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ABSTRACT 

The state of Florida is highly prone to sinkhole incident and formation, mainly because of the 

soluble carbonate bedrock which is susceptible to dissolution and groundwater recharge that 

causes internal soil erosions. Numerous sinkholes, particularly in Central Florida, have occurred. 

Florida Subsidence Incident Report (FSIR) database contains verified sinkholes with Global 

Positioning System (GPS) information.  In addition to existing detection methods such as 

subsurface exploration and geophysical methods, a remote sensing method can be an alternative 

and efficient means to detect and characterize sinkholes with a wide coverage.  

the first part of this study is aimed at developing a method to detect sinkholes in Missouri 

by using Light Detection and Ranging (LiDAR) data. Morphometrical parameters such as TPI 

(Topographic Position Index), CI (Convergence Index), SI (Slope Index), and DEM (Digital 

Elevation Model) have a high potential to help detect sinkholes, based on local ground 

conditions and study area. The GLM (General Linear Model) built in R software is used to 

obtain morphometrical indices of the study terrain to be trained and build a logistic regression 

model to detect sinkholes. In the second part of the study, a semi-automated model in ArcMap is 

then developed to detect sinkholes and also to estimate geometric characteristics of sinkholes 

(e.g. depth, length, circularity, area, and volume). This remote sensing technique has a potential 

to detect unreported sinkholes in rural and/or inaccessible areas. 
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CHAPTER 1: INTRODUCTION  

1.1 Problem statement 

Sinkholes are geologic features and naturally occurring in karst terrain. Sinkholes play an 

important role in public safety and health because they cause structural damages, property losses, 

and dramatic impacts on public life. For instance, the economic loss to housing is estimated to be 

five-million dollars per year for the city of Tampa itself and is expected to increase in future 

(Lerche, 2006). The most destructive sinkhole ever reported occurred on May 8-10, 1981, in 

Winter Park, and caused over four-million dollars of damages. 

By creating pathways between surface water and underlying aquifers, sinkholes threaten 

water and environmental resources. Surface contaminants can be transmitted into underlying 

aquafers causing degrade of ground water resources (Tihansky, 1999). In one incident, on 

September 16th, 2016, a sinkhole occurred over a gypsum stack. “It drained millions of gallons of 

acidic water laced with sulfate and sodium from a pool atop a 120-foot gypsum stack. An 

unknown amount of gypsum, a fertilizer byproduct with low levels of radiation, also fell into the 

sinkhole, which is believed be at least 300 feet deep”, reported Tampa Bay Times (Figure 1). 
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Figure 1. Aerial image of sinkhole occured in Mulberry, FL (Tampa Bay Times, 2016) 

1.2 Objectives 
Due to heavy impact that each sinkhole incident may have to public life and property, 

sinkhole detection and quantification of sinkholes in specific areas is of great interest and may 

help researchers predict and reduce the risks. Many studies have aimed to develop method to 

detect and quantify sinkholes, although the topic is in early stages of development.  

This study is an attempt to develop a methodology to automate the sinkhole detection 

process and also quantify the geometric characteristics of sinkholes, by using LiDAR data.  

1.3 Outline 
Chapter 1 provides the objectives and problem statement of this study. In addition, the 

organization of thesis chapter is presented.   

Chapter 2 is a literature review on the process of sinkhole development and different types of 

sinkholes, and a review of studies being conducted on sinkhole risk assessment and mapping 
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Chapter 3 discusses a logistic regression model being developed to detect sinkholes based on the 

morphometrical characteristics of the terrain 

Chapter 4 presents the details of a semi-automated method which is being developed to quantify 

the geometric characteristics of sinkholes in Central Florida.  

Chapter 5 is the summary and conclusions. Limitations and recommendations are also presented. 
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CHAPTER 2: LITERATURE REVIEW 
 

2.1 Sinkholes in Florida 
Karst topography is formed by the geomorphic process involving dissolution of soluble 

carbonate bedrock, resulting in an underground network of drainage with high hydraulic 

conductivity. Karst topography is mostly not regular due to the presence of acidic water in the 

region and dissolution of carbonate rock forming cavities and resulting in sediments subside or 

collapse.  Sinkholes (or dolines) are a feature of all karst terrains (Waltham, Bell, & Culshaw, 

2005). There are six types of sinkholes: collapse, buried, solution, caprock, suffusion, and 

dropout (Lowe, Waltham, & British Cave Research Association., 2002). Each of these sinkhole 

types have some equivalent names.  

 

Figure 2. Cover-collapse sinkhole occurrences in Florida: (a) Winter Park, FL (1981), (b) 
Orlando, FL (2013), and (c) Pasco County, FL (2014) 

 

Sinkholes in Florida, by the form of either cover-collapse or cover-subsidence, are 

formed by erosion of subsurface soils caused by dissolution of soluble bedrock in karst 

landscapes. Cover-collapse sinkholes are sudden sinkhole collapse and cover-subsidence 

sinkholes are gradual ground subsidence phenomenon. Both sinkhole types have caused severe 

damage to infrastructure/buildings, and also affect water quality in underlying carbonate 

acquirers (Shaban & Darwich, 2011). Studies on Florida sinkholes associated with sinkhole 
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mechanism, sinkhole hazard assessment, and numerical analyses have been conducted (Perez et 

al., 2017) (Xiao et al., 2017.) (Shamet, Perez, & Nam, 2017) (Kim & Nam, 2017) (Nam and 

Kim, 2017) 

Carbonates are a group of minerals which all contain (CO3) in their molecular formation. 

The most important carbonates are calcite, dolomite, and aragonite. Calcite is the most prevalent 

carbonate mineral. Limestones in Florida are either calcite or dolomite with calcite being more 

predominant. The sinkhole formation in Florida is caused by dissolution of limestone or other 

soluble carbonate rocks by groundwater flow. As acidic water from rainfall infiltrates into the 

groundwater system and encounters soluble limestones on top of the carbonate bedrock within 

the confined Floridan Aquifer System (FAS), the rocks naturally and very slowly begin to 

dissolve away and physically erode along the fractures, creating small cavities and voids.  

 

Figure 3. Dissolution process (Tihansky, 1999) 
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As they grow larger with time, the overlying surficial soils keep moving downward to fill 

into the cavities and voids, resulting in upward raveling due to continuous dissolution and soil 

erosion. As a result, sinkholes occur when overburden sediments either abruptly collapse or 

slowly subside. It is noted that the growth of individual cavities and voids can coalesce and lead 

to hydraulic interconnection, and thus, to increase groundwater flow and to accelerate dissolution 

and erosion rates.       

Sinkholes in Florida are commonly classified as dissolution sinkholes, cover-subsidence 

sinkholes, and cover-collapse sinkholes depending on the thickness and composition of 

overburden materials and the local hydrologic conditions (Figures 4, 5, and 6). 

 

Figure 4. Cover-collapse sinkhole (Beck, 1986) 
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Dissolution sinkholes occur where carbonate bedrocks are slowly dissolved and carried 

away from the surface due to weakly acidic rail water resulting in small cavities and voids. As 

the surficial materials fail and move downward to infill the cavities and voids, a gradual 

depression on land surface is formed. These sinkholes are prominent in areas where the 

overburden deposits are thin and highly permeable. However, due to the slow formation process 

of dissolution sinkholes, damages to human lives and properties could be minor. 

Compared to dissolution sinkholes, cover-subsidence and cover-collapse sinkholes are 

likely to occur where the overburden deposits are thicker and less permeable. Cover-subsidence 

sinkholes are developed in areas where covering sediments are relatively permeable non-

cohesive sands and gradually settling into cavities and voids to form slow depressions in land 

surface. On the other hand, cover-collapse sinkholes are developed due to erosion and upward 

raveling of soil structures, where covering sediments contains a significant of cohesive and 

impermeable clays. The process of cover-subsidence sinkholes take place for a very long time, 

and these sinkholes may be undetectable for long periods in areas where there are thicker cover 

materials. Cover-collapse sinkholes, however, can develop abruptly and cause catastrophic 

damages. 

 U.S. Geological Survey (USGS) has categorized sinkhole of Florida into 4 areas (Figure 

7). The first category Area I the covering material is very permeable and thin. Area I is 

reportedly very less susceptible to cover-collapse sinkholes. Solution sinkholes dominate this 

area. Area II consists of incohesive material and permeable sand. In this area, sinkholes are low 

in number and the thickness of cover material is between 30 feet to 200 feet. Cover-subsidence 

sinkholes are more prevalent in this area. Area III consists of cohesive clayey sediments with low 
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permeability and like area II, cover material thickness is in range of 30 to 200 feet. Sinkholes are 

a lot in number, the diameter of sinkholes differ, and they are developed precipitously. Cover-

collapse sinkholes are more prevalent in this area. Clay component provides degree of 

cohesiveness to overlay material that allows bridge between surficial aquafer and develops 

sinkhole in carbonate aquafer (Tu, 2016). Areas II and III have similar sinkhole occurrence 

mechanism. The difference is that developing cavity in Area II is will be filled by incohesive 

soil, while the cavity in Area III will be supported by cohesive soil on the top, and in the last 

stage of this process, failure of the cohesive layer result in cover-collapse sinkhole. The 

difference in water levels between sand aquafer and its underlain carbonate aquafer is a lot. Due 

to this water head difference, the clay layer between these two will be stressed under hydrostatic 

pressure. The other pressure which the clay layer suffers are cover layers and its weight. An 

increase in water head difference, often by flooding or decline of water level in carbonate 

aquafer, will then result in a collapse. Also, pumping the water form low aquafers might the most 

important man-made causes of sinkholes. Area IV consists of cohesive sediments, and the 

thickness of cover layer is more than 200 feet. Due to the high amount of thickness, sinkholes 

rarely occur and the rare occurred sinkholes are very large and deep, mostly cover-collapse. 

 

Figure 5. Cover-subsidence sinkholes in Florida (Tihansky, 1999) 
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Figure 6. Cover-collapse sinkholes in Florida (Tihansky, 1999) 

 

 

Figure 7. Four sinkhole category areas in Florida (U.S. Geological Survey, 1985) 

 

 

2.2 LiDAR technology and sinkhole mapping techniques 
Mapping sinkholes is critical for the success of public safety and infrastructure/building 

management. Past methods for the sinkhole mapping were mainly relied on visual interpretation 
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with low-resolution topographic maps and aerial photographs that require field verification. 

These ways are manually done, which are labor-intensive and time-consuming environment in 

the analysis. Field check of individual sinkhole is most times not practical; as a result, manually 

digitized sinkhole data may not be reliable (Doctor & Young, 2013). Mapping sinkholes by the 

use of visual topographic maps and aerial imagery is time consuming and mostly inaccurate. 

Also sinkholes under forested areas are impossible to be detected by aerial imagery and 

topographic maps. manual interpretation of karst features have shown that subjectivity in the 

methodology can result in false positive and false negative identification of karst features 

(Doctor & Young, 2013). Some previous studies (Rahimi & Alexander, 2013); (Zhu, Taylor, 

Currens, & Crawford, n.d.); (Wu, Deng, & Chen, 2016a) found that sinkholes may be changing 

fast because of natural causes or human activity.  

 

Figure 8. Map showing reported sinkholes throughout the state of Florida (Florida Geological 
Survey, 2017) 
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LiDAR (Light Detection and Ranging) technology has made possible more accurate 

study of karst terrain features, e.g. sinkholes. LiDAR is relatively a recent remote sensing 

technology that produce large volumes of accurate and high spatial-resolution topographical 

measurements. In this technology, LiDAR data is collected using a low-flying aircraft flying 

over a designated area, illuminating laser pulses and receiving them back by sensors embedded 

inside the aircraft, and finally calculating distance to target and finally making 3d-representation 

of the designated area using the wavelength and time of laser pulses (Figures 9 and 10). Airborne 

lidar data are collected and used by remote sensing companies, in which they can be used to 

create Digital Terrain Models (DTM) and Digital Elevation Models (DEM).  High-resolution 

digitized elevation data from LiDAR enables more accurate delineation and small-scale analyses 

on geomorphological features and landscapes(Galve, Lucha, Castañeda, Bonachea, & Guerrero, 

2011) (Wu et al., 2016a). 

 

Figure 9. Left: Airborne LiDAR (Deepreef Explorer). Right: LiDAR 3d-representation (Rise 
Media Productions) 
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Figure 10. An application of LiDAR technology (US Department of Commerce, n.d.) 

 

Moreover, several studies have used LiDAR data to identify and characterize sinkholes. 

Mukherjee (2012) employed a sink-filling method on LiDAR to determine the depression by 

subtracting the depressionless/filled digital elevation model (DEM) from the original DEM. 

Different thresholds were applied to the subtracted layer, thus sinkholes are identified.  Some 

have used a similar sink-filling method and reported that potential sinkholes are four times the 

existing database in the same area (Wu, Deng, & Chen, 2016b). Some studies have used image-

processing techniques to detect and delineate sinkhole boundaries. (Obu & Podobnikar, 2015) 

implemented kernel windows using focal functions. (Rahimi & Alexander, 2013) used active-

contour approach to detect sinkhole boundaries based on elevation gradient in the surrounding 

region around the seed point. 
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CHAPTER 3: SINKHOLE DETECTION USING A LOGISTIC 
REGRESSION MODEL AND LIDAR DATA 

3.1 Study area and data 
In this chapter, a pixel-based method is proposed to detect sinkholes of a karst terrain. A 

free 1 x 1m LiDAR-derived DEM (Digital Elevation Model) was acquired from Missouri Spatial 

Data Information Service (“MSDIS LiDAR DEM File Download Tool,” n.d.). The data is a 

high-resolution DEM, covering an area of approximately 14 km2 in Greene County, MO. The 

region is underlain by thick, carbonate rock units that host a wide variety of karst features. The 

sinkholes in the region are formed by a process, similar to sinkholes in Florida.The region is 

located between -93.383° and -93.342° west-east longitudes and 37.326° and 37.293° north-

south latitudes (Figure 11). The Geological Survey Program of Missouri Department of Natural 

Resources has identified 15,981 sinkholes in the state and hundreds non-reported sinkholes also 

exist in the region.  

 

Figure 11. Location map of study area, Missouri 
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3.2 Methodology 
A 1 m x 1 m spatial resolution DEM obtained from the study area is shown in Figure 12. The 

green polygons illustrate sinkhole boundaries which are provided by the city of Springfield’s 

Governmental Open Data (“Sinkhole Boundaries,” n.d.). The data is presented as a shapefile 

(vector data storage format for storing the location, shape, and attributes of geographic features 

compatible with GIS softwares). This shapefile is a set of polygons delineating the boundaries of 

reported sinkholes in the region. This shapefile was used to build the logistic regression model. 

 

Figure 12. Digital Eleveation Model (DEM) and sinkhole boundaries in the study area 
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In the first step, a new raster was produced in the same extents of the original DEM, 

using “rasterize” function in R software. In this new raster, the cells inside the reported sinkholes 

of the region (polygons) were reclassified to have the value of one and the cells outside any 

polygon were reclassified to have the value of zero. The produced raster was used as the 

response variable in model building process. It represented a binomial response variable, with 

each cell having the value of one as “success” (or sinkhole existing) and the remaining cells with 

the zero value as “failure” (or sinkhole not existing) (see Figure 13). 

 

Figure 13. Reclassified study area 
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3.2.1 Logistic regression 

Researchers are often trying to make models to analyze the relationship among some 

predictor variables (i.e., independent variables) and response variables (i.e., dependent variable). 

Logistic regression (LR) is a regression analysis to conduct when the response variable is 

dichotomous (i.e., binary). The following is the general equation of logistic regression: 

𝑙𝑜𝑔𝑖𝑡(𝑝(𝑌 = 1)) =  𝑏0 + 𝑏1𝑋1 + 𝑏2𝑋2 + 𝑏3𝑋3 + ⋯ 𝑏𝑘𝑋𝑘 

Where  p = probability 

Y = response variable 

X = predictor variable 

   

3.2.2 Morphometrical indices 

In the second step, morphometrical parameters (or indices) were derived from the DEM 

and then were used as predictor variables in the GLM model building process. Seven (7) 

different morphometrical indices were derived. Using the morphometrical indices as predictor 

values, a Logistic Regression (LR) model was built, and most important variables associated 

with the existence of sinkholes in the region were identified.  

Seven different morphometrical indices were derived from the DEM raster. Each 

morphometric index was presented as a raster. Each cell in these rasters represents the 

morphometrical index of the corresponding cell in DEM. Topographic Position Index (TPI) 

compares the elevation of each cell in a DEM to the mean elevation of a specified neighborhood 

around that cell (Jenness, 2001; De Reu et al., 2013).The neighborhood radius of 60 meters was 

used to compute TPI. Convergence Index with a search radius of 50 meters was also derived 

(Kiss, 2004). Normalized height and standardized height were also computed. Normalized height 

allots value 1 to the highest and value 0 to the lowest position within a respective reference area. 



17 
 

Standardized height is the product of normalized height multiplied with absolute height 

(Dietrich, Physischen, & 2008, 2008). Topographic Wetness Index (TWI) which is a steady-state 

wetness index was also derived (Sørensen, Zinko, & Seibert, 2006). Downslope Distance 

Gradient is an index used to quantify downslope controls on local drainage (Hjerdt, McDonnell, 

Seibert, & Rodhe, 2004). DEM was also considered and used as a morphometrical index (see 

Figure 14).  

 

Figure 14. Morphometrical indices for the study area. a) Digital Elevation Model (DEM), b) 
Convergence index (CI), c) Topographic Position Index (TPI), and d) Slope index (SI)  
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3.2.3 GLM model selection 

Prior to building GLM model and to avoid multicollinearity issue, a correlation analysis 

was conducted on predictor variables (morphometrical indices) and variables with a high 

correlation were removed. Next step, different combinations of predictor variables were used to 

make logistic regression models and the variable significance was checked for each model.  

In order to reduce overfitting issue, we tried to use fewer predictor variables in the model. 

The best model was the with Convergence Index (CI), Topographic Positioning Index (TPI), 

Digital Elevation Model (DEM), and Slope Index (SI) as predictor variables. In Table 1 and 

Table 2, show two examples of models being built and tested, and model 3 (Table 3) is the best 

model.  

Table 1. Model using CI, SH, DEM, and SI as predictor variables 

Variable Estimate Std. Error Z value Pr(>|z|) 
Intercept -2.277e+03   2.286e+04 -0.100 0.921 
CI -6.609e-02 6.387e-05 -1034.852 <2e-16 
SH 1.421e+01 1.464e+02  0.097 0.923 
DEM -6.919e+00 7.280e+01 -0.095 0.924 
SI 2.001e-01 1.981e-03  101.01 <2e-16 𝑹𝟐 = 0.29 

 

Table 2. Model using CI, SH, TPI, and SI as predictor variables 

Variable Estimate Std. Error Z value Pr(>|z|) 
Intercept -1.074e+02 1.235e-01 -869.61 <2e-16 
CI -5.771e-02   1.062e-04 -543.57 <2e-16 
SH 3.113e-01   3.646e-04 853.85 <2e-16 
TPI -3.077e-01   3.164e-03 -97.24 <2e-16 
SI 1.801e-01 2.201e-03 81.83 <2e-16 𝑹𝟐 = 0.55 
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Table 3. Model using CI, TPI, DEM, and SI as predictor variables 

Variable Estimate Std. Error Z value Pr(>|z|) 
Intercept -6.058e+01 7.021e-02 -862.82 <2e-16 
CI -5.762e-02 1.045e-04 -551.41 <2e-16 
TPI -5.361e-01 3.950e-03 -135.72 <2e-16 
DEM 1.578e-01 1.862e-04   847.57 <2e-16 
SI 1.961e-01 2.156e-03 90.96 <2e-16 𝑹𝟐 = 0.58 

 

3.2.4 Cutoff value 

 The result of a logistic regression model in this case, is a raster in which each cell shows 

the probability of that specific cell residing in a sinkhole. Therefore, a cutoff value should be 

chosen for this model. Figure 15 is the probability raster.  

Sensitivity and Specificity are statistical measures of performance of a classification 

model (Bewick, Cheek, & Ball, 2004). The former quantifies the avoiding of false negatives 

detections and the latter quantifies the avoidance of false positives. With cutoff value increasing, 

specificity also increases, and sensitivity decreases. Based on sensitivity/specificity curve, the 

optimum cutoff value was chosen 0.63 which is the interception of the two curves (Figure 16).  

Sensitivity = 
𝑇𝑃𝑇𝑃+𝐹𝑁                  

Specificity = 
𝑇𝑁𝑇𝑁+𝐹𝑃    
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Figure 15. Sinkhole existence probability map 

  

Based on chosen cutoff value, a new raster was produced in which a value of 1 was assigned to 

cells with probability of equal or more than 0.63 and 0 was assigned to the cells with a 

probability of less than 0.63. as Figure 17 is demonstrating, the method is ideal for locating 

sinkholes and not necessarily delineating the boundaries of sinkholes. By increasing the cutoff 

value, the boundaries generated by the model will approach the actual sinkhole boundaries, 
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although the chance of False Positive detections increases. Figure 18 shows the boundaries 

generated by the GLM model after implementing it on the study area. 

 

 

Figure 16. Sensitivity and specificity chart 

 

All morphometrical indices were derived and computed and presented in QGIS® 

software. Model building was conducted in R software (RTeam, 2017) with glm2 package 

(Marschner, 2011). raster layers were read, modified, and produced using raster package 

(Hijmans, 2017). Cutoff value was determined using proc package (Xavier Robin, Natacha 

Turck, Alexandre Hainard & Frédérique Lisacek, 2011).  
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Figure 17. Validated sinkhole boundaries(white) and sinkhole boundaries detected by 
model(red) 

 

Figure 18. Sinkhole detected in study area (green polygons), and sinkholes detected by GLM 
model(red) 

 



23 
 

CHAPTER 4: SINKHOLE QUANTIFICATION USING LIDAR DATA 1 

 

4.1 Florida’s sinkholes 
 

The sinkhole formation in Florida is caused by dissolution of limestone or other soluble 

carbonate rocks by groundwater flow. As acidic water from rainfall infiltrates into the 

groundwater system and encounters soluble limestones on top of the carbonate bedrock within 

the confined Floridan Aquifer System (FAS), the rocks naturally and very slowly begin to 

dissolve away and physically erode along the fractures, creating small cavities and voids. As they 

grow larger with time, the overlying surficial soils keep moving downward to fill into the 

cavities and voids, resulting in upward raveling due to continuous dissolution and soil erosion. 

As a result, sinkholes occur when overburden sediments either abruptly collapse or slowly 

subside. It is noted that the growth of individual cavities and voids can coalesce and lead to 

hydraulic interconnection, and thus, to increase groundwater flow and to accelerate dissolution 

and erosion rates.       

Sinkholes in Florida are commonly classified as dissolution sinkholes, cover-subsidence 

sinkholes, and cover-collapse sinkholes depending on the thickness and composition of 

overburden materials and the local hydrologic conditions. Dissolution sinkholes occur where 

carbonate bedrocks are slowly dissolved and carried away from the surface due to weakly acidic 

rail water resulting in small cavities and voids. As the surficial materials fail and move 

downward to infill the cavities and voids, a gradual depression on land surface is formed. These 

sinkholes are prominent in areas where the overburden deposits are thin and highly permeable. 

                                                 
1 The content of this chapter also will appear in: 
A. Rajabi, Y. Kim, S. Kim, B. Nam (2017). “A preliminary study on use of LiDAR data to characterize sinkholes 

in Central Florida”. International Foundation Congress and Equipment Expo (IFCEE) 2018, Orlando. 
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However, due to the slow formation process of dissolution sinkholes, damages to human lives 

and properties could be minor. 

Compared to dissolution sinkholes, cover-subsidence and cover-collapse sinkholes are 

likely to occur where the overburden deposits are thicker and less permeable. Cover-subsidence 

sinkholes are developed in areas where covering sediments are relatively permeable non-

cohesive sands and gradually settling into cavities and voids to form slow depressions in land 

surface. On the other hand, cover-collapse sinkholes are developed due to erosion and upward 

raveling of soil structures, where covering sediments contains a significant of cohesive and 

impermeable clays. The process of cover-subsidence sinkholes take place for a very long time, 

and these sinkholes may be undetectable for long periods in areas where there are thicker cover 

materials. Cover-collapse sinkholes, however, can develop abruptly and cause catastrophic 

damages. 

4.2 Methodology 
A procedure to identify sinkholes was developed. Once sinkholes are identified, the 

geometric characteristics can be determined. Figure 19 shows the flowchart for the methodology. 

GIS-based software, ArcGIS, was used. The procedure involves five steps: (1) creating Digital 

Elevation Model (DEM), (2) processing the DEM, extraction of depression DEM, (3) extraction 

of sinkhole boundary contours, (4) calculation of sinkhole geometric properties, and (5) 

eliminate non-sinkholes depressions based on threshold values. The threshold values are the 

criteria, with respect to geometric characteristics, to determine whether surface depressions are 

sinkhole or not. More details are described as below. 
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Figure 19. Sinkhole detection and quantification process flowchart. 

 

The first step is to create 1 m x 1 m DEMs from the LiDAR point cloud using a 

triangulation interpolation method. (Figure 20). The second step is to identify and fill sinks in the 

DEM using the Fill tool in ArcGIS. The third step is to subtract the filled elevation raster from 

the original DEM (Figure 21). The result will be the difference raster where only the depressions 

have a value and all other pixels’ values are zero. In the fourth step, Reclassify tool is used to 

classify pixels less than 20 cm (vertical accuracy of LiDAR data). The contours of the 

reclassified raster are delineated and converted into polygons. Polygons that do not meet the 

threshold requirements are then eliminated. The most outward contours, which remain after 

implementing threshold values, are depression, or in other word, sinkhole-candidates’ 

boundaries. (Figure 22). 

 

Creating DEM Processing the DEM
Extract depression 

DEM

Calculate sinkhole 
geometric properties

Compare with 
threshold values

Extract sinkhole 
boundary contours 
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Figure 20. Left: raw LiDAR data. Right: DEM produced by LiDAR data 

 

Figure 21. Left: Filled DEM raster. Right: Difference raster 
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Figure 22. Contour drew over study area and the process of contour eliminating 

 

4.3 Threshold values of sinkhole geometric characteristics 
In this section, criteria to eliminate non-sinkholes from the identified polygons were 

established. Based on sinkholes in the selected areas where LiDAR data are analyzed, the upper 

and lower limits of area, perimeter, depth, and length are determined so that sinkholes outside the 

upper and lower limits are eliminated. First, basic geometric characteristics of reported sinkholes 

of Central Florida were evaluated. The area selected in constructing the thresholds include nine 

counties, including Marion, Sumter, Lake, Seminole, Orange, Osceola, Polk, Hardee, and 

Highlands Counties. The total number of sinkholes over the nine counties is 807. About 50 
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sinkholes do not contain geometric information; thus, they were not included in further analysis. 

A few “mega” sinkholes, for example greater than 8 m, are not included in the analysis because 

most sinkholes occurring in the area of central Florida are in the rage of 0.3 to 7 m. These mega 

sinkholes are considered as outlier in the sinkhole database. To eliminate those outliers, 

interquartile ranges (IQRs) method was used. For this purpose, first and third quartile of the data 

was calculated for each parameter. The IQR was then calculated by subtracting first quartile 

from third quartile. Any data which is more than 1.5*IQR below the first quartile or more than 

1.5*IQR above the third quartile is regarded as an outlier, thus they are filtered out (Figure 24). 

The remaining data was used to calculate cumulative frequencies for length, area, perimeter, and 

depth. Figure 23 shows plotted cumulative frequencies for geometric parameters. Based on 

summary statistics of central Florida sinkholes, it appears that most sinkholes ranged from 5 and 

95 percentiles in size, thus threshold values are determined by corresponding 5 and 95 percent of 

area, perimeter, depth, and length.  The constructed thresholds are presented in Table 4. These 

thresholds will be used to eliminate non-sinkholes identified from LiDAR data.  
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Figure 23. Cumulative frequency for (a) Area. (b) Perimeter. (c) Depth. (d) Length 

 

 

Figure 24. IQR (Interquartile Ranges Method) 

 

Table 4. 5th and 95th percentile for Central Florida Reported Sinkholes. 

Parameter Area (m2) Perimeter (m) Depth (m) Length (m) 

5th percentile 0.16   1.46 0.27 0.46 

95th percentile 89.36 47.41 7.19 10.67 
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4.4 Determination of geometric characteristics 
The detected depressions are then quantitatively characterized regarding their geometric 

characteristics, including area, depth and volume and circularity are calculated. Zonal Statistics 

as Table tool is used to calculate depth and standard deviation of elevation values inside the 

depressions. To determine the areas and volume of sinkholes in 2D and 3D, the elevation 

difference raster is first clipped by the sinkhole boundaries polygons and then the tool Surface 

Volume is used to calculate mentioned parameters. 

Circularity is deviation of boundary of a geometric shape from a circle and is calculated 

using by the following equation. The circularity value is 1.0 for a circle and close to zero for a 

highly elongated shape.                        

C =  4πAP2  

where C is circularity, A is area of shape, p is perimeter of shape. To determine the 

circularity of depressions, Minimum Bounding Geometry tool is used and the length and area of 

the smallest convex polygon enclosing the depression is used. 

4.5 Site description and LiDAR data 
LiDAR data was acquired by the National Center for Airborne Laser Mapping 

(NCALM). Airborne LiDAR data were collected on June 25, 2011. The point density is 6.73 

(pts/m2) and covers approximately 49 km2 in Orange County, FL and a portion of Seminole 

county. It is located between -81.5112° and -81.4429° west-east longitudes and 28.7827° and 

28.7013° north-south latitudes (see Figure 25). 

The area can be considered as highly vegetated and non-residential areas. Due to these 

accessibility issues, manual detection of depressions and aerial images may not be practical; 

thus, using LiDAR data for detection can be an effective approach. 
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Figure 25. Location map of study area, Florida 

 

4.6 Results and discussion 
The methodology described in Figure 19 was applied to the study area shown in Figure 

25. Figure 26 shows the aerial and hillshade images of the study area where potential sinkholes 

exist. Red closed circles are the boundaries of detected surface depressions. It is obvious that the 

aerial image does not show surface depressions/sinkholes due to high density of vegetation and 

presence of trees. On the other hand, the hillshade image (see Figure 26.b) shows two 

depressions (denoted as A and B in the figure). Depressions A and B were selected for further 

analysis to determine their morphometric characteristics. The 2D and 3D profiles of both 

depressions are shown in Figure 27.  A LiDAR pulse can be reflected from many features and 

return more than one pulse and a set of filters can be used. The LAS dataset view includes all 

returns with no use of filters, therefore in addition to ground points, vegetation and trees are 

visible in profile view.  
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The threshold values established in Table 4 were applied to filter out non-sinkhole 

depressions. The geometric characteristics of Depression A and B are determined as shown in 

Table 5. Depression B is quite large having a depth of 8.67 m and an area of 383 m2. According 

to the lower and upper limits in Table 4, 5th percentile and 95th percent respectively, this 

depression is not considered as a sinkhole because the area and depth exceeds the area and depth 

thresholds of 89.36 m2 and 7.19 m. On the other hand, the depth, area, perimeter, and length of 

Depression A are within the lower and upper limits of area, depth, length, and perimeter shown 

in Table 4. Thus, there is a high potential that Depression A can be a naturally occurred sinkhole 

but had not been detected due to non-accessible area. We checked with Florida Subsidence 

Incident Reports (FSIR) and it is not included in the database.    

LiDAR data accurately calculates the geometric characteristics of those depressions. 

These are valuable information with respect to damage assessment that help engineers to select 

optimum repair methods and decide the level of repair and/or reinforcement (e.g. volume of 

cement grouting). Extension of LiDAR-based sinkhole detection can enable more accurate 

sinkhole mapping that the existing FSIR database does not cover due to unreported sinkholes in 

non-residential areas.  
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Figure 26. (a) Aerial image and depression boundaries. (b) Hillshade image and depression 
boundaries. 

 

Figure 27. (a) and (b): Detailed 2D profile of depressions A and B. (c) and (d): Detailed 3D 
views of depressions A and B 

(a) (b)
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Table 5. Results of sinkhole quantification. 

Parameter Depth 
(m) 

Std. Error Area  
(m2) 

Volume 
(m3) 

Perimeter 
(m) 

Length 
(m) 

Circularity 

Intercept 3.31 0.92 37 50.7 23.31 7.71 0.95 
CI 8.67 2.34 383 1715.67 73.76 24.8 0.96 
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CHAPTER 5: CONCLUSIONS AND RECOMMENDATIONS 
 

5.1 Summary 

This study contains two achieved two important facts. In the second chapter, a method to 

detect sinkholes accurately was introduced. Although the method was very efficient for detecting 

and locating sinkholes, Due to the fact that the boundaries expand and shrink based on 

determined cutoff value, it is suggested for this method not to be used for quantification of 

sinkholes. Instead, the method proposed in chapter 3 is a reliable and accurate way to quantify 

sinkholes. 

The method proposed in chapter 3 was applied to a selected area of Orange County, FL 

and noticeable surface depressions were identified. Two identified depressions were selected as 

case study and their morphometric characteristics were determined. By using the threshold 

values constructed, the authors believe that the method can distinguish between non-sinkhole 

depressions and sinkholes.  

5.2 Conclusions 
Based on the study results, following conclusions have been made: 

1. The LiDAR-based remote sensing technique can be a potential means to effectively and 

accurately detect sinkholes.    

2. Field validation and measurement of sinkholes are labor-intensive and often impossible 

due to large area coverage and inaccessibility.  

3. geometric characteristics of detected sinkholes can be easily quantified by ArGIS tool.   

4. These information is helpful in selecting effective engineering solutions and level of 

repair cost because dimension of sinkholes are provided.  



36 
 

This study is a preliminary study that investigates the potential of LiDAR remote sensing 

technique in sinkhole hazard assessment. Future research works are necessary to fully automate 

the process of sinkhole identification and quantification of geometric information. Additionally, 

advanced image processing and thresholds to filter out outliers will result in enhanced accuracy. 

The proposed methodology can be used as a tool not only for sinkhole detection in non-

resident/rural areas but also for damage assessment to quantify location, distribution, and 

geometric information when natural and man-made events (e.g. hurricane and groundwater 

pumping after severe droughts) create many sinkholes in specific times and regions.    

 

5.3 Limitations and Recommendations 
Limitations in this study include: 

1. Location and geometric characteristics of sinkholes provided in Florida 

Subsidence Incidents Report are not accurate. Therefore, the methodology 

explained in chapter three, was not possible to be tested for sinkholes of Florida. 

2. Acquisition of free LiDAR data which is open to be used by public was 

challenging for this study and this factor determined the areas of study. 

3. The LiDAR data which is used in chapter 4 of this study, is collected on 2011 

and therefore might miss sinkholes which are formed after that time.  

 The following are recommended for future studies: 

1. For method discussed in chapter 3 of this study, additional morphometrical 

indices should be tested as predictor variables.  



37 
 

2. The cut-off value which was chosen in this study was at the interception of 

specificity and sensitivity curves. Although this approach is based on 

optimization of the model, future research must be conducted on cut-off value 

and how to choose the best cutoff value based on objectives. 

3. The method discussed in chapter 4 was semi-automated. Future study must be 

conducted to enhance and fully automate quantification of sinkholes.  
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APPENDIX: MULTIPLE REGRESSION MODELS TRIAL AND ERRORS 
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Table 6. Model using Convergence Index as predictor variable 

Call: 
glm(formula = sinks ~ CI, family = binomial, data = rdata) 
 
Deviance Residuals:  
    Min       1Q      Median       3Q       Max   
-2.0065  -0.3801  -0.3325   -0.2921   2.8841   
 
Coefficients: 
              Estimate Std. Error z value Pr(>|z|)     
(Intercept) -2.7480042  0.0011742 -2340.4   <2e-16 *** 
CI        -0.5678738  0.0009082  -625.2   <2e-16 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
(Dispersion parameter for binomial family taken to be 1) 
 
Null deviance: 6834137  on 13743575  degrees of freedom 
Residual deviance: 6464901  on 13743574  degrees of freedom 
  (3663 observations deleted due to missingness) 
AIC: 6508295 
 
Number of Fisher Scoring iterations: 5 
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Table 7. Model using Topographic Position Index as predictor variable 

call: 
glm(formula = sinks ~ TPI, family = binomial, data = rdata) 
 
Deviance Residuals:  
    Min       1Q      Median      3Q        Max   
-2.0065  -0.3801  -0.3325  -0.2921   2.8841   
 
Coefficients: 
              Estimate Std. Error z value Pr(>|z|)     
(Intercept) -2.7480042  0.0011742 -2340.4   <2e-16 *** 
TPI         -0.5678738  0.0009082  -625.2   <2e-16 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
(Dispersion parameter for binomial family taken to be 1) 
 
Null deviance: 6834137  on 13743575  degrees of freedom 
Residual deviance: 6464901  on 13743574  degrees of freedom 
  (3663 observations deleted due to missingness) 
AIC: 6508295 
 
Number of Fisher Scoring iterations: 5 
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Table 8. Model using Slope Index as predictor variable 

Call: 
glm(formula = sinks ~ SI, family = binomial, data = rdata) 
 
Deviance Residuals:  
    Min       1Q       Median     3Q        Max   
-0.6739  -0.3838  -0.3838  -0.2129   2.9632   
 
Coefficients: 
              Estimate Std. Error z value Pr(>|z|)     
(Intercept) -0.7647497  0.0027487  -278.2   <2e-16 *** 
SI        -0.6021591  0.0009313  -646.5   <2e-16 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
(Dispersion parameter for binomial family taken to be 1) 
 
Null deviance: 6834137  on 13743575  degrees of freedom 
Residual deviance: 6389291  on 13743574  degrees of freedom 
  (3663 observations deleted due to missingness) 
AIC: 6432608 
 
Number of Fisher Scoring iterations: 6 
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Table 9. Model using Convergence Index and Slope Index as predictor variable 

Call: 
glm(formula = sinks ~ CI + SI, family = binomial, data = rdata) 
 
Deviance Residuals:  
    Min       1Q       Median     3Q        Max   
-1.2585  -0.3959  -0.2696  -0.1834   3.3595   
 
Coefficients: 
              Estimate Std. Error z value Pr(>|z|)     
(Intercept) -3.266e+00  4.815e-03 -678.19   <2e-16 *** 
CI        -4.737e-02  7.375e-05 -642.37   <2e-16 *** 
SI         8.563e-02  1.332e-03   64.28   <2e-16 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
(Dispersion parameter for binomial family taken to be 1) 
 
Null deviance: 6834137  on 13743575  degrees of freedom 
Residual deviance: 5925739  on 13743573  degrees of freedom 
  (3663 observations deleted due to missingness) 
AIC: 5968958 
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Table 10. Model using Convergence Index and DEM as predictor variable 

Call: 
glm(formula = sinks ~ CI + DEM, family = binomial, data = rdata) 
 
Deviance Residuals:  
    Min       1Q       Median     3Q         Max   
-2.3816  -0.2715  -0.1011  -0.0370   3.6800   
 
Coefficients: 
              Estimate Std. Error z value Pr(>|z|)     
(Intercept) -5.728e+01  6.393e-02  -896.0   <2e-16 *** 
CI        -6.609e-02  6.387e-05 -1034.9   <2e-16 *** 
DEM          1.507e-01  1.742e-04   864.9   <2e-16 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
(Dispersion parameter for binomial family taken to be 1) 
 
Null deviance: 6834137  on 13743575  degrees of freedom 
Residual deviance: 4095488  on 13743573  degrees of freedom 
  (3663 observations deleted due to missingness) 
AIC: 4138612 
 
Number of Fisher Scoring iterations: 8 
 

 

 

 

 

 

 

 

 



44 
 

Table 11. Model using Slope Index and DEM as predictor variable 

Call: 
glm(formula = sinks ~ SI + DEM, family = binomial, data = rdata) 
 
Deviance Residuals:  
    Min       1Q       Median     3Q        Max   
-1.7205  -0.3450  -0.1484  -0.0626   3.9244   
 
Coefficients: 
              Estimate Std. Error z value Pr(>|z|)     
(Intercept) -4.045e+01  4.695e-02  -861.6   <2e-16 *** 
SI        -1.007e+00  1.292e-03  -779.2   <2e-16 *** 
DEM          1.139e-01  1.317e-04   864.7   <2e-16 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
(Dispersion parameter for binomial family taken to be 1) 
 
Null deviance: 6834137  on 13743575  degrees of freedom 
Residual deviance: 4929068  on 13743573  degrees of freedom 
  (3663 observations deleted due to missingness) 
AIC: 4972315 
 
Number of Fisher Scoring iterations: 7 
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Table 12. Model using Convergence Index and DEM and Slope Index as predictor variable 

Call: 
glm(formula = sinks ~ SI + DEM + CI, family = binomial, data = rdata) 
 
Deviance Residuals:  
    Min       1Q       Median     3Q        Max   
-2.3918  -0.2715  -0.1013  -0.0371   3.6760   
 
Coefficients: 
              Estimate Std. Error  z value Pr(>|z|)     
(Intercept) -5.733e+01  6.414e-02 -893.854   <2e-16 *** 
SI         1.612e-02  1.701e-03    9.475   <2e-16 *** 
DEM          1.507e-01  1.743e-04  864.590   <2e-16 *** 
CI        -6.660e-02  8.304e-05 -801.967   <2e-16 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
(Dispersion parameter for binomial family taken to be 1) 
 
Null deviance: 6834137  on 13743575  degrees of freedom 
Residual deviance: 4095399  on 13743572  degrees of freedom 
  (3663 observations deleted due to missingness) 
AIC: 4138526 
 
Number of Fisher Scoring iterations: 8 
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