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ABSTRACT 

Sinkholes are one of the major geohazards in karst terrain and pose a social, economic, 

and environmental risk. In Florida, sinkhole-related insurance claims between 2006 and the third 

quarter of 2010 amounted to $1.4 billion. Approximately 20 % of the United States is underlain 

by karst terrain formed from the dissolution of soluble rocks and is susceptible to a sinkhole 

hazard. Particularly, Texas, Florida, Tennessee, Alabama, Missouri, Kentucky, and Pennsylvania 

are known as sinkhole states. 

The scope of this study is to develop a physical model to simulate sinkholes (referred to 

as a sinkhole simulator), which can assess the qualitative behavior of the hydrogeological 

mechanism of Florida’s sinkhole formations. Two sinkhole simulators were developed, with the 

second simulator constructed to overcoming the limitations of the first. The first generation 

sinkhole simulator incorporated a falling head groundwater system and the sinkhole could only 

be observed once the ground surface was breached. The second generation sinkhole simulator 

incorporated a constant head groundwater system which accurately depicts field conditions and 

the sinkhole was able to be observed during all stages of formation within this model. In both 

simulators multiple hydrogeological conditions were created and water level transducers were 

installed at various locations within the soil profile to monitor variations in the groundwater table 

during the sinkhole process, this was done to investigate the soil-groundwater behavior. 

Findings from this study include: 1) groundwater recharge is a critical sinkhole triggering 

factor, 2) the groundwater table cone of depression increases as the raveled zone or void travels 

up through the overburden due to sinkhole formation, 3) The cover-subsidence sinkhole failure 

mechanism is similar to the failure mechanism present in Terzaghi’s trapdoor experiment and the 
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cover-collapse failure mechanism consists of four district components: failure planes with 

erosion envelope, arch dropout failure, formation of elliptical void, and slope stability failure, 

and 4) a strong qualitative relationship between soil strength and type of sinkhole formed (cover-

subsidence or cover-collapse) was observed. 
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CHAPTER 1: INTRODUCTION 

1.1 Problem Statement 

Sinkholes are a feature of all karst terrain and are inherently a geological hazard which 

may create social, economic, and environmental harm. In Florida, three different sinkhole 

mechanisms are dominant, which are classified as dissolution, cover-subsidence, and cover-

collapse, with the latter two being of concern in this study as a result of their relatively abrupt 

formation periods. Sinkhole formation is not strictly a stochastic phenomenon as observed by the 

distribution of reported occurrences throughout the state of Florida, with this distribution heavily 

concentrated around the central, west-central, and north-central part of the state. Researchers 

have compiled statistical data showing strong correlations between sinkhole occurrence and type 

of sinkhole mechanism given specific hydrological conditions and overburden compositions. 

1.2 Research Objectives 

Through the development and use of physical modeling, this study focuses on 

understanding the qualitative behavior of the hydrogeological mechanism of each the cover-

subsidence and the cover-collapse sinkhole, and to differentiate between soil conditions which 

result in either type of formation. Hydrogeological parameters under investigation include: 

overburden composition, overburden density, hydrological system (falling head or constant 

head), and the effect of a confining strata within the soil profile. Groundwater table behavior 

during sinkhole formation is of concern and will be monitored by hydrostatic pressure 

transducers. Furthering the understanding of sinkhole mechanisms will allow for a more accurate 

stability analysis to be performed, and more efficient detection and mitigation techniques to be 

developed.  
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CHAPTER 2: EXPERIMENTAL STUDY ON SINKHOLES: SOIL–
GROUNDWATER BEHAVIORS UNDER VARIED 

HYDROGEOLOGICAL CONDITIONS
1
 

2.1 Introduction 

Karst topography is formed by the geomorphic process involving dissolution of soluble 

carbonate bedrock, resulting in an underground network of drainage with high hydraulic 

conductivity. Sinkholes (or dolines) are a feature of all karst terrains [Waltham, 2005]. There are 

six classifications of sinkholes each with various equivalent names: collapse, caprock, buried, 

solution, dropout, and suffosion [Lowe, 2002]. The latter three are the most common types of 

sinkholes in Florida. 

Property damages resulting from sinkholes can be substantial. The Florida Office of 

Insurance Regulation (FOIR) performed a data call in which 211 insurers participated. The 

participants reported sinkhole-related claims between the period of 2006 and the third quarter of 

2010. The total cost resulting from sinkhole-related insurance claims in Florida was 

approximately $1.4 × 109. Surprisingly, two-thirds of the claims came from three of the 67 

Florida counties: Hernando, Pasco, and Hillsborough [FOIR, 2010]. The completed insurance 

claim study was subsequently included in the Florida Senate interim report 2011-104, Issues 

Relating to Sinkhole Insurance. Figure 2-1 shows the type of sinkhole claims reported to the 

FOIR. Ultimately, these ground surface failures can be traced back to the underling karst bedrock 

that is so common in the Floridian region. 

1 The content of this chapter also appeared in: 
Perez, A. L., Nam, B. H., Alrowaimi, M., Chopra, M., Lee, S. J., and Youn, H., “Experimental Study on Sinkholes: 
Soil–Groundwater Behaviors Under Varied Hydrogeological Conditions,” Journal of Testing and Evaluation, Vol. 
45, No. 1, 2017, pp. 208–219, http://dx.doi.org/10.1520/JTE20160166. ISSN 0090-3973. 
Using the paper as a chapter of this study is with permission from ASTM (please see the appendix). 
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(a) 

 
(b) 

 
(c) 

 
Figure 2-1. Photos of cover-collapse sinkholes in Florida: (a) Winter Park, FL (May, 1981), (b) 
Orlando, FL (August, 2013), and (c) Pasco County, FL (November, 2014). 
 

Not only is there a financial risk associate with sinkholes, there is also an environmental 

one. Groundwaters are generally purer when compared to surface waters. The soil acts as a filter 

as the underlying aquifer is recharged through percolation. This process reduces the total 

suspended solids contained in the surface waters. When the overburden fails into the cavities 

formed in the bedrock, there is a direct path for surface waters to contaminate the underlying 

aquifer system. The 1991 lagoon collapse at the Lewiston, MN wastewater treatment facility is a 

relevant example of this hazard. An estimated 7.7 × 106 gal of partially treated effluent was 

drained into the groundwater system through a sinkhole collapse [Jannik, 1991]. The following 

year, there was another lagoon collapse in Bellechester, MN [Alexander, 1993]. Surprisingly, 

these were not the only instances in the area; two previous lagoon collapses occurred nearby in 

Altura, MN at the same facility during 1974 and 1976 [Liesch, 1977]. 

Sinkhole formation is sensitive to variations in hydraulic stresses, which may be induced 

by nature or human activity [Tihansky, 1999]. In a previous study by Foshee and Bixler [Foshee, 

1994], there was a noticeable connection between sinkhole activity and groundwater table 

depression, which was monitored through the use of strategically placed piezometers around the 
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area of surface subsidence. Reinforcing this connection is the main focus of the physical soil–

groundwater model testing performed in this report. 

This paper presents a preliminary study on the groundwater table behavior and the effect 

of a clayey sand layer (impermeable layer) within the soil profile during the sinkhole process. A 

physical soil–groundwater model setup was developed and a series of tests were conducted under 

different hydrogeological conditions (e.g., with/without aquitard, partial aquitard, overburden 

thickness). The groundwater table at multiple locations was monitored during the sinkhole 

simulation process to evaluate the integrated soil-groundwater behaviors. 

2.2 Background on Florida’s Sinkholes 

2.2.1 Sinkhole Geochemistry 

Even though the geophysical relationship of the sinkhole mechanism is the main concern 

in this report, it is important to mention the chemistry behind the dissolution of the carbonate 

bedrock that ultimately sets the way for sinkhole development. Limestone (CaCO3) and 

dolostone [CaMg(CO3)2] are the two most common carbonate sedimentary rocks. The 

denudation rates of these minerals depend on both chemical and mechanical weathering. Since 

the weathering of the carbonate rock is usually measured over geological time, the denudation 

rate is often expressed in the units of m3 km-2 a-1 or, equivalently, mm ka-1 [Ford, 2007]. The 

calcite precipitation of limestone has been previously studied [Nam, 2015]. 

The generalized reactions involving chemical weathering of calcite and dolomite by 

carbonic acid are shown below. When the reverse reaction occurs, carbonates may precipitate out 

above cavern ceilings forming speleothems (e.g., stalactite, stalagmites, and flowstones). 

Kinetics of the chemical weathering is a complex process that depends on temperature, solute 
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concentration, flow rate, flow regime, surface area, pressure (for gasses), and whether there is a 

catalyst present. The carbon dioxide needed to form carbonic acid (H2CO3) is supplied by two 

sources, the open atmosphere and by degradation of organic matter present in the soil 

atmosphere. The majority of the CO2 comes from the latter source because the open atmosphere 

is comprised of only 0.03 % CO2, which lacks potential to contribute an appreciable amount of 

dissolved CO2. Biogenic derived CO2 may make up 1 %–10 % of the soil atmosphere, thus 

allowing for a higher potential concentration of dissolved CO2 to occur when the water is in 

equilibrium [Waltham, 2005]. Ultimately, the carbonate constitutes are transported away through 

groundwater travel and karst features will eventually mature. 

Carbonic acid: 𝐂𝐎𝟐(𝐚𝐪) + 𝐇𝟐𝐎(𝐥) ⇌ 𝐇𝟐𝐂𝐎𝟑(𝐚𝐪) ( 1 ) 

Calcite dissolution: 𝐂𝐚𝐂𝐎𝟑(𝐬) + 𝐂𝐎𝟐(𝐚𝐪) + 𝐇𝟐𝐎(𝐥) ⇌ 𝐂𝐚+𝟐(𝐚𝐪) + 𝟐𝐇𝐂𝐎𝟑−(𝐚𝐪) ( 2 ) 

Dolomite dissolution: 𝐂𝐚𝐌𝐠(𝐂𝐎𝟑)𝟐(𝐬) + 𝟐𝐂𝐎𝟐(𝐚𝐪) + 𝟐𝐇𝟐𝟎(𝐥) ⇌ 𝐂𝐚+𝟐(𝐚𝐪) + 𝐌𝐠+𝟐(𝐚𝐪) + 𝟒𝐇𝐂𝐎𝟑−(𝐚𝐪) ( 3 ) 

2.2.2 Sinkhole Mechanisms 

The three most common types of sinkholes observed in Florida are solution (dissolution), 

suffosion (cover-subsidence), and dropout (cover-collapse). The mechanisms of the cover-

subsidence and cover-collapse are shown in Figure 2-2. The dropout type is the most hazardous 

because the ground surface collapse may happen within a few hours, if not minutes. Solution 

sinkholes pose the least hazard because their formation happens over thousands of years, and any 

structure will have long expired before damages caused by surface subsidence occurs. Both the 

suffosion and dropout sinkholes result from the downward erosion of soils into underlying 

bedrock cavities. Suffosion sinkholes occur primarily in cohesionless soils; the lack of cohesive 
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forces allows the soil particles to easily migrate downward and continuously fill any void that 

tries to form within the overburden. A noticeable depression will develop at the ground surface 

because the soil is constantly raveling downward, much like an hourglass. Formation of 

suffosion sinkholes is on the order of months or years. Dropout sinkholes occur primarily in 

cohesive soils, where intermolecular forces between particles are present, allowing voids in the 

overburden to develop. As the void enlarges, eventually the crown of the void thins to a point at 

which the soils can no longer support, resulting in a collapse of the ground surface. In west-

central Florida three hydrostratigraphic units are prevalent, the surficial aquifer, intermediate 

confining unit, and the Floridan aquifer [Copeland, 2009]. The low permeability of the confining 

unit allows a head differential to be possible between the surficial and Floridan aquifer system, 

and this in turn, increases the hydraulic load on the confining unit [Whitman, 1999]. 

 

Figure 2-2. Major sinkhole types of concern in Florida: (a) cover-subsidence sinkhole, and (b) 
cover-collapse sinkhole [Tihansky, 1999]. 
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2.2.3 Sinkhole Affecting Parameters 

There have been multiple affecting parameters identified that contribute to the location 

and rate of occurrence of sinkholes. The parameters that seem to heavily influence sinkhole 

formation include a large head difference between the surficial and confined aquifer, recharge 

rate, and overburden thickness. A trend in overburden composition and type of sinkhole formed 

has also been observed in the field. No significant statistical relationship between surface 

lineament features and new sinkhole locations was found while comparing satellite imagery or 

low-altitude photos of linears with sinkhole occurrence data [Whitman, 1999]. 

While conducting their study of the Orlando area, Wilson and Beck [Wilson, 1992] 

observed that 85 % of new sinkholes that formed occurred within areas of high groundwater 

recharge. As shown in Figure 2-3, most sinkholes have been occurring in central Florida where 

relative high groundwater recharge exists. Whitman et al. reinforced this observation through the 

use of geographic information systems (GIS) software, which they used to examine the spatial 

interrelationships between hydrostatic heads of the surficial and confined Floridan aquifer and 

sinkhole occurrences in central Florida. Whitman and his team noticed a strong positive 

association to head differences between 5 m and 15 m and sinkhole occurrences within regions 2 

km away. Heavy recharge allows a differential head to form between the surficial and confined 

aquifer. The higher head in the surficial aquifer induces downward seepage, which promotes 

erosion of the soils into the underlain bedrock cavities. 

In the Orlando area, 73 % of new sinkholes occurred where overburden thickness is 

between 30.5 m and 48.8 m (100 ft and 160 ft) [Wilson, 1992]. A few years later, Tihansky 

reinforced this range of occurrence, noting that sinkholes primary occur in central Florida where 
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the overburden is between 9.1 m and 61.0 m (30 ft and 200 ft) [Tihansky, 1999]. In addition, it 

has been noticed that sinkhole type is related to the composition of the overlying soils. An 

overburden of cohesionless sands appears to form subsidence sinkholes since large cavities 

cannot form because of the lack of attraction between particles. Any attempt by the soil to form a 

void or arch will quickly result in a collapse; thus, the soil will continuously lose compaction and 

erode downward. On the contrary, cohesive soils are able to support a void structure, because the 

shear strength is also a function of cohesion and not just friction dependent on the effective 

stresses confining the soil mass. The void is known to propagate upward until the crown of soil 

can no longer support itself, resulting in a relatively quick ground surface failure. 

 

Figure 2-3. Map showing reported sinkholes throughout the state of Florida. 
 

2.3 Experimental Work 

2.3.1 Testing Concept 

The goal of this research is to identify and isolate the particular groundwater table 

behavior that foreshadows sinkhole formation, which may be included in future methodologies 

for detecting the emergence of sinkholes. The earlier the sinkhole formation is detected the 
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sooner soil stabilization methods can be employed to protect the ground surface against failure. 

To analyze the hydrogeological interaction between unconfined aquifer, aquitard, and confined 

aquifer, it is necessary to investigate the behaviors of different soil profiles (e.g., sand only 

versus sand with a clayey sand aquitard). Therefore, the setup with sand only (control setup) was 

performed, and this setup is shown in Figure 2-4a, which is the basis for Tests 1 and 3. Any 

deviation from the control’s behavior could then be associated to the presence of the clayey sand 

layer (Figure 2-4b). Since an aquitard may be partially or fully confining, both scenarios were 

investigated and these are Tests 4 and 5, respectively. The opening at the bottom of the 

overburden causes flow of groundwater along with soil particles (referred to as soil erosion) and 

ultimately leads to a ground surface collapse. As the process proceeds, changes in the 

groundwater table (e.g., drawdown and drop) are occurring; therefore, physical features can be 

related to groundwater table data. 

 

Figure 2-4. Illustration of the concepts of sinkhole testing: (a) setup with sand only, and (b) setup 
with sand–clayey sand–sand layers. 
 

2.3.2 Materials 

In this study, a sandy soil with 2 % passing the 200 sieve from Orlando, FL, was chosen 

for the physical model. The particle size distribution of the sand is shown in Figure 2-5. This soil 
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was classified as a dark brown, fine sand (AASHTO A-3 soil). The soil had an optimum 

moisture content of 13 %, a maximum dry unit weight of 16.3 kN/m3, and a specific gravity of 

2.6. The sand was compacted qualitatively in layers with a standard proctor hammer. Orange 

clayey sand, classified as AASHTO A-2-4 soil, was used as the aquitard. The aquitard was 

prepared by adding water and thoroughly mixing the clayey sand until it became a workable 

paste. This paste was then placed into the model with the corresponding thickness required for 

each trial. The surficial sand was then placed on top of the clayey sand layer. Under these 

conditions, the clayey sand can be considered normally consolidated. Physical soil properties are 

summarized in Table 2-1. The sinkhole simulator was fabricated from the bottom half of a 

standard 55 gal drum. It was assumed that the diameter of the drum would be large enough to 

observe the groundwater table drawdown without having boundary condition interference. The 

first step in preparing the test was to seal the opening (limestone crack) on the bottom of the 

metal drum using a rubber sheet. Then, an initial layer of A-3 soil with a moisture content of 13 

% was well compacted in the metal drum. In this initial layer up to six PVC pipes (monitoring 

wells) were installed radially, with “r =” corresponding to the radial distance from the opening as 

seen in the figures illustrating the results. The PVC monitoring wells have an inner and outer 

diameter of 26 mm and 32 mm, respectively. Prior to installation, circular perforations were 

drilled into the wells, and then the wells were wrapped in a nonwoven geotextile. The thickness 

of the soil profile was varied between 10 cm and 29 cm. Individual layer thicknesses were 

guaranteed by chalk lines located on the inner surface of the metal drum. The surficial layer was 

saturated to a depth between 22.5 mm and 30 mm from the ground surface for a period of 24 h to 

48 h. These water levels represent a shallow groundwater table in the soil sample. 
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Figure 2-5. Particle size distribution of the A-3 sand used in this study. 
 
Table 2-1. Physical soil properties of the sand and clayey sand used in this study. 

 
 

2.3.3 Testing Setup, Sensor, and Calibration 

The schematic diagram of the sinkhole physical model testing setup is shown in Figure 2-

6. Soils were placed in the drum and up to six groundwater table sensors were installed. The 

eTape liquid level sensor (Figure 2-7a) was utilized to monitor the groundwater table drawdown. 

The sensor operates on a linear relationship between change in hydrostatic pressure on the 

sensor’s envelope and change in electrical resistance. As the fluid level rises and falls, the 

measured resistance decreases and increases, respectively. The overall dimensions of the eTape 

sensor selected for the experiment are 358 mm × 25.4 mm × 0.381 mm, length, width, and 

thickness, respectively. The active sensing length of the sensor is 315 mm. During the 



12 
 

experiment, each sensor was in its own 26 mm inner diameter PVC monitoring well to eliminate 

any lateral overburden pressure and to allow the groundwater to freely interact with the sensor. 

The purpose of calibrating the sensors is to obtain linear equations, like the one seen in Figure 2-

7b, to transform the data output from resistance to water level in centimeters. 

 

Figure 2-6. Schematic diagram of the sinkhole physical model testing setup. 
 

 

Figure 2-7. Groundwater table sensor (eTape): (a) photo of the sensor, and (b) sensor calibration 
curve. 
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To calibrate the sensors for this study a 1 L graduated cylinder, laboratory stand with 

clamp, breadboard with reference resistor, wired pin connector, Arduino Uno SMD, and a 

computer with Arduino 1.0.5 software were used. The sensor was suspended in the empty 

graduated cylinder by a wired pin connector joining the sensor to two wires held by clamps 

mounted on the laboratory stand. The two wires went to a breadboard that had a voltage divider 

circuit. A voltage divider circuit with a reference 560 Ω resistor was necessary to utilize the 

Arduino as the data logger because the analog ports of the Arduino measure voltage and not 

resistance. Since the reference resistor resistance was known and the voltage over the senor was 

being measured, the data output could be change from voltage to resistance by creating a voltage 

divider script and uploading the code into the Arduino unit. The linear equation was constructed 

by adding water, recording the corresponding resistance at each centimeter mark, and plotting 

the relationship. 

The data acquisition system used in this study consisted of an Arduino Uno SMD, 

computer with Arduino 1.0.5 software, breadboard with voltage divider circuit(s), and up to six 

35.8 cm long eTape liquid level sensors from MILONE Technology (PN 12110215TC-12). The 

Arduino module was connected to each eTape sensor by a voltage divider circuit located on the 

breadboard. The resolution of the eTape sensor is 0.25 mm and the sampling rate of the DAQ 

was 10 Hz. After the soil was saturated for a period of 24 h to 48 h and the desired groundwater 

level was obtained, each eTape sensor was placed into its own PVC monitoring well. The DAQ 

system was then turned on and started to read any water level fluctuations. After approximately 5 

min of allowing the groundwater table to settle, the hole at the bottom of the drum was then 

opened, representing the downward erosion of the soil into the underlying bedrock cavity. 
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2.3.4 Testing Procedure 

For sinkhole simulation testing the hole at the bottom of the drum was opened and 

simultaneously groundwater levels at multiple locations were continuously recorded until the 

surface sinkhole formed. In this study, five testing setups were prepared to evaluate the effect of 

varied hydrogeological conditions on sinkholes. 

The experimental plan is summarized in Table 2-2. Initially, two tests were conducted to 

investigate the groundwater table behavior under different soil profiles: Test 1 was with sand 

only and one sensor and Test 2 was with layered sand–clayey sand–sand and two sensors. Test 

1’s setup had only a 10 cm layer of sand, while Test 2’s included the sand–clayey sand–sand 

layers of 10–2–15 cm from bottom to top, respectively. The Test 2 setup was for simulating the 

aquitard separating the unconfined and confined aquifers. The inserted clayey sand layer divides 

the upper sand and lower sand layers. Thus, there will be no significant groundwater interaction 

between the unconfined and confined aquifers until collapse of the clayey sand layer. Only two 

groundwater table (GWT) sensors were used during this test. The GWT sensors were separately 

installed; for instance, one GWT sensor was placed in the lower sand layer (no perforation in the 

pipe extending above the clayey sand layer, thus completely blocking the intrusion of water from 

the upper sand layer) and the other sensor was placed right above the clayey sand layer. 

Table 2-2. Experimental plan. 
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Subsequently, testing setups with six GWT sensors (at multiple locations) were carried 

out. Test 3 was a control setup where a 20 cm thick sand only layer was placed and saturated. 

Tests 4 and 5 had a clayey sand layer in the middle of the soil profile to allow its effect on the 

sinkhole process to be evaluated. Test 4 had the sand–clayey sand–sand layers of 10–2–10 cm 

from bottom to top, respectively. This setup was used to simulate the hydrogeological 

environment where the unconfined (surficial) aquifer and the confined aquifer have significant 

interaction. Water in the top and bottom sand layers were interacting through the PVC 

monitoring wells. All pipes were perforated along the entire depth. The aquitard did not cover 

the whole area (partially existed); thus, significant groundwater interaction between the 

unconfined and confined aquifers was possible. Test 5 had the sand–clayey sand–sand layers of 

10–4–15 cm from bottom to top, respectively. In this setup, the clayey sand layer thickness was 

increased to 4 cm and the surficial aquifer thickness was increased to 15 cm. The clayey sand 

layer prevented any significant groundwater interaction between the unconfined and confined 

aquifers until its collapse. Six GWT sensors were installed at varying distances from the center 

hole, and they monitored the groundwater table drawdown during the experiment. 

2.4 Results and Discussion 

2.4.1 Single GWT Measurement: Tests 1 and 2 

Test 1, which used sand only, exhibits a smooth change in the groundwater table with 

time (Figure 2-8a). Since the overburden was homogeneous and uniformly compacted, the 

groundwater flow may be considered more consistent than the sand–clayey sand–sand mixed 

layers. On the other hand, Test 2 shows a distinguishable transition in the groundwater table data. 

This transition point was most likely due to the collapse of the clayey sand layer. As stated 
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before, one sensor was installed in the bottom sand layer (confined aquifer) and the other sensor 

was installed in the top sand layer (surficial aquifer), with “top” and “bottom” corresponding to 

sensor locations within those aquifers, as seen in the figures illustrating the results. In Figure 2-

8b, the surficial aquifer does not show a significant drop until the moment of assumed clayey 

sand layer collapse, which was approximately 13 min since the opening of the hole. The surface 

sinkhole occurred around 14 min. Figure 2-8b shows two zones: Zone 1 (before the assumed 

clayey sand layer collapse) and Zone 2 (between assumed clayey sand layer collapse and the 

surface sinkhole). The time periods of Zones 1 and 2 are about 13 min and 1 min, respectively. 

This indicates that the bottom soils had progressively eroded, which can be shown as the column 

shaped voids in Figure 2-9. When the void reached the clayey sand layer, the clayey sand 

structurally collapsed because of the weight of the overburden and the water in the top layer. The 

water level reduction rate subsequently increased in the surficial aquifer. Once the surface 

sinkhole occurred, a void from the bottom hole to the surface was made, resulting in a significant 

increase in the water level reduction rate in both the bottom and top sand layers. 
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Figure 2-8. GWT data comparison of the control and sand–clayey sand–sand setups: (a) Test 1, 
control [sand only, radial distance (r) = 15 cm], and (b) Test 2, sand–clayey sand–sand setup. 
 

 

Figure 2-9. Photos of the simulated sinkhole for Tests 1 and 2 setups: (a) surface hole in Test 1, 
(b) longitudinal cross section of the hole in Test 1, (c) surface hole in Test 2, and (d) inside of the 
hole in Test 2 (note: larger size of sinkhole with clay insertion). 
 

2.4.2 Multiple GWT Measurements: Tests 3, 4, and 5 

Groundwater table sensors at multiple locations are able to illustrate the groundwater 

table three dimensionally, which includes the groundwater table drawdowns which change over 

the length of the experiment. The raw data of the groundwater table sensing for Tests 3, 4, and 5 
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are shown in Figures 2-10, 2-11, and 2-12, respectively. Each sensor continuously recorded the 

water level change from when the bottom hole was opened. The control setup (referred to as Test 

3), shown in Figure 2-10a, shows a smooth change in the water levels along all sensors. The 

observation of the control setup indicates a cover-subsidence sinkhole formed, where 

cohesionless soil (sand) continuously moved downward as erosion continued. The groundwater 

table data does not show a critical transition point because the movement of sand continuously 

occurred. The Groundwater table cone of depression was observed by Alrowaimi et al. 

[Alrowaimi, 2016][Alrowaimi, 2015] (see Figure 2-10). The water level data at radial distances 

from the hole at each time step are plotted in Figure 2-10b, which is the time history of the 

groundwater table drawdown from t = 0 through t = 16 min. The sampling rate was 100 Hz (data 

point every 0.01 s) and a total of six groundwater table sensors were used. This cone of 

depression can be used to indicate the extent of erosion caused by the sinkhole process. 
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Figure 2-10. GWT data for Test 3 (control setup): (a) water level monitoring data at different 
spatial locations, and (b) time history of the groundwater table cone of depression measured over 
16 min (with symmetric view) [Alrowaimi, 2016][Alrowaimi, 2015]. 
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Figure 2-11. GWT data for Test 4 (partial aquitard). 
 

 

Figure 2-12. GWT data for Test 5 (complete aquitard). 
 

On the other hand, the data of the testing setups with a clayey sand layer shows 

distinguishable features such as transition points and fluctuations. Figure 2-11 shows the time 

history of the groundwater table sensing for Test 4 where a partial aquitard (clayey sand layer) 

was inserted in the middle of the cohesionless overburden. Unlike Test 3 (control setup), the data 

shows a clear transition point at 12.5 min, as well as a water level fluctuation in sensor “r = 10 

cm” (sensor closest to the hole). The transition can be explained by the collapse of the clayey 

sand layer; thus, the rate of the water level drop was apparently increased due to this breach. Due 
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to the partial aquitard (groundwater interaction between the upper and lower sands was allowed 

to some extent), the groundwater table was gradually lowered until the transition point (12.5 

min). The groundwater table fluctuation was another phenomenon, and it can be explained by the 

hypothesized soil-failure mechanism which involves the sudden collapse of the soil column 

around the sinkhole source, unlike the continuous soil “flow” as seen in the control setups. 

Test 5’s setup represents the geological condition with a complete aquitard layer; the 

collected data is shown in Figure 2-12. Since the clayey sand layer acts as a complete aquitard, 

two groundwater table sensors were installed at each measurement location, one for the surficial 

aquifer and the other for the confined aquifer. Due to the limited number of sensors (total of six), 

measurements at only three locations were conducted. This setup also produces a transition point 

(9 min), and also a fluctuation of the groundwater table at the sensors closest to the hole. During 

testing, sensor “r = 10 cm bottom” (lower sand and closest sensor to the hole) exhibits substantial 

groundwater table fluctuation, with the lowest groundwater table level at 8 min, and loss of data 

between 9 to 10 min happened because of a cable disconnection. The groundwater table 

eventually increases in the bottom sand layer, which is probably because of recharge occurring 

through the breach. Unlike Test 4 (seen in Figure 2-11), no “leakage” occurs until the transition 

point, which can be explained by the collapse of the clayey sand layer. 

2.5 Discussion 

This proof-of-concept study aimed to develop an experimental setup for sinkhole 

simulation and to investigate the effects of different hydrogeological conditions on sinkhole 

formation. The physical soil–groundwater model setup can be improved by measuring and 

monitoring surface subsidence, mass of water and soil eroding out of the system over time, and 
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matric suction above the groundwater table. Above the groundwater table, the matric suction 

may affect the soil stability before and during the sinkhole process. The negative pore water 

pressure (pwp) in the partial saturated zone increases the soil stability. During the test, the 

surface hole first formed (with the vertical void column as shown in Figure 2-9b), and then slope 

failure along the sides of the hole occurred because of the reduction in negative pwp as the soil 

dried. In addition, significant matric suction may help to form a cover-collapse sinkhole because 

the negative pwp caused by capillary forces temporarily increases the stability of the soil. 

Therefore, as a topic of future study, it is essential to investigate the critical overburden 

thickness, groundwater table depth, and soil strength parameters which determine the sinkhole 

type, whether cover-collapse or cover-subsidence. 

2.6 Conclusions and Recommendations 

In this study, the groundwater table behavior in response to sinkhole formation under 

different hydrogeological conditions was investigated. The experimental setup included a three 

dimensional cylindrical physical soil–groundwater model with groundwater table sensing at 

multiple locations. The sinkhole was induced by opening the hole at the bottom of the physical 

model (simulating the bedrock cavity). Simultaneously, groundwater table changes were 

monitored. The experimental design included three hydrogeological conditions: (1) sand only 

(control setup), (2) sand–clayey sand (partial aquitard)–sand layers, and (3) sand–clayey sand 

(complete aquitard)–sand layers. Key findings and conclusions drawn in this preliminary 

sinkhole study are summarized as below: 

• A sand only soil profile causes a gradual change in the groundwater table behavior 

during sinkhole formation since cohesionless soils gradually move downward as erosion 
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continues, which supports the mechanism of cover-subsidence sinkholes. On the other 

hand, a clayey sand layer within the overburden (aquitard) causes a distinguishable 

transition point in the groundwater table behavior. This groundwater table trend observed 

in all sensors is assumed to be related to the collapse of the clayey sand layer. 

• The sensors closest to the sinkhole source show significant groundwater table 

fluctuation after the transition point, which is probably because of the combination of 

recharge from the surficial aquifer and the collapse of the “soil column” near the sinkhole 

source. Additionally, as the sinkhole progressed, a groundwater table cone of depression 

was clearly shown. 

• The presence of clayey sand layers may result in larger dimensions of the surface hole. 

The cohesive characteristics of clayey sand can provide structural support for a short 

period of time, but ultimately causes more abrupt and larger surface sinks. 

The hypothesis proved by this study is that the groundwater table behavior can be used to 

detect sinkhole formation. In addition, the behavior of the groundwater table can be a good 

indicator of the status of the sinkhole process. With the precursor behavior in the groundwater 

table, an economical in situ detection system can be developed by setting up a network of 

strategically placed piezometers. Groundwater table monitoring data can be used as an input to a 

method for sinkhole pre-detection. 
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CHAPTER 3: UNDERSTANDING OF FLORIDA’S SINKHOLE HAZARD: 
HYDROGEOLOGICAL LABORATORY STUDY

2
 

3.1 Introduction 

The geomorphic process involving dissolution of soluble bedrock produces what is 

known as karst topography. This type of terrain is associated with geologic features such as 

caves, springs, disappearing rivers, conical hills, and sinkholes. A network of interconnected 

conduits form as a result of the dissolution of soluble bedrock. When these conduits breach the 

rockhead the overlying soils may erode down into these highly conductive pathways, causing an 

extreme case of sediment transport to occur. This downward erosion, also known as “raveling”, 

eventually leads to one of the two most common outcomes observed in Florida, a gradual 

subsidence of the ground surface or an abrupt collapse of the grounds surface. These two surface 

failures are known as either a cover-subsidence sinkhole or cover-collapse sinkhole, with the 

latter being the abrupt surface failure. A visual of these mechanisms is illustrated by Tihansky 

(see Figure 3-1). The physical properties of the overburden dictate which type of sinkhole will 

form. The cover-subsidence sinkhole is associated with soils with low shear resistance, such as 

poorly graded, loosely compacted, and/or cohesionless, whereas the cover-collapse sinkhole is 

associated with soils with an appreciable amount of shear resistance to allow the structural arch 

which crowns the void to form, such soils may have the properties of well graded, densely 

compacted, and/or cohesive. 

2 The content of this chapter also appeared in: 
Perez, A. L., Nam, B. H., Chopra, M., and Sallam, A., “Understanding of Florida’s Sinkhole Hazard: 
Hydrogeological Laboratory Study,” Geotechnical Frontiers, American Society of Civil Engineers, Orlando, FL, 
2017. 
Using the paper as a chapter of this study is with permission from ASCE (please see the appendix). 
Sections 3.5 and 3.6 were modified subsequently to the submission of the original paper. 
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Figure 3-1. Florida sinkhole mechanisms: (a) cover-subsidence sinkhole, and (b) cover-collapse 
sinkhole [Tihansky, 1999]. 
 

The energy source that drives the internal erosion is the hydraulic gradient that develops 

due to the head difference between the unconfined and confined aquifers. Strong correlations 

between sinkhole development and areas of high head difference and high groundwater recharge 

have been observed [Wilson, 1992][Whitman, 1999][Tihansky, 1999][Xiao, 2016]. Figure 3-2 

illustrates the typical hydrogeological conditions encountered in the sinkhole prone west-central 

Florida. Areas of recharge (downward seepage) are prone to sinkhole formation due to the 

development of an exit gradient, loss of stability and progressive erosion associated with the soil 

particles overlying the fractures in the rockhead. It has been hypothesized that in areas where the 

groundwater table is relatively deep and only a surficial aquifer lays above the bedrock, 

infiltration alone may cause the internal erosion process to occur. 

Sinkholes pose a hazard socially, economically, and environmentally. The Florida Office 

of Insurance Regulation (FOIR) investigated the cost associated with sinkhole claims within the 

state of Florida. The value amounted to $1.4 billion dollars’ worth of damages between 2006 and 
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the third quarter of 2010, with Hernando, Pasco, and Hillsborough counties accounting for two 

thirds of the total claims [FOIR, 2010]. Multiple cases of effluent ponds at wastewater treatment 

plants being drained into the underlying aquifer as a result of a sinkhole forming within them has 

raised environmental concerns [Liesch, 1977][Jannik, 1991][Alexander, 1993] . Traditionally 

sinkhole studies have been conducted by hydrogeologists; however, a clear geotechnical 

mechanism of sinkhole formation has not been explored. 

 

Figure 3-2. Typical hydrogeological conditions in west-central Florida [Tihansky, 1999]. 
 

This paper presents (a) the development of the sinkhole simulator, (b) the preliminary 

results of the sinkhole simulation tests to investigate the mechanism of two sinkhole types, and 

(c) a proof-of-concept test to detect and monitor the progress of a sinkhole. The sinkhole 

simulator incorporates a physical soil-groundwater setup under controlled hydrogeological 

conditions (e.g., head difference, recharge rate, flow direction, properties and thickness of 

overburden). 

3.2 Experimental Work 

3.2.1 Geomechanics-based Testing Concept 

When there is a deficiency in the soil shear strength as a result of the overburden being 

loose and cohesionless the soil is then unable to form a large structural void and merely subsides 
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into the underlying cavity, much like particle flow in an hourglass. This subsiding behavior is 

produced by steady state displacement of the soil particles, stated differently; when the lower soil 

particles erode into the underlying cavity the soil particles resting upon them continuously 

replace them by moving downward. This steady state flow of particles produces a near 

instantaneous response in surface deformation as a result of the continuity of this particle 

replacement process. When the soil has an appreciable amount of shear strength as a result of the 

soil being dense with cohesion then the arching phenomenon can take place, allowing a void to 

form. This void is created as a result of a non-steady state flow of particles, as in more particles 

are leaving the system through the cavity then being replaced by particles above. Instead of a 

flowing action taking place throughout the whole overburden, the mode of particle transport is 

the result of particle detachment along the inner surface of the growing void. Eventually this void 

expands to the surface, leaving a structural arch of soil which is the only thing separating the 

ground surface from the void. When this arch becomes too thin or the void becomes too wide as 

a result of the particle detachment process driven by the downward seepage forces, the arch 

eventually reaches critical shear stress and fails. In this physical experiment the qualitative 

relationship of shear strength dictating the resulting type of sinkhole formation is reinforced. 

3.2.2 Materials 

Two different soils were used in this research. The first soil used was a dark brown 

poorly graded fine sand with 2 % passing the 200 sieve, classified as AASHTO A-3 soil, with 

the particle size distribution shown in Figure 3-3. Optimum moisture content of the soil was 13 

%, with a specific gravity of 2.6, and a maximum dry unit weight of 104 lb/ft3. This soil seemed 
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highly susceptible to liquefaction during handling. The second soil used was an orange clayey 

sand, classified as AASHTO A-2-4 soil, with a plastic limit of 17 % and liquid limit of 23 %. 

 

Figure 3-3. AASHTO A-3 soil particle size distribution. 
 

3.3 Development of the Sinkhole Simulation Setup 

3.3.1 Description of the Sinkhole Simulator 

The physical model was constructed out of ¾” nominal size acrylic with only the soil 

retaining grates varying at ¼” nominal size. The overall nominal dimensions of the model are 

60” long, 40” tall, and 7.5” deep. The dimensions of the volume designated for soil placement 

are 36” long, 24” tall, and 6” deep. This model incorporates unconfined and confined aquifers, 

the two aquifers are connected by a ¼” wide and 5” long cut (which simulates the fracture in the 

bedrock) in the internal floor that supports the soil, the cut was made lengthwise parallel to the 

depth dimension. The retaining grates have a dense pattern of ¼” circular perforations and were 

covered in filter paper to allow the water to infiltrate the soil in the unconfined aquifer. ¾” 

valves are installed on both sides of the unconfined aquifer and one at the bottom of the confined 

aquifer, as seen in Figure 3-4a. The valves are connected to a constant head system, constructed 
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from two 2 gallon buckets, pulleys, and ½” inner diameter flexible tubes. One bucket controls 

the head in the unconfined aquifer and the other controls the head in the confined aquifer. The 

constant head system is shown in Figure 3-4b. 

 
(a) Front and side view 

 
 (b) Constant head system 

Figure 3-4. Schematic diagrams of the sinkhole simulator (hydrogeological physical model). 
 

3.3.2 Groundwater Table Monitoring System 

A groundwater table monitoring system was utilized to view the groundwater table 

behavior during sinkhole formation. This system was constructed from perforated PVC 

monitoring wells wrapped in geotextile. The PVC pipes have a 1” inner diameter and 1.25” outer 

diameter. Inside each monitoring well was an eTape liquid level sensor from MILONE 
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Technology (PN 12110215TC-12), Figure 3-5a and 3-5b. A change in the hydrostatic pressure 

on the sensor’s envelope causes a change in the electrical resistance within the sensor, this 

relationship is linear. These sensors were connected to an Arduino microcontroller, which 

measured the change in voltage over each sensor by the use of voltage divider circuits. Voltage 

was then converted to resistance in the Arduino software. The microcontroller was connected to 

a computer, which acted as the data logger. 

   
                       (a)                                                (b)                                                 (c)           

Figure 3-5. Groundwater table sensor (eTape): (a) and (b) photos of sensor, and (c) sensor 
calibration curve. 
 

3.4 Testing Procedure 

This research consisted of three tests. Test #1 involved using only the A-3 soil with no 

compaction effort applied to the overburden. Test #2 consisted of using a 3:1 ratio of A-3 to A-2-

4, with A-3 being the majority component; in addition compaction was applied to the soil. Test 

#3 was a repeat of Test #1 but with the use of the groundwater table monitoring system. All tests 

used a slightly cohesive patch placed over the fracture to prevent premature start of the 

experiment when placing the soil within the model. This patch was approximately ¼” thick and 

consisted of a 4:1 ratio of A-3 to clay. The experiment was initiated by causing the patch to 

disintegrate by placing the aquifers in a groundwater recharge scenario. 
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3.4.1 Cover-subsidence Simulation (Test #1) 

Test #1 used four 5 gal buckets of ground oven dried A-3 soil, which was poured into the 

model with no compaction effort applied. After leveling off the ground surface the overburden 

thickness was approximately 18”. After slowly raising the water levels in both the unconfined 

and confined aquifers the soil was then saturated for a minimum of 48 hours. Once saturation 

was complete, the experiment would be initiated by lowering the water level in the confined 

aquifer, causing the downward seepage needed to erode the soil at the overburden-fracture 

interface. 

3.4.2 Cover-collapse Simulation (Test #2) 

Test #2 used four 5 gal buckets of ground oven dried soil with a 3:1 ratio of A-3 to A-2-4. 

10 % water content by weight was added to the soil and thoroughly mixed in to aid with 

compaction. Each bucket of soil raised the soil profile in the physical model by approximately 6” 

in the loose state. After a bucket of soil was added to the model the soil was then compacted with 

a standard proctor hammer. A ½” thick strip of wood would be placed between the proctor 

hammer and the soil surface to protect the acrylic. 25 blows of the hammer would be applied to 

approximately 0.25 ft2 of ground surface area. After leveling off the ground surface the 

overburden thickness was approximately 17”. The experiment was then saturated and initiated 

the same way as Test #1. 

3.4.3 Groundwater Table Monitoring (Test #3) 

Test #3 used three 5 gal buckets of ground oven dried A-3 soil, which was poured into 

the model with no compaction effort applied. Unlike the previous two tests, Test #3 incorporated 

a groundwater table monitoring system. After approximately 6” of soil was poured into the 
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model, the PVC monitoring wells (casings of the groundwater table sensors) were then placed 

into the soil. Once the monitoring wells were in place, the rest of the soil was poured into the 

physical model. Four monitoring wells were placed alternating from right to left of the fracture at 

distances of 4”, 8”, 12”, and 16”, respectively. In addition, a control groundwater table sensor 

was situated in the unconfined aquifer reservoir at 20” away. The groundwater table sensors 

where then placed into the PVC monitoring wells and connected to the voltage divider circuits 

and Arduino, which in return was connected to the computer. The monitoring wells limited the 

overburden thickness to 12”. The sensors were calibrated in situ by raising the water levels in 

both aquifers a few inches at a time and then measuring the resistance for that specific head of 

water. Five separate water level readings were used to obtain the linear equations (an equation 

for each sensor) which relate resistance to water level. The equations were then inserted into the 

Arduino water level readout script, which allowed the data to be recorded as water levels instead 

of resistance values. An example of the calibration plot and equation is given in Figure 3-5c. The 

experiment was then saturated and initiated the same way as the other two tests. The Arduino 

took water level readings at 10 Hz. 

3.5 Results and Discussion 

3.5.1 Cover-subsidence Sinkhole (Test #1) 

The loose A-3 soil in combination with groundwater recharge caused a cover-subsidence 

sinkhole to form. Figure 3-6 shows the process of the cover-subsidence sinkhole in two stages. 

Before testing, the heads of the unconfined and confined aquifers are the same (Figure 3-6a), 

thus no soil erosion occurs (see the transparent confined aquifer). Once the experiment starts by 

creating confined aquifer recharge, initial surface subsidence occurs (Figure 3-6b), designated as 
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Stage 1. Continuation of the experiment causes the partially saturated soil to shear from 

excessive displacement (Figure 3-6c), designated as Stage 2. By the time significant surface 

displacement is reached it is obvious the groundwater table is below the failed surface and a 

drawdown is present. At the end of the experiment during draining of the unconfined aquifer the 

failed soil is washed out of the overburden, exposing the parabolic failure surface (Figure 3-6d). 

 

(a) Before the experiment starts 

 

(b) Stage 1 - Surface subsidence 

 

(c) Stage 2 - Gradual ground sink 

 

(d) Failure surface produced 

 
Figure 3-6. Test #1 images of the cover-subsidence sinkhole simulation. 
 

The failure surface produced in the cover-subsidence sinkhole simulation (Figure 3-7a) 

shares a similar appearance to the failure surface produced in the trapdoor experiment (which 

was created using a dry cohesionless sand) (Figure 3-7b) [Terzaghi, 1943], leading to the 

conclusion that both of these tests share a similar failure mechanism. It is noted that the partially 

saturated soil allows the cover-subsidence failure surface to remain open. 
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                                           (a)                                                                     (b)                             

Figure 3-7. Soil failure surfaces: (a) cover-subsidence sinkhole simulation, and (b) trapdoor 
experiment [Terzaghi, 1943]. 
 

3.5.2 Cover-collapse Sinkhole (Test #2) 

Figure 3-8 shows the evolution of a cover-collapse sinkhole from front and top views at 

different stages. 16 sec after opening the valve to lower the confined aquifer and with only a 1” 

drop in head, it was observed the soil started eroding through the fracture. 6 min into the 

experiment a small void was visible (Stage 1). This void would continue to grow larger by 

eroding soil particles from the inner surface of the void (Stage 2); however, no visible signs of 

surface subsidence occurred until a couple of minutes before the surface collapse, which 

occurred after 33 min. Eventually the void expands upward and the ground surface structurally 

collapses, resulting in a sinkhole (Stage 3). As the near surface soil loses stability, the 2nd failure 

occurs, thus the size of the sinkhole is now significant (Stage 4). It is important to note that the 

time of the 2nd surface failure is critical because the sinkhole growth potential after this failure 

would be significantly reduced due to the surrounding soil stabilizing. Stage 5 involves the 

increase in the groundwater table and a pond is subsequently formed, by this time the sinkhole is 

no longer active as a result of what appeared to be the fracture becoming clogged to some extent. 
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Figure 3-8. Test #2 images of the cover-collapse sinkhole simulation. 
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The cover-collapse sinkhole failure mechanism had four distinct components (Figure 3-

9). During the cover-collapse sinkhole simulation it was noticed that erosion occurred above 

certain failure planes formed on each side of the fracture (Figure 3-9a). These failure planes 

occurred at angles which are likely a function of the angle of internal friction of the soil and the 

directional seepage forces. Both of these failure planes together create an envelope which erosion 

of the overburden takes place within. The more acute these angles are with respect to the 

bedrock, then the wider the erosion envelope, which results in a larger sinkhole. It was noticed 

the angles of the failure planes were unequal in the cover-collapse simulation, which might have 

been caused by the unequal heads in the unconfined aquifer. This unconfined aquifer head 

difference resulted from a combination of sediment scaling within the tubes and the unequal 

lengths of the tubes which connect the buckets to the unconfined aquifer, creating different total 

head losses to each reservoir. 

The soil arch eventually drops out once the void compromises the surrounding 

overburden (Figure 3-9b), with the top of the arch failing in tension and the sides failing in shear, 

forming a small hole at the ground surface. Tension cracks appear around the periphery of the 

initial hole as if another arch above the failed one attempted to form, but is ultimately 

unsuccessful at forming since there is no soil for subsequent soil arching to take place above the 

ground surface. An elliptical void is formed (Figure 3-9c) and slope stability is lost at the void 

roof, resulting in an enlargement of the surface hole (Figure 3-9d). 
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(a) Failure planes with erosion envelope 

 

(b) Arch dropout failure 

 

(c) Formation of elliptical void 

 

(d) Slope stability failure 

 
Figure 3-9. Cover-collapse sinkhole failure mechanism components. 
 

3.5.3 Groundwater Table Monitoring (Test #3) 

Once the head in the confined aquifer was lowered and the clayey sand patch ruptured 

under downward seepage, near instantaneous surface subsidence was noticed. The surface was 

breached by a quarter size hole within 2 min and 15 sec. A second collapse happened 5 min into 

the experiment. The hole continued to enlarge by eroding the perimeter. The groundwater table 

drawdown (Figure 3-10) leveled out after 18 min from the start of the experiment. Figure 3-10b 

shows the groundwater table drawdown profile with increasing distance from the fracture. The 

drawdown at the fracture (0”) was estimated using logarithmic extrapolation (Figure 3-10b), 

since sinkhole groundwater table drawdown is similar to the cone of depression encountered 

during unconfined aquifer radial flow created by well pumping, which the logarithmic behavior 
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is expressed in the Dupuit-Thiem equation. The head difference was 6” on both sides of the 

unconfined aquifer for the entire experiment. The major stages of formation are displayed in 

Figure 3-11. 

 
(a) 

 
(b) 

 

Figure 3-10. Groundwater table monitoring for Test #3: (a) groundwater table monitoring at 
different linear locations, and (b) change in the groundwater table drawdown at different times. 
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Figure 3-11. Groundwater table monitoring system during the sinkhole process (referred to as 
Test #3). 
 

3.6 Conclusions 

In this study, a sinkhole simulator (based on physical soil-groundwater modeling) was 

developed and two types of sinkholes were simulated. Although these laboratory tests form 

sinkholes within a short period of time, sinkhole formation typically occurs as a long-term event 

in the field. The groundwater behavior which is critical factor in the formation of sinkholes was 

monitored either qualitatively or quantitatively (Test #3) during testing. Key findings and 

conclusions drawn in this study are summarized as below: 
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• Tests #1 and #3 both simulated a cover-subsidence sinkhole, which formed due to the 

combination of poorly graded cohesionless sand being used and no compaction effort 

being applied. A near instantaneous surface subsidence progressed over time into a full 

surface collapse. The cover-subsidence sinkhole failure mechanism is similar to the 

failure mechanism present in Terzaghi’s trapdoor experiment. The groundwater table 

drawdown continued to increase until steady state was reached, which is assumed to be a 

result of the flow rate between the unconfined and confined aquifers becoming constant. 

• Test #2 is a good example of a cover-collapse sinkhole. A large void expanded upward 

and collapsed the ground surface with no initial surface subsidence observed. The cover-

collapse sinkhole failure mechanism consists of four district components: 1) failure 

planes with erosion envelope, 2) arch dropout failure, 3) formation of elliptical void, and 

4) slope stability failure. When the sinkhole is no longer active (possibly due to the 

fracture becoming partially clogged) the groundwater table drawdown decreases, 

resulting in the formation of a pond. 

• As seen in Test #3, the groundwater table drawdown becomes steeper as soil raveling 

continues and becomes constant when erosion ceases (the sinkhole reaches equilibrium). 

This groundwater table drawdown monitoring concept can be applied to an in situ 

warning system, used to detect sinkhole development. 
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CHAPTER 4: CONCLUSIONS AND RECOMMENDATIONS 

4.1 Conclusions 

Finally, an overview of the major conclusions drawn from this study are summarized as below: 

 Groundwater recharge is a critical sinkhole triggering factor. Recharge conditions were 

used to trigger sinkhole formation within the physical model and discharge conditions 

were used to stop premature erosion if experienced during the preparation of the 

experiment. Recharging of the confined aquifer occurs when the unconfined aquifer has a 

higher head than the confined aquifer. This downward seepage increases the effective 

stresses and produces an exit gradient at the overburden-bedrock fracture interface, 

resulting in a reduction in stability of the soil mass above the bedrock cavity. 

 The groundwater table cone of depression increases as the raveled zone or void travels up 

through the overburden due to sinkhole formation. A conductive conduit throughout the 

soil profile is formed from the raveled zone or void. This conduit provides a shortened 

path in regards to a void, or a less restrictive path in regards to a raveled zone, for the 

groundwater to travel to the lower head, resulting in an increased hydraulic gradient and a 

steeper groundwater table cone of depression. Behavior of the groundwater table can be a 

good indicator of the status of the sinkhole process and monitoring of groundwater table 

data can be used as an input to a method for sinkhole pre-detection. It is noted that 

drawdown was not noticed in the unconfined aquifer until the confining layer was 

assumed breached, as seen in the first generation sinkhole simulator complete aquitard 

simulation. 
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 The cover-subsidence sinkhole failure mechanism is similar to the failure mechanism 

present in Terzaghi’s trapdoor experiment. The cover-collapse failure mechanism 

consists of four district components: 1) failure planes with erosion envelope, 2) arch 

dropout failure, 3) formation of elliptical void, and 4) slope stability failure. The cover-

subsidence sinkhole erosion mechanism involves a continuous flow of soil particles 

throughout the whole overburden resulting in a near instantaneous ground surface 

subsidence during formation, whereas with the cover-collapse sinkhole erosion 

mechanism the flow of soil particles is from the interior surface of the void and ground 

surface subsidence only occurs immediately before ground surface collapse. 

 A strong qualitative relationship between soil strength and type of sinkhole formed 

(cover-subsidence or cover-collapse) was observed. Qualitatively the soil strength was 

increased from the cover-subsidence sinkhole simulation to the cover-collapse sinkhole 

simulation by the addition of a cohesive soil and by the use of compaction. In the cover-

subsidence simulations the soil did not have enough strength to allow a void and 

structural arch to form, resulting in an erosion mechanism of a steady state flow of soil 

particles through the whole overburden. Once the soil strength was increased (cover-

collapse simulation) the soil was able to sustain a void and structural arch, resulting in a 

change in the erosion mechanism to soil particle detachment along the interior surface of 

the void. 
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4.2 Recommendations 

Recommendations to take into account in future studies are summarized as below: 

 Investigation into the effect that directional head difference between the unconfined 

aquifer and confined aquifer has on the sinkhole formation rate. In all simulations the 

sinkholes were triggered by creating a head difference through the lowering of the head 

in the confined aquifer while holding the unconfined aquifer head constant, this simulated 

excessive well pumping of the confined aquifer, which resulted in a near instantaneous 

pressure change at the overburden-bedrock fracture interface. It should be investigated if 

this method of creating the head difference produces similar sinkhole formation rates as 

the alternative method, involving the increase in head within the unconfined aquifer 

while holding the confined aquifer head constant, simulating excessive rainfall, which 

would result in a delayed pressure change at the overburden-bedrock fracture interface 

since the pressure change would have to travel through the whole confining layer before 

it could influence the soil around the bedrock cavity. 

 To explore the influence that head difference between the unconfined aquifer and 

confined aquifer has on sinkhole formation size. A study should be performed to 

investigate if seepage forces have a significant impact on the determination of the angles 

of the failure planes, thus on the erosion envelope and sinkhole formation size. 

 Look into if the cover-collapse sinkhole mechanism requires cohesion. In the second 

generation sinkhole simulator during the cover-collapse sinkhole simulation it was 

noticed that during ground surface failure the top of the structural arch fails in tension, 

detaching from the ground surface and sliding into the void below. Under the best case 
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scenario involving a well graded, dense, and partial saturated cohesionless overburden, it 

is questioned if the soil has sufficient strength to allow the void and structural arch to 

approach the ground surface without premature failure since the soil strength would 

depend strictly on overburden pressure (effective stresses) and capillary forces 

(applicable to soil above the groundwater table), with the only resistance to tension 

failure being provided by the latter. If premature failure of the void happens before 

reaching the ground surface this could result in abrupt subsidence at the ground surface. 

 Investigation into the soil in situ stress redistributions throughout the overburden caused 

by sinkhole formation. As the soil arching phenomenon takes place stresses are 

redistributed, with some zones around the sinkhole formation experiencing a stress 

decrease and others experiencing a stress increase. In situ pressure transducers can be 

used to record these stress change patterns during sinkhole formation. Behavior of the 

stress changes throughout the overburden can be a good indicator of the status of the 

sinkhole process and monitoring of stress field data can be used as an input to a method 

for sinkhole pre-detection. 
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APPENDIX: APPROVAL LETTERS 
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