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ABSTRACT 

This thesis presents different data mining/machine learning techniques to analyze the 

vulnerable road users’ (i.e., pedestrian and bicycle) crashes by developing crash prediction 

models at macro-level. In this study, we developed data mining approach (i.e., decision tree 

regression (DTR) models) for both pedestrian and bicycle crash counts. To author knowledge, 

this is the first application of DTR models in the growing traffic safety literature at macro-

level. The empirical analysis is based on the Statewide Traffic Analysis Zones (STAZ) level 

crash count data for both pedestrian and bicycle from the state of Florida for the year of 2010 

to 2012. The model results highlight the most significant predictor variables for pedestrian and 

bicycle crash count in terms of three broad categories: traffic, roadway, and socio demographic 

characteristics. Furthermore, spatial predictor variables of neighboring STAZ were utilized 

along with the targeted STAZ variables in order to improve the prediction accuracy of both 

DTR models. The DTR model considering spatial predictor variables (spatial DTR model) 

were compared without considering spatial predictor variables (aspatial DTR model) and the 

models comparison results clearly found that spatial DTR model is superior model compared 

to aspatial DTR model in terms of prediction accuracy. Finally, this study contributed to the 

safety literature by applying three ensemble techniques (Bagging, Random Forest, and 

Boosting) in order to improve the prediction accuracy of weak learner (DTR models) for 

macro-level crash count. The model’s estimation result revealed that all the ensemble technique 

performed better than the DTR model and the gradient boosting technique outperformed other 

competing ensemble technique in macro-level crash prediction model. 
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CHAPTER 1: INTRODUCTION 

The most active forms of transportation are walking and bicycling which have the 

lowest impact on the environment and improve physical health of pedestrians and bicyclists. 

Transportation agencies are increasingly promoting walking and bicycling options for short 

distance trips to mitigate climate change and obesity problem among adults. However, the most 

common problem impeding the preference of walking and bicycling is traffic safety concerns. 

According to the latest traffic safety data from the National Highway Traffic Safety 

Administration (NHTSA), pedestrian and bicycle deaths have increased by 9.0 % and 1.3 %, 

respectively in 2016 compared to the calendar year 2015 (NHTSA, 2017a). Thus, the safety 

challenges associated with pedestrians and bicyclists remain an important concern for 

transportation policy. The safety risk posed to active transportation users in Florida is 

exacerbated compared to active transportation users in the US. In 2015, while the national 

average for pedestrian and bicyclist fatalities per 100,000 population was 1.67 and 2.50, 

respectively, the corresponding number for the state of Florida was 3.10 (ranked second among 

all states) and 7.40 (ranked first among all states), which clearly present the challenge faced in 

Florida (NHTSA, 2017b, 2015). The crash prediction models applied to the pedestrian and 

bicycle crashes would give some valuable insights for a transportation planner to identify the 

contributing factors related to pedestrians and bicyclists’ crashes which might be helpful for 

policy implications at a planning level.  

 

1.1 Motivation for The Study 

In transportation safety research, crash prediction models are developed for two levels: 

(1) micro-level (2) macro-level. The former one focuses on crashes at a segment or intersection 
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to identify the influence of contributing factors with the objective of offering engineering 

solutions. On the other hand, the macro-level crashes from a spatial aggregation such as traffic 

analysis zone, census block, census tract, county are considered to quantify the significant 

factors at a macro-level so that it can provide countermeasures from a planning perspective. 

Statistical models, such as Poisson and negative binomial regression, have been employed to 

analyze both micro- and macro-level crashes for many years. However, statistical models have 

their own model-specific assumptions which lead to inaccurate results of injury likelihood 

(Chang and Chen, 2005). In this regard, this study contributes to the safety literature by 

undertaking pedestrian and bicycle crash prediction model using the most widely applied data 

mining technique: decision tree regression (DTR). To the best of our knowledge, none of the 

studies have explored data mining techniques in analyzing pedestrian and bicycle crashes at 

the macro-level. In this regard, three broad categories of predictor variables including traffic, 

roadway, and socio-demographic characteristics are considered in the DTR model 

development and validation. In addition, the attributes of the neighboring zones are considered 

as predictor variables along with the targeted STAZs attributes in DTR models to improve the 

prediction accuracy of pedestrian and bicycle crashes. Furthermore, the current study has 

undertaken some ensemble techniques (i.e. bagging, random forest, and gradient boosting) to 

improve the prediction accuracy of the DTR models considered as weak learner which provides 

valuable insights on advancing crash prediction modeling techniques for macro-level crash 

analysis. 

 

1.2 Study Methodology and Objective 

The most common approach employed to address the macro level crash risk in safety 

literature is developing the statistical crash frequency models. In this modelling framework,  
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the impact of independent/exogenous variables are evaluated for a given dependent variable.  

However, statistical models have their own model-specific assumptions which lead to 

inaccurate results of injury likelihood (Chang and Chen, 2005). In our current study, we apply 

machine learning/data mining approach to develop the pedestrian and bicycle crash prediction 

model using decision tree regression (DTR). In this regard, three broad categories of predictor 

variables including traffic, roadway, and socio-demographic characteristics are considered in 

the DTR model development and validation. In addition, the current study undertakes the 

attributes of the neighboring zones as predictor variables to improve the prediction accuracy of 

pedestrian and bicycle crashes. Variable importance of DTR models for both pedestrians and 

bicyclists crashes were computed in order to perform the policy analysis at macro-level. 

Furthermore, some ensemble techniques (i.e. bagging, random forest, and gradient boosting) 

were employed to improve the prediction accuracy of the DTR models considered as weak 

learner which provides valuable insights on advancing crash prediction modeling techniques 

for macro-level crash analysis. The models are estimated by using data from Florida at the 

Statewide Traffic Analysis Zone (STAZ) level for the year of 2010-2012.  

 

1.3 Thesis Structure 

The rest of the thesis is organized as follows: Chapter 2 provides a brief review of 

relevant earlier research. Chapter 3 describes the modelling methodologies such as decision 

tree regression and the ensemble techniques employed of this study. Chapter 4 discusses a 

detailed summary of the data source and predictor variables considered for the analysis. Model 

estimation results are reported in Chapter 5. Finally, a summary of model findings and 

conclusions are presented in Chapter 6. 
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CHAPTER 2: LITERATURE REVIEW 

The field of crash modeling is vast. Several research efforts have been conducted 

throughout the years for developing crash prediction models. Generally, there are two types of 

modelling techniques had been employed throughout the years (1) statistical models (2) data 

mining techniques. In this chapter, we present a detailed discussion of the various model 

structures (statistical and data mining) used in existing literature and position our current study 

in context.  

 

2.1 Earlier Research 

Road traffic accidents are highly recognized as a national health problem which affects 

the society both emotionally and economically (Blincoe et al., 2002; NHTSA, 2005). There is 

a considerable number of research efforts that have been examined in  crash frequency 

estimation (vehicle, pedestrian, and bicycle) (see (Lord and Mannering, 2010) for a detailed 

review). These studies have been conducted for different modes of vehicle (automobiles and 

motorbikes), pedestrian and bicycle, and for different scales - micro (such as intersection and 

segment) and macro-level (such as census tract, traffic analysis zone (TAZ), county). It is 

beyond the scope of this paper for exhaustive  review of micro-level (see (Abdel-Aty et al., 

2016; Eluru et al., 2008; Lord et al., 2005) for detailed micro-level literature review) and 

macro-level (see (Cai et al., 2017, 2016; Lee et al., 2018) for detailed macro level literature 

review) crash frequency studies. These studies have heavily focused on econometric statistical 

modeling approaches (Wang et al., 2018; Yuan and Mohamed Abdel-Aty, 2018) for the 

prediction of traffic crashes with exploring significant contributing factors related to the crash 

occurrence. However, statistical models can lead to inaccurate estimations of injury likelihood 
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if prespecified model assumptions and underlying relationship between dependent and 

independent variables of these models are invalid (Chang and Chen, 2005).  

Moreover, the presence of large number of zeroes in pedestrian and bicycle crashes is 

one of the major methodological challenges in statistical modeling to analyze the contributing 

factors related to pedestrian and bicyclist crashes. In crash count models, the presence of excess 

zeros may result from two underlying processes or states of crash frequency likelihoods: crash-

free state (or zero crash state) and crash state (see (Mannering et al., 2016) for more 

explanation). In the presence of such dual-state, application of single-state model may result in 

biased and inconsistent parameter estimates. In a statistical framework, the potential relaxation 

of the single-state count model is zero inflated model for addressing the issue of excess zeros: 

zero inflated (ZI) model (Shankar et al., 1997). But, several research studies have criticized the 

application of dual state ZI models for traffic safety analysis (Lord et al., 2007, 2005; Son et 

al., 2011). A ZI model assumes that two types of zeros exist, i.e., sampling zeros and structural 

zeros. For traffic safety, the structural zeros correspond to inherently safe conditions implying 

zero crash by nature and the sampling zeros correspond to potential crash conditions implying 

zero crash only by chance (Lord et al., 2007, 2005). Hence, the statistical assumptions of having 

structural zeroes is unrealistic as a traffic crash could occur under any conditions. 

Recently, data mining and/or machine learning techniques have become popular in 

transportation safety research to determine the factors associated with traffic crashes. Unlike 

statistical models, machine learning techniques are non-parametric methods which do not 

require any pre-defined underlying relationships between target variable and predictors 

(Tavakoli Kashani et al., 2014). Among the machine learning techniques, the decision tree 

model has gained much popularity in transportation safety literature which can identify and  
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easily explain the complex patterns associated with crash risk (Chang and Chen, 2005; Chang 

and Chien, 2013; Chang and Wang, 2006; Pande et al., 2010). To overcome the shortcoming 

of the statistical modelling, decision tree can be a preferred alternative for forecasting traffic 

crashes with reasonable interpretations. Unlike statistical models, decision trees do not need 

any predefined model assumption and underlying relationship between dependent and 

independent variables. It does deal well with multicollinear independent variables and does 

treat satisfactorily discrete variables with more than two levels (Karlaftis and Golias, 2002; 

Washington and Wolf, 1997). Moreover, decision tree models can help in deciding how to 

subdivide heavily skewed target variables (i.e., zero crash counts) into ranges while the 

statistical modeling has some limitations for dealing with heavily skewed data (Song and Lu, 

2015). Therefore, decision tree models might be a preferred option to analyze heavily skewed 

response variable which is most common in pedestrian and bicycle crashes. A summary of 

earlier studies employing decision tree models in traffic safety literature is presented in Table 

1 (Abdel-Aty et al., 2005; Chang and Chen, 2005; Chang and Chien, 2013; Chang and Wang, 

2006; De Oña et al., 2013; Eustace et al., 2018; Iragavarapu et al., 2015; Karlaftis and Golias, 

2002; Kashani and Mohaymany, 2011; Montella et al., 2012; Pande et al., 2010; Tavakoli 

Kashani et al., 2014; Wah et al., 2012; Zheng et al., 2016). The information provided in the 

table includes the study unit considered, the methodological approach employed, the target 

variables analyzed in the decision tree framework. The following observations can be inferred 

from the table. From the table, it is evident that all the existing decision tree-based safety studies 

are conducted at a micro-level such as roadway segments and intersections. To the best our   

knowledge, none of the studies have explored decision tree methods in order to build the crash 

prediction model at the macro-level. 



 

 

Table 1 Summary of Previous Traffic Safety Studies Using Decision Tree and Ensemble Techniques 

Area of 
Interest Studies Study Unit (Scale) Methodology Target Variables Analyzed 

Decision 
Tree 

Kashani et al. (2014) Roadway segment (Micro) Classification Tree Injury severity level - Injury, fatality 

Zheng et al. (2016) Highway-rail grade crossings (Micro) Classification Tree Highway-rail grade crossings crash 

Kashani et al. (2011) Two-lane, two-way rural roads  
segments (Micro) Classification Tree Injury severity level- Light injury,  

Serious injury, Fatality 

Iragavarapu et al. (2015) Road segments-pedestrian  
crash (Micro)  Classification Tree Injury severity level- fatal or non-fatal 

Chang et al. (2005) National Freeway (Micro) Classification Tree Injury Severity level (0– 4, 4 representing 4 or more 
crashes) 

Wah et al. (2005) Roadway segments (Micro)  Classification Tree 
Category of Frequencies of motorcycle 
Accidents- Zero frequency (0), Low frequency (1-
19), High frequency (20 and above) 

Chang et al. (2006) Roadway segments (Micro) Classification Tree Injury severity level- fatality, injury, no-injury 

Pande et al. (2010) Roadway segments (Micro) Classification Tree Binary variable-Crash vs Non-crash 

Chang et al. (2013) National freeways (Micro) Classification Tree Injury severity level- fatality, injury, no-injury 

Ona et al. (2013) Road Segments-Rural highways (Micro) Classification Tree Accident Severity- slightly injured,  
killed or seriously injured (KSI) (state B) 

Montella et al. (2012) Roadway segments- Powered two-
wheeler crashes (Micro) Classification Tree Several response variables- severity, crash type,  

involved vehicles, alignment 

Eustace et al. (2018) Road segments (Micro) Classification Tree Injury severity level-fatal/injury, and property 
damage only 

Abdel-Aty et al. (2005) Road segments (Micro) Regression Tree 
Total crash, Angle crash, Left turn crash, Head on 
crash, pedestrian crash, rear-end crash, right turn 
crash, sideswipe crash 

Karlaftis et al. (2002) Road segments (Micro) Regression Tree Total number of crash 
Ensemble 
Techniques Sohn et al. (2002) Road segments (Micro) Arcing and bagging Injury severity level-bodily injury and property 

damage 
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It is also noticed that most of the model structures    employed in developing decision trees are 

classification trees except for two studies (Abdel-Aty et al., 2005; Karlaftis and Golias, 2002) 

which conducted hierarchical tree-based regression for developing the micro-level crash 

prediction model. Within the decision tree structure, those studies did not explore the total 

number of pedestrian and bicycle crashes while they have predominantly analyzed crash 

frequency by severity levels or other different attribute levels. 

One of the basic assumptions of most of the modelling techniques are that observations 

are independent from each other. Nevertheless, this assumption is often violated in traffic data 

because of possible correlation among observations. For instance, some observations that are 

from the same spatial units may have common unobserved factors. In macro-level analysis, 

crashes occurring in a spatial unit are aggregated to obtain the crash frequency. However, this 

aggregation process might introduce errors in identifying the predictor variables for the spatial 

unit. For example, a crash occurring closer to the boundary of the unit might be strongly related 

to the neighboring zone than the actual zone where the crash occurred. There is a considerable 

amount of research that have been undertaken to accommodate for such spatial unit induced 

bias (Huang et al., 2010; Lee et al., 2015; Siddiqui et al., 2012). The most recent study proposed 

the consideration of exogenous variables from neighboring zones for accounting for spatial 

dependency which was called spatial spillover model  (Cai et al., 2016). And, the research 

effort revealed that models with spatial exogenous variables significantly outperformed the 

model that did not consider the spatial exogenous variables. In our analysis, we introduce 

spatial predictor (exogenous) variables from neighboring zones for improving the prediction 

accuracy. Apart from the statistical and data mining methods, simulation techniques can 

identify the significant contributing factors related to the crash occurrence (Ekram and 

Rahman, 2018; Rahman et al., 2018; Rahman and Abdel-Aty, 2018). 
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However, decision trees can be unstable because of the small variations in the data 

which might result in a completely different tree being generated. This would result in a good 

prediction for the majority class, but a relatively poor prediction for the minority class.  

This problem can be mitigated by using decision trees within an ensemble (36). In machine 

learning, ensemble methods are used to obtain better predictive performance than could be 

obtained from any of the constituent learning algorithms alone. Data ensemble combines 

various results obtained from a single classifier fitted repeatedly based on bootstrap resamples. 

The advantage of ensemble lies in the possibility that the difference of result caused by the 

variance of input data may be reduced by combining each classifier’s output. To the best of the 

authors’ knowledge, none of the studies have implemented ensemble techniques in the 

transportation safety field in order to improve the prediction accuracy except for Sohn et al. 

(2003), which employed arcing and bagging as ensemble techniques (Table 1). The result 

suggests that ensemble algorithms such as bagging and arcing improved the prediction 

accuracy of traffic crashes compared to individual classifier decision tree. 

In summary, the current study contributes to non-motorized macro-level crash analysis 

along three directions: (1) evaluate the regression tree models for both pedestrian and bicycle 

crashes (2) consider spatial predictor variables in crash prediction models (3) introduction of 

ensemble techniques (i.e., bagging, random forests, and gradient boosting) in order to improve 

the prediction accuracy of macro-level crash analysis.  

 

2.2 Current Study  

The literature review clearly highlights the disadvantages of statistical modeling 

techniques over data mining frameworks in the burgeoning safety literature. And, it is clearly 

noted that data mining technique can help in deciding how to subdivide heavily skewed target 

variables (i.e., zero crash counts) into ranges which is essential for pedestrian and bicycle 
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crashes. In this context, the current study makes three important contributions for the macro-

level crash risk.  

First, we apply the data mining techniques for both pedestrian and bicycle crash risk, 

which is the first application of decision tree regression models in the growing traffic safety 

literature at macro-level. To facilitate a policy analysis at the macro-level, variable importance 

of DTR models for both pedestrians and bicyclists crashes were computed.  

 Second, within the decision tree framework, we also accommodate spatial predictor 

variables from neighboring STAZs in order to improve the prediction accuracy of DTR models 

for both pedestrian and bicycle crashes. 

Third, we undertake some ensemble techniques such as bagging, random forest, and 

gradient boosting to improve the prediction accuracy of pedestrian and bicycle crashes.  

Specifically, we examine performance in model estimation and prediction for bagging, random 

forest, and gradient boosting techniques compared to decision tree regression model.  

Empirically, the study develops crash frequency model for both pedestrian and bicycle 

crash. The models are estimated using STAZ level crash data for the year 2010-2012 for the 

state of Florida. The model results offer insights on important variables affecting crash 

frequency.  

 

2.3 Summary 

This chapter presented a detailed summary of modelling techniques employed in earlier 

studies for predicting crashes. Further, the chapter positioned the current research work in 

context. The modelling framework employed in this study is described in detail in the 

subsequent chapter. 
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CHAPTER 3: METHODOLOGY 

There are two types of decision tree-based methods: classification tree and regression 

tree. The former is designed to partition data based on the discrete nature of categorical target 

variables, while the latter is to partition (regress) data on the basis of continuous response data. 

The target variables in this study are pedestrian and bicycle crashes in each STAZ. Hence, this 

paper focuses on the latter method regression tree and some ensemble techniques applied to 

improve the forecasting accuracy. 

 

3.1  Regression Tree Framework 

A regression tree is referred to a set of rules for dividing a large collection of 

observations into smaller homogeneous groups based on the predictor (independent) variables 

with respect to a continuous target (dependent) variable. The methods used to estimate 

regression trees have been around since the early 1960s and are sometimes referred to as 

classification and regression tree (CART) (Breiman et al., 1998). Generally, there are two key 

questions for the development of a regression tree： (1) which variable of all predictor 

variables offered in the model should be selected to produce the maximum reduction in 

variability of the response (target) variable, (2) which value of the selected predictor variable 

(discrete or continuous) results in the maximum reduction in variability of the response 

variable. Numerical search procedure is undertaken to iterate these two steps until all the 

observations are portioned into a smaller homogenous group (Washington, 2000). 

In this paper, the focus of the regression tree model is to predict the total number of 

crashes. Let us assume that the response variable, Yn (total number of crashes), is a column 

vector of n random variables, and X n, p is a matrix of (p-1) random predictor variables measured 
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for n cases. The equation system for modeling regression tree, the deviance D or sum of square 

(SSE) is defined as follows: 

SSE=𝐷𝐷 = ∑ (𝑌𝑌𝑙𝑙 − 𝜇𝜇)2𝐿𝐿
𝑙𝑙=1  (1) 

𝜇𝜇 = 1
𝐿𝐿
∑ 𝑌𝑌𝑙𝑙𝐿𝐿
𝑙𝑙=1 = Arithmetic mean of Y (2) 

Where,  

𝐷𝐷 = total deviance of Y, or the sum of squared errors (SSE); 

𝑌𝑌𝑙𝑙= 𝑙𝑙th observation in column vector Y; and 

𝐿𝐿 = sample size over which  D is calculated (𝐿𝐿 = n for total sample) 

The observations in Y are partitioned based on a predictor variable X1  (which variable 

results in the maximum reduction in variability of the response variable) that results in two 

subsamples, say samples b and c, each containing M and N of the original L observations (M 

+ N = L). If the overall sample deviance is Da, then the deviance reduction function is 

𝛥𝛥 = 𝐷𝐷𝑎𝑎 − 𝐷𝐷𝑏𝑏 − 𝐷𝐷𝑐𝑐 (3) 

Where, ∆ is the deviance reduction when sample a is partitioned on X1 to obtain 

subsamples b and c, 

𝐷𝐷𝑎𝑎 = ∑ (𝑌𝑌(𝑎𝑎)𝑙𝑙 − 𝜇𝜇(𝑎𝑎))2𝐿𝐿
𝑙𝑙=1 = total deviance in sample (node) a (4) 

𝐷𝐷𝑏𝑏 = ∑ (𝑌𝑌(𝑏𝑏)𝑙𝑙 − 𝜇𝜇(𝑏𝑏))2𝑀𝑀
𝑙𝑙=1 = total deviance in sample (node) b (5) 

𝐷𝐷𝑐𝑐 = ∑ (𝑌𝑌(𝑐𝑐)𝑙𝑙 − 𝜇𝜇(𝑐𝑐))2𝑁𝑁
𝑙𝑙=1 = total deviance in sample (node) c (6) 

𝜇𝜇(𝑏𝑏) = 1
𝑀𝑀
∑ 𝑌𝑌𝑚𝑚𝑀𝑀
𝑚𝑚=1 =Arithmetic mean of subsample (node) b (7) 

𝜇𝜇(𝑐𝑐) = 1
𝑁𝑁
∑ 𝑌𝑌𝑛𝑛𝑁𝑁
𝑛𝑛=1 =Arithmetic mean of subsample (node) c (8) 

It is worth mentioning that M is the sample size of subsample (node) b, and N is the 

sample size of subsample (node) c. In regression tree, predictor variable Xi taken from Xn,p is 

sought to partition the column vector Y such that the deviance reduction function showed in 

Equation 9 is maximized. 
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𝛥𝛥 = �(𝑌𝑌(𝑎𝑎)𝑙𝑙 − 𝜇𝜇(𝑎𝑎))2
𝐿𝐿

𝑙𝑙=1

− �(𝑌𝑌(𝑏𝑏)𝑙𝑙 − 𝜇𝜇(𝑏𝑏))2 −
𝑀𝑀

𝑚𝑚=1

�(𝑌𝑌(𝑎𝑎)𝑙𝑙 − 𝜇𝜇(𝑎𝑎))2
𝑁𝑁

𝑛𝑛=1

 (9) 

While searching the matrix from Xn,p, two items must be sought to maximize Equation 

9: the variable Xi and the numerical value on which the corresponding partition of Y will 

produce the maximum reduction of the deviance reduction function. When this maximal 

partition is found, the original data in node a are partitioned into two subsamples b and c having 

minimal combined deviance compared with all possible subsamples. Thus, the reduction in 

node a deviance is greatest when the deviances at nodes b and c are smallest. As mentioned 

earlier, numerical search procedures are used to maximize Equation 9. 

In regression tree, tree growth will continue until there are homogenous observations 

in each terminal node. At first, the regression tree produces the maximal tree with a complex 

structure that overfits the training data. However, maximal tree produces good prediction 

accuracy in training data but worse prediction accuracy in testing sample. To have better 

understanding, complex tree overfits the training observations which results in overstated 

confidence in predictions and inclusion of insignificant predictor variables. The most common 

method used to reduce overfitting problem is called pruning. This method uses criteria about 

model complexity to trim the full tree model to a smaller and more manageable or practical 

tree size which reduce overfitting significantly (Washington, 2000; Washington and Wolf, 

1997). The last step of building a regression tree is to select an optimal tree from the pruned 

trees. The principle behind selecting the optimal tree is to find a tree with respect to a measure 

of misclassification cost on the testing dataset so that the information in the learning dataset 

will not overfit. The misclassification cost depends significantly on size of the tree and model 

with the lower misclassification cost for both training and testing sample is the preferred 

regression tree model. For example, the misclassification cost for the learning (training) data  
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decreases monotonically with increasing the size of a tree, indicating that the saturated tree 

always gives the best fit to the learning data. On the contrary, when tree grows larger and larger, 

the misclassification cost for the testing data decreases first and then increases after reaching a 

minimum. This indicates that the saturated tree is greatly overfitted when applied to analyze 

the testing data. The optimal tree can be determined when the misclassification costs reach a 

minimum for both the training and testing data (see (Breiman et al., 1998) for a detailed 

review). 

 

3.2 Ensemble Techniques 

An ensemble technique is defined by a set of individually trained classifiers whose 

predictions are combined in order to improve the prediction accuracy of a single classifier (i.e., 

regression tree). The prediction of an ensemble technique typically requires more computation 

compared to a single learner so that ensembles techniques compensate poor learning algorithms 

by performing a lot of extra computation. In this paper, we have undertaken bagging, random 

forests, and boosting as methods for creating three ensemble techniques of regression tree to 

construct more powerful prediction models.  

The basic idea underlying bagging is to reduce the variance of the decision tree that 

creates several subsets of data from the training sample with replacement and build the final 

output averaging all the predictions. To be more specific, if several similar data sets are created 

by resampling with replacement which is called bootstrapping and a number of regression trees 

are grown without pruning and averaged, the variance component of the output error is reduced.  

Mathematically, it is possible to calculate 𝑓𝑓1(𝑥𝑥), 𝑓𝑓2(𝑥𝑥),. . . ., 𝑓𝑓𝐵𝐵(𝑥𝑥),  using B separate training 

sets, and averaging them in order to obtain a single low variance statistical learning model, 

given by Equation 10: 
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𝑓𝑓𝑎𝑎𝑎𝑎𝑎𝑎(𝑥𝑥) =
1
𝐵𝐵
�𝑓𝑓𝑏𝑏(𝑥𝑥)
𝐵𝐵

𝑏𝑏=1

 (10) 

However, this is not practical because the dataset does not have access to multiple 

training sets. Hence, the sample can bootstrap by taking repeated samples from the training 

data set (James, G., Witten, D., Hastie, T., & Tibshirani, 2013). This can generate B different 

bootstrapped training data sets and train the model on the bth bootstrapped training set in order 

to get 𝑓𝑓∗1(𝑥𝑥), 𝑓𝑓� ∗2(𝑥𝑥) … …𝑓𝑓∗𝐵𝐵(𝑥𝑥), and finally average all the predictions (See Equation 11) 

𝑓𝑓𝑏𝑏𝑏𝑏𝑏𝑏(𝑥𝑥) =
1
𝐵𝐵
�𝑓𝑓∗𝑏𝑏(𝑥𝑥)

𝐵𝐵

𝑏𝑏=1

 (11) 

This empirical formulation is called bagging.  

Random forest is similar to bagging in that bootstrap samples are drawn to construct 

multiple trees. The main difference from bagging is that random forest compute one extra step 

having the random selection of predictor variables rather than using all variables to grow the 

trees. The number of predictors used to find the best split at each node is a randomly chosen 

subset of the total number of predictors. As with boosting tree, the trees are grown to maximum 

size without pruning, and aggregation is by averaging the trees. Suppose, there are N 

observations and M predictor variables in the learning dataset. At first, subsets of data from the 

training sample with replacement are taken from full dataset like bagging. Then, a subset of M 

predictor variables is selected randomly, and whichever variables give the best split is used to 

split the node iteratively. The main advantages of random forest over bagging is that random 

predictor selection diminishes correlations among unpruned trees and constructs a learning 

model with low bias and variance at the same time. 

Boosting is another approach for improving the predictions resulting from a series of 

decision trees. Like bagging, boosting is an efficient approach that creates several subsets of 

data which constructs a final output by averaging all the prediction of resulting trees. Unlike 
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bagging, the training set used for each individual learner is chosen based on the performance 

of the earlier learner(s). In Boosting, observations that are incorrectly predicted by previous 

classifiers in the individual learners are chosen more often than observations that were correctly 

predicted Consequently, boosting attempts to produce new learners for its ensemble that are 

better able to correctly predict examples for which the current ensemble performance is poor. 

It is worth mentioning that in bagging, the resampling of the training set is not dependent on 

the performance of the earlier classifiers. In machine learning, gradient boosting technique has 

gained much popularity for building powerful predictive models from weak learners. 

Specifically, gradient boosting techniques uses a base weak learner and try to boost the 

performance of weak learners by iteratively shifting the focus towards problematic 

observations that were difficult to predict. This ensemble technique identifies problematic 

observations by large residuals computed in the previous iterations (Mayr et al., 2014). 

 

3.3  Summary 

The main objective of the study is to develop data mining modelling techniques to predict the 

pedestrian and bicycle crash in a zonal level. This chapter presented a detailed discussion of 

the modelling techniques employed in this study. 
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CHAPTER 4: DATA PREPARATION 

The previous chapter provided a detailed discussion about the modeling framework 

employed in the current research effort. This chapter presents characteristics of the data 

employed for analysis including the source of the data, the compilation of response and 

predictor variables considered in the analysis.  

 

4.1 Data Source 

This study is focused on pedestrian and bicycle crashes at the STAZ level. The data 

provides crash information for 8,518 STAZs, with an average area of 6.472 square miles. Data 

for the empirical study were obtained from Florida Department of Transportation (FDOT), 

Crash Analysis Reporting System (CARS) and Signal Four Analytics (S4A) databases for the 

years 2010 to 2012. CAR and S4A are long and short forms of crash reports in the State of 

Florida, respectively. The Long Form crash report is used to obtain detailed information on 

major crashes such as accident resulting in injuries or crashes involving felonious activities 

(such as hit-and-run or driving under influence). Short Form crash reports depict the reports 

based on all other traffic crashes. Thus, when integrated, a complete representation of road 

crashes in Florida is generated.  

 

4.2 Response Variables 

The data provides crash information for 8,518 STAZs. About 16,240 pedestrians and 

15,307 bicycles involved crashes that occurred in Florida in these 3 years’ period were 

compiled for the analysis. Among the STAZs, 46.18% of them have zero pedestrian crashes 

while 49.86% of them didn’t have any bicycle crashes. Total number of pedestrian and the 

bicycle crashes are two response variables that considered in this study. 
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4.3 Exogenous Variables Summary 

The crash records are collected from Florida Department of Transportation, Crash 

Analysis Reporting (CAR) and Signal Four Analytics (S4A) databases. Roadway 

characteristics, traffic characteristics, and socio-demographic characteristics - three broad 

categories of predictors are considered in our study. The response variables are the total number 

of pedestrian and bicycle crash in each zone. The data employed are obtained from FDOT 

Transportation Statistics Division and US Census Bureau. The attributes are then aggregated 

at the STAZ level using geographical information system (GIS). As discussed earlier, the 

current analysis considered spatial predictor variables which correspond to characteristics of 

neighboring STAZs along with the target STAZs. Towards this end, for every STAZ, the 

STAZs that are adjacent are identified. Based on the identified neighbors, a new variable based 

on the value of each exogenous variable from surrounding STAZs is computed. The descriptive 

statistics of the response and predictor variables are summarized in Table 2. Specifically, the 

table provides the predictor values at a STAZ level as well as for the neighboring STAZs. 

Roadway characteristics included are road lengths for different functional class, 

signalized intersection density, length of bike lanes and sidewalks, etc. Intersection density 

denotes the number of intersections per street mile in a STAZ. Vehicle-miles-traveled and 

proportion of heavy vehicles in VMT are considered as traffic characteristics. For demographic 

characteristics, population density, proportion of families without vehicle, proportion of urban 

area, no of commuters by public transportation, etc. are considered. 

4.4 Summary 

In this chapter, data compilation procedures are discussed. Further, descriptive statistics 

for both dependent and independent variables are provided. The empirical analysis results are 

summarized in the next chapter. 
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Table 2 Sample Characteristics of the Road Accidents Attributes 

 
Variables name Definition Targeted TAZs Neighboring TAZs 

Mean S.D. Maxa Mean S.D. Maxa 
Crash Variables  
Pedestrian crash Total number of pedestrian crashes per STAZ 1.907 3.315 39.000 - - - 
Bicycle crash Total number of pedestrian crashes per STAZ 1.797 3.309 88.000 - - - 
Traffic & Roadway Variables  
VMT Total vehicle miles travel in the STAZ 31381.0 41852.3 684742.8 195519.7 169120.3 2103376.3 
Proportion of heavy vehicle in VMT Total heavy vehicle VMT in STAZ /Total 

vehicles VMT in STAZ 
0.067 0.052 0.519 0.070 0.045 0.350 

Proportion of length of arterial roads Total length of arterial road/ Total road length 
in the STAZ 

0.221 0.275 1.000 0.144 0.125 1.000 

Proportion of length of collectors Total length of collector road/ Total road 
length in the STAZ 

0.191 0.246 1.000 0.156 0.136 1.000 

Proportion of length local roads Total length of local road/ Total road length in 
the STAZ 

0.572 0.329 1.000 0.680 0.200 1.000 

Signalized intersection density  Number of intersections per mile in each 
STAZ 

0.227 0.578 8.756 0.378 5.552 495.032 

Length of bike lanes Total length of bike lanes in each STAZ 0.303 1.096 28.637 1.909 3.847 38.901 
Length of sidewalks Total length of sidewalk in each STAZ 0.993 1.750 25.683 6.304 6.745 77.720 

Socio-Demographic Variables  
Population density Population density per square mile 2520.3 4043.3 63069.0 2330.2 3489.7 57181.9 
Proportion of families without vehicle Total number of families with no vehicle in 

STAZ/Total number of families in STAZ 
0.095 0.123 1.000 0.095 0.108 1.000 

School enrollments density Total school enrollment per square miles in 
STAZ 

775.02 5983.05 255147.24 684.22 2900.54 102285.73 

Proportion of urban area Total urban area in STAZ/Total area in STAZ 0.722 0.430 1.000 0.650 0.434 1.000 
Distance to the nearest urban area Distance of the STAZ to the nearest urban area 2.140 5.441 44.101 - - - 
Hotels, motels, and timeshare rooms density Hotels, motels, and timeshare rooms density 

per square mile 
172.49 941.71 32609.84 121.678 528.078 11397.148 
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Variables name Definition Targeted TAZs Neighboring TAZs 

Mean S.D. Maxa Mean S.D. Maxa 
No of total employment Total employment in STAZ 1140.10 1722.45 31932.15 6917.245 6725.135 76533.000 
Proportion of industry employment Proportion of industry employment 0.176 0.232 1.000 0.183 0.177 1.000 
Proportion of commercial employment Proportion of commercial employment 0.299 0.235 1.000 0.305 0.177 1.000 
Proportion of service employment Proportion of service employment 0.525 0.257 1.000 0.495 0.186 1.000 
No of commuters by public transportation No of commuters using public transportation 18.813 54.273 934.000 119.582 246.299 3559.985 
No of commuters by cycling No of commuters using bicycle 5.894 19.804 775.000 90.869 128.399 1902.135 
No of commuters by walking No of commuters by walking 14.354 34.680 1288.000 37.566 74.484 1634.530 

a The minimum values for all variables are zero. 
 

 
 

 

 

 



 

21 

 

CHAPTER 5: MODEL ANALYSIS AND RESULTS 

The results for the models described in Chapter 3 are presented in this chapter. 

Basically, the model estimation process involved estimating four models as follows (1) DTR 

aspatial model for pedestrian crashes (2) DTR spatial model for pedestrian crashes (3) DTR 

aspatial model for bicycle crashes (4) DTR spatial model for bicycle crashes. This chapter 

presents the modelling results with the explanation of significant predictor variables associate 

with the pedestrian and bicycle crash risk. 

 

5.1 Model Specification and Overall Measure of Fit 

In this study, from the 8518 STAZs, 70% of the STAZs were randomly selected as 

training set for model development while 30% were employed as testing set for model 

validation. In the first step, the model estimation process involved estimating four models as 

follows (1) DTR aspatial model for pedestrian crashes (2) DTR spatial model for pedestrian 

crashes (3) DTR aspatial model for bicycle crashes (4) DTR spatial model for bicycle crashes. 

Prior to discussing the model results, we compare the estimated models in Table 3. The table 

presents the Average Squared Error (ASE) and Standard Deviation of Errors (SDE) for the four 

DTR models with training and testing samples. It is worth mentioning that, a series of trees 

have been produced in order to achieve the best DTR models for each of the four models 

mentioned above. The model with the lower ASE and SDE is the preferred DTR model. Across 

pedestrian and bicycle crash prediction models, the models with spatial predictor variables 

(spatial model) offer substantially better prediction models in terms of ASE and SDE in both 

training and testing date sets. Thus, this result highlighted that inclusion of predictor variables 

of adjacent STAZs improve crash prediction models using data mining  techniques (DTR 
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models) which confirmed the same results obtained using statistical modeling techniques on 

Cai et al. (Cai et al., 2016). 

Table 3 Comparison of Predictability Between Different Models  

 
Pedestrian Crashes 

Training (N=5963) Without Spatial Predictor Variables With Spatial Predictor Variables 

No of predictor variable used 10 12 

ASE 5.597 5.142 

SDE 2.366 2.268 

Testing (N=2555)          Without Spatial Predictor Variables With Spatial Predictor Variables 

No of predictor variable used 10 12 

ASE 6.328 6.178 

SDE 2.516 2.485 

Bicycle Crashes 

Training (N=5963) Without Spatial Predictor Variables With Spatial Predictor Variables 

No of predictor variable used 9 12 

ASE 5.413 5.092 

SDE 2.327 2.257 

Testing (N=2555)          Without Spatial Predictor Variables With Spatial Predictor Variables 

No of predictor variable used 9 12 

ASE 6.724 5.926 

SDE 2.594 2.435 

 

5.2 DTR Model Estimation and Interpretation 

As previously mentioned, DTR partitions the data into relatively homogeneous terminal 

nodes, and it takes the mean value observed in each node as its predicted value. The empirical 

analysis involved a series of DTR model estimations in order to achieve the lowest possible 

ASE and SDE. In presenting the DTR framework, we will restrict ourselves to the discussion 

of the decision tree regression graphically. The main objective of this paper is to explore the 

DTR models in order to obtain the important contributing factors (either using spatial predictor 

variables or not) for pedestrian and bicycle crashes and then substantially improving the 
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prediction model by applying ensemble techniques to the DTR models. Toward this end, lists 

of variables are entered into each model and their relative importance were also produced. 

Variable importance is calculated based on deviance (D) or sum of squared errors (SSE) of 

each variable which indicates a measure of the dispersion. The first partition of the observations 

in the DTR models is undertaken based on the most important predictor variable resulting in 

the maximum reduction in variability of the response variable. Then, further partitions are made 

based on the hierarchy of most important variables. The importance value of the most important 

variable is 1. Then all other variables are assigned with a relative importance. The variable 

importance result of four models (2 model types with and without spatial predictor variables 

of neighboring STAZs) of pedestrian and bicycle crashes each are displayed in Table 4 and 

Table 5, separately. Across the four models for either pedestrian or bicycle crashes, the 

significant importance variable are quite comparable. While the variables with relative 

importance results for all DTR models across pedestrians and bicycle crashes are presented, 

the discussion focuses on the DTR model with spatial predictor variables that offers the best 

model.  

 

5.2.1  DTR models for pedestrian crash 

For DTR spatial model, seven predictor variables of targeted STAZs and five predictor 

variables of neighboring STAZ are found to be most important variables for forecasting 

pedestrian crash. Five significant predictor variables of neighboring STAZ confirmed the 

importance of including spatial variables in order to predict the pedestrian crashes at the macro-

level. The results of the variable importance for both models (aspatial and spatial) for 

pedestrian crashes are presented in Table 4. To emphasize the predictor variables, we also 

ranked each variable based on their variable importance – with 1 as the highest important  
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variable and 12 as the lowest important variable in spatial model. 

Table 4 Variable Importance for Pedestrian Crash of STAZs 

Predictor variables Aspatial  Ranking  Spatial Ranking 

STAZ predictor variables 

Number of commuters by public transportation 1.0000 1 1.0000 1 

Number of total employments 0.5236 2 0.5372 2 

Signalized intersection density 0.3999 3 0.4191 3 

Number of commuters by walking 0.3744 4 0.3673 4 

Vehicle miles travelled (VMT) 0.2968 5 0.3405 6 

Length of sidewalks 0.2883 6 0.3479 5 

Length of bike lanes 0.1359 7 0.1394 9 

Distance to nearest urban area 0.0511 8 - - 

Hotels, motels, and timeshare rooms density 0.0459 9 - - 

Proportion of urban area 0.0215 10 - - 

Spatial predictor variable 

Number of commuters by public transportation in 

neighboring STAZs 

- - 0.3200 7 

Number of commuters by walking in neighboring STAZs - - 0.1703 8 

Population density in neighboring STAZs - - 0.1372 10 

Proportion of families without vehicle in neighboring STAZs - - 0.1304 11 

School enrollment density in neighboring density - - 0.0530 12 

 

The following observations can be made based on the results presented in Table 4. The 

most important variable for determining the number of pedestrian crashes in macro-level is 

number of commuters using public transport with relative importance 1.0. The statistical 

modelling results intuitively support that commuters by public transportation reflect zones with 

higher pedestrian activity resulting in increased crash risk (Abdel-Aty et al., 2013). The next 

most important variable to predict the pedestrian crashes is total employment which is surrogate 

measures of pedestrian exposure (Siddiqui et al., 2012). Hence, it is expected that total 

employment has a higher impact on crash frequency. The variables including signalized 

intersection density, number of walk commuters, length of sidewalks, and length of bike lanes 
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represent the likelihood of pedestrian access. Therefore, these variables are found to be 

significant variables in the DTR model. The VMT variable is a measure of vehicle exposure 

and as expected a significant predictor for pedestrian crashes. It is interesting to note that the 

variables distance to nearest urban area, hotel, motel, and timeshare room density, and 

proportion of urban area are significant predictor variables (rank-8,9,10) in DTR aspatial 

model, while those variables are not found significant variables in DTR spatial models which 

offers the better fit. Among the significant important spatial predictor variables, the number of 

commuters by public transportation offers the most important variable to predict pedestrian 

crashes. Cai et. al., (2014) (Cai et al., 2016) proved that the commuters by public transportation 

in neighboring STAZ has a positive impact on pedestrian crashes. Moreover, the number of 

commuters by walking, population density, proportion of families without vehicle, and school 

enrollment density in neighboring STAZs are significant spatial variables of pedestrian crashes 

at the macro-level.  

 

5.2.2  DTR models for bicycle crash 

In the DTR model with spatial variables presented in Table 5, eight variables of the 

targeted STAZs and four variables of the neighboring STAZs are responsible for predicting 

bicycle crash frequency. The impact of some predictor variables in the pedestrian and bicycle 

crash prediction models are quite similar. A possible reason is that STAZs with high pedestrian 

activity are also likely to experience high bicyclists activity. Among the parent (targeted) STAZ 

variables, number of total employments is the most important predictor variable of bicycle 

crashes. The other important variables for the bicycle crash propensity are vehicle miles 

travelled (VMT), number of commuters using bicycle, number of commuters by walk, length 

of sidewalks, number of commuters using public transport, signalized intersection density, and 
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proportion of urban area, respectively. There are three main differences in the STAZ variable 

impacts between pedestrian and bicyclists crash frequency in terms of variable importance. 

Table 5 Variable Importance for Bicycle Crash of STAZs 

Predictor variables Aspatial  Ranking  Spatial Ranking 

STAZ predictor variables 

Number of total employments 1.0000 1 1.0000 1 

Number of commuters using bicycle 0.6684 2 0.5688 4 

Number of commuters using public transport 0.6523 3 0.1543 9 

Vehicle miles travelled (VMT) 0.4875 4 0.5909 3 

Length of bike lanes 0.4403 5 0.2922 7 

Proportion of urban area 0.3015 6 0.0369 12 

Distance to nearest urban area 0.2040 7 - - 

Signalized intersection density 0.1955 8 0.1387 10 

School enrollment density 0.0749 9 - - 

Number of commuters by walk - - 0.3254 6 

Spatial predictor variable 

Number of commuters using bicycle in neighboring STAZs - - 0.6464 2 

Population density in neighboring STAZs - - 0.5270 5 

Length of bike lanes in neighboring STAZs - - 0.2037 8 

School enrollment density in neighboring STAZs - - 0.1327 11 

 

First, the density of hotel, motel and time share rooms is not a significant variable for 

predicting bicycle crash. This result is intuitive because tourists are less likely to use bicycles. 

Second, the school enrolment density does have significant impact on bicycle crashes as it is 

possible that students are more likely use bicycles for traveling to schools. Third, the length of 

sidewalks in the STAZ does not have significant importance to predict bicycle crashes, 

whereas, sidewalk length is found to be significant variable for predicting pedestrian crashes. 

In terms of spatial variables effect, the important variables have mixed effects between 

pedestrian and bicyclists. Population density and the school enrolment density in neighboring 

STAZs offers important spatial variables for both pedestrian and bicycle crash prediction 
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models. Number of commuters using bicycle and the length of bike lanes in neighboring 

STAZs are found significantly associated with bicycle crashes. 

 

5.2.3  Ensemble Techniques Results 

To improve the prediction accuracy of the DTR models, we have used ensemble 

techniques using three structures: 1) Bagging, 2) Random Forest, 3) Gradient Boosting. Figure 

1 illustrates the basic framework of the three ensemble techniques proposed in the pedestrian 

and bicycle crash prediction models. Some observations can be made from this framework. All 

the three ensemble techniques combine several decision trees to produce better predictive 

performance than utilizing a single decision tree. Bagging create several subsets of data by 

bootstrap resampling while the random forest utilizes the same process in addition to taking 

the random subset predictors. 

 

Figure 1 Ensemble technique framework: Bagging, Random Forests, and Boosting. 

Unlike bagging and random forest, boosting generate multiple training samples by re-

weighting which can improves the accuracy of single learner. Finally, bagging, random forest, 

and boosting estimate the final prediction by averaging multiple estimates of individual trees.  
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The aforementioned three ensemble techniques were implemented based on the methodology 

showed in Figure 1 and the goodness of fit measure such as ASE and SDE are calculated for 

the spatial models of pedestrian and bicycle crashes. The comparison results of the ensemble 

techniques along with the DTR models (weak learners) for both pedestrian and bicycle crashes 

are presented in Table 6. The table presents the ASE and SDE for the ensemble techniques and 

DTR model for training and testing samples. Three significant conclusions can be made from 

the results highlighted in Table 6. First, all models with ensemble techniques perform better 

than the original DTR model. Second, gradient boosting provides the best performance in all 

ensemble techniques compared to the other counterparts. Third, Random forests is better than 

bagging in terms of goodness of fit measures. 

Table 6 Comparison of Predictability Across Ensemble Techniques 

Measure of effectiveness Decision Tree Bagging Random Forests Gradient 

Boosting 

Pedestrian crashes with spatial predictor variables 

Training (N=5963)     

ASE 5.142 5.016 4.975 4.856 

SDE 2.268 2.239 2.230 2.203 

Testing (N=2555)              

ASE 6.178 6.089 6.015 5.915 

SDE 2.485 2.468 2.453 2.432 

Bicycle crashes with spatial predictor variables 

Training (N=5963)     

ASE 5.092 4.965 4.912 4.821 

SDE 2.257 2.228 2.216 2.196 

Testing (N=2555)              

ASE 5.926 5.868 5.821 5.712 

SDE 2.435 2.422 2.413 2.390 
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5.3  Summary 

This chapter presented the modelling results of decision tree regression considering 

with or without spatial predictor variables. Variable importance of the predictor variables 

provides an indication of policy analysis in the macro-level crash risk. Some ensemble 

techniques results are also presented to improve the prediction accuracy of the DTR models. 

To summarize, based on the empirical results, it is clear that the gradient boosting algorithms 

outperformed competing two ensemble techniques which found the best technique for 

predicting the pedestrian and bicycle crash in macro-level.
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CHAPTER 6: CONCLUSIONS 

This study applied data mining techniques for pedestrian and bicycle crash analyses 

that captures the effects of important predictor variables at the macro-level. The study 

conducted decision tree regression (DTR) modeling analysis to highlight the importance of 

various traffic, roadway, and socio-demographic characteristics of the STAZ on the pedestrian 

and bicycle crash occurrence. To the best of the authors’ knowledge, this is the first attempt to 

employ such DTR models at the macro-level. The study also considered spatial predictor 

variables from neighboring STAZs in order to improve the prediction accuracy of DTR models 

for both pedestrian and bicycle crashes. It was found that the introduction of spatial predictor 

variables on DTR models clearly outperformed the DTR models that did not consider the 

spatial variables in terms of goodness-of-fit measures.  To facilitate a policy analysis at the 

macro-level, variable importance of DTR models for both pedestrians and bicyclists crashes 

were computed. The variable importance results clearly highlighted the significant predictor 

variables of the targeted and neighboring STAZs including traffic (such as VMT), roadway 

(such as signalized intersection density, length of sidewalks and bike lanes, etc.) and 

sociodemographic characteristics (such as population density, commuters by public 

transportation, walking and bicycling) for both pedestrian and bicycle crashes. In terms of the 

planning perspective, it is important to identify zones with high public transit commuter, 

employment area, pedestrian and bicyclist commuters and undertake infrastructure upgrades to 

improve safety. Finally, the study undertook some ensemble techniques such as bagging, 

random forest, and gradient boosting to improve the prediction accuracy of pedestrian and 

bicycle crashes. The results revealed that, all the ensemble techniques offer substantially better 

fit compared to original DTR models. Moreover, Random forests is better than bagging in 
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terms of goodness of fit measures. Finally, gradient boosting algorithms outperformed 

competing two ensemble techniques which found the best technique for predicting the 

pedestrian and bicycle crash in macro-level.  

The paper is not without limitations. While the decision tree regression is considered, 

we do not consider other data mining techniques to check the prediction accuracy. It will be an 

interesting exercise to model the other data mining techniques such as neural network, support 

vector machine and their ensembles. Moreover, it might be beneficial to explore the similar 

models for multiple spatial units and several years. 
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