.15 55.3 -2.65 0.0105 

Time of day -0.57 0.05 838 -12.04 <0.0001 

Crosswalk marking 0.14 0.05 837.8 2.84 0.0046 

Roadway type -0.09 0.05 837.5 -2.09 0.0373 

Pedestrian visibility -0.74 0.05 837.8 -15.42 <0.0001 

 

First, age and gender have significant influence on the minimum TTC. The average of the 

minimum TTC of female drivers is 5.07 seconds, and the average of the minimum TTC of male 

drivers is 4.2 seconds. Based on the mixed model results, the minimum TTC of female drivers is 

significantly larger than that of male drivers, indicating that females have a lower crash risk. 

Similarly, the minimum TTC of drivers who are under 40 years old is significantly smaller than 

that of drivers who are over 40 years old. The time of day is also one of the significant factors that 

affect the minimum TTC. When driving at night, the average minimum TTC is 4.06 seconds with 

a standard deviation of 1.89. In comparison, the daytime driving increases the average minimum 

TTC, which is statistical significantly larger than night time (t=-12.04, p-value<0.0001). The 

marked crosswalk has a larger minimum TTC than unmarked crosswalk and two lanes road also 

has a larger minimum TTC than one lane road. Moreover, the pedestrian visibility is also 

associated with the minimum TTC. Pedestrians wearing dark clothes reduce the minimum TTC 
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during the pedestrian-vehicle conflict compared to pedestrians with bright color clothes. This 

reduction implies that pedestrian wearing dark clothes may affect the drivers’ avoidance 

performance and lead to the more dangerous situations. 

 

Moreover, seven two-way interaction terms are found to be significantly related to the minimum 

TTC, which is shown in Table 22. Figure 10 illustrates the relationship of interaction terms. 

 

Table 22: Summary of the interaction effects of the mixed model for the minimum TTC for 
the midblock crossings scenario 

Term Estimate Std. 
Error 

DF t 
Ratio 

Prob>|t| 

Age Group* Crosswalk marking 0.11 0.04 837.8 2.25 0.0249 

Age Group * Pedestrian visibility 0.11 0.04 837.8 2.3 0.0217 

Gender* Time of day 0.14 0.04 838 3.06 0.0023 

Time of day* Roadway type  0.28 0.04 838.2 6.06 <0.0001 

Crosswalk marking* Roadway 
type 

0.14 0.04 837.7 3.06 0.0023 

Crosswalk marking* Pedestrian 
visibility 

0.23 0.04 837.8 4.96 <0.0001 

Roadway type* Pedestrian 
visibility 

0.18 0.04 837.5 3.88 0.0001 

 

Age group shows interaction effects with crosswalk marking and pedestrian visibility. For the 

drivers who are over 40 years old, it seems that marked crosswalk doesn’t affect the minimum 

TTC. However, if the drivers are under 40 years old, the marked crosswalk would increase the 

minimum TTC. The pedestrian with bright color clothes increases the minimum TTC for both 

younger drivers and older drivers compared to the pedestrian with the dark color clothes. The slope 

of the older driver group is larger than the younger driver group, indicating that bright color clothes 
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have more effects on the older driver. For the interaction between gender and time of day, it is 

found that time of day have more effect on female than male, although both drivers have a larger 

minimum TTC in the daytime than night time. As for the interaction between time of day and 

roadway type, two different tendencies are found. One lane road decreases the minimum TTC than 

two lanes road in the daytime, however, it increases the minimum TTC than two lanes road in the 

night time. Moreover, there is almost no difference in the minimum TTC between marked 

crosswalk and unmarked crosswalk for the two lanes road. But for the one lane road, the marked 

crosswalk significantly increases the minimum TTC than the unmarked crosswalk. If the 

pedestrian wears bright color clothes, it seems that there is no difference in the minimum TTC 

between marked crosswalk and unmarked crosswalk. However, the marked crosswalk 

significantly increases the minimum TTC than the unmarked crosswalk when the pedestrian wears 

dark clothes. The similar finding for the roadway type and pedestrian visibility. When the 

pedestrian wears dark clothes, there is almost no difference in the minimum TTC between one lane 

road and two lanes road. However, when the pedestrian wears bright color clothes, two lanes road 

have a larger minimum TTC than one lane road. 
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Figure 10: Plot of interactions of the maximum deceleration location for the midblock 

crossings scenario  
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5.2 Intersection Scenario Data Analyses 

 

5.2.1 Entrance Speed 

 

Entrance speed is measured when the vehicle arrives at the stop line. For the left turns, the mean 

of speed is 17.90 mph with a standard deviation of 8.32; for the right turns, the mean of the speed 

is 14.00 mph with a standard deviation of 7.10. The histograms of the entrance speed for both left 

turns and right turns appear very close to normal distribution as shown in Figure 11. The average 

entrance speeds of left turns tend to be higher than that of right turns, presumably because the left 

turn has a larger radius than the right turn. The driver could have a higher speed to make left turns 

than right turns.  

 

 

(a) The histograms of entrance speed for left turns     (b) The histograms of entrance speed for right turns 

Figure 11: Distribution of entrance speed for the intersection scenario 
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5.2.2 Minimum Distance 

 

The minimum distance is still checked in the intersection scenarios. Six independent variables (age 

group, gender, time of day, vehicle movement, pedestrian movement, and pedestrian visibility) are 

chosen as potential factors that might be associated with the minimum distance of the pedestrian-

vehicle conflicts and the descriptive statistics are shown in Table 23. 

 

Table 23: Descriptive statistics of the minimum distance for the intersection scenario 

Factors 
Minimum distance (ft) 

Count Mean 
Standard 
Deviation 

Percentile 
05 

Percentile 
95 

Age group 
Under 40 539 25.57 10.17 14.65 45.21 

Over 40 345 26.08 10.51 14.93 46.24 

Gender 
Male 458 25.50 10.41 15.19 45.26 

Female 426 26.07 10.18 14.25 46.14 

Time of day 
Night 445 25.23 10.25 14.12 45.41 

Daytime 439 26.31 10.33 15.23 46.14 

Vehicle 
movement 

Left 430 26.54 12.04 15.08 51.89 

Right 454 24.96 8.00 14.12 38.41 

Pedestrian 
movement 

Far 452 28.66 11.86 15.64 52.56 

Near 432 23.00 7.59 14.04 36.68 

Pedestrian 
visibility 

Dark 440 23.49 7.94 14.91 37.53 

Bright 444 28.04 11.78 14.90 51.89 
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Running all of six given factors, Table 24 lists the mixed model results for the minimum distance. 

The significant main effects include the time of day, vehicle movement, pedestrian movement and 

pedestrian visibility. First, the results show that the minimum distance for night time is 

significantly smaller than that for the daytime (t=-3.05, p-value=0.0024). This tendency is in 

accordance with the findings in the midblock crossing scenarios. Second, the average of the 

minimum distance between the pedestrian and the driver for left turns is 26.54 ft, while the average 

of the minimum distance for right turns is 24.96 ft. The test also indicates that the minimum 

distance for left turns is statistically larger than that for right turns. Third, the pedestrian crossing 

the street from the far side has a larger minimum distance than the pedestrian crossing the street 

from the near side. This finding indicates that it is more dangerous for the pedestrian crossing the 

street from the near side than the far side. Last but not the least, the pedestrian with the bright color 

clothes also increases the minimum distance compared to the pedestrian with the dark color clothes. 

In addition, the two-way interaction vehicle movement and pedestrian visibility is also significant. 

Figure 12 shows the interaction effect of pedestrian visibility on vehicle movement for the 

minimum distance. It is found that the minimum distance for left turns are the almost the same 

with different pedestrian dressing color. In comparison, the pedestrian with the dark color clothes 

reduces the minimum distance for the right turns. The possible explanation is that it is easier for 

left turns to notice the crossing pedestrians because of the wider driver’s view. However, for the 

right turns, it is hard for drivers to notice the pedestrian with dark color clothes.  
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Table 24: Summary of the mixed model of the minimum distance for the intersection 
scenario 

Term Estimate 
Std. 

Error 
DF 

t 
Ratio 

Prob>|t| 

Intercept 25.80 0.64 54.6 40.31 <0.0001 

Time of day 0.61 0.20 817.5 -3.05 0.0024 

Vehicle movement -0.73 0.20 816.5 3.66 0.0003 

Pedestrian movement -2.8 0.20 815.6 13.90 <0.0001 

Pedestrian visibility -2.19 0.20 815.1 -10.89 <0.0001 

Vehicle movement* 
Pedestrian visibility 

3.78 0.20 815.5 18.75 <0.0001 

 

 

 

Figure 12: Interaction effect of pedestrian visibility on time of day for the minimum 

distance 
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5.2.3 Post encroachment time 

 

The descriptive statistics of PET is shown in Table 25 and the summary of the mixed model for 

PET is shown in Table 26. The time of day and the pedestrian visibility are the only significant 

factors that affect PET in the intersection scenario. For the night time, the mean of PET is 6.47 

seconds with a standard deviation of 4.29; for the daytime, the mean of PET is 6.05 seconds with 

a standard deviation of 4.10. There is a significant difference between the night time and daytime 

(t=1.97, p-value=0.0487). In addition, the pedestrian visibility also impacts the PET. Based on the 

results, it is found that the average PET of the pedestrian wearing the dark clothes is smaller than 

that of the pedestrian wearing the bright, indicating that drivers wait more time if the pedestrian 

wears the bright clothes.  
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Table 25: Descriptive statistics of PET for the intersection scenario 

Factors 
PET (sec) 

Count Mean 
Standard 
Deviation 

Percentile 
05 

Percentile 
95 

Age group 
Under 40 539 6.10 4.10 1.57 13.88 

Over 40 345 6.51 4.34 1.80 14.57 

Gender 
Male 458 5.97 4.19 1.57 13.88 

Female 426 6.57 4.18 1.67 14.40 

Time of day 
Night 445 6.47 4.29 1.60 14.35 

Daytime 439 6.05 4.10 1.63 13.88 

Vehicle 
movement 

Left 430 6.34 3.47 1.98 12.65 

Right 454 6.19 4.79 1.53 15.82 

Pedestrian 
movement 

Far 452 6.18 3.49 0.80 12.45 

Near 432 6.34 4.83 1.65 15.98 

Pedestrian 
visibility 

Dark 440 5.26 3.53 1.65 11.89 

Bright 444 7.25 4.56 1.13 15.98 

 

Table 26: Summary of the mixed model of PET for the intersection scenario 

Term Estimate 
Std. 

Error 
DF 

t 
Ratio 

Prob>|t| 

Intercept 6.34 0.28 53.4 22.41 <0.0001 

Time of day 0.24 0.12 823.6 1.97 0.0487 

Pedestrian visibility -1.00 0.12 819.4 -8.20 <0.0001 
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5.2.4 Minimum TTC 

 

The descriptive statistics of the minimum TTC for the intersection scenario is shown in Table 27. 

The mixed model is still used to analyze the four potential risk factors, including age group, gender, 

time of day, vehicle movement, pedestrian movement, and pedestrian visibility. The results list in 

Table 28. 

 

Table 27: Descriptive statistics of the minimum TTC for the intersection scenario 

Factors 
Minimum TTC (sec) 

Count Mean 
Standard 
Deviation 

Percentile 
05 

Percentile 
95 

Age group 
Under 40 539 5.52 2.63 0.72 9.99 

Over 40 345 5.74 2.53 1.52 9.92 

Gender 
Male 458 5.50 2.59 0.65 9.99 

Female 426 5.72 2.59 1.47 9.95 

Time of day 
Night 445 5.30 2.56 0.82 9.65 

Daytime 439 5.91 2.59 1.02 10.40 

Vehicle 
movement 

Left 430 5.09 2.16 1.24 8.75 

Right 454 6.09 2.86 0.82 10.63 

Pedestrian 
movement 

Far 452 6.18 2.76 0.50 10.47 

Near 432 5.00 2.26 1.01 8.56 

Pedestrian 
visibility 

Dark 440 5.74 2.68 1.56 10.42 

Bright 444 5.47 2.49 0.63 9.62 
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Table 28: Summary of the mixed model of the minimum TTC for the intersection scenario 

Term Estimate 
Std. 

Error 
DF 

t 
Ratio 

Prob>|t| 

Intercept 5.58 0.09 57.2 57.13 <0.0001 

Time of day -0.30 0.08 823.1 -3.74 0.0002 

Vehicle movement -0.50 0.08 829.5 -6.26 <0.0001 

Pedestrian movement 0.59 0.08 826.5 7.32 <0.0001 

Vehicle 
movement*pedestrian 

movement 
-0.32 0.08 830.5 -4.06 <0.0001 

 

Based on the results, it is found that time of day, vehicle movement, and pedestrian movement are 

significant factor that impact the minimum TTC. First, the minimum TTC of night time is 5.30 

seconds with a standard deviation of 2.56, while the minimum TTC of daytime is 5.91 seconds 

with a standard deviation of 2.59 seconds. When driving at night, the average minimum TTC is 

significantly smaller compared to the daytime period (t=-3.74, p-value=0.0002). It implies that it 

is dangerous when the pedestrian-vehicle conflict happens at night. Second, the minimum TTC of 

left turns is significantly smaller than that of right turns, indicating that drivers need to pay more 

attention to pedestrians when they make left turns than right turns. Moreover, the pedestrian 

movement is also associated with the minimum TTC, which means drivers reaction to pedestrians 

who appear from the near side is different to pedestrians who appear from the far side. It seems 

that pedestrians who appear from the near side is more dangerous than pedestrians who appear 

from the far side. Last but not the least, the interaction effect of vehicle movement on pedestrian 

movement for the minimum distance is shown in Figure 13. It is found that the minimum TTCs 

for pedestrian-vehicle conflict of left turns are the almost the same with different pedestrian 

movements. In comparison, when the vehicle makes right turn, the pedestrian showing on the left 



 81 
 

side increases the minimum distance compared to the pedestrian showing on the right side. The 

possible explanation is that it is easier for drivers to notice the pedestrian showing on the left side 

other than right side.  

 

 

Figure 13: Plot of interactions between vehicle movement and pedestrian movement of the 

minimum TTC for intersection scenario 
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CHAPTER SIX: DRIVER’S AVOIDANCE PATTERN AND PEDESTRIAN-

VEHICLE CONFLICTS MODEL 

 

In this chapter, analysis of variance (ANOVA) was used to analyse the drivers’ behavior during 

the pedestrian-vehicle conflicts period. Two driver’s characteristic (age and gender) and four 

potential risk factors were selected as the independent variables and four key variables summarized 

above are chosen as the dependent variables. The hypothesis testing in the following analyses are 

based on a 0.05 significance level. In addition, the pedestrian-vehicle conflicts model was built 

based on the dataset. The minimum distance between the pedestrian and the vehicle was selected 

as the independent variable.  

 

6.1 Driver’s avoidance pattern 

 

During the pedestrian-vehicle conflict period, drivers adjust their speed by changing the 

deceleration rate to avoid the crash (Li et at., 2016). Figure 14 shows the typical examples of 

drivers’ deceleration rate and the location changes. These examples exhibited a clear avoidance 

pattern which can be summarized into four stages, as shown in Figure 15. The red line represents 

the deceleration rate and the blue curve represents the vehicle’s speed. 
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Figure 14: Drivers’ deceleration rate and the distance to crosswalk during the avoidance 
period 

 

 

Figure 15: Drivers’ avoidance pattern during the pedestrian-vehicle conflict 
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Stage 1: Brake reaction stage. 

This stage starts from the time when drivers noticed the pedestrian crossing the street, and ended 

as the driver start to brake. The time duration of this stage was t1, which was also called brake 

reaction time. The driver usually kept a constant initial speed during this stage. In order to get t1, 

the eye tracker was usually needed. However, because of the equipment limitation, t1 is not 

discussed in this study.  

 

Stage 2: Deceleration adjustment stage 

In this stage, drivers perceived the crash risk because of the sudden pedestrian appearance and then 

start to brake until the maximum deceleration. The time duration of this stage was t2. In addition, 

the deceleration rate was assumed to be linearly increased. 

 

Stage 3: Maximum deceleration stage 

In this stage, drivers reached the maximum deceleration and stayed for a while. Drivers would 

release the brake until they could make sure that they won’t hit the pedestrian. The duration time 

of this stage was t3 and the maximum deceleration rate was dm.  

 

Stage 4: Break release stage 

In this stage, drivers started to release the break. Finally, drivers completely stopped the car or 

drivers started to accelerate. The duration time of this stage was t4. 
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Based on the drivers’ avoidance pattern, the key variables during the pedestrian-vehicle conflict 

period were summarized, which include t2 (deceleration adjustment time), t3 (maximum 

deceleration time), dm (maximum deceleration rate), and t4 (brake release time).  

6.2 Driver’s behavior analysis 

 

6.2.1 Deceleration adjustment time (t2) 

 

The ANOVA results of deceleration adjustment time are listed in Table 29. The AVOVA results 

show that four variables are significant, including age, gender, roadway type, and dressing color. 

Time of day and marking are not significant factors. The difference of age, gender, roadway type, 

and dressing color on deceleration adjustment time are shown in Figure 16.  Based on the results, 

drivers who are under 40 years old (M = 1.44s, S.D.=1.28) had a higher deceleration adjustment 

time than drivers who are over 40 years old (M = 1.22s, S.D.=1.17). It seems that drivers under 40 

years old are more aggressive than those over 40 years, that’s why they need more deceleration 

time. For the gender, it appears that the mean of deceleration adjustment time for male drivers (M 

= 1.42s, S.D.=1.37) is higher than that for female drivers (M = 1.28s, S.D.=1.08). In other words, 

females drive an increased proclivity of quickly braking than male drivers. The reason is that 

female drivers react late in urgent situations than male drivers so that the deceleration adjustment 

time of female drivers become smaller than male drivers (Li et al., 2016). As for the potential risk 

factors, roadway type and dressing color are found to be significant with deceleration adjustment 

time. The deceleration adjustment time of one travelling lane with one parking lane (M = 1.39s, 

S.D.=1.27) is significantly higher than that of two travelling lanes (M = 1.32s, S.D.=1.22). The 

possible explanation is that two travelling lanes road provide the driver with more space to react 
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than one lane road with one parking lane. Similarly, dark color clothes (M = 1.44s, S.D.=1.05) 

increased the deceleration adjustment time than the bright color (M = 1.27s, S.D.=1.40). When 

pedestrians wear the dark color clothes, drivers are difficult to find the pedestrians. Therefore, 

drivers need more time at the deceleration adjustment stage when pedestrian wear dark color 

clothes. 

 

Table 29: Analysis of variance (ANOVA) results of deceleration adjustment time (t2) 

Variables Df Mean Square F-Value Sig. 

Age 1 6.7 7.986 0.00483 

Gender 1 3.8 4.534 0.03352 

Time of day 1 0.3 0.382 0.53671 

Marking 1 1.2 1.465 0.22650 

Roadway 
Type 

1 3.4 4.091 0.04342 

Dressing 
Color 

1 7.5 8.967 0.00283 
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Figure 16: Relationship between deceleration adjustment time and significant factors 

 

6.2.2 Maximum deceleration time (t3) and maximum deceleration rate (dm) 

 

The basic statistical descriptions of independent variables for t3 and dm are listed in Table 30. Table 

31 shows the ANOVA results for the maximum deceleration time and maximum deceleration rate. 

The ANOVA results indicate that age, gender, time of day, crosswalk marking, and dressing color 

have significant effect on the maximum deceleration time. However, all factors are found to be 

significantly associated with the maximum deceleration rate. From Table 30, it is found that if one 

group has a higher maximum deceleration rate, this group have a lower maximum deceleration 

time. For example, drivers who are over 40 years old has a higher maximum deceleration rate than 
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drivers who are under 40 years old. However, drivers who are over 40 years old has a lower 

maximum deceleration time than drivers who are under 40 years old. This finding is appropriate 

for all variables. The lower t3 and higher dm implies that drivers have a relatively hard brake so 

that they don’t need to keep the maximum deceleration for a long time. For male drivers, t3 is 2.05 

seconds and dm is 17.04 ft/s2. For female drivers, t3 is 1.61 seconds and dm is 20.00 ft/s2. In addition, 

night time driving has a lower t3 and a higher dm than the day time driving, which indicates that 

drivers driving at night are more likely to have a hard brake than driving in the daytime. For the 

crosswalk marking, t3 has a higher value with the marking and a lower value without a marking. 

Similarly, dm has higher value without the marking and lower value with the marking. Roadway 

type only affects dm, but it didn’t affect t3. Based on the results, drivers on the two lanes road have 

a higher maximum deceleration rate than those on the one lane with one parking lane. As for the 

dressing color, pedestrian with dark color clothes has a lower maximum deceleration time and a 

higher maximum deceleration rate. The possible reason is that when pedestrians wear bright color 

clothes, drivers are much easier to notice them. Therefore, they are more likely to have a hard 

brake, but keep a shorter period of maximum deceleration time.  
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Table 30: Descriptive statistics of six factors related to the t3 and dm 

Variables 
t3 dm 

Mean Std.Deviation Mean Std.Deviation 

Age 
Under 40 1.98 1.82 -17.37 8.02 

Over 40 1.64 1.51 -20.10 8.37 

Gender 
Male 2.05 1.84 -17.04 7.98 

Female 1.61 1.54 -20.00 8.52 

Time of day 
Night 1.64 1.43 -19.47 8.76 

Day 2.07 1.95 -17.32 7.79 

Marking 
Yes 1.95 1.69 -17.81 7.81 

No 1.74 1.74 -19.06 8.87 

Roadway 
Type 

 

One lane 
with one 
parking 

lane 

1.89 1.68 -17.65 7.97 

Two 
lanes 

1.80 1.75 -19.23 8.70 

Dressing 
Color 

Dark 1.53 1.35 -20.55 8.84 

Bright 2.16 1.97 -16.29 7.27 
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Table 31: Analysis of variance (ANOVA) results of maximum deceleration time (t3) and 
maximum deceleration rate (dm) 

 Variables Df Mean Square F-Value Sig. 

t3 

Age 1 25.47 12.806 0.0003 

Gender 1 41.63 20.824 0.0001 

Time of day 1 24.75 12.439 0.0004 

Marking 1 17.39 8.744 0.0032 

Roadway 
Type 

1 1.57 0.787 0.3751 

Dressing 
Color 

1 72.46 36.426 0.0001 

dm 

Age 1 1493 25.283 0.0001 

Gender 1 1643 27.819 0.0001 

Time of day 1 712 12.064 0.00054 

Marking 1 462 7.816 0.00530 

Roadway 
Type 

1 510 8.629 0.00340 

Dressing 
Color 

1 4052 68.623 0.0001 

 

6.2.3 Brake Release Time (t4) 

 

The brake release time is the time between starting to release the break and the time the driver 

completely stops or starts to accelerate for normal driving. Table 32 represents the ANOVA results 

of the deceleration adjustment time. The ANOVA results show that age and dressing color are the 

only two factors that affect the brake release time (t4). The difference of age and dressing color on 

t4 is shown in Figure 17. Drivers who are under 40 years old have an average of 1.50s t4 with a 

standard deviation of 1.23. In comparison, drivers who are over 40 years old have an average of 

1.29s t4 with a standard deviation of 0.91. It indicates that younger drivers are more likely to release 

the brake faster than older drivers. Moreover, dressing color is also a significant factor that 
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influence the t4. From Figure 17, it is found that pedestrians with dark color clothes has an average 

of 1.27s t4, which is significantly lower than pedestrian with bright color.   

 

Table 32: Analysis of variance (ANOVA) results of deceleration adjustment time (t4) 

Variables Df Mean Square F-Value Sig. 

Age 1 8.827 7.198 0.007 

Gender 1 3.460 2.821 0.093 

Time of day 1 0.018 0.015 0.903 

Marking 1 1.772 1.445 0.230 

Roadway 
Type 

1 2.403 1.959 0.162 

Dressing 
Color 

1 18.883 15.398 0.000 

 

 

Figure 17: Relationship between brake release time and significant factors 

 

6.3 Pedestrian-vehicle conflict prediction model 

 

In the process of driver’s avoidance pattern, drivers change their speeds by changing the 

deceleration rate in response to the pedestrian’s behavior. Thus, the distance between the 

pedestrian and the vehicle becomes shorter as the vehicle approaches the pedestrian. In order to 

evaluate each conflict, the minimum distance between the pedestrian and the vehicle is used.  The 
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minimum distance is defined as the distance between the pedestrian and the vehicle when the 

vehicle completely stops or the vehicle is at the lowest speed. The minimum distance can not only 

estimate the occurrence of a collision between the vehicle and the pedestrian, but also can be used 

as a safety threshold reflecting the pedestrian safety.  

 

In order to predict the minimum distance between the pedestrian and the vehicle, the linear 

regression model is used qualify the relationships between the dependent variable and the 

explanatory variables. The dependent variable is the minimum distance between the pedestrian 

and the vehicle. The independent variables include three different aspects: driver’s characteristics, 

potential risk factors, and real-time vehicle information. The driver’s characteristics include age 

and gender. Potential risk factors include time of day, marking, roadway type, and dressing color. 

The real-time vehicle information includes the initial speed when the driver starts to decelerate, 

the initial location when the driver starts to decelerate, the deceleration adjustment time, the 

maximum deceleration time, and the maximum deceleration rate. The hypothesis test with a 0.05 

significance level is used to decide on the significant factors.  

 

Table 33 lists the linear regression results of main effects. The significant independent variables 

include age, gender, dressing color, initial speed, initial location, t2, dm, and t3. Marking, roadway 

type, and time of day are not significant.  
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Table 33: Linear regression results between dependent variable and independent variables 

Variables Estimate Std.Error t p-value 

Intercept 54.25 5.61 9.655 0.00 

Age 8.46 1.62 5.226 0.00 

Gender 9.60 1.59 6.037 0.00 

Dressing color -3.01 1.67 -1.798 0.0725 

Initial speed -4.73 0.15 -31.223 0.00 

Initial location 0.90 0.01 71.038 0.00 

t2 -17.80 0.88 -20.140 0.00 

dm -2.67 0.14 -19.083 0.00 

t3 -12.11 0.65 -18.502 0.00 

 

The model equation is shown as follows: D𝑚𝑖𝑛 = 54.24 + 8.46 ∗ 𝐴𝑔𝑒 + 9.60 ∗ 𝐺𝑒𝑛𝑑𝑒𝑟 − 3.01 ∗ 𝐷𝑟𝑒𝑠𝑠𝑖𝑛𝑔 𝑐𝑜𝑙𝑜𝑟 − 4.73∗ 𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑠𝑝𝑒𝑒𝑑 + 0.90 ∗ 𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 − 17.80 ∗ t2 − 2.67 ∗ d𝑚 − 12.11∗ t3 

 

Figure 18 shows the relationship between age, gender and the minimum distance. The drivers who 

are over 40 years old has a larger minimum distance than the drivers who are under 40 years old. 

The finding indicates that older drivers are more conservative than younger drivers. In addition, 

the average minimum distance of male drivers is 112 ft, and the average minimum distance of 

female drivers is 155ft. It is obvious that female drivers are more likely to have a longer minimum 

distance than male drivers. In other words, female drivers are more likely to stop the vehicle earlier 

than male drivers and keeps a longer distance. 
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Figure 18: Relationship between the minimum distance and age, gender 

 

As for the potential risk factors, dressing color is the only significant factor that affects the 

minimum distance. Figure 19 shows relationship between the minimum distance and the dressing 

color. If the pedestrian wears the dark color clothes, the minimum distance between pedestrian and 

vehicle is 114.39 ft on average, which is smaller than the pedestrian with the bright color clothes.  

This significant difference implies that pedestrian wearing dark clothes may affect the drivers’ 

avoidance performance and lead to the pedestrian to be a more dangerous situation. 
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Figure 19: Relationship between the minimum distance and color 

 

All the real-time vehicle information is significantly associated with the minimum distance 

between the pedestrian and the vehicle. As the initial speed increases or the initial location 

decreases, the minimum distance between the pedestrian and the vehicle decreases. In other words, 

if the vehicle has a higher speed, or the driver are closer to the crosswalk when he or she start to 

brake, it is more likely to be a crash.  

 

After the driver starts to brake, t2, t3 and dm is changing all the time. As the driver approaches the 

crosswalk, the pedestrian-vehicle conflict model could predict the minimum distance between the 

pedestrian and the vehicle. If the result is reliable, the model could be used in the vehicle alert 

system. When the vehicle has detected the crossing pedestrian, the alert system will be activated. 

If the estimate minimum distance between the pedestrian and the vehicle is smaller than the safety 

threshold, the alert system could give the driver alert to remind the driver. According to the results, 

R square of the model was 0.9015, which indicated that 90.15% of the variation in the minimum 

distance could be explained a linear relationship with these predictors. The average of the predicted 
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minimum distance by the regression model is 132.41 ft, which is the same as the average of the 

obtained minimum distance by the experiment data (as shown in Table 34).  In addition, the relative 

absolute error (RSE) is used to validate the model. RSE is to measure the difference between the 

minimum distance predicted by the model and the minimum distance obtained by the experiment 

data. The equation is shown as follows: 

RSE = 1𝑛 ∑|𝐷min(𝐸)𝑖 − 𝐷min(𝑀)𝑖 |𝑛
𝑖=1  

 

Based on the results, the average RSE is 15.91 ft, which means that the average difference between 

predicted minimum distance and the obtained minimum distance is 15.91 ft. In addition, another 

regression model relates the minimum distance predicted by the model to the minimum distance 

obtained by the experiment data. Figure 20 shows the relationship between the experiment data 

and the prediction model. The results indicate that the minimum distance predicted by the model 

is significantly associated with the minimum distance obtained by the experiment. In addition, the 

R square for the model is 0.902, indicating that 90.2% of the variability in the experiment data 

could be explained by the variation in the prediction results. Accordingly, the results indicated that 

the pedestrian-vehicle conflict prediction model had a good prediction performance.  
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Table 34: Comparison of the minimum distance from the experiment data and model 
results 

 
Experiment data Model results RSE 

Mean S.D. Mean S.D. 

Age Under 40 116.358 5.011 116.358 5.011 16.500 
 

Over 40 158.200 8.517 158.200 8.517 14.934 

Gender Male 112.695 5.265 112.695 5.265 16.910 
 

Female 155.004 7.509 155.004 7.509 14.742 

Total 132.41 4.453 132.41 4.453 4.453 

 

 

Figure 20: The relationship between the experiment data and the prediction results 
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CHAPTER SEVEN: THE PROCESS OF PEDESTRIAN SAFETY 

EVALUATION BY USING FIELD DATA, MICRO-SIMULATION DATA 

AND DRIVING SIMULATOR DATA 

 

The objective of this chapter is to summarize three different types of data, including field data, 

micro-simulation data, and driving simulator data. In addition, the process of evaluation of 

pedestrian safety by combination field data, micro-simulation data and driving simulator data is 

proposed. 

 

7.1 Field data collection for pedestrian safety 

 

The field data collection is very important for the pedestrian safety analysis. First, the crash report 

can be used to determine if the location has the pedestrian safety problem for the long term. The 

crash report is usually generated by the police when there is a traffic accident. From the report, the 

crashes that involve the pedestrian can be picked up. If one location has more pedestrian involved 

crashes than usual, the traffic engineer should pay attention to it. Second, the field data collection 

also includes pedestrian volumes, traffic volumes, pedestrian violation rate, and vehicle’s queue 

length.  In addition, the roadway characteristics, signal timing, and other environmental factors are 

also the important data that could be collected from the field. Third, as technological advance of 

computer and video processing technology has been developed over a decade, the pedestrian-

vehicle conflicts data could also be collected from the field. Ismail et al. (2009) developed the 

automated analysis for pedestrian-vehicle conflicts using the video data. This method could 
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capture TTC and PET for each conflict between the pedestrian and the vehicle. Therefore, Table 

35 summarizes the data that could be collected from the field. 

 

Table 35: Summary of field data collection 

Field data collection 

Crash report The number of crashes that involve the pedestrian 

Traffic data 
Pedestrian volumes, vehicle volumes, queue length, signal timing, 

pedestrian violation rate, …… 

Conflict data The number of conflicts, PET, TTC, …… 

Others Environmental factors, road characteristics, …… 

 

7.2 Micro-simulation data collection for pedestrian safety 

 

Several simulation tools were reviewed including Synchro, aaSIDRA, Paramics, and VISSIM. 

Since the focus of this study is on pedestrian-vehicle interaction, VISSIM is the best tool to achieve 

the study objectives. Other simulation models didn’t have the ability to simulate the pedestrian 

movements, or require extensive coding to incorporate necessary pedestrian performance attributes 

(Rouhail et al., 2002; Rouhail et al., 2005). To simulate the pedestrian in VISSIM, the data 

collected in the field are used to build, calibrate, and validate the VISSIM model.  Another 

simulation model, which is used to extract the pedestrian and vehicle trajectory from VISSIM, is 

called Surrogate Safety Assessment Model (SSAM). Combination of VISSIM and SSAM could 

obtain the number of pedestrian-vehicle conflicts, TTC, PET, maximum speed, and maximum 

deceleration for each conflict. By using these data, the pedestrian safety could be evaluated.  
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7.3 Driving simulator data collection for pedestrian safety 

 

Driving simulator data are different from field data and micro-simulation data. The driving 

simulator data are usually based on the experiment. As for the experiment, the pedestrian’s 

behavior is usually controlled by the experimenter. Therefore, the pedestrian behavior is not same 

as the field observation and microsimulation model. In general, the driving simulator experiment 

is to find out the potential risk factors that relate to the road characteristic, driver’s behavior, and 

environmental factors. After several subjects finish the driving simulator experiment, the 

pedestrian-vehicle conflicts under different conditions could be evaluated through the experiment 

data. The data output includes maximum deceleration, maximum deceleration location, minimum 

distance, PET, and TTC. Based on these information, the potential factors could be found out.  

 

7.4 Comparison of TTC and PET for Field Data, Simulation Data, and Driving Simulator Data 

 

To compare TTC and PET of field data, simulation data, and driving simulator data, the 

intersection data of field, simulation, and driving simulator were used. First, 708 pedestrian-

vehicle conflicts were observed in the field. There were also 628 pedestrian-vehicle conflicts that 

were obtained from VISSIM. For the driving simulator experiment, 884 pedestrian-vehicle 

conflicts were collected. Second, the mean of PET for field data is 4.06 seconds. For the simulation 

data, the average PET is 4.12 seconds, which is close to the PET of field data. However, the PET 

of the simulator data is much higher than that of field data and simulation data. The reason is that 

the experiment is designed and the pedestrian is crossing the street ignoring the vehicle. Therefore, 

there is not an interaction between pedestrians and vehicles. The purpose is to test driver’s 
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reactions. But the pedestrian and vehicle are interacted in the field and simulation. Therefore, the 

PET of driving simulator is different with field data and simulation data. Third, TTCs are not 

collected in the field for pedestrian-vehicle conflicts since it is difficult to collect TTC by observing 

the videos. The average TTC of simulation data is 1.75 seconds with a standard deviation of 0.41. 

However, the average TTC of driving simulator data is 5.61 seconds with a standard deviation of 

2.59. The reason is similar to the PET difference between simulation data and driving simulator 

data. The driving simulator experiment is designed and the pedestrian-vehicle conflicts are not 

collected randomly. It is better to compare the different groups within driving simulator data.  

Table 36: Comparison of TTC and PET of Field Data, Simulation Data, and Driving 
Simulator Data 

 
TTC PET 

Count Mean S.D. Count Mean S.D. 

Field Data 708 - - 708 4.06 1.23 

Simulation Data 628 1.75 0.41 628 4.12 0.88 

Driving Simulator Data 884 5.61 2.59 884 6.26 4.22 

 

 

7.5 The process of pedestrian safety evaluation 

 

By combining the field data, micro-simulation data, and driving simulator data, the process of 

evaluation of pedestrian safety is summarized in Figure 21. First, based on the crash report, the 

pedestrian safety at certain location could be evaluated to determine if this location need to 

improve the pedestrian safety. After that, the field data collection could be processed. The field 

data collection includes traffic volume, pedestrian volume, signal timing, roadway characteristics, 
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and so on. Then, based on the field data, the micro simulation model is built and driving simulator 

experiment is designed. As for the micro-simulation, VISSIM and SSAM are the best tools to 

simulate the pedestrian-vehicle interactions. After VISSIM simulation model is calibrated and 

validated, SSAM could output the conflicts between pedestrians and vehicles. In terms of driving 

simulator experiment, the design should involve the conflict between the pedestrian and the driver. 

After several subjects finish the experiment, the data could be collected. Therefore, the potential 

factors that may affect pedestrian safety could be found out through the analysis of micro-

simulation data and driving simulator data. Based on the potential factors, several countermeasures 

are proposed to improve the pedestrian safety. Then, these countermeasures could apply to the 

microsimulation and driving simulator first. After evaluating the pedestrian-vehicle conflicts that 

are obtained from micro-simulation and driving simulator, the effective countermeasures could be 

applied to field. Finally, over a few years, the crash report could be checked again and the engineers 

could go through the process again. 
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Figure 21: The process of evaluation of pedestrian safety 
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CHAPTER EIGHT: SUMMARY 

 

Pedestrian safety has become more prevalent for governmental agencies to address the safety of 

public. This dissertation mainly focused on how to evaluate the pedestrian safety by using the 

micro-simulation and driving simulator through the pedestrian-vehicle conflicts. Firstly, this study 

examines the optimum values of post encroachment time (PET) and time-to-collision (TTC) 

parameters that would define a pedestrian-to-vehicle conflict at signalized intersections using a 

simulation model (VISSIM) and a Surrogate Safety Assessment Model (SSAM). Then, the results 

of the regression analysis indicate the highest correlation between the simulated and observed 

conflicts. Secondly, this study aimed to assess pedestrian-vehicle conflicts under different potential 

risk factors at both midblock crossings and signalized intersections. A full factorial experiment is 

designed in the driving simulator to study the pedestrian-vehicle conflicts, using four potential risk 

factors which included time of day, crosswalk marking, roadway type, and pedestrian dressing 

color. Thirdly, the driver’s avoidance pattern is summarized based on the driving simulator data 

and the pedestrian-vehicle conflict prediction model is built to evaluate the pedestrian safety at 

midblock crossings. 

 

8.1 Micro-simulation application to pedestrian-vehicle conflicts 

 

In this study, field data was collected to obtain pedestrian volume, traffic volume, pedestrian 

crossing behavior, and pedestrian-vehicle conflicts at seven signalized intersections in Orlando, 

Florida. Then, the field data was used to calibrate and validate the VISSIM model for the seven 

signalized intersections.  SSAM was used to extract the pedestrian-vehicle conflicts by processing 
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the vehicle trajectory data from the calibrated and validated VISSIM model. The mean absolute 

percent error (MAPE) was used to get the suitable maximum TTC and PET thresholds for 

pedestrian-vehicle conflicts. The simulated conflicts generated by VISSIM and identified by 

SSAM were compared to the observed conflicts in the field to determine whether VISSIM and 

SSAM could provide reasonable results for safety assessment at signalized intersections. 

 

There were two major findings in this study. First, the suitable maximum TTC and PET thresholds 

for pedestrian-vehicle conflicts were identified through measuring the differences between the 

mean PET observed in the field and the mean PET simulated in VISSIM and SSAM using the 

MAPE. According to the results, it was found that when the maximum TTC and PET threshold 

were at 2.7 and 8 seconds, respectively, the MAPE was the lowest, indicating the highest 

correlation and best goodness-of-fit between simulated conflicts and observed conflicts. Second, 

although it was concluded that the number of simulated conflicts was significantly related to the 

number of observed conflicts according to the linear regression results, the number of simulated 

conflicts estimated by VISSIM model and SSAM was less than the number of conflicts observed 

in the field, which reflects that VISSIM might underestimate the pedestrian-vehicle conflicts.  

 

8.2 Assessment of pedestrian-vehicle conflicts at midblock crossings based on driving simulator 

experiment 

 

One of the objective in this study was to assess pedestrian-vehicle conflicts under different 

potential risk factors at midblock crossings. The scenarios were specifically designed for the 
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pedestrian-vehicle conflicts in the driving simulator. The driving simulator data were extracted 

and analyzed. Finally, the results addressed several aspects of this objective. 

 

Time of day is an important factor that affects the drivers’ behaviors. According to the results, the 

night time driving not only increases the maximum deceleration, but also decreases the PET and 

the minimum TTC compared to daytime driving. All of the findings imply that the night time 

driving is more dangerous than the daytime driving for the pedestrian-vehicle conflicts, which is 

in accordance with the findings of the literature [26,27]. The reason is that drivers have low 

visibility when they drive at night. Therefore, it is hard to notice pedestrians at night. When they 

notice the pedestrian, it is usually late compared to the daytime, which results in the dangerous 

situation. The marked crosswalk is also associated with the pedestrian safety. Although the marked 

crosswalk has nothing to do with the PET, it reduces the maximum deceleration and increases the 

minimum TTC. This finding indicates that those who cross the street without the marking have 

more risk than those who cross the street using the marking. Furthermore, the pedestrian safety is 

related to the roadway type. In this study, only two roadway types are tested in the experiment and 

it is found that different roadway types lead to different driving behavior for the pedestrian-vehicle 

conflicts. Finally, the pedestrian dressing color is examined to investigate the effects on the drivers’ 

behavior. It is found that when pedestrians dress dark clothes, drivers usually have a larger 

maximum deceleration. In addition, PET and the minimum TTC of the pedestrian with the dark 

color are also smaller than that of the pedestrian with the bright color. This implies that it is very 

important for pedestrians wearing the bright color, especially in the nighttime.  
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8.3 Assessment of pedestrian-vehicle conflicts at signalized intersections with a concurrent 

pedestrian phasing based on driving simulator experiment 

 

This study was designed to assess pedestrian-vehicle conflicts under different potential risk factors 

at signalized intersections with a concurrent pedestrian phasing. The scenarios were specifically 

designed for the pedestrian-vehicle conflicts in the driving simulator. The driving simulator data 

were extracted and analyzed. Finally, the results addressed several aspects of this objective. 

 

First, time of day is an important factor that affects the drivers’ behavior. According to the results, 

the night time driving decreases the minimum distance and the minimum TTC, indicating that the 

day time driving has lower risks than night time driving. Vehicle movement and pedestrian 

movement only have effects on the minimum distance and the minimum TTC. Moreover, the 

pedestrian visibility is examined to investigate the effects on the drivers’ behavior. It is found that 

when pedestrians dress dark clothes, drivers usually have a smaller minimum distance and a small 

PET. This implies that it is very important for pedestrians to wear the bright color clothes, 

especially at night time. However, the age and gender didn’t affect three surrogate measures based 

on the analysis. 

 

8.4 Driver’s avoidance pattern and pedestrian-vehicle conflicts prediction model 

 

First, driver’s avoidance behavior pattern was summarized during the pedestrian-vehicle conflict. 

There are four stages showing that how drivers react to the pedestrian conflict, including brake 

reaction stage, deceleration adjustment stage, maximum deceleration stage, and brake release stage. 
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Based on the driver’s avoidance behavior pattern, four key variables are extract from the data, 

which include deceleration adjustment time, maximum deceleration rate, maximum deceleration 

time, and brake release time. Then, driver’s characteristics variables (age and gender) and potential 

risk factors (time of day, marking, roadway type, and dressing color) are associated with the four 

key variables by using the ANOVA. The results indicate that age, gender, roadway type, and 

dressing color are the significant factors that affect the deceleration adjustment time. Time of day, 

and marking has no effects on the deceleration adjustment time. In addition, age, gender, time of 

day, marking, and dressing color impact the maximum deceleration time. Among those, under 40 

years old group, male drivers, daylight driving, crosswalk with marking, and bright color clothes 

increase the maximum deceleration time. On the contrary, under 40 years old group, male drivers, 

daylight driving, crosswalk with marking, and bright color clothes decreased the maximum 

deceleration rate. However, the roadway type only affects the maximum deceleration rate, and 

doesn’t influence the maximum deceleration time. One lane with parking lane road has a higher 

deceleration rate than two lanes road. Last, age and dressing color are found to be significantly 

associated with the release brake time. Drivers who are over 40 years old have a lower brake 

release time than drivers who are under 40 years old. In addition, pedestrians with dark color 

clothes increased the brake release time than pedestrian with bright color clothes. 

 

Finally, the pedestrian-vehicle conflict prediction model is developed based on the midblock 

crossing experiment data. The results identify the significant effects of age, gender, dressing color, 

initial speed, initial location, t2, dm, and t3 on the minimum distance between the pedestrian and 

the vehicle. The model has a good performance, which could be tested as the vehicle alert system 

in the future.  
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8.5 Summary of the process of the pedestrian safety evaluation 

 

At the end of the dissertation, the process of the pedestrian safety evaluation was summarized 

based on the field data, micro-simulation data, and driving simulator data. First, based on the crash 

data, the location could be determined if it has the pedestrian safety issues. And the field data are 

collected to provide the traffic information, roadway characteristics, and so on. Then the micro-

simulation and driving simulator experiment can be used to find out the factors that may impact 

the pedestrian safety. Next, the proposed countermeasures based on the micro-simulation and 

driving simulator results could be tested in the microsimulation and driving simulator again. 

Finally, the effective countermeasures could be applied to the field. 
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APPENDIX A: IRB APPROVAL LETTER 
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APPENDIX B: DRIVING SIMULATOR SURVEY 
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APPENDIX C: R PROGRAM TO PROCESS EXPERIMENT DATA 
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The following code for the midblock scenario as an example show how to find key parameters 

from the experiment output file: 

1. Midblock crossings scenario coding example: 

#Select txt 

data1 = read.delim(file.choose()) 

#calculate the accelerate of the driver 

data1$negsign = ifelse(data1$Accelerate.x.feet.sec2. > 0, 1, -1) 

data1$accelerate= 

sqrt(data1$Accelerate.x.feet.sec2.^2+data1$Accelerate.y.feet.sec2.^2+data1$Accelerate.z.feet.

sec2.^2)*data1$negsign 

#add the timestep in the data 

Time = c(seq(from=0, to=(nrow(data1)-1)*(1/60), by=1/60)) 

data1$Time = Time 

#subset the No.1 midblock 

midblock1 = subset(data1, {X<14584 & X>13922 & Y < (-33973.9) & Y > (-34473.72)} ) 

#manange the No.1 midblock 

 

speed<-midblock1[,8:27] ## column for speed 

position<-midblock1[,28:87] ## column for position 

c <- 1:ncol(position) ##set the  

position.x<-position[,c%%3==1]  ## position of x 

position.z<-position[,c%%3==0]  ## position of z 

position.y<-position[,c%%3==2]  ## position of y 

columnNumber<-apply(speed, 1, function(x) match(TRUE,{x>1 & x<=5})) 

columnNumber<-as.numeric(columnNumber) 

## Retrieve the value of speed 

index2D<-function(v=columnNumber,DF=speed){ 
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sapply(1:length(v),function(x){ 

  DF[x,v[x]]}) 

} 

obj.speed<-index2D()##Output speed 

obj.x<-index2D(DF=position.x)##Output position.x 

obj.y<-index2D(DF=position.y)##Output speed 

obj.z<-index2D(DF=position.z)##Output speed 

 

newmidblock1<-

cbind(obj.speed,obj.x,obj.y,obj.z,midblock1$Vehicle.Speed.mph.,midblock1$Y,midblock1$X,mid

block1$Z,midblock1$Time,midblock1$accelerate) 

newmidblock1<-data.frame(newmidblock1) 

names(newmidblock1)<- c("obj.speed", "object.x","object.y","object.z","Vehicle.Speed.mph.", 

"Y", "X","Z","Time","accelerate") 

#calculate the minimum distance 

newmidblock1$distance=sqrt((newmidblock1$X-newmidblock1$object.x)^2+(newmidblock1$Y-

newmidblock1$object.y)^2) 

minimum.distance1 = min(newmidblock1$distance) 

#calculate the PET 

pettimerow = which(abs(newmidblock1$object.x-14195.71)==min(abs(newmidblock1$object.x-

14195.71))) 

pettimecol = which(names(newmidblock1)=="Time") 

pettime = newmidblock1[pettimerow,pettimecol] 

PET1 = newmidblock1[nrow(newmidblock1),pettimecol]-pettime 

#calculate TTC 

 

newmidblock1$diff.y<-c(diff(newmidblock1$Y),0) 

newmidblock1$diff.x<-c(diff(newmidblock1$X),0) 
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newmidblock1$diff.abs<-sqrt(newmidblock1$diff.y^2+newmidblock1$diff.x^2) 

newmidblock1$revse.abs<-rev(newmidblock1$diff.abs) 

newmidblock1$revse.cul<-cumsum(newmidblock1$revse.abs) 

newmidblock1$d1ft<-rev(newmidblock1$revse.cul)#calculate cumulative distance for vehicle 

newmidblock1$d1m<-newmidblock1$d1ft*0.3048 

subsetofttc1<-subset(newmidblock1,{newmidblock1$object.x<14195.71& 

newmidblock1$object.x>14165.63 } )#subset the newmidblock1 

subsetofttc1$diff.object.y<-c(diff(subsetofttc1$object.y),0) 

subsetofttc1$diff.object.x<-c(diff(subsetofttc1$object.x),0) 

subsetofttc1$diff.object.abs<-sqrt(subsetofttc1$diff.object.y^2+subsetofttc1$diff.object.x^2) 

subsetofttc1$revse.object.abs<-rev(subsetofttc1$diff.object.abs) 

subsetofttc1$revse.object.cul<-cumsum(subsetofttc1$revse.object.abs) 

subsetofttc1$d2ft<-rev(subsetofttc1$revse.object.cul)#calculate cumulative distance for 

pedestrian 

subsetofttc1$d2m<-subsetofttc1$d2ft*0.3048 

subsetofttc1$Vehicle.Speed.ms<-subsetofttc1$Vehicle.Speed.mph.*0.44704 

 

subsetofttc1$vehicle.ttc.head<-(subsetofttc1$d1m-2.32)/subsetofttc1$Vehicle.Speed.ms 

subsetofttc1$vehicle.ttc.tail<-(subsetofttc1$d1m+2.32)/subsetofttc1$Vehicle.Speed.ms 

subsetofttc1$pedestrian.ttc<-subsetofttc1$d2m/subsetofttc1$obj.speed#condition 1 

subsetofttc1$pedestrian.ttc.head<-subsetofttc1$d2m/subsetofttc1$obj.speed 

subsetofttc1$pedestrian.ttc.tail<-(subsetofttc1$d2m+2.08)/subsetofttc1$obj.speed 

subsetofttc1$vehicle.ttc<-(subsetofttc1$d1m-2.32)/subsetofttc1$Vehicle.Speed.ms#condition 2 

subsetofttc1$ttc <- ifelse 

((subsetofttc1$vehicle.ttc.head<subsetofttc1$pedestrian.ttc)&(subsetofttc1$vehicle.ttc.tail>su

bsetofttc1$pedestrian.ttc), subsetofttc1$pedestrian.ttc, 

ifelse((subsetofttc1$pedestrian.ttc.head<subsetofttc1$vehicle.ttc)&(subsetofttc1$pedestrian.tt

c.tail>subsetofttc1$vehicle.ttc),subsetofttc1$vehicle.ttc,100))  

#Calculate TTC and related distance 
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minimum.ttc1 = min(subsetofttc1$ttc) 

minittcrown = which(grepl(minimum.ttc1, subsetofttc1$ttc)) 

minittccoln = which(names(subsetofttc1)=="d1ft") 

miniposition1 = subsetofttc1[minittcrown, minittccoln] 

 

#calculate the maximum deceleration and related position 

maxdec1 = min(newmidblock1$accelerate) 

maxdecrown = which(grepl(maxdec1, newmidblock1$accelerate)) 

maxdeccoln = which(names(newmidblock1)=="d1ft") 

maxposition1 = newmidblock1[maxdecrown, maxdeccoln] 

#writing results 

DF.result<-

data.frame(Daylight=rep(NA),Marking=rep(NA),Roadwaytype=rep(NA),Dressingcolor=rep(NA),

Maximum.Deceleration=rep(NA), Max.Deceleration.Location=rep(NA),Min.Distance=rep(NA), 

PET=rep(NA),Min.TTC=rep(NA),Min.TTC.Location=rep(NA),  # as many cols as you need 

                 stringsAsFactors=FALSE)          

#Daylight (0=dark, 1= daytime); Marking(0=no, 1=yes);Roadwaytype(0=2lane with parking, 1= 4 

lanes); Dressing Color(0=Black, 1=Bright) 

DF.result[1,]<-

c(NA,1,1,0,maxdec1,maxposition1,minimum.distance1,PET1,minimum.ttc1,miniposition1) 

2. Intersections scenario coding example: 

 

#Select txt 

data1 = read.delim(file.choose()) 

#calculate the accelerate of the driver 

 

data1$negsign = ifelse(data1$Accelerate.x.feet.sec2. > 0, 1, -1) 

 



 122 
 

data1$accelerate = 

sqrt(data1$Accelerate.x.feet.sec2.^2+data1$Accelerate.y.feet.sec2.^2+data1$Accelerate.z.feet.

sec2.^2)*data1$negsign 

 

#add the timestep in the data 

Time = c(seq(from=0, to=(nrow(data1)-1)*(1/60), by=1/60)) 

data1$Time = Time 

 

#subset the No.1 intersection 

intersection1 = subset(data1, {X<(-8176.31) & X>(-8390) & Y < (2437) & Y > (2226.17)} ) 

 

#manange the No.1 intersection 

speed<-intersection1[,8:27] ## column for speed 

position<-intersection1[,28:87] ## column for position 

c <- 1:ncol(position) ##set the  

position.x<-position[,c%%3==1]  ## position of x 

position.z<-position[,c%%3==0]  ## position of z 

position.y<-position[,c%%3==2]  ## position of y 

columnNumber<-apply(speed, 1, function(x) match(TRUE,{x>1 & x<=5})) 

columnNumber<-as.numeric(columnNumber) 

 

## Retrieve the value of speed 

index2D<-function(v=columnNumber,DF=speed){ 

  sapply(1:length(v),function(x){ 

    DF[x,v[x]]}) 

} 
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obj.speed<-index2D()##Output speed 

obj.x<-index2D(DF=position.x)##Output position.x 

obj.y<-index2D(DF=position.y)##Output speed 

obj.z<-index2D(DF=position.z)##Output speed 

newintersection1<-

cbind(obj.speed,obj.x,obj.y,obj.z,intersection1$Vehicle.Speed.mph.,intersection1$Y,intersectio

n1$X,intersection1$Z,intersection1$Time,intersection1$accelerate) 

newintersection1<-data.frame(newintersection1) 

names(newintersection1)<- c("obj.speed", 

"object.x","object.y","object.z","Vehicle.Speed.mph.", "Y", "X","Z","Time","accelerate") 

 

#calculate the minimum distance 

newintersection1$distance = sqrt((newintersection1$X-

newintersection1$object.x)^2+(newintersection1$Y-newintersection1$object.y)^2) 

minimum.distance1 = min(newintersection1$distance) 

 

#calculate the PET 

pettimerow = which(abs(newintersection1$object.y-

2288.64)==min(abs(newintersection1$object.y-2288.64))) 

pettimecol = which(names(newintersection1)=="Time") 

pettime = newintersection1[pettimerow,pettimecol] 

PET1 = newintersection1[nrow(newintersection1),pettimecol]-pettime 

 

#calculate TTC 

newintersection1$diff.y<-c(diff(newintersection1$Y),0) 

newintersection1$diff.x<-c(diff(newintersection1$X),0) 

newintersection1$diff.abs<-sqrt(newintersection1$diff.y^2+newintersection1$diff.x^2) 

newintersection1$revse.abs<-rev(newintersection1$diff.abs) 
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newintersection1$revse.cul<-cumsum(newintersection1$revse.abs) 

newintersection1$d1ft<-rev(newintersection1$revse.cul)#calculate cumulative distance for 

vehicle 

newintersection1$d1m<-newintersection1$d1ft*0.3048 

 

subsetofttc1 <- subset(newintersection1, {newintersection1$object.y<2337.22 & 

newintersection1$object.y>2288.64 } )#subset the newintersection1 

subsetofttc1$diff.object.y<-c(diff(subsetofttc1$object.y),0) 

subsetofttc1$diff.object.x<-c(diff(subsetofttc1$object.x),0) 

subsetofttc1$diff.object.abs<-sqrt(subsetofttc1$diff.object.y^2+subsetofttc1$diff.object.x^2) 

subsetofttc1$revse.object.abs<-rev(subsetofttc1$diff.object.abs) 

subsetofttc1$revse.object.cul<-cumsum(subsetofttc1$revse.object.abs) 

subsetofttc1$d2ft<-rev(subsetofttc1$revse.object.cul)#calculate cumulative distance for 

pedestrian 

subsetofttc1$d2m<-subsetofttc1$d2ft*0.3048 

subsetofttc1$Vehicle.Speed.ms<-subsetofttc1$Vehicle.Speed.mph.*0.44704 

 

subsetofttc1$vehicle.ttc.head<-(subsetofttc1$d1m-2.32)/subsetofttc1$Vehicle.Speed.ms 

subsetofttc1$vehicle.ttc.tail<-(subsetofttc1$d1m+2.32)/subsetofttc1$Vehicle.Speed.ms 

subsetofttc1$pedestrian.ttc<-subsetofttc1$d2m/subsetofttc1$obj.speed#condition 1 

 

subsetofttc1$pedestrian.ttc.head<-subsetofttc1$d2m/subsetofttc1$obj.speed 

subsetofttc1$pedestrian.ttc.tail<-(subsetofttc1$d2m+2.08)/subsetofttc1$obj.speed 

subsetofttc1$vehicle.ttc<-(subsetofttc1$d1m-2.32)/subsetofttc1$Vehicle.Speed.ms#condition 2 

 

subsetofttc1$ttc <- ifelse 

((subsetofttc1$vehicle.ttc.head<subsetofttc1$pedestrian.ttc)&(subsetofttc1$vehicle.ttc.tail>su

bsetofttc1$pedestrian.ttc), subsetofttc1$pedestrian.ttc, 
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ifelse((subsetofttc1$pedestrian.ttc.head<subsetofttc1$vehicle.ttc)&(subsetofttc1$pedestrian.tt

c.tail>subsetofttc1$vehicle.ttc),subsetofttc1$vehicle.ttc,100))  

 

#Calculate TTC  

minimum.ttc1 = min(subsetofttc1$ttc) 

 

#Calculate Entrance Speed 

EntSpeed1 = newintersection1[1,5] 

 

#Calculate Totaltime 

Totaltime1 = abs(newintersection1[1,9]-newintersection1[nrow(newintersection1),9]) 

 

#No.1 intersection writing results 

DF.result <- data.frame(Daylight=rep(NA), Turning=rep(NA), 

Ped_movement=rep(NA),Dressingcolor=rep(NA),minimum.distance=rep(NA), 

PET=rep(NA),minimum.ttc=rep(NA), EntSpeed=rep(NA),Totaltime=rep(NA),  # as many cols as 

you need 

                        stringsAsFactors=FALSE)    

 

#Daylight (0=dark, 1= daytime); Turning(0=left, 1=right); Pedestrian Movement (0=left, 1= right); 

Dressing Color(0=Black, 1=Bright) 

DF.result[1, ] <- c(NA,1,0,1,minimum.distance1,PET1,minimum.ttc1,EntSpeed1,Totaltime1) 
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APPENDIX D: PRESENTATION AND PUBLICATION 
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Determine if VISSIM and SSAM could estimate pedestrian-vehicle conflicts at signalized intersections. 

Potential presentation and publication. 

Assessment of pedestrian-vehicle conflicts with different potential risk factors at midblock crossings based 

on driving simulator experiment. Potential presentation and publication. 

Assess pedestrian-vehicle conflicts at signalized intersection with a concurrent pedestrian phasing - A 

driving simulator study. Potential presentation and publication. 
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