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ABSTRACT 

In recent years, there is growing recognition that common unobserved factors that 

influence crash frequency by one attribute level are also likely to influence crash frequency by 

other attribute levels. The most common approach employed to address the potential 

unobserved heterogeneity in safety literature is the development of multivariate crash 

frequency models. The current study proposes an alternative joint econometric framework to 

accommodate for the presence of unobserved heterogeneity – referred to as joint negative 

binomial-multinomial logit fractional split (NB-MNLFS) model. Furthermore, the study 

undertakes a first of its kind comparison exercise between the most commonly used 

multivariate model (multivariate random parameter negative binomial model) and the proposed 

joint approach by generating an equivalent log-likelihood measure. The empirical analysis is 

based on the zonal level crash count data for different collision types from the state of Florida 

for the year 2015. The model results highlight the presence of common unobserved effects 

affecting the two components of the joint model as well as the presence of parameter 

heterogeneity. The equivalent log-likelihood and goodness of fit measures clearly highlight the 

superiority of the proposed joint model over the commonly used multivariate approach.  
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CHAPTER 1: INTRODUCTION 

Road traffic crashes are responsible for nearly 1.25 million fatalities every year and are 

a leading cause of death among people aged between 15 and 29 years old (World Health 

Organization, 2015). The extent of societal, emotional and economic impacts of these 

unfortunate events has warranted coordinated multi-sectoral responses from the fields of 

transportation, public health, and medicine. A major analytical tool employed for examining 

the critical factors influencing crash occurrence include the econometric crash prediction/ 

frequency models. These models examine crashes at the micro-level (such as an intersection or 

roadway segment) or at the macro-level (such as a county or Traffic Analysis Zone (TAZ)). 

The various crash frequency dimensions frequently explored in existing literature include total 

crashes, crashes by severity, crashes by collision type and crashes by vehicle type for a spatial 

unit over a given time period.  

 

1.1 Motivation for The Study 

A majority of the existing studies in safety literature developed crash frequency models 

for a single dependent variable; the methods are referred to as univariate modeling approaches 

(see Lord and Mannering, 2010; Yasmin and Eluru, 2017 for a detailed review of these studies). 

In recent years, there is growing recognition that univariate approaches, while adequate for 

analyzing a single dependent variable, fall short in modeling multiple crash frequency variables 

for a single observational unit. For example, the total number of crashes in a TAZ are a sum of 

crashes by different collision types (or severity levels) i.e. as opposed to analyzing a single 

total crash variable it is possible to examine crash frequency by different attribute categories. 

In this case, an extension of univariate approach would be to develop multiple univariate 

models with frequency by attribute levels considered as multiple dependent variables. Through 
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this approach, the exogenous variables affecting crash counts can exhibit distinct impacts on 

different attribute levels allowing for a flexible specification. The separate models for crash 

frequency by attribute level allows us to capture realistic estimates of exogenous variables. 

Yet, the approach only accommodates for observed factors and inherently neglects the 

information that the multiple crash frequency variables for a TAZ are potentially correlated. 

For example, for zonal level crash frequency analysis, it is possible that several characteristics 

specific to the zone such as driver behavior, geometric design and build quality (possibly of 

higher or lower quality relative to the other zones) and traffic signal design objectives might 

influence different crash counts by collision type (such as head-on, rear-end). These factors 

that influence crash frequency by one attribute level are also likely to influence crash frequency 

by other attribute levels. Such detailed characteristics are rarely available to analysts for 

consideration in model development. Ignoring for the presence of such unobserved 

heterogeneity in model development will result in inaccurate and biased model estimates (see 

Mannering et al., 2016 for an extensive discussion).  

 

1.2 Study Methodology and Objective 

The most common approach employed to address the potential unobserved 

heterogeneity in safety literature is the development of multivariate crash frequency models. 

In this approach, the impact of exogenous variables is quantified through the propensity 

component of count models. The main interaction across different count variables is sought 

through unobserved effects i.e. there is no interaction of observed effects across the multiple 

count models. These approaches, in general, partition the error components of the dependent 

variables to accommodate for a common term and an independent term across dependent 

variables (see Mannering et al., 2016 for a detailed discussion of various methodologies). In 

our current study, we develop an alternative approach to accommodate for the presence of 
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observed and unobserved heterogeneity. The approach employs a joint crash frequency and 

multinomial fractional split model to provide an alternative to the multivariate count models in 

extant literature. The approach builds on recent work by Yasmin and colleagues in multiple 

studies (Lee et al., 2018; Yasmin et al., 2016; Yasmin and Eluru, 2017). Furthermore, the 

current study undertakes a first of its kind comparison exercise between the most commonly 

used multivariate count model (multivariate random parameter negative binomial model) and 

the proposed approach of the current study. The reader would note that the log-likelihood 

functions across these models are not directly comparable. Hence, to facilitate a comparison, 

an equivalent log-likelihood measure is also generated for the proposed joint crash frequency 

and fractional split model. Finally, an in-sample prediction exercise comparing the two systems 

is conducted. The models are estimated by using data from Florida at the Statewide Traffic 

Analysis Zone (STAZ) level for the year 2015.  

 

1.3 Thesis Structure 

The rest of the thesis is organized as follows: Chapter 2 provides a brief review of 

relevant earlier research and positions the current study in terms of existing crash type 

modelling approaches. Chapter 3 describes the formulation of the proposed joint econometric 

model and random parameter multivariate negative binomial model framework (RPMNB). 

Chapter 4 discusses a detailed summary of the data source and exogenous variables considered 

for the analysis. Model estimation results for the proposed joint model and RPMNB model are 

reported in Chapter 5. A comparison exercise of the two systems is described in Chapter 6. 

Finally, a summary of model findings and conclusions are presented in Chapter 7. 
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CHAPTER 2: LITERATURE REVIEW 

The field of crash modeling is vast. Several research efforts have been conducted 

throughout the years for developing crash prediction models by different attributes such as 

mode, crash type, crash severity etc. Based on the dimensions of the dependent variable 

considered, these studies can be broadly classified into three categories:  

1. Univariate Count Model: A single count variable is examined for an observation (such 

as a spatial unit or roadway segment. 

2. Multivariate Count Model: Multiple dependent variables are jointly analyzed for a 

spatial unit or a roadway segment. 

3. Crash Proportion Model: Instead of counts, proportion of crash is used as a dependent 

variable for a spatial unit or roadway segment. 

In this chapter, we present a detailed discussion of the various model structures used in 

existing literature and position our current study in context.  

 

2.1 Earlier Research 

Earlier research efforts in safety literature have focused on univariate model systems 

for crash frequency analysis. Majority of these studies focus on crash frequency by vehicle 

involvement (Ivan et al., 2000; Persaud and Mucsi, 1995; Qin et al., 2004; Zhou and Sisiopiku, 

1997) or crash type (Chai and Wong, 2014; Li et al., 2016; Wang and Abdel-Aty, 2008a, 2008b, 

2006; Yan et al., 2005). It is beyond the scope of our paper to review the vast literature of 

univariate models (please see Lord and Mannering, 2010; Yasmin and Eluru, 2017 for a 

literature review). 

Recently, research in safety literature has shifted toward modeling multiple dependent 

variables for each observation unit. The most common approach for modeling multiple 
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dependent variables such as crash frequency by severity or collision type is based on using a 

multivariate crash frequency model. In these models, every crash frequency variable is 

associated with its corresponding propensity equation (similar to univariate system). Thus, we 

allow for the impact of exogenous variables to vary across crash frequency variables. For 

example, consider the exogenous variable - presence of left guardrail on the roadway. In the 

presence of a left guardrail, vehicles are prevented from entering the opposite direction thus 

reducing head-on crashes. On the other hand, vehicles on hitting the guardrail might collide 

with other vehicles travelling in the same direction. Thus, the overall impact of the guardrail 

might be an increase in total crashes with distinct effects on head-on and sideswipe crashes. 

So, considering the guardrail variable in the total crash would yield a positive sign. However, 

considering the same variable in separate univariate models for head-on collisions and 

sideswipe collisions offer different results. This is an example of how observed variables 

exhibit contrasting effects on crash occurrence by collision1 type. Thus, developing separate 

models for frequency by collision type allows us to capture realistic estimates of exogenous 

variables.  

In addition to observed factors, the multivariate models inherently account for 

correlation across multiple crash frequency variables for an observation unit. Ignoring for the 

presence of such unobserved heterogeneity (associated with missing information or inherently 

unobservable phenomenon affecting crashes) in model development will result in inaccurate 

and biased model estimates (see Mannering et al., 2016 for an extensive discussion). In these 

multivariate models, typically probability computation requires integrating the probability 

function over the error term distribution. The exact computation is dependent on the 

                                                 

1 We use crash and collision synonymously in the current study context. 
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distributional assumption and does not have a closed form expression usually2. Several studies 

recognizing the importance of unobserved heterogeneity have developed multivariate 

approaches that account for the potential dependency across count variables. The various model 

structures developed from multivariate models include multivariate Poisson regression model 

(Ye et al., 2009), multivariate Poisson lognormal model (Serhiyenko et al., 2016), multinomial-

generalized Poisson model (Chiou and Fu, 2013), multivariate Poisson gamma mixture count 

model (Mothafer et al., 2016), multivariate Poisson lognormal spatial and temporal model 

(Aguero-Valverde et al., 2016; Cheng et al., 2017), Integrated Nested Laplace Approximation 

Multivariate Poisson Lognormal model (Wang et al., 2017), Bayesian latent class flexible 

mixture multivariate model (Heydari et al., 2017) and multivariate random-parameters zero-

inflated negative binomial model (Anastasopoulos, 2016).   

An alternative approach - referred to as the fractional split approach - for modeling 

crash frequency by attribute level is recently being applied in safety literature (Eluru et al., 

2013; Papke and Wooldridge, 1996). In a fractional split approach, as opposed to modeling the 

count events, count proportions by different attributes (such as injury severity, collision type 

or vehicle type) for a study unit are examined. The fractional split approach directly relates a 

single exogenous variable to count proportions of all attribute levels simultaneously. Thus, in 

this model, exogenous variables affect attribute proportions allowing us to obtain a 

parsimonious specification. This is in contrast to the multivariate crash models where the 

observed variables in count propensity equations do not interact with other count variables in 

the model system.  

                                                 

2 In some cases, a parametric multivariate distributional assumption might result in closed form approaches such 

as the copula based approach (Nashad et al., 2016). 
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In safety literature, very few studies have employed the fractional split approach. 

Milton et al. (2008) developed a mixed multinomial fractional split model to study injury-

severity distribution of crashes on highway segments by using highway-injury data from 

Washington State. A number of studies have also examined crash frequency by severity 

simultaneously by building on multinomial-Poisson transformation (Chiou et al., 2014; Chiou 

and Fu, 2015, 2013). Geedipally et al. (2010) developed independent crash count (negative 

binomial model) and crash proportion model (multinomial fractional split) to investigate 

whether the model system can be used for the estimation of crash counts for each collision 

type. The study concluded that their approach offered good results. However, the study ignored 

the influence of common unobserved factors between the crash model and the proportion 

model. Yasmin et al. (2016) developed an ordered outcome fractional split model that allows 

the analysis of proportion for variables with multiple alternatives. The approach is applicable 

only for crash proportions that are ordered. A particularly relevant research effort, Yasmin and 

Eluru, (2017) extended the ordered proportional framework to incorporate crash frequency (as 

a negative binomial model) along with crash proportion by injury severity (as an ordered 

fractional split model).   

 

2.2 Current Study  

The literature review clearly highlights the prevalence of multivariate model 

frameworks in safety literature. An alternative approach – fractional split model is emerging as 

a promising alternative framework for multivariate counts. However, so far there has not been 

a comprehensive comparison exercise between these two systems. In this context, the current 

study makes three methodological contributions.  

First, we develop the first joint system for total crash counts and multinomial fractional 

split model. Specifically, we propose to estimate a joint negative binomial-multinomial logit 
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fractional split (NB-MNLFS) model. The work builds on Yasmin and colleagues’ recent work 

in the ordered and unordered fractional split realm. Within the joint framework, we also 

accommodate for random parameters in the count and fractional split components.  

Second, the data fit measures of multivariate count model and the proposed joint system 

are not directly comparable because of the differences in estimation techniques for the two 

approaches. In the current study, we propose an equivalent log-likelihood measure for the 

proposed joint NB-MNLFS system to evaluate comparable data fit metrics.  

Third, we undertake a comprehensive comparison exercise between the most 

commonly employed multivariate model and its fractional counterpart. Specifically, we 

examine performance in model estimation and prediction for multivariate negative binomial 

model that accommodates unobserved heterogeneity and the proposed joint model.  

Empirically, the study develops crash frequency by collision type. The models are 

estimated using STAZ level crash data for the year 2015 for the state of Florida. The model 

results offer insights on important variables affecting crash frequency, as well as crash 

proportion by collision type.  

 

2.3 Summary 

This chapter presented a detailed summary of methodologies employed in earlier 

studies for predicting crashes for different spatial unit for different attribute levels. Further, the 

chapter positioned the current research work in context. The econometric framework employed 

in this study is described in detail in the subsequent chapter. 
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CHAPTER 3: METHODOLOGY 

The previous chapter presented a detailed discussion of the different modeling 

frameworks used in earlier research for crash type modelling. In this section, we provide details 

of the model frameworks employed in our study.  The chapter starts with the formulation for 

the traditional negative binomial model and provides details of the advanced modeling 

structures subsequently.  

 

3.1 Negative Binomial (NB) Model Structure 

Let us assume that 𝑖 (𝑖 = 1,2,3, … , 𝑁) be the index for STAZ. Let 𝑙 be the index 

representing different crash count level, where 𝑗 (𝑗 = 1,2,3, … , 𝐽;  𝑗 ∈ 𝐾 𝑎𝑛𝑑 𝐾 =  ∑ 𝑗𝐽
𝑗=1 ) be 

the index to represent different collision types and 𝐾 represents total crashes at a zonal level. 

In this empirical study, the index 𝑗 may take the values of rear-end (𝑗 =1), head-on (𝑗 =2), 

angular (𝐽 =3), off-road (𝑗 =4), other single vehicle (𝑗 = 5), other multiple vehicles (𝑗 =6), 

rollover (𝑗 =7) and sideswipe (𝑗 =8) crashes. Using these notations, the equation system for 

modeling crash count across different crash count level 𝑙, (𝑙 can denote either total crashes or 

crash counts by different collision types) in the usual NB formulation can be written as: 

𝑃(𝑐𝑖𝑙) =  
Γ (𝑐𝑖𝑙 +

1
𝛼𝑙

)

Γ(𝑐𝑖𝑙 + 1)Γ (
1
𝛼𝑙

)
(

1

1 + 𝛼𝑙𝜇𝑖𝑙
)

1
𝛼𝑙

(1 −
1

1 + 𝛼𝜇𝑖𝑙
)

𝑐𝑖𝑙

 (1)  

where, 𝑐𝑖𝑙 be the index for crash counts specific to level 𝑙 occurring over a period of 

time in STAZ 𝑖. 𝑃(𝑐𝑖𝑙) is the probability that STAZ 𝑖 has 𝑐𝑖𝑙 number of crashes for crash count 

level 𝑙. Γ(∙) is the gamma function, 𝛼𝑙 is NB over dispersion parameter and 𝜇𝑖𝑙 is the expected 

number of crashes occurring in STAZ 𝑖 over a given time period for crash count level 𝑙.  
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3.2 Multivariate Random Parameter Negative Binomial Model 

The focus of multivariate NB model is to examine number of crashes across different 

collision types jointly. In our current study context, we consider eight different collision types 

(rear-end, head-on, angular, off-road, others single vehicle, others multiple vehicles, rollover 

and sideswipe crashes). Thus, in estimating multivariate NB model, we examine eight different 

NB models for eight different collision types simultaneously. For the multivariate approach, 

the equation system for modeling crash count across different collision types can be written by 

replacing the subscript 𝑙 with 𝑗 in equation 1. Thus, the probability for crash occurrence for 

different crash type 𝑗 can be represented as 𝑃(𝑐𝑖𝑗), for which we can express 𝜇𝑖𝑗 as a function 

of explanatory variables by using a log-link function as follows: 

𝜇𝑖𝑗 = 𝐸(𝑐𝑖𝑗|𝒛𝑖𝑗) = 𝑒𝑥𝑝((𝜹𝑗  + 𝜻𝑖𝑗)𝒛𝑖𝑗 + ln(𝐴𝑟𝑒𝑎𝑖) + 𝜀𝑖𝑗 + 𝜂𝑖𝑗) (2)  

where, 𝒛𝑖𝑗 is a vector of explanatory variables associated with STAZ 𝑖 and collision 

type 𝑗. 𝐴𝑟𝑒𝑎𝑖 is the STAZ area used as an offset variable in the NB model specification3. 𝜹𝑗 is 

a vector of coefficients to be estimated. 𝜻𝑖𝑗 is a vector of unobserved factors on crash count 

propensity associated with collision type 𝑗 for STAZ 𝑖 and its associated zonal characteristics, 

assumed to be a realization from standard normal distribution: 𝜻𝑖𝑗~𝑁(0, 𝝅𝑗
2). 𝜀𝑖𝑗 is a gamma 

distributed error term with mean 1 and variance 𝛼𝑗. 𝜂𝑖𝑗 captures unobserved factors that 

simultaneously impact number of crashes across different collision types for STAZ 𝑖. Here, it 

                                                 

3 STAZ areas under consideration vary from 10-7 mile2 to 885.321 mile2 with a mean of 6.472 mile2. 

Given the wide range in STAZ areas, we allow the area associated with STAZs as an offset variable to account 

for different sizes of STAZs in our model specification. The coefficient of the offset variable is restricted to be 

one in estimating the model to normalize for the number crash events by STAZ area.  
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is important to note that the unobserved heterogeneity between total number of crashes across 

different collision types can vary across STAZs. Therefore, in the current study, the correlation 

parameter 𝜂𝑖 is parameterized as a function of observed attributes as follows: 

𝜂𝑖𝑗 = 𝜸𝒋𝒔𝑖𝑗  (3)  

where, 𝒔𝑖𝑗 is a vector of exogenous variables, 𝜸𝒋 is a vector of unknown parameters to 

be estimated (including a constant). 

In examining the model structure of crash count across different collision types, it is 

necessary to specify the structure for the unobserved vectors 𝜻 and 𝜸 represented by Ω. In this 

paper, it is assumed that these elements are drawn from independent normal distributions: 

Ω~𝑁(0, (𝝅𝑗
𝟐, 𝝈𝑗

2)). Thus, conditional on Ω, the likelihood function for the joint probability 

can be expressed as: 

𝐿𝑖 = ∫ ∏ (𝑃(𝑐𝑖𝑗))

𝐽

𝑗=1𝛀

𝑓(𝛀)𝑑𝛀 (4)  

Finally, the log-likelihood function is:       

𝐿𝐿 = ∑ 𝐿𝑛(𝐿𝑖)

𝑖

 (5)  

All the parameters in the model are estimated by maximizing the logarithmic function 

𝐿𝐿 presented in equation 5. The parameters to be estimated in the multivariate NB model are: 

𝜹𝑗, 𝛼𝑗, 𝝅𝑗, and 𝝈𝒋.  
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3.3 Joint NB-MNL Fractional Split Model (NB-MNLFS) 

The focus of joint NB-MNL fractional split model is to jointly model “total number of 

crashes” and “proportion of crashes by crash types”. Thus, we examine one NB model for total 

crash count and one MNL fractional split model for crash proportion by crash types 

simultaneously. For the joint approach, the equation system for modeling total crash count in 

the usual NB formulation can be written by replacing subscript 𝑙 by 𝐾 in equation 1. Thus, the 

probability for crash occurrence for total crash count 𝐾 can be represented as 𝑃(𝑐𝑖𝐾), for which 

we can express 𝜇𝑖𝐾 as a function of explanatory variables by using a log-link function as 

follows: 

𝜇𝑖𝐾 = 𝐸(𝑐𝑖𝐾|𝒙𝑖) = 𝑒𝑥𝑝((𝜽 + 𝝔𝑖)𝒙𝑖 + ln(𝐴𝑟𝑒𝑎𝑖) + 𝜙𝑖 + 𝜓𝑖𝑗) (6)  

where, 𝒙𝑖 is a vector of explanatory variables associated with STAZ 𝑖. 𝐴𝑟𝑒𝑎𝑖 is the 

STAZ area used as an offset variable in the NB model specification. 𝜽 is a vector of coefficients 

to be estimated. 𝝔𝑖 is a vector of unobserved factors on crash count propensity for STAZ 𝑖 and 

its associated zonal characteristics assumed to be a realization from standard normal 

distribution: 𝝔𝑖~𝑁(0, 𝝇2). 𝜙𝑖 is a gamma distributed error term with mean 1 and variance 𝛼𝐾. 

𝜓𝑖𝑗 captures unobserved factors that simultaneously impact total number of crashes and 

proportion of crashes by crash types for STAZ 𝑖. 

In the joint model framework, the modeling of crash proportions by crash types is 

undertaken using the MNL fractional split model. In our current study, the dependent variable 

in the crash proportion component of the joint model is defined as the proportion of crash type 

in traffic crashes by STAZ. In estimating the model, we assume that the sum of the proportions 

across a STAZ is equal to unity and each proportion of crash types in traffic crashes ranges 

between zero and one. Let 𝑦𝑖𝑗 be the fraction of crashes by crash type 𝑗 (𝑗 = 8)  in STAZ 𝑖. 
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0 ≤ 𝑦𝑖𝑗 ≤ 1, ∑ 𝑦𝑖𝑗 = 1
𝐽

𝑗=1
 (7)  

Let the fraction 𝑦𝑖𝑗 be a function of a vector 𝑑𝑖𝑗 of relevant explanatory variables 

associated with attributes of STAZ 𝑖. 

𝐸[𝑦𝑖𝑗|𝑑𝑖𝑗] =  𝐺𝑗(∙) 

0 < 𝐺𝑗(∙) < 1,   ∑ 𝐺𝑗(∙) = 1𝐽
𝑗=1  

(8)  

where 𝐺𝑗(∙) is a predetermined function. The properties specified in equation 8 for 𝐺𝑗(∙

) warrant that the predicted fractional crash types will range between 0 and 1, and will add up 

to 1 for each STAZ. In this study, a MNL functional form for 𝐺𝑗 in the fractional split model 

of equation 8. Then equation 8 is rewritten as: 

𝐸(𝑦𝑖𝑗|𝑑𝑖𝑗) = 𝐺𝑗(∙) =
exp( (𝜷𝒋 + 𝝆𝒊𝒋)𝑑𝑖𝑗 + 𝜉𝑖𝑗 ± 𝜓𝑖𝑗)

∑ exp( (𝜷𝒋 + 𝝆𝒊𝒋)𝑑𝑖𝑗 + 𝜉𝑖𝑗 ± 𝜓𝑖𝑗)𝐽
𝑗=1

, 𝑗 = 1,2,3, … ., (9)  

where, 𝒅𝑖𝑗 is a vector of attributes, 𝜷𝑗 is the corresponding vector of coefficients to be 

estimated for crash type 𝑗. 𝝆𝑖𝑗 is a vector of unobserved factors assumed to be a realization 

from standard normal distribution: 𝝆~𝑁(0, 𝝂𝑗
2). 𝜉𝑖𝑗 is the random component assumed to 

follow a Gumbel type 1 distribution. 𝜓𝑖𝑗 term generates the correlation between equations for 

total number of crashes and crash proportions by crash types. The ± sign in front of 𝜓𝑖𝑗 in 

equation 9 indicates that the correlation in unobserved zonal factors between total crashes and 

crash proportions by crash type may be positive or negative. A positive sign implies that STAZs 

with higher number of crashes are intrinsically more likely to incur higher proportions for the 
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corresponding crash types. On the other hand, negative sign implies that STAZs with higher 

number of crashes intrinsically incur lower proportions for different crash types. To determine 

the appropriate sign, one can empirically test the models with both ′ + ′ and ′ − ′ signs 

independently. The model structure that offers the superior data fit is considered as the final 

model. 

It is important to note here that the unobserved heterogeneity between total number of 

crashes and crash proportions by crash types can vary across STAZs. Therefore, in the current 

study, the correlation parameter 𝜓𝑖𝑗 is parameterized as a function of observed attributes as 

follows: 

𝜓𝑖𝑗 = 𝜣𝒋𝒕𝑖𝐽 (10)  

where, 𝒕𝑖 is a vector of exogenous variables, 𝜣𝒋 is a vector of unknown parameters to 

be estimated (including a constant). 

In examining the model structure of total crash count and proportion of crashes by crash 

types, it is necessary to specify the structure for the unobserved vectors 𝝇, 𝝆 and 𝜣 represented 

by ℧. In this paper, it is assumed that these elements are drawn from independent realization 

from normal population: ℧~𝑁(0, (𝝇𝟐, 𝝂𝑗
2, ℵ𝑗

2)). Thus, conditional on ℧, the likelihood function 

for the joint probability can be expressed as: 

ℒ𝑖 = ∫ 𝑃(𝑐𝑖𝐾) × ∏ (𝐸(𝑦𝑖𝑗|𝑑𝑖𝑗))
𝜛𝑖𝑦𝑖𝑗

𝐽

𝑗=1℧

𝑓(℧)𝑑Ω (11)  
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where, 𝜛𝑖 is a dummy with 𝜛𝑖 = 1 if STAZ 𝑖 has at least one crash over the study 

period and 0 otherwise. 𝑦𝑖𝑗 is the proportion of crashes in crash type category 𝑗. Finally, the 

log-likelihood function is:    

ℒℒ = ∑ 𝐿𝑛(𝐿𝑖)

𝑖

 (12)  

All the parameters in the model are estimated by maximizing the logarithmic function 

ℒℒ presented in equation 12. The parameters to be estimated in the joint model are: 𝜽, 𝛼𝐾, 𝜷𝒋, 𝝂𝑗 

and ℵ𝒋. 

To estimate the proposed joint and multivariate models, we apply Quasi-Monte Carlo 

simulation techniques based on the scrambled Halton sequence to approximate this integral in 

the likelihood function and maximize the logarithm of the resulting simulated likelihood 

function across individuals (see Bhat, 2001; Eluru et al., 2008; Yasmin and Eluru, 2013 for 

examples of Quasi-Monte Carlo approaches in literature). The model estimation routine is 

coded in GAUSS Matrix Programming software (Aptech, 2015) 

 

3.4 Summary 

The main objective of the study is to develop an alternative approach to the traditional 

multivariate NB model for modeling different collision types while accommodating for the 

presence of common unobserved factors across different collision types. This chapter presented 

a detailed discussion of the econometric approach employed for crash type modeling in this 

study.  
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CHAPTER 4: DATA PREPARATION 

The previous chapter provided a detailed discussion about the modeling framework 

employed in the current research effort. This chapter presents characteristics of the data 

employed for analysis including the source of the data, the compilation of dependent and 

explanatory variables considered in the analysis.  

 

4.1 Data Source 

The study draws motorized crash record data from the state of Florida for the year 2015 

at STAZ level from Florida Department of Transportation (FDOT), Crash Analysis Reporting 

System (CARS) and Signal Four Analytics (S4A) databases. CAR and S4A are long and short 

forms of crash reports in the State of Florida, respectively. The Long Form crash report is used 

to obtain detailed information on major crashes such as accident resulting in injuries or crashes 

involving felonious activities (such as hit-and-run or driving under influence). Short Form 

crash reports depict the reports based on all other traffic crashes. Thus, when integrated, a 

complete representation of road crashes in Florida is generated.  

 

4.2 Dependent Variable 

The data provides crash information for 8,518 STAZs. The data reports 10 types of 

collisions: rear-end, head-on, angular, left-turn, right-turn, off-road, rollover, sideswipe, other 

collision type with one vehicle involved and other collision type with more than one vehicle 

involved. Based on crash records the angular, left-turn and right-turn collision types are 

combined as one category; thus 8 collision type categories are considered. Table 4.1 represents 

the summary statistics of crash type variables. A total of 487,171 motorized crashes were 

recorded in Florida during 2015. Figure 4.1 describes the overall summary of all crash types in 
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the state of Florida for the year 2015 in terms of percentage. Of these crashes, rear-end 

collisions are the most prevalent while rollover crashes are less frequent with 1.06% among all 

other crash types.   

 

Figure 4.1 Crash (%) Picture in Florida in 2015 for Different Collision Types 

 

4.3 Exogenous Variable Summary 

Roadway characteristics, land use attributes and traffic characteristics - three broad 

categories of explanatory variables are considered in our study. The data employed are obtained 

from FDOT Transportation Statistics Division, and US Census Bureau. The attributes are then 

aggregated at a STAZ level using geographical information system (GIS). Roadway attributes 

included are road lengths for different functional class, access and pavement condition, on road, 

off-road, divided road and roads with different number of lanes (1, 2 and 3 or more), width and 

variance of median, intersection and signal density, mean and variance of posted speed limit, 

average width of the sidewalk, inside and outside shoulder mean width. Intersection density 

denotes the number of intersection per miles of street in a STAZ and signal density is the 

number of signals per intersection.  Land use attributes included area of urban, residential, 

Angle, 19.07

Head-on, 2.07

Off-road, 

7.84

Other Single, 

4.21

Other Multiple, 

19.99

Rear-end, 

35.47

Rollover, 1.06

Sideswipe, 10.29
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industrial, institutional, recreational, office, agricultural land use types and land use mix4. 

Further, for traffic characteristics, average annual daily traffic (AADT), average annual daily 

truck traffic (truck AADT), vehicles miles traveled (VMT), truck vehicles miles traveled (truck 

VMT) and proportion of heavy traffic are considered.  

All the explanatory variables are created based on previous studies. Table 4.2 

summarizes sample characteristics of the explanatory variables with the definition considered 

for final model estimation along with the zonal minimum, maximum and mean values. Several 

functional forms and specifications for different variables are explored. The final specification 

of the model development was based on removing the statistically insignificant variables in a 

systematic process based on 90% significance level. 

 

4.4 Summary 

In this chapter, data compilation procedures are discussed. Further, descriptive statistics 

for both dependent and independent variables are provided. The empirical analysis results are 

summarized in the next chapter. 

 

 

 

                                                 

4 Land use mix is defined as: [
− ∑ (𝑝𝑘(𝑙𝑛𝑝𝑘))𝑘

𝑙𝑛𝑁
], where k is the category of land-use, 𝑝𝑘 is the proportion of the 

developed land area devoted to a specific land-use k, N is the number of land-use categories in a STAZ. In our 

study, six land use types were considered including residential, park facilities, industrial, institutional, agricultural 

and office areas. Institutional land use refers to land uses that cater to community’s social and educational needs 

(schools, town hall, police station) while park facilities refer to land used for recreational or entertainment 

purposes. The value of this index ranges from zero to one - zero (no mix) corresponds to a homogenous area 

characterized by single land use type and one to a perfectly heterogeneous mix). 
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Table 4.1 Descriptive Statistics of Dependent Variables 

Variable Names  Definition 

Zonal (N=8518) 

Minimum Maximum Average 
Standard 

Deviation 

% of STAZs 

with zero 

crash record 

Count variables 

Total Crash Total number of crashes in STAZ 0.000 877.000 57.193 75.999 5.100 

Rear-end Crash Total number of rear-end crashes in STAZ 0.000 315.000 20.285 29.665 17.363 

Head-on Crash Total number of head-on crashes in STAZ 0.000 76.000 1.185 3.382 59.779 

Angular Crash Total number of angular crashes in STAZ 0.000 180.000 10.907 16.623 21.930 

Off-road Crash Total number of off-road crashes in STAZ 0.000 65.000 4.485 5.615 21.965 

Other Single Vehicle 

Crash 
Total number of other single vehicle crashes in STAZ 0.000 99.000 2.410 3.632 35.724 

Other Multiple Vehicle 

Crash 
Total number of other multiple vehicle crashes in STAZ 0.000 419.000 11.433 19.142 20.756 

Rollover Crash Total number of rollover crashes in STAZ 0.000 24.000 0.605 1.286 67.739 

Sideswipe Crash Total number of sideswipe crashes in STAZ 0.000 123.000 5.883 9.091 28.575 

Fraction variables 

Rear-end crash fraction 
Proportion of rear-end crashes (total number of rear-end 

crashes / total number of motorized vehicle crashes in STAZ) 
0.000 1.000 0.284 0.198 17.363 

Head-on crash fraction 
Proportion of head-on crashes (total number of head-on 

crashes / total number of motorized vehicle crashes in STAZ) 
0.000 1.000 0.022 0.064 59.779 

Angular crash fraction 
Proportion of angular crashes (total number of angular crashes 

/ total number of motorized vehicle crashes in STAZ) 
0.000 1.000 0.166 0.148 21.930 

Off-road crash fraction 
Proportion of off-road crashes (total number of off-road 

crashes / total number of motorized vehicle crashes in STAZ) 

 

 

 

0.000 1.000 0.132 0.179 21.965 
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Variable Names Definition 

Zonal (N=8518) 

Minimum Maximum Average 
Standard 

Deviation 

% of STAZs 

with zero 

crash record 

Other single vehicle 

crash fraction 

Proportion of other single vehicle crashes (total number of 

other single vehicle crashes / total number of motorized 

vehicle crashes in STAZ) 

0.000 1.000 0.061 0.110 35.724 

Other multiple vehicle 

crash  fraction 

Proportion of other multiple vehicle crashes (total number of 

other multiple vehicle crashes / total number of motorized 

vehicle crashes in STAZ) 

 

 

 

 

 

crash / total number of motorized crash) 

0.000 1.000 0.172 0.160 20.756 

Rollover crash fraction 
Proportion of rollover crashes (total number of rollover 

crashes / total number of motorized vehicle crashes in STAZ) 
0.000 1.000 0.023 0.076 67.739 

Sideswipe crash 

fraction 

Proportion of sideswipe crashes (total number of sideswipe 

crashes / total number of motorized vehicle crashes in STAZ) 
0.000 1.000 0.09 0.105 28.575 
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Table 4.2 Summary Statistics of Exogenous Variables 

Variable Names  Definition 

Zonal (N=8518) 

Minimum Maximum Average 
Standard 

Deviation 

Roadway Characteristics  

Proportion of arterial 

road 
Total length of arterial road/ Total road length in STAZ 0.000 1.000 0.477 0.363 

Proportion of collector 

road 

 

Total length of collector road/ Total road length in STAZ 0.000 1.000 0.410 0..353 

Proportion of local road Total length of local road/ Total road length in STAZ 0.000 1.000 0.088 1.952 

Proportion of urban road Total length of urban road/ Total road length in STAZ 0.000 1.000 0.756 0.411 

Proportion of rural road Total length of rural road/ Total road length in STAZ 0.000 1.000 0.219 0.394 

Proportion of no control 

road 
Total length of no access control road/ Total road length in  STAZ 0.000 1.000 0.912 0.245 

Proportion of major road Total length of major road/ Total road length in STAZ 0.000 1.000 0.594 0.355 

Proportion of minor road Total length of minor road/ Total road length in STAZ 0.000 1.000 0.331 0.334 

Signal intensity Total number of signal/ Total number of intersection in STAZ 0.000 1.667 0.048 0.112 

Divided road length Ln (total length of divided road in STAZ in meter)  -1.394 12.075 6.705 3.463 

Proportion of 1 lane road 

length 

 

Total length of road with 1 lane / Total road length in STAZ 0.000 1.000 0.109 0.159 

Proportion of 2 lane road 

length 
Total length of road with 2 lane / Total road length in STAZ 0.000 1.000 0.629 0.346 

Proportion of 3 or more 

lane road length 

Total length of road with 3 or more lane / Total road length in 

STAZ 
0.000 1.000 0.241 0.331 

Average median width Ln (average median width in meter in STAZ) -0.089 5.527 1.501 0.821 
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Variable Names Definition 

Zonal (N=8518) 

Minimum Maximum Average 
Standard 

Deviation 

Variance of median width Ln (variance of median width in meter in STAZ) -4.279 11.724 1.815 2.228 

Average inside shoulder 

width 
Ln (average width of inside shoulder in feet in STAZ) 0.000 2.996 0.535 0.586 

Average outside shoulder 

width 
Ln (average width of outside shoulder in feet in STAZ) 0.000 3.066 1.588 0.483 

Average sidewalk width Ln (average width of sidewalk in feet in STAZ) 0.000 3.497 1.259 0.795 

Intersection density 

Ln of total number of intersection per square miles of street in 

STAZ (Total number of intersection/ Total length of street in 

STAZ in miles) 

 

-2.608 7.948 1.751 1.003 

Average posted speed 

limit 
Ln (average posted speed limit in mile per hour in STAZ) 0.000 4.248 3.390 1.089 

Variance of posted speed 

limit 
Ln (variance of posted speed limit in mile per hour in STAZ) 0.000 6.920 2.415 1.951 

Built Environment  

Proportion of residential 

area 
Residential area / Total area of STAZ 0.000 0.777 0.024 0.090 

Proportion of agricultural 

area 
Agricultural area / Total area of STAZ 

0.000 0.987 0.022 0.114 

Proportion of industrial 

area 
Industrial area / Total area of STAZ 

0.000 0.871 0.002 0.022 

Proportion of 

institutional area 
Institutional area / Total area of STAZ 

0.000 0.585 0.019 0.134 

Proportion of office area Office and retail area / Total area of  STAZ 
0.000 0.786 0.008 0.044 

Proportion of recreational 

area 
Recreational area / Total area of STAZ 

0.000 0.965 0.004 0.037 
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Land use mix 

Land use mix = [
− ∑ (𝑝𝑘(𝑙𝑛𝑝𝑘))𝑘

𝑙𝑛𝑁
], where 𝑘 is the category of land-

use, 𝑝 is the proportion of the developed land area devoted to a 

specific land-use, 𝑁  is the number of land-use categories in 

STAZ 

0.000 0.859 0.046 0.145 

Proportion of urban area Urban area / Total area of STAZ 0.000 1.000 0.731 0.425 

LTZM 
Ln of area of STAZ in meter square (used as the exposure variable 

in the model) 
-3.749 21.553 14.596 2.271 

Traffic Characteristics  

AADT Ln of average annual daily traffic in STAZ 0.000 13.312 10.362 2.093 

Truck AADT Ln of average annual daily truck traffic in STAZ 0.000 11.020 4.901 3.870 

VMT Ln of vehicles miles traveled in STAZ  0.000 13.524 9.442 
2.192 

Truck VMT Ln of truck vehicles miles traveled in a STAZ  -10.185 11.243 4.133 
3.584 

Proportion of heavy 

traffic 
Total number of truck traffic/ Total number of vehicles in STAZ 0.000 0.848 0.037 0.051 
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CHAPTER 5: EMPIRICAL ANALYSIS 

The results for the models described in Chapter 3 are presented in this chapter. 

Basically, the current study focused on two models: joint NB-MNLFS and multivariate RPNB 

model. The analysis was started by estimating separate univariate models for different crash 

types and total crash at STAZ level. After that, a multinomial fractional split (MNFLS) model 

was estimated for analyzing the crash proportions at zonal level by crash types. These models 

worked as a benchmark for the corresponding joint approaches (NB-MNLFS and Multivariate 

RPNB). All the models were estimated using the attributes described in chapter 4.  Several 

functional forms and specification for different variables are explored. The appropriate 

functional form or specification was determined based on data fit. The final specification of 

the model development was based on removing the statistically insignificant variables in a 

systematic process based on 90% significance level. 

 

5.1 Model Specification and Overall Measure of Fit 

The empirical analysis involves estimation of four different models: 1) Independent 

NB-MNLFS model, 2) Joint NB-MNLFS model with correlation, 3) Independent Multivariate 

NB model, 4) Multivariate NB model with correlation. The log-likelihood values at 

convergence are estimated as follows: (1) Independent NB-MNLFS model (52 parameters) is 

-53858.295, (2) Joint NB-MNLFS model with correlation (55 parameters) is -53843.04, (3) 

Independent Multivariate RPNB model (116 parameters) is -163958.22 and (4) Random 

Parameter Multivariate NB model with correlation (116 parameters) is -160953.57. From the 

log-likelihood values we can see that the joint and multivariate models performed better than 

                                                 

5 The reader would note that the log-likelihood values for the fractional split models refers to the quasi log-

likelihood values. 
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their respective independent models. The estimation results of the joint NB-MNLFS model 

results are discussed in detail. However, the estimation results of multivariate NB model 

(shown in Table 5.2) are not discussed for the sake of brevity. The reader can also review the 

model estimates for Independent NB-MNLFS model and Random Parameter Multivariate NB 

model without correlation in Appendix A. 

 

5.2 NB-MNL Fractional Split Joint Model 

Table 5.3 presents the model estimation results of the joint NB-MNL fractional split 

model with NB for the total crash component and MNL fractional split for the proportion of 

crashes by collision type. The second column provides the results of the NB component while 

columns 3 through 10 present the results of the MNL fractional split model. The model results 

are discussed separately for total crash component and proportion by collision type. 

 

5.2.1 NB Component (Total Crash) 

A positive (negative) sign for a variable in the crash count component of Table 5.3 

indicates that an increase in the variable is likely to result in more (less) motor vehicle crashes. 

The reader would note that in crash frequency models, area of the STAZ is used as an offset. 

 

5.2.1.1 Roadway Characteristics:  

The parameter estimates for proportion of arterial roads indicate that risk of motor 

vehicle crashes increases with increasing proportion of arterial roads in the STAZ. A similar 

result is observed for the proportion of urban roads (see Abdel-Aty and Radwan, 2000 for a 

similar result). Intersection density variable exhibits a positive impact on motorized crashes; 

an expected result because intersections are likely to increase potential vehicle conflicts due to 

the high number of turning movements (see Abdel-Aty et al., 2013, 2005). An increased 
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proportion of roads with three or more lanes at the zonal level is found to be positively 

associated with motor vehicle crash incidence. The result is intuitive because higher number of 

lanes result in lane changing movements that could potentially lead to vehicle conflicts and 

crashes. The coefficient for mean posted speed limit in the zone has a negative coefficient 

indicating a reduction in crash incidence. The result is indicative of better roadway facility 

condition and design for high speed facilities (see Milton and Mannering, 1998 for a similar 

result). An increase in the length of divided roads in a STAZ reduces crash incidence. Divided 

roads reduce vehicle conflicts and are likely to reduce crash risk. The variables average inside 

and outside shoulder width offer contrasting effects. While an increase in average inside 

shoulder width is associated with higher crash risk, an increase in average outside shoulder 

width is likely to improve safety for motor vehicles. An increase in sidewalk width is associated 

with increased crash risk. The result warrants further investigation.   

 

5.2.1.2 Land-Use Attributes:   

As expected, large proportion of urban area is associated with increased incidence of 

traffic crashes. The urban area proportion serves as a surrogate for exposure – urban areas 

attract larger amount of traffic and thus increase crash risk. On the other hand, land use mix 

variable highlights how zones exhibiting high mixture of residential, industrial, institutional 

and other areas are likely to reduce driving speeds and reduce motor vehicle crash risk. No 

significant impact was found for other land use attributes in the analysis. 

 

5.2.1.3 Traffic Characteristics:  

The traffic volume variables representing AADT and Truck AADT offer expected 

results. With increase in AADT and truck AADT in the STAZ, the incidence of traffic crashes 

is likely to increase.  
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5.2.2 MNL Fractional Split Component 

In the MNL fractional split model, one of the outcomes must be the base for every 

variable for the sake of identification. In our analysis, fraction of rear-end crashes is considered 

as the base alternative for model estimation. Therefore, a positive (negative) sign for a variable 

indicates that an increase in the variable is likely to result in higher proportion of crashes for 

the corresponding alternative relative to the rear-end fraction. For rear-end crash proportions, 

impact of some exogenous variables is estimated and, in those cases,, other alternatives are 

considered as the base alternatives. 

 

5.2.2.1 Roadway Characteristics:  

With higher proportion of arterial roads, the proportion of rear-end and sideswipe 

crashes increases while the proportion of off-road crashes decreases. The result is indicative of 

higher traffic and associated likelihood of traffic conflicts with vehicles in the same direction 

leading to rear-end and sideswipe crashes. With increasing proportion of urban roads, the 

results indicate a reduction in the proportion of off-road and rollover crashes. A positive 

association is observed for the intersection density variable in the proportion of angular, 

sideswipe and other multiple vehicle crash categories while a negative association is observed 

for off-road and rollover crash proportions. At intersections, there are complicated turning 

movements that result in more angular and sideswipe crashes rather than off-road and roll over 

crashes. 

The parameter for proportion of 3 or more lane roads reveals a positive association with 

sideswipe crash proportion. As expected, average posted speed limit in a zone is positively 

associated with head-on, off-road and angular crash proportions (see Ye et al., 2009 for similar 

result for head-on crashes). The result is contrary to the impact of the variable in the total crash 

component. The length of divided road in a STAZ is found to negatively influence off-road 
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and sideswipe crash proportions. The average width of inside shoulder variable indicates a 

negative impact on proportion of head-on crashes. The result is expected because increasing 

width of inside shoulder reduces the potential for head-on collisions. In terms of outside 

shoulder width variable, the influence is positive for off-road, other single vehicle and rollover 

crash proportions. Average width of sidewalk variable negatively affects the proportion of off-

road and rollover crashes. 

 

5.2.2.2 Land-Use Attributes:  

In terms of land use attributes, only proportion of urban area variable has significant 

impact on crash proportions. The likelihood of rear-end crashes increases for a high percentage 

of urbanized area in a STAZ while off-road, rollover and other single vehicle crash proportion 

reduces. The result seems reasonable because in urbanized area, there is high density of slow 

moving vehicles with reduced gap and as a result more rear-end crashes are likely to occur.  

 

5.2.2.3 Traffic Characteristics:  

The estimated AADT variable implies a positive effect on rear-end crash proportions 

and a negative effect on other single vehicle crash proportions. The result is intuitive as with 

higher number of vehicles, the likelihood of rear-end crashes increase. Truck AADT is 

negatively associated with off-road and rollover crash proportions. The result suggests that off-

road and rollover crashes goes down with the increasing portion of trucks on the road. 

 

5.2.3 Common Unobserved Effects 

Second last row panel of Table 5.3 represent the significance of unobserved effects in 

the joint NB-MNLFS model. Two sets of effects are tested in our analysis: (1) the common 

unobserved factors jointly affecting total crashes and the fractional split model (corresponding 
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to 𝜓𝑖𝑗 in the model system in Section 3.2) and (2) testing for the presence of parameter 

heterogeneity for different variables – also referred to as random effects – (corresponding to 

 𝜻𝑖𝑗 and 𝝔𝑖 in Section 3.2). One common unobserved factor was found to be significant. The 

parameter represents common correlation between total crash and crash proportions of all 

collision types except the off-road category which acts as a base for this particular correlation 

analysis. As shown in Equation 9 of Section 3.2, the correlation between the two components 

could be either positive or negative. In our analysis, we found the positive sign to offer better 

fit for common correlation between total crash and crash proportions of rear end, head-on, 

angular, other single and multiple vehicle, rollover and sideswipe collision types. Overall, the 

results clearly support our hypothesis that common unobserved factors influence the two 

components. 

 

5.2.4 Random Effects 

In terms of random effects, we found that the proportion of urban area and average 

posted speed limit have significant variability in the total crash model. We did not find any 

significant random effects in the fractional split component. The results illustrate the need to 

consider parameter heterogeneity in the model frameworks.   

 

5.3 Summary 

The results from the empirical analysis are presented in this chapter. The joint NB-

MNLFS model results highlight the presence of common unobserved effects affecting the two 

components of the joint model as well as the presence of parameter heterogeneity. The 

comparison exercise of the proposed model with the traditional Multivariate NB model is 

discussed in the subsequent chapter. 
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Table 5.1 Joint NB-MNLFS Model Estimation Results 

Joint Component 
NB Model 

(Counts) 
MNLFS Model (Proportions) 

Crash Type Total Crash Rear-end Head-on Angular Off-Road 

Other 

Single 

Vehicle 

Other 

Multiple 

Vehicle 

Rollover Sideswipe 

Variable Name 
Estimate  

(S.E)* 

Estimate  

(S.E) 

Estimate  

(S.E) 

Estimate 

(S.E) 

Estimate  

(S.E) 

Estimate  

(S.E) 

Estimate  

(S.E) 

Estimate 

(S.E) 

Estimate  

(S.E) 

Constant 
-13.568 

(0.123) 
--- 

-1.280 

(0.367) 

0.301 

(0.235) 

1.410 

(0.260) 

0.790 

(0.326) 

0.865 

(0.215) 

-0.233 

(0.467) 

0.290 

(0.225) 

Roadway Characteristic 

 Proportion of arterial road 
0.96 

(0.052) 

0.336 

(0.078) 
--- --- 

-0.186 

(0.109) 
--- --- --- 

0.455 

(0.115) 

 Proportion of urban road 
0.629  

(0.094) 
--- --- --- 

-0.458  

(0.169) 
--- --- 

-0.729 

(0.362) 
--- 

 Intersection density 
0.536  

(0.022) 
--- --- 

0.299 

(0.04) 

-0.094 

(0.049) 
--- 

0.199 

(0.039) 

-0.181 

(0.105) 

0.105 

(0.047) 

 Proportion of road length 

with 3 or more lanes 

0.660 

(0.061) 
--- --- --- --- --- --- --- 

0.541 

(0.113) 

 Average posted speed 

limit 

-0.192 

(0.022) 
--- 

0.179 

(0.087) 

0.094 

(0.034) 

0.113 

(0.038) 
--- --- --- --- 

 Standard deviation 
0.090  

 (0.010) 
        

 Divided road length 
-0.113 

(0.008) 
--- --- --- 

-0.022 

(0.011) 
--- --- --- 

-0.04 

(0.012) 

 Average inside shoulder 

width 

0.148 

(0.035) 
--- 

-0.305 

(0.141) 
--- --- --- --- --- --- 

 
Average outside shoulder 

width 

-0.739 

(0.044) 
--- --- --- 

0.321 

(0.092) 

0.404 

(0.119) 
--- 

0.668 

(0.227) 
--- 

 Average sidewalk width 
0.172 

(0.027) 
--- --- --- 

-0.114 

(0.050) 
--- --- 

-0.211 

(0.102) 
--- 

Land Use Attribute 
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Joint Component 
NB Model 

(Counts) 
MNLFS Model (Proportions) 

Crash Type Total Crash Rear-end Head-on Angular Off-Road 

Other 

Single 

Vehicle 

Other 

Multiple 

Vehicle 

Rollover Sideswipe 

Variable Name 
Estimate  

(S.E)* 

Estimate  

(S.E) 

Estimate  

(S.E) 

Estimate 

(S.E) 

Estimate  

(S.E) 

Estimate  

(S.E) 

Estimate  

(S.E) 

Estimate 

(S.E) 

Estimate  

(S.E) 

 Proportion of urban area 
2.525 

(0.088) 

0.178 

(0.083) 
--- --- 

-0.580 

(0.163) 

-0.862 

(0.120) 
--- 

-1.207 

(0.362) 
--- 

 Standard deviation 
0.258 

(0.050) 
        

 Land use mix 
-1.454 

(0.117) 
--- --- --- --- --- --- --- --- 

Traffic Characteristic           

 AADT 
0.101 

(0.015) 

0.133 

(0.021) 
--- --- --- 

-0.065 

(0.027) 
--- --- --- 

 Truck AADT 
0.023 

(0.005) 
--- --- --- 

-0.040  

(0.010) 
--- --- 

-0.040 

(0.022) 
--- 

Dispersion parameter 
1.919 

(0.028) 
--- --- --- --- --- --- --- --- 

Correlation 
0.184 

(0.049) 

0.184 

(0.049) 

0.184 

(0.049) 

0.184 

(0.049) 
--- 

0.184 

(0.049) 

0.184 

(0.049) 

0.184 

(0.049) 

0.184 

(0.049) 

 Note: *S.E. = Standard Error 
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Table 5.2 Multivariate NB Model Results 

Crash Type Rear-end Head-on Angular Off-Road 

Other 

Single 

Vehicle 

Other 

Multiple 

Vehicle 

Rollover Sideswipe 

Variable Name 
Estimate  

(S.E)* 

Estimate  

(S.E) 

Estimate 

(S.E) 

Estimate  

(S.E) 

Estimate  

(S.E) 

Estimate  

(S.E) 

Estimate 

(S.E) 

Estimate  

(S.E) 

Constant 
-16.550 

(0.134) 

-19.723 

(0.258) 

-17.476 

(0.142) 

-16.704 

(0.135) 

-17.283 

(0.158) 

-16.343 

(0.133) 

-19.372 

(0.279) 

-17.433 

(0.157) 

Roadway Characteristic 

 Proportion of arterial road 
0.964 

(0.051) 

0.568 

(0.073) 

0.548  

(0.05) 

0.325 

(0.044) 

0.541 

(0.053) 

0.647 

(0.051) 

0.312 

(0.279) 

0.996 

(0.054) 

 Proportion of urban road 
0.917 

(0.099) 

0.892 

(0.164) 

1.003  

(0.10) 

0.574 

(0.085) 

0.636 

(0.103) 

1.009 

(0.099) 
-- 

0.995 

(0.113) 

 Intersection density 
0.508 

(0.024) 

0.784 

(0.039) 

0.861 

(0.023) 

0.408 

(0.021) 

0.604 

(0.026) 

0.705 

(0.024) 

0.396 

(0.038) 

0.577 

(0.026) 

 Proportion of road length with 3 

or more lanes 

0.738 

(0.059) 

0.740 

(0.079) 

0.638 

(0.055) 

0.356  

(0.05) 

0.512 

(0.058) 

0.902 

(0.057) 

0.401 

(0.084) 

1.135  

(0.06) 

 Average posted speed limit 
-0.208 

(0.021) 

-0.137 

(0.031) 

-0.145  

(0.02) 

-0.076 

(0.017) 

-0.202 

(0.021) 

-0.259 

(0.021) 

-0.144  

(0.03) 

-0.251 

(0.022) 

 Divided road length 
-0.043 

(0.008) 

-0.092 

(0.012) 

-0.09  

(0.007) 

-0.058 

(0.007) 

-0.072 

(0.008) 

-0.078 

(0.007) 

-0.024 

(0.012) 

-0.142 

(0.008) 

 Average inside shoulder width 
0.173 

(0.035) 

-0.267 

(0.052) 
-- 

0.191 

(0.029) 

0.16  

(0.036) 

0.064 

(0.035) 

0.18  

(0.049) 

0.203 

(0.037) 

 Average outside shoulder width 
-0.856 

(0.044) 

-0.534 

(0.064) 

-0.781 

(0.042) 

-0.541 

(0.038) 

-0.577 

(0.045) 

-0.796 

(0.043) 

-0.234 

(0.067) 

-0.92  

(0.046) 

 Average sidewalk width 
0.176 

(0.028) 

0.263 

(0.043) 

0.212 

(0.027) 
-- 

0.099 

(0.029) 

0.283 

(0.027) 

-0.166 

(0.038) 

0.20  

(0.03) 

Land Use Attribute 

 Proportion of urban area 
2.745 

(0.089) 

2.112 

(0.139) 

2.406 

(0.089) 

1.697 

(0.076) 

1.539 

(0.091) 

2.46  

(0.089) 

1.168 

(0.079) 

2.503 

(0.099) 

 Land use mix 
-1.105 

(0.114) 

-1.813 

(0.155) 

-1.154 

(0.109) 

-1.378 

(0.095) 

-0.248 

(0.106) 

-1.127 

(0.112) 

-1.092 

(0.154) 

-1.244 

(0.118) 

Traffic Characteristic 
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Crash Type Rear-end Head-on Angular Off-Road 

Other 

Single 

Vehicle 

Other 

Multiple 

Vehicle 

Rollover Sideswipe 

Variable Name 
Estimate  

(S.E) 

Estimate  

(S.E) 

Estimate 

(S.E) 

Estimate  

(S.E) 

Estimate  

(S.E) 

Estimate  

(S.E) 

Estimate 

(S.E) 

Estimate  

(S.E) 

 AADT 
0.162 

(0.016) 

0.125 

(0.029) 

0.167 

(0.017) 

0.14  

(0.016) 

0.109 

(0.018) 

0.10  

(0.016) 

0.219 

(0.031) 

0.189 

(0.018) 

 Truck AADT 
0.026 

(0.005) 

0.074 

(0.007) 

0.025 

(0.005) 
-- 

0.044 

(0.005) 

0.017 

(0.005) 
-- 

0.044 

(0.005) 

Dispersion parameter 
0.764 

(0.023) 

0.777 

(0.052) 

0.538 

(0.024) 

0.011 

(0.003) 

0.226  

(0.03) 

0.62  

(0.025) 

0.286 

(0.049) 

0.672 

(0.031) 

Correlation 
1.025 

(0.009) 

1.025 

(0.009) 

1.025 

(0.009) 

1.025 

(0.009) 

1.025 

(0.009) 

1.025 

(0.009) 

1.025 

(0.009) 

1.025 

(0.009) 

 Note: *S.E. = Standard Error
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CHAPTER 6: COMPARISON EXERCISE 

The most common approach employed to model different collision types while 

addressing the potential unobserved heterogeneity across collision types is the development of 

multivariate crash frequency models. This research effort develops an alternative approach to 

accommodate for the presence of observed and unobserved heterogeneity across collision types 

by proposing a joint NB-MNLFS model.  However, there has not been a comprehensive 

exercise between these two systems. The current study undertakes a first of its kind comparison 

exercise between the two approaches.  

 

6.1 Equivalent Log-Likelihood Measure 

The estimated multivariate NB model and the joint NB-MNLFS model fit measures (in 

term of log-likelihood or Information criterion) are not directly comparable. Therefore, in the 

current study context, we develop an equivalent approach for comparing the data fit measures 

of these two different frameworks. Specifically, we generate an equivalent log-likelihood of 

joint NB- MNLFS model which is directly comparable with the log-likelihood of the 

multivariate NB model. The exact equation for the computation of equivalent log-likelihood 

takes the following form: 

𝛦𝐿 =  ∑ [(ln{𝑃(𝑐𝑖𝐾)}𝑐𝑖𝐾=0) + (ℱ𝑗 ∗ 𝑙𝑛[∏ {𝑃(ℂ𝑖𝑗)}𝐽
𝑗=1 ]

𝑐𝑖𝐾>0
)]𝑖 , 𝑤𝑖𝑡ℎ ℂ𝑖𝑗 =

𝑐𝑖𝑗

𝐸(𝑦𝑖𝑗|𝑑𝑖𝑗)
 and ℱ𝑗 =

 
ℓ𝑆𝑗

ℓ𝑆𝐾
                                      (13) 

where 𝑖 (𝑖 = 1,2,3, … , 𝑁) be the index for STAZ and 𝑗 (𝑗 = 1,2,3, … , 𝐽) is the index for 

different collision types. 𝑐𝑖𝑗 is total number of observed crashes for collision type 𝑗 in STAZ 𝑖. 

𝑐𝑖𝐾 is total number of observed crashes in STAZ 𝑖. 𝐸(𝑦𝑖𝑗|𝑑𝑖𝑗) is the expected proportion of 

crashes across different crash types computed by using Equation 9 from joint NB-MNLFS 
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model. Thus, ℂ𝑖𝑗 represents the predicted total number of crashes for STAZ 𝑖 by using predicted 

proportions from crash category 𝑗.𝑃(𝑐𝑖𝐾) is the probability for crash occurrence for total crash 

count 𝐾 (in Equation 1). Once we have ℂ𝑖𝑗, we identified the predicted probabilities for ℂ𝑖𝑗 

from the probability equation of total crash count (as presented in Equation 1 for 𝑃(𝑐𝑖𝐾) 

computation). By following this procedure, we ensure that the computed predicted probabilities 

accounts for total crash prediction errors from crash proportion predictions across all crash 

types considered. Further, ℱ𝑗 represents the weighting factor of log-likelihoods from 

independent NB model for different crash type (ℓ𝑆𝑗) and for total crash (ℓ𝑆𝐾) . The computed 

equivalent log-likelihood for the joint NB-MNLFS model is -152126.87. On the other hand, 

the computed log-likelihood at convergence for the multivariate NB model is -160953.57. We 

can observe that the joint NB-MNLFS model offers better data fit with lower likelihood values 

relative to multivariate NB model. Thus, we can argue that the joint NB-MNLFS model 

outperforms the multivariate NB model in the current study context with substantially fewer 

parameters. 

 

6.2 Predictive Performance Evaluation 

We undertake an in-sample comparison exercise between the multivariate NB model 

and the joint NB-MNLFS model in terms of predictive performance by employing three 

different fit of measures: mean prediction bias (MPB), mean absolute deviation (MAD) and 

mean squared prediction error (MSPE). MPB represents the magnitude and direction of average 

bias in model prediction. The model with the lower MPB provides better prediction of the 

observed data and is computed as: 
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MPB =  𝑚𝑒𝑎𝑛 (𝑦̂𝑖 − 𝑦𝑖) (14)  

where, 𝑦̂𝑖 and 𝑦𝑖 are the predicted and observed, number of crashes occurring over a 

period of time in a STAZ 𝑖 (𝑖 be the index for STAZ, 𝑖 =  1,2,3, … ,8518). On the other hand, 

MAD describes average misprediction of the estimated models. The model with lower MAD 

value closer to zero provides better average predictions of observed data. MAD is defined as: 

MAD =  𝑚𝑒𝑎𝑛 |𝑦̂𝑖 − 𝑦𝑖|  (15)  

Finally, MSPE quantifies the error associated with model predictions and is defined as: 

MSPE =  𝑚𝑒𝑎𝑛 (𝑦̂𝑖 − 𝑦𝑖)
2  (16)  

The smaller the MSPE, the better the model predicts the observed data. These measures 

of fit are generated at disaggregate level: across all crash types and across all observations.  

Table 6.1 presents the values for these three measures for multivariate NB and joint 

NB-MNLFS models. The results highlight that the joint NB-MNLFS model either outperforms 

or is very close to the multivariate model across the various measures computed. Specifically, 

based on MPB, we can conclude the multivariate negative binomial performs marginally better. 

For MAD and MSPE the joint NB-MNLFS model offers lower values compared to the 

multivariate NB model. The performance of the proposed model is particularly significant 

given the large difference in the number of parameters between the two specifications (55 vs 

116). The proposed joint model is substantially parsimonious and yet offers better data fit as 

indicated by the equivalent LL measure and the in-sample comparison. 
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6.3 Summary 

This chapter presented a first of its kind comparison exercise between the traditional 

Multivariate NB model and its fractional counterpart. To summarize, based on the empirical 

results, it is clear that the proposed joint NB-MNLFS model outperforms the commonly 

employed Random Parameter Multivariate NB model based on equivalent log-likelihood and 

prediction measures.  
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Table 6.1 In-Sample Predictive Performance Measures 

 

MPB  

(Disaggregate level) 

MAD  

(Disaggregate level) 

MSPE  

(Disaggregate level) 

Multivariate 

NB 

Joint NB-

MNLFS 

Multivariate 

NB 

Joint 

NB-

MNLFS 

Multivariate 

NB 

Joint NB-

MNLFS 

Across Crash types       

Rear-end 36.98 29.260* 49.163 37.607 48106.83 28078.053 

Head-on 0.764 1.968 2.114 2.871 75.292 78.661 

Angular 16.029 16.148 23.576 20.953 12469.626 12182.956 

Off-road 3.868 8.249 7.210 9.391 659.999 669.641 

Other-Single 

Vehicle 
2.049 4.788 4.118 5.782 214.776 361.195 

Other-Multiple 

Vehicle 
16.093 16.104 24.774 22.126 13961.63 16012.269 

Rollover 0.297 0.994 1.005 1.399 9.932 14.695 

Sideswipe 9.659 9.077 14.062 12.306 5483.989 5969.865 

Total (average error 

across all collision 

types) 

10.717 10.823 15.753 14.054 10122.759 7920.917 

Across Observation  

(8518 records) 
85.739 86.588 126.020 112.434 80982.074 63367.335 

Note: * The better model is underlined and is in bold format 
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CHAPTER 7: CONCLUSIONS 

In recent years, there is growing recognition that common unobserved factors that 

influence crash frequency by one attribute level are also likely to influence crash frequency by 

other attribute levels for the same observation unit. The most common approach employed to 

address the potential unobserved heterogeneity in existing safety literature is the development 

of multivariate crash frequency models. In the current study, we formulated and estimated an 

alternative joint econometric framework to accommodate for the presence of unobserved 

heterogeneity – referred to as joint negative binomial-multinomial logit fractional split (NB-

MNLFS) model. Furthermore, a first of its kind comparison exercise between the most 

commonly used multivariate model (multivariate random parameter negative binomial model) 

and the proposed joint NB-MNLFS model was performed by generating equivalent log-

likelihood measure. 

In our current research effort, a joint NB-MNLFS approach was proposed to employ a 

crash frequency model for total crashes in conjunction with a fractional split model for 

proportion of crashes by different collision types. The study was conducted by using data from 

Florida at the Statewide Traffic Analysis Zone (STAZ) level for the year 2015 considering a 

host of exogenous variables including roadway characteristics, land use attributes and traffic 

characteristic for the model estimation. The findings highlighted the presence of common 

unobserved factors influencing total crash frequency and proportions by crash types. In terms 

of random effects, proportion of urban area and average posted speed limit revealed significant 

variability in the total crash count component of the proposed joint model.  

A comprehensive comparison of the proposed model with the most commonly used 

multivariate negative binomial (NB) model was conducted. The joint and the multivariate 

models are not directly comparable because the joint model is estimated based on a quasi-
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likelihood system. To address this, an equivalent log-likelihood measure was generated for the 

proposed joint model. The equivalent log-likelihood value for the proposed approach was lower 

than the log-likelihood estimate for the multivariate NB model with a substantially fewer 

number of parameters. To investigate the comparison further, different fit measures were 

generated to compare the in-sample predictive performance of the two models. The result 

clearly highlighted the superiority of the proposed joint model with its parsimonious structure. 

The joint system proposed is suggested as a complementary approach to the traditional 

multivariate count modeling frameworks. 

The thesis is not without limitations. It might be interesting to explore the transferability 

of models developed for crash count and crash type simultaneously by estimating similar 

models for multiple spatial units across several years.  
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 APPENDIX:  

INDEPENDENT MODEL RESULTS 
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Table A.1 Independent NB-MNLFS Model Results 

Joint Component 
NB Model 

(Counts) 
MNLFS Model (Proportions) 

Crash Type Total Crash Rear end Head-on Angle Off-Road 
Other 

Single 

Other 

Multiple 
Rollover Sideswipe 

Variable Name 
Estimate  

(S.D) 

Estimate  

(S.D) 

Estimate  

(S.D) 

Estimate 

(S.D) 

Estimate  

(S.D) 

Estimate  

(S.D) 

Estimate  

(S.D) 

Estimate 

(S.D) 

Estimate  

(S.D) 

LTZM 1.00 (--) --- --- --- --- --- --- --- --- 

Constant 
-13.361 

(0.31) 
--- 

-1.289 

(0.367) 

0.303 

(0.234) 

1.401 

(0.259) 

0.765 

(0.327) 

0.858 

(0.215) 

-0.238 

(0.47) 

0.284 

(0.225) 

Roadway Characteristic 

 Proportion of arterial road 
0.980  

(0.068) 

0.336 

(0.078) 
--- --- 

-0.187 

(0.109) 
--- --- --- 

0.455 

(0.115) 

 Proportion of urban road 
0.616  

(0.142) 
--- --- --- 

-0.459 

(0.168) 
--- --- 

-0.730 

(0.363) 
--- 

 Intersection density 
0.530  

(0.035) 
--- --- 

0.299 

(0.04) 

-0.093 

(0.049) 
--- 

0.199 

(0.039) 

-0.183 

(0.105) 

0.105 

(0.047) 

 Proportion of road length 

with 3 or more lanes 

0.630  

(0.069) 
--- --- --- --- --- --- --- 

0.542 

(0.113) 

 Average posted speed limit 
-0.189 

(0.027) 
--- 

0.180 

(0.087) 

0.093 

(0.034) 

0.113 

(0.038) 
--- --- --- --- 

 Divided road length 
-0.122 

(0.009) 
--- --- --- 

-0.022 

(0.011) 
--- --- --- 

-0.040 

(0.012) 

 Average inside shoulder 

width 

0.160  

(0.045) 
--- 

-0.306 

(0.141) 
--- --- --- --- --- --- 

 
Average outside shoulder 

width 

-0.720 

(0.057) 
--- --- --- 

0.324 

(0.092) 

0.408 

(0.119) 
--- 

0.668 

(0.228) 
--- 

 Average sidewalk width 
0.165  

(0.035) 
--- --- --- 

-0.112 

(0.05) 
--- --- 

-0.212 

(0.102) 
--- 

Built Environment 

 Proportion of urban area 
2.536  

(0.123) 

0.179 

(0.083) 
--- --- 

-0.573 

(0.162) 

-0.859 

(0.12) 
--- 

-1.201 

(0.362) 
--- 
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Variable Name 
Estimate  

(S.D) 

Estimate  

(S.D) 

Estimate  

(S.D) 

Estimate 

(S.D) 

Estimate  

(S.D) 

Estimate  

(S.D) 

Estimate  

(S.D) 

Estimate 

(S.D) 

Estimate  

(S.D) 

 Land use mix 
-1.562 

(0.104) 
--- --- --- --- --- --- --- --- 

Exposure Measure           

 AADT 
0.092  

(0.031) 

0.132 

(0.021) 
--- --- --- 

-0.064 

(0.027) 
--- --- --- 

 Truck AADT 
0.022  

(0.007) 
--- --- --- 

-0.040 

(0.01) 
--- --- 

-0.040 

(0.022) 
--- 

Dispersion parameter 
2.046  

(0.037) 
--- --- --- --- --- --- --- --- 
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Table A.2 Independent Multivariate NB Model Results 

Crash Type Rear end Head-on Angle Off-Road 
Other 

Single 

Other 

Multiple 
Rollover Sideswipe 

Variable Name 
Estimate  

(S.D) 

Estimate  

(S.D) 

Estimate 

(S.D) 

Estimate  

(S.D) 

Estimate  

(S.D) 

Estimate  

(S.D) 

Estimate 

(S.D) 

Estimate  

(S.D) 

LTZM (Exposure Variable) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Constant 
-15.32 

(0.343) 

-18.861 

(0.354) 

-16.393 

(0.216) 

-15.965 

(0.157) 

-16.51 

(0.193) 

-15.43 

(0.216) 

-18.769 

(0.311) 

-16.352 

(0.245) 

Roadway Characteristic 

 Proportion of arterial road 
1.096  

(0.08) 

0.572 

(0.099) 

0.684 

(0.071) 

0.397  

(0.05) 

0.655 

(0.062) 

0.753 

(0.071) 

0.327 

(0.081) 

1.111 

(0.082) 

 Proportion of urban road 
0.976 

(0.169) 

0.905 

(0.183) 

1.002 

(0.152) 

0.569 

(0.094) 

0.635 

(0.121) 

0.982 

(0.177) 
--- 

1.053 

(0.148) 

 Intersection density 
0.443 

(0.038) 

0.774 

(0.052) 

0.807 

(0.038) 

0.394 

(0.025) 

0.602 

(0.035) 

0.668 

(0.039)  

0.41  

(0.045) 

0.548 

(0.038) 

 Proportion of road length with 

3 or more lanes 

0.625 

(0.077) 

0.63  

(0.103) 

0.613 

(0.069) 

0.336 

(0.054) 

0.494 

(0.067) 

0.815 

(0.078) 

0.427 

(0.093) 

1.106 

(0.088) 

 Average posted speed limit 
-0.228 

(0.033) 

-0.117 

(0.036) 

-0.136 

(0.025) 

-0.099 

(0.019) 

-0.211 

(0.026) 

-0.286 

(0.033) 

-0.16 

(0.038) 

-0.267 

(0.036) 

 Divided road length 
-0.066 

(0.011) 

-0.102 

(0.015) 

-0.123 

(0.01) 

-0.074 

(0.008) 

-0.088 

(0.01) 

-0.111 

(0.01) 

-0.034 

(0.013) 

-0.171 

(0.012) 

 Average inside shoulder width 
0.176 

(0.051) 

-0.269 

(0.062) 
--- 

0.239 

(0.033) 

0.188 

(0.041) 

0.145 

(0.051) 

0.165 

(0.051) 

0.208  

(0.05) 

 
Average outside shoulder 

width 

-0.747 

(0.069) 

-0.536 

(0.085) 

-0.746 

(0.054) 

-0.553 

(0.041) 

-0.589 

(0.052) 

-0.711 

(0.055) 

-0.295 

(0.084) 

-0.867 

(0.064) 

 Average sidewalk width 
0.172 

(0.011) 

0.285 

(0.051) 

0.20  

(0.01) 
--- 

0.101 

(0.033) 

0.265 

(0.042) 

-0.19 

(0.041) 

0.233 

(0.042) 

Built Environment 

 Proportion of urban area 
2.737 

(0.146) 

2.28  

(0.158) 

2.481 

(0.126) 

1.691 

(0.083) 

1.546 

(0.099) 

2.544 

(0.149) 

1.204 

(0.079) 

2.603 

(0.122) 

 Land use mix 
-1.467 

(0.112) 

-2.186 

(0.143) 

-1.472 

(0.10) 

-1.395 

(0.081) 

-0.416 

(0.10) 

-1.491 

(0.116) 

-1.21 

(0.161) 

-1.622 

(0.12) 

Exposure Measure 
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Variable Name 
Estimate  

(S.D) 

Estimate  

(S.D) 

Estimate 

(S.D) 

Estimate  

(S.D) 

Estimate  

(S.D) 

Estimate  

(S.D) 

Estimate 

(S.D) 

Estimate  

(S.D) 

 AADT 
0.10  

(0.037) 

0.08  

(0.038) 

0.123 

(0.025) 

0.124 

(0.019) 

0.09  

(0.024) 

0.078 

(0.024) 

0.22  

(0.037) 

0.139 

(0.033) 

 Truck AADT 
0.028 

(0.007) 

0.081 

(0.009) 

0.027 

(0.007) 
--- 

0.04  

(0.006) 

0.016 

(0.007) 

0.014 

(0.008) 

0.046 

(0.007) 

Dispersion parameter 
1.548 

(0.044) 

1.963  

(0.08) 

1.377 

(0.034) 

0.723 

(0.021) 

1.06  

(0.033) 

1.507 

(0.035) 

1.284 

(0.076) 

1.646 

(0.042) 
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