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ABSTRACT 

Rapid communication during extreme events is one of the critical aspects of successful disaster 

management strategies. Due to their ubiquitous nature, social media platforms offer a unique 

opportunity for crisis communication. Moreover, social media usage on GPS enabled devices such 

as smartphones allow us to collect human movement data which can help understanding mobility 

during a disaster. This study leverages social media (Twitter) data to understand the effectiveness 

of social media-based communication and the resilience of human mobility during a disaster. This 

thesis has two major contributions. First, about 52.5 million tweets related to hurricane Sandy are 

analyzed to assess the effectiveness of social media communication during disasters and identify 

the contributing factors leading to effective crisis communication strategies. Effectiveness of a 

social media user is defined as the ratio of attention gained over the number of tweets posted. A 

model is developed to explain more effective users based on several relevant features. Results 

indicate that during a disaster event, only few social media users become highly effective in 

gaining attention. In addition, effectiveness does not depend on the frequency of tweeting activity 

only; instead it depends on the number of followers and friends, user category, bot score 

(controlled by a human or a machine), and activity patterns (predictability of activity frequency). 

Second, to quantify the impacts of an extreme event to human movements, we introduce the 

concept of mobility resilience which is defined as the ability of a mobility infrastructure system to 

manage shocks and return to a steady state in response to an extreme event. We present a method 

to detect extreme events from geo-located movement data and to measure mobility resilience and 

loss of resilience due to those events. Applying this method, we measure resilience metrics from 

geo-located social media data for multiple types of disasters occurred all over the world. 

Quantifying mobility resilience may help us to assess the higher-order socio-economic impacts of 
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extreme events and guide policies towards developing resilient infrastructures as well as a nation’s 

overall disaster resilience.  

Keywords: crisis communication; hurricane warning; evacuation; social media; Twitter; hurricane 

Sandy; disaster management; human mobility; resilience; geo-location data.  
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CHAPTER 1: INTRODUCTION 

1.1 Introduction 

Extreme weather events have become common in recent decades (NELSON, 2013). Globally, 

natural disasters cause  $520 billion equivalent loss and are responsible for taking 26 million 

people below poverty line (The World Bank, 2016). Since 1980, the United States alone has spent 

more than $1.5 trillion for managing 219 weather and climate related disasters which had overall 

damages exceeding $1 billion (NOAA National Centers for Environmental Information (NCEI) 

U.S., 2018). Hurricanes along with other natural disasters in 2017 are expected to cause 135 billion 

US dollar insured cost (Munich RE, 2018). Effective disaster management plays a critical role in 

reducing the cost of a disaster with implications in its four phases including mitigation, 

preparedness, response and recovery operations. Households and communities  require appropriate 

resources to meet different needs in these phases of disaster management (Comfort et al., 2004). 

To mitigate loss of lives and infrastructure damage, proper preparedness and organized response 

strategies are crucial. Information availability about the time and severity of an incident can greatly 

help disaster preparedness, response and recovery operations. Particularly for responding 

organizations, effective information sharing and coordination are critical (Bharosa et al., 2010; 

Yates and Paquette, 2011). Access to information enhances the efficiency of response actions and 

increases coordination throughout the network of responding organizations (Comfort et al., 2004).  

Online social media platforms facilitate fast and easy exchange of information through 

sharing, discussion, and communication producing a huge amount of digital content (Huang et al., 

2010). Social media data has been used to investigate many research topics such as human mobility 

(Hasan et al., 2013c; Hasan and Ukkusuri, 2014), transportation (Chen et al., 2017, 2014; Ni et al., 
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2017; Rashidi et al., 2017; Zhang et al., 2018), tourism and hospitality (Leung et al., 2013), public 

health (Kass-Hout and Alhinnawi, 2013), disaster management (Huang and Xiao, 2015; 

Kryvasheyeu et al., 2016; Simon et al., 2015) and so on. Online social media can play a vital role 

in spreading timely updates about emergency and colleting feedback from the affected population. 

Emergency evacuation plan such as evacuation timing, mode and route choice depends on many 

different factors (Hasan et al., 2013a; Murray-Tuite and Wolshon, 2013; Sadri et al., 2014, 2013). 

Information from social media about situational awareness can influence shaping these decisions 

(Martín, Yago, Zhenlong Li, 2017).  

Thus, a wide range of international, state, and local organizations have successfully used 

social media tools during disasters gaining broader interests among policy makers on how social 

media might be used to improve disaster response and recovery capabilities (Lindsay, 2011). For 

instance, during Hurricane Sandy, social media played an important role by sharing information, 

when the affected regions had limited access to traditional media (Kaufman, S., C. Qing, N. 

Levenson, 2012). 

When using social media for information dissemination during disasters, it is critical to 

know what makes an information provider more effective. However, studying the effectiveness of 

social media users in disseminating information has been a challenging task. Such a study would 

require appropriate metrics applied over a large collection of disaster communication data. On the 

other hand, essential components of social communication such as human choices, disaster 

warning propagation and risk communication in large-scale social networks cannot be reproduced 

within the limits of typical social experiments.  
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Although social media data for disaster management has been used mainly for situational 

awareness and crisis communication that mostly covers temporal and contextual dimension, geo-

tagged data offer collecting user needs, concerns and mobility traces spatially.   

Human mobility analysis has drawn much attention in many research fields for its wide 

applications. Most of the studies have modeled mobility as probability distributions of the length 

of the traveled distance and the waiting time between any two displacements. Analyzing a wide 

range of data sets, studies have established that human mobility is not random rather it follows 

some specific patterns (Alessandretti et al., n.d.; Brockmann et al., 2006; Gonzalez et al., 2008; 

Jurdak et al., 2015). For instance, human mobility has been studied using large-scale trajectory 

datasets including bank notes (Brockmann et al., 2006), taxi data (Wang et al., 2015; Yao and Lin, 

2016), GPS observations (J. Tang et al., 2015), Wi-Fi (Alessandretti et al., n.d.), cell phone call 

recordings (Deville et al., 2016; Song et al., 2010), and social media posts (Hasan et al., 2013c; 

Hasan and Ukkusuri, 2014; Rashidi et al., 2017).  These studies have found that mobility follows 

power-laws (Beir?? et al., 2016; Brockmann et al., 2006; Deville et al., 2016; Gonzalez et al., 2008; 

Han et al., 2011; Hawelka et al., 2014; Noulas et al., 2012; Song et al., 2010; Vaca et al., 2014; 

Yao and Lin, 2016; Zhao et al., 2015b), log-normal (J. Tang et al., 2015; Wang et al., 2015), 

exponential distribution (Gallotti R, Bazzani A, 2016; Liang et al., 2012; Liu et al., 2015, 2014; 

Wu et al., 2014; Zhao et al., 2015a) or a combination of power-law and exponential distributions 

(Gallotti R, Bazzani A, 2016; Liu et al., 2015).  

During extreme events, human mobility goes through a significant perturbation compared 

to regular periods. People are less likely to move the same way in emergency situations, such as a 

hurricane, typhoon, earthquake and other natural or manmade extreme events, as they do in normal 
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conditions. Understanding this perturbation will increase the effectiveness of disaster 

preparedness, information communication, reduce fatalities, and minimize economic losses (Wang 

and Taylor, 2016, 2014). Despite its importance, few studies have investigated human mobility 

under disasters. Although studies have investigated how individuals behave during an extreme 

event (Hasan et al., 2013b, 2011; Mesa-arango et al., 2013; Sadri et al., 2015, 2014, 2013), they 

are mainly based on post-disaster surveys with limited sample size. Based on these survey data, it 

is impossible to compare pre and post disaster human movements and measure mobility resilience 

at a system scale. Resilience is commonly used to indicate the ability of a system or entity to return 

to its normal state after a disruption due to a disaster event (Hosseini et al., 2016). To assess 

resilience, depending on the fields and events, both qualitative (Alliance, 2007; Kahan, Jerome H., 

Andrew C. Allen, n.d.; Speranza, Chinwe Ifejika, Urs Wiesmann, n.d.) and quantitative (Bruneau 

et al., 2003; McCallum et al., 2016; Nicholson, C. D., K. Barker, n.d.) approaches exist. While it 

has been widely studied for physical infrastructure systems, resilience of socio-economic systems 

is hard to quantify. Human mobility is a key factor to understand the impacts of disasters to our 

social and economic activities since socio-economic development is strongly associated with 

mobility (Pappalardo et al., 2015). 

Thus, data unavailability is one of the main constraints of observing human movements 

during extreme events. While high resolution mobile phone calls, transit systems transactions, and 

GPS coordinates can provide us richer information on human mobility during disasters, these 

proprietary datasets are not widely available due to privacy concerns. Social media data can offer 

a promising direction in observing human movements during extreme events. A method that can 

quantitatively measure perturbations and recovery times will greatly impact disaster management 
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as well as in policy making towards building disaster resilient infrastructures, communities, and 

cities.  

While disaster resilience has been studied in many fields, understanding mobility resilience 

under disasters is a relatively new topic. Donovan et. al. (Donovan and Work, 2017) have studied 

transportation system resilience for the New York City using taxi GPS data for multiple disasters. 

Recent studies (Qi and John E., 2014; Wang and Taylor, 2016, 2014) have shown that under 

disaster events human mobility goes through perturbation but still follows the same distributions 

similar to the ones in a steady state, and the shift in the center of mass and radius of gyration in a 

perturbed state are correlated with the steady state radius of gyration. Although, these studies have 

suggested that human mobility is somewhat resilient to disasters, a quantitative assessment of 

mobility resilience is still missing in the literature. Furthermore, these studies did not explore the 

expected correlations of mobility resilience across different types of extreme events. 

1.2 Thesis Contribution 

This thesis has made several contributions to disaster management. This study assesses social 

media-based communication efficiency in terms of attention gaining for activity in social media. 

We also investigate what are the contributing factors for efficiency. We develop models to identify 

the contributing factors and to predict the efficient users from the features. Adopting the 

contributing features for higher efficiency can lead to faster disaster communication by gaining 

more attention to the situation specific information. Another part of this thesis uncovers the human 

mobility resilience during multiple types of disasters.  We present a method to detect extreme 

events from geo-located movement data and to measure mobility resilience and loss of resilience 

due to those events. Applying this method, we measure resilience metrics from geo-located social 
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media data for multiple types of disasters occurred all over the world. Quantifying mobility 

resilience may help us to assess the higher-order socio-economic impacts of extreme events and 

guide policies towards developing resilient infrastructures as well as a nation’s overall disaster 

resilience. 

1.3 The Objective of the Thesis 

The main objective of this thesis is to apply social media data in disaster management. We focus 

on crisis communication during hurricane sandy in terms of attention gaining efficiency of the 

users. Our objective is to find out how activity frequency and activity pattern affect in attention 

gaining during a disaster. And what are the other factors that contribute to the efficiency in gaining 

attention during a disaster. To be specific, our objective is to answer the following research 

questions: 

• Does a more active social media user gain more attention? What combinations of user 

activity will facilitate such attention in pre-disaster, during disaster and post-disaster 

periods? This study allows us to understand the correlation between activity and attention 

gained during these three phases of a disaster. 

• How does user efficiency dynamics change over the pre, during and post disaster phases? 

We show that during disaster specially in hurricane declaration and landfall days users 

have higher average efficiency than that of pre-disaster and post disaster period.  

• What are the factors contributing to user efficiency? How can efficient users be classified 

based on their activities and features? We present a model to classify efficient users 

highlighting the features contributing to user efficiency in disaster periods.   
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Another objective is to find human mobility resilience in response extreme events using location 

based social media data. To be specific we answer the following research questions: 

• What is the definition of resilience in the context of human mobility? We define 

resilience for human mobility that can be calculated for geo-tagged data. 

• How does human mobility resilience vary for different types of disaster? We calculate 

human mobility resilience for multiple types of disaster such as hurricane, earthquake, 

snowstorm etc. 

• How does human mobility resilience vary in response to events of different intensities? 

We quantify human mobility resilience for different intensities of hurricane and 

earthquakes.  

1.4 Thesis Organization 

The rest of the thesis is organized as follows: Chapter 2 provides the literature review on social 

media usage on disaster management focusing on crisis communication and human mobility. 

Chapter 3 provides the data description, analysis, methodology and result to understand crisis 

communication efficiency during hurricane sandy. Chapter 4 describes the data description, 

methodology and result to quantify human mobility resilience during multiple types of disaster 

using social media. Chapter 5 presents the summary and conclusions of the thesis. 



8 
 

CHAPTER 2:  LITERATURE REVIEW 

Social media, the computer mediated technology is now one of the most integrated parts of our 

daily life. These technological advancements have transformed the view of disaster management 

professionals on disseminating information as well as interacting with the affected communities. 

Having a strong social network increases the likelihood of a person responding to a warning 

message (Aguirre et al., 1998). During crisis, warning message like evacuation decisions can be 

made anywhere and often with little advanced warning time (Murray-Tuite and Wolshon, 2013). 

Eye-witnessed information sources provide local and rapid updates during disaster and thus can 

be more helpful than official news for the decision makers (Palen et al., 2009; Shklovski et al., 

2008).  

Researchers have used social media in disasters from different perspectives(Kim and 

Hastak, 2018; Stieglitz et al., 2018). Studying 2013 Oklahoma tornado, it is shown that Twitter 

data can reveal relevant information as an additional data source for better understanding of 

individual behavior during a crisis (Ukkusuri et al., 2014). Visual analytics of microblog data can 

display public behavior in disaster events (Chae et al., 2014). Mobility patterns can be inferred 

from geo-tagged tweets (Hasan et al., 2013c; Hasan and Ukkusuri, 2014; Sadri et al., 2017a). 

Communities can be detected from user interactions on Twitter (Hasan et al., 2013c; Sadri et al., 

2017a). Social media users can be used as social network sensors to increase disaster awareness 

(Kryvasheyeu Y, Chen H, Moro E, Van Hentenryck P, 2015). Furthermore, social media data can 

be used to rapidly assess disaster damage, as it was shown that per capita damages were strongly 

correlated with per capita twitter activity during hurricane Sandy (Kryvasheyeu et al., 2016).   



9 
 

Activities of social media users are greatly influenced by content production and sharing 

activities (Vaca et al., 2014). Most of the past studies focused on the popularity or propagation of 

the content in social media such as popular tweets (Hong et al., 2011; Mathioudakis et al., 2010), 

Flickr picture (Cha et al., 2009), YouTube video (Figueiredo et al., 2011), Twitter hashtag 

(Lehmann et al., 2012) etc. Scale free networks and affinity affect the propagation of information 

(Wu et al., 2004) but basic measures such as the raw number of social connections are not a good 

predictor for influence (Asur et al., 2011; Romero and Huberman, 2011). In addition to the graph 

properties of user networks, the popularity and influence of a twitter account depend on the 

personality and emotion of the human being behind that account (Quercia et al., 2011). Stai et al. 

(Stai et al., 2018) proposed an epidemic model to understand temporal dynamics of information 

diffusion in Twitter, explaining the burst like behaviors due to information diffusion (Myers and 

Leskovec, 2014). Vaca et al. (Vaca et al., 2014) observed that a combination of different type of 

social and content-producing activity is necessary to attract attention in social media. Using Sina-

Weibo data during two hurricanes, this study (Dong et al., 2018) explores the information diffusion 

considering individual and network perspective. Analyzing the reposting behavior in Weibo.com 

during Yiliang earthquake, Li et. al have studied the propagation pattern of different types of 

information(Kim and Hastak, 2018). Kim et. al have analyzed the network characteristics of city 

of Baton Rouge Facebook page during 2016 Louisiana flood(Kim and Hastak, 2018). They have 

found higher information diffusion in Facebook than Twitter.  A study(Kim et al., 2018) on storm 

Cindi using twitter data explores the role of four types of twitter users in emergency information 

diffusion. According to this study, news and weather agencies are the dominant twitter users as 

information sources whereas the public and organizations are the dominant twitter users as 
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information diffusers.  Despite these efforts, what factors contribute to attract attention in social 

media during a disaster, remains an open question.  

Another important aspect during disaster is human mobility because disaster limits the 

ability to move or create increased movement. Human mobility analysis has drawn much attention 

in many research fields for its wide applications. Most of the studies have modeled human mobility 

as probability distributions of the length of the traveled distance and the waiting time between any 

two displacements. Recently, human mobility has been studied using large-scale trajectory datasets 

including bank notes (Brockmann et al., 2006), taxi data (Wang et al., 2015; Yao and Lin, 2016), 

GPS observations (J. Tang et al., 2015), Wi-Fi (Alessandretti et al., n.d.), cell phone call recordings 

(Deville et al., 2016; Song et al., 2010) and social media posts (Hasan et al., 2013c; Hasan and 

Ukkusuri, 2014; Rashidi et al., 2017).  These studies have found that mobility follows power-laws 

(Beir?? et al., 2016; Brockmann et al., 2006; Deville et al., 2016; Gonzalez et al., 2008; Han et al., 

2011; Hawelka et al., 2014; Noulas et al., 2012; Song et al., 2010; Vaca et al., 2014; Yao and Lin, 

2016; Zhao et al., 2015b) , log-normal (J. Tang et al., 2015; Wang et al., 2015), exponential 

distribution (Gallotti R, Bazzani A, 2016; Liang et al., 2012; Liu et al., 2015, 2014; Wu et al., 

2014; Zhao et al., 2015a) or a combination of power-law and exponential distributions (Gallotti R, 

Bazzani A, 2016; Liu et al., 2015). Alessandretti et. al. (Alessandretti et al., n.d.) have found that 

both displacement and waiting time are best described by log-normal distribution and only for 

higher displacement and higher values of waiting time pareto distribution fitted better than log-

normal. Exploration and preferential return were the two main principles for the individual 

mobility model developed by Song et al.(Song et al., 2010). 
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People are less likely to behave the same way in emergency situations such as a hurricane, 

typhoon, earthquake and other natural or manmade extreme events, as they do in normal 

conditions. Studies have investigated how individuals behave during an extreme event (Hasan et 

al., 2013b, 2011; Mesa-arango et al., 2013; Sadri et al., 2015, 2014, 2013). However, these studies 

are based on post-disaster surveys with limited sample size. Based on these survey data, it is 

impossible to compare pre and post disaster human movement patterns and measure mobility 

resilience at a system scale.  

Data unavailability is one of the main constraints of observing human movements during 

extreme events. While high resolution mobile phone calls, transit systems transactions and GPS 

coordinates data can provide us richer information on human mobility during disasters, these 

proprietary datasets are not easily available due to privacy concerns. However, social media data 

can offer a promising direction in observing human movements during extreme events.  

Increasing use of social media in disasters indicates its potential use as a communication 

and disaster management tool during extreme situations (Simon et al., 2015). Many studies have 

analyzed emerging social media data for understanding human behavior during disasters. Social 

network members have the potential to perform as early warning sensors and public sentiment 

sensing of social media posts can help detecting and locating disasters (Kryvasheyeu Y, Chen H, 

Moro E, Van Hentenryck P, 2015). Evacuee behavior and evacuation compliance during disasters 

have been investigated using social media data (Arif Mohaimin Sadri; Satish V. Ukkusuri, Ph.D., 

M.ASCE; Pamela Murray-Tuite, Ph.D., M.ASCE; and Hugh Gladwin, 2014; Fry and Binner, 

2015; Martín, Yago, Zhenlong Li, 2017; Sadri et al., 2017d, 2014). Thus, social media can play an 
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important role in collecting disaster information and help in making successful disaster 

management plans (Keim and Noji, 2010; Sadri et al., 2017a, 2017e; Z. Tang et al., 2015).  

While disaster resilience has been studied in many fields, understanding mobility resilience 

under disasters is a relatively new topic. Donovan et. al. (Donovan and Work, 2017) have studied 

the transportation system resilience for the New York City using taxi GPS data for multiple 

disasters. Recent studies (Qi and John E., 2014; Wang and Taylor, 2016, 2014) have shown that 

under disaster events human mobility goes through perturbation but still follows the same 

distributions similar to the ones in a steady state, and the shift in the center of mass and radius of 

gyration in a perturbed state are correlated with the steady state radius of gyration. However, they 

did not find the expected correlations for some extreme cases which need further investigations. 

Although, these studies have suggested that human mobility has some resilience in disaster, they 

did not make any quantitative assessment of resilience such as the recovery time and the deviation 

from a steady state.
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CHAPTER 3: UNDERSTANDING CRISIS COMMUNICATION 

EFFECTIVENESS 

3.1 Introduction and motivation 

Increasing use of social media in disasters will require a better understanding of the effectiveness 

of information spreading to an affected community. Finding the factors of information spreading 

is crucial for understanding the dynamics of social media systems. A better understanding of the 

underlying factors will provide insights into effective crisis communication strategies. Users more 

efficient in spreading information can play an important role during crisis, since user activities can 

draw a significant amount of attention to relevant topics/content from other users. Understanding 

the interplay among user activities, network properties and the attention received will help to 

identify the contributing factors in successful crisis communication in emergency situations (Sadri 

et al., 2017b, 2017c). Thus, understanding the influence of social media users has significant 

implications in a disaster management context. 

Although influence of social media users has been studied in many different contexts, 

efficiency of information/awareness spreading in a disaster context still needs to be investigated. 

Previous studies have focused on the popularity of content instead of analyzing the effects of user 

behaviors on how other users respond to them (Vaca et al., 2014). Moreover, to the best of our 

knowledge, few studies have considered user categories and activity patterns while measuring the 

efficiency of information spreading in the context of disaster management. In social media 

dynamics, information diffusion creates sudden bursts of connections (e.g., friends or followers) 

by creating new edges or deleting existing edges (Myers and Leskovec, 2014). Similarly, during a 

disaster, information diffusion about situational awareness drives significant changes in the 

underlying social media connections of friends and followers. Such bursts in new followers may 
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happen due to common interest (textual similarity) (Myers and Leskovec, 2014)  or attention (Vaca 

et al., 2014) to users or information source. In this study, using Twitter data, we analyze the 

efficiency of social media users in information spreading in the context of hurricane Sandy. We 

investigate user activity against the attention gained in pre-disaster, during (warning and response 

phase) and post-disaster periods. The efficiency of a user is defined as the ratio between attention 

gained over the number of tweets within a period. In this study, Twitter data before, during and 

after hurricane sandy have been analyzed to understand the factors contributing to the overall 

efficiency of a user in crisis communication. A model is also proposed to classify efficient users 

based on their attributes. This method has potential to be used to identify effective social media 

users during disasters for rapid communications. 

3.2 Data 

Hurricane Sandy, a late season post-tropical cyclone was the deadliest and most destructive 

hurricane of the 2012 Atlantic hurricane season. On October 20, Sandy’s origin was primarily 

associated with a tropical wave that was assessed as a high potential for it to become a tropical 

cyclone within 48 hours (Blake et al., 2013). The hurricane was first classified and officially 

assigned its name as Sandy on October 22 (Kryvasheyeu Y, Chen H, Moro E, Van Hentenryck P, 

2015). After leaving a trail of damage over Jamaica, Cuba, and Bahamas, Sandy made its landfall 

on the United States at 23:30 UTC on 29 October 2012 near Brigantine, New Jersey. Sandy was 

responsible for 147 direct fatalities and damage in excess of $50 billion, including 650,000 

destroyed or damaged buildings (Blake et al., 2013). Sandy received a lot of media coverage both 

in traditional media and social media.  
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The dataset was collected from the publicly accessible data via doi:10.5061/dryad.15fv2 (DRYAD 

repository) (Kryvasheyeu Y, Chen H, Moro E, Van Hentenryck P, 2015). Kryvasheyeu et al. 

(Kryvasheyeu Y, Chen H, Moro E, Van Hentenryck P, 2015) collected the dataset through an 

analytics company Topsy Labs who deals with Twitter data. The collected data contains tweets 

posted between October 15, 2012 and November 12, 2012.  This duration covers the period before 

the formation of the hurricane to after the landfall in the United States. The dataset contains user 

id, timestamp, tweet text, tweet id, user followers count, user friends count, sentiment scores and 

locations. In total, there were 52,493,130 tweets from 13,745,659 unique twitter users.  

3.3 Methods 

3.3.1 Activity, Attention, and Efficiency Metrics in Twitter 

We define attention as the number of new followers received and activity as the number of tweets 

or new followee added. For this study, tweet frequency is selected as an activity metric since this 

is the most frequent activity among all types of users; whereas followee addition is very low or 

zero for some organizational and personal users. A well-connected user (high initial followers in 

our study) has a large audience, thus a tweet posted by a well-connected user can reach to many 

users. But the existing followers may not be the targeted users during an emergency, thus not 

creating sudden burst in new connections (friends, followers etc.) as study(Myers and Leskovec, 

2014) shows that information diffusion creates sudden burst in new connections. For that reason, 

we have used new follower gain as attention and existing followers as one of the factors. To 

measure the performance of the users in gaining attention, we use a metric called as efficiency. As 

shown in Equation (3.1), efficiency 𝜂 of a user u for the time frame (𝑡𝑖 𝑡𝑜 𝑡𝑗  ) is defined as the ratio 

between total attention received and total activity performed within that time frame.  
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 𝜂𝑢(𝑡𝑖, 𝑡𝑗) =   ∑ 𝑎𝑡𝑡𝑘(u)𝑡𝑗𝑘=𝑡𝑖∑ 𝑎𝑐𝑡𝑘(u)𝑡𝑗𝑘=𝑡𝑖  (3.1) 

where 𝑎𝑡𝑡𝑘(u) and 𝑎𝑐𝑡𝑘(u) represent, in time period k by user u, attention gained and activities 

posted, respectively.  

Although, equation similar to (3.1) are commonly used in fields like physics and economics, Vaca 

et al. (Vaca et al., 2014) used this term in a social media setting. Unlike most of the fields where 

efficiency is upper bounded to 1, it can take any value. Higher efficiency values indicate better 

engagement and higher influence in social media communication.    

3.3.2 Extraction of User Features 

From raw data, for all the tweets of each unique user activity frequency, initial follower count, 

initial followee count, total follower received, total followee added by the user and efficiency 

metrics were computed for a selected time interval. To measure the regularity of a user’s activity 

approximate entropy of activities has been estimated. Approximate entropy is a statistical 

parameter that can quantify the predictability or regularity of a time series data. A repetitive pattern 

of fluctuation in a time series makes it more predictable than a time series without such patterns. 

Approximate entropy calculates the likelihood that similar patterns of observation will not found 

in the data in the subsequent observations. Thus, a higher value of approximate entropy implies 

less regularity and a smaller value indicates strong regularity (Kim et al., 2005). Approximate 

entropy has been used in many fields such as medical data (Srinivasan et al., 2007), finance (Pincus 

and Kalman, 2004), psychology (Pincus and Goldberger, 1994), complex system analysis 

(PINCUS, 1991) etc. Daily activity frequencies of a user for the whole analysis period were used 

as an input. Approximate entropy was best fitted as it has low computational demand, applicable 
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on small observation (points < 50) and can be applied in real-time. The detailed procedure of 

computing approximate entropy can be found in this study (Srinivasan et al., 2007). Furthermore, 

since a significant number of users are being operated autonomously (bot) (Ferrara et al., 2014) , 

we have collected the bot score using truthy botornot-python API to evaluate whether a user 

account is controlled by human or machine (Davis et al., 2016). 

3.3.3 Contributing Features to Efficiency 

To find the linear relationship between different variables and the outcome variable, univariate and 

multivariate linear regressions were fitted with the extracted variables. The general form of such 

models is shown in Equations (3.2) -(3.4).  

 𝑌 = 𝜃0 + 𝜃1𝑋 + 𝜀 (3.2) 

 𝑌 = 𝜃0 + 𝜃1𝑋 + 𝜃2𝑋2 + 𝜃3𝑋3 + 𝜀 (3.3) 

 𝑌 = 𝜃0 + 𝜃1𝑋1 + 𝜃2𝑋2 + 𝜃3𝑋3 + ⋯ + 𝜃𝑘𝑋𝑘 + 𝜀 (3.4) 

 

Here Y is efficiency, treated as a dependent variable; X, X1, X2 etc. are the independent variables 

affecting efficiency; 𝜃0 is a constant term; and 𝜃1, 𝜃2, 𝜃3 are the coefficients of the corresponding 

variables. While univariate linear regression describes the relationship of each independent 

variable with the dependent variable, a multiple linear regression model reveals the relationship of 

the combined effect of the explanatory variables. The independent variables in the best models are 

considered as the most influential and explanatory variables in determining efficiency. The best 

model is selected based on the adjusted R squared value. 

Users are categorized based on their aggregate efficiency during the whole period. Besides 

understanding the effect of predictor variables in continuous change in efficiency, we estimate an 

https://github.com/truthy
https://github.com/truthy/botornot-python
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ordered logit model to understand the effect of the extracted features in predicting the category of 

the efficiency of a user. An ordered logit or proportional odd model was chosen as the outcome 

variable is ordered from low efficiency to high efficiency. This model gives the output as the 

probability or odd of falling an outcome in an efficiency category. The basic equation (Derr, 2013; 

Torres-reyna, 2012; Washington, S.P., Karlaftis, M.G. and Mannering, 2010) for interpreting this 

model is given in Equation (3.5). 

 log [ 𝑝𝑖1 − 𝑝𝑖] = 𝑎𝑖 +  𝑏1𝑥1 + 𝑏2𝑥2 + 𝑏3𝑥3 + ⋯ + 𝑏𝑘𝑥𝑘 (3.5) 

𝑤ℎ𝑒𝑟𝑒, 𝑝𝑖 = 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑎𝑛 𝑜𝑢𝑡𝑐𝑜𝑚𝑒 ≤ 𝑖  
𝑎𝑖 = 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 𝑓𝑜𝑟 𝑜𝑢𝑡𝑐𝑜𝑚𝑒 ≤ 𝑖 
b1, b2, etc. are the co-efficient whereas x1, x2, x3 are the explanatory independent variables. The 

best model is selected based on its AIC value.  

3.4 Results 

3.4.1 Distributions of User Features 

This section describes the features collected for a user. Figure 3.1 shows the distributions of 

activity, followers followees, bot score, and activity entropy found in the data. Both X axis and Y 

axis are plotted in log scale for (a), (b), and (c). Counter cumulative probability (CCDF) is plotted 

in Y axis which represents the probability of a value x of being greater than the corresponding 

value in X axis. Both X axis and Y axis are plotted in normal scale for (d) and (e). 
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Figure 3.1: (a) Activity, (b) Follower, (c) Followee Distributions (d) Bot Score and (e) Activity 
Entropy. 
 

Here the follower and followee counts are based on the counts when a user was first observed in 

the data set. The activity distribution is based on the total number of tweets observed during the 
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whole period in our dataset. Bot score and activity entropy distribution are plotted using values 

from 646,563 users. A bot score represents the likelihood of being a bot. An extreme value (0 or 

1) represents more confidence of the bot-ness of the user. Higher the value, higher the likelihood 

of being a bot. In our study, we have used 0.5 as a threshold to separate bot-like behavior.  

The empirical distributions of activity, initial followers and followees were best fitted to 

truncated power law among the fitted distributions shown in Figure 3.1(a), (b) and (c). For bot 

score and activity entropy (Figure 3.1 (d) and (e)), empirical distributions are best fitted to log-

normal distribution. Log likelihood ratio tests were used to find the goodness of fit for the fitted 

power law, lognormal and truncated power law distributions. 

3.4.2 Correlations between Activity and Attention 

Activity frequency and followee added play roles in gaining attention. Attention gains may also 

vary over time and context. Figure 3.2 shows attention gains for different ranges of activities in 

pre, during and post disaster periods. Though the duration of pre (9 days), during (10 days) and 

post (10 days) periods disaster are almost same, followers received is the highest during disaster 

period compared to other two periods (compare the maximum values of the z scales in Figure 3.2).   
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Figure 3.2: Correlations between Activity and Attention in (a) Pre-Disaster Period (Oct 14, 2012 
to Oct 22, 2012), (b) During Disaster (Oct 23, 2012 to Nov 1, 2012) Period and (c) Post Disaster 
Period (Nov 2, 2012 to Nov 11, 2012). 
 
The X-axis and Y-axis represent the range of number of tweets and number of followees, 

respectively. The Z axis shows the average number of followers received by the users falling in 

the corresponding x and y bin as color intensity. The Z axis values are shown in log scale. 

In general, we do not observe any particular trend between activity frequency and gaining attention 

in the pre and post-disaster periods. Unlike pre and post disaster periods, during the disaster, higher 

activities tend to help gaining higher attention. Very high activity frequencies (activity>700) in 

pre and post disaster periods are not necessarily associated with a high number of followers 

received. During pre and post disaster periods, users with activity frequency less than 700 have 

received the highest number of followers (black rectangles in Figure 3.2); whereas during the 

disaster, the highest number of followers was gained for a user with activity frequency greater than 

700. Followee added less than 100 has no impact in gaining attention but users adding followees 

greater than 100 have received higher attention during all the three phases. Another observation is 

that, the highest number of followers received in three phases occurred for the users with activities 

greater than 100. To study more in depth, we have studied user daily and aggregate efficiency 

based on different features and categories at different phases.    
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3.4.3 User Efficiency Analysis  

Daily efficiency of a user is calculated by dividing the total follower gain by the total number of 

tweets of that day. Similarly, aggregate efficiency is calculated by dividing total daily follower 

gain by the total tweet in that period. Users are categorized based on their active days. Only the 

users who had at least one activity on each of the three periods (pre, during, post disaster) are 

selected in these categories. Figure 3.3 shows the daily efficiency distribution for the users 

categorized by their active days. It is found that a significant number of users have daily efficiency 

value equal to or less than zero. As the number of active day increases, the probability of having a 

user with efficiency less than or equal to zero decreases. It also shows that the probability of having 

efficiency less than or equal to zero is maximum for the users who were active less than 8 days. 

Although, the probability of having daily efficiency greater than 10 is low across all category of 

users, this probability increases as the number of active days for a user increases.  

 

Figure 3.3: Daily Efficiency Distribution for the Users Categorized by Active Days. 
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X-axis shows the daily efficiency and Y-axis shows the cumulative probability which means the 

probability of being daily efficiency is equal or less than of the corresponding daily efficiency of 

X-axis. X-axis are plotted in log scale. 

We further investigate, for each user, how daily efficiency varies over time. To find if there 

is any trend in the data, we have categorized users based on their overall efficiency values (i.e., 

ratio of sum of daily attention and activity measured over the whole observation period). We 

calculate average daily efficiency by taking the average of the daily efficiencies of the users for a 

particular category. For hurricane related tweets, average daily efficiency for the first two 

categories (overall efficiency less than or equal to zero) does not change that much (see the inset 

plot at figure 3.4). But daily efficiency for the highly efficient users provide an interesting insight. 

Users had higher values of average daily efficiency during hurricane declaration and landfall days 

(figure 3.4). The spikes on hurricane declaration and landfall days indicate that some users received 

higher attention for their activities on those days. But this trend shows a significant number of 

spikes even before the formation of Sandy and also long after its landfall. This indicates that some 

users might be gaining attention due to tweets unrelated to Sandy. To confirm, we analyze only 

Sandy related tweets (having ‘sandy’ within the text of the tweet) and found that efficiency was 

maximum just after the declaration day (October 23,2012) and decayed readily with a spike at 

landfall date (see Figure 3.5). It indicates that users were highly effective spreading the awareness 

about Sandy on the day after its declaration. We do not observe any efficiency curve before 

declaration because the term ‘sandy’ was not present before declaration.   
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Figure 3.4: Average Daily Efficiency of the users categorized by efficiency (for hurricane 
related tweets). 

 

 

Figure 3.5: Average Daily Efficiency of the users categorized by efficiency values (for Sandy 
specific tweets). 
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Users are categorized by their overall efficiency values. To determine what type of users 

became highly effective spreading the awareness during hurricane declaration and landfall, we 

extract the top 5 efficient users for both hurricane related tweets and Sandy specific tweets. Figure 

3.6 shows the daily efficiency values for the top 5 efficient users on hurricane Sandy declaration 

and landfall days and top 5 efficient users over the whole data coverage period. We find that 

majority of them are either political users or have no significant association with hurricane updates 

(see Table 3.1). However, analysis on Sandy specific tweets reveals significant spikes close to 

landfall day (see Figure 3.7). We find that these highly effective users are either storm update 

centers or weather reporter having close association with hurricane updates (Table 3.2). It 

highlights the importance of an appropriate filtering step when identifying highly effective users, 

specific to a disaster. Tweets collected for a general disaster context may contain ambiguous words 

(e.g., power, weather, recovery etc.) overlapping with other highly conversed contexts.  
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Figure 3.6: Top 5 Efficient Users during Hurricane Declaration, Landfall and Overall (for 
hurricane related tweets).  
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Figure 3.7: Top 5 Efficient Users during Hurricane Declaration, Landfall and Overall (for Sandy 
specific tweets) 
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Table 3.1: Top 5 efficient users with user type and bot score during hurricane declaration and 
hurricane landfall. This analysis is based on the unfiltered (hurricane related tweets) data. 
 

Hurricane Declaration Hurricane Landfall 

Screen Name User Type 
Bot 

Score 
Screen Name User Type 

Bot 

Score 

@M3VOY 
Radio 

Operator 
0.62 @carrolltrust Organization 0.43 

@TonioMilano Personal 0.48 @hiphopencounter Organization 0.76 

@megynkelly 
Anchor at 

NBC News 
0.36 @migcfc Personal 0.06 

@BloodRedPatriot Organization  0.73 @trio Organization 0.55 

 

Table 3.2: Top 5 efficient users with user type and bot score during hurricane declaration and 
landfall. This analysis is based on the data which have the word sandy in the tweet. 
 

Hurricane Declaration Hurricane Landfall 

Screen Name User Type 
Bot 

Score 
Screen Name User Type 

Bot 

Score 

Not Found NA NA @NHC_Atlantic Organization 0.43 

@breakingstorm Organization 0.66 @cnnbrk Organization 0.51 

@NHC_Atlantic Organization 0.43 @Jimcantore 
Broadcast 

Meteorologist 
0.37 

@Jimcantore 
Broadcast 

Meteorologist 
0.37 @BreakingNews Organization 0.60 

@kkstormcenter 
Weather 

reporter 
0.71 @breakingstorm Organization 0.66 

Note: Not found indicates that the user made tweets during Sandy but its screen name was not 

found when searched during our analysis.     

3.4.4 User Attributes Contributing to Efficiency 

To identify the contributing factors for an effective spreading of awareness, it is important to know 

the relationship between each feature and efficiency metric. Similar to the previous section, we 

analyze separately for hurricane related and Sandy specific tweets for understanding the factors in 

gaining attention in crisis communication. For hurricane related tweets, Figure 3.8 shows the 
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relationship between efficiency and each of the variables of followee add, initial follower and 

initial followee, considering two types of users: bot (bot score >=0.5) and non-bot (bot score <0.5). 

In addition, the relationship between efficiency and active days has been modeled considering user 

categories based on activity entropy. The result shows good correlation (R2 >0.5) between 

efficiency and initial follower for the non-bot users. From Figure 3.8, we find that efficiency is 

positively associated with all the variables. In all cases, R2 values are lower for bot users compared 

to non-bot users. This reflects that efficiency of bots cannot be well predicted with a single 

variable. Similar associations have been found for Sandy specific tweets (see Figure 3.9).  
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Figure 3.8: Correlations between Efficiency and Different User Attributes (for hurricane related 
tweets) 
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Figure 3.9: Relationship between Efficiency and Different User Attributes (for sandy specific 

tweets) 

To determine the combined effects of the explanatory variables, we estimate a multivariate linear 

regression model. Table 3.3 presents the results of the model involving hurricane related tweets. 

All the variables are significant at 90 percent significance level, as each t statistics is greater than 

1.65. It is found that efficiency increases with initial number of followers, bot score of bot users, 

initial number of followee of non-bot users, while decreases with total activity, initial number of 

followees, bot score of non-bot users. A negative coefficient for activity entropy implies that 

entropy values have negative correlation with efficiency and users having a predictable activity 
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pattern (lower entropy values) have higher efficiency values.  The model estimated over Sandy 

specific tweets show similar results (see Table 3.4) except that total activity is not statistically 

significant in this case and bot score and activity entropy are positively correlated with efficiency.  

 From the regression analysis, we find how different user features influence a user’s 

efficiency. However, while considering overall efficiency as an outcome, a minor change in 

efficiency does not provide any significant information about the user’s performance in gaining 

attention. Thus, we have categorized efficiency into five classes: negative (efficiency<0), zero 

(efficiency=0), low (0<efficiency<=5), moderate (5<efficiency<=10) and high (efficiency>10) as 

shown in Figure 3.4. The outcome variable, thus turned into an ordered categorical variable. In the 

hurricane related sample about 6%, 56%, 32%, 3%, and 3% of the users fall within the negative, 

zero, low, moderate and high efficiency category, respectively. We have estimated an ordered logit 

model using the same 582605 observations (see Table 3.3). All the parameters shown in the results 

are statistically significant at 99% significance level.  
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Table 3.3: Model Results for hurricane related tweets 
 

Linear Regression Model  Ordered Logit Model 

Explanatory variable Parameter 
Estimate 

t statistic  Parameter 
Estimate  

Odds Ratio Estimates 

Point 
Estimate 

95% Wald 
Confidence 
Limits 

Intercept 5 na -5.0145    

Intercept 4 na -4.2164    

Intercept 3 na -1.1988    

Intercept 2 na 2.2357    

Constant 0.758 1.712 na 

Total activity -0.039 -6.767 -0.0110 0.989 0.98
9 

0.989 

Followee add 0.098 77.845 0.00926 1.009 1.00
9 

1.009 

Initial follower 0.002 698.21 1.000 1.000 1.00
0 

1.000 

Initial followee -0.004 -53.3 1.000 1.000 1.00
0 

1.000 

Active days na 0.2951 1.343 1.34
0 

1.347 

Activity entropy -36.754 -15.493 -1.9523 0.142 0.12
8 

0.157 

Bot score 11.622 9.793 -0.3974 0.672 0.64
8 

0.697 

Bot_Score*NonBotUser -14.419 -10.041 na 

Initial_followee*NonBo

tUser 

0.007 37.423 na 

Number of observations 582,605 582,605 

Adjusted R2 0.47   

AIC    1244359.6 

Note: na= not applicable, any variable included in one mode but not included in the other one is 

because we did not find it significant. 
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Table 3.4: Model Results for Sandy specific tweets 
 

Linear Regression Model  Ordered Logit Model 

Explanatory variable Parameter 

Estimate 

t 

statistic 

 Parameter 

Estimate  

Odds Ratio Estimates 

Point 

Estimat

e 

95% Wald 

Confidence 

Limits 

Intercept 5 na -6.6001    

Intercept 4 na -3.7514    

Intercept 3 na 4.6505    

Intercept 2 na 5.3600    

Constant -.073 -.453 na 

Total activity -0.001 -1.265 na na na na 

Followee add 0.003 5.411 0.00359 1.004 1.003 1.004 

Initial follower 0.0001 231.54 0.000035 1.00 1.00 1.00 

Initial followee -6.85E-5 -6.219 -2.71E-06 1.000 1.000 1.000 

Active days na -0.1312 0.877 0.852 0.903 

Activity entropy .704 1.940 1.2244 3.402 1.726 6.708 

Bot score 1.053 3.735 2.115 8.289 5.227 13.145 

Bot_Score*NonBotU

ser 

.521 1.655 na 

Initial_followee*Non

BotUser 

-5.27E-5 -1.794 na 

Number of 

observations 

15,792  15,792 

Adjusted R2 0.77   

AIC   7513.390 

Note: na= not applicable, any variable included in one mode but not included in the other one is 

because we did not find it significant 

For the interpretation of this result, regarding total activity, a negative parameter estimate 

represents that if all other variables in the model remain constant, for an increase in the number of 

tweets a user is more likely to be in a lower level of efficiency. Similar to the results from the 

regression model, users with a predictable tweeting pattern (i.e., smaller entropy value) are more 

likely to be in a higher efficiency category. Moreover, we find that users with higher number of 
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active days and followee added are more likely to be in a higher category of efficiency. In contrast, 

users with higher total activity and bot score are less likely to be in higher category efficiency. An 

ordered Logit model estimated over the Sandy specific tweets shows similar association except 

that total activity is not statistically significant and activity entropy is positively correlated with 

efficiency (see Table 3.4). A higher number initial follower or initial followee does not result in 

higher or lower efficiency category for both hurricane related and sandy specific tweets.  

3.5 Conclusions 

In this study, we have analyzed twitter posts related to hurricane Sandy to understand the 

effectiveness of social media based communication during disasters. Effective crisis 

communication can ensure faster information dissemination to vulnerable communities who need 

timely information about disaster preparedness, evacuation warning, and recovery operations. To 

measure the effectiveness of a social media user in communicating information or awareness, we 

have estimated the efficiency of gaining attention within a specific time period as the ratio of 

follower gained over tweet frequency within the same time period. We consider that new follower 

gained represents attention received and tweet frequency represents activities made.  As our data 

contains tweets from both pre and post-disaster periods, a comparison of user efficiencies in 

gaining attention among these periods has been possible.  

Analyzing daily efficiencies in gaining attention, we have found that users had higher efficiency 

during the critical periods in hurricane Sandy such as declaration and landfall days. This indicates 

the potential of social media based crisis communication since higher attention to related 

information may help in providing situational awareness to vulnerable population. It might be the 

case that during Sandy some users’ efficiency became abnormally high because a high number of 
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users started following them for hurricane related updates. These social media users could become 

one of the major sources of information for spreading hurricane awareness during future 

hurricanes. 

During a disaster, general social media users seek information from other users for a timely update. 

When sharing information, some users gain more attention than the others. Thus, it’s critical to 

understand what user features influence the process of gaining attention. For understanding the 

contributing features, we have estimated a regression and an ordered logit model considering 

overall efficiency and efficiency category, respectively as a dependent variable. We have found 

that higher activities relating to hurricanes are not necessarily associated with higher efficiencies. 

However, users with predictable tweeting patterns have gained higher efficiency values. We have 

also found that a higher bot score (typically associated with an organizational account) results in 

lower efficiencies. We have observed some differences on the effect of few user attributes on 

efficiency values for models estimated over general hurricane related tweets and Sandy specific 

tweets. User efficiencies in gaining attention for a crisis event are directly related with information 

spreading capacity of a system. A better understanding of the factors will provide insights on crisis 

communication both at organizational and individual levels. These insights will also help 

emergency agencies when using social media as a disaster communication tool.  

Thus, our findings have significant importance in social media communication specially in disaster 

communication. For attaining high efficiency in spreading disaster related information, concerned 

organizational or personal accounts can plan their activity considering the factors which will 

maximize the chance to attain higher attention from the targeted population in social media. Also, 

prior to a major disaster event concerned authorities can select some efficient social media users 
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for disseminating information about situational awareness; a model based on user features could 

find the efficient users for this task.   

However, our study has several limitations which can be improved in future. For example, bot 

scores were not collected during the period of hurricane Sandy, rather we have collected them at 

the time of our analysis. Bot scores could be different during hurricane Sandy than in the present 

when we have collected. We assume that all the tweets analyzed here were related to hurricane 

Sandy. User efficiency considering specific topics (e.g., evacuation) of a tweet should be analyzed 

in the future. 
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CHAPTER 4: QUANTIFYING HUMAN MOBILITY RESILIENCE 

4.1 Introduction 

Resilience is broad concept, which is applied to many different fields to measure the ability to 

sustain adverse situation. Previously, several concepts of resilience have been proposed. Hosseini 

et. al. (Hosseini et al., 2016) have reviewed the methods of defining and quantifying resilience in 

various fields.  Bruneau et. al. (Bruneau et al., 2003) developed a framework for measuring 

resilience considering four dimensions: i) robustness reflecting the strength or ability of the system 

to reduce the damage; ii) rapidity representing the rate or speed of recovery; iii) resourcefulness 

reflecting the ability to apply materials and human resources by prioritizing goals when an event 

occurs; and iv) redundancy representing the capacity to achieve goals by prioritizing objective to 

restrain loss and future disruptions. They have also proposed the following equation to measure 

resilience loss due to an earthquake:  

 𝑅𝐿 = ∫ [100 − 𝑄(𝑡)]𝑑𝑡𝑡1𝑡0  
(4.1) 

where, RL denotes resilience loss, Q(t) denotes a quality function at time t, and t1 is the recovery 

time. This formula forms the basis of a resilience triangle. Although this metric was originally 

proposed for an earthquake, it can be applied to many other contexts (Hosseini et al., 2016). 

However, measuring these resilience metrics, in a mobility context, has been difficult due to the 

lack of appropriate data over longer time periods. Geo-location data from social media can offer a 

solution to this problem. In this study, by analyzing user displacements from a pre-disaster period 

to a post-disaster one, we measure perturbation and recovery time for multiple types of disaster. 

To validate our results, we have used one-month of taxi data from the New York City recording 
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taxi movements before, during, and after hurricane Sandy. Quantifying resilience loss and recovery 

time from disruptions in response to an extreme event can help understanding the broader socio-

economic impacts of disasters. Furthermore, these resilience metrics will help in making policy 

towards building resilient cities and communities. 

This study makes several contributions. First, it defines the concept of mobility resilience and 

develops methods to detect extreme events in mobility data and to measure required metrics to 

measure resilience and resilience loss from movement data. Second, it applies the proposed method 

of measuring resilience to geo-located data collected from Twitter for multiple disasters. Thus, this 

paper shows that geo-located social media data can be effectively used to measure human mobility 

resilience to extreme events. 

4.2 Data and Methodology 

To measure mobility resilience, we have used geo-tagged tweets from several types of disaster 

(Table 4.1). The data sets have been collected from Dryad digital repositories 

http://datadryad.org/resource/doi:10.5061/dryad.88354  (Wang Q, 2016), originally collected by 

Wang et. al. (Wang and Taylor, 2016) and 

https://datadryad.org//resource/doi:10.5061/dryad.15fv2, collected by Kryvasheyeu et. al. 

(Kryvasheyeu and Chen, n.d.).  

 

 

 

 

http://datadryad.org/resource/doi:10.5061/dryad.88354
https://datadryad.org/resource/doi:10.5061/dryad.15fv2
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Table 4.1: Data Description 

Type Disaster Name  Disaster Location 
No. of 

Tweets 

No. of 

Users 

Hurricane 

Sandy (all tweets) USA 
52,493,13

0 
13,745,659 

Sandy (geo-tagged 

tweets) 
USA 

24,149,78

0 
5,981,012 

Earthquake 

Bohol (Bohol) Bohol, Philippines 114,606 7,942 

Iquique (Iquique) Iquique, Chile 15,297 1,470 

Napa (Napa) Napa, USA 38,019 1,850 

Typhoon 

Wipha (Tokyo) Tokyo, Japan 849,173 73,451 

Halong (Okinawa) Okinawa, Japan 166,325 5,124 

Kalmaegi (Calasiao) Calasiao, Philippines 21,698 1,063 

Rammasun (Manila) Manila, Philippines 408,760 27,753 

Winter 

storm 

Xaver (Norfolk) Norfolk, Britain 115,018 8,498 

Xaver (Hamburg) Hamburg, Germany 15,054 2,745 

Storm (Atlanta) Atlanta, USA 157,179 15,783 

Thunder 

storm 

Storm (Phoenix) Phoenix, USA 579,735 23,132 

Storm (Detroit) Detroit, USA 765,353 15,949 

Storm (Baltimore) Baltimore, USA 328,881 14,582 

Wildfire 

New South Wales (1) 
New South Wales, 

Australia (1) 
64,371 9,246 

New South Wales (2) 
New South Wales, 

Australia (2) 
34,157 4,147 

 

To validate our approach of using social media data, we collected New York City taxi data 

which includes taxi movement for the period same as the hurricane Sandy twitter data. The data 

was collected from a repository hosted by New York City Taxi and Limousine Commission 

(http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml). In the data, each observation 

represents a trip and there were total 12,892,877 trips in the study period. Hurricane Sandy data 

have tweets from several places including USA, Canada, Mexico and other countries. For 

measuring resilience for a city or a state in response to hurricane Sandy, we have applied 

http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml
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appropriate location filters. For example, a trip can be made within the New York City or having 

only an origin or destination in it. Since displacements are calculated in six-hour periods, when 

calculating resilience for the New York City, if a location filter is applied, only the displacement 

within the New York City will be considered in a six-hour period. If a location filter is not applied, 

both displacements within the New York City and having origins or destinations at the New York 

City will be considered in a six-hour period. Except hurricane Sandy data, the rest of the data 

consist city-specific tweets where those cities were subject to a disruptive event. Thus, a location 

filter or constraint is not required for these cases. 

In this study, we apply the concept of resilience for understanding human mobility under a 

disaster. Following the basic definition of resilience, we define mobility resilience as the ability of 

a mobility infrastructure system responsible for the movement of a population to manage shocks 

and return to a steady state in response to an extreme event. These events include a hurricane, 

earthquake, terrorist attack, winter storm, wildfire, flood, and others. We propose a simple method 

based on human movement data using normalized per user displacement as a key indicator of 

human mobility. Comparing the difference between per user displacements from typical 

displacements, the proposed method can detect a disruptive event from movement data and 

calculate the maximum deviation from normal conditions and the recovery time. Finally, applying 

the concept of resilience triangle, we estimate resilience and resilience loss for an event detected 

by the method.  The proposed method can take any kind of movement data as inputs including 

coordinates from mobile phone call recordings, GPS observations, social media posts and many 

others. In this paper, we present our resilience analysis based on social media data from multiple 

types of disasters.  
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4.2.1 Extracting Location Time Series of a User 

First, the coordinates of a user are sorted in an ascending order by timestamps. If there are not 

enough users for an hourly based analysis, we can divide each day in 4 periods such as 12 AM to 

6 AM, 6 AM to 12 PM, 12 PM to 6PM and 6PM to 12AM. From the sorted time series, locations 

(i.e., latitude and longitude) of each user are extracted in six-hour interval for each day.  

 𝑃𝑢𝑑,𝑡 =  {(𝑥, 𝑦)|(𝑥, 𝑦) ∈  (𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒, 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒 𝑜𝑓 𝑎 𝑟𝑒𝑔𝑖𝑜𝑛)} (4.2) 

where, 𝑃𝑢𝑑,𝑡denotes the set of locations of a user 𝑢  in day 𝑑  at period 𝑡 𝑑 𝜀(𝑑𝑎𝑦𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎𝑠𝑒𝑡), 𝑡 𝜀 (𝑝𝑒𝑟𝑖𝑜𝑑𝑠 𝑖𝑛 𝑎 𝑑𝑎𝑦), 𝑢 𝜀 (𝑢𝑠𝑒𝑟𝑠 𝑖𝑛 𝑑𝑎𝑡𝑎𝑠𝑒𝑡) 

4.2.2 Displacement Metric 

From the set of locations of a user, distances between two consecutive points are calculated using 

the Harvesine formula (C, n.d.) shown in Equation (4.3). For calculating displacements, a user 

must have at least two locations within a six-hour interval. Otherwise, the user is not considered 

in that interval. 

 𝐶 = 2𝑟 × sin−1 (√sin2 (𝜙2 − 𝜙12 ) + 𝑐𝑜𝑠𝜙1𝑐𝑜𝑠𝜙2sin2(𝜑2 − 𝜑12 )) (4.3) 

where 𝑟 is radius of earth, 𝜙 is latitude and 𝜑 is longitude. Displacement between two consecutive 

points will be calculated for each user at every six-hour interval. The average of the displacements 

for an interval is calculated by dividing the sum of the displacements by the total number of users 

contributing to that displacements. Thus, 

 𝐷𝑑,𝑡 = {∑𝐶𝑑,𝑡∑𝑢𝑑,𝑡} (4.4) 
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where 𝐷𝑑,𝑡 represents the average displacements at period t for day d. The term ∑𝐶𝑑,𝑡  indicates 

the summation of the displacements at period t for day d and the term ∑𝑢𝑑,𝑡 represents the total 

number of users contributing to these displacements within this period.  

4.2.3 Extraction of Typical and Actual Displacements Time Series 

The mobility dataset to be used for a resilience analysis should cover pre-disaster, disaster and post 

disaster periods. Using the average displacements value in the pre-disaster period, we can make 

four sets of typical values for the four periods considered in a day. These four typical values are 

calculated separately for weekdays and weekends.  

 𝐷𝑤𝑒𝑒𝑘𝑑𝑎𝑦𝑡 = {𝐷𝑑,𝑡 𝑤ℎ𝑒𝑟𝑒, 𝑑 ∈ (𝑝𝑟𝑒 − 𝑑𝑖𝑠𝑎𝑠𝑡𝑒𝑟 𝑤𝑒𝑒𝑘𝑑𝑎𝑦𝑠)} (4.5) 

 𝐷𝑤𝑒𝑒𝑘𝑒𝑛𝑑𝑡 = {𝐷𝑑,𝑡 𝑤ℎ𝑒𝑟𝑒, 𝑑 ∈ (𝑝𝑟𝑒 − 𝑑𝑖𝑠𝑎𝑠𝑡𝑒𝑟 𝑤𝑒𝑒𝑘𝑒𝑛𝑑 𝑑𝑎𝑦𝑠)} (4.6) 

where 𝐷𝑤𝑒𝑒𝑘𝑑𝑎𝑦𝑡  represents the set of displacements at period t considering only weekdays in the 

pre-disaster period. Similarly, 𝐷𝑤𝑒𝑒𝑘𝑒𝑛𝑑𝑡  represents the set of displacements at period t considering 

only weekends in the pre-disaster period. For instance, if we have 4 periods per day, and if we 

select first 7 days as a pre-disaster period, for each period, we have a set of 5 values of displacement 

for weekdays and a set of 2 values for weekends. The mean and standard deviation of these sets of 

displacement are used to compare the actual displacement at the corresponding periods of a day to 

check whether the displacement is typical or not. To capture this effect, we can compute 

standardized displacement, Z score, for each actual displacement using the equation given below: 

 

𝑍𝑑,𝑡 = { 𝐷𝑑,𝑡 − 𝑚𝑒𝑎𝑛 𝑜𝑓 𝐷𝑤𝑒𝑒𝑘𝑑𝑎𝑦𝑡𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝐷𝑤𝑒𝑒𝑘𝑑𝑎𝑦𝑡  𝑖𝑓 𝑑 ∈ (𝑤𝑒𝑒𝑘 𝑑𝑎𝑦𝑠) 

𝑒𝑙𝑠𝑒 𝐷𝑑,𝑡 − 𝑚𝑒𝑎𝑛 𝑜𝑓 𝐷𝑤𝑒𝑒𝑘𝑒𝑛𝑑𝑡𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝐷𝑤𝑒𝑒𝑘𝑒𝑛𝑑𝑡  } 

(4.7) 
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where 𝑍𝑑,𝑡  represents the 𝑍 score at day 𝑑 and period 𝑡. If 𝑑 is a weekday, typical displacements 

for weekdays are used to compare; and if 𝑑 is a weekend day, typical displacements for weekends 

are used. 

4.2.4 Extreme Event Detection 

An extreme event can disrupt human mobility by either increasing mobility or decreasing mobility. 

We consider two parameters for detecting an extreme event: a threshold z score 𝛼 and the number 

of time intervals 𝜏. The first parameter checks the amount of deviation from typical values and the 

second parameter checks how long this deviation persists.  

 𝐸𝑣𝑒𝑛𝑡𝑑𝑖,𝑡𝑝𝑑𝑗,𝑡𝑞 = {𝑍𝑑,𝑡: 𝑍𝑑,𝑡 ≤ 𝛼𝑙 and ∑ 𝑑, 𝑡𝑑𝑗,𝑡𝑞
𝑑𝑖,𝑡𝑝 ≥ 𝜏} (4.8) 

or, 

 𝐸𝑣𝑒𝑛𝑡𝑑𝑖,𝑡𝑝𝑑𝑗,𝑡𝑞 = {𝑍𝑑,𝑡: 𝑍𝑑,𝑡 ≥ 𝛼𝑢 and ∑ 𝑑, 𝑡𝑑𝑗,𝑡𝑞
𝑑𝑖,𝑡𝑝 ≥ 𝜏} (4.9) 

Equation (4.8) and (4.9) represent the event detection for decreased and increased mobility, 

respectively; where  𝐸𝑣𝑒𝑛𝑡𝑑𝑖,𝑡𝑝𝑑𝑗,𝑡𝑞
 represents an extreme event from day 𝑑𝑖 period 𝑡𝑝 to day 𝑑𝑗 period 𝑡𝑞; 𝑑𝑖, 𝑑𝑗 ∈ ( 𝑑𝑎𝑦𝑠 𝑖𝑛 𝑑𝑎𝑡𝑎 𝑠𝑒𝑡)  and 𝑡𝑝, 𝑡𝑞 ∈ (𝑝𝑒𝑟𝑖𝑜𝑑𝑠 𝑖𝑛 𝑎 𝑑𝑎𝑦); 𝛼𝑙 , 𝛼𝑢 represent the lower and 

upper threshold of Z score; and 𝜏 represents the threshold number of periods when Z score is above 

or below the threshold Z score. These parameters (𝛼, 𝜏) can be selected to identify shorter or longer 

extreme events depending on the type of a disaster and the area affected by it.    
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4.2.5 Resilience Calculation  

Once an extreme event has been detected, maximum deviation and recovery time can be easily 

calculated. Bruneau et. al. (Bruneau et al., 2003) introduced a equation for calculating resilience 

loss as shown in Equation (4.1) 

𝑅𝐿 = ∫ [100 − 𝑄(𝑡)]𝑑𝑡𝑡1𝑡0  

where, RL is the resilience loss which is the area (see Figure 4.1(a)) between the horizontal line 

from 100 and the curve Q(t) for 𝑡0 to 𝑡1 which is the recovery period for any event.  

 

Figure 4.1: Resilience and Resilience Loss Calculation. (a) Resilience Triangle (adopted from 
(Bruneau et al., 2003)), (b) Human Mobility Resilience (Decreased movement), (c) Human 
Mobility Resilience (Increased movement). 
 
A schematic representation of this equation (see Figure 4.1 a) is known as a resilience triangle. R 

and RL indicate resilience and resilience loss, respectively. From this triangle, the loss of resilience 

in any extreme event can be calculated as the area formed by the dashed lines and the vertical line 

(see Figure 4.1 a). Inspired from the resilience triangle, we represent the resilience by dividing this 

area into smaller trapezoids (see Figure 4.1b and 4.1c) having height equal to the increment of 
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time (six hours) considered in the analysis. This assumption is required since, unlike an idealized 

quality function, a real-world quality function indicating human mobility gradually drops from and 

improves to its typical values. Thus, assuming smaller trapezoids will minimize the loss in 

calculation.  

In our analysis, we define quality as the ratio of actual displacements to typical 

displacements. If an actual displacement is equal to a typical displacement, the value quality 

function is 100 or the ratio is 1. The summation of the areas of all the small trapezoids is the 

resilience loss (indicated by RL in figure 4.1b and 4.1c). The residual area (indicated by R in Figure 

4.1) represents the value of resilience during the recovery period. For increased mobility area 

considered in resilience calculation are defined by the maximum quality percentage/ratio (see 

Figure 4.1c). 

4.3 Results 

The approach to calculate resilience has been applied over location-based social datasets (see Table 

4.2). During these events, we observe two types of responses in the mobility function which either 

significantly drops (decreased mobility) or significantly rises (increased mobility). To represent 

both types of events, two thresholds 𝑧 scores (𝛼 values) have been used for detecting an extreme 

event. For decreased mobility cases, a threshold 𝑧 score value of 40 percentile (𝛼𝑙 = 40) and for 

increased mobility cases, a threshold z score of 90 percentile (𝛼𝑢 = 90) have been chosen to detect 

an extreme event. However, when no event was detected with these thresholds, 𝛼𝑙 = 60 percentile 

have been chosen; this relaxes the lower threshold of z score. As the threshold duration of the 

extreme event when the 𝑧 value is below 𝛼𝑙 has been chosen as 7 time periods (i.e., 𝜏 =
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7 𝑜𝑟 42 ℎ𝑜𝑢𝑟𝑠) and when the z value is above 𝛼𝑢 has been chosen as 3 time periods (i.e., 𝜏 =3 𝑜𝑟 18 ℎ𝑜𝑢𝑟𝑠). 

Figure 4.2 shows the major steps in calculating resilience for three types of disasters 

namely: Each figure has three panels; the first panel shows the actual and typical values; the second 

panel shows the event detection by z score; and the third panel shows the resilience and resilience 

loss. Hurricane Sandy (Figure 4.2a), earthquake at Bohol (Figure 4.2b) and a thunder storm at 

Phoenix, Arizona (Figure 4.2c). Table 4.2 presents the results of resilience calculation for multiple 

types of disasters along with the threshold values used to detect the events. Events detected by 60 

percentile thresholds are not comparable with the events detected by 40 percentile thresholds. The 

40 percentile events are more severe than the 60 percentile events. Among 40 percentile events, 

the highest recovery time was found 144 hours for hurricane Sandy for the state of New York and 

the highest resilience loss was found 344.89 for earthquake Iquique. We have also calculated the 

ratio between resilience loss and resilience (𝑅𝐿𝑅 ). The highest ratio of resilience loss over resilience 

has been found as 2.73 for the state of New York for hurricane Sandy. Among the 60 percentile 

events, the state of New Jersey during hurricane Sandy had the highest recovery time, resilience 

loss and resilience loss over resilience ratio. These metrics indicate the magnitude of impact of 

hurricane Sandy on the mobility systems of the sates of New York and New Jersey.  

In addition to Twitter data, we have used taxi trips data to calculate the resilience metrics. 

Figure 4.2d shows the resilience and recovery time for taxi movements in the New York City. For 

measuring resilience in taxi data, taxi trips have been used instead of the taxi trip distance. Most 

of the trips in taxi occurred between some frequently visited places and thus, the average traveled 

distances per trip were almost same for the disrupted days although there were significantly less 
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number trips in those days. For taxi trips, the maximum deviation at the landfall day is found as 

0.052 which means only 5.2 percent of the typical trips occurred at the landfall day of hurricane 

Sandy; the recovery time is found 96 hours. A recent study (Donovan and Work, 2017) measuring 

transportation system resilience by taxi data using pace as a quality indicator found recovery time 

as 132 hours for hurricane Sandy. From Table 4.2, we can see that human mobility recovery time 

and resilience loss for New York city is 66 hours and 42.37, respectively. The two results between 

taxi resilience and human mobility resilience is not directly comparable because taxi is just one of 

the modes of human mobility. 

During hurricane Sandy, among the states, the state of New York suffered the highest 

resilience loss followed by the states of New Jersey and Pennsylvania. For hurricane Sandy both 

recovery time and resilience loss are higher when a location constraint is not applied. Except 

hurricane Sandy data, typhoon, winter storm and rain storm data are location constrained. Thus, 

resilience losses for these events are lower compared to hurricane Sandy’s unconstrained resilience 

loss. This finding is consistent with previous study (Qi and John E., 2014) that during these types 

of disasters, short tips are less affected compared to long trips. These events discussed above faced 

a significant amount of decrease in mobility from a typical mobility function. 

However, in an earthquake, instead of a decreasing mobility function, we observe a 

significant increase in human mobility- probably due to the long-distance migration of people 

forced by severe infrastructure damages. Figure 4.2b shows the resilience calculation for an 

earthquake happened at Bohol, Philippines in 2013. The recovery time and resilience loss for this 

event are 54 hours and 162.31, respectively. Our method has detected one more event after around 

3 days. This event may represent the increased mobility when displaced people returned to their 
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places as studies found that natural disaster like earthquake cause human migration. Table 4.2 

shows the other earthquake resilience and recovery time results. Among the earthquakes analyzed 

in this study, Iquique had the highest deviation and resilience loss, 38.167 and 344.89, respectively 

and Napa had the lowest resilience loss and deviation. A study (Wang and Taylor, 2016) on the 

same data for measuring human mobility pattern found that although human mobility during most 

of typhoon, rainstorms, winter storms and Napa earthquake can be predicted by established 

patterns, mobility during earthquakes Bohol and Iquique cannot be predicted. Instead of decreased 

mobility, a significant increase in mobility with large resilience loss during these events may 

explain this result. 
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Figure 4.2: Resilience and Resilience Losses for Multiple Disasters. Note: DPU= Displacements 
Per User (Kilometer), TF= Trip Frequency 
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Table 4.2: Comparison of Resilience, Resilience Loss and Recovery Time for Multiple types of 
Events Occurred in Different Location 
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New York City 
𝛼𝑙=60 Y 

2012-10-
26 00:00 

132 0.540 
106.73

0 
19.260 0.181 𝛼𝑙=40 N 

2012-10-
28 12:00 

66 0.010 17.620 42.370 2.404 

New York State 
𝛼𝑙=40 Y 

2012-10-
28 12:00 

48 0.260 21.860 20.100 0.920 𝛼𝑙=40 N 
2012-10-
28 06:00 

144 0.087 36.400 101.400 2.730 

New Jersey State 

𝛼𝑙=60 Y 
2012-10-
28 00:00 

120 0.176 52.000 55.00 1.057 

𝛼𝑙=60 N 

2012-10-
27 12:00 

168 0.001 21.179 140.820 6.648 

2012-11-
06 00:00 

48 0.018 8.907 33.090 3.715 

Pennsylvania 
State 

𝛼𝑙=60 Y 
2012-10-
28 00:00 

120 0.180 58.930 49.060 0.833 

𝛼𝑙=60 
N 
 

2012-10-
26 06:00 

144 0.003 12.600 125.390 9.949 

2012-11-
02 06:00 

72 0.015 13.970 52.026 3.720 

 

E
a
rt

h
q

u
a
k

e 

Bohol, 
Philippines 

𝛼𝑢=90 NA 

2013-10-
15 00:00 

54 9.330 
120.47

0 
162.310 1.340 

2013-10-
19 18:00 

24 11.035 64.956 115.680 1.780 

Iquique, Chile 𝛼𝑢=90 NA 
2014-04-
02 18:00 

48 38.167 
519.05

8 
344.890 0.664 

Napa, USA 𝛼𝑢=90 NA 
2014-08-
23 18:00 

18 6.416 27.490 37.503 1.360 

 

W
il

d
 F

ir
e 

NSW1, Australia 
𝛼𝑢=90 NA 

2013-10-
18 12:00 

18 8.257 58.860 28.230 0.480 𝛼𝑙=40 NA 
2013-10-
19 06:00 

48 0.188 22.440 19.550 0.870 

NSW2, Australia 𝛼𝑙=40,60 NA NO RL 
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Xaver, Norfolk, 
Britain 

𝛼𝑙=40 NA 
2013-12-
02 12:00 

48 0.339 25.370 16.629 0.655 

Xaver, Hamburg, 
Germani 

𝛼𝑙=40 NA 
2013-12-
04 18:00 

48 0.035 24.817 17.182 0.690 𝛼𝑢=90 NA 
2013-12-
13 12:00 

36 4.306 55.704 43.480 0.780 

Atlanta, USA 𝛼𝑙=40 NA 
2014-01-
28 12:00 

54 0.261 20.450 27.545 1.346 

 

 

R
a
in

 

S
to

rm
 

Phoenix, USA 𝛼𝑙=40 NA 
2014-09-
06 18:00 

60 0.329 40.000 13.000 0.413 

Detroit, USA 𝛼𝑙=40 NA Not Enough Pre-Disaster Data 

Baltimore, USA 𝛼𝑙=40,60 NA NO RL 

 

T
y
p

h
o
o
n

 

Wipha, Tokyo, 
Japan 

𝛼𝑙=40,60 NA   NO RL    

Halong, Okinawa, 
Japan 

𝛼𝑙=40 NA 
2014-07-
29 06:00 

96 0.616 74.000 10.000 0.135 

Kalmaegi, 
Philippines 

𝛼𝑙=40 NA 
2014-09-
08 12:00 

96 0.005 42.568 42.000 0.990 𝛼𝑙=40  
2014-09-
23 12:00 

54 0.003 24.188 23.811 0.980 

Rammasun, 
Philippines 

𝛼𝑙=40,60 NA   NO RL   

Note: NA=Not Applicable, Y=Yes, N=No 

 

4.4 Discussion 

In this paper, we present a method to compute resilience metrics using geo-location data from 

social media. The proposed method can detect an extreme event from human movements, measure 

the recovery time and the maximum deviation from a steady state mobility indicator, and assess 

the values of resilience and resilience loss. Applying this method on multiple disaster data, we find 

that human movements within a geographic area (e.g., trips only within a city) is less affected 
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compared to all the movements associated with the area (e.g., trips from, to, and within the city). 

Disasters such as hurricane, typhoon, winter storm decrease human mobility and the amount of 

perturbation depends on the location and severity of the disaster. However, an earthquake increases 

human mobility causing a significant resilience loss. This is probably because an earthquake is 

unpredictable while for the other disasters people had warnings lasting over multiple days.  
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CHAPTER 5: CONCLUSIONS AND RECOMMENDATIONS 

Social media is a great tool for the individual users and the organizations to communicate, express 

views and concerns which is not possible through traditional media. Communication in social 

media is more dynamic as it allows two-way communication by allowing to be both content 

producer and consumer at the same time. These features of social media facilitate in disaster 

management in a unique and dynamic way during a disaster. But, content generated from some 

users/organizations get more attention than others. During a disaster, getting more attention to 

disaster related contents will lead to faster communications. In this thesis, we investigate the 

contributing factors to get more attention efficiency during hurricane sandy. If a user or 

organization adopt their activity and the other factors favorable to gain more attention, information 

spreading, or crisis communication is likely to be faster.  

Another side of social media data is having the opportunity to collect location traces of the 

users. Especially during a disaster, that gives the opportunity to assess human mobility resilience 

which can indicate the overall disaster resilience of the region. In this thesis, we have used location 

based social media data to develop appropriate metrices to quantify human mobility resilience. 

This study uncovers that different types of disaster have different impact on human mobility 

depending on the intensity of the event. The findings of this study are very important for 

understanding the nature and amount of perturbation and the subsequent resilience loss in human 

mobility due to a disaster. Thus, it will help understanding the higher-order impacts of a disruptive 

event in human society and national economy. It can also help in policy making, as resilience 

assessment is critical for building a resilient transportation system. However, the proposed method 

has some limitations. It cannot detect events less than six hours long because a minimum period 

of six hours is chosen. Also, in a pre-disaster period, variations among weekdays and variations 
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between weekend days are not considered due to the lack of enough pre-disaster data. Movements 

of social media users may not represent well the actual population movement during a disaster.   

Besides many opportunities, social media is subjected to several challenges due to its data 

volume and velocities. Further such data is also very unstructured and mixed with rumors, 

advertisements and uneducated opinions. Thus, extracting actionable information for the 

responders demands dynamic algorithms or systems to filter out the noises. Moreover, location 

traces can be collected only when a user post something about it. Hence mobility analysis using 

such data may not be representative to the actual mobility. Social media data is also prone to 

selection bias. Because it has different penetration rate for different geographic areas and users’ 

groups may not represent the actual population proportion of the region.  

Evacuation management is one of the major parts of disaster management. Existing studies 

use survey data to understand evacuation behavior during a disaster which is every costly, time 

consuming and often limited to small geographic area. Despite having the potential, social media 

data in this context remain underexplored. Future research direction can be how social media data 

can be used to understand individual and collective evacuation decision making behavior and how 

social media content can contribute to evacuation demand prediction.  



56 
 

REFERENCES 

Aguirre, B.E., Wenger, D., Vigo, G., 1998. A Test of the Emergent Norm Theory of Collective 

Behavior. Sociol. Forum 13, 301–320, Kluwer Academic Publishers–Plenum Publish. 

Alessandretti, L., Sapiezynski, P., Lehmann, S., Baronchelli, A., n.d. Multi-scale spatio-temporal 

analysis of human mobility. PloS one 12.2 e0171686. 

Alliance, R., 2007. Assessing resilience in Social-Ecological Systems - A workbook for scientists. 

Transformation 22, 1–53. 

Arif Mohaimin Sadri; Satish V. Ukkusuri, Ph.D., M.ASCE; Pamela Murray-Tuite, Ph.D., 

M.ASCE; and Hugh Gladwin, P.D., 2014. How to Evacuate: Model for Understanding the 

Routing Strategies during Hurricane Evacuation. J. Transp. Eng. 140, 61–69. 

Asur, S., Huberman, B.A., Szabo, G., Wang, C., 2011. Trends in Social Media: Persistence and 

Decay. Proc. 5th Int. AAAI Conf. Weblogs Soc. Media 434–437. 

Beir??, M.G., Panisson, A., Tizzoni, M., Cattuto, C., 2016. Predicting human mobility through the 

assimilation of social media traces into mobility models. EPJ Data Sci. 5. 

Bharosa, N., Lee, J., Janssen, M., 2010. Challenges and obstacles in sharing and coordinating 

information during multi-agency disaster response: Propositions from field exercises. Inf. 

Syst. Front. 12, 49–65. 

Blake, E.S., Kimberlain, T.B., Berg, R.J., Cangia, Losi, J.P., Beven II, J.L., 2013. Tropical cyclone 

report Hurricane Sandy (AL182012) 22 – 29 October 2012. Natl. Weather Serv. Natl. Hurric. 

Cent. 1–157. 

Brockmann, D., Hufnagel, L., Geisel, T., 2006. The scaling laws of human travel. Nature 439, 

462–465. 

Bruneau, M., Chang, S.E., Eguchi, R.T., Lee, G.C., O’Rourke, T.D., Reinhorn, A.M., Shinozuka, 
M., Tierney, K., Wallace, W.A., Von Winterfeldt, D., 2003. A Framework to Quantitatively 

Assess and Enhance the Seismic Resilience of Communities. Earthq. Spectra 19, 733–752. 

C, R., n.d. The cosine-haversine formula. Am. Math. Mon. 1957; 64(1)38–40. 

Cha, M., Mislove, A., Gummadi, K.P., 2009. A Measurement-driven Analysis of Information 

Propagation in the Flickr Social Network. Proc. 18th Int. Conf. World Wide Web 721–730. 

Chae, J., Thom, D., Jang, Y., Kim, S., Ertl, T., Ebert, D.S., 2014. Public behavior response analysis 

in disaster events utilizing visual analytics of microblog data. Comput. Graph. 38, 51–60. 

Chen, Y., Frei, A., Mahmassani, H., 2014. From Personal Attitudes to Public Opinion : 



57 
 

Information Diffusion in Social Networks towards Sustainable Transportation. Transp. Res. 

Rec. J. Transp. Res. Board 2430, 28–37. 

Chen, Y., Mahmassani, H.S., Frei, A., 2017. Incorporating social media in travel and activity 

choice models: conceptual framework and exploratory analysis. Int. J. Urban Sci. 0, 1–21. 

https://doi.org/10.1080/12265934.2017.1331749 

Comfort, L.K., Ko, K., Zagorecki, A., 2004. Coordination in Rapidly Evolving Disaster Response 

Systems. Am. Behav. Sci. 48, 295–313. 

Davis, C.A., Varol, O., Ferrara, E., Flammini, A., Menczer, F., 2016. BotOrNot: A System to 

Evaluate Social Bots. arXiv : 1602.009. 

Derr, B., 2013. Ordinal Response Modeling with the LOGISTIC Procedure. SAS Glob. Forum 1–
20. 

Deville, P., Song, C., Eagle, N., Blondel, V.D., Barabási, A.-L., Wang, D., 2016. Scaling identity 

connects human mobility and social interactions. Proc. Natl. Acad. Sci. 113, 7047–7052. 

Dong, R., Li, L., Zhang, Q., Cai, G., 2018. Information Diffusion on Social Media During Natural 

Disasters. IEEE Trans. Comput. Soc. Syst. 5, 265–276. 

Donovan, B., Work, D.B., 2017. Empirically quantifying city-scale transportation system 

resilience to extreme events. Transp. Res. Part C Emerg. Technol. 79, 333–346. 

Ferrara, E., Varol, O., Davis, C., Menczer, F., Flammini, A., 2014. The Rise of Social Bots. arXiv 

Prepr. arXiv1407.5225 1–11. 

Figueiredo, F., Benevenuto, F., Almeida, J.M., Fabr, F.F., Almeida, B.J.M., 2011. The tube over 

time: characterizing popularity growth of youtube videos. Proc. fourth ACM Int. Conf. Web 

search data Min. - WSDM ’11 745–754. 

Fry, J., Binner, J.M., 2015. Elementary modelling and behavioural analysis for emergency 

evacuations using social media. Eur. J. Oper. Res. 249, 1014–1023. 

Gallotti R, Bazzani A, R.S., 2016. Towards a statistical physics of human mobility. Int. J. Mod. 

Phys. C 23(09):125. 

Gonzalez, M.C., Hidalgo, C.A., Barabasi, A.-L., 2008. Understanding individual human mobility 

patterns 453. 

Han, X.P., Hao, Q., Wang, B.H., Zhou, T., 2011. Origin of the scaling law in human mobility: 

Hierarchy of traffic systems. Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys. 83, 2–6. 

Hasan, S., Mesa-Arango, R., Ukkusuri, S., 2013a. A random-parameter hazard-based model to 

understand household evacuation timing behavior. Transp. Res. Part C Emerg. Technol. 27, 



58 
 

108–116. 

Hasan, S., Mesa-Arango, R., Ukkusuri, S., 2013b. A random-parameter hazard-based model to 

understand household evacuation timing behavior. Transp. Res. Part C Emerg. Technol. 27, 

108–116. 

Hasan, S., Ukkusuri, S., Gladwin, H., Murray-Tuite, P., 2011. Behavioral Model to Understand 

Household-Level Hurricane Evacuation Decision Making. J. Transp. Eng. 137, 341–348. 

Hasan, S., Ukkusuri, S. V., 2014. Urban activity pattern classification using topic models from 

online geo-location data. Transp. Res. Part C Emerg. Technol. 44, 363–381. 

Hasan, S., Zhan, X., Ukkusuri, S. V., 2013c. Understanding urban human activity and mobility 

patterns using large-scale location-based data from online social media. Proc. 2nd ACM 

SIGKDD Int. Work. Urban Comput. - UrbComp ’13. 

Hawelka, B., Sitko, I., Beinat, E., Sobolevsky, S., Kazakopoulos, P., Ratti, C., 2014. Geo-located 

Twitter as proxy for global mobility patterns. Cartogr. Geogr. Inf. Sci. 41, 260–271. 

Hong, L., Dan, O., Davison, B.D., 2011. Predicting popular messages in Twitter. Proc. 20th Int. 

Conf. World wide web 57–58. 

Hosseini, S., Barker, K., Ramirez-Marquez, J.E., 2016. A review of definitions and measures of 

system resilience. Reliab. Eng. Syst. Saf. 145, 47–61. 

Huang, C.-M., Chan, E., Hyder, A. a, 2010. Web 2 . 0 and Internet Social Networking : A New 
tool for Disaster Management ? - Lessons from Taiwan. BMC Med. Inform. Decis. Mak. 10, 

57. 

Huang, Q., Xiao, Y., 2015. Geographic Situational Awareness: Mining Tweets for Disaster 

Preparedness, Emergency Response, Impact, and Recovery. ISPRS Int. J. Geo-Information 

4, 1549–1568. 

Jurdak, R., Zhao, K., Liu, J., AbouJaoude, M., Cameron, M., Newth, D., 2015. Understanding 

human mobility from Twitter. PLoS One 10, 1–16. 

Kahan, Jerome H., Andrew C. Allen,  and J.K.G., n.d. An operational framework for resilience. J. 

Homel. Secur. Emerg. Manag. 6.1 (2009). 

Kass-Hout, T.A., Alhinnawi, H., 2013. Social media in public health. Br. Med. Bull. 108, 5–24. 

https://doi.org/10.1093/bmb/ldt028 

Kaufman, S., C. Qing, N. Levenson,  and M.H., 2012. Transportation during and after Hurricane 

Sandy. 

Keim, M.E., Noji, E., 2010. Emergent use of social media : A new age of opportunity for disaster 



59 
 

resilience. Am. J. Disaster Med. 6, 47–54. 

Kim, J., Bae, J., Hastak, M., 2018. Emergency information diffusion on online social media during 

storm Cindy in US. Int. J. Inf. Manage. 40, 153–165. 

Kim, J., Hastak, M., 2018. Social network analysis: Characteristics of online social networks after 

a disaster. Int. J. Inf. Manage. 38, 86–96. 

Kim, W.-S., Yoon, Y.-Z., Bae, J.-H., Soh, K.-S., 2005. Nonlinear characteristics of heart rate time 

series: influence of three recumbent positions in patients with mild or severe coronary artery 

disease. Physiol. Meas. 26, 517–29. 

Kryvasheyeu Y, Chen H, Moro E, Van Hentenryck P, C.M., 2015. Performance of Social Network 

Sensors During Hurricane Sandy. PLoS one 10.2 e0117288. 10. 

Kryvasheyeu, Y., Chen, H., n.d. Performance of Social Network Sensors During Hurricane Sandy. 

PLoS one 10.2 e0117288. 

Kryvasheyeu, Y., Chen, H., Obradovich, N., Moro, E., Hentenryck, P. Van, Fowler, J., Cebrian, 

M., 2016. Rapid assessment of disaster damage using social media activity. Sci. Adv. 2.3 

e1500779. 

Lehmann, J., Gonçalves, B., Ramasco, J.J., Cattuto, C., 2012. Dynamical Classes of Collective 

Attention in Twitter. Proc. 21st Int. Conf. World Wide Web. ACM. 

Leung, D., Law, R., van Hoof, H., Buhalis, D., 2013. Social Media in Tourism and Hospitality: A 

Literature Review. J. Travel Tour. Mark. 30, 3–22. 

https://doi.org/10.1080/10548408.2013.750919 

Liang, X., Zheng, X., Lv, W., Zhu, T., Xu, K., 2012. The scaling of human mobility by taxis is 

exponential. Phys. A Stat. Mech. its Appl. 391, 2135–2144. 

Lindsay, B.R., 2011. Social Media and Disasters: Current Uses, Future Options and Policy 

Considerations. 

Liu, H., Chen, Y.H., Lih, J.S., 2015. Crossover from exponential to power-law scaling for human 

mobility pattern in urban, suburban and rural areas. Eur. Phys. J. B 88, 1–7. 

Liu, Y., Sui, Z., Kang, C., Gao, Y., 2014. Uncovering patterns of inter-urban trip and spatial 

interaction from social media check-in data. PLoS One 9. 

Martín, Yago, Zhenlong Li,  and S.L.C., 2017. Leveraging Twitter to gauge evacuation 

compliance: spatiotemporal analysis of Hurricane Matthew. PLoS One. 

https://doi.org/10.1371/journal.pone.0181701 

Mathioudakis, M., Koudas, N., Marbach, P., 2010. Early online identification of attention 



60 
 

gathering items in social media. Proc. third ACM Int. Conf. Web search data Min. - WSDM 

’10 301. 

McCallum, I., Liu, W., See, L., Mechler, R., Keating, A., Hochrainer-Stigler, S., Mochizuki, J., 

Fritz, S., Dugar, S., Arestegui, M., Szoenyi, M., Bayas, J.C.L., Burek, P., French, A., 

Moorthy, I., 2016. Technologies to Support Community Flood Disaster Risk Reduction. Int. 

J. Disaster Risk Sci. 7, 198–204. 

Mesa-arango, R., Hasan, S., Ukkusuri, S. V, Asce, A.M., Murray-tuite, P., 2013. Household-Level 

Model for Hurricane Evacuation Destination Type Choice Using Hurricane Ivan Data. Nat. 

Hazards Rev. 14, 11–20. 

Munich RE, 2018. Natural catastrophe review: Series of hurricanes makes 2017 year of highest 

insured losses ever [WWW Document]. URL https://www.munichre.com/en/media-

relations/publications/press-releases/2018/2018-01-04-press-release/index.html (accessed 

1.15.18). 

Murray-Tuite, P., Wolshon, B., 2013. Evacuation transportation modeling: An overview of 

research, development, and practice. Transp. Res. Part C Emerg. Technol. 27, 25–45. 

Myers, S.A., Leskovec, J., 2014. The bursty dynamics of the twitter information network, in: 

Proceedings of the 23rd International Conference on World Wide Web. pp. 913–924. 

NELSON, B., 2013. A calculated risk. Nature 495, 271–273. 

Ni, M., He, Q., Gao, J., 2017. Forecasting the Subway Passenger Flow under Event Occurrences 

with Social Media. IEEE Trans. Intell. Transp. Syst. 18, 1623–1632. 

https://doi.org/10.1109/TITS.2016.2611644 

Nicholson, C. D., K. Barker,  and J.E.R.-M., n.d. Vulnerability analysis for resilience-based 

network preparedness. Manuscr. Revis. 

NOAA National Centers for Environmental Information (NCEI) U.S., 2018. Billion-Dollar 

Weather and Climate Disasters [WWW Document]. URL 

https://www.ncdc.noaa.gov/billions/ (accessed 1.15.18). 

Noulas, A., Scellato, S., Lambiotte, R., Pontil, M., Mascolo, C., 2012. A tale of many cities: 

Universal patterns in human urban mobility. PLoS One 7. 

Palen, L., Vieweg, S., Liu, S.B., Hughes, A.L., 2009. Crisis in a Networked World: Features of 

Computer-Mediated Communication in the April 16, 2007, Virginia Tech Event. Soc. Sci. 

Comput. Rev. 27, 467–480. 

Pappalardo, L., Pedreschi, D., Smoreda, Z., Giannotti, F., 2015. Using big data to study the link 

between human mobility and socio-economic development. 2015 IEEE Int. Conf. Big Data 



61 
 

(Big Data) 871–878. 

Pincus, S., Goldberger, A., 1994. Physiological time-series analysis: What does regularity 

quantify? Am. J. Physiol. 266, H1643–H1656. 

Pincus, S., Kalman, R.E., 2004. Irregularity, volatility, risk, and financial market time series. Proc. 

Natl. Acad. Sci. 101, 13709–13714. 

PINCUS, S.M., 1991. Approximate entropy as a measure of system complexity. Proc. Natl. Acad. 

Sci. 88.6 2297-2301. 

Qi, W., John E., T., 2014. Quantifying, Comparing Human Mobility Perturbation during Hurricane 

Sandy, Typhoon Wipha, Typhoon Haiyan. Procedia Econ. Financ. 18, 33–38. 

Quercia, D., Ellis, J., Capra, L., Crowcroft, J., 2011. In the mood being influential on twitter mood. 

Proc. - 2011 IEEE Int. Conf. Privacy, Secur. Risk Trust IEEE Int. Conf. Soc. Comput. 

PASSAT/SocialCom 2011 307–314. 

Rashidi, T.H., Abbasi, A., Maghrebi, M., Hasan, S., Waller, T.S., 2017. Exploring the capacity of 

social media data for modelling travel behaviour: Opportunities and challenges. Transp. Res. 

Part C Emerg. Technol. 75, 197–211. 

Romero, D.M., Huberman, B.A., 2011. Influence and Passivity in Social Media Background on 

Twitter. WWW ’11 Proc. 20th Int. Conf. companion World wide web. 

Sadri, A.M., Hasan, S., Ukkusuri, S. V., 2017a. Joint Inference of User Community and Interest 

Patterns in Social Interaction Networks. arXiv Prepr. arXiv1704.01706. 

Sadri, A.M., Hasan, S., Ukkusuri, S. V., Cebrian, M., 2017b. Understanding Information 

Spreading in Social Media during Hurricane Sandy: User Activity and Network Properties. 

arXiv Prepr. arXiv1706.03019. 

Sadri, A.M., Hasan, S., Ukkusuri, S. V., Lopez, J.E.S., 2017c. Analyzing Social Interaction 

Networks from Twitter for Planned Special Events. arXiv Prepr. arXiv1704.02489. 

Sadri, A.M., Ukkusuri, S. V., Gladwin, H., 2017d. The Role of Social Networks and Information 

Sources on Hurricane Evacuation Decision Making. Nat. Hazards Rev. 04017005. 

Sadri, A.M., Ukkusuri, S. V., Gladwin, H., 2017e. Modeling joint evacuation decisions in social 

networks: The case of Hurricane Sandy. J. Choice Model. 1–11. 

Sadri, A.M., Ukkusuri, S. V., Murray-Tuite, P., 2013. A random parameter ordered probit model 

to understand the mobilization time during hurricane evacuation. Transp. Res. Part C Emerg. 

Technol. 32, 21–30. 

Sadri, A.M., Ukkusuri, S. V., Murray-Tuite, P., Gladwin, H., 2015. Hurricane Evacuation Routing 



62 
 

Strategy from Miami Beach : Choice of Major Bridges. Transp. Res. Rec. 1–24. 

Sadri, A.M., Ukkusuri, S. V., Murray-Tuite, P., Gladwin, H., 2014. Analysis of hurricane evacuee 

mode choice behavior. Transp. Res. Part C Emerg. Technol. 48, 37–46. 

Shklovski, I., Palen, L., Sutton, J., 2008. Finding Community Through Information and 

Communication Technology During Disaster Events. 2008 ACM Conf. Comput. Support. 

Coop. Work 127–136. 

Simon, T., Goldberg, A., Adini, B., 2015. Socializing in emergencies - A review of the use of 

social media in emergency situations. Int. J. Inf. Manage. 35, 609–619. 

Song, C., Koren, T., Wang, P., Barabási, A.-L., 2010. Modelling the scaling properties of human 

mobility. Nat. Phys. 6, 818–823. 

Speranza, Chinwe Ifejika, Urs Wiesmann,  and S.R., n.d. An indicator framework for assessing 

livelihood resilience in the context of social–ecological dynamics. Glob. Environ. Chang. 28 

109-119. 

Srinivasan, V., Eswaran, C., Sriraam, N., 2007. Approximate Entropy-Based Epileptic EEG 

Detection Using Artificial Neural Networks 11, 288–295. 

Stai, E., Milaiou, E., Karyotis, V., Papavassiliou, S., 2018. Temporal Dynamics of Information 

Diffusion in Twitter: Modeling and Experimentation. IEEE Trans. Comput. Soc. Syst. 5, 256–
264. https://doi.org/10.1109/TCSS.2017.2784184 

Stieglitz, S., Mirbabaie, M., Ross, B., Neuberger, C., 2018. Social media analytics--Challenges in 

topic discovery, data collection, and data preparation. Int. J. Inf. Manage. 39, 156–168. 

Tang, J., Liu, F., Wang, Y., Wang, H., 2015. Uncovering urban human mobility from large scale 

taxi GPS data. Phys. A Stat. Mech. its Appl. 438, 140–153. 

Tang, Z., Zhang, L., Xu, F., Vo, H., 2015. Examining the role of social media in California’s 
drought risk management in 2014. Nat. Hazards 79, 171–193. 

The World Bank, 2016. Natural Disasters Force 26 Million People into Poverty and Cost $520bn 

in Losses Every Year, New World Bank Analysis Finds [WWW Document]. URL 

http://www.worldbank.org/en/news/press-release/2016/11/14/natural-disasters-force-26-

million-people-into-poverty-and-cost-520bn-in-losses-every-year-new-world-bank-analysis-

finds (accessed 6.15.17). 

Torres-reyna, O., 2012. Getting Started in Logit and Ordered Logit Regression Logit model. 

Princet. Univ. , URL http//dss. princeton. edu/training/Logit. pdf. 

Ukkusuri, S., Zhan, X., Sadri, A., Ye, Q., 2014. Use of Social Media Data to Explore Crisis 

Informatics. Transp. Res. Rec. J. Transp. Res. Board 2459, 110–118. 



63 
 

Vaca, C., Aiello, L.M., Jaimes, A., Milano, P., 2014. Modeling Dynamics of Attention in Social 

Media with User Efficiency. EPJ Data Sci. 3.1 5. 

Wang, Q., Taylor, J.E., 2016. Patterns and limitations of urban human mobility resilience under 

the influence of multiple types of natural disaster. PLoS One 11, 1–14. 

Wang, Q., Taylor, J.E., 2014. Quantifying human mobility perturbation and resilience in hurricane 

sandy. PLoS One 9, 1–5. 

Wang Q, T.J., 2016. Patterns and limitations of urban human mobility resilience under the 

influence of multiple types of natural disaster [WWW Document]. Dryad Digit. Repos. URL 

http://datadryad.org/resource/doi:10.5061/dryad.88354 

Wang, W., Pan, L., Yuan, N., Zhang, S., Liu, D., 2015. A comparative analysis of intra-city human 

mobility by taxi. Phys. A Stat. Mech. its Appl. 420, 134–147. 

Washington, S.P., Karlaftis, M.G. and Mannering, F., 2010. Statistical and Econometric Methods 

for Transportation Data Analysis. CRC Press. 

Wu, F., Huberman, B.A., Adamic, L.A., Tyler, J.R., 2004. Information flow in social groups. 

Physica A 337, 327–335. 

Wu, L., Zhi, Y., Sui, Z., Liu, Y., 2014. Intra-urban human mobility and activity transition: 

Evidence from social media check-in data. PLoS One 9. 

Yao, C.Z., Lin, J.N., 2016. A study of human mobility behavior dynamics: A perspective of a 

single vehicle with taxi. Transp. Res. Part A Policy Pract. 87, 51–58. 

Yates, D., Paquette, S., 2011. Emergency knowledge management and social media technologies: 

A case study of the 2010 Haitian earthquake. Int. J. Inf. Manage. 31, 6–13. 

Zhang, Z., He, Q., Gao, J., Ni, M., 2018. A deep learning approach for detecting traffic accidents 

from social media data. Transp. Res. Part C Emerg. Technol. 86, 580–596. 

https://doi.org/10.1016/j.trc.2017.11.027 

Zhao, K., Chinnasamy, M.P., Tarkoma, S., 2015a. Automatic City Region Analysis for Urban 

Routing. 2015 IEEE Int. Conf. Data Min. Work. 1136–1142. 

Zhao, K., Musolesi, M., Hui, P., Rao, W., Tarkoma, S., 2015b. Explaining the power-law 

distribution of human mobility through transportation modality decomposition. Sci. Rep. 5, 

9136. 

 


	Understanding Crisis Communication and Mobility Resilience during Disasters from Social Media
	STARS Citation

	ABSTRACT
	ACKNOWLEDGMENT
	TABLE OF CONTENT
	LIST OF FIGURES
	LIST OF TABLES
	CHAPTER 1: INTRODUCTION
	1.1 Introduction
	1.2 Thesis Contribution
	1.3 The Objective of the Thesis
	1.4 Thesis Organization

	CHAPTER 2:  LITERATURE REVIEW
	CHAPTER 3: UNDERSTANDING CRISIS COMMUNICATION EFFECTIVENESS
	3.1 Introduction and motivation
	3.2 Data
	3.3 Methods
	3.3.1 Activity, Attention, and Efficiency Metrics in Twitter
	3.3.2 Extraction of User Features
	3.3.3 Contributing Features to Efficiency

	3.4 Results
	3.4.1 Distributions of User Features
	3.4.2 Correlations between Activity and Attention
	3.4.3 User Efficiency Analysis
	3.4.4 User Attributes Contributing to Efficiency

	3.5 Conclusions

	CHAPTER 4: QUANTIFYING HUMAN MOBILITY RESILIENCE
	4.1 Introduction
	4.2 Data and Methodology
	4.2.1 Extracting Location Time Series of a User
	4.2.2 Displacement Metric
	4.2.3 Extraction of Typical and Actual Displacements Time Series
	4.2.4 Extreme Event Detection
	4.2.5 Resilience Calculation

	4.3 Results
	4.4 Discussion

	CHAPTER 5: CONCLUSIONS AND RECOMMENDATIONS
	REFERENCES

