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DISSERTATION 



ABSTRACT OF DISSERTATION 

LOBELANE ANALOGS WITH VARIOUS METHYLENE LINKER LENGTHS AND 
ACYCLIC LOBELANE ANALOGS AS POTENTIAL PHARMACOTHERAPIES TO 

TREAT METHAMPHETAMINE ABUSE 

Methamphetamine interacts with vesicular monoamine transporter-2 
(VMAT2) to inhibit dopamine (DA) uptake and promotes DA release from 
presynaptic vesicles, increasing cytosolic DA available for methamphetamine-
induced reverse transport by DA transporters. By inhibiting VMAT2, lobelane, a 
defunctionalized, saturated lobeline analog, decreases methamphetamine-
evoked DA release and methamphetamine self-administration in rats. In this 
dissertation structure-activity relationships around the lobelane structure were 
investigated on racemic lobelane analogs with varying methylene linker lengths 
at central piperidine ring. Affinity for dihydrotetrabenazine (DTBZ) sites on 
VMAT2 and for inhibition of VMAT2 function was determined to be 0.88-63 and 
0.024-4.6 µM, respectively, and positively correlated. The most potent and 
selective analog, (±)-cis-2-benzyl-6-(3-phenylpropyl)piperidine [(±)-GZ-730B], for 
VMAT2 uptake was identified as the lead. The ability of (±)-GZ-730B to inhibit 
methamphetamine-evoked [3H]DA release from striatal synaptic vesicles and 
endogenous DA release from striatal slices was determined. The lead analog-
induced inhibition of methamphetamine-evoked vesicular [3H]DA release did not 
translate to inhibition of methamphetamine-evoked DA release in the more intact 
striatal slices. Moreover, poor water solubility of these lobelane analogs 
prohibited further in vivo work. Subsequent work focused on analogs with the C-3 
and C-4 carbons in the piperidine ring eliminated to afford racemic acyclic 
lobelane analogs. Generally, acyclic analogs exhibited greater water solubility 
and less lipophilicity compared to lobelane. Acyclic analogs exhibited affinities (Ki 
= 0.096-17 μM) for [3H]DTBZ sites that correlated positively with affinity (Ki = 3.3-
300 nM) for inhibition of [3H]DA uptake. Pure enantiomers of potent racemic 
analogs were synthesized, and found to potently, selectively, and competitively 
inhibit [3H]DA uptake at VMAT2 and to release vesicular [3H]DA in a biphasic



manner. Lead enantiomer (R)-N-(1-phenylpropan-2-yl)-3-phenylpropan-1-amine 
[(R)-GZ-924] inhibited methamphetamine-evoked [3H]DA release from striatal 
synaptic vesicles, but not from the more intact striatal slices. Surprisingly, (R)-
GZ-924 inhibited nicotine-evoked [3H]DA overflow from striatal slices, revealing 
nonspecific effects. Importantly, (R)-GZ-924 inhibited methamphetamine self-
administration in rats. However, the analog also inhibited food-maintained 
responding, revealing a lack of specificity. The lead analog will not be pursued 
further as a pharmacotherapy due to the lack of specificity. Further evaluation of 
the pharmacophore is needed to discover analogs which specifically inhibit the 
neurochemical and behavioral effect of methamphetamine. 

KEYWORDS: Lobeline, Lobelane, Methamphetamine, Vesicular Monoamine         
 Tranporter-2, (R)-GZ-924 
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CHAPTER 1 Introduction 

1.1 Methamphetamine  

1.1.1 Physicochemical Characteristics 

Methamphetamine (N-methyl-1-phenylpropan-2-amine; Figure 1.1) is a 

central nervous system stimulant and N-methyl derivative of amphetamine 

(Figure1.1). Methamphetamine is a white, odorless, bitter-tasting crystalline 

powder that easily dissolves in water or alcohol and can be taken orally, 

intranasally, by needle injection, or by smoking. The structure of 

methamphetamine constitutes a phenyl ring connected to a secondary amine by 

an ethyl side chain with a methyl group on the α-carbon. Methamphetamine is 

soluble in water (0.93 m/l; Log S value = -2.09) and is lipophilic (Log P value = 

2.20) (Tetko et al., 2005). Methamphetamine exists in two stereoisomers with the 

d-isomer [also denoted as S (+)-methamphetamine, the S-enantiomer form of 

methamphetamine] and the l-isomer [also denoted as D (+)-methamphetamine, 

the R-enantiomer form of methamphetamine]. The d-methamphetamine is 

responsible for the psychostimulant effects of the drug and the l-isomer is 

inactive in the central nervous system (CNS) (Logan, 2002). 

1.1.2 History and Background 

Amphetamine was first synthesized by Lazar Edeleanu, a Romanian 

chemist, at the University of Berlin in 1887,  and the clinical use of amphetamine 

was initiated in the 1930s (MacKenzie and Heischober, 1997). In 1932, an 
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amphetamine-based inhaler was marketed by Smith, Kline & French 

Laboratories as the first amphetamine product to treat nasal and bronchial 

congestion (Snyder, 1986). Amphetamines were prescribed to treat asthma and 

narcolepsy in 1930s (Prinzmetal, 1935).  

Methamphetamine was synthesized from ephedrine in Japan in 1893 and 

was found to alleviate fatigue and produce feelings of alertness and well-being 

(Lineberry and Bostwick, 2006). Methamphetamine and amphetamine were 

given to German, English, American, and Japanese military personnel during 

World War II to promote energy and enhance performance (Logan, 2002). After 

World War II, Large amount of methamphetamine was dumped to civilian 

markets by the Japanese military (Matsumoto, 2002). In 1950s 

methamphetamine was prescribed to treat obesity (Anglin et al., 2000) and 

narcolepsy (Mitler et al., 1993). Truckers, homemakers, college students and 

athletes used methamphetamine for non-medical purposes to stay awake or 

keep active (Anglin et al., 2000; Logan, 2002).  

In the 1970s, methamphetamine was regulated by the Controlled 

Substances Act, and the availability of illicit methamphetamine was restricted 

greatly (MacKenzie and Heischober, 1997). In  the1980s, methamphetamine was 

produced mostly by neighborhood clandestine labs and was trafficked by 

motorcycle gangs in the United States (Brouwer et al., 2006). Methamphetamine 

abuse was reported to be increased among people exhibiting risky sexual 

behavior, as well as among homosexual men (Ruf et al., 2006; Stall et al., 2000). 
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In the 1990s, rural locations in the United States became ideal for 

methamphetamine manufacturing due to the geographic isolation, available 

supply of ephedrine, pseudoephedrine and anhydrous ammonia (Booth et al., 

2006). Methamphetamine was also produced in Mexico and brought to the 

United States through the northern border of Mexico (Brouwer et al., 2006). In 

1996, the Comprehensive Methamphetamine Control Act was passed by 

congress, which regulated transactions involving precursor chemicals such as 

pseudoephedrine, phenylpropanolamine, and combination ephedrine drug 

products (Drug Enforcement Administration, 2002). Despite substantial efforts to 

reduce the supply of precursor chemicals, increasing amount of clandestine 

methamphetamine labs was seized in the United States. In 2000, over 6,300 

illegal clandestine methamphetamine labs were seized and the number 

increased by 25% from 2001 to 2005 (Crime, 2007; Sulzer et al., 2005). 

Increasing abuse of methamphetamine emerged throughout the country. 

In 2004, methamphetamine became the number1 drug threat in the United 

States (NDTS, 2008). In 2005, national assessment of the economic burden of 

methamphetamine abuse was $23.4 billion, including cost attributed to health 

care, crime and reduced productivity (Justice, 2008; Statistics, 2009). Based on 

the 2006 National Association of Counties reports (NACO, 2006), there were 

more methamphetamine-related emergency room visits than for any other 

controlled prescription drug (NACO, 2006). Forty-seven percent of 200 

responding hospitals reported that methamphetamine was the top illicit drug 

involved in emergency room presentations at their hospitals (NACO, 2006). 
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Seventy-three percent of hospital officials reported that emergency room 

presentations involving methamphetamine had increased over the last 5 years 

(NACO, 2006). Fifty-six percent of hospitals reported that costs had increased at 

their facilities because of the growing use of methamphetamine (NACO, 2006). 

Between 2008 and 2010, emergency room visits involving 

amphetamines/methamphetamine increased by 50 percent. In 2010 

amphetamine and methamphetamine were the primary causes of over 137,000 

emergency room admissions (Network, 2010). Thus, methamphetamine abuse is 

a great health concern in the United States. 

Ten million people used methamphetamine at least once in the United 

States and the number of people who used methamphetamine continued to 

escalate each year with 133, 000 new methamphetamine users in 2011 

(NSDUH, 2011). The average age of new methamphetamine users was 

decreasing from 22.2 to 17.8 years from 2006 to 2011 (NSDUH, 2011). The 

increase in methamphetamine use was primarily due to its stimulant properties 

and enhancement of sexual pleasure (Human, 2012). Methamphetamine use is 

associated with risky sexual behavior and is highly prevalent in people infected 

with human immunodeficiency virus (HIV; Yamamoto et al., 2010). 

Methamphetamine abuse is a great economic burden and health concern in the 

United States. Methamphetamine abuse was also reported in England, Australia, 

Sweden, South America, Asia, and Africa (MacKenzie and Heischober, 1997). 

Methamphetamine is used by 15-16 million people in a global estimation 

(Cruickshank and Dyer, 2009; Krasnova and Cadet, 2009). An estimated 
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production of more than 2.9 billion doses of methamphetamine (100 mg) was 

reported world-widely in 2005 (Crime, 2007). Thus, methamphetamine abuse is a 

world-wide health concern. Currently, no medical treatments are available for 

methamphetamine abuse. 

1.1.3 Pharmacokinetics 

Following oral intake, methamphetamine is absorbed into the bloodstream 

and the peak plasma concentration is reached in approximately 3 to 6 hours after 

administration. Peak plasma concentration of the major metabolite, 

amphetamine, is reached at 10 to 24 hours after oral administration (Schep et al., 

2010). After intranasal administration of methamphetamine, the peak plasma 

concentration is achieved approximately 3 to 4 hours after administration (Harris 

et al., 2003). After inhalation of vapor methamphetamine, the peak concentration 

is reached at approximately 2.5 hours (Perez-Reyes et al., 1991b). After 

absorption, methamphetamine is widely distributed throughout the body. 

Methamphetamine crosses the blood brain barrier due to the high lipophilicity 

and has effects in the central nervous system (Schep et al., 2010). 

Methamphetamine is metabolized into amphetamine and 4-

hydroxymethamphetamine by the cytochrome P450 isoenzyme, CYP2D6 (Lin et 

al., 1997). Methamphetamine is excreted via the kidneys, and the rate of 

excretion into the urine is dependent on urinary pH. In alkaline urine, 

methamphetamine is not charged due to its weak base property and a large 

amount of methamphetamine will be reabsorbed back into the blood by passive 
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diffusion across membranes due to its lipophilic property. In acidic urine, 

methamphetamine will be ionized and can not be reabsorbed. Subsequently, the 

ionized methamphetamine will be excreted in the urine (Beckett and Rowland, 

1965). The average plasma half-life of methamphetamine is 9-12 hours in 

humans and 3 hours in rodents (Schep et al., 2010).  

1.1.4 Clinical Pharmacology 

The effect of methamphetamine is complex, and involves both peripheral 

and central actions (Logan, 2002). Peripheral effects of methamphetamine are 

caused mainly by release of norepinephrine (NE). Methamphetamine is capable 

of inducing mydriasis, bronchial muscle dilation, vasoconstriction, coronary 

dilatation, and bladder contraction through NE activation of adrenergic receptors 

(Perez-Reyes et al., 1991b). Methamphetamine can also produce arrhythmia, 

anorexia, flushed skin, excessive sweating, dry mouth, rapid breathing, high body 

temperature, diarrhea, constipation, insomnia, palpitations, tremors, increase of 

heart rate, blood pressure and glucose levels (Cruickshank and Dyer, 2009). In 

the male, increase in libido and intensity of orgasm associated with the use of 

this drug has been found, however, at higher doses the drug resulted in failure to 

achieve orgasm and loss of interest in sexual activity (Logan, 2002).  

Psychological effects of methamphetamine are caused mainly by release 

of several neurotransmitters including NE, dopamine (DA), epinephrine, and 

serotonin (5-HT), and the subsequent activation of the receptors of the 

neurotransmitters. Psychological effects associated with methamphetamine use 
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include euphoria, alertness, anxiety, paranoia, agitation, and psychosis 

(Lineberry and Bostwick, 2006).  

Chronic abuse of methamphetamine leads to withdrawal symptoms, 

including fatigue, depression, and decreased appetite, and may last for days, 

weeks or months (McGregor et al., 2005). Severity and length of withdrawal 

symptoms are dependent on the length of time and the amount of 

methamphetamine used (McGregor et al., 2005). Other withdrawal symptoms 

including anxiety, irritability, agitation, narcolepsy, and suicidal ideation may 

occur (McGregor et al., 2005).  

Tolerance of both central and peripheral effects of methamphetamine has 

been reported (Gygi et al., 1996; Perez-Reyes et al., 1991a). Acute tolerance has 

been reported also in a smoking/intravenous study (Cook et al., 1992; Logan, 

2002). The extent of tolerance and the rate at which it develops is highly 

dependent on methamphetamine dosage, duration of use, and frequency of 

administration (Graham et al., 2008; McFadden et al., 2012a; McFadden et al., 

2012b). However, awakening effect of methamphetamine is not subject to 

tolerance development (Comer et al., 2001), making methamphetamine suitable 

for the treatment of narcolepsy (Logan, 2002; Mitler et al., 1993). Specifically, 

methamphetamine at a single morning dose of 40-60 mg for 28 days decreases 

sleep tendency during daytime and improves performance in narcoleptics 

comparable to those of unmedicated controls (Mitler et al., 1993). In addition, due 

to its ability to decrease impulsivity (Richards et al., 1999), methamphetamine 
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hydrochloride is prescribed as a pharmacotherapy for the treatment of attention 

deficit-hyperactivity disorder (ADHD) under the trade name Desoxyn 

(Akhondzadeh et al., 2003). Despite of use in clinical practice, methamphetamine 

has limited published studies on ADHD and most of the published studies on 

stimulants to treat ADHD focus on amphetamine and methylphenidate (Babcock 

et al., 2012; Elia et al., 1999). Generally, methylphenidate and d-amphetamine 

with daily dose of 60 and 40 mg, respectively, were able to reduce ADHD 

symptoms of 70-80% of patients (Elia et al., 1999). However, abuse potential has 

been found for the stimulants after repeated administration to children and 

adolescents (Manchikanti, 2007; Sweeney et al., 2013). 

1.2 DA and Reward  

1.2.1 DA Biosynthesis, Metabolism and Storage 

DA belongs to the catecholamine family and is a monoamine 

neurotransmitter. DA is mainly synthesized within neural cells and the medulla of 

the adrenal glands (Von Bohlen und Halbach and Dermietzel, 2002). First , L-

tyrosine is converted into L-3,4-dihydroxyphenylalanine (L-DOPA) by tyrosine 

hydroxylase (TH). Cofactors including Fe2+, O2, and tetrahydropteridine are 

required by the enzyme to hydrolyze L-tyrosine to L-DOPA. Subsequently, L-

DOPA is converted into DA by aromatic L-amino acid decarboxylase with 

pyridoxal phosphate (vitamin B6) as the cofactor and in the cytoplasm of the 

axon terminals.   
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Following biosynthesis, monoamines are stored in vesicles, and three 

pools of vesicles have been reported (Rizzoli and Betz, 2005). The readily 

releasable pool is defined as a pool of synaptic vesicles that are immediately 

available upon physiological stimulation and can be depleted within seconds. 

These vesicles are generally thought to be close to the presynaptic terminals and 

are readily releasable (Richards et al., 2003). The recycling pool is defined as the 

pool of vesicles that is responsible for release on moderate (physiological) 

stimulation and 5-20% of all vesicles are in this pool (Rizzoli and Betz, 2005). 

This pool of vesicles is released more slowly than the readily releasable pool 

(Richards et al., 2003). The reserve pool is defined as a depot of synaptic 

vesicles and release is only caused by intense stimulation and 80-90% of 

vesicles within presynaptic terminals are stored in this pool (Delgado et al., 

2000). Vesicles in this pool are probably never recruited upon physiological 

stimulation (Richards et al., 2003). Depletion of vesicles in the recycling pool 

cause the recruiting and release of vesicles in the reserve pool; however, the 

underlying molecular mechanisms are not understood (Rizzoli and Betz, 2005). 

DA is metabolized by two enzymes, monoamine oxidase (MAO) and 

catechol-O-methyltransferase (COMT) (Von Bohlen und Halbach and Dermietzel, 

2002). Within presynaptic terminals, DA is mainly converted into 3,4-

dihydroxyphenylacetaldehyde (DOPAL) by MAO. Subsequently, DOPAL is 

converted into 3,4-dihydroxyphenylacetic acid (DOPAC) by the aldehyde 

dehydrogenase (ALDH). Finally, DOPAC is converted into homovanillic acid 

(HVA) by COMT, and HVA is then excreted in urine. In the synaptic cleft, DA also 
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can be metabolized into 3-methoxytyramine (3-MT) by COMT. Subsequently, 3-

MT is metabolized to HVA by MAO and is excreted in urine as well.  

1.2.2 DA Receptors 

DA receptors belong to G protein-coupled receptors (GPCRs) and contain 

five receptor subtypes, D1, D2, D3, D4, and D5 receptors (Sokoloff and 

Schwartz, 1995). D1 receptors are found to be located primarily in the striatum 

and cortex; D5 receptors are located primarily in the thalamus, hypothalamus 

and hippocampus; D2 receptors are located primarily in the striatum and cortex; 

D3 receptors are located primarily in the island of Calleja, nucleus accumbens 

(NAc), and olfactory tubercle; D4 receptors are located primarily in cortex (Hurley 

and Jenner, 2006; Sokoloff and Schwartz, 1995). The five receptor subtypes are 

categorized into D1-like and D2-like subfamilies based on the respective 

functions and properties. The D1-like subfamily includes D1 and D5 receptors 

and are coupled to stimulatory G protein (or Gs protein). Receptor activation 

elevates cyclic adenosine monophosphate (cAMP) concentrations by activating 

adenylate cyclase. The cAMP acts as secondary messenger that activates 

cAMP-dependent protein kinase (PKA) and initiates subsequent signal 

transduction (Chio et al., 1994a; Chio et al., 1994b; Sokoloff and Schwartz, 

1995). The D2-like subfamily includes D2, D3, and D4 receptors and are coupled 

to inhibitory G protein (or Gi protein). Receptor activation decreases cAMP 

concentration by inhibiting adenylate cyclase. Decrease of cAMP results in lack 

of PKA activation and subsequent inhibition of signal transduction (Chio et al., 
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1994a; Chio et al., 1994b; Sokoloff and Schwartz, 1995). D1 receptors are more 

widespread in the brain than the D3, D4, and D5 receptors. Expression of D2 

receptors in brain is very similar to that of D1 receptors, except for the 

presynaptic D2 receptors on the terminals of dopaminergic neurons. The 

presynaptic D2 receptors are autoreceptors and activation of the receptor 

decreases DA synthesis, release and neurotransmission through a negative 

feedback mechanism (Fasano et al., 2008) .  

1.2.3 Dopaminergic Pathways 

Dopaminergic pathways are neural pathways in the brain through which 

DA is transmitted from one region of the brain to another. The mesolimbic 

pathway transmits DA from the VTA to NAc, ventral palladium and amygdala. 

The mesocortical pathway transmits DA from the VTA to the frontal cortex. Those 

two pathways together are involved in motivation, reward, emotion and cognition 

(Di Chiara and Imperato, 1988; Pierce and Kumaresan, 2006; Simon et al., 1980; 

Wise, 1978). The nigrostriatal pathway transmits DA from the substantia nigra 

(SN) to striatum and this pathway regulates motor function (Robertson and 

Robertson, 1989). Psychostimulants including methamphetamine, cocaine and 

nicotine activate the mesolimbic, mesocortical, and nigrostriatal pathway to elicit 

the reward and reinforcing effects (Everitt and Robbins, 2005; Wise, 2009). 
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1.2.4 DA Transporter (DAT)  

DAT contains 12 putative transmembrane domains (TMD) spanning the 

plasma membrane (Torres et al., 2003b). DAT is mainly expressed in brain 

regions involved in the mesolimbic and mesocortical DA pathways, including 

striatum, NAc, olfactory tubercle, cingulated cortex, frontal cortex, lateral 

habenula, and on cell bodies in the VTA and SN (Ciliax et al., 1995). DAT is 

responsible for taking up DA back into presynaptic terminals from synaptic cleft. 

DA in the synaptic cleft is released through exocytosis via fusion of synaptic 

vesicles with presynaptic terminal membranes. The extracellular DA 

concentrations are the net result of release through exocytosis and uptake 

through DAT (Torres et al., 2003b).  

DAT uptakes DA back into presynaptic terminals in a sodium-and chloride-

dependent manner. One DA molecule is co-transported with one Cl- and two Na+
, 

which follow the Na+ gradient generated by Na+/K+ ATPase (Krueger, 1990). 

“Alternating access model” is applied to explain the process of DA transportation 

(Gnegy, 2003; Jardetzky, 1966). In such models, DAT faces outward towards the 

synaptic cleft, and initially the DA and co-substrates (ions) bind to the outward 

facing transporter. Subsequently, the conformation of the transporter changes 

and the transporter faces toward the cytosol with the bound DA and ions facing 

the cytosol accordingly. DA and ions are released into the cytosol and the 

transporter faces outward again and continues to transport DA. 
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In addition, electrophysiological investigations of DAT suggested that the 

transporter exhibits characteristics similar to that of ion channels. Similar to ion 

channels, current is generated and measured by patch clamp simultaneously 

with the transportation of DA and is inhibited by transporter inhibitors (Galli et al., 

1996; Mager et al., 1994; Sonders et al., 1997). Considered as ion channels, 

DAT exists in two conformations including one similar to closed ion channels and 

the other similar to open ion channels. Open channels allow the passage of DA 

and ions through the membrane and  the presence of DA and ions increases the 

probability of channel opening (Sonders and Amara, 1996). 

DAT consists of 620 amino acid residues, with N and C termini both 

located on the interior side of the plasma membrane facing the cytoplasm (Torres 

et al., 2003b). The highest conserved regions of amino acid sequences are within 

the putative TMDs, while the least conserved regions are within the amino and 

carboxyl termini. The role of TMD3 in DA uptake has been reported (Lee et al., 

1998) and mutation of a phenylalanine in TMD3 decreases transporter affinity for 

DA (Chen et al., 2001).
 In addition, mutation of an aspartic acid in TMD1 

abolishes DA uptake activity, without alteration of the expression of the mutant 

protein on the cell surface (Kitayama et al., 1992). Potential N-glycosylation sites 

for post-translational modification are found in the large putative extracellular 

loop between TMD3 and TMD4. This loop in the DAT protein is involved in the 

conformational change of DAT during transportation of DA (Chen et al., 2000; 

Ferrer and Javitch, 1998) and tyrosine residue mutation in this loop diminishes 

uptake activity of the transporter (Loland et al., 2002). Based on the crystal 
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structure of Aquifex aeolicus leucine transporter (LeuTAa), a homologous protein 

to monoamine transporters, a 3-D model of DAT was constructed (Indarte et al., 

2008; Yamashita et al., 2005). This novel structure contained a leucine binding 

pocket formed by TMD1, TMD3, TMD6 and TMD8 (Indarte et al., 2008; 

Yamashita et al., 2005). Models based on LeuTAa are a more rational approach 

to further determine the monoamine transporter-ligand complexes. Recently, two 

substrate binding sites have been found on DAT, S1, the site lodged in the 

interior of the transporter, and S2, the other site located in the “extracellular 

vestibule” (Manepalli et al., 2012). DAT substrates such as DA and amphetamine 

bind both sites and DAT inhibitors such as cocaine and methylphenidate bind the 

S2 site to block transport of substrates (Manepalli et al., 2012). 

The role of phosphorylation in transporter function has been extensively 

studied due to the presence of sites for protein kinase phosphorylation by cAMP-

dependent protein kinase, protein kinase C (PKC) and Ca2+/calmodulin-

dependent protein kinase (Torres et al., 2003b). For instance, PKC activation 

down-regulates transporter activity (Vaughan et al., 1997). Interestingly, down-

regulation of transporter function is largely due to protein trafficking from the cell 

surface to the cytosol, without alternation of the transport activity (Torres et al., 

2003b). Activation of PKC leads to internalization of DAT in a way that closely 

resembles the internalization of G protein-coupled receptors (Daniels and Amara, 

1999).  PKC-induced internalization of DAT is also mediated by ubiquitination of 

the amino terminus of DAT (Miranda et al., 2007). In addition, a very important 

role of protein-protein interactions has been found in the life cycle of monoamine 
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transporters (Sager and Torres, 2011). The role of N-linked glycosylation in the 

third loop between TMD3 and TMD4 has also been investigated using site-

directed mutagenesis and N-linked glycosylation appears to be essential for the 

normal expression of DAT at the cell surface. However, such glycosylation does 

not alter ligand binding or translocation of DA (Nguyen and Amara, 1996; Tate 

and Blakely, 1994; Torres et al., 2003a). Interestingly, glycosylated DAT 

expression and function are significantly higher for nigrostriatal neurons 

compared to mesolimbic neurons, showing that the effect of glycosylation on the 

transporter is brain region dependent (Afonso-Oramas et al., 2009).  

DAT knockout mice provide an opportunity to investigate the role of these 

proteins in vivo. DAT knockout in mice reduced striatal DA content by 95%, but 

increased the extracellular DA concentration (Giros et al., 1996).. In DAT knock 

mice, the persistence of extracellular DA was 300-fold longer compared to wild 

type mice (Giros et al., 1996; Jones et al., 1998a). DAT knockout mice exhibited 

increased locomotor activity compared to wild type mice, associated with 

increased concentrations of extracellular DA (Giros et al., 1996). Interestingly, 

DAT knockout mice exhibited 90% lower TH levels, but increased TH activity, 

compared to wild type mice (Jones et al., 1998a). In addition, DAT knockout mice 

exhibited less D2 receptor expression compared to wild type mice, and the 

decrease in D2 autoreceptors might be responsible for the increase of TH activity 

(Giros et al., 1996; Jones et al., 1999). DAT knockout mice also exhibited an 

increase of COMT activity compared to wild type mice, indicating a compensation 

effect for the elevated concentration of extracellular DA (Jones et al., 1998a). In 
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addition, DAT knockout mice were used to study the mechanism of action of 

amphetamine and methamphetamine (Gainetdinov, 2008). Despite the absence 

of DAT, amphetamine increased the extracellular DA in the NAc and developed 

conditioned place preference (Budygin et al., 2004; Gainetdinov, 2008). 

Methamphetamine did not increase extracellular DA in striatum (Fumagalli et al., 

1998) and methamphetamine-induced dopaminergic neurotoxicity was reduced 

in DAT knock mice (Fumagalli et al., 1998; Numachi et al., 2007).  

Similar to the DAT, the 5-HT transporter (SERT) is a plasma membrane 

transporter, composed of 630 amino acid residues in 12 TMDs with both N and C 

termini located in the cytosol (Rothman and Baumann, 2003). SERT uptakes 5-

HT into presynaptic terminals in a sodium- and chloride-dependent manner and 

one 5-HT molecule is co-transported with one sodium ion and one chloride ion 

(Gu et al., 1998). Among the 12 TMDs, TMD 1, 3, 6 and 8 are involved in 

substrate binding and translocation and interaction of inhibitors with the 

transporter (Rudnick, 2006). In the brain, SERT is expressed on 5-HT neurons in 

the dorsal and medial raphe nucleus, SN, VTA, hypothalamus, striatum, cortex 

and hippocampus (Hoffman et al., 1998). SERT is responsible for uptake of 5-HT 

from the synaptic cleft into the presynaptic terminals. In the cytosol, 5-HT is 

metabolized or transported into synaptic vesicles by VMAT2 for storage and 

subsequent release. In the brain, 5-HT is responsible for regulation of mood, 

appetite, memory, sleep, thyroid function, gastrointestinal function, and sexual 

drive (Jacobs and Azmitia, 1992). SERT inhibitors, such as fluoxetine, 
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paroxetine, and sertraline have been prescribed to treat depression (Rudnick, 

2006). 

Similar to the DAT and SERT, the NE transporter (NET) is a plasma 

membrane transporter, composed of 617 amino acid residues in 12 TMDs with 

both N and C termini located in the cytosol (Torres et al., 2003a). TMDs 1-5 and 

9-12 are involved in substrate translocation, while TMDs 6-8 are responsible for 

interaction with inhibitors (Giros et al.,1994). In the brain, NET is expressed on 

the noradrenergic neurons in locus coeruleus, hippocampus, and cortex (Torres 

et al., 2003a). NET is responsible for uptake of NE from the extracellular space 

into presynaptic terminals. In the brain, NE regulates learning, attention, mood 

arousal, memory, and autonomic functioning (Zapata et al., 2007). NET inhibitors 

such as atomoxetine, reboxetine, desipramine, and mazindol have been 

prescribed to treat depression, ADHD, and drug abuse (Zhou, 2004). 

1.2.5 Vesicular Monoamine Transporter (VMAT) 

Similar to DAT, VMAT contains 12 putative TMDs and the apparent 

molecular weight is 70kDa. VMATs are responsible for uptake of cytosolic 

monoamines [DA, 5-HT, epinephrine and NE] into vesicles for storage and 

subsequent release. Two VMAT isoforms, VMAT1 and VMAT2, have been 

reported (Erickson and Eiden, 1993). In humans, VMAT2 is mainly expressed in 

monoaminergic neurons in the CNS and postganglionic neurons in sympathetic 

nervous system. VMAT1 is mainly expressed in neuroendocrine cells including 

chromaffin and enterochromaffin cells (Peter et al., 1995). VMAT1 and VMAT2 
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are coexpressed in chromaffin cells of the adrenal medulla. Interestingly, the 

distribution of VMAT1 and VMAT2 is dependent on species (Hansson et al., 

1998). Exclusive expression of VMAT1 is observed in rat adrenal medulla, while 

VMAT2 is the major transporter in bovine chromaffin granules (Henry et al., 

1998; Howell et al., 1994).  

Bovine adrenal chromaffin granules have been used extensively to study 

the bioenergetics and the substrate selectivity of VMAT. Kinetics studies have 

been done and the uptake efficiencies were determined to be in the order of 5-

HT>DA> epinephrine>NE (Wimalasena, 2011). Package of monoamines into 

vesicles was not favorable since transport was against the concentration gradient 

and a large amount of energy was required. For instance, Kirshner reported that 

catecholamine uptake into bovine chromaffin granules by VMAT was ATP-

dependent and reserpine sensitive (Kirshner, 1962). The inside of vesicle was 

acidic and the monoamine transport was driven by a transmembrane proton 

gradient generated by the vesicular H+-ATPase. One cytosolic amine inward 

transport was associated with two protons efflux (Knoth et al., 1981b; Parsons, 

2000). The efflux of the first proton from the granules resulted in a conformational 

change in the transporter and a high-affinity amine-binding site on VMAT was 

generated with the concurrent binding of the amine to VMAT. The efflux of the 

second proton resulted in a second conformational change of VMAT, leading to 

transport of the amine molecule from the cytosol into granules and decrease of 

the amine-binding affinity with concurrent dissociation of the amine (Parsons, 

2000).  
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Tetrabenazine (TBZ, Figure 1.1), a benzoquinoline compound, and 

reserpine (Figure 1.1), an indole alkaloid, interacted with chromaffin granule 

VMAT to inhibit uptake of the monoamines (Scherman and Henry, 1984). 

Specifically, binding of [3H]reserpine to chromaffin granule VMAT was biphasic, 

and pH sensitive. Two classes of sites on VMAT were reported: a high affinity 

site (Bmax = 7 pmole/mg of protein and KD = 0.7 nM), and a low affinity site (Bmax 

= 60 pmole/mg of protein and KD = 25 nM). The High affinity site was TBZ-

resistant, while the low affinity site was suggested to be equivalent to 

[3H]dihydrotetrabenazine (DTBZ) binding site (Scherman and Henry, 1984). 

Reserpine binding kinetics was accelerated by addition of ATP, the energy 

source of the granule membrane proton pump. In the presence of ATP, the 

reserpine binding curve became monophasic and was comparable to that of 

[3H]DTBZ (Scherman and Henry, 1984). Reserpine VMAT binding rate was 

accelerated also by the transmembrane pH gradient (Scherman and Henry, 

1984). In addition, substrate NE at micromolar concentrations was capable of 

replacing reserpine binding to chromaffin granule VMAT. However, the pH 

gradient and NE had no effect on VMAT [3H]DTBZ binding kinetics. Such 

differences suggested that VMAT might exist in two conformations: an active 

conformation with high- and low-affinity sites for reserpine and an inactive 

conformation with only the low-affinity site for TBZ. Substrates bound to the high 

affinity site of the active conformation VMAT in a pH gradient and ATP 

dependent manner (Scherman and Henry, 1984). 
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Heterologous expression systems have been used to study characteristic 

of substrate and inhibitor for the two transporters. VMAT1 and VMAT2 have been 

expressed using CV-1 cells derived from Cercopithecus aethiops monkey 

kidneys. 5-HT has a similar affinity for both transporters and DA, NE, and 

epinephrine have a 3-5 fold higher affinity for VMAT2 (Erickson et al., 1996; Yelin 

and Schuldiner, 2002). However, the two isoforms of VMAT exhibit completely 

different affinity for histamine. The affinity of histamine for VMAT2 is much higher 

than that for VMAT1 (Erickson et al., 1996). In addition, the ability of reserpine to 

inhibit VMAT2 function is equivalent to its ability to inhibit VMAT1 function, while 

affinity of TBZ for VMAT2 function is much greater than that for VMAT1 (Peter et 

al., 1994; Yelin and Schuldiner, 2002). Additionally, although heterologous VMAT 

expression systems are utilized extensively to obtain the Ki or Km parameters to 

measure the affinity of various substrates and inhibitors for VMAT, such systems 

lack the complex interactions of VMAT with other synaptic vesicle proteins. Thus, 

the Ki or Km parameters determined in such system may not reflect directly the 

affinities of the ligands for VMAT under physiological conditions. 

Studies on DA uptake parameters using synaptic vesicles from rat brain 

have also been performed (Nickell et al., 2011b; Slotkin et al., 1978; Teng et al., 

1998). The affinity of DA, NE and 5-HT for rat brain VMAT2 was 0.14 ± 0.014, 

0.41 ± 0.07, and 0.12 ± 0.006 µM (Nickell et al., 2011b; Slotkin et al., 1978); The 

affinity of DA, NE and 5-HT for bovine adrenal chromaffin granules expressed 

VMAT2 was 25 ± 7, 92 ± 11, and 19 ± 4 µM (Knoth et al., 1981a; Wimalasena 

and Wimalasena, 2004; Wimalasena, 2011); The affinity of DA, NE and 5-HT for 
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CV-1 cells expressed human VMAT2 was 1.4 ± 0.2, 3.4 ± 0.5 and 0.9 ± 0.1 µM 

(Erickson et al., 1996; Wimalasena, 2011). Thus, rat brain VMAT2 exhibited 

higher affinity for monoamine, including DA, NE and 5-HT, compared to bovine 

adrenal chromaffin granules expressed VMAT2 and CV-1 cell expressed human 

VMAT2. The affinity of [3H]DTBZ for rat brain VMAT2 was 1.67 nM (Teng et al., 

1998), while the affinity of [3H]DTBZ for bovine adrenal chromaffin granules 

expressed VMAT2 and CV-1 cells expressed human VMAT2 was 1.3 and 97 nM, 

respectively (Scherman and Henry, 1984; Teng et al., 1998). Thus, the affinity of 

[3H]DTBZ for rat brain VMAT2 was approximately the same as bovine adrenal 

chromaffin granules expressed VMAT2, but higher compared to the CV-1 cell 

expressed human VMAT2. 

In addition, heterologous expression systems have been used extensively 

to study the structure-function relationships of VMAT. VMAT1 and VMAT2, 

although expressed from two different genes, exhibit overall sequence homology 

of 60% (Erickson et al., 1996). Although the crystallographic structures of VMAT 

have not been resolved, the sequence of each protein has been reported and 

suggested to be transmembrane proteins with 12 TMDs (Wimalasena, 2011). Rat 

VMAT2 isolated by expression cloning in CV-1 cell lines indicates that both C- 

and N-terminals of the transporter face the cytosol (Erickson et al., 1992). 

Studies using photoaffinity-labeling techniques to characterize VMAT2-specific 

ligands suggest that the C-terminal half of the VMAT2 molecule interacts with the 

substrate (DA, NE and 5-HT), whereas the N-terminal half of the protein interacts 

with reserpine and TBZ (Sievert and Ruoho, 1997). Reserpine is hypothesized to 
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bind to the high affinity site on VMAT2 as a substrate; however, the compound 

can neither be transported nor released due to the relative bulkiness compared 

to the monoamines. The high affinity of reserpine for VMAT2 and the bulkiness of 

the analog lead to the irreversible binding of this inhibitor at VMAT2 (Rudnick et 

al., 1990).  

Mutagenesis studies have been performed and His419 is involved in 

coupling ATPase generated energy to transport monoamines by facilitating the 

first proton-dependent conformational change of the transporter, generating the 

high-affinity amine-binding site on VMAT1 (Shirvan et al., 1994). The Asp431 

residue is responsible for substrate transport and the proposed second 

conformational change in the protein, leading to transport of the amine molecule 

from the cytosol into the vesicles (Steiner-Mordoch et al., 1996). In addition, four 

aspartic acid residues and one Lys residue in the VMAT2 sequence are highly 

conserved and may be responsible for recognition of the substrate (Wimalasena, 

2011). 

Post-translational modifications of VMAT2 including glycosylation and 

phosphorylation have been reported. However, mutant VMAT transporters 

devoid of all three glycosylation sites are still capable of taking up 5-HT and of 

binding reserpine. Thus, glycosylation is not essential for regulation of transporter 

function (Yelin et al., 1998). Phosphorylation is ubiquitous in regulating protein 

activity and also is involved in regulating VMAT function. A protein kinase 

inhibitor, K252a, increases VMAT function, while a protein phosphatase inhibitor, 
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okadaic acid, has the opposite effect (Nakanishi et al., 1995). Rat VMAT2, but 

not VMAT1, is constitutively phosphorylated by the acidotropic kinases casein 

kinase I and casein kinase II, and serine 512 and 514 at the carboxyl terminus of 

VMAT2 are the phosphorylation sites (Krantz et al., 1997). However, 

simultaneous replacement of Ser-512 and Ser-514 with Ala did not change 

transporter function (Krantz et al., 1997). Thus, phosphorylation may not regulate 

VMAT function directly. 

VMAT2 knockout mice models have been generated to study the 

physiological effects of VMAT2. Homozygous (VMAT2-/-) mice are smaller, 

hypoactive, feed poorly, and die a few days after birth. Significantly reduced 

monoamine content is observed in brains from VMAT2-/- animals (Fon et al., 

1997; Wang et al., 1997). However, monoamine metabolites of VMAT2-/- mice 

are not different compared to wild type. Results indicate that monoamines in 

VMAT2 -/- mice brain are not stored in synaptic vesicles and are metabolized 

rapidly. Thus, vesicular transport of monoamine into vesicles protects newly 

synthesized neurotransmitter from metabolism.  

Recent studies classified VMAT2-containing vesicles into two groups: 

vesicles that co-fractionate with synaptosomal membranes after osmotic lysis, 

and vesicles that do not. VMAT2 localized on vesicles that co-fractionate with 

synaptosomal membranes are defined as VMAT2M, while the VMAT2 on the 

vesicles that do not co-fractionate with synaptosomal membranes are defined as 

VMAT2C (Fleckenstein et al., 2008). No evidence indicates that the VMAT2M 
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and VMAT2C are different or interconvertible proteins. Interestingly, different 

kinetics of these two transporters have been reported using the respective 

transporter-associated vesicles (Volz et al., 2007).  

DA uptake into the VMAT2C containing vesicles is ATP- and temperature-

dependent and obeys Michaelis-Menten kinetics (Volz et al., 2006). In contrast, 

DA uptake into the VMAT2M containing vesicles does not display Michaelis-

Menten kinetics. DA uptake by VMAT2M fits a sigmoidal curve, in which uptake 

rate is dramatic affected over the concentration range spanning the “steepest” 

portion of the curve (Volz et al., 2007). The different kinetic profiles of VMAT2M 

and VMAT2C might result in different physiological roles and distinct therapeutic 

opportunities. However, in a subsequent study from Dr. Fleckenstein’s lab (Chu 

et al., 2010), the sigmoidal curve was not replicated. Different methods used in 

the studies might be responsible for the contradictory results. Rotating disk 

voltammetry was employed in the studies in 2007 (Volz et al., 2007), while 

[3H]DA uptake kinetic study optimized from our lab (Hong et al, 1998) was used 

in the later study (Chu et al., 2010). 

 

1.3 Methamphetamine Mechanism of Action 

Methamphetamine and amphetamine exhibit no differences to induce DA 

release in striatum, no difference in elimination rates, or other pharmacokinetic 

properties (Sulzer and Pothos, 2000), and equal doses of the two drugs are not 
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differentiated in human studies (Lamb and Henningfield, 1994). However, the 

effect of the two drugs on memory and behavioral tolerance are different 

probably due to a subtly greater DA release evoked by amphetamine in the 

prefrontal cortex (Shoblock et al., 2003a; Shoblock et al., 2003b). In addition, the 

synthesis process of methamphetamine is easier compared to amphetamine, 

which contributes to more methamphetamine available on the illicit market (Cho, 

1990).  

1.3.1 Methamphetamine on DA biosynthesis 

Amphetamine, in a concentration-dependent manner, enhanced the rate 

of DA synthesis in a study using striatal synaptosome preparations from adult 

rats (Costa et al.,1972). The rate of DA synthesis was dependent on the rate of 

tyrosine hydroxylation. The increase of synthesis rate reached a peak (70% 

increase) at 0.015 mM amphetamine, while increasing the concentration of 

amphetamine decreased the synthesis rate and 0.5 mM amphetamine abolished 

the increase of synthesis completely (Fung and Uretsky, 1982). Free calcium 

ions in striatum was suggested to be responsible for the enhancement of DA 

synthesis by amphetamine (Fung and Uretsky, 1982). The following study 

determining TH activity supported the critical role of calcium in the process of 

tyrosine hydroxylation by facilitating phosphorylation of serine residues on TH 

(Griffiths and Marley, 2001). The mechanism underlying the effect of a high 

concentration  amphetamine to inhibit TH has been suggested to be due to the 

feedback inhibition caused by an increase in cytosolic DA (Harris and 
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Baldessarini, 1975). Similarly, methamphetamine at 0.01 mM enhanced DA 

synthesis by up-regulating activity of TH activity, increasing DA in the cytosol in 

mouse midbrain neuronal cultures (Larsen et al., 2002). However, a toxic 

regimen of methamphetamine pretreatment (4 injections; 10 mg/kg/injection; 2 h 

intervals) decreased TH activity in studies using male rats. In such case, TH was 

readily nitrated by both nitric oxide and peroxynitrite produced by high doses of 

methamphetamine (Kuhn et al., 1999). Additionally, decreased DA content in rat 

brain was due to the toxic effects of methamphetamine. In such a case, 

methamphetamine-induced elevation of cytosolic DA was readily oxidized to form 

reactive oxygen species and quinones, leading to increases in oxidative stress 

(Yamamoto et al., 2010).  

1.3.2 Methamphetamine on DA metabolism 

Under physiological conditions, DA in the cytosol is metabolized by MAO 

located on the outer mitochondrial membrane. Amphetamine inhibits the activity 

of the enzyme by blocking the consumption of oxygen otherwise used to oxidize 

substrates (Sulzer and Pothos, 2000). However, MAO inhibitors alone do not 

increase DA release, while a VMAT2 inhibitor reserpine and MAO inhibitor 

pargyline together induce a profound increase in DA release similar to 

amphetamine (Mosharov et al., 2003). Interestingly, the relatively low affinity of 

amphetamine (Ki = 0.01 mM) and methamphetamine (Ki = 0.1 mM) for MAO have 

been reported (Mantle et al., 1976; Robinson, 1985). Since amphetamine can 

enter the presynaptic terminal via transport or lipophilic diffusion, it may 
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accumulate in the presynaptic terminals to a concentration that inhibits MAO 

function (Sulzer and Pothos, 2000). However, MAO was collected from rat liver in 

the above studies and MAO in the brain could exhibit different affinity for 

amphetamine and methamphetamine. 

1.3.3 Methamphetamine on Plasma Membrane Transporters  

Amphetamine induces the release of monoamines including NE, 5-HT, 

and DA among which DA is primarily responsible for amphetamine-induced 

reinforcing and rewarding effects (Sulzer et al., 2005). Mechanisms of 

amphetamine-mediated DA release have been studied. DAT uptake inhibitors, 

nomifensine and cocaine, inhibit amphetamine-induced DA release, indicating 

that DA release is DAT mediated (Fleckenstein et al., 2007; Raiteri et al., 1979). 

In addition, other monoamine transporters such as SERT and NET are also 

regulated by amphetamine and methamphetamine, and are involved in the action 

of these two stimulants (Budygin et al., 2004; Gainetdinov, 2008).  

Amphetamine inhibits [3H]monoamine uptake into rat synaptosomes via an 

action at plasma membrane transporters including SERT, NET and DAT (Coyle 

and Snyder, 1969; Ross and Renyi, 1964; Ross and Renyi, 1966). Amphetamine 

acts as a substrate for monoamine transporters and is co-transported with 

Na+/Cl- similar to monoamines (Bonisch, 1984). Facilitated exchange diffusion 

model was suggested in which extracellular amphetamine was transported into 

cells by DAT and displaced DA on the inner binding site on DAT, and the DA was 

transported reversely into extracellular space (Fischer and Cho, 1979).  
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A further study demonstrated that amphetamine accumulated in a 

saturable, temperature-dependent, and ouabain (an inhibitor of sodium-

potassium ATPase)-sensitive manner in striatal synaptosomes, indicating that 

amphetamine was a substrate for DAT (Zaczek et al., 1991). An 

electrophysiology study demonstrated that both amphetamine and 

methamphetamine elicited DA-like transporter-associated currents (Sonders et 

al., 1997), indicating that amphetamine and methamphetamine act as substrate 

at DAT and are transported by DAT into the cytosol, and that cytosolic DA is 

transported to extracellular space. Subsequently, a concentration-dependent 

dual mechanism of amphetamine-induced DA release was proposed. 

Specifically, extracellular amphetamine at a low concentration substituted for 

cytosolic DA via an interaction with DAT, while amphetamine at higher 

concentrations diffused into presynaptic terminals and displaced DA from 

intraneuronal binding sites (Liang and Rutledge, 1982). In addition to the 

amphetamine-induced transporter-like DA release, an amphetamine-induced 

faster channel-like DA release via DAT was reported (Kahlig et al., 2005). In such 

channel-like DA release, DAT acts like a channel instead of a transporter and 

can not transport DA against the concentration gradient. Amphetamine was 

responsible for the activation of this channel-like state of DAT, while DA inhibited 

this state of the transporter (Kahlig et al., 2005). The study demonstrated that 

10% of amphetamine-induced DA release was via the channel-like state of DAT 

(Kahlig et al., 2005).  
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Amphetamine and methamphetamine pretreatment decreased DAT 

function. The extension and duration of transporter function loss depended on 

the regimen of administration of the drug. A single injection of methamphetamine 

(15 mg/kg, s.c.) down-regulated DAT function by around 50%, while function loss 

was capable of recovering within 24 hours (Fleckenstein et al., 1997). Whereas 

multiple injections (4 injections; 10 mg/kg/injection; 2 h intervals) resulted in DAT 

function down-regulation by around 50% for up to 9 days after cessation (Eisch 

et al., 1996; Fleckenstein et al., 1997). Studies indicated that the down-regulation 

of DAT function was not associated with loss of the transporter protein, but due 

to a modification of the protein including phosphorylation and internalization, or 

dysregulation of DAT function by reactive species formation (Fleckenstein et al., 

2007).  

1.3.4 Effect of Methamphetamine on VMAT2  

In addition to plasma membrane uptake transporters like DAT, 

monoamine secretory/synaptic vesicles play an important role in the action of 

amphetamine. Burn and Rand showed that effects of amphetamine were 

abolished by a VMAT2 inhibitor, reserpine, indicating the involvement of vesicular 

DA on amphetamine action (Burn and Rand, 1958). Consistent with Burn and 

Rand’s study, amphetamine-induced NE release was inhibited by reserpine in 

most studies (Fitzgerald and Reid, 1993; Florin et al., 1995; Kalisker et al., 1975). 

Little or no effect of reserpine on amphetamine-induced DA release has been 

demonstrated in vivo experiments measuring effects of reserpine and 
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amphetamine on DA release (Arbuthnott et al., 1990; Callaway et al., 1989; 

Niddam et al., 1985). However, the inhibitory effect of reserpine has been 

reported in in vitro studies using neuronal cultures (Parker and Cubeddu, 1986; 

Parker and Cubeddu, 1988). Contradictory results of the effect of reserpine on 

amphetamine-induced DA release have been found in studies using 

synaptosomes as well (Bagchi et al., 1980; Masuoka et al., 1982). The 

explanation for the different findings between NE and DA was that NE was 

mainly synthesized from DA within synaptic vesicles, and the concentration of NE 

in vesicles would be expected to be higher than that in the cytosol. Thus, the 

effect of VMAT2 inhibition by reserpine on amphetamine-induced release was 

expected to be greater for NE than DA. The explanation for the conflicting 

findings measuring DA release was that TH activity could be upregulated by 

reserpine, producing an increase of cytosolic DA (Pasinetti et al., 1990). 

However, in the studies measuring DA in ventral midbrain neuronal cultures, 

shorter-term exposure of reserpine (90 min) did not upregulate TH activity 

(Sulzer et al., 1996). Such short-term exposure of reserpine depleted vesicular 

DA and inhibited amphetamine-induced DA release by around 75% (Larsen et 

al., 2002; Sulzer et al., 1996).  

Genetic manipulations have been used to study the role of synaptic 

vesicles in amphetamine action. DAT and VMAT2 were expressed using COS 

cells respectively or together (Pifl et al., 1995). Despite lacking synaptic vesicles, 

the cells contained other acidic organelles, possibly including endosomes and 

lysosomes which expressed VMAT2, providing a means to accumulate DA. 
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Amphetamine-evoked DA release occurred in cells that expressed DAT alone, 

while greater release was observed for cells that coexpressed VMAT2 and DAT. 

Amphetamine-induced DA release from cells that expressed DAT alone reached 

a peak and quickly dropped back to baseline release (Pifl et al., 1995). However, 

amphetamine-induced DA release was sustained in COS cells that coexpressed 

DAT and VMAT2 (Pifl et al., 1995). The above evidence indicates that cytosol DA 

and vesicular DA were two components in amphetamine-induced DA release and 

both were essential for the action of the drug. 

In addition to COS cells that expressed VMAT2 and DAT, VMAT2 and 

DAT knockout mice have been used to study the role of VMAT2 in amphetamine-

induced DA release. DAT knockout mice did not exhibit amphetamine-induced 

DA release (Giros et al., 1996; Jones et al., 1998b). VMAT2 knockout mice died 

soon after birth, while neuronal cultures collected from VMAT2 knockout mice 

survived (Fon et al., 1997; Takahashi et al., 1997). Interestingly, amphetamine-

induced DA release from ventral midbrain neurons collected from VMAT2 

knockout mice was decreased by 65% (Fon et al., 1997), indicating the important 

role of vesicular component of DA in amphetamine-induced DA release.  

Except for knockout mouse mutants, it is impossible to distinguish DA in 

cytosol versus vesicles until a means to measure cytosolic catecholamines has 

been introduced (Sulzer et al., 1995). An intracellular carbon fiber electrode was 

used to determine free cytosolic DA in a giant DA neuron in the pond snail 

Planorbis corneus. An increase of cytosolic DA in the presence of amphetamine 
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was found using the above method, supporting the hypothesis that amphetamine 

redistributed DA from the vesicles to the cytosol. In a following study to 

determine the cytosolic catecholamine concentrations, intracellular patch 

electrochemistry was developed (Mosharov et al., 2003), in which a carbon fiber 

electrode was placed inside a patch electrode inserted into the whole chromaffin 

cells. Amphetamine at 0.01 mM increased cytosolic DA by 15-fold within 10-15 

min. Using carbon fiber electrodes, the amount of DA that was released per 

secretory vesicle fusion, i.e., the ‘‘quantal size’’, was determined in the presence 

of amphetamine. Amphetamine at 10 µM decreased quantal size by 50% in 10 

min periods in PC12 cells (Sulzer et al., 1995). Thus, all of the above evidence 

indicates that amphetamine redistributed DA from synaptic vesicles to the 

cytosol. 

In conclusion, amphetamine redistributes vesicular DA to the cytosol in 

mutated COS cell lines and mice, and neuronal cultures determined by 

electrochemical detection techniques. Later, in a study using fast scan cyclic 

voltammetry (Jones et al., 1998b), the real time changes of DA in the 

extracellular fluid of striatal slices was determined. In brain slices from wild-type 

mice, amphetamine increased extracellular DA gradually over a 30 min period 

with a simultaneous disappearance of DA available for depolarization-evoked 

release. In contrast, in slices from DAT mutant mice, amphetamine did not 

increase extracellular DA, but the similar disappearance of DA for depolarization-

evoked release occurred. The above evidence suggested that most 

amphetamine-induced DA release from the presynaptic terminals was originally 
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redistributed from vesicles into the cytosol (Jones et al., 1998b). In addition, a 

concentration-dependent response of amphetamine action has been found, in 

which low concentrations of amphetamine preferentially released cytosolic DA, 

while higher concentrations of the drug redistributed vesicular DA to the cytosol 

(Seiden et al., 1993).  

Further studies suggested that amphetamine and amphetamine 

derivatives act as VMAT2 substrates (Partilla et al., 2006). Such substrate-type 

ligands once bound to VMAT2 were transported subsequently into synaptic 

vesicles and promoted monoamine release. In contrast, VMAT2 uptake 

inhibitors, including reserpine and TBZ (Scherman and Henry, 1984), once 

bound to VMAT2, were not transported. These inhibitors elevated transmitter 

concentrations in the cytosol by blocking VMAT2 uptake of transmitter from the 

cytosol. Two assays, inhibition of [3H]DHTBZ binding and inhibition of [3H]DA 

uptake, have been developed to differentiate VMAT2 substrates from VMAT2 

inhibitors. Binding assays measure the affinity of analogs for the DTBZ binding 

site on VMAT2, and uptake assays measure the ability of analogs to inhibit 

[3H]DA transport across the vesicular membranes. Previous studies 

demonstrated that VMAT2 inhibitors had similar potencies in both types of 

assays, while VMAT2 substrates had much greater potency in the functional 

assay than the binding assay (Partilla et al., 2006). For instance, VMAT2 uptake 

inhibitors (TBZ and reserpine) had similar potencies in both assays (Partilla et al., 

2006), while methamphetamine inhibited [3H]DHTBZ binding with a 80 µM Ki 

value and inhibited [3H]DA uptake with a 0.1 µM Ki value (Nickell et al., 2010). 
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Similar results have been demonstrated in the studies using substrates, including 

DA and NE, in which the substrates inhibited VMAT2 function at the micromolar 

range, but had much lower affinity for the DTBZ binding site on VMAT2 (Partilla 

et al., 2006). In our previous study, vesicles preloaded with [3H]DA 

spontaneously released transmitter and this release was prevented by reserpine 

(Horton et al., 2013; Teng et al., 1998), further indicating reserpine is an inhibitor 

of VMAT2. In contrast, vesicles preloaded with [3H]DA were depleted in the 

presence of methamphetamine (Nickell et al., 2011b), confirming that the action 

of methamphetamine on vesicular DA was different from reserpine. Thus, similar 

to the action of amphetamine on DAT, the facilitated exchange diffusion model 

could be used to explain the action of amphetamine on VMAT2, however, the 

mechanism underlying the reverse transport was not clear (Sulzer et al., 2005). 

No direct evidence was provided to show that amphetamine competed with 

catecholamines as an actual substrate for VMAT2, and the role of amphetamine 

competition with catecholamines was not clearly differentiated from the drug’s 

week base effect on the proton gradient associated transport (Sulzer et al., 

2005). Later studies indicated that methamphetamine elicited DA release by two 

proposed mechanisms: 1) inhibition of VMAT2 function (Gonzalez et al., 1994), 

and 2) depletion of vesicular DA by degrading the pH gradient that generated 

energy for the transporter (Sulzer and Rayport, 1990). 

Although it is difficult to test whether amphetamine and derivatives are 

actually substrates for VMAT2, it is reasonable that transmitters and 

amphetamine compete for a common site on VMAT2. Binding studies using 
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amphetamine and its derivatives have measured the affinity of the drugs for 

VMAT. Affinity of amphetamine for VMAT2 is around 10-fold higher than that for 

VMAT1 in the studies using transfected fibroblasts that express either VMAT1 or 

VMAT2 (Erickson et al., 1996). Affinity of S-(+)-amphetamine for both VMAT 

isoforms is around 5-fold more potent than that of the R-(-)-isomer, as has also 

been demonstrated with DAT. Consistently, affinity of methamphetamine for 

VMAT2 is 10-fold higher than that of VMAT1, when transfected CHO cells 

expressing either VMAT1 or VMAT2 were employed; and the S-(+)-isomer of 

methamphetamine is 3-fold more potent at VMAT2 (Peter et al., 1994). 

Competition at the VMAT2 binding site between methamphetamine and 

reserpine has been demonstrated, and the results suggest that these two drugs 

bind to the same site on VMAT2 (Peter et al., 1994). Since reserpine is 

suggested to bind to the same site that the monoamines and methamphetamine 

bind, methamphetamine might bind the same site that the monoamines bind.  

Amphetamine and methamphetamine both displace [3H]DTBZ binding at VMAT2 

(Gonzalez et al., 1994; Nickell et al., 2010). Since TBZ and reserpine are 

suggested to bind to different sites on VMAT, the underlying mechanism of 

amphetamine to displace DTBZ and reserpine is still not fully understood.  

Methamphetamine is a weak base with a pKa value of 9.9 and is capable 

of decreasing the proton gradient provided by secretory vesicles. Using acridine 

orange, a weak base vital dye, real time vesicular pH gradients were determined 

in chromaffin vesicles and secretory organelles of midbrain DA neuronal culture 

(Sulzer and Rayport, 1990). Amphetamine at 50 µM decreased 50% of the 
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chromaffin vesicle proton gradient. Interestingly, amphetamine-induced collapse 

of chromaffin vesicle pH gradients was not stereo-specific, indicating that 

amphetamine molecule entered the vesicles via lipophilic diffusion. Meanwhile, 

the effect of amphetamine was not blocked by reserpine, further suggesting that 

the entry of the molecule into the isolated vesicle preparation was due to 

lipophilic diffusion instead of VMAT transport. Also, if the effect of amphetamine 

was due to its weak base property, any weak base compounds would be 

expected to abolish the vesicular acidic pH gradient. A further study 

demonstrated that ammonium chloride and chloroquine, agents which have been 

long used to disrupt pH gradients, released DA from DA neuronal culture (Sulzer 

et al., 1993). Thus, weak base compounds were capable of decreasing vesicular 

pH gradients and the subsequent lack of energy decreased vesicular DA 

transport (Mundorf et al., 1999; Pothos et al., 2002). However, a straightforward 

relationship between change of pH gradients and accumulation of monoamine 

has not been established (Reith and Coffey, 1994). The ability of amphetamine to 

abolish pH gradient was less efficient than that to release monoamine. That is, 

amphetamine at 3 µM was capable of depleting 70% of vesicular DA, but only 

decreasing 12% of proton gradient using isolated synaptic vesicles from rat 

whole brain. In contrast, at 100 µM, amphetamine was capable of inducing 

correlated level of vesicular alkalinization with DA release (Reith and Coffey, 

1994). Bafilomycin, not a VMAT substrate, was demonstrated to induce proton 

pump inhibition and reduce the pH gradient 2 times more than amphetamine, but 



  37 
 

release DA at only half of the rate (Floor and Meng, 1996). These results suggest 

that alkalization is not sufficient to explain vesicular DA release. 

Finally, the most convincing evidence of the incompleteness of the weak 

base theory for explaining effects of amphetamine on vesicular DA release was 

that the S-(+)- amphetamine was more effective than the R-(-)-isomer in 

depleting vesicular DA content. The two isomers exhibited the same ability to 

abolish the proton gradient and the S-(+)-isomer preferentially bound to the 

transporter (Peter et al., 1994). Such results suggested a role of amphetamine-

induced inhibition of VMAT function in regulating vesicular DA content (Erickson 

et al., 1996; Peter et al., 1994). 

In addition, effects of methamphetamine injection on VAMT2 have been 

studied (Brown et al., 2000; Hogan et al., 2000). Multiple injections of 

methamphetamine (four injections, 10 mg/kg per injection, s.c., 2-h intervals) 

decrease striatal VMAT2 uptake and DTBZ binding, and the drug-induced 

inhibition persists at least 24 hours in mice and rats. Consistent with the binding 

study, multiple injections of methamphetamine decreased VMAT2 

immunoreactivity 24 hours after treatment (Eyerman and Yamamoto, 2005; 

Riddle et al., 2002). All of the above studies on VMAT2 function and expression 

were performed using VMAT2C containing vesicles. For VMAT2M containing 

vesicles, multiple injections of methamphetamine (four injections, 10 mg/kg per 

injection, s.c., 2-h intervals) decreased VMAT2M immunoreactivity 24 hours after 

the last treatment (Eyerman and Yamamoto, 2005), but did not alter VMAT2M 
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expression 1 hour after the treatment in rats (Riddle et al., 2002). The effect of 

the same dosing regimen of methamphetamine on DA uptake by VMAT2M and 

on VMAT2M immunoreactivity persisted up to seven days after treatment 

(Eyerman and Yamamoto, 2005; Eyerman and Yamamoto, 2007). A similar 

inhibitory effect of the same dosing regimen of methamphetamine on DA uptake 

and transporter immunoreactivity was also found using VMAT2C containing 

vesicles from rat striatum (Brown et al., 2000; Chu et al., 2008; Eyerman and 

Yamamoto, 2005; Eyerman and Yamamoto, 2007). In addition, a single 

methamphetamine administration (15 mg/kg s.c.) decreased DA uptake at 

VMAT2M 1 hour after treatment, and transporter function recovered 24 hours 

after the treatment (Chu et al., 2010). The effect of single methamphetamine 

injection on VMAT2 function and immunoreactivity was proposed to be due to 

drug-induced trafficking of the transporter (Chu et al., 2010). However, 

methamphetamine-induced decreases in VMAT2C expression was not 

accompanied by an increase of VMAT2M expression (Chu et al., 2010). Thus, 

mechanisms beyond redistribution of vesicles underly the acute effects of 

methamphetamine challenge (Chu et al., 2010).  

1.4 Methamphetamine Neurotoxicity 

Damage to dopaminergic and serotonergic nerve terminals in rat brain has 

been reported after methamphetamine and amphetamine administration 

(Fleckenstein et al., 2009; Yamamoto et al., 2010). Specifically, 

methamphetamine administration resulted in a long-term decrease of TH activity, 
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monoamine content, and monoamine transporter function (Hotchkiss et al., 1979; 

Ricaurte et al., 1980; Wagner et al., 1980). In addition, methamphetamine 

produced hyperthermia that played an important role in producing the long-term 

damage to the dopaminergic and serotonergic nerve terminals (Hotchkiss and 

Gibb, 1980). In addition, methamphetamine administration decreased 5-HT 

content and SERT function in prefrontal cortex, hippocampus, and striatum in 

rats (Ricaurte et al., 1980). Methamphetamine-induced decrease of 5-HT content, 

and function of DAT and SERT lasted up to 4 years after the last administration 

of drug in nonhuman primates (Woolverton et al., 1989). Meanwhile, 

methamphetamine-induced decrease of DAT density lasted up to 3 years or 

more in abstinent humans (McCann et al., 1998).  

Methamphetamine-induced neurotoxicity was accompanied by the 

production of reactive oxygen and reactive nitrogen species that contributed to 

the induction of oxidative stress (Stephans and Yamamoto, 1994). Excessive 

extracellular DA can be oxidized to produce DA quinones and reactive oxygen 

species, leading to increases in oxidative stress (Michel and Hefti, 1990). The 

involvement of oxidative stress in methamphetamine-induced neurotoxicity was 

further supported by studies showing that free radical scavengers and 

antioxidants reduced the neurotoxic effects of methamphetamine (Fukami et al., 

2004; Wagner et al., 1980). Reactive radicals were responsible for the production 

of lipid peroxides and oxidization of proteins in nerve terminals. Besides reactive 

oxygen species, reactive nitrogen species seem to be involved in mediating 

methamphetamine-induced neurotoxicity. The role of reactive nitrogen species in 
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methamphetamine-induced toxicity was supported by the fact that nitric oxide 

synthase inhibition was neuroprotective against methamphetamine-induced long-

term DA depletion in mice (Itzhak and Ali, 1996). In addition, methamphetamine 

administration potentiated the formation of peroxynitrite nitrotyrosine, which 

elicited the nitration of tyrosine residues on various proteins including TH and 

vesicular monoamine transporters (Kuhn et al., 2002). Overall, 

methamphetamine administration resulted in lipid peroxidation and protein 

oxidation or nitration, contributing the toxic effects on DA and 5-HT terminals. 

Involvement of glutamate excitotoxicity also was suggested in the 

neurotoxic effects of methamphetamine (Battaglia et al., 2002). Glutamate-

induced excitotoxicity is mediated by the over activation of glutamate receptors 

and the subsequent elevation of intracellular Ca2+ levels. Such increase of Ca2+ 

activates several kinases, lipases, and proteases, which leads to cytoskeletal 

protein damage, free radicals generation, DNA damage, and ultimately 

neurodegeneration (Lipton and Rosenberg, 1994; Sattler and Tymianski, 2000). 

Metabotropic glutamate inhibitors prevented methamphetamine-induced DA 

depletions in mice, without altering methamphetamine-induced hyperthermia, 

suggesting that activation of glutamate receptor was responsible for the DA 

depletions (Battaglia et al., 2002). Administration of a toxic regimen of 

methamphetamine increased extracellular glutamate concentrations in rat 

striatum, which was thought to result in the excitotoxicity (Stephans and 

Yamamoto, 1994). In addition, elevation of intracellular calcium led to reactive 

nitrogen species generation, as well as nitric oxide synthase activation, which in 
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turn resulted in reactive nitrogen species generation (Schmidt et al., 1996).  Thus, 

methamphetamine-induced excitotoxicity could synergize with 

methamphetamine-induced oxidative stress. 

In addition to oxidative stress and excitotoxicity, alteration in mitochondrial 

function was produced by methamphetamine resulting in toxic effects (Brown et 

al., 2005; Burrows et al., 2000). In addition, mitochondrial function was inhibited 

by methamphetamine when the rats were maintained normothermic, suggesting 

that such an inhibitory effect was not due to methamphetamine-induced 

hyperthermia. Interestingly, the glutamate receptor antagonist MK-801 and the 

peroxynitrite decomposition catalyst Fe-TPPS attenuated methamphetamine-

induced inhibition of mitochondrial function (Brown et al., 2005). Thus, the 

convergence of methamphetamine-induced excitotoxicity and inhibition of 

mitochondrial function appears to exist (Quinton and Yamamoto, 2006). 

1.5 Review of Potential Treatment and Therapeutic Targets for 

Methamphetamine Abuse 

1.5.1 Behavioral Therapy 

No pharmacotherapy has been approved by the FDA to be an effective 

treatment of methamphetamine abuse, even though a number of clinical trials 

have been conducted. Several behavioral treatments have been developed for 

the treatment of methamphetamine abuse (Carroll and Onken, 2005). Among 

which, contingency management, motivational interviewing, and cognitive 
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behavioral therapy are the three behavioral therapies with the strongest level of 

empirical support in clinical trials (Sofuoglu et al., 2013). Contingency 

management is a type of treatment used in which abstinence or adherence to 

program rules are reinforced with incentives (Higgins et al., 1991). This 

behavioral task employs operant conditioning in which a certain behavior (drug 

abstinence in this situation) is reinforced. In such a behavior treatment, monetary 

reward is usually provided and contingency management is moderately effective 

in reducing methamphetamine abuse (Shoptaw et al., 2006b). Motivational 

interviewing is a type of treatment in which a specific, nonjudgmental interviewing 

style is used to motivate the patient to achieve their goals (Hettema et al., 2005; 

Miller, 2005). Warmth, genuine empathy, and unconditioned positive regard are 

useful for the improvement of treatment efficacy (Hettema et al., 2005). Patients 

are guided to think differently about their behavior and to consider the benefits 

through change (drug abstinence in this case) (Hettema et al., 2005). Cognitive 

behavioral therapy is a type of therapy in which specific strategies and skills are 

introduced to reduce substance use (Carroll et al., 1994). It has been noted that 

methamphetamine addicts show significant cognitive impairments, especially in 

attention, working memory and response inhibition functions (Sofuoglu, 2010). 

Cognitive impairments are generally associated with addiction and the possible 

relevance of these cognitive deficits as predictors of treatment outcome in 

addiction has been proposed. Cognitive behavioral therapy, treatment targeting 

cognitive-enhancement strategies for methamphetamine abuse, has been 

reported to achieve cognitive improvement in the drug addicted populations 
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(Kiluk et al., 2010). However, few studies have been performed to directly assess 

the ability of cognitive enhancing treatments to improve substance use 

outcomes. Thus, the efficacy of such an approach needs to be determined in 

future clinical research (Sofuoglu et al., 2013). Despite the limited success of 

contingency management, motivational interviewing, and cognitive behavioral 

therapy, behavior therapies are not efficacious for all methamphetamine addict 

populations (Sofuoglu et al., 2013). For instance, cognitive behavioral therapy 

was suggested not to treat patients who are not medically stable. In addition, one 

of the primary limitations of behavioral treatment is that high level of motivation 

and cooperation are required from the patients, and behavioral therapy is limited 

to compliant individuals (Ronen, 2004). Psychotherapy alone as treatment for 

drug abuse was criticized by Dr. George Woody, and was suggested to be used 

as a secondary treatment (Woody, 2003). Thus, pharmacotherapies for the 

treatment of methamphetamine abuse are in demand. 

1.5.2 Replacement Therapy 

A replacement therapy model has been developed using stimulants to 

treat methamphetamine abuse (Moeller et al., 2008). D-amphetamine is capable 

of reducing intravenous and oral administration of illicit amphetamine in a clinical 

study on amphetamine abusing patients (White, 2000). Methylphenidate, a DAT 

blocker, has been suggested also as a potential treatment for methamphetamine 

addiction, and is well tolerated and effective for alleviating symptoms of 

depression in amphetamine abstinence (Laqueille et al., 2005). Furthermore, the 
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amount of amphetamine uses by patients with severe dependence is significantly 

decreased by methylphenidate (Tiihonen et al., 2007). The above studies 

suggest that methylphenidate could be a potential treatment for amphetamine 

addiction. However, potential for abuse liability of methylphenidate is a major 

concern of this approach (Manchikanti, 2007; Sweeney et al., 2013).  

1.5.3 5-HT Receptors as a Therapeutic Target 

5-HT receptors are a group of GPCRs and ligand-gated ion channels 

widely distributed in both the central and peripheral systems (Hoyer et al., 1994). 

5-HT receptors mediate various biological and neurological processes including 

aggression, anxiety and appetite. 5-HT receptors are targets of various 

pharmacotherapies, including many antidepressants, antipsychotics, and 

gastroprokinetic agents. Activation of these receptors by 5-HT regulates both 

excitatory and inhibitory neurotransmission (Nichols and Nichols, 2008). Seven 

main subtypes of 5-HT receptors have been characterized, among which 5-HT1 

and 5-HT5 receptors are coupled to the inhibitory Gi/Go-protein. 5-HT3 receptors 

are ligand-gated ion channels. 5-HT2, 5-HT4, 5-HT6, 5-HT7 receptors are the 

excitatory receptors coupled to the GqG11- and Gs-protein (Hoyer et al., 1994; 

Nichols and Nichols, 2008). 

Serotonergic systems may regulate effects of psychostimulants by 

increasing DA release in NAc and VTA (Guan and McBride, 1989; Parsons and 

Justice, 1993). Activation of the 5-HT2a/2c receptor alters methamphetamine drug 

discrimination, indicating the involvement of serotonergic system in 
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methamphetamine-induced behaviors (Munzar et al., 1999). The 5-HT1a receptor 

agonist, 7-(Dipropylamino)-5,6,7,8-tetrahydronaphthalen-1-ol (8-OH-DPAT), 

inhibits amphetamine-induced elevation of extracellular DA in NAc, striatum and 

mPFC (Ichikawa et al., 1995; Kuroki et al., 1999). The 5-HT1a receptor 

antagonist, N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]-ethyl]-N-(2-

pyridinyl)cyclohexanecarboxamide (WAY-100635), reverses the inhibitory effects 

of 8-OH-DPAT on amphetamine. In contrast, 5-HT1a receptor agonist, 

osemozotan, does not inhibit methamphetamine-induced elevation of 

extracellular DA levels in the PFC in mice (Ago et al., 2006). Mirtazapine, an FDA 

approved antidepressant inhibiting 5-HT2a and 5-HT3 receptors, reverses 

methamphetamine-induced behavioral sensitization in rats (McDaid et al., 2007). 

In addition, mirtazapine prevents methamphetamine-induced conditioned place 

preference in rats (Herrold et al., 2009). However, mirtazapine has no effect on 

methamphetamine withdrawal symptoms in clinical trials (Cruickshank et al., 

2008), and no effective therapies for the treatment of methamphetamine 

addiction have been generated using 5-HT receptors as the target. 

1.5.4 Immunotherapy 

Immunotherapies have been developed to reduce the amount of 

methamphetamine entering the brain by administering anti-methamphetamine 

antibodies (Kosten and Owens, 2005). The antibodies could be used in the 

hospital to treat intoxicated patients, used during abstinence to prevent drug-

induced relapse, or used in a patient who intends to be drug resistant. Anti-
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methamphetamine antibodies are capable of protecting patients for several 

weeks due to the long half-life of immunoglobulin. Pre-treatment with a mouse 

monoclonal anti-methamphetamine antibody decreased methamphetamine self-

administration (McMillan et al., 2004) and drug-induced locomotor activity in rats 

(Gentry et al., 2004) by protecting the brain from methamphetamine exposure. In 

addition, the antibody inhibits the discriminative stimulus effects of 

methamphetamine in pigeons (Daniels et al., 2006). Immunotherapy as a 

treatment for substance abuse is promising, and clinical trials are necessary to 

further determine the efficacy of this type of therapeutic. 

1.5.5 Gamma-aminobutyric Acid (GABA) Receptors as Therapeutic Targets 

GABA receptors are a group of receptors which GABA interacts with, and 

the activation of the receptors produces inhibitory neurotransmission in the CNS 

(Kuffler and Edwards, 1958). GABA receptors are the targets of 

pharmacotherapies such as sedative and hypnotic medicines. Two classes of 

GABA receptors have been characterized: GABAA and GABAB receptors. GABAA 

receptors are ligand-gated ion channels, while GABAB receptors are G protein-

coupled receptors (Kuffler and Edwards, 1958).  

Activation of GABA neurons inhibits DA transmission in the NAc and VTA 

in rat brain (Gong et al., 1998), which inhibits the reinforcing effects of 

psychostimulants. Thus, studies have been performed to investigate GABA 

receptor agonists as potential treatments for methamphetamine abuse. However, 

baclofen, a GABA receptor agonist, did not reduce depressive symptoms, 
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craving for methamphetamine, or methamphetamine-positive urine samples in 

drug-dependent outpatients (Heinzerling et al., 2006). In addition, Gamma-Vinyl 

GABA (GVG), a GABA-transaminase inhibitor, increases GABA transmission by 

inhibiting GABA metabolism (Gerasimov et al., 1999). The subsequent activation 

of GABA receptors decreases cocaine and methamphetamine-induced elevation 

of DA in NAc (Gerasimov et al., 1999). However, no convincing positive results 

have been found in clinical studies in methamphetamine abusers (Brodie et al., 

2005). 

1.5.6 Sigma Receptors as Therapeutic Targets 

Sigma receptors (σ-1 and σ-2) are non-opioid proteins and are involved in 

various neurological disorders (Narayanan et al., 2011). Activation of σ receptors 

may result in hypertonia, tachypnea, and mydriasis. Agonists for the receptors 

include cocaine, morphine, fluvoxamine, methamphetamine, dextromethorphan.  

Recently, σ receptors have been studied as a target in the treatment of 

depression and psychotic (Leonard, 2004). The σ-1 receptor subtype is a 

chaperon protein widely expressed in the brain and peripheral tissues. These 

receptors regulate K+ and Ca2+ dependent signaling cascades at the endoplasmic 

reticulum and neurotransmission in CNS (Narayanan et al., 2011).  

Pharmacologically relevant concentrations of methamphetamine interact 

with σ-1 receptors (Xu et al., 2012), indicating a potential site for pharmacologic 

interaction. Methamphetamine significantly elevated σ-1 receptor expression in 

the VTA and SN (Hayashi et al., 2010), indicating an involvement of the receptor 
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in methamphetamine addiction. Recently, σ-1 receptors have been studied as 

targets in the discovery of treatment of substance abuse. Preclinical studies 

demonstrate that σ-1 receptor ligands attenuate behavioral effects of 

methamphetamine (Seminerio et al., 2012). Specifically, pretreatment with σ-1 

receptor antagonist, 3-(4-(4-cyclohexylpiperazin-1-yl)pentyl)-6-

flourobenzo[d]thiazol-2(3H)-one (AZ66), inhibited methamphetamine-induced 

acute locomotor stimulatory effects, and expression and development of 

behavioral sensitization in Swiss Webster mice. In addition, the σ-1 receptor 

antagonist, AZ66, ameliorate methamphetamine-induced striatal DA depletions in 

Swiss Webster mice (Seminerio et al., 2013). Together, the results suggest that 

activation of σ-1 receptors is involved in addictive properties of 

methamphetamine and methamphetamine-induced toxicity. Additional studies 

need to determine the role of σ-1 receptor as a potential target for the treatment 

of methamphetamine abuse.  

1.5.7 DA Receptors as Therapeutic Targets 

Since activation of DA receptors plays an important role in the stimulant 

properties of methamphetamine, DA receptor antagonists have been studied as 

the target in treatment of methamphetamine abuse (Newman et al., 2012). 

However, the D2 receptor antagonist, haloperidol, did not reduce the stimulant-

like effects of methamphetamine in healthy volunteers (Wachtel et al., 2002). 

Another D2 receptor antagonist, quetiapine, decreases the self-reported craving 

severity induced by methamphetamine (Sattar et al., 2004). However, poor 
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experimental design including very small sample size and lack of subject blinding 

preclude any convincing conclusions from this study. The above studies suggest 

that D2 receptor antagonists do not block the stimulant properties of 

methamphetamine in humans.  

DA receptor partial agonists have been studied as potential therapies to 

ameliorate altered brain DA homeostasis in stimulant abusers (Lile et al., 2005). 

Specifically, the partial agonist stimulates receptors during abstinence when 

dopaminergic tone is reduced, but antagonizes receptors during relapse when 

dopaminergic tone is increased. The above approach is supported by several 

studies. For instance, the DA D2 receptor partial agonist, aripiprazole, decreases 

amphetamine and cocaine self-administration in rats (Pulvirenti et al., 1998), and 

inhibits the discriminative effects of d-amphetamine in human volunteers (Lile et 

al., 2005). Decrease of goodness feeling, drug liking and willingness to take the 

drug again are reported by volunteers administered d-amphetamine with the D2 

receptor partial agonist aripiprazole (Lile et al., 2005). However, subsequent 

Phase II studies demonstrate that aripiprazole increases amphetamine use by 

addicts and such results prevent further investigation (Tiihonen et al., 2007). 

In addition to DA D2 receptors, the D3 receptor has been studied as a 

potential target for discovery of pharmacotherapy for the treatment of 

methamphetamine abuse (Newman et al., 2012). Exposure to psychostimulants, 

including cocaine and methamphetamine, results in an increase in expression 

and function of D3 receptors (Caine and Koob, 1993; Heidbreder and Newman, 
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2010; Neisewander et al., 2004). In addition, upregulation of D3 receptors is 

found via positron emission tomography (PET) studies in methamphetamine 

polydrug abusers (Boileau et al., 2012). The D3 receptor antagonist, N-[trans-4-

[2-(6-cyano-3,4-dihydroisoquinolin-2(1H)-yl)ethyl]cyclohexyl]quinoline-4-

carboxamide (SB-277011A), significantly decreases breakpoints of 

methamphetamine self-administration in rats (Higley et al., 2011; Xi et al., 2005), 

and dose dependently decreases methamphetamine self-administration in rats. 

Additionally, buspirone, a high affinity ligand at both D3 and D4 receptors, 

decreases methamphetamine self-administration in rats, suggesting the role of 

D3 receptor ligand as potential therapy for the treatment of methamphetamine 

abuse (Newman et al., 2012). However, buspirone has high affinity for the 5-HT1A 

receptor which has been suggested to mediate the stimulant properties of 

methamphetamine (Muller et al., 2007). Thus, buspirone inhibition of 

methamphetamine effects could be due to action at the 5-HT1A receptor. No 

successful pharmacotherapies have been generated by the above approach and 

the effect of selective D3 receptor antagonists and partial agonists needs to be 

evaluated in human methamphetamine abusers (Newman et al., 2012). 

1.5.8 Plasma Membrane Transporters as Therapeutic Target 

Methamphetamine reverses DAT to elevate extracellular DA that results in 

its subsequent rewarding effect. In addition to DAT, NET and SERT are also 

regulated by methamphetamine (Budygin et al., 2004; Gainetdinov, 2008). The 

antidepressant drug, bupropion, which inhibits both NET and DAT, has been 
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proposed to decrease the craving for methamphetamine in early abstinence and 

to prevent relapse by inhibiting the reinforcing effects of methamphetamine 

(Berigan and Russell, 2001). Bupropion has been shown to be safe in Phase I 

clinical trials (Newton et al., 2005). In addition, bupropion has been shown to 

decrease the subjective effects of methamphetamine and reduce drug craving in 

a Phase II clinical trial (Newton et al., 2006). However, bupropion did not 

decrease methamphetamine use in participants following a 12-week treatment 

program (Shoptaw et al., 2008). Inhibitors for the plasma membrane monoamine 

transporters have been evaluated in discovery of treatment for 

methamphetamine abuse. However, no successful pharmacotherapies have 

been generated. 

Serotonergic systems are involved in the effects of psychostimulants, as 

activation of 5-HT receptors by 5-HT released in response to methamphetamine 

is involved in its rewarding effects (Chiu and Schenk, 2012). 5-HT reuptake 

inhibitors (SSRI) increase extracellular 5-HT concentrations, and have been 

studied as potential treatment of methamphetamine abuse (Shoptaw et al., 

2006a). SSRIs decrease the rewarding effects of psychostimulants (Takamatsu 

et al., 2006). Specifically, pre-treatment with the SSRI, fluoxetine, inhibits 

methamphetamine-induced locomotor sensitization and conditioned place 

preference in mice. However, fluoxetine does not reduce methamphetamine use 

in clinical trials (Batki et al., 2000). Moreover, another SSRI, sertraline, does not 

decrease methamphetamine use in a clinical trial (Rawson et al., 2004). The 
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above results suggest that SSRIs are not effective treatments for 

methamphetamine addiction (Shoptaw et al., 2006a). 

1.5.9 Acetylcholine Neurotransmitter System 

In the central nervous system, acetylcholine plays an important role in 

plasticity, arousal and reward (Eglen, 2006; Yakel, 2013). Damage to the 

cholinergic system in the brain has been associated with memory deficits in 

Alzheimer's disease (Tabet, 2006). Cholinergic receptors include two main types 

of receptors, i.e., the nicotinic receptor, a ligand gated ion channel and the 

muscarinic receptor, a G-protein-coupled receptor. Activation of nicotinic receptor 

ion channels and the subsequent inward flux of Ca2+ results in the fusion of the 

synaptic vesicles with the presynaptic terminals and the release of the 

neurotransmitter into the synaptic cleft (Anand et al., 1991). Muscarinic receptors 

are coupled to G proteins, and receptor activation regulates secondary 

messengers and the subsequent signal transduction (Eglen, 2006).  

Acetylcholine neurotransmission has been suggested to be involved in 

methamphetamine-induced reinforcement and locomotor activation. Regulation 

of acetylcholinesterase, the enzyme which metabolizes acetylcholine, may 

mediate methamphetamine seeking behavior as suggested by the finding that 

the acetylcholinesterase inhibitor donepezil inhibits reinstatement of 

methamphetamine-seeking behavior (Hiranita et al., 2006). The above inhibitory 

effect on reinstatement of methamphetamine may be due to activation of 

nicotinic, but not of muscarinic, cholinergic receptors in the NAc core, prelimbic 
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cortex, amygdala and hippocampus (Hiranita et al., 2006). Rivastigmine, an 

inhibitor for both butyrylcholinesterase and acetylcholinesterase (Williams et al., 

2003), decreases methamphetamine-induced craving and anxiety, and 

methamphetamine-induced positive subjective effects in an experimental model 

of intravenous self-administration in human volunteers (De La Garza et al., 

2008). However, total choices for methamphetamine over a monetary alternative 

were not reduced among abusers (De La Garza et al., 2008). Additional clinical 

trials are required to determine efficacy of cholinesterase inhibitors as a 

treatment for methamphetamine abuse. 

1.5.10 Opioid Receptors as Therapeutic Targets 

An opioid is a chemical that binds to opioid receptors, which are 

distributed in both the central and peripheral nervous system. Opioids have 

analgesic effects and their side effects include sedation, respiratory depression, 

constipation, and euphoria (Benyamin et al., 2008). Opioid-induced euphoria is 

well known, and responsible for the recreational use. Repeated use of opioids 

leads to dependence, tolerance, and abstinence which is accompanied by a 

withdrawal syndrome (Benyamin et al., 2008). Opioid receptors are a group of G 

protein-coupled receptors and there are four major subtypes of opioid receptors, 

including the δ-opioid receptor, κ-opioid receptor, mu-opioid receptor, and the 

nociceptin receptor (Paterson et al., 1983).  

Endogenous opioids are increased by acute administration of 

methamphetamine (Olive et al., 2001). Opioid agonists activate the firing rate of 
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DA neurons (Matthews and German, 1984) and elevate DA concentration 

(Klitenick et al., 1992) in VTA. Pretreatment of opioid receptor antagonist 

naloxone inhibits methamphetamine-induced conditioned place preference in rats 

(Trujillo et al., 1991). In addition, naloxone decreases both amphetamine-induced 

elevation of extracellular DA and locomotor activity (Hooks et al., 1992). Similar 

to amphetamine, methamphetamine-induced behavioral sensitization and 

reinstatement are inhibited by naloxone (Chiu et al., 2005). In addition to 

preclinical studies, naltrexone reduces the subjective response of patients to 

amphetamine in clinical studies employing amphetamine-addicted individuals 

(Jayaram-Lindstrom et al., 2004). Thus, naltrexone appears to be a highly 

promising pharmacotherapy for methamphetamine dependence. However, total 

amphetamine intake was not measured in Jayaram-Lindstrom’s study and further 

clinical studies are necessary to determine the effect of naltrexone on the 

reinforcing effect of amphetamine and methamphetamine. 

1.5.11 Nicotinic Receptors as Therapeutic Targets 

Nicotinic receptors, members of the Cys-loop family of ligand-gated ion 

channel receptors, consist of pentameric transmembrane proteins with various 

subunits (Anand et al., 1991; Millar and Gotti, 2009). The presence of nine 

nicotinic receptor subunit genes (α2–α7, β2–β4) in mammalian brain suggests an 

extraordinary diversity of nicotinic receptors (Dani and Bertrand, 2007).  

d-Amphetamine increases choice of cigarette smoking over monetary 

reinforcement in human addicts and this effect is caused by a drug-produced 
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enhancement in the reinforcing effects of smoking (Tidey et al., 2000). Individuals 

who abuse amphetamine use nicotine more than people who are only addicted to 

nicotine (Barrett et al., 2006). Acute doses of amphetamine increase smoking 

related behaviors and responses (Cousins et al., 2001; Henningfield and 

Griffiths, 1981; Schoffelmeer et al., 2002; Tidey et al., 2000). Neurochemical 

studies indicate that nicotine-induced DA efflux from rat striatum is potentiated by 

acute amphetamine, suggesting that potentiation of nicotine response by 

amphetamine is via elevated DA (Jutkiewicz et al., 2008). Additionally, a low 

dose of methamphetamine potentiates nicotine self-administration in rats (Rauhut 

et al., 2003). Nicotine and methamphetamine share discriminative stimulus 

effects in rats (Gatch et al., 2008), and interchangeable use of these stimulants in 

human users is also observed (Barrett et al., 2006). Chronic methamphetamine 

results in cross-sensitization to nicotine in mice (Kuribara, 1999), which may be 

the consequence of elevated nicotine-evoked DA release. Taken together, these 

results indicate that nicotine-evoked DA release is potentiated by 

methamphetamine and amphetamine pretreatment, and there is a 

pharmacological basis for the elevated DA release. However, the mechanism for 

the elevation of nicotine-evoked DA release by amphetamine or 

methamphetamine pretreatment is not clear.  

Previous studies have suggested that amphetamine and its derivatives 

bind to nicotinic receptors. d-Amphetamine has been suggested to activate α7 

nicotinic receptors, resulting in calcium increase in bovine adrenal chromaffin 

cells and [3H]NE release from the cell (Liu et al., 2003). Moreover, d-
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amphetamine inhibits α-bungarotoxin binding, an α7 nicotinic receptor ligand, to 

rat and mouse diaphragms (Skau and Gerald, 1978). These results suggest that 

amphetamine and methamphetamine bind to and activate α7 nicotinic receptors. 

Interestingly, recent studies show that methamphetamine binds to α7 and α4β2* 

nicotinic receptors on membranes from both cell lines and mouse brain, and 

methamphetamine is expected to exhibit agonistic or positive allosteric effect at 

these receptors (Garcia-Rates et al., 2007). Local infusion of an α3β4 nicotinic 

receptor antagonist, 18-methoxycoronaridine, into medial habenula, the 

interpeduncular area or the basolateral amygdala decreases methamphetamine 

self-administration by indirectly regulating the dopaminergic mesolimbic pathway 

(Glick et al., 2008). Thus, selective α3β4 nicotinic receptor antagonists may be 

potential treatments for methamphetamine abuse. However, no clinical studies 

have been performed on 18-methoxycoronaridine (Pace et al., 2004) or any 

specific nicotinic receptor antagonists to determine the efficacy to treat 

methamphetamine abuse. 

1.6 VMAT2 as Therapeutic Target 

VMAT2, located on vesicles within presynaptic terminals, transports 

cytosolic DA into the vesicles for storage and subsequent release into the 

extracellular space (Section 1.2.5). Methamphetamine inhibits DA uptake and 

promotes DA release at VMAT2, consequently increasing cytosolic DA available 

to DAT for reverse transport (Section 1.3.4). VMAT2 has been studied as a target 

to discover pharmacotherapies to treatment methamphetamine abuse (Dwoskin 

and Crooks, 2002; Zheng et al., 2006). Lobeline, targeting VMAT2, have been 
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studied in our lab as potential pharmacotherapies to treat methamphetamine 

abuse (Dwoskin and Crooks, 2002). 

1.6.1 Lobeline  

1.6.1.1 Background and Historical Use 

Lobeline (Figure 1.1) is a major alkaloid from Lobelia inflata, an herb  

named after the famous French botanist Matthias de Lobel (1570–1616) 

(Millspaugh, 1974). Lobelia inflata grows in dry fields in North America. The plant 

tastes like tobacco and produces effects like nicotine and the dried leaves of the 

plant was smoked by American Indians to obtain the CNS effects. In addition, a 

tobacco-like sensation is generated after chewing the plant leaves. Thus, the 

plant is commonly called Indian tobacco. Lobelia inflata was first reported in the 

1700s as an emetic and application for sore eyes. In the 1800s, Lobelia inflata 

was applied as a treatment for asthma (Dwoskin and Crooks, 2002). Extracts of 

Lobelia inflata were first reported in 1838 and used as an expectorant, emetic, 

anti-asthmatic, anti-spasmodic, respiratory stimulant (Millspaugh, 1974). Lobelia 

inflata seeds were found to contain the highest level of lobeline which was the 

pharmacologically active ingredient (Dwoskin and Crooks, 2002). The availability 

of pure lobeline accelerated studies discovering the pharmacological properties 

of the alkaloid (Dwoskin and Crooks, 2002).  
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1.6.1.2 Lobeline Physicochemical Characteristics and Pharmacology  

The lobeline molecule contains a central piperidine ring with two 

phenylethyl substituents at the C-2 and C-6 position of the central piperidine ring. 

One hydroxyl moiety is connected at the 8-position, and a keto moiety is 

connected at the 10-position of the phenylethyl substituents. Three chiral centers 

at the 8-position on the side chain, and the C-2 and C-6 position of the piperidine 

ring are included in the structure of the molecule. Lobeline is predicted to exhibit 

a Log S value of -4.01 (29.8 mg/L) and a Log P value of 3.75 (Tetko et al., 2005).  

Lobeline was used as a smoking cessation agent in 1936 to alleviate 

nicotine withdrawal symptoms, but this result was not replicated in later studies 

(Davison and Rosen, 1972). Recently, lobeline has been studied again. A 

sublingual formulation with improved bioavailability was developed to determine 

the efficacy of lobeline in smoking cessation (Glover et al., 2010). However, 

sublingual formulation of lobeline does not reduce smoking in people who are 

addicted to cigarettes.  

Lobeline has many nicotine-like effects and has been considered a 

nicotinic receptor agonist (Stead and Hughes, 2012). However, nicotine is self-

administered by rats (Corrigall et al., 1994), while lobeline does not support self-

administration in rats (Harrod et al., 2001). Chronic nicotine administration 

increases locomotor activity (Clarke and Kumar, 1983), and generates 

conditioned place preference in rats (Fudala et al., 1985), but chronic lobeline 

does not (Fudala and Iwamoto, 1986). Initially, lobeline is not differentiated from 
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nicotine by rats in drug discrimination studies (Geller et al., 1971), but the result 

is not replicated in latter studies (Romano and Goldstein, 1980; Schechter and 

Rosecrans, 1972). Thus, different behavioral effects of lobeline and nicotine 

suggest that different mechanisms are involved in the drug-induced behavioral 

effect.  

Lobeline inhibits [3H]nicotine binding with high affinity (Ki = 4-30 nM) 

(Yamada et al., 1985), and the subtypes of the receptors to which lobeline binds 

have been studied. Lobeline displaces α4β2* nicotinic receptor ligands in PET 

studies using mouse brain (Horti et al., 1997). In addition, lobeline has high 

affinity for β2-containing nicotinic receptors, independent of the α-subtype in the 

combination (Parker et al., 1998). Meanwhile, lobeline displaces (Ki = 6.6 μM) 

[3H]methyllycaconitine (an α7 selective ligand) binding to rat whole brain 

membranes (Miller et al., 2004), suggesting an interaction with α7 nicotinic 

receptors. Interestingly, nicotinic receptors are up-regulated by chronic nicotine in 

different brain regions (Collins et al., 1990), while up-regulation is not found 

following chronic lobeline (Auta et al., 1999; Bhat et al., 1991). Although lobeline 

has been considered a nicotinic receptor agonist, antagonist effects of lobeline at 

α7 nicotinic receptors has been reported at wild-type human receptors expressed 

in Xenopus oocytes (Briggs and McKenna, 1998).  

In addition to the above binding studies, a functional assay was used to 

determine effects of lobeline on DA release from presynaptic dopaminergic 

terminals. Both nicotine and lobeline evoked [3H]DA overflow from rat striatal 
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slices (Giorguieff-Chesselet et al., 1979; Teng et al., 1997), however, lobeline-

evoked release was not antagonized by mecamylamine (a nicotinic receptor 

channel blocker that inhibits nicotine-evoked [3H]DA release), suggesting that   

lobeline-evoked release was not mediated by nicotinic receptors. Thus, lobeline-

regulated dopaminergic neurotransmission was not by activating nicotinic 

receptors. In addition, lobeline inhibited nicotine-evoked [3H]DA overflow from rat 

striatal slices (Miller et al., 2000). The above results indicated that lobeline 

inhibited the neurochemical effect of nicotine, but evoked [3H]DA overflow from 

presynaptic terminals that was not mediated by nicotinic receptors. 

In addition to the studies using [3H]DA, the ability of lobeline to release 

endogenous DA from rat striatal slices was determined and lobeline evoked 

DOPAC rather than DA overflow (Teng et al., 1998; Teng et al., 1997). However, 

endogenous DA was released in the presence of the highest concentration 

(100 μM) of lobeline. The above results determined that lobeline increased 

cytosolic DA, which was metabolized into DOPAC (Teng et al., 1997). 

Furthermore, lobeline-induced DOPAC overflow suggested that lobeline did not 

inhibit MAO function (Dwoskin and Crooks, 2002). In a microdialysis study using 

rats, lobeline did not release DA or DOPAC from NAc core, but inhibited nicotine-

evoked DA and DOPAC overflow (Benwell and Balfour, 1998). In a subsequent 

microdialysis study (Meyer et al., 2013), lobeline did not release DA release from 

NAc shell, but increased DOPAC release, indicating the metabolism of DA. The 

above results indicated that lobeline evoked endogenous DOPAC overflow 

without inhibition of MAO (Dwoskin and Crooks, 2002).  
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The following studies have been performed to determine the mechanism 

by which lobeline regulates DA transmission. Lobeline inhibited DA uptake into 

synaptic vesicles and promoted DA release into the cytosol within presynaptic 

dopaminergic terminals, and the redistributed DA was subsequently metabolized 

to DOPAC by MAO (Miller et al., 2000; Teng et al., 1997). Lobeline inhibited (IC50 

= 0.90 μM) [3H]DTBZ binding on VMAT2 using vesicular membrane preparation 

(Teng et al., 1998; Teng et al., 1997). DTBZ is a VMAT2 inhibitor and binds to 

VMAT2 with high affinity at the site that is different from the substrate site that 

reserpine binds (Section 1.2.5). The above results indicate that lobeline binds to 

DTBZ sites on VMAT2 to inhibit vesicular DA uptake by the transporter, which 

contributes to the elevated DA in cytosol and subsequent metabolism of the 

transmitter. 

Further studies have been performed to investigate the effect of lobeline 

on methamphetamine-induced neurochemical and behavioral changes. Lobeline 

inhibited methamphetamine-evoked endogenous DA release from rat striatal 

slices (Nickell et al., 2011). In a microdialysis study using rats, in NAc shell, 

lobeline did not alter the effects of methamphetamine on DA; however, lobeline 

enhanced the duration of the methamphetamine-induced decrease in 

extracellular DOPAC (Meyer et al., 2013). The alternation of TH activity was 

suggested to be responsible for such effect of lobeline on methamphetamine-

induced decrease in extracellular DOPAC. The reason why methamphetamine-

evoked DA release is not inhibited in the microdialysis study is not fully 

understood. Lobeline pretreatment inhibited the discriminatory effect of 
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methamphetamine, methamphetamine-induced elevation of locomotor activity 

(Miller et al., 2001), and methamphetamine self-administration in rats (Harrod et 

al., 2001). In addition, the effect of lobeline to decrease methamphetamine self-

administration was not overcome by higher lobeline doses, indicating that the 

effect of lobeline is noncompetitive. Since lobeline was not self-administered by 

rats (Harrod et al., 2001), these results are taken to suggest that the alkaloid 

does not possess abuse liability. 

In summary, lobeline acts as an inhibitor that binds to the DTBZ site on 

the synaptic VMAT2 to inhibit DA uptake, leading to an elevation in cytosolic DA 

that is subsequently metabolized to DOPAC by MAO. As such, the redistribution 

of DA storage decreases the cytosolic DA available for methamphetamine-

induced reverse transport by DAT. Thus, the rewarding effect of 

methamphetamine is inhibited by decreasing extracellular DA. Together, these 

results suggest that lobeline could be a potential treatment for methamphetamine 

abuse. The above studies also suggest that VMAT2 is a promising target for 

discovering pharmacotherapies to treat methamphetamine abuse. 

In this regard, lobeline has been tested in Phase Ib clinical trials and has 

been found to be safe in methamphetamine addicted individuals. Lobeline has no 

significant side-effects, other than an extremely bitter taste (Jones, 2007). 

Furthermore, lobeline has high affinity for α4β2* nicotinic receptors and moderate 

affinity for α7 nicotinic receptor (Damaj et al., 1997; Harrod et al., 2004; Miller et 

al., 2004), leading to the potential for several side effect including nausea, 
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vomiting, and diarrhea. Thus, additional studies have been performed to discover 

lobeline analogs with improved selectivity for VMAT2. 

1.6.2 Lobelane Physicochemical Characteristics and Pharmacology  

In order to increase the selectivity of lobeline at VMAT2, lobelane (Figure 

1.1), a defunctionalized, saturated analog of lobeline has been generated. 

Lobelane is predicted to exhibit a Log S value of -5.46 (7.25 mg/L) and a Log P 

value of 5.74 (Tetko et al., 2005). Lobelane shows higher affinity for VMAT2, 

lower affinity for α4β2* and α7* nicotinic receptors, and higher affinity (Ki = 40 

nM) to inhibit vesicular DA uptake in comparison to that (Ki = 0.4 µM) of lobeline 

(Miller et al., 2004). Furthermore, lobelane decreases methamphetamine-evoked 

DA release from striatal slices and methamphetamine self-administration without 

influence on sucrose-maintained responding (Neugebauer et al., 2007; Nickell et 

al., 2010). However, the effect of lobelane is tolerated after repeated treatment 

(Neugebauer et al., 2007). Thus, more structure activity relationship studies have 

been performed to discover drug candidates for the treatment of 

methamphetamine abuse.  

1.7 Drug-likeness 

The Rule-of-five (RO5) (Lipinski et al., 2001) is based on a distribution of 

calculated properties of several thousand drugs that passed Phase 2 clinical trial. 

The original RO5 is based on the properties of orally active compounds and 

defined by four physicochemical parameter ranges (molecular weight ≤ 500, logP 
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≤ 5, H-bond donors ≤ 5, H-bond acceptors ≤ 10). Acceptable water solubility, 

intestinal permeability, first steps in oral bioavailability are obtained from 

compounds with the above parameters. Compounds that fail the RO5 will 

probably not be orally active. The goal of RO5 is to guide chemists to avoid 

making compounds with poor physicochemical properties (Lipinski et al., 2001). 

Lobeline met RO5 and no difficulties were found when determining the effect of 

the compound in rats. Lobelane met RO5 except that the logP value was larger 

than 5. Consistent with RO5, lobelane possessed low water solubility but were 

still active after subcutaneous injection in rats.  

 CNS drugs need to penetrate the blood-brain-barrier and more restrictive 

physicochemical properties are required. P-glycoprotein (PGP) is a transporter 

that effluxes compounds out of the CNS and a major barrier for compounds to 

enter the CNS (Mahar Doan et al., 2002). Affinity for PGP efflux transporter 

should be considered when CNS drugs are generated. Two simple rules are 

capable of predicting CNS activity: N + O (the number of nitrogen and oxygen 

atoms) ≤ 5; log P > (N + O). Compounds with the above parameters have a 

greater chance to be CNS active (Norinder and Haeberlein, 2002). Lobeline and 

lobelane meets the requirement and are supposed to be CNS active. 

1.8 Hypothesis and Specific Aims 

To further refine the structure-activity relationships, lobelane analogs with 

varying methylene linker lengths at the C-2 and C-6 position of the central 

piperidine ring and acyclic lobelane analogs have been evaluated for their affinity 
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for DTBZ binding site on VMAT2, ability to inhibit VMAT2 function and 

methamphetamine-evoked [3H]DA release from synaptic vesicles, as well as the 

mechanism of inhibition. Furthermore, the ability of (±)-GZ-729C, (±)-GZ-730B, 

and (R)-GZ-924 to inhibit methamphetamine-evoked DA release was 

determined. In the end, methamphetamine self-administration was performed to 

determine the ability of (R)-GZ-924 to inhibit the reinforcing effect of the drug. 

Hypothesis 1: Lobelane analogs with varying methylene linker lengths will 

inhibit VMAT2 binding and function, and potent and selective analogs for VMAT2 

function will inhibit methamphetamine-evoked [3H]DA release from synaptic 

vesicles and endogenous DA release from striatal slices. 

Specific Aims: 

1) Determine the ability of lobelane analogs to inhibit VMAT2 binding and 

function.  

2) Determine the ability of potent and selective lobelane analogs to inhibit 

methamphetamine-evoked [3H]DA release from synaptic vesicles. 

3) Determine the ability of potent and selective lobelane analogs to inhibit 

methamphetamine-evoked endogenous DA release from rat striatal slices. 

 

Hypothesis 2: Acyclic lobelane analogs will inhibit VMAT2 binding and 

function, and potent and selective analogs for VMAT2 function will inhibit 
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methamphetamine-evoked [3H]DA release from synaptic vesicles and DA release 

from striatal slices, as well as methamphetamine self-administration in rats. 

Specific Aims: 

1) Determine the ability of acyclic lobelane analogs to inhibit VMAT2 

binding and function. 

2) Determine the ability of potent and selective acyclic lobelane 

enantiomers to inhibit methamphetamine-evoked [3H]DA release from synaptic 

vesicles. 

3) Determine the ability of potent and selective acyclic lobelane 

enantiomers to inhibit methamphetamine-evoked DA release from striatal slices. 

4) Determine the ability of (R)-GZ-924 to inhibit methamphetamine self-

administration in rats. 
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Figure 1.1. Chemical structures of methamphetamine, amphetamine, 
TBZ, reserpine, lobeline, and lobelane. 

TBZ is a benzoquinolizine compound and VMAT2 inhibitor interacting with 

the site distinct from the DA uptake site on VMAT2. RO4-1284 is also a 

benzoquinolizine compound that inhibits VMAT2 in a similar manner. Lobeline is 

the principal alkaloid from lobelia inflata. Lobelane is a defunctionalized, 

saturated analog of lobeline. 
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CHAPTER 2 Lobelane analogs with varying methylene linker lengths as 

novel ligands that interact with vesicular monoamine transporter-2 

2.1 Introduction 

Methamphetamine inhibits dopamine (DA) uptake and promotes DA 

release from presynaptic vesicles by interacting with the vesicular monoamine 

transporter-2 (VMAT2), contributing to increased DA within presynaptic terminals 

(Brown et al., 2000; Pifl et al., 1995; Sulzer et al., 1995). Cytosolic DA 

concentrations are further increased by methamphetamine-induced inhibition of 

monoamine oxidase (MAO), the mitochondrial enzyme that is responsible for the 

metabolism of cytosolic DA (Mantle et al., 1976). The elevated cytosolic DA is 

released into the synaptic cleft by methamphetamine through reverse transport at 

DA transporter (DAT) (Sulzer et al., 1995). Interaction of methamphetamine with 

DAT and VMAT2 leads to elevated extracellular DA concentrations that contribute 

to its rewarding and reinforcing effects. Currently, no efficacious medicinal 

treatments are available to treat methamphetamine abuse. Recently, VMAT2 has 

been suggested to be a promising target, and recent studies focusing on VMAT2 

as a therapeutic target have been performed (Dwoskin and Crooks, 2002; Zheng 

et al., 2006).  

Lobeline (Figure 2.1), a major alkaloid from Lobelia inflata, is currently 

being evaluated in a phase 1b clinical trials as a novel therapeutic for the 

treatment of methamphetamine abuse (Jones, 2007). Lobeline inhibits vesicular 

DA uptake and promotes vesicular DA release, resulting in redistributed 
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cytoplasmic DA that is metabolized by MAO intraneuronally (Dwoskin and Crooks, 

2002). It has been reported that lobeline inhibits methamphetamine-induced 

release of DA from rat striatal slices, as well as hyperactivity and self-

administration of methamphetamine in rats (Harrod et al., 2001; Miller et al., 2001; 

Nickell et al., 2010). Meanwhile lobeline does not support self-administration in 

rats, indicating a lack of abuse liability (Harrod et al., 2003). VMAT2 is 

responsible for the uptake of cytoplasmic DA into synaptic vesicles for storage 

and subsequent release (Dwoskin and Crooks, 2002). In vitro studies indicate 

that lobeline decreases the amount of methamphetamine-evoked DA release 

from presynaptic terminals via an interaction with VMAT2 at the 

dihydrotetrabenazine (DTBZ) binding site (Teng et al., 1998; Zheng et al., 2007). 

However, previous studies have shown that lobeline can bind α4β2* and α7 

nicotinic acetylcholine receptors (nAChRs) as well (Damaj et al., 1997; Miller et 

al., 2004). In order to increase the selectivity of lobeline at VMAT2, lobelane 

(Figure 2.1), a defunctionalized, saturated analog of lobeline has been generated. 

Lobelane shows higher affinity for the DTBZ binding site on VMAT2, lower affinity 

for α4β2* and α7 nAChRs, and higher affinity to inhibit vesicular DA uptake in 

comparison to lobeline (Miller et al., 2004). Furthermore, lobelane decreases 

methamphetamine-evoked DA release from striatal slices and methamphetamine 

self-administration without altering sucrose-maintained responding (Neugebauer 

et al., 2007; Nickell et al., 2010). However, the effect of lobelane is tolerated after 

repeated treatment (Neugebauer et al., 2007). Thus, more structure activity 

relationship work has been performed to discover a drug candidate for the 
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treatment of methamphetamine abuse.  

Recently, several antipsychotics have been withdrawn or had restricted 

labelling due to the potential cardiac side effects (Haddad and Anderson, 2002). 

These antipsychotics drugs may prolong the ventricular action potential duration 

(APD, i.e. the QT interval of the electrocardiogram) and cause a polymorphic 

ventricular tachycardia, known as Torsades de Pointes (TdP), and sudden death 

(Tamargo, 2000). Drug-induced TdP are associated with blockage of the rapidly 

activating, delayed rectifier potassium current IKr channel coded by the 

human ether-a-go-go-related gene (hERG). This channel plays a major role in 

repolarization of ventricular myocytes and analogs with high affinity for such 

hERG channel have potential to possess cardiac toxicity (Sanguinetti et al., 

1995; Trudeau et al., 1995). 

In the current study, lobelane analogs with varying methylene linker lengths 

have been evaluated for their affinity for the DTBZ site on VMAT2 and for their 

potency to inhibit VMAT2 function. Affinity at DAT was evaluated to assess 

potential abuse liability, and affinity at hERG channels was evaluated to assess 

potential cardiac toxicity. The most potent and selective analog for VMAT2 

function over DAT and hERG channels was identified as lead. The lead analog 

was evaluated for its ability to inhibit methamphetamine-evoked [3H]DA release 

from synaptic vesicles, as well as methamphetamine-evoked endogenous DA 

release from striatal slices. 
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2.2 Methods 

2.2.1 Animals  

Male Sprague-Dawley rats (200–250 g) were purchased from Harlan 

(Indianapolis, IN) and were housed in the Division of Laboratory Animal 

Resources at the College of Pharmacy at the University of Kentucky (Lexington, 

KY). Food and water were available ad libitum. Experimental protocols were 

according to the National Institutes of Health Guide for the Care and Use of 

Laboratory Animals and were approved by the Institutional Animal Care and Use 

Committee at the University of Kentucky. 

2.2.2 Materials  

[3H]DA (dihydroxyphenylethylamine, 3,4-[7-3H]; specific activity, 28 

Ci/mmol) was purchased from PerkinElmer, Inc. (Boston, MA, USA).  [3H]DTBZ 

((±)-α-[O-methyl-3H]dihydrotetrabenazine; specific activity, 79.0 Ci/mmol) was a 

gift from Dr. Michael R. Kilbourn (Department of Internal Medicine and 

Neurology, University of Michigan, Ann Arbor, MI). Bovine serum albumin, 

disodiumethylenediamine (EDTA), ethyleneglycoltetraacetate (EGTA), L-(+) 

tartaric acid, N-[2-hydroxyethyl]piperazine-N’-[2-ethanesulfonic acid] (HEPES), 

sucrose, magnesium sulfate, polyethyleneimine, adenosine 5’-triphosphate 

magnesium salt, 3-hydroxytyramine (DA), d-methamphetamine hydrochloride 

(methamphetamine), sodium chloride, and magnesium sulfate were purchased 

from Sigma-Aldrich (St. Louis, MO). L-Ascorbic acid and monobasic potassium 
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phosphate were purchased from AnalaR-BHD Ltd. (Poole, UK) and Mallinckrodt 

(St. Louis, MO) respectively. (2R,3S,11bS)-2-Ethyl-3-isobutyl-9,10-dimethoxy-

2,2,4,6,7,11b-hexahydro-1Hpyrido[2,1-a]isoquinolin-2-ol (RO4-1284) and 

tetrabenazine (TBZ) were gifts from Hoffman-La Roche Ltd. (Basel, Switzerland). 

Lobeline hemisulfate was purchased from ICN Biomedicals Inc. (Costa Mesa, 

CA). All other commercial chemicals were purchased from Fisher Scientific Co. 

(Pittsburgh, PA). The lobelane and lobelane analogs were synthesized by Dr. 

Guangrong Zheng (Zheng et al., 2008) and their structures are illustrated in 

Figure 2.1 and Figure 2.2. All racemics are cis-analogs and each contains same 

amount of two enantiomers. Lobelane analogs include 1-methyl-2,6-cis-

dibenzylpiperidine (GZ-709C); 2,6-cis-dibenzylpiperidine (GZ-709B); 1-methyl-

2,6-cis-di(3-phenylpropyl)piperidine (GZ-712C); 2,6-cis-di(3-

phenylpropyl)piperidine (GZ-712B); 1-methyl-2,6-cis-diphenylpiperidine (GZ-

632A); (±)-1-methyl-cis-2-phenyl-6-benzylpiperidine [(±)-GZ-731B]; (±)-cis-2-

phenyl-6-benzylpiperidine [(±)-GZ-731A]; (±)-1-methyl-cis-2-phenyl-6-(2-

phenethyl)piperidine [(±)-GZ-725A]; (±)-cis-2-phenyl-6-(2-phenethyl)piperidine 

[(±)-GZ-713A]; (±)-1-methyl-cis-2-phenyl-6-(3-phenylpropyl)piperidine [(±)-GZ-

726A]; (±)-cis-2-phenyl-6-(3-phenylpropyl)piperidine [(±)-GZ-714A]; (±)-1-methyl-

cis-2-benzyl-6-(2-phenethyl)piperidine [(±)-GZ-729C]; (±)-cis-2-benzyl-6-(2-

phenethyl)piperidine [(±)-GZ-729B]; (±)-1-methyl-cis-2-benzyl-6-(3-

phenylpropyl)piperidine [(±)-GZ-730C]; (±)-cis-2-benzyl-6-(3-

phenylpropyl)piperidine [(±)-GZ-730B]; (±)-1-methyl-cis-2-(2-phenethyl)-6-(3-

phenylpropyl)piperidine [(±)-GZ-644C]; (±)-cis-2-(2-phenethyl)-6-(3-
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phenylpropyl)piperidine [(±)-GZ-644B]; (±)-1-methyl-cis-2-cyclohexyl-6-(2-

phenethyl)piperidine [(±)-GZ-725B]; (±)-cis-2-cyclohexyl-6-(2-

phenethyl)piperidine [(±)-GZ-713B]; (±)-1-methyl-cis-2-cyclohexyl-6-(3-

phenylpropyl)piperidine [(±)-GZ-726B]; (±)-cis-2-cyclohexyl-6-(3-

phenylpropyl)piperidine [(±)-GZ-714B].The structures of the analogs were verified 

by 1H and 13C NMR spectroscopy, mass spectrometry, and, in some instances, 

X-ray crystallography. 

2.2.3 [3H]DTBZ Binding  

Lobelane- and lobelane analogs-induced inhibition of [3H]DTBZ binding 

were determined using a previously described method (Horton et al., 2011a). The 

whole brain (excluding cerebellum) from rats was homogenized in 20 ml of ice-

cold sucrose solution (0.32 M) with seven up-and-down strokes of a Teflon pestle 

homogenizer (clearance ≈ 0.003 inch). Homogenates were centrifuged (1000g 

for 12 min at 4°C), and the resulting supernatants were again centrifuged 

(22,000g for 10 min at 4°C). Resulting pellets were incubated in 18 ml of ice-cold 

water for 5 min, followed by adding 2 ml of HEPES (25 mM) and potassium 

tartrate (100 mM) solution. Samples were centrifuged (20,000g for 20 min at 

4°C), followed by adding 20 μl of MgSO4 (1 mM) solution to the supernatants. 

Solutions were centrifuged (100,000g for 45 min at 4°C) and resulting pellets 

were resuspended in ice-cold assay buffer (25 mM HEPES, 100 mM potassium 

tartrate, 5 mM MgSO4, 0.1 mM EDTA, and 0.05 mM EGTA, pH 7.4). Assays were 

performed in duplicate using 96-well plates. Aliquots of vesicular suspension (15 
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μg of protein in 100 μl) were added to wells containing 5 nM [3H]DTBZ, 50 μl of 

analog (0.1 nM to 1 mM), and 50 μl of buffer. Nonspecific binding was 

determined in the presence of RO4-1284 (20 μM). Reactions were terminated by 

filtration (Packard Filtermate harvester; PerkinElmer Life and Analytical 

Sciences) onto Unifilter-96 GF/B filter plates (presoaked in 0.5% 

polyethyleneimine). Filters were subsequently washed five times with 350 μl of 

ice-cold buffer (25 mM HEPES, 100 mM potassium tartrate, 5 mM MgSO4, and 

10 mM NaCl, pH 7.4). Filter plates were dried at 48°C and bottom-sealed, and 

each well was filled with 40 μl of scintillation cocktail (MicroScint 20; PerkinElmer 

Life and Analytical Sciences). Radioactivity on the filters was determined by 

liquid β-scintillation spectrometry (TopCount NXT; PerkinElmer Life and 

Analytical Sciences). 

2.2.4 Vesicular [3H]DA Uptake  

Lobelane- and lobelane analogs-induced inhibition of [3H]DA uptake were 

determined using a previously described method (Horton et al., 2011a). Rat 

striata were homogenized with 10 up-and-down strokes of a Teflon pestle 

homogenizer (clearance ≈ 0.003 inch) in 14 ml of 0.32 M sucrose solution. 

Homogenates were centrifuged (2000g for 10 min at 4°C), and the resulting 

supernatants were centrifuged again (10,000g for 30 min at 4°C). Pellets were 

resuspended in 2 ml of 0.32 M sucrose solution and subjected to osmotic shock 

by adding 7 ml of ice-cold water to the preparation, followed by the immediate 

restoration of osmolarity by adding 900 μl of 0.25 M HEPES buffer and 900 μl of 
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1.0 M potassium tartrate solution. Samples were centrifuged (20,000g for 20 min 

at 4°C), and the resulting supernatants were centrifuged again (55,000g for 1 h at 

4°C), followed by the addition of 100 μl of 10 mM MgSO4, 100 μl of 0.25 M 

HEPES, and 100 μl of 1.0 M potassium tartrate solution before the final 

centrifugation (100,000g for 45 min at 4°C). Final pellets were resuspended in 

2.4 ml of assay buffer (25 mM HEPES, 100 mM potassium tartrate, 50 μM EGTA, 

100 μM EDTA, 1.7 mM ascorbic acid, 2 mM ATP-Mg2+, pH 7.4). Aliquots of the 

vesicular suspension (100 μl) were added to tubes containing assay buffer, 

various concentrations of analog (0.1 nM to 0.1 mM) and 0.1 μM [3H]DA to give a 

final volume of 500 μl. Nonspecific uptake was determined in the presence of 

RO4-1284 (10 μM). Reactions were terminated by filtration, and radioactivity 

retained by the GF/B filters (presoaked for 2 h in assay buffer) was determined 

by liquid β-scintillation spectrometry. 

2.2.5 Synaptosomal [3H]DA Uptake  

Lobelane analogs inhibition of [3H]DA uptake into rat striatal 

synaptosomes was evaluated according to previously published methods (Teng 

et al., 1997). Rat striata were homogenized in ice-cold sucrose (pH 7.4), with 15 

up-and-down strokes of a Teflon pestle homogenizer (clearance ≈ 0.005 inch). 

Homogenates were centrifuged (2000g for 10 min at 4 °C), and resulting 

supernatants were centrifuged again (20,000g for 17 min at 4 °C). Resulting 

pellets were resuspended in 2.4 ml of assay buffer (125 mM NaCl, 5 mM KCl, 1.5 

mM MgSO4, 1.25 mM CaCl2, 1.5 mM KH2PO4, 10 mM α-D-glucose, 25 mM 
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HEPES, 0.1 mM EDTA, 0.1 mM pargyline, 0.1 mM ascorbic acid, saturated with 

95% 02/5% CO2, pH 7.4). Aliquots of the synaptosomal suspension (25 μl) were 

added to tubes containing assay buffer and a range of concentrations of analog 

(1 nM –100 μM), and incubated at 34 °C for 5 min. Samples were then placed on 

ice, and 50 μl [3H]DA added to each tube (final concentration 0.1 μM), and 

incubated for 10 min at 34 °C. Assays were performed in duplicate in a total 

volume of 500 μl. Nonspecific uptake was determined in the presence of 

nomifensine (10 μM). Reactions were terminated by addition of 3 ml of ice-cold 

assay buffer and subsequent filtration. Radioactivity retained by the filters 

(presoaked for 2 hr in 0.5% PEI) was determined as previously described. 

2.2.6 Vesicular [3H]DA Release  

(±)-GZ-729C and (±)-GZ-730B, the most potent analogs to inhibit VMAT2 

function, were evaluated for their ability to release [3H]DA from synaptic vesicles 

using previously described methods (Nickell et al., 2011a). Synaptic vesicle 

suspensions from rat striatum were prepared as previously described. The final 

pellets were resuspended in 2.7 ml of cold assay buffer and were preloaded with 

300 μl of 0.3 μM [3H]DA solution. After incubation at 37°C for 8 min, samples 

containing the vesicle suspension were centrifuged (100,000 g for 1 hour at 4°C), 

and the resulting pellet was resuspended in a final volume of 4.2 ml of assay 

buffer. Aliquots of [3H]DA-preloaded vesicular suspensions (180 μl) were added 

to tubes in the absence or presence of various concentrations of inhibitors (1 nM-

1 mM), and incubated at 37°C for 8 min. Reactions were terminated by adding 
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2.5 ml of ice-cold assay buffer and followed by rapid filtration. [3H]DA remaining 

in the vesicles following exposure to analogs was retained by the filters. Analog-

evoked [3H]DA release for each concentration was determined by subtracting the 

radioactivity remaining in the presence of analog from the amount of radioactivity 

on the filter in the absence of analog (control). 

To determine if (±)-GZ-729C and (±)-GZ-730B inhibit methamphetamine-

induced [3H]DA release from striatal synaptic vesicles, [3H]DA-preloaded synaptic 

vesicles (180 μl) were added to duplicate tubes containing a range of 

concentrations (100 nM – 2 mM) of methamphetamine in the absence and 

presence of (±)-GZ-729C (10 nM – 1 μM) or (±)-GZ-730B (10 nM - 1μM), and 

incubated (final volume, 200 μl) for 8 min at 37 ºC. Samples were processed as 

previously described. 

2.2.7 [3H]Dofetilide Binding Assay to HERG Channels Expressed in HEK-293 

Cells Membranes  

The HEK-293 cell line stably expressing the human ERG (ether-a-go-go 

related gene) potassium channel (accession number U04270) was obtained at 

passage 11 (P11) from Millipore (CYL3006, lot 2, Billerica, MA). hERG-HEK cells 

were cultured according to the protocol provided by Millipore and were
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(obtained from Life Technologies, Carlsbad, CA). Cells were incubated at 37 °C 

in a humidified atmosphere with 5% CO2. Frozen aliquots of cells were 

transferred into T-75 cm2 flasks and allowed to adhere for 4-8 h, after which the 

medium was replaced. The medium was replaced every 2 or 3 days, and routine 

passages were carried out every 6 or 7 days using 0.05% Trysin-EDTA (1X) with 

phenol (Life Technologies, Carlsbad, CA). Dissociated cells were seeded into 

new 150x25 mm culture dishes (surface area: 151.9 cm2) obtained from BD 

Biosciences/Fisher Scientific (Florence, KY) at 2-3x106 cells per dish. Cells were 

passaged at least 3 times after thawing and were placed at 30 °C, 5% CO2, for 

40-48 hrs prior to membrane preparation. Cell membrane preparations were 

obtained 6 or 7 days after the last passage, at passages 20 or 21. Cells were at 

about 70-90% confluence.   

Cell membrane were prepared based on previously described methods 

(Erickson et al., 1990; Fieber and Adams, 1991; Finlayson et al., 2001; Nooney 

et al., 1992) using cells grown from two different batches provided by Millipore. 

Cells were rinsed with pre-warmed (37 °C) HBSS (Life Technologies, Carlsbad, 

CA). Cells were then collected by scraping the 150 mm dishes using 13 ml plus 5 

mL ice-cold 0.32 M sucrose with a Corning® cell scrapers blade L 1.8 cm 

(Sigma-Aldrich, St. Louis, MO). Harvested cell suspensions were poured into 

centrifuge tubes and homogenized on ice with a Teflon pestle using a Maximal 

Digital homogenizer (Fisher Scientific). Cells were then pelleted by centrifugation 

at 300 g and 800 g for 4 min each at 4 °C. Pellets were resuspended in 9 mL of 

ice-cold Milli-Q water. Osmolarity was restored by the addition of 1 mL of 500 
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mM Tris buffer (pH 7.4) and homogenization. Cellular suspensions were 

centrifuged again at 20,000 g for 30 min at 4 °C. Resulting pellets were 

homogenized in ~2 mL assay buffer composed of 50 mM Tris, 10 mM KCl, 1 mM 

MgCl2 (pH 7.4), prepared the day prior to plasma membrane preparation and 

kept at 4 °C. Homogenization was performed using Pasteur glass pipettes and 2 

ml tissue grinders (Kimble Chase, Vineland, NJ), and aliquots of cell membranes 

were stored at -80 °C. Cell membranes were thawed prior to assay, and protein 

content was determined using a Bradford Protein Assay (Bradford, 1976) and 

albumin from bovine serum (Sigma, St. Louis, MO, A2153) as the standard. 

The potassium channel IKr coded by hERG plays a major role in phase 3 

repolarization of ventricular myocytes by opposing the depolarizing Ca2+ influx 

during the plateau phase (Sanguinetti et al., 1995). Analogs with high affinity for 

this channel have potential to possess cardiac toxicity. Dofetilide, an 

antiarryhtmic agent, has been shown to preferentially block open (or activated) 

hERG transfected in HEK-293 cells (Snyders and Chaudhary, 1996). 

[3H]Dofetilide binding assays were utilized to determine the affinity of analogs for 

this channel. [3H]Dofetilide binding assays were performed at room temperature 

in a Tris buffer (50 mM Tris, 10 mM KCl, 1 mM MgCl2; pH 7.4) as previously 

reported (Nooney et al., 1992). Buffer was prepared less than 48 h before the 

assay and kept at 4 °C. The reaction protocol was as follows: cell membrane 

suspension (4-10 μg) was added to tubes containing assay buffer, 25 μl of test 

compound or the corresponding vehicle and 25 μl of [3H]dofetilide (5 nM, final 

concentration) for a final volume of 250 μl. Nonspecific binding was determined in 
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the presence of amitriptyline (1 mM). Amitriptyline has been reported to induce 

QT prolongation by blocking the current of heterologously expressed hERG 

potassium channels (Jo et al., 2000; Teschemacher et al., 1999). Assays were 

performed in duplicate. Reactions proceeded for 60 min at room temperature and 

were terminated by rapid filtration in a Brandel M-48 cell/membrane harvester 

using GF/B Glass Fiber FP-105 filters (Brandel Inc., Gaithersburg, MD) pre-

soaked in 0.25% polyethylenimine solution (PEI, Fluka/Sigma-Aldrich, St. Louis, 

M) overnight. Filters were then washed three times with ~1 ml of ice-cold assay 

buffer. Filter discs that match the filter grids of the Brandel harvester were 

transferred into vials, and 5 ml scintillation cocktail (Research Products 

International Corporation, Mount Prospect, IL) was added. Radioactivity was 

determined by liquid scintillation spectrometry. 

2.2.8 Inhibition of Methamphetamine-Evoked Endogenous DA Release  

To determine if analogs inhibition of methamphetamine-induced DA 

release from vesicles translated to inhibition of methamphetamine-induced DA 

release from the intact striatal slice preparation, a previously described slice 

superfusion methodology was modified and employed (Gerhardt et al., 1989). In 

the endogenous release study, striatal slices (0.5 mm thickness) were prepared 

and incubated for 60 min in Krebs' buffer (118 mM NaCl, 4.7 mM KCl, 1.2 mM 

MgCl2, 1.0 mM NaH2PO4, 1.3 mM CaCl2, 11.1 mM α-D-glucose, 25 mM NaHCO3, 

0.11 mM L-ascorbic acid, and 0.004 mM EDTA, pH 7.4, saturated with 95% 

O2/5% CO2) at 34 °C in a metabolic shaker. Each slice was transferred to a glass 
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superfusion chamber and superfused with Krebs' buffer at 1 ml/min for 60 min 

prior to sample collection. Samples (1 ml) were collected for 1 min every 5 min 

during the 80 min superfusion period. Initially, two samples were collected in the 

absence of analog to determine basal DA outflow. Each slice was superfused for 

30 min with a single concentration of (±)-GZ-729C (0, 0.1-10 μM) or (±)-GZ-730B 

(0, 0.1-30 µM) to determine analog-evoked fractional release. Then, 

methamphetamine (5 μM) was added to the buffer with analogs for 15 min, 

followed by an additional 25 min of superfusion with analogs alone. In each 

experiment, duplicate control slices were superfused with methamphetamine in 

the absence of analogs. Methamphetamine concentration (5 μM) and exposure 

time (15 min) were chosen to provide reliable DA release of sufficient quantity to 

allow evaluation of inhibition by analogs (Horton et al., 2011b). Samples (1 ml) 

were kept on ice. Perchloric acid (0.1 M; 50 μl) was added to each sample. Upon 

assay, 20 μl ascorbate oxidase (168 U/mg reconstituted to 81 U/ml) was added 

to a 500 μl aliquot of each sample. Samples were vortexed for 30 s and an 

aliquot (100 μl) was injected into the HPLC-EC system to determine amounts of 

DA and DOPAC in the superfusate samples.  

The HPLC-EC system consisted of a pump (model 126; Beckman Coulter, 

Fullerton, CA), autosampler (model 508; Beckman Coulter), an ODS Ultrasphere 

C18 reverse-phase 80 × 4.6 mm, 3 μm column, and a Coulometric-II detector 

with guard cell (model 5020) maintained at + 0.60 V and analytical cell (model 

5011) with E1 and E2 set at −150 mV and +350 mV, respectively (ESA Inc., 

Chelmsford, MA). HPLC mobile phase (flow rate, 1.2 ml/min) consisted of 0.07 M 
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citrate/0.1 M acetate buffer, containing 175 mg/L octylsulfonic acid sodium salt 

and 650 mg/L NaCl (pH 4.2) and 7% methanol. Separations were performed at 

room temperature, and 5 to 6 min was required to process each sample. 

Retention times of DA and DOPAC standards were used to identify respective 

peaks. Peak heights were used to quantify the detected amounts of DA and 

DOPAC based on standard curves. Detection limit for DA and DOPAC was 1 to 2 

pg/100 μl. 

2.2.9 Data analysis  

For studies using vesicles, synaptosomes, and hERG-HEK-293 cell 

membranes, specific [3H]DTBZ binding, [3H]DA uptake, and [3H]dofetilide binding 

were determined by subtracting the nonspecific binding or uptake from the total. 

Non-specific [3H]DTBZ binding and vesicular [3H]DA uptake were determined in 

the presence of RO4-1284. Non-specific synaptosomal [3H]DA uptake and 

[3H]dofetilide binding were determined in the presence of nomifensine and 

amitriptyline, respectively. Concentrations of analogs that produced 50% 

inhibition of maximal binding or uptake (IC50 values) or evoked 50% of [3H]DA 

release (EC50 values) were determined from the concentration-response curves 

via an iterative curve-fitting program (Prism 5.0; GraphPad Software Inc., San 

Diego, CA). Inhibition constants (Ki values) were determined using the Cheng-

Prusoff equation (Cheng and Prusoff, 1973). To determine if the structural 

changes to the lobelane molecule increased affinity for the VMAT2 binding site, 

the VMAT2 uptake site and for DAT, two-tailed t tests were performed to 
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compare the log Ki value for each analog to that obtained for lobelane, the parent 

compound, in each assay. To assess if analog affinity at the DTBZ site on 

VMAT2 was associated with analog affinity at the [3H]DA uptake on VMAT2, 

Spearman correlation of the Ki values for the [3H]DTBZ binding and Ki values for 

the vesicular [3H]DA uptake was conducted. For vesicular [3H]DA release assay, 

F test was performed to compare the fits of two equations, the one-site binding 

model and the two-site binding model. Analogs inhibition of methamphetamine-

evoked vesicular [3H]DA release was analyzed by two-way repeated-measures 

ANOVA, with concentration of analogs and methamphetamine as repeated 

measure factors. If a significant analogs x methamphetamine interaction was 

found, one-way ANOVAs followed by Dunnetts’s tests were performed at each 

methamphetamine concentration to determine the analog concentrations that 

decreased methamphetamine-evoked [3H]DA release. To further elucidate the 

mechanism of analogs inhibition of methamphetamine-evoked [3H]DA release, a 

Lew and Angus plot of the pEC50 values as a function of log analog concentration 

was generated, and the data underwent linear regression analysis using Prism 

5.0 (GraphPad Software Inc.). Difference from unity of the regression slope (95% 

confidence intervals) revealed if the interaction was at the same site, i.e., 

orthosteric; or at two different sites, i.e., allosteric (Kenakin, 2006b).  

For the methamphetamine-evoked endogenous DA release, DA and 

DOPAC concentrations in each superfusate sample were divided by the 

respective striatal slice weight to obtain fractional release. Basal endogenous DA 

and DOPAC were determined as the average fractional release in the two 
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superfusate samples collected just before addition of analog to the buffer. To 

determine if the analog in a concentration and time dependent manner evoked 

fractional DA and DOPAC release, two-way repeated-measures ANOVA was 

performed on release in samples obtained prior to addition of methamphetamine 

to the buffer. If concentration × time interactions were found, one-way ANOVAs 

were performed at each time point to determine the analog concentrations that 

evoked fractional DA and DOPAC release. To determine if the analog in a 

concentration and time dependent manner inhibited the effect of 

methamphetamine on fractional DA and DOPAC release, two-way repeated-

measures ANOVA was performed on release data in samples after the addition 

of methamphetamine to the buffer. If concentration × time interactions were 

found, one-way ANOVAs were performed at each time point to determine the 

analog concentrations that inhibited methamphetamine-evoked release.  

2.3 Results 

2.3.1 Inhibition of [3H]DTBZ binding at VMAT2  

In order to determine analogs affinity for the DTBZ site on VMAT2, 

[3H]DTBZ binding inhibition assay was performed. Concentration-response 

curves for the series of lobelane analogs, and for the standards lobelane, 

lobeline, and RO4-1284 to inhibit [3H]DTBZ binding to whole brain membranes 

are illustrated in Figure 2.3. Ki and Imax values from the concentration-response 

curves are provided in Table 2.1. The standard compounds, RO4-1284, lobelane 

and lobeline had Ki values of 0.016 ± 0.0013, 0.97 ± 0.19 and 3.5 ± 1.0 μM, 
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consistent with previous results (Nickell et al., 2011b). All compounds inhibited 

[3H]DTBZ binding within the concentration range utilized (0.1 nM -1 mM) except 

for GZ-632A (Ki > 100 μM), an analog afforded by removing methylene linkers at 

both C-6 and C-2 position of the piperidine ring. All the other compounds showed 

affinity for VMAT2 in the concentration range of 0.88-62.5 µM. The results 

indicate that to maintain high binding affinity at VMAT2, lobelane analogs with the 

methyl substituent at the N atom should contain one to three methylene units at 

the C-6 linker and two or three methylene units at the C-2 linker, nor-lobelane 

analog should contain one and three methylene units at the C-6 and C-2 linker, 

respectively. 

The symmetrical lobelane analogs exhibited affinity either not different 

from or lower than that for lobelane (Figure 2.3, top panel). GZ-709C, the 

symmetrical N-methylated lobelane analog with one methylene unit on each side 

of the piperidine ring, exhibited 11-fold lower affinity (Ki = 10.5 ± 3.36 μM, p < 

0.01) compared to lobelane. The corresponding nor-analog of GZ-709C, GZ-

709B, exhibited 7-fold lower affinity (Ki = 7.68 ± 1.44 μM, p < 0.05) compared to 

lobelane. GZ-712C, the other symmetrical N-methylated analog with three 

methylene units exhibited affinity (Ki = 1.00 ± 0.23 μM) that was not different from 

lobelane. The corresponding nor-analog of GZ-712C, GZ-712B, exhibited 4-fold 

lower affinity (Ki = 4.50 ± 1.02 μM, p < 0.05) compared to lobelane. 

The non-symmetrical lobelane analogs exhibited affinity either not different 

from or lower than that for lobelane (Figure 2.3, middle panel). The non-
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symmetrical N-methylated lobelane analogs with no methylene linker at the C-6 

position of the piperidine ring [(±)-GZ-731B, (±)-GZ-725A, and (±)-GZ-726A] 

exhibited 14-, 17-, and 64-fold lower affinity (Ki = 13.6 ± 8.1 µM, 16.1 ± 4.1 µM, 

and 62.5 ± 16.6 µM, respectively) compared to lobelane (p < 0.05 for all). The 

corresponding nor-analogs [(±)-GZ-731A, (±)-GZ-713A, and (±)-GZ-714A] 

exhibited 24-, 29-, and 29-fold lower affinity (Ki = 24.1 ± 6.1 µM, 28.4 ± 7.3 µM, 

and 28.6 ± 2.4 µM, respectively) compared to lobelane (p < 0.05 for all). Other 

non-symmetrical N-methylated analogs [(±)-GZ-730C, (±)-GZ-729C, and (±)-GZ-

644C] with 1-2 and 2-3 methylene units at the C-6 and C-2 position of the 

piperidine ring showed affinity (Ki = 1.62 ± 0.39 µM, 2.77 ± 1.77 µM, and 0.88 ± 

0.30 µM, respectively) not different from lobelane. The corresponding nor-analog 

of (±)-GZ-730C, (±)-GZ-730B, showed affinity (Ki = 1.13 ± 0.28 µM) not different 

from lobelane. The corresponding nor-analogs of (±)-GZ-729C and (±)-GZ-644C, 

(±)-GZ-729B and (±)-GZ-644B, exhibited 12- and 4-fold lower affinity (Ki = 12.2 ± 

0.2 µM and 4.60 ± 0.56 µM, respectively) compared to lobelane (p < 0.05 for 

both). 

2.3.2 Inhibition of [3H]DA uptake at VMAT2  

In order to determine analogs affinity for the DA translocation site on 

VMAT2, vesicular [3H]DA uptake inhibition assay was performed. Concentration-

response curves of lobelane analogs and the standards lobelane, lobeline, and 

RO4-1284 are illustrated in Figure 2.4. Ki and Imax values are provided in Table 

2.1. The standard compounds, RO4-1284, lobelane and lobeline had Ki values 

for inhibition of [3H]DA uptake of 0.041 ± 0.008, 0.040 ± 0.004, and 0.56 ± 0.03 
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µM, consistent with previous results (Nickell et al., 2010). All compounds 

inhibited VMAT2 function completely within the concentration range utilized (0.1 

nM-100 µM) except for GZ-632A (Imax = 74.6%), a compound afforded by 

removing the methylene linkers on both sides of the piperidine ring. The range of 

Ki values for the series of racemic analogs was 0.024 to 4.55 µM. The results 

indicated that to maintain high affinity to inhibit VMAT2 function, lobelane analogs 

with the methyl substituent at the N atom should contain one or two methylene 

units at the C-6 linker and one to three methylene units at the C-2 linker, nor-

lobelane analogs should contain one or three methylene units at both C-6 and C-

2 linker.  

The symmetrical lobelane analogs exhibited affinity either not different 

from or lower than that for lobelane (Figure 2.4, top panel). GZ-632A, the N-

methylated analog with no methylene unit, showed 114-fold lower affinity (Ki = 

4.55 ± 0.96 μM, p < 0.05) in comparison with lobelane. GZ-712C, the N-

methylated analog with 3 methylene units in both linkers exhibited 2-fold lower 

affinity (Ki = 0.078 ± 0.013 µM, p < 0.01) compared to lobelane. The 

corresponding nor-analog of GZ-712C, GZ-712B, exhibited affinity (Ki = 0.049 ± 

0.010 µM) not different from lobelane. GZ-709C, the N-methylated analog with 1 

methylene in both linkers exhibited affinity (Ki = 0.046 ± 0.007 µM) not different 

from lobelane. The corresponding nor-analog of GZ-709C, GZ-709B, exhibited 

affinity (Ki = 0.036 ± 0.007 µM) not different from lobelane. 

The non-symmetrical lobelane analogs exhibited a wide range of affinity 
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(0.024-1.42 µM) for the DA translocation site on VMAT2 (Figure 2.4, middle 

(Figure 2.4, middle panel). The non-symmetrical N-methylated lobelane analogs 

[(±)-GZ-731B, (±)-GZ-725A and (±)-GZ-726A], compounds afforded by removing 

the methylene unit at the C-6 position of the piperidine ring, exhibited 6-, 36- and 

10-fold lower affinity (Ki = 0.25 ± 0.05 µM, 1.42 ± 0.11 µM, and 0.41 ± 0.03 µM, 

respectively) compared to lobelane (p < 0.05). The corresponding nor-analogs 

[(±)-GZ-731A, (±)-GZ-713A, and (±)-GZ-714A] exhibited 13-, 24- and 6-fold lower 

affinity (Ki = 0.52 ± 0.05 µM, 0.97 ± 0.18 µM, and 0.24 ± 0.03 µM, respectively) 

compared to lobelane (p < 0.05). Non-symmetric N-methylated analogs [(±)-GZ-

730C and (±)-GZ-644C] with 1,3 and 2,3 methylene units in the linkers on each 

side of the piperidine exhibited affinity (Ki = 0.036 ± 0.003 µM and 0.062 ± 0.005 

µM) not different from lobelane. The corresponding nor-analog of (±)-GZ-730C, 

(±)-GZ-730B, exhibited the highest affinity [Ki = 0.024 ± 0.002 µM, t(6) = 4.38, p < 

0.01] and was different from that for lobelane. The corresponding nor-analog of 

(±)-GZ-644C, (±)-GZ-644B, exhibited 2-fold lower affinity (Ki = 0.067 ± 0.005 µM) 

compared to lobelane (p < 0.05). (±)-GZ-729C, the non-symmetrical N-

methylated lobelane analog with 1,2 methylene units in the linkers, exhibited 2-

fold higher affinity [Ki = 0.025 ± 0.003 µM, t(6) = 3.44, p < 0.05] compared to 

lobelane. The corresponding nor-analog of (±)-GZ-729C, (±)-GZ-729B, exhibited 

2-fold lower affinity (Ki = 0.093 ± 0.009 µM) compared to lobelane. 

For the non-symmetrical lobelane analogs with the cyclohexane 

substituent (Figure 2.4, bottom panel), (±)-GZ-725B, the N-methylated analog 

with 0,2 methylene units in the linkers exhibited 7-fold higher affinity [Ki = 0.22 ± 
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0.02 µM, t(6) = 14.2, p < 0.0001] compared to (±)-GZ-725A, the corresponding 

analog with a phenyl substituent. The corresponding nor-analog of (±)-GZ-725B, 

(±)-GZ-713B, exhibited 5-fold higher affinity [Ki = 0.20 ± 0.01 µM, t(6) = 7.26, p < 

0.001] compared to (±)-GZ-713A (Ki = 0.97 ± 0.18 µM), the corresponding analog 

with a phenyl substituent. The cyclohexane substituent did not increase affinity 

for (±)-GZ-726B, the N-methylated analog with 0,3 methylene units in the linkers, 

or its corresponding nor-analog, (±)-GZ-714B. 

Most of the compounds in this series exhibited affinity to inhibit vesicular 

[3H]DA uptake at an order of magnitude greater than the respective binding 

affinity, while RO4-1284 exhibited affinity not different between binding and 

uptake assays. The Ki values for the lobelane analogs in these two assays were 

positively correlated (Spearman r = 0.68; p < 0.01, Figure 2.5). 

2.3.3 Selectivity of (±)-GZ-729C, and (±)-GZ-730B for VMAT2 over DAT and 

hERG channel  

In order to determine analogs selectivity at VMAT2 over DAT and hERG 

channels, DAT [3H]DA uptake inhibition assay and [3H]dofetilide binding inhibition 

assay was performed. Concentration-response of (±)-GZ-729C and (±)-GZ-730B, 

and IC50 values to inhibit specific [3H]DTBZ binding, [3H]dofetilide binding and 

[3H]DA uptake are illustrated in the top and bottom panels in Figure 2.6, 

respectively. Both (±)-GZ-729C and (±)-GZ-730B inhibited [3H]DTBZ binding, 

[3H]dofetilide binding and [3H]DA uptake completely within the concentration 

range utilized (0.1 nM-100 µM). IC50 value of (±)-GZ-729C (0.050 ± 0.0018 µM, 
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top panel in Figure 2.6) to inhibit [3H]DA uptake at VMAT2 was 112-fold lower 

than that for [3H]DTBZ binding, 22-fold lower than that for [3H]dofetilide binding, 

and 20-fold lower than that for [3H]DA uptake at DAT. IC50 value of (±)-GZ-730B 

(0.048 ± 0.0038 µM, bottom panel in Figure 2.6) to inhibit [3H]DA uptake at 

VMAT2 was 47-fold lower than that for [3H]DTBZ binding, 50-fold lower than that 

for [3H]dofetilide binding, and 102-fold lower than that for [3H]DA uptake at DAT.  

2.3.4 Release of [3H]DA from striatal synaptic vesicles  

In order to determine analogs ability to redistribute DA from synaptic 

vesicles to cytosol, vesicular [3H]DA release assay was performed. Two analogs 

with the highest affinity in the vesicular [3H]DA uptake assay were evaluated for 

their ability to evoke [3H]DA release from striatal synaptic vesicles. 

Concentration-response curves and EC50 and Emax values for lobelane, lobeline, 

methamphetamine, (±)-GZ-729C, and (±)-GZ-730B to evoke [3H]DA release from 

synaptic vesicles are provided in Figure 2.7. EC50 values of lobelane, lobeline, 

and methamphetamine were 0.26 ± 0.031, 13 ± 7.4, and 19 ± 4.1 μM, 

respectively (top panel in Figure 2.7), consistent with previous results (Nickell et 

al., 2011b). The EC50 value for lobelane was 50-fold lower than that for lobeline 

[t(6) = 3.86, p < 0.01], and 35-fold lower than that for methamphetamine [t(6) = 

11.1, p < 0.001]. Both analogs released [3H]DA from the synaptic vesicles in a 

biphasic manner [F(2, 39) = 4.50 for (±)-GZ-729C, p < 0.05; F(2, 39) = 8.22 for (±)-GZ-

730B, p < 0.01; bottom panel in Figure 2.7]. No difference of the High EC50 [60 ± 

40 nM for (±)-GZ-729C, 110 ± 63 nM for (±)-GZ-730B], or the Low EC50 [13 ± 6.2 



  91 
 

µM for (±)-GZ-729C, 15 ± 7.9 µM for (±)-GZ-730B] was found between (±)-GZ-

729C and (±)-GZ-730B. Similarly, no difference of the High Emax [24 ± 3.4 for (±)-

GZ-729C, 27± 4.7 for (±)-GZ-730B], or the Low Emax [63 ± 4.8 for (±)-GZ-729C, 

65 ± 5.6 for (±)-GZ-730B] was found between (±)-GZ-729C and (±)-GZ-730B. 

2.3.5 (±)-GZ-729C and (±)-GZ-730B inhibited methamphetamine-evoked 

[3H]DA release from striatal synaptic vesicles  

To determine the ability of (±)-GZ-729C and (±)-GZ-730B to inhibit effect 

of methamphetamine at synaptic vesicles, methamphetamine-evoked vesicular 

[3H]DA release was determined in the presence of the analogs. The 

concentration response of methamphetamine-evoked vesicular [3H]DA release in 

the presence of (±)-GZ-729C and (±)-GZ-730B is illustrated in the top and bottom 

panels, respectively, in Figure 2.8. For (±)-GZ-729C, two-way repeated 

measures ANOVA revealed main effects of methamphetamine [F(10, 120) = 886, p 

< 0.001] and (±)-GZ-729C [F(3, 12) = 50.9, p < 0.001], and a methamphetamine × 

(±)-GZ-729C interaction [F(30, 120) = 13.0, p < 0.001]. (±)-GZ-729C inhibited 

methamphetamine-evoked [3H]DA release at 0.1 µM [F(3, 12) = 5.04, p < 0.05], 1 

µM [F(3, 12) = 4.84, p < 0.05], 3 µM [F(3, 12) = 8.06, p < 0.01], 10 µM [F(3, 12) = 56.3, p 

< 0.0001], 30 µM [F(3, 12) = 63.8, p < 0.0001], 100 µM [F(3, 12) = 103, p < 0.0001], 

200 µM [F(3, 12) = 51.0, p < 0.0001], 500 µM [F(3, 12) = 44.0, p < 0.0001], and 1 mM 

[F(3, 12) = 26.5, p < 0.0001]. Post hoc analyses revealed that (±)-GZ-729C at 100 

nM and 1 µM decreased [3H]DA release induced by 0.1-1000 µM 

methamphetamine. From the methamphetamine concentration-response curves, 
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EC50 and Emax values in the absence and presence of (±)-GZ-729C were 

generated and provided in Table 2.2. EC50 and Emax values for methamphetamine 

alone were 9.0 ± 2.9 µM and 83 ± 1.4%, respectively, consistent with a previous 

study (Nickell et al., 2010). Increasing concentrations of (±)-GZ-729C contributed 

to a rightward shift of methamphetamine concentration-response curve with no 

inhibition of maximum release. (±)-GZ-729C (100 nM and 1 µM) increased the 

log EC50 values by 5- and 19-fold, respectively, [F(3,12) = 13.6, p < 0.001]. Lew 

and Angus analysis revealed a linear fit (R2 = 0.95, p < 0.0001) with a slope of -

0.62 and a 95% confidence interval of -0.72 and -0.52, which did not overlap with 

unity (inset in top panel in Figure 2.8), suggesting that.(±)-GZ-729C inhibited 

methamphetamine-evoked [3H]DA release in a surmountable, allosteric manner 

(Kenakin, 2006). 

For (±)-GZ-730B, two-way repeated measures ANOVA revealed main 

effects of methamphetamine [F(10, 110) = 156, p < 0.001] and (±)-GZ-730B [F(3, 11) = 

9.99, p < 0.01], and a methamphetamine × (±)-GZ-730B interaction [F(30, 110) = 

3.81, p < 0.001]. (±)-GZ-730B inhibited methamphetamine at 3 µM [F(3, 11) = 4.54, 

p < 0.05], 10 µM [F(3, 11) = 19.3, p < 0.0001], 30 µM [F(3, 11) = 8.02, p < 0.01], 100 

µM [F(3, 11) = 71.0, p < 0.0001], 200 µM [F(3, 11) = 7.88, p < 0.01] and 1 mM [F(3, 11) 

= 7.13, p < 0.01]. (±)-GZ-730B at 100 nM and 1 µM inhibited [3H]DA release 

induced by methamphetamine at 10-100 µM and 3-1000 µM concentration 

ranges, respectively. From the methamphetamine concentration-response 

curves, EC50 and Emax values in the absence and presence of (±)-GZ-730B were 

generated and provided in Table 2.2. EC50 and Emax values for methamphetamine 
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alone were 5.8 ± 1.0 µM and 79 ± 3.7%, respectively, consistent with a previous 

study (Nickell et al., 2010). Increasing concentrations of (±)-GZ-730B contributed 

to a rightward shift of the methamphetamine concentration-response curve with 

no inhibition of the maximum release like (±)-GZ-729C. (±)-GZ-730B (1 µM) 

increased the log EC50 values by 40-fold [F(3,11) = 48.3, p < 0.001]. Lew and 

Angus analysis revealed a linear fit (R2 = 0.94, p < 0.0001) with a slope of -0.63 

and a 95% confidence interval of -0.74 and -0.53, which did not overlap with unity 

(inset in bottom panel in Figure 2.8), suggesting that (±)-GZ-730B inhibited 

methamphetamine-evoked [3H]DA release in a surmountable, allosteric manner 

(Kenakin, 2006). 

2.3.6 Lack of (±)-GZ-729C inhibition of methamphetamine-evoked endogenous 

fractional DA release from striatal slices  

To determine the ability of (±)-GZ-729C to inhibit effect of 

methamphetamine at striatal slices, methamphetamine-evoked endogenous DA 

release from striatal slices was determined in the presence of the analog. The 

time course of the concentration-dependent effect of (±)-GZ-729C alone on 

fractional DA release across the first 15-40 min of superfusion is illustrated in the 

top panel of Figure 2.9. Two-way repeated measures ANOVA revealed main 

effects of (±)-GZ-729C [F(5,13) = 10.6, p < 0.0001] and time [F(5,9) = 5.36, p < 

0.05]. The interaction of concentration × time was not significant. (±)-GZ-729C 

(10 µM) released DA at 30 min [F(5,20) = 8.23, p < 0.001] and 35 min [F(5,20) = 

5.65, p < 0.01]. Analysis of fractional DA release following the addition of 
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methamphetamine to the superfusion buffer 45-55 min in the absence and 

presence of (±)-GZ-729C revealed that the concentration effect and the 

concentration × time interaction were not significant; however a main effect of 

time [F(2, 16) = 13.9; p < 0.0001] was found. Thus, methamphetamine increased 

fractional DA release from superfused striatal slices across the 15 min exposure 

period in the absence and presence of (±)-GZ-729C; however, (±)-GZ-729C did 

not inhibit the effect of methamphetamine to release DA.  

The time course of the concentration-dependent effect of (±)-GZ-729C 

alone on fractional release of DOPAC across the first 15-40 min of superfusion is 

illustrated in bottom panel of Figure 2.9. The main effect of (±)-GZ-729C and time 

were significant [F(5, 20) = 5.34, p < 0.01; F(5, 16) = 23.7, p < 0.0001, respectively], 

and the interaction of concentration × time was not significant. (±)-GZ-729C 

increased fractional release of DOPAC at 25 min [F(5, 21) = 3.85, p < 0.05], 30 min 

[F(5, 21) = 15.5, p < 0.0001], 35 min [F(5, 21) = 7.59, p < 0.001], and 40 min [F(5, 20) = 

6.41, p < 0.01]. (±)-GZ-729C at 3 and 10 µM increased release of DOPAC at 40 

min and 25-40 min, respectively. The time course of the concentration-dependent 

effect of (±)-GZ-729C on fractional release of DOPAC across the 45-50 min of 

superfusion in the presence of methamphetamine is illustrated in bottom panel of 

Figure 2.9 as well. The main effect of (±)-GZ-729C was significant [F(5, 21) = 8.41, 

p < 0.0001], and time and interaction of concentration × time were not significant. 

(±)-GZ-729C increased fractional release of DOPAC at 45 min [F(5, 21) = 5.10, p < 

0.01], 50 min [F(5, 21) = 10.2, p < 0.0001], and 55 min [F(5, 21) = 6.91, p < 0.001]. 
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(±)-GZ-729C at 3 and 10 µM increased release of DOPAC 50-80 min, 45-80 min, 

respectively.  

2.3.7 Lack of (±)-GZ-730B inhibition of methamphetamine-evoked endogenous 

fractional DA release from striatal slices  

To determine the ability of (±)-GZ-730B to inhibit effect of 

methamphetamine at striatal slices, methamphetamine-evoked endogenous DA 

release from striatal slices was determined in the presence of the analog. The 

time course of concentration-dependent effect of (±)-GZ-730B alone on fractional 

DA release across the first 15-40 min of superfusion is illustrated in the top panel 

of Figure 2.10. The effects of (±)-GZ-730B, time, and the interaction of 

concentration × time were not significant. Analysis of fractional DA release 

following the addition of methamphetamine to the superfusion buffer 45-55 min in 

the absence and presence of (±)-GZ-730B revealed that the concentration effect 

and the concentration × time interaction were not significant; however a main 

effect of time [F(2, 33) = 41.2; p < 0.0001] was found. Thus, methamphetamine 

increased fractional DA release from superfused striatal slices across the 15 min 

exposure period in the absence and presence of (±)-GZ-730B; however, similar 

to (±)-GZ-729C, (±)-GZ-730B did not inhibit the effect of methamphetamine to 

release DA.  

The time course of concentration-dependent effect of (±)-GZ-730B alone 

on fractional release of DOPAC across the first 15-40 min of superfusion is 

illustrated in bottom panel of Figure 2.10. The main effect of (±)-GZ-730B and 
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time were significant [F(5, 29) = 114, p < 0.0001; F(5, 25) = 9.12, p < 0.0001, 

respectively], and the interaction of concentration × time was not significant. (±)-

GZ-730B increased fractional release of DOPAC at 30 min [F(5, 33) = 3.65, p < 

0.01], 35 min [F(5, 33) = 5.65, p < 0.001], and 40 min [F(5, 33) = 8.01, p < 0.0001]. 

(±)-GZ-730B at 10 and 30 µM increased release of DOPAC 35-40 min and 30-40 

min, respectively. The time course of the concentration-dependent effect of (±)-

GZ-730B on fractional release of DOPAC across the 45-50 min of superfusion in 

the presence of methamphetamine is illustrated in bottom panel of Figure 2.10 as 

well. The main effect of (±)-GZ-730B was significant [F(5, 33) = 9.76, p < 0.0001], 

and time and interaction of concentration × time were not significant. (±)-GZ-

730B increased fractional release of DOPAC at 45 min [F(5, 33) = 6.59, p < 0.001], 

50 min [F(5, 33) = 9.00, p < 0.0001], and 55 min [F(5, 33) = 12.3, p < 0.0001]. (±)-GZ-

730B at 10 and 30 µM increased release of DOPAC 45-80 min. 

2.4 Discussion 

The objective of this study was to modify the length of the methylene 

linkers of the lobelane molecule to afford a series of analogs in the search for 

potent ligands at VMAT2 as the target to inhibit methamphetamine action at this 

site and prevent methamphetamine-evoked [3H]DA and endogenous DA release. 

Importantly, all the asymmetrical analogs in this series are racemic containing 

same amount of enantiomers. The enantiomers of the racemic compounds might 

exhibit different affinities to inhibit VMAT2 function and methamphetamine-

evoked [3H]DA release from striatal synaptic vesicles and endogenous DA 
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release from striatal slices. The results indicate that the linkers between the 

central piperidine and the phenyl rings of the lobelane analogs that contain one 

methylene units at the C-6 position and one or three methylene units at the C-2 

position of the piperidine ring maintain high affinity at VMAT2 to inhibit binding 

and function. Introducing a cyclohexane substituent at the C-6 position of the 

piperidine ring improved affinity of one analog [(±)-GZ-725A], the analog with 0,2 

methylene units in the linkers, in the VMAT2 binding and uptake assay. A 

positive correlation was found between the Ki values in the [3H]DTBZ binding and 

[3H]DA uptake assays, as would be expected if analogs inhibition of VMAT2 

function were due to binding to the DTBZ site on VMAT2. However, GZ-632A, 

the analog with no linkers, inhibited VMAT2 function but exhibited complete loss 

of affinity at the DTBZ site on VMAT2, suggesting an interaction with the 

substrate translocation site instead of the DTBZ binding site on VMAT2 (Nickell 

et al., 2011a; Scherman and Henry, 1984). Among all analogs, (±)-GZ-730B was 

the most potent and selective analog to inhibit VMAT2 function and was identified 

as the lead. Furthermore, (±)-GZ-730B inhibited methamphetamine-evoked 

[3H]DA release from the vesicle preparation via a surmountable allosteric 

interaction with VMAT2. However, (±)-GZ-730B did not inhibit 

methamphetamine-evoked endogenous DA release from striatal slices. Different 

tissue preparation, striatal synaptic vesicles versus slices, and different label, 

[3H]DA versus endogenous DA, might contribute to the contradictory results. In 

addition, poor water solubility of the lead analog prevented further investigation in 

vivo in behavioral studies using rats.  
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The [3H]DTBZ binding assay provides important information regarding the 

affinity of the analogs at the DTBZ site on VMAT2. N-methylated analogs with 

one to three methylene units at the C-6 and two or three methylene units at the 

C-2 position of the piperidine ring [(±)-GZ-712C, (±)-GZ-729C, (±)-GZ-730C, and 

(±)-GZ-644C] exhibited affinity that was not different compared to that of 

lobelane. For N-methylated analogs, removing the methylene linker at the C-6 

position [(±)-GZ-731B, (±)-GZ-725A, and (±)-GZ-726A] contributed to a 

decreased affinity and removing both linkers [(±)-GZ-632A] resulted in complete 

loss of affinity at the DTBZ site on VMAT2. Thus, when the methylene linker 

between the phenyl ring and the piperidine ring was removed, this structural 

change afforded a more rigid structure which appeared detrimental for the affinity 

at the DTBZ site on VMAT2. For N-methylated analogs, a cyclohexane 

substituent at C-6 position of the piperidine ring provided a 13-fold increased 

affinity for an analog with three methylene units at the C-2 position [(±)-GZ-

726B], but only 2-fold increase for the analog with two methylene units [(±)-GZ-

725B]. Thus, when the phenyl substituent was replaced by the cyclohexane, this 

afforded a more flexible structure providing a higher affinity at the DTBZ site on 

VMAT2 for N-methylated analogs with longer methylene linkers.  

All nor-analogs except for (±)-GZ-730B (the nor-analog with 1,3 methylene 

units in the linkers) exhibited lower affinity compared to lobelane, suggesting that 

the methyl substituent at the N atom is important for maintaining analog affinity at 

the DTBZ site on VMAT2. Similar to the N-methylated analogs, removing the 

methylene linker at the C-6 position of the piperidine ring in nor-analogs [(±)-GZ-
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731A, (±)-GZ-713A, and (±)-GZ-714A] contributed to a decreased affinity for the 

DTBZ site on VMAT2, suggesting a similar detrimental effect of the more rigid 

structure. However, the cyclohexane substituent at C-6 position did not improve 

the affinity of the nor-analogs [(±)-GZ-713B and (±)-GZ-714B] for the DTBZ site 

on VMAT2.  

Affinity for the substrate translocation site on VMAT2 which is responsible 

for DA uptake provides important information related to transporter function. 

Similar to the binding assay, for N-methylated analogs, a more rigid structure 

afforded by removing the methylene linker [(±)-GZ-731B, (±)-GZ-725A, and (±)-

GZ-726A] was detrimental for affinity for the substrate translocation site on 

VMAT2. A cyclohexane substituent at C-6 position of the piperidine ring provided 

a 7-fold increased affinity for an N-methylated analog with two methylene units at 

the C-2 position [(±)-GZ-725B], but no increase for the N-methylated analog with 

three methylene units [(±)-GZ-726B]. Thus, when the phenyl substituent was 

replaced by the cyclohexane, in contrast to the binding study, this afforded a 

more flexible structure providing a higher affinity at the substrate translocation 

site on VMAT2 for the N-methylated analogs with short methylene linkers.  

For nor-analogs, similar to the N-methylated analogs, removing the 

methylene linker at the C-6 position [(±)-GZ-731A, (±)-GZ-713A, and (±)-GZ-

714A] contributed to a decreased affinity for the substrate translocation site on 

VMAT2, suggesting a similar detrimental effect of the more rigid structure. Similar 

to the N-methylated analogs, a cyclohexane substituent at C-6 position of the 
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piperidine ring provided a 5-fold increased affinity for an nor-analog with two 

methylene units at the C-2 position [(±)-GZ-713B], but no increase for the nor-

analog with three methylene units [(±)-GZ-714B]. Thus, similar to the N-

methylated analogs, replacing phenyl substituent with the cyclohexane also 

afforded a more flexible structure providing a higher affinity at the substrate 

translocation site on VMAT2 for the nor-analogs with short methylene linkers.  

Binding affinity of N-1,2-dihydroxypropyl lobelane analogs, meso-

transdiene analogs, and phenyl ring-substituted lobelane analogs at the 

[3H]DTBZ site on VMAT2 has been shown to not be associated with the affinity 

for the translocation site on the transporter evaluated by inhibition of function, 

such that no correlation between inhibition of binding and function was found 

(Horton et al., 2011a; Horton et al., 2011b; Nickell et al., 2011a). However, a 

positive correlation was found between the binding affinity and functional affinity 

in the current study, indicating that inhibition of VMAT2 function might be due to 

inhibition of binding at the DTBZ site on VMAT2. DTBZ is a noncompetitive 

inhibitor at VMAT2 and interacts with a site that is different from the DA 

translocation site on the transporter (Scherman and Henry, 1984). Thus, for this 

series of analogs, the interaction with the DTBZ binding site on VMAT2 may be 

responsible for the inhibition of DA uptake (VMAT2 function), i.e., through an 

allosteric effect. Interestingly, binding affinity for RO4-1284 was not different from 

its affinity in the functional assay, suggesting that inhibitors at the DTBZ site on 

VMAT2 were equipotent in the binding and the functional assay. Lobeline and 

nor-lobelane exhibited 5-fold greater affinity in the functional assay relative to the 
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binding assay, suggesting that lobeline and lobelane might inhibit VMAT2 

function via a mechanism different from TBZ analog RO4-1284. In the current 

study, all lobelane analogs in this study exhibited at least 10-fold greater affinity 

in the functional assay relative to the binding assay. In general, compounds 

interacting with VMAT2 can be classified as either uptake inhibitors or substrates. 

In terms of substrates, higher potencies were observed in VMAT2 functional 

assays relative to binding assays, while equivalent potencies were observed in 

both assays for uptake inhibitors (Andersen, 1987; Nickell et al., 2011a; Partilla 

et al., 2006). All the analogs in this study exhibited higher affinities in the VMAT2 

functional assay in relative to the binding assay, suggesting that they are 

substrates for VMAT2. In addition, GZ-632A inhibited VMAT2 function but 

exhibited complete loss of affinity for the DTBZ site on VMAT2, suggesting an 

interaction of the analog with the substrate translocation site on VMAT2. Thus, 

lobelane analogs in the current study might bind the substrate site at which DA is 

transported into synaptic vesicles to inhibit DA uptake.  

Inhibition of DAT has been associated with abuse liability (Howell and 

Wilcox, 2001). To identify lead compounds, selectivity for VMAT2 versus DAT 

was determined for the two most potent analogs in the uptake assay, (±)-GZ-

729C and (±)-GZ-730B. The selectivity of (±)-GZ-729C and (±)-GZ-730B for 

VMAT2 over DAT was 20 and 102-fold, respectively, indicating that these 

compounds would be predicted to not have abuse liability. The selectivity of (±)-

GZ-729C and (±)-GZ-730B for VMAT2 over the hERG channel was determined 

to be 22 and 50-fold, indicating that these leads would be predicted to not 



 102 
 

possess cardiac toxicity. Thus, the most potent and selective analog at VMAT2 

were demonstrated to be selective over both DAT and the hERG channel. Since 

selectivity was greatest with (±)-GZ-730B, this compound was selected for lead 

compound status.  

(±)-GZ-729C and (±)-GZ-730B were evaluated in the vesicular [3H]DA 

release assay to determine their ability to redistribute presynaptic DA by 

interacting with VMAT2. (±)-GZ-729C and (±)-GZ-730B evoked [3H]DA release 

from synaptic vesicles in a biphasic manner, indicating an interaction of the 

analogs with two different sites (a high-affinity release site and a low-affinity 

release site) on VMAT2. Our group has suggested that inhibition of 

methamphetamine at VMAT2 could contribute to the inhibition in 

methamphetamine self-administration in rats (Horton et al., 2012). Thus, (±)-GZ-

729C and (±)-GZ-730B were evaluated for their ability to inhibit 

methamphetamine-evoked [3H]DA release form synaptic vesicles. (±)-GZ-729C 

and (±)-GZ-730B produced a rightward shift of the methamphetamine 

concentration response with no influence alteration in the amount of DA release 

at maximum. The Lew and Angus regression revealed a slope different from 

unity, indicating an allosteric interaction. Thus, (±)-GZ-729C and (±)-GZ-730B 

inhibited methamphetamine-evoked [3H]DA release via an interaction with 

VMAT2 by surmountable allosteric mechanism (Kenakin, 2006a). Thus, binding 

of (±)-GZ-729C and (±)-GZ-730B to a site different from the methamphetamine 

binding site on VMAT2 resulted in a conformational change in the transporter to 

decrease affinity for methamphetamine, but did not alter the efficacy of 
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methamphetamine to release DA (Figure 2.11). Four different sites on VMAT2 

have been suggested by our results: an extravesicular DTBZ binding site, an 

extravesicular DA uptake site and two intravesicular high and low affinity DA 

release sites. Methamphetamine interacts with the low affinity intravesicular site 

to evoke vesicular DA release (Horton et al., 2012). Thus, as allosteric inhibitors, 

(±)-GZ-729C and (±)-GZ-730B may interact with the extravesicular DTBZ binding 

site, the extravesicular DA uptake site and the intravesicular high affinity DA 

release site to inhibit methamphetamine effect (Figure 2.11). 

The next critical step in our drug discovery approach was to determine 

whether (±)-GZ-729C and (±)-GZ-730B inhibited methamphetamine-evoked 

endogenous DA release from striatal slices. Despite inhibiting 

methamphetamine-evoked [3H]DA release from synaptic vesicles, neither lead 

compounds inhibited methamphetamine-evoked endogenous DA release from 

striatal slices, but increased DOPAC release significantly in the absence of 

methamphetamine. Such lack of inhibition on methamphetamine-evoked DA 

release but increase of DOPAC release from NAc shell has been reported using 

lobeline in a microdialysis study (Meyer et al., 2013). Increase of DOPAC release 

suggested that the (±)-GZ-729C and (±)-GZ-730B redistributed DA into the 

cytosol and the DA was metabolized into DOPAC by MAO. However, it was not 

fully understood why GZ-729C and (±)-GZ-730B inhibited methamphetamine-

evoked [3H]DA release from striatal vesicles but not endogenous DA release 

from striatal slices. Different tissue preparation, striatal synaptic vesicles versus 
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slices, and different label, [3H]DA versus endogenous DA, might contribute to the 

contradictory results. 

In conclusion, current findings indicate that the length of the methylene 

linker is critical for maintaining high affinity of the analog for the VMAT2 binding 

and uptake sites. A positive correlation was found between the Ki values for 

these two sites, indicating the analogs inhibition of VMAT2 function may be due 

at least in part to binding at the DTBZ site on VMAT2. All of the analogs acted 

like VMAT2 substrates with much higher affinity for the substrate translocation 

site relative to the DTBZ binding site on VMAT2. The most potent and selective 

analog for VMAT2, (±)-GZ-730B, inhibited methamphetamine-evoked vesicular 

[3H]DA release via VMAT2 by a surmountable allosteric mechanism. However, 

this inhibitory effect of (±)-GZ-730B at VMAT2 did not translate to evaluation 

using striatal slices probably due to different tissue and label prepared in the 

respective experiment. Behavioral studies using rats were not performed due to 

the poor water solubility of (±)-GZ-730B. Further structural modification of 

lobelane to afford potent and selective VMAT2 inhibitors with better water 

solubility are needed and were studied in the following chapter of this thesis.   
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Table 2.1. Ki and Imax values in the [3H]DTBZ binding and vesicular 
[3H]DA uptake assays. 

Compound [3H]DTBZ binding    [3H]DA uptake Binding/Uptake Ki Ratio 
Ki (μM) Imax (%) Ki (μM) Imax (%)

RO4-1284 0.028 ± 0.003 a 93 ± 7 0.041 ± 0.008 100 0.68
lobeline 2.76 ± 0.64 91 ± 0.3 0.56 ± 0.03 100 5
lobelane 0.97 ± 0.19 98 ± 2 0.040 ± 0.004 100 24

nor-lobelane 2.31 ± 0.21 98 ± 1 0.43 ± 0.008 99 ± 1 5

GZ-709C 10.5 ± 3.36 * 73 ±6 0.046 ± 0.007 100 228
GZ-709B 7.68 ± 1.44 * 94 ± 3 0.036 ± 0.007 100 213
GZ-712C 1.00 ± 0.23 98 ± 2 0.078 ± 0.013 * 100 13
GZ-712B 4.50 ± 1.02 * 100 0.049 ± 0.010 100 92
GZ-632A > 100 10 ± 3 4.55 ± 0.96 * 75 ± 3 N/A

(±)-GZ-731B 13.6 ± 8.1 * 63 ± 11 0.25 ± 0.05 * 98 ± 1 54
(±)-GZ-731A 24.1 ± 6.1 * 86 ± 4 0.52 ± 0.05 * 97 ± 1 46
(±)-GZ-725A 16.1 ± 4.1 * 63 ± 2 1.42 ± 0.11 * 96 ± 2 11
(±)-GZ-713A 28.4 ± 7.3 * 99 ±1 0.97 ± 0.18 * 96 ± 2 29
(±)-GZ-726A 62.5 ± 16.6 * 100 0.41 ± 0.03 * 97 ± 1 152
(±)-GZ-714A 28.6 ± 2.4 * 72 ± 2 0.24 ± 0.03 * 97 ± 2 119
(±)-GZ-729C 2.77 ± 1.77 93 ± 7 0.025 ± 0,003 * 97 ± 2 111
(±)-GZ-729B 12.2 ± 0.2 * 95 ± 1 0.093 ± 0.009 * 100 131
(±)-GZ-730C 1.62 ± 0.39 99 ±1 0.036 ± 0.003 100 45
(±)-GZ-730B 1.13 ± 0.28 100 0.024 ± 0.002 * 99 ± 1 47
(±)-GZ-644C 0.88 ± 0.30 100 0.062 ± 0.005 * 99 ± 1 14
(±)-GZ-644B 4.60 ± 0.56 * 98 ± 1 0.067 ± 0.005 * 99 ± 1 69

(±)-GZ-725B 9.35 ± 4.47 * 93 ± 4 0.22 ± 0.02 * 100 43
(±)-GZ-713B 39.6 ± 6.86 * 67 ± 0.1 0.20 ± 0.01 * 96 ± 4 198
(±)-GZ-726B 4.84 ± 0.60 * 84 ± 13 0.35 ± 0.03 * 95 ± 0.1 14
(±)-GZ-714B 48.9 ± 19.0 * 83 ±5 0.13 ± 0.03 * 100 376

Symmetrical analogs

Asymmetrical analogs

Asymmetrical analogs with cyclohexane substituent

 
a Ki and Imax values are mean (± SEM); n = 3-4 experiments/analog. * p < 0.05 

different from lobelane.  
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Table 2.2. Summary of EC50 and Emax for methamphetamine-evoked 
[3H]DA release in the absence and presence of (±)-GZ-729C or (±)-GZ-
GZ930B. 

 

a EC50 and Emax values are mean (± SEM). * p < 0.05 different from [3H]DA 

release in the presence of methamphetamine alone. n = 4 experiments/analog. 
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Figure 2.1. Chemical structures of TBZ, RO4-1284, lobeline and 
lobelane/nor-lobelane. 

TBZ is a benzoquinolizine compound and VMAT2 inhibitor interacting with 

the site distinct from the DA uptake site on VMAT2. RO4-1284 is also a 

benzoquinolizine compound that inhibits VMAT2 in a similar manner. Lobeline is 

the principal alkaloid from lobelia inflata. Lobelane is a defunctionalized, 

saturated analog of lobeline and nor-lobelane is the N-demethylated analog of 

lobelane.  
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Figure 2.2. Chemical structures of lobelane analogs and their 

corresponding nor-analogs. 

Analogs are grouped according to structural similarity: 1) symmetrical 

analogs with the same length of methylene linker on both side of the piperidine 

ring; 2) asymmetrical analogs with different length of the linkers on each side of 

the piperidine ring; 3) analogs with cyclohexane substituent at the C-6 position of 

the piperidine ring. 
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Figure 2.3. RO4-1284, lobeline, lobelane and lobelane analogs inhibit 
[3H]DTBZ binding to whole brain vesicles.  

The first panel of the figure contains Ki values for RO4-1284, lobeline, 

lobelane, symmetrical lobelane analogs and their corresponding nor-analogs. 

The second panel of the figure contains Ki values for asymmetrical lobelane 

analogs and their corresponding nor-analogs. The third panel of the figure 

contains Ki values for asymmetrical lobelane analogs with a cyclohexane 

substituent directly attached to the C-6 position of the piperidine ring and their 

corresponding nor-analogs. Ki values of all the analogs and their corresponding 

nor-analogs are presented in the legend in order from the most potent to the 

least potent. Control represents specific [3H]DTBZ binding in the absence of 

analogs. Data are mean (± SEM) specific [3H]DTBZ binding presented as a 

percentage of the respective control (1.99 ± 0.07 pmol/mg, n = 3-4 

experiments/analog). 
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Figure 2.4. RO4-1284, lobeline, lobelane and lobelane analogs inhibit 
[3H]DA uptake to striatal synaptic vesicles. 

The first panel of the figure contains Ki values for RO4-1284, lobeline, 

lobelane, symmetrical lobelane analogs and their corresponding nor-analogs. 

The second panel of the figure contains Ki values for asymmetrical lobelane 

analogs and their corresponding nor-analogs. The third panel of the figure 

contains Ki values for asymmetrical lobelane analogs with a cyclohexane 

substituent directly attached to the C-6 position of the piperidine ring and their 

corresponding nor-analogs. Ki values of all the analogs and their corresponding 

nor-analogs are presented in the legend in the order from the most potent to the 

least potent. Control represents specific [3H]DA uptake in the absence of 

analogs. Data are mean (± SEM) specific [3H]DA uptake presented as a 

percentage of the respective control (24.7 ± 2.2 pmol/min/mg, n = 4 

experiments/analog). 
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Figure 2.5. Vesicular [3H]DA uptake and [3H]DTBZ binding affinity 
correlation. 

Affinity for [3H]DTBZ binding site on VMAT2 and affinity to inhibit VMAT2 

function are positively correlated (Spearman r = 0.68; p < 0.01). GZ-632A is not 

included in the correlation because it has no affinity for the DTBZ binding site at 

VMAT2. 
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Figure 2.6. (±)-GZ-729C and (±)-GZ-730B are selective for VMAT2 over 
DAT and hERG channel. 

IC50 values and concentration-response of (±)-GZ-729C and (±)-GZ-730B 

to inhibit specific [3H]DTBZ binding, [3H]dofetilide binding and [3H]DA uptake are 

illustrated in the top and bottom panels, respectively. Data are mean (± SEM) 

specific binding or uptake presented as a percentage of the respective control 

([3H]DTBZ binding: 2341 ± 201 fmol/mg for (±)-GZ-729C, 1508 ± 240 fmol/mg for 

(±)-GZ-730B; [3H]dofetilide binding: 27.3 ± 7.52 fmol/min/mg for (±)-GZ-729C, 

27.4 ± 8.77 fmol/min/mg for (±)-GZ-730B; DAT [3H]DA uptake: 9.96 ± 1.62 

pmol/min/mg for (±)-GZ-729C, 13.9 ± 2.64 pmol/min/mg for (±)-GZ-730B. VMAT2 
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[3H]DA uptake: 32.4 ± 8.25 pmol/min/mg for (±)-GZ-729C, 23.9 ± 2.95 

pmol/min/mg for (±)-GZ-730B). n = 3-4 experiments/analog. 
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Figure 2.7. (±)-GZ-729C and (±)-GZ-730B evoke [3H]DA release from 
synaptic vesicles. 

Concentration-response curves and EC50 and Emax values for standards 

(lobelane, lobeline, methamphetamine), (±)-GZ-729C and (±)-GZ-730B to evoke 

[3H]DA release from synaptic vesicles are provided in top and bottom panels, 

respectively. Control represents [3H]DA release in the absence of analogs. METH 

represents methamphetamine. Release values in the curves are mean (± SEM) 

[3H]DA release as a percentage of the respective control (3174 ± 778 

disintegrations per minute (DPM), n = 4 rats/analog). 
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Figure 2.8. (±)-GZ-729C and (±)-GZ-730B inhibit methamphetamine-

evoked [3H]DA release from striatal synaptic vesicles. 

The concentration response of methamphetamine-evoked vesicular 

[3H]DA release in the presence of (±)-GZ-729C and (±)-GZ-730B are illustrated in 

top and bottom panels, respectively. Control represent [3H]DA release in the 

absence of methamphetamine and (±)-GZ-729C or (±)-GZ-730B. Release values 

in the curves are mean (± SEM) [3H]DA release as a percentage of the control 

(3076 ± 573 DPM for (±)-GZ-729C and 3591 ± 363 DPM for (±)-GZ-730B; n = 4 

rats/experiment). Inset shows the Lew and Angus analysis in which pEC50 values 

are plotted as a function of log value of (±)-GZ-729C and (±)-GZ-730B 
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concentration, respectively. In the top panel, * p < 0.05 between 

methamphetamine-evoked release in the presence of 100-1000 nM (±)-GZ-729C 

and methamphetamine alone. In the bottom panel, * p < 0.05 between 

methamphetamine-evoked release in the presence of 100 nM (±)-GZ-729C and 

methamphetamine alone, # p < 0.05 between methamphetamine-evoked release 

in the presence of 1000 nM (±)-GZ-730B and methamphetamine alone. 
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Figure 2.9. (±)-GZ-729C increases DOPAC release with no influence on 

methamphetamine-evoked fractional DA release. 
Striatal slices were superfused with a range of concentrations of (±)-GZ-

729C (0.1-10 µM). Fractional DA and DOPAC release are amount of DA and 

DOPAC released in each min sample in the top and bottom panel, respectively. 

(±)-GZ-729C was added to the buffer following 10 min basal sample collection, 

indicated by the arrow, and the analog remained in the buffer until the end of the 

experiment. METH represents methamphetamine. Methamphetamine (5 μM) was 

added to the buffer for 15 min, indicated by the horizontal bar with two arrows. 

Fractional release values are expressed as mean (± SEM) pg/ml/mg of the slice 

weight. n = 6 rats. In the top panel, * p < 0.05 compared to control. In the bottom 
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panel, * p < 0.05 between release in the presence of 10 µM (±)-GZ-729C and 

control. # p < 0.05 between release in the presence of 3 µM (±)-GZ-729C and 

control. 
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Figure 2.10. (±)-GZ-730B increases DOPAC release with no influence 
on methamphetamine-evoked fractional DA release. 

Striatal slices were superfused with a range of concentrations of (±)-GZ-

730B (0.1-30 µM). Fractional DA and DOPAC release are amount of DA and 

DOPAC released in each min sample in the top and bottom panel, respectively. 

(±)-GZ-730B was added to the buffer following 10 min basal sample collection, 

indicated by the arrow, and the analog remained in the buffer until the end of the 

experiment. METH represents methamphetamine. Methamphetamine (5 μM) was 

added to the buffer for 15 min, indicated by the horizontal bar with two arrows. 

Fractional release values are expressed as mean (± SEM) pg/ml/mg of the slice 

weight. n = 10 rats. In the bottom panel, * p < 0.05 between release in the 
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presence of 30 µM (±)-GZ-730B and control. # p < 0.05 between release in the 

presence of 10 µM (±)-GZ-730B and control. 
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Figure 2.11. (±)-GZ-729C and (±)-GZ-730B interact with the 

extravesicular [3H]DTBZ binding site, the extravesicular [3H]DA uptake site, and 

the intravesicular high affinity [3H]DA release site on VMAT2 to inhibit 

methamphetamine-evoked vesicular [3H]DA release. 
METH represents methamphetamine. 
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CHAPTER 3 Acyclic Lobelane Analogs Inhibit Vesicular Monoamine 

Transporter-2 Function and Methamphetamine Self-administration in 

Rats 

3.1 Introduction 

Pharmacotherapies are not available currently for the treatment of 

methamphetamine abuse. As a substrate at the presynaptic dopamine 

transporter (DAT), methamphetamine releases cytosolic dopamine (DA) from the 

presynaptic terminal into the extracellular space (Sulzer et al., 1995), which leads 

to its reinforcing properties. Although DAT has been evaluated extensively as a 

target for the treatment of psychostimulant abuse (Dar et al., 2005; Grabowski et 

al., 1997; Howell et al., 2007; Tanda et al., 2009), this approach has not been 

successful thus far. The vesicular monoamine transporter-2 (VMAT2) is an 

alternative target (Dwoskin and Crooks, 2002; Zheng et al., 2006), since 

methamphetamine inhibits DA uptake and promotes DA release also at this site, 

consequently increasing cytosolic DA available to DAT for reverse transport 

(Brown et al., 2000; Pifl et al., 1995; Sulzer et al., 1995).  

VMAT2, located on vesicles within presynaptic terminals, transports 

cytosolic DA into the vesicles for storage and subsequent release into the 

extracellular space in response to appropriate physiological signals. In addition, 

the VMAT2 localized on the vesicles that co-fractionate with synaptosomal 

membranes are defined as VMAT2M, while the VMAT2 on the vesicles that do 

not co-fractionate with synaptosomal membranes are defined as VMAT2C (Volz 
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et al., 2007). [3H]Dihydrotetrabenazine (DTBZ) binding is used to assess 

interactions with VMAT2 (Scherman and Henry, 1984). Lobeline (Figure 3.1), a 

major alkaloid from Lobelia inflata, displaces [3H]DTBZ from vesicle membrane 

preparations, inhibits [3H]DA uptake, and promotes [3H]DA release from isolated 

VMAT2C-associated vesicles (Teng et al., 1998; Teng et al., 1997). In this 

manner, lobeline redistributes DA from vesicles to the cytosol. However, lobeline 

does not inhibit monoamine oxidase (MAO); the majority of the redistributed DA 

is metabolized by MAO to dihydroxyphenylacetic acid (DOPAC) and as such is 

not available as a substrate for methamphetamine-induced reverse transport by 

DAT (Dwoskin and Crooks, 2002; Teng et al., 1997). As a result, lobeline, in a 

concentration-dependent manner, inhibits methamphetamine-evoked DA release 

from rat striatal slices and, in a dose-dependent manner, decreases 

methamphetamine self-administration in rats (Harrod et al., 2001; Miller et al., 

2001; Nickell et al., 2010). Furthermore, lobeline is not self-administered by rats, 

indicating a lack of abuse liability (Harrod et al., 2003).  

Based on these promising preclinical findings, lobeline was evaluated in 

Phase 1b clinical trials employing experienced methamphetamine abusers to 

assess its safety in this population. Lobeline was found to have no significant 

side-effects, other than an extremely bitter taste and associated nausea (Glover 

et al., 2010; Jones, 2007). The high affinity of lobeline for α4β2* nicotinic 

receptors (nAChRs) and moderate affinity for α7 nAChRs (Damaj et al., 1997; 

Harrod et al., 2004; Miller et al., 2004), together with its bitter taste, led us to 
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conduct structure-activity studies to identify novel analogs with greater target 

selectivity, inhibitory potency at VMAT2C and improved druglikeness.  

The defunctionalized, saturated lobeline analog, lobelane (Figure 3.1), 

was found to be more selective and had higher affinity at VMAT2C compared to 

lobeline (Miller et al., 2004). Lobelane inhibited methamphetamine-evoked DA 

release from rat striatal slices and specifically decreased methamphetamine self-

administration in rats (Neugebauer et al., 2007; Nickell et al., 2010). These data 

support the idea that VMAT2C is a promising target for the discovery of novel 

therapeutics for methamphetamine abuse. Unfortunately, upon repeated 

administration, tolerance developed to the behavioral effects of lobelane 

(Neugebauer et al., 2007), reducing enthusiasm for this analog.   

Recently, several antipsychotics have been withdrawn or warranted 

restricted labelling by the FDA due to potential cardiac side effects (Haddad and 

Anderson, 2002). These antipsychotics drugs are predicted to prolong the 

ventricular action potential duration (APD, i.e. the QT interval of the 

electrocardiogram) and cause a polymorphic ventricular tachycardia, Torsades 

de Pointes, and sudden death (Tamargo, 2000). Drug-induced ventricular 

tachycardia is associated with blockage of the rapidly activating, delayed rectifier 

potassium current IKr channel coded by the human ether-a-go-go-related gene 

(hERG). This channel plays a major role in repolarization of ventricular myocytes 

and analogs with high affinity for this hERG channel are predicted to possess 

cardiac toxicity (Sanguinetti et al., 1995; Trudeau et al., 1995). 
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The current study describes the pharmacological effects of novel acyclic 

lobelane analogs, by removing the 3- and 4-carbon atoms in the central 

piperidine ring of lobelane (Figure 3.1). The majority of the acyclic lobelane 

analogs were racemic containing same amount of two enantiomers. The 

enantiomers may exhibit different ability to inhibit VMAT2 binding and function. 

Thus, several racemic analogs found to be most potent at VMAT2C were 

synthesized as pure enantiomers. Kinetic analyses of [3H]DA uptake into isolated 

vesicle preparations were conducted to determine mechanism of action 

underlying the inhibitory effect of the analogs. Affinity at DAT was evaluated to 

assess abuse liability and affinity at hERG channels was evaluated to assess 

cardiac toxicity. Ability of the enantiomers to release [3H]DA from isolated 

presynaptic VMAT2C, and moreover, to inhibit methamphetamine-evoked [3H]DA 

release from isolated presynaptic VMAT2M- and VMAT2C-associated vesicles 

was determined. The ability of the lead analog, (R)-N-(1-phenylpropan-2-yl)-3-

phenylpropan-1-amine ((R)-GZ-924), to inhibit methamphetamine-evoked DA 

release from striatal slices was determined. Ability to inhibit nicotine-evoked DA 

release from striatal slices was assessed to determine specificity of action. The 

ability of (R)-GZ-924 to decrease methamphetamine self-administration and 

food-maintained responding in rats was determined to evaluate the translation 

from in vitro neurochemical findings to whole animal efficacy. 
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3.2 Methods 

3.2.1 Animals 

Male Sprague-Dawley rats (200–250 g) were purchased from Harlan 

Laboratories, Inc. (Indianapolis, IN) and were housed in the Division of 

Laboratory Animal Resources at the College of Pharmacy at the University of 

Kentucky (Lexington, KY). For the neurochemical experiments, rats had free 

access to food and water. For the behavioral experiments, rats were handled for 

1 week, and food was restricted to obtain 85% of free-feeding body weight. 

Experimental protocols were conducted according to the 1996 National Institutes 

of Health Guide for the Care and Use of Laboratory Animals and were approved 

by the Institutional Animal Care and Use Committee at the University of 

Kentucky. 

3.2.2 Materials  

[3H]DA (specific activity, 28.0 Ci/mmol), [3H]nicotine (L-(–)-[N-methyl-3H]; 

specific activity, 66.9 Ci/mmol), and Microscint 20 LSC-cocktail were purchased 

from PerkinElmer Life and Analytical Sciences (Boston, MA). [3H]DTBZ (specific 

activity, 20 Ci/mmol) and [3H]methyllycaconitine ([3H]MLA; ([1α,4(S),6β,14α,16β]-

20-ethyl-1,6,14,16-tetramethoxy-4-[[[2-([3-3H]-methyl-2,5-dioxo-1-pyrrolidinyl) 

benzoyl]oxy]-methyl]aconitane-7,8-diol; specific activity, 100 Ci/mmol) was 

obtained from American Radiolabeled Chemicals, Inc. (St. Louis, MO). Bovine 

serum albumin, disodium ethylenediaminetetraacetate (EDTA), 
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ethyleneglycoltetraacetate (EGTA), 1-(2-(bis-(4-fluorophenyl)methoxy)ethyl)-4-(3-

phenylpropyl)-piperazine (GBR 12909), L-(+)-tartaric acid, sucrose, magnesium 

sulfate, polyethyleneimine (PEI), adenosine 5’-triphosphate magnesium salt 

(APT-Mg+2), N-[2-hydroxyethyl]piperazine-N’-[2-ethanesulfonic acid] (HEPES), 

S(-)nicotine ditartrate (nicotine), 3-hydroxytyramine (dopamine, DA), DOPAC, d-

methamphetamine hydrochloride (methamphetamine), sodium chloride, 

magnesium sulfate, ascorbate oxidase, magnesium chloride, potassium chloride 

solution and amitriptyline hydrochloride were purchased from Sigma-Aldrich (St. 

Louis, MO). α-D-Glucose, L-ascorbic acid, and monobasic potassium phosphate 

were purchased from Aldrich Chemical Co. (Milwaukee, WI), AnalaR-BDH Ltd. 

(Poole, UK) and Mallinckrodt (St. Louis, MO), respectively. Perchloric acid (70%) 

was purchased from Mallinckrodt Baker (Phillipsburg, NJ). Lobeline hemisulfate 

was purchased from ICN Biomedicals Inc. (Costa Mesa, CA). All other 

commercial chemicals were purchased from Fisher Scientific Co. (Pittsburgh, 

PA). [2R,3S,11bS]-2-Ethyl-3-isobutyl-9,10-dimethoxy-2,2,4,6,7,11b-hexahydro-

1H-pyrido[2,1-a]isoquinolin-2-ol (RO4-1284) was a gift from Hoffman-La Roche 

Ltd. (Basel, Switzerland). Dofetilide  [N-methyl-3H] ([3H]-dofetilide, specific 

activity: 80 Ci/mmol) was purchased from ARC (St. Louis, MO). 

Lobelane and acyclic lobelane analogs were synthesized at the College of 

Pharmacy at the University of Kentucky and are shown in Figure 3.1. Racemic 

analogs included (±)-N-(1-(4-bromophenyl)propan-2-yl)-3-phenylpropan-1-amine 

((±)-GZ-819A); (±)-N-(1-phenylpropan-2-yl)-3-phenylpropan-1-amine ((±)-GZ-

819B); (±)-N-methyl-N-(1-phenylpropan-2-yl)-3-phenylpropan-1-amine ((±)-GZ-
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819C); (±)-N-(1-phenylpropan-2-yl)-3-(4-methoxyphenyl)propan-1-amine ((±)-GZ-

815A); (±)-N-methyl-N-(1-phenylpropan-2-yl)-3-(4-methoxyphenyl)propan-1-

amine ((±)-GZ-815B); (±)-N-(3-phenylpropyl)-4-phenylbutan-2-amine ((±)-GZ-

813A); (±)-N-methyl-N-(3-phenylpropyl)-4-phenylbutan-2-amine ((±)-GZ-813B); 

(±)-N-phenethyl-4-phenylbutan-2-amine ((±)-GZ-814A); (±)-N-methyl-N-

phenethyl-4-phenylbutan-2-amine ((±)-GZ-814B); (±)-N-phenethyl-1-(4-

methoxyphenyl)propan-2-amine ((±)-GZ-816A); (±)-N-methyl-N-phenethyl-1-(4-

methoxyphenyl)propan-2-amine ((±)-GZ-816B); (±)-N-phenethyl-1-phenylpropan-

2-amine ((±)-GZ-820B); (±)-N-methyl-N-phenethyl-1-phenylpropan-2-amine ((±)-

GZ-820C); (±)-N-phenethyl-1-(4-aminophenyl)propan-2-amine ((±)-GZ-861B); 

(±)-N-(3-(4-methoxyphenyl)propyl)-4-phenylbutan-2-amine ((±)-GZ-865A); (±)-N-

(3-(4-methoxyphenyl)propyl)-4-(4-methoxyphenyl)butan-2-amine ((±)-GZ-865B); 

(±)-N-(1-(4-methoxyphenyl)propan-2-yl)-3-(4-methoxyphenyl)propan-1-amine 

((±)-GZ-865C); (±)-N-(1-phenylpropan-2-yl)-3-(4-methoxyphenyl)propan-1-amine 

((±)-GZ-888); (±)-N-(1-(4-bromophenyl)propan-2-yl)-4-phenylbutan-1-amine ((±)-

GZ-893A). Racemic analogs were prepared through a reductive amination 

reaction between an appropriate amine and an appropriate ketone. Chiral pure 

analogs were prepared through nucleophilic substitution of chiral alcohols with an 

appropriate amine. Chirally pure analogs included (R)-GZ-924; (S)-N-(1-

phenylpropan-2-yl)-3-phenylpropan-1-amine ((S)-GZ-925); (R)-N-(1-(4-

methoxyphenyl)propan-2-yl)-3-phenylpropan-1-amine ((R)-GZ-878A); (S)-N-(1-

(4-methoxyphenyl)propan-2-yl)-3-phenylpropan-1-amine ((S)-GZ-878B); (R)-N-

(1-(4-bromophenyl)propan-2-yl)-3-phenylpropan-1-amine ((R)-GZ-880A); and 
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(S)-N-(1-(4-bromophenyl)propan-2-yl)-3-phenylpropan-1-amine ((S)-GZ-880B). 

(R)-GZ-878A and (S)-GZ-878B were pure enantiomers of (±)-GZ-815A, (R)-GZ-

880A and (S)-GZ-880B were pure enantiomers of (±)-GZ-819A, and (R)-GZ-924 

and (S)-GZ-925 were pure enantiomers of (±)-GZ-819B. Structures and purities 

of the analogs were verified by 1H and 13C NMR spectroscopy and mass 

spectrometry.  

3.2.3 [3H]DTBZ Binding  

Analog inhibition of [3H]DTBZ  binding was evaluated using modifications 

of our published methods (Teng et al., 1998). Briefly, whole rat brain (excluding 

cerebellum) was homogenized in 20 ml of ice-cold sucrose solution (0.32 M) with 

7 up-and-down strokes of a Teflon pestle homogenizer (clearance ≈ 0.003 inch). 

Homogenates were centrifuged at 1000g for 12 min at 4 °C, and the resulting 

supernatants were centrifuged again at 22,000g for 10 min at 4 °C. Resulting 

pellets were incubated in 18 ml of ice-cold water for 5 min, and 2 ml of HEPES 

(25 mM) and potassium tartrate (100 mM) solution were subsequently added. 

Samples were centrifuged (20,000g for 20 min at 4 °C), and 20 μl of MgSO4 (1 

mM) solution was added to the supernatants. Samples were centrifuged 

(100,000g for 45 min at 4 °C), and pellets containing the VMAT2C-associated 

vesicles were resuspended in ice-cold assay buffer (25 mM HEPES, 100 mM 

potassium tartrate, 5 mM MgSO4, 0.1 mM EDTA, and 0.05 mM EGTA, pH 7.5). 

Assays were performed in duplicate using 96-well plates. Aliquots of vesicular 

suspension (15 μg of protein in 100 μl) were added to wells containing 5 nM 
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[3H]DTBZ, 50 μl of analog (1 nM to 1 mM), and 50 μl of buffer. Nonspecific 

binding was determined in the presence of RO4-1284 (10 μM). Reactions were 

terminated by filtration (Packard Filtermate harvester; PerkinElmer Life and 

Analytical Sciences, Shelton, CT) onto Unifilter-96 GF/B filter plates (presoaked 

for 2 hr in 0.5% PEI). Filters were subsequently washed 5 times with 350 μl of 

ice-cold buffer (25 mM HEPES, 100 mM potassium tartrate, 5 mM MgSO4, and 

10 mM NaCl, pH 7.5). Filter plates were dried and bottom-sealed, and each well 

filled with 40 μl of scintillation cocktail (MicroScint 20; PerkinElmer Life and 

Analytical Sciences). Radioactivity on the filters was determined by liquid β-

scintillation spectrometry (TopCount NXT; PerkinElmer Life and Analytical 

Sciences). 

3.2.4 Vesicular [3H]DA Uptake  

Analog inhibition of vesicular [3H]DA uptake was evaluated using our 

previous methods (Nickell et al., 2010). Rat striata were homogenized with 10 

up-and-down strokes of a Teflon pestle homogenizer (clearance ≈ 0.008 inch) in 

14 ml of 0.32 M sucrose solution. Homogenates were centrifuged (2000g for 10 

min at 4 °C), and resulting supernatants were centrifuged again (10,000g for 30 

min at 4 °C). Pellets were resuspended in 2 ml of 0.32 M sucrose solution and 

subjected to osmotic shock by adding 7 ml of ice-cold water, followed by the 

immediate restoration of osmolarity by adding 900 μl of 0.25 M HEPES buffer 

and 900 μl of 1.0 M potassium tartrate solution. Samples were centrifuged 

(20,000g for 20 min at 4 °C), and the resulting supernatants were centrifuged 
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again (55,000g for 1 hr at 4 °C), followed by the addition of 100 μl of 10 mM 

MgSO4, 100 μl of 0.25 M HEPES, and 100 μl of 1.0 M potassium tartrate 

solutions, followed by a final centrifugation (100,000g for 45 min at 4 °C). Final 

VMAT2C-associated vesicle pellets were resuspended in 2.4 ml of assay buffer 

(25 mM HEPES, 100 mM potassium tartrate, 50 μM EGTA, 100 μM EDTA, 1.7 

mM ascorbic acid, 2 mM ATP-Mg+2, pH 7.4). Aliquots of the vesicular suspension 

(100 μl) were added to tubes containing assay buffer, a range of analog 

concentrations (0.1 nM to 10 mM) and 0.1 μM [3H]DA to provide a final volume of 

500 μl. Nonspecific uptake was determined in the presence of RO4-1284 (10 

μM). Reactions were terminated by filtration, and radioactivity retained by the 

GF/B filters (presoaked for 2 hr in 0.5% PEI) was determined by liquid β-

scintillation spectrometry. 

3.2.5 Kinetics of Vesicular [3H]DA Uptake  

Kinetic analyses for the chirally pure enantiomers were conducted to 

determine mechanism of inhibition of DA uptake at VMAT2C. Concentration of 

analogs used for kinetic analysis was based on Ki values obtained from the 

vesicular [3H]DA uptake assays. Specifically, concentrations of 40 nM lobelane, 6 

nM (R)-GZ-924, 65 nM (S)-GZ-925, 6 nM (R)-GZ-880A, 32 nM (S)-GZ-880B, 45 

nM (R)-GZ-878A, and 20 nM (S)-GZ-878B were evaluated in kinetic analyses. 

Aliquots of 100 μl of vesicular suspensions were added to tubes containing 300 

μl assay buffer, 50 μl of analogs and 50 μl of a range of [3H]DA concentrations 

(0.001-5.0 μM). Nonspecific uptake was determined in the presence of RO4-
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1284 (10 μM). After 8 min incubation at 37 °C, [3H]DA uptake was terminated by 

filtration. Radioactivity remaining on the filters was determined as previously 

described.  

3.2.6 Synaptosomal [3H]DA Uptake  

Analog inhibition of [3H]DA uptake into rat striatal synaptosomes was 

evaluated according to previously published methods (Teng et al., 1997). Rat 

striata were homogenized in ice-cold sucrose (pH 7.4), with 15 up-and-down 

strokes of a Teflon pestle homogenizer (clearance ≈ 0.005 inch). Homogenates 

were centrifuged (2000g for 10 min at 4 °C), and resulting supernatants were 

centrifuged again (20,000g for 17 min at 4 °C). Resulting pellets were 

resuspended in 2.4 ml of assay buffer (125 mM NaCl, 5 mM KCl, 1.5 mM 

MgSO4, 1.25 mM CaCl2, 1.5 mM KH2PO4, 10 mM α-D-glucose, 25 mM HEPES, 

0.1 mM EDTA, 0.1 mM pargyline, 0.1 mM ascorbic acid, saturated with 95% 

02/5% CO2, pH 7.4). Aliquots of the synaptosomal suspension (25 μl) were added 

to tubes containing assay buffer and a range of concentrations of analog (1 nM –

100 μM), and incubated at 34 °C for 5 min. Samples were then placed on ice, 

and 50 μl [3H]DA added to each tube (final concentration 0.1 μM), and incubated 

for 10 min at 34 °C. Assays were performed in duplicate in a total volume of 500 

μl. Nonspecific uptake was determined in the presence of nomifensine (10 μM). 

Reactions were terminated by addition of 3 ml of ice-cold assay buffer and 

subsequent filtration. Radioactivity retained by the filters (presoaked for 2 hr in 

0.5% PEI) was determined as previously described 
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3.2.7 Vesicular [3H]DA Release  

Based on the results from the analog-induced inhibition of [3H]DA uptake 

into vesicles, several of the most potent analogs were chosen to generate pure 

enantiomers for further evaluation of the ability to induce vesicular [3H]DA 

release via VMAT2C using published methods (Horton et al., 2013). VMAT2C-

associated vesicle pellets from rat striata were prepared as described above in 

the vesicular [3H]DA uptake assay. Final pellets were resuspended in 2.7 ml of 

ice-cold assay buffer, to which 300 μl of [3H]DA (final concentration, 0.3 μM) was 

added (total volume 3.0 ml). After incubation at 37 °C for 8 min, samples 

containing the vesicle suspension were centrifuged (100,000g for 45 min at 4 

°C), and the resulting pellet was resuspended in a final volume of 4.2 ml of ice-

cold assay buffer. Aliquots (180 μl) of [3H]DA-preloaded VMAT2C-associated 

vesicles were added to tubes in the absence (control) or presence of a range of 

analog concentrations (1 nM-1 mM), and incubated at 37 °C for 8 min. 

Incubations were terminated by addition of 2.5 ml of ice-cold assay buffer, 

followed by rapid filtration onto GF/B filters presoaked for 2 hr in 0.5% PEI. 

[3H]DA remaining in the vesicles following exposure to analog was retained by 

the filters. [3H]DA release was determined by subtracting the radioactivity 

remaining in the vesicles in the presence of analog from that in the absence of 

analog (control). 

Further experiments were performed to determine the mechanism of (R)-

GZ-924-evoked biphasic release of [3H]DA via VMAT2C. To isolate site(s) on 



 136 
 

VMAT2C mediating the biphasic release induced by (R)-GZ-924, ability of TBZ 

and reserpine to inhibit this effect were determined. Aliquots (180 μl) of [3H]DA-

preloaded vesicles were added to duplicate tubes containing (R)-GZ-924 (1 nM-1 

mM) in the absence and presence of TBZ (30 nM) or reserpine (50 nM), and 

incubated in a final volume of 200 μl for 8 min at 37 °C. TBZ and reserpine 

concentrations were chosen based on previous observations that these 

concentrations did not evoke [3H]DA release from VMAT2C-associated vesicles 

(Fieber and Adams, 1991; Horton et al., 2011b). The ability of (R)-GZ-924 to 

inhibit methamphetamine-evoked [3H]DA release from vesicles via VMAT2C was 

determined using published method (Horton et al., 2013). [3H]DA-preloaded 

vesicles (180 μl) were added to duplicate tubes containing methamphetamine 

(100 nM-1 mM) in the absence and presence of (R)-GZ-924 (3-300 nM). 

Samples were incubated in a final volume of 200 μl for 8 min at 37ºC and 

processed as previously described.   

In the previous vesicular [3H]DA release study in Chapter 2 (Section 

2.2.6), the vesicles collected were VMAT2C vesicles. In the slice release, both 

VMAT2C and VMAT2M vesicles existed in each intact slice (Figure 3.21). The 

lead analog in Chapter 2 [(±)-GZ-730B] inhibited methamphetamine-evoked 

[3H]DA release from synaptic vesicles but endogenous DA release from striatal 

slices. The incomplete vesicular VMAT2 preparation in the vesicular [3H]DA 

release study might be responsible for the conflict between those studies. In the 

current study, the ability of (R)-GZ-924 to inhibit methamphetamine-evoked 

[3H]DA release from vesicles via VMAT2C and VMAT2M was determined in a 
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within subject design. Studies on VMAT2M uptake was done at 30 °C in the 

literature instead of 37 °C (Chu et al., 2010). Thus, all the studies on VMAT2M in 

this chapter were performed at 30 °C. In order to compare the results between 

studies using VMAT2C and VMAT2M, inhibition of methamphetamine-evoked 

[3H]DA release by (R)-GZ-924 via VMAT2C was performed at 30 °C as well.  

At a different temperature, function of the transporter might be different 

and the experiment condition needed to be optimized. Before the inhibition assay 

at 30 °C, the concentration of [3H]DA and time points at which VMAT2C and 

VMAT2M vesicles were saturated during the first incubation in the vesicular 

[3H]DA release study needed to be determined. In order to determine the 

concentration of [3H]DA utilized in the first incubation in the VMAT2C and 

VMAT2M [3H]DA release study, [3H]DA uptake kinetic study was required. 

Furthermore, to perform the above [3H]DA uptake kinetic study, an optimal 

incubation time needed to be determined by a time course study. Thus, the time 

points at which VMAT2C and VMAT2M were saturated by 0.1 µM [3H]DA at 30 

°C was determined first. 0.1 µM [3H]DA was chosen since the affinity of [3H]DA 

for VMAT2C was around 0.1 µM (Chu et al., 2010; Nickell et al., 2011b). 

VMAT2C containing vesicles were isolated as described above. VMAT2M vesicle 

pellets from rat striata were collected after 20,000 g centrifugation as for the 

VMAT2C [3H]DA uptake assay. Aliquots of 100 μl of VMAT2C or VMAT2M 

vesicular suspensions were added to tubes containing 350 μl assay buffer and 

50 μl of [3H]DA (0.1 μM final concentration). Total [3H]DA uptake was determined 

in the absence of drugs. VMAT2C non-specific [3H]DA uptake was determined in 
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the presence of 10 µM RO4-1284 alone. VMAT2M non-specific [3H]DA uptake 

was determined in the presence of 10 µM RO4-1284 and 0.1 µM GBR-12909. 

GBR-12909 was a potent DAT inhibitor (Sai et al., 2008) and was added to block 

[3H]DA uptake by DAT. Since VMAT2M-containing vesicles were associated with 

the broken synaptosome membranes, DAT might exist on the membranes in the 

VMAT2M preparation. DAT may facilitate [3H]DA uptake into the synaptic 

vesicles (Egana et al., 2009) and GBR-12909 was added to block DAT function. 

Specific [3H]DA uptake was determined by subtracting the non-specific uptake 

from the total uptake. After 0.5, 1, 2, 3, 5, 8, and 12 min incubation at 30 °C, 

[3H]DA uptake for each sample was terminated by filtration. Radioactivity 

remaining on the filters was determined as previously described. The time at 

which VMAT2C and VMAT2M vesicles were saturated by 0.1 µM [3H]DA was 8 

and 2 min, respectively (Figure 3.10). Thus, [3H]DA uptake kinetics at VMAT2C 

and VMAT2M were performed using the respective optimal incubation time at 30 

°C to determine the optimal concentration of [3H]DA in the first incubation of the 

vesicular [3H]DA release study. [3H]DA uptake kinetics at VMAT2C at 30 °C was 

performed as above kinetic study except that the experiment was performed at 

30 °C. [3H]DA uptake kinetics at VMAT2M at 30 °C was performed as kinetics 

study using VMAT2C at 30 °C except that incubation was 2 min and VMAT2M 

non-specific [3H]DA uptake was determined in the presence of 10 µM RO4-1284 

and 0.1 µM GBR-12909. The concentration of [3H]DA at which VMAT2C and 

VMAT2M vesicles was saturated under respective incubation time at 30 °C was 

0.5 µM (Figure 3.11). However, great non-specific [3H]DA uptake was found at 
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0.5 µM for both VMAT2C and VMAT2M, and 0.3 µM was chosen due to the 

relative smaller non-specific [3H]DA uptake and the specific [3H]DA that was very 

close to the Vmax. The time points at which VMAT2C and VMAT2M vesicles were 

saturated by 0.3 µM [3H]DA during the first incubation in the vesicular [3H]DA 

release study was determined in the following time course study. The study was 

performed as above time course study except that the experiment was performed 

in the presence of 0.3 µM [3H]DA. The time at which VMAT2C and VMAT2M 

vesicles were saturated by 0.3 µM [3H]DA at 30 °C was 5 and 3 min, respectively 

(Figure 3.12).  

The same temperature and time of incubation as the above time course 

study using 0.3 µM [3H]DA was used in the first incubation in the vesicular [3H]DA 

release study. After the first incubation with 0.3 µM [3H]DA for 5 min at 30 °C, 

VMAT2C associated vesicles were centrifuged at 100,000 g, and the resulting 

pellet was resuspended in a final volume of 4.2 ml of ice-cold assay buffer. 

VMAT2M-associated vesicle was incubated with 0.3 µM [3H]DA at 30 °C for 3 

min, and samples containing the VMAT2M-associated vesicle suspension were 

centrifuged (20,000g for 20 min at 4 °C), and the resulting pellet was 

resuspended in a final volume of 4.2 ml of ice-cold assay buffer. [3H]DA-

preloaded vesicles containing VMAT2C or VMAT2M (180 μl) were added to 

duplicate tubes containing methamphetamine (100 nM-1 mM) in the absence and 

presence of (R)-GZ-924 (3-300 nM). Samples were incubated in a final volume of 

200 μl for 5 min using VMAT2C and 3 min using VMAT2M, respectively, at 30 ºC, 

and processed as previously described.  
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3.2.8 [3H]Dofetilide Binding Assay to HERG Channels Expressed in HEK-293 

Cells Membranes 

The HEK-293 cell line stably expressing the human ERG (ether-a-go-go 

related gene) potassium channel (accession number U04270) was obtained at 

passage 11 (P11) from Millipore (CYL3006, lot 2, Billerica, MA). hERG-HEK cells 

were cultured according to the pr

 

 

 

. Cells were maintained in Minimum Essential Medium (MEM, with GlutaMAXTM and phenol red) supplemented with 10% fetal bovine serum (FBS, 10%), non-essential amino acids solution (NEAA, 1%), and disulfate salt solution (G418, 400 µg/ml) (obtained from Life Technologies, Carlsbad, CA). Cells were incubated at 37 °C in a humidified atmosphere with 5% CO2. Frozen aliquots of cells were transferred into T-75 cm2 flasks and allowed to adhere for 4-8 h, after which the medium was replaced. The medium was replaced every 2 or 3 days, and routine passages were carried out every 6 or 7 days using 0.05% Trysin-EDTA (1X) with phenol (Life Technologies, Carlsbad, CA). Dissociated cells were seeded into new 150x25 mm culture dishes (surface area: 151.9 cm2) obtained from BD Biosciences/Fisher Scientific (Florence, KY) at 2-3x106 cells per dish. Cells were passaged at least 3 times after thawing and were placed at 30 °C, 5% CO2, for 40-48 hrs prior to membrane preparation. Cell membrane preparations were obtained 6 or 7 days after the last passage, at passages 20 or 21. Cells were at about 70-90% confluence.   
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Cell membrane were prepared based on previously described methods 

(Erickson et al., 1990; Fieber and Adams, 1991; Finlayson et al., 2001; Nooney 

et al., 1992) using cells grown from two different batches provided by Millipore. 

Cells were rinsed with pre-warmed (37 °C) HBSS (Life Technologies, Carlsbad, 

CA). Cells were then collected by scraping the 150 mm dishes using 13 ml plus 5 

mL ice-cold 0.32 M sucrose with a Corning® cell scrapers blade L 1.8 cm 

(Sigma-Aldrich, St. Louis, MO). Harvested cell suspensions were poured into 

centrifuge tubes and homogenized on ice with a Teflon pestle using a Maximal 

Digital homogenizer (Fisher Scientific). Cells were then pelleted by centrifugation 

at 300 g and 800 g for 4 min each at 4 °C. Pellets were resuspended in 9 mL of 

ice-cold Milli-Q water. Osmolarity was restored by the addition of 1 mL of 500 

mM Tris buffer (pH 7.4) and homogenization. Cellular suspensions were 

centrifuged again at 20,000 g for 30 min at 4 °C. Resulting pellets were 

homogenized in ~2 mL assay buffer composed of 50 mM Tris, 10 mM KCl, 1 mM 

MgCl2 (pH 7.4), prepared the day prior to plasma membrane preparation and 

kept at 4 °C. Homogenization was performed using Pasteur glass pipettes and 2 

ml tissue grinders (Kimble Chase, Vineland, NJ), and aliquots of cell membranes 

were stored at -80 °C. Cell membranes were thawed prior to assay, and protein 

content was determined using a Bradford Protein Assay (Bradford, 1976) and 

albumin from bovine serum (Sigma, St. Louis, MO, A2153) as the standard. 

The potassium channel IKr coded by hERG plays a major role in phase 3 

repolarization of ventricular myocytes by opposing the depolarizing Ca2+ influx 

during the plateau phase (Sanguinetti et al., 1995). Analogs with high affinity for 
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this channel have potential to possess cardiac toxicity. Dofetilide, an 

antiarryhtmic agent, has been shown to preferentially block open (or activated) 

hERG transfected in HEK-293 cells (Snyders and Chaudhary, 1996). 

[3H]Dofetilide binding assays were utilized to determine the affinity of analogs for 

this channel. [3H]Dofetilide binding assays were performed at room temperature 

in a Tris buffer (50 mM Tris, 10 mM KCl, 1 mM MgCl2; pH 7.4) as previously 

reported (Nooney et al., 1992). Buffer was prepared less than 48 h before the 

assay and kept at 4 °C. The reaction protocol was as follows: cell membrane 

suspension (4-10 μg) was added to tubes containing assay buffer, 25 μl of test 

compound or the corresponding vehicle and 25 μl of [3H]dofetilide (5 nM, final 

concentration) for a final volume of 250 μl. Nonspecific binding was determined in 

the presence of amitriptyline (1 mM). Amitriptyline has been reported to induce 

QT prolongation by blocking the current of heterologously expressed hERG 

potassium channels (Jo et al., 2000; Teschemacher et al., 1999). Assays were 

performed in duplicate. Reactions proceeded for 60 min at room temperature and 

were terminated by rapid filtration in a Brandel M-48 cell/membrane harvester 

using GF/B Glass Fiber FP-105 filters (Brandel Inc., Gaithersburg, MD) pre-

soaked in 0.25% polyethylenimine solution (PEI, Fluka/Sigma-Aldrich, St. Louis, 

M) overnight. Filters were then washed three times with ~1 ml of ice-cold assay 

buffer. Filter discs that match the filter grids of the Brandel harvester were 

transferred into vials, and 5 ml scintillation cocktail (Research Products 

International Corporation, Mount Prospect, IL) was added. Radioactivity was 

determined by liquid scintillation spectrometry. 
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3.2.9 Inhibition of Methamphetamine-Evoked Endogenous and [3H]DA Release 

from Striatal Slices  

To determine if (R)-GZ-924 inhibition of methamphetamine-induced DA 

release from vesicles translated to inhibition of methamphetamine-induced DA 

release from the intact striatal slice preparation, a previously described slice 

superfusion methodology was employed and modified (Gerhardt et al., 1989). 

[3H]DA was used to determine the ability of (R)-GZ-924 to inhibit 

methamphetamine-evoked DA release from synaptic vesicles, while endogenous 

DA was measured to determine the ability of (R)-GZ-924 to inhibit 

methamphetamine -evoked DA release from striatal slice. To preclude the 

influence of different label between those two studies, [3H]DA was also measured 

to determine the ability of (R)-GZ-924 to inhibit methamphetamine evoked DA 

release from striatal slice. 

In the endogenous release study, striatal slices (0.5 mm thickness) were 

prepared and incubated for 60 min in Krebs' buffer (118 mM NaCl, 4.7 mM KCl, 

1.2 mM MgCl2, 1.0 mM NaH2PO4, 1.3 mM CaCl2, 11.1 mM α-D-glucose, 25 mM 

NaHCO3, 0.11 mM L-ascorbic acid, and 0.004 mM EDTA, pH 7.4, saturated with 

95% O2/5% CO2) at 34 °C in a metabolic shaker. Each slice was transferred to a 

glass superfusion chamber and superfused with Krebs' buffer at 1 ml/min for 60 

min prior to sample collection. Samples (1 ml) were collected for 1 min every 5 

min during the 80 min superfusion period. Initially, two samples were collected in 

the absence of analog to determine basal DA outflow. Each slice was superfused 
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for 30 min with a single concentration (0, 0.3-30 μM) of (R)-GZ-924 to determine 

analog-evoked fractional release. Then, methamphetamine (5 μM) was added to 

the buffer with (R)-GZ-924 for 15 min, followed by an additional 25 min of 

superfusion with (R)-GZ-924 alone. In each experiment, duplicate control slices 

were superfused with methamphetamine in the absence of (R)-GZ-924. 

Methamphetamine concentration (5 μM) and exposure time (15 min) were 

chosen to provide reliable DA release of sufficient quantity to allow evaluation of 

inhibition by (R)-GZ-924 (Horton et al., 2011b). Samples (1 ml) were kept on ice. 

Perchloric acid (0.1 M; 50 μl) was added to each sample. Upon assay, 20 μl 

ascorbate oxidase (168 U/mg reconstituted to 81 U/ml) was added to a 500 μl 

aliquot of each sample. Samples were vortexed for 30 s and an aliquot (100 μl) 

was injected into the HPLC-EC system to determine amounts of DA and DOPAC 

in the superfusate samples. 

The HPLC-EC system consisted of a pump (model 126; Beckman Coulter, 

Fullerton, CA), autosampler (model 508; Beckman Coulter), an ODS Ultrasphere 

C18 reverse-phase 80 × 4.6 mm, 3 μm column, and a Coulometric-II detector 

with guard cell (model 5020) maintained at + 0.60 V and analytical cell (model 

5011) with E1 and E2 set at −150 mV and +350 mV, respectively (ESA Inc., 

Chelmsford, MA). HPLC mobile phase (flow rate, 1.2 ml/min) consisted of 0.07 M 

citrate/0.1 M acetate buffer, containing 175 mg/L octylsulfonic acid sodium salt 

and 650 mg/L NaCl (pH 4.2) and 7% methanol. Separations were performed at 

room temperature, and 5 to 6 min was required to process each sample. 

Retention times of DA and DOPAC standards were used to identify respective 
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peaks. Peak heights were used to quantify the detected amounts of DA and 

DOPAC based on standard curves. Detection limit for DA and DOPAC was 1 to 2 

pg/100 μl. 

In the [3H]DA release study, each slice was incubated as above except 

that slices were incubated for 30 min with Krebs’ buffer followed by incubation for 

30 min with 0.1 μM [3H]DA (final concentration). Each slice was transferred to a 

glass superfusion chamber as above, but superfused with the Krebs' buffer at 1 

ml/min for 60 min in the absence or presence of 10 µM pargyline, a MAO 

inhibitor. Superfusion experiments were conducted in the absence and presence 

of pargyline using a within-subject design in order to evaluate the effects of 

methamphetamine and (R)-GZ-924 with and without, respectively, metabolism of 

the [3H]DA. Samples were collected the same way as in the endogenous DA 

release study except that 5 ml of samples were collected every 5 min. [3H]-

content in the superfusate samples were determined by liquid β-scintillation 

spectrometry. 

3.2.10 Inhibition of Nicotine-Evoked [3H]DA Overflow Assay  

To determine if (R)-GZ-924 inhibition of methamphetamine-evoked DA 

release from striatal slices was specific, the ability of the analog to inhibit 

nicotine-evoked [3H]DA release from rat striatal slices was evaluated using a 

previously described method (Smith et al., 2010). Rat striatal slices (0.5 mm 

thickness) were incubated as previously described in the [3H]DA release study. 

Slices were transferred to an automated superfusion system maintained at 34 °C 
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(Brandel Suprafusion system 2500, Biomedical Research & Development 

Laboratories, Inc., Gaithersburg, MD) and superfused for 60 min with Krebs' 

buffer at 0.6 ml/min flow rate. Buffer contained 10 μM nomifensine (a DA uptake 

inhibitor) to prevent reuptake of [3H]DA and 10 μM pargyline (a MAO inhibitor) to 

prevent metabolism of [3H]DA, assuring that the superfusate [3H] primarily 

represents parent neurotransmitter (Mantle et al., 1976; Smith et al., 2010). 

Superfusate samples were collected every 4 min (2.4 ml/sample). The first two 

samples were collected in the absence of (R)-GZ-924 to determine basal [3H]DA 

outflow. Each slice was superfused for 36 min in the absence (control) or 

presence of a single concentration of (R)-GZ-924 (0, 0.01 nM-10 μM), followed 

by addition of nicotine (10 μM) to the buffer and superfusion for 36 min. Nicotine 

concentration and exposure time were chosen based on a previous report, in 

which 10 μM nicotine evoked [3H]DA release from striatal slices during the 36 

min period (Smith et al., 2010). A control slice in each experiment was 

superfused for 36 min in the absence of (R)-GZ-924, followed by addition of 10 

μM nicotine to the buffer to determine nicotine-evoked [3H]DA overflow. (R)-GZ-

924 remained in the buffer throughout the superfusion period. At the end of each 

experiment, slices were solubilized, and [3H]-content remaining in the tissue and 

[3H] in the superfusate samples were determined by liquid β-scintillation 

spectrometry. 
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3.2.11 [3H]Nicotine and [3H]MLA Binding Assays  

Analog-induced inhibition of [3H]nicotine and [3H]MLA binding was 

determined using published methods (Miller et al., 2004). Whole brain, excluding 

cortex and cerebellum, was homogenized using a Tekmar polytron (Tekmar-

Dohrmann, Mason, OH) in 20 volumes of ice-cold modified Krebs’-HEPES buffer 

containing 2 mM HEPES, 14.4 mM NaCl, 0.15 mM KCl, 0.2 mM CaCl2, and 0.1 

mM MgSO4, pH 7.5. Homogenates were centrifuged at 31,000g for 17 min at 4 

°C (Avanti J-301 centrifuge; Beckman Coulter, Fullerton, CA). Pellets were 

resuspended by sonication (Vibra Cell; Sonics and Materials Inc., Danbury, CT) 

in 20 volumes of Krebs’-HEPES buffer and incubated at 37 °C for 10 min 

(Reciprocal Shaking Bath model 50; Precision Scientific, Chicago, IL). 

Suspensions were centrifuged using the above conditions. Resulting pellets were 

resuspended by sonication in 20 volumes buffer and centrifuged at 31,000g for 

17 min at 4°C. Final pellets were stored in incubation buffer containing 40 mM 

HEPES, 288 mM NaCl, 3.0 mM KCl, 4.0 mM CaCl2, and 2.0 mM MgSO4, pH 7.5. 

Membrane suspensions (100–140 µg of protein/100 µl) were added to duplicate 

wells containing 50 µl of analog (7-9 concentrations, 1 nM-0.1 mM, final 

concentration), 50 µl of buffer, and 50 µl of [3H]nicotine or [3H]MLA (3 nM; final 

concentration) for a final volume of 250 µl and incubated for 1 h at room 

temperature. Nonspecific binding was determined in the presence of 10 µM 

cytisine or 10 µM nicotine for the [3H]nicotine and [3H]MLA assays, respectively. 

Reactions were terminated by harvesting samples on Unifilter-96 GF/B filter 

plates presoaked in 0.5% PEI using a Packard Filter Mate Harvester 
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(PerkinElmer Life and Analytical Sciences). Samples were washed three times 

with 350 µl of ice-cold buffer. Filter plates were dried for 60 min at 45 °C and 

bottom-sealed, and each well was filled with 40 µl of Microscint 20 cocktail. 

Bound radioactivity was determined via liquid scintillation spectrometry 

(TopCount NXT scintillation counter; PerkinElmer Life and Analytical Sciences). 

3.2.12 Methamphetamine Self-Administration  

To determine whether (R)-GZ-924 decreases methamphetamine self-

administration, behavioral experiments were conducted as described previously 

in Dr. Bardo’s lab (Neugebauer et al., 2007). Operant conditioning chambers 

(ENV-008; MED Associates, St. Albans, VT) were enclosed within sound-

attenuating compartments (ENV-018M; MED Associates). Each chamber was 

connected to a personal computer interface (SG-502; MED Associates), and was 

operated using MED-PC software. A recessed food tray (5 × 4.2 cm) was located 

on the response panel of each chamber. Two retractable response levers were 

mounted on either side of the recessed food tray (7.3 cm above the metal rod 

floor). A white cue light (28-V and 3-cm diameter) was mounted 6 cm above each 

response lever. 

Rats were trained briefly to respond on a lever for food reinforcement. 

Immediately after food training, rats were allowed free access to food for 3 days. 

Then, rats were anesthetized (100 mg/kg ketamine and 5 mg/kg diazepam, i.p.), 

and catheters were implanted into the right jugular vein, exiting through a dental 

acrylic head mount affixed to the skull via jeweler screws. Methamphetamine 



 149 
 

infusions were administered (i.v., 0.1 ml over 5.9 s) via a syringe pump (PHM-

100; MED Associates) through a water-tight swivel attached to a 10 ml syringe 

via catheter tubing, which was attached to the cannula mounted to the head of 

the rat. A 1-week recovery period from surgery was allowed, and then, rats were 

trained to press one of two levers for an infusion of methamphetamine (0.05 

mg/kg/infusion). A 20 s timeout signaled by illumination of both lever lights was 

initiated after each infusion. The response requirement was gradually increased 

to a terminal fixed ratio (FR) 5 schedule of reinforcement. Each session was 60 

min duration. Training continued until responding stabilized across sessions. 

Stable responding was defined as less than 20% variability in the number of 

infusions earned across 3 successive sessions, a minimum of a 2:1 ratio of 

active (methamphetamine) lever responding to inactive (no drug) lever 

responding, and at least 10 infusions per session. After stability was reached, an 

acute dose (0, 1-30 mg/kg, s.c.) of (R)-GZ-924 was administered 15 min before 

the session according to a within-subject Latin square design. Dose range of (R)-

GZ-924 was chosen based on the dose of lobeline and lobelane (3.0 and 5.6 

mk/kg, s.c.) that inhibited methamphetamine self-administration in rats (Harrod et 

al., 2001; Neugebauer et al., 2007). Two maintenance sessions (i.e., no 

pretreatment) were included between each test session to ensure stable 

responding throughout the experiment. 
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3.2.13 Food-Maintained Responding 

To determine the specificity of (R)-GZ-924 effect on responding for 

methamphetamine, the ability of (R)-GZ-924 to decrease responding for food 

was determined as described previously (Neugebauer et al., 2007). Drug naïve 

rats were trained to respond on one lever (active lever) for food pellet 

reinforcement (45 mg pellets; BIO-SERV, Frenchtown, NJ), while responding on 

the other lever (inactive lever) had no programmed consequence. Locations (left 

or right) of the active and inactive levers were counterbalanced across rats. The 

response requirement was gradually increased, terminating at FR 5. After lever 

training, a 20 s signaled timeout (illumination of both lever lights) was initiated 

after each pellet delivery. Timeout after each pellet delivery was included to be 

consistent with the methamphetamine self-administration procedure. Each food-

reinforced session lasted 60 min. Training continued until responding stabilized 

across sessions. Stable responding was defined as less than 20% variability in 

the number of pellets earned across 3 successive sessions, and a minimum of a 

2:1 ratio of active lever responding to inactive lever responding. After the stability 

criteria were met, an acute dose of (R)-GZ-924 (1 or 15 mg/kg, s.c.) was 

administered 15 min before the 60 min session. Dose was chosen base on the 

dose response of (R)-GZ-924 to inhibit methamphetamine self-administration in 

rats. Two maintenance sessions (i.e., no pretreatment) were included between 

test sessions to ensure stable responding throughout the experiment. In addition, 

to assess the effect of repeated (R)-GZ-924 on food responding, rats were 

pretreated with(R)-GZ-924 (10 mg/kg, s.c., a dose from the dose response of 
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(R)-GZ-924 to inhibit methamphetamine self-administration in rats) for 9 

sessions. 

3.2.14 Data Analysis  

For studies using vesicles, synaptosomes, and hERG-HEK-293 cell 

membranes, specific [3H]DTBZ binding, [3H]DA uptake, [3H]nicotine binding, 

[3H]MLA binding, and [3H]dofetilide binding were determined by subtracting the 

nonspecific binding or uptake from the total. Non-specific [3H]DTBZ binding and 

vesicular [3H]DA uptake were determined in the presence of RO4-1284. 

Nonspecific [3H]nicotine and [3H]MLA binding was determined in the presence of 

cytisine or nicotine, respectively. Non-specific synaptosomal [3H]DA uptake and 

[3H]dofetilide binding were determined in the presence of nomifensine and 

amitriptyline, respectively. Concentrations of analogs that produced 50% 

inhibition of maximal binding or uptake (IC50 values) or evoked 50% of [3H]DA 

release (EC50 values) were determined from the concentration-response curves 

via an iterative curve-fitting program (Prism 5.0; GraphPad Software Inc., San 

Diego, CA). Inhibition constants (Ki values) were determined using the Cheng-

Prusoff equation (Cheng and Prusoff, 1973). To determine if the structural 

changes to the lobelane molecule increased affinity for the VMAT2C binding site, 

the VMAT2C uptake site and for DAT, two-tailed t tests were performed to 

compare the log Ki value for each analog to lobelane, the parent compound, in 

each assay. For kinetic analyses of [3H]DA uptake at VMAT2C, Km and Vmax 

values were determined from concentration-response curves. To determine the 
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mechanism of analog-induced inhibition of [3H]DA uptake at VMAT2C, two-tailed 

t-tests were performed on the arithmetic Vmax and the log Km values obtained in 

the presence of analog compared to those under control conditions in the 

absence of analog. To assess if analog affinity at the DTBZ site on VMAT2C was 

associated with analog affinity at the [3H]DA uptake on VMAT2C, Spearman 

correlation of the Ki values for the [3H]DTBZ binding assays and Ki values for the 

vesicular [3H]DA uptake assays for all analog was conducted. For vesicular 

[3H]DA release assay, F test was performed to compare the fits of two equations, 

the one-site binding model and the two-site binding model. (R)-GZ-924 inhibition 

of methamphetamine-evoked vesicular [3H]DA release was analyzed by two-way 

repeated-measures ANOVA, with (R)-GZ-924 and methamphetamine 

concentration as repeated measures factors. If a significant (R)-GZ-924 x 

methamphetamine interaction was found, one-way ANOVAs followed by 

Dunnetts’s tests were performed at each methamphetamine concentration to 

determine the (R)-GZ-924 concentrations that decreased methamphetamine-

evoked [3H]DA release. To further elucidate the mechanism of (R)-GZ-924 

inhibition of methamphetamine-evoked [3H]DA release, a Lew and Angus plot of 

the pEC50 values as a function of log (R)-GZ-924 concentration was generated, 

and the data underwent linear regression using Prism 5.0 (GraphPad Software 

Inc.). Difference from unity of the regression slope (95% confidence intervals) 

determined if the interaction was orthosteric or allosteric (Kenakin, 2006b). 

inhibition of methamphetamine-evoked 
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For the methamphetamine-evoked endogenous and radiolabeled DA 

release, DA, DOPAC and [3H]DA concentrations in each superfusate sample 

were divided by the respective striatal slice weight to obtain fractional release. 

For nicotine-evoked [3H]DA overflow study, amount of [3H] was divided by the 

total tissue [3H] at the time of sample collection to obtain the fractional release. 

Basal endogenous DA and DOPAC, and [3H]DA outflow were determined as the 

average fractional release in the two superfusate samples collected just before 

addition of (R)-GZ-924 to the buffer. To determine if (R)-GZ-924 in a 

concentration and time dependent manner evoked fractional DA, DOPAC, and 

[3H]DA release, two-way repeated-measures ANOVA was performed on release 

in samples obtained prior to addition of either methamphetamine or nicotine to 

the buffer. If concentration × time interactions were found, one-way ANOVAs 

were performed at each time point to determine the (R)-GZ-924 concentrations 

that evoked fractional DA and DOPAC release, and that evoked [3H]DA release. 

To determine if (R)-GZ-924 in a concentration and time dependent manner 

inhibited the effect of methamphetamine on fractional DA and DOPAC release 

and inhibited the effect of nicotine on fractional [3H]DA release, two-way 

repeated-measures ANOVA was performed on release data in samples after the 

addition of methamphetamine or nicotine to the buffer. If concentration × time 

interactions were found, one-way ANOVAs were performed at each time point to 

determine the (R)-GZ-924 concentrations that inhibited methamphetamine-

evoked or nicotine-evoked release. To determine if the effect of (R)-GZ-924 to 
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evoke [3H]DA release was altered by pargyline, three-way repeated-measures 

ANOVA was performed. 

Endogenous DA  and DOPAC overflow, and [3H]DA overflow were 

determined by summing the fractional release data to obtain the total overflow 

across time and subtracting basal outflow for that same amount of time. One-way 

ANOVAs were performed to determine if (R)-GZ-924 in a concentration-

dependent manner evoked DA, DOPAC, or [3H]DA overflow. One-way ANOVAs 

also determined if (R)-GZ-924 inhibited methamphetamine-evoked DA and 

DOPAC overflow, and nicotine-evoked [3H]DA overflow in a concentration-

dependent manner. Dunnett’s post hoc tests were used to compare treatment to 

control conditions when appropriate. When analyzing (R)-GZ-924-induced DA, 

DOPAC, and [3H]DA overflow, control represents overflow in the absence of the 

analog. When analyzing the ability of (R)-GZ-924 to inhibit the effect of 

methamphetamine or nicotine, control represents overflow in the presence of 

methamphetamine or nicotine alone. Overflow data were fit to concentration-

response curves via Prism 5.0 (GraphPad Software Inc.). IC50 and Imax values for 

(R)-GZ-924 were determined from the inhibition curves.  

For the behavioral experiments, to determine whether (R)-GZ-924 

decreased methamphetamine self-administration and food-maintained 

responding, one-way ANOVAs with dose as a within-subject factor were 

performed. Dunnett’s post hoc tests were used to compare the (R)-GZ-924 
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treatment to the saline control condition when appropriate. Statistical significance 

was defined at p < 0.05.  

3.3 Results 

3.3.1 Inhibition of [3H]DTBZ Binding at VMAT2C  

In order to determine analogs affinity for the DTBZ site on VMAT2C, 

[3H]DTBZ binding inhibition assay was performed. Concentration-response 

curves for the series of racemic, acyclic lobelane analogs, the pure enantiomers, 

and for the standards lobelane, lobeline, and RO4-1284 to inhibit [3H]DTBZ 

binding to whole brain membranes are illustrated in Figure 3.2. Ki and Imax values 

from the concentration-response curves are provided in Table 3.1 and Table 3.2. 

The standard compounds, RO4-1284, lobelane and lobeline had Ki values of 

0.016 ± 0.0013, 0.97 ± 0.19 and 3.5 ± 1.0 μM, whici have been shown in Table 

2.1. At the highest concentration evaluated, the majority of the racemic analogs 

completely inhibited [3H]DTBZ binding; however, all of the analogs inhibited 

binding by at least 70% of control. A wide range of Ki values (96 nM to 17 μM) 

was obtained for the racemic analogs.  

Analogs incorporating a homoamphetamine scaffold and a 2-3-carbon 

linker exhibited affinity either not different from or lower than that for lobelane 

(Figure 3.2, top left panel). Of note, (±)-GZ-813B and (±)-GZ-814B, the N-

methylated analogs with a 3-carbon linker and a 2-carbon linker respectively, 

exhibited affinity for the [3H]DTBZ binding site (Ki = 17 ± 6.3 μM and 30 ± 11 μM, 
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respectively) that was18- and 31-fold lower than that for lobelane [t(4) = 7.15, p < 

0.01; t(4) = 8.77, p < 0.001, respectively].  

Generally, racemic analogs incorporating an amphetamine scaffold and a 

2, 4, 5 or 6-carbon linker exhibited affinity for the [3H]DTBZ binding site either not 

different from or lower than that for lobelane, with the exception of (±)-GZ-893A 

(see below) (Figure 3.2, top right panel). As examples, (±)-GZ-861B and (±)-GZ-

816B, which incorporates a 2-carbon linker, the absence or presence of an N-

methyl substituent, and an amine or methoxy R2-subtituent on the phenyl ring of 

the amphetamine side of the molecule, exhibited affinity (Ki = 17 ± 6.6 μM and 12 

± 1.8 μM, respectively) for the [3H]DTBZ binding site, which was 18- and 13-fold, 

respectively, lower than lobelane [t(4) = 18.9, p < 0.0001; t(4) = 12.0, p < 0.001, 

respectively]. The exception, (±)-GZ-893A, a nor-analog with a 4-carbon linker 

and a bromo R2-substituent on the amphetamine phenyl ring, exhibited a 10-fold 

higher affinity [Ki = 0.096 ± 0.043 µM; t(4) = 4.97, p < 0.01] for the [3H]DTBZ 

binding site compared to lobelane. (±)-GZ-893A was the most potent analog for 

the [3H]DTBZ binding site in the acyclic lobelane analog series.  

Racemic analogs incorporating an amphetamine scaffold and a 3-carbon 

linker exhibited affinity for the [3H]DTBZ binding site either not different from or 

lower than that for lobelane, with the exception of (±)-GZ-865G (Figure 3.2, 

bottom left panel). Analogs within the range of affinities include (±)-GZ-815A, (±)-

GZ-819A and (±)-GZ-819B, with Ki values of 1.3 ± 0.086, 0.43 ± 0.047, 2.6 ± 0.47 

μM, respectively. The exception, (±)-GZ-865G, a nor-analog with a hydroxyl R2 
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and a methoxy R3-substituent, had 3-fold higher affinity [Ki = 0.28 ± 007 μM; t(4) = 

3.20, p < 0.05] than that for lobelane.  

Concentration-response curves for inhibition of [3H]DTBZ binding for (R)-

GZ-878A and (S)-GZ-878B, which are pure enantiomers of (±)-GZ-815A, for (R)-

GZ-880A and (S)-GZ-880B, which are pure enantiomers of (±)-GZ-819A, and for 

(R)-GZ-924 and (S)-GZ-925, which are pure enantiomers of (±)-GZ-819B, are 

illustrated in Figure 3.2 (bottom right panel). Ki and Imax values for the pure 

enantiomers are provided in Table 3.2. All of the pure enantiomers inhibited 

[3H]DTBZ binding by at least 90%, with Ki values ranging from 0.75 to 1.1 μM. 

Enantioselectivity for the [3H]DTBZ binding site was not observed. Furthermore, 

Ki values for the enantiomers were not different from that for lobelane.  

3.3.2 Inhibition of [3H]DA Uptake at VMAT2C  

In order to determine analogs affinity for the DA translocation site on 

VMAT2C, vesicular [3H]DA uptake inhibition assay was performed.  

Concentration-response curves of racemic, acyclic lobelane analogs, the pure 

enantiomers and the standards lobelane, lobeline, and RO4-1284 are illustrated 

in Figure 3.3. Ki and Imax values are provided in Tables 3.1 and 3.2. The standard 

compounds, RO4-1284, lobelane and lobeline had Ki values for inhibition of 

[3H]DA uptake of 41 ± 8.1, 40 ± 3.5, and 563 ± 30 nM, respectively, consistent 

with previous results (Nickell et al., 2010). At the highest concentration, all 

racemic analogs inhibited VMAT2C function by at least 90%. The range of Ki 

values for the series of racemic analogs was 3 to 510 nM. Within this series, (±)-
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GZ-814B, (±)-GZ-813B, (±)-GZ-819C, (±)-GZ-815B, (±)-GZ-816B, and (±)-GZ-

820C, exhibited affinities (Ki = 84-512 nM) lower than that for lobelane [t(5) = 6.56, 

p < 0.01; t(5) = 17.1, p < 0.0001; t(5) = 8.21, p < 0.001; t(5) = 11.5, p < 0.0001; t(5) = 

13.1, p < 0.0001; t(5) = 13.1, p < 0.0001, respectively] and had a common 

structural feature of an N-methyl R1 substituent. 

For racemic analogs incorporating the homoamphetamine scaffold, (±)-

GZ-854B, a nor-analog with a methoxy R2, a bromo R3-substituent and a 2-

carbon linker, exhibited 4-fold higher affinity (Ki = 9.7 ± 4.4 nM) than lobelane [t(5) 

= 2.69, p < 0.05] for inhibition of VMAT2C function (Figure 3.3, top left panel). 

Similarly, (±)-GZ-865A, a nor-analog with methoxy R3-substituent and a 3-carbon 

linker, had 2-fold higher affinity (Ki = 26 ± 2.3 nM) compared to lobelane [t(5) = 

3.43, p < 0.05]. The remaining racemic analogs in this homoamphetamine 

subgroup exhibited affinities for DA uptake not different from or lower than that 

for lobelane.  

Racemic analogs incorporating an amphetamine scaffold and a 2, 4, 5 or 

6-carbon linker exhibited a wide range of affinity (Ki = 3-512 nM) for the DA 

translocation site on VMAT2C (Figure 3.3, top right panel). nor-Analogs or N-

methylated analogs with a 2-carbon linker and various R2 substituents exhibited 

affinity that were not different from or were lower than that for lobelane. nor-

Analogs with a 4-carbon linker and including a R2 bromo substituent [(±)-GZ-

893A] or not including this substituent [(±)-GZ-893B] had 12-fold higher affinities 

(Ki = 3.3 ± 0.26 and 3.3 ± 1.7 nM, respectively) than lobelane [t(5) = 20.2, p < 
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0.001; p < 0.05; t(5) = 6.19, p < 0.01, respectively]. nor-Analogs with a 5 or 6-

carbon linker and no R2 substituent [(±)-GZ-909, and (±)-GZ-908] exhibited 3- 

and 4-fold higher affinities (Ki = 14 ± 0.82, and 9.3 ± 1.8 nM respectively) than 

lobelane [t(6) = 9.78, p < 0.0001; t(6) = 6.07, p < 0.0001, respectively]. 

Racemic analogs incorporating the amphetamine scaffold and a 3-carbon 

linker also exhibited a wide range of affinity (Ki = 6.9-272 nM) for the DA 

translocation site on VMAT2C (Figure 3.3, bottom left panel). The majority of the 

nor-analogs in this amphetamine subgroup had higher affinity (Ki = 6.9-20 nM) 

than that for lobelane (p < 0.05). (±)-GZ-819B, a nor-analog incorporating an 

amphetamine scaffold, a 3-carbon linker and no R2 and R3 substituents, had the 

highest affinity (Ki = 6.9 ± 1.8 nM) for the DA translocation site on VMAT2C, and 

a 6-fold higher affinity than lobelane [t(6) = 6.50, p < 0.001].   

Concentration-response curves for inhibition of [3H]DA uptake by VMAT2C 

for the three pairs of enantiomers [(R)-GZ-878A and (S)-GZ-878B, (R)-GZ-880A 

and (S)-GZ-880B, and (R)-GZ-924 and (S)-GZ-925] are illustrated in Figure 3.3 

(bottom right panel); Ki and Imax values are provided in Table 3.2. Ki values 

ranged from 5.6 to 65 nM and [3H]DA uptake was inhibited completely by each 

pure enantiomer. Enantioselectivity was observed between (R)-GZ-924 and (S)-

GZ-925, the nor-enantiomers incorporating an amphetamine scaffold and a 3-

carbon linker [Ki = 5.9 ± 1.0 and 65 ± 3.6 nM, respectively; t(8) = 9.65, p < 

0.0001], and between (R)-GZ-880A and (S)-GZ-880B, the nor-enantiomers 

incorporating a 4-bromo-amphetamine scaffold and a 3-carbon linker (Ki = 5.6 ± 
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0.95 and 32 ± 4.4 nM, respectively; t(5) = 7.42, p < 0.001]. Enantioselectivity was 

not found for (R)-GZ-878A and (S)-GZ-878B, the nor-enantiomers incorporating 

a 4-methoxy-amphetamine scaffold and a 3-carbon linker. In addition, (R)-GZ-

924 and (R)-GZ-880A exhibited 7-fold higher affinity for the [3H]DA uptake site 

compared to lobelane [t(8) = 7.60, p < 0.0001; t(6) = 10.2, p < 0.001, respectively].  

3.3.3 Correlation of Ki Values for the [3H]DTBZ Binding and [3H]DA Uptake at 

VMAT2C  

In order to determine the relationship between affinity for the DTBZ site 

and affinity for the DA translocation site on VMAT2C, correlation of affinity for 

both sites was performed. With respect to the standard compounds, RO4-1284 

exhibited 2-fold higher affinity for the binding site compared to the uptake site on 

VMAT2C, although not significantly different. Interestingly, lobeline and lobelane 

had 7- and 24-fold higher affinity for the uptake site relative to the binding site on 

VMAT2C. (±)-GZ-865G, the nor-analog incorporating an amphetamine scaffold, a 

3-carbon linker, a hydroxyl R2, and a methoxy R3-substituent was an exception 

among the analogs, in that this analog was equipotent at VMAT2C binding and 

uptake sites.  In contrast, all racemic analogs and enantiomers in the acyclic 

lobelane series exhibited affinity 12-650-fold higher at the uptake site relative to 

the binding site, and a positive correlation between the affinity for the binding site 

and uptake site for this series of compounds was found (Spearman r = 0.62; p < 

0.001, Figure 3.4). 
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3.3.4 Mechanism of Inhibition of [3H]DA Uptake at VMAT2C  

In order to determine the mechanism of inhibition of [3H]DA uptake at 

VMAT2C, kinetic studies were performed. Mechanism of action was evaluated 

for lobelane and the three pairs of enantiomers, (R)-GZ-787A and (S)-GZ-787B, 

(R)-GZ-880A and (S)-GZ-880B, and (R)-GZ-924 and (S)-GZ-925. Kinetic 

analyses of enantiomer inhibition of DA uptake were conducted using 

concentrations obtained for the respective Ki values from their inhibition curves 

(Figure 3.5). Km and Vmax values are provided in Table 3.3. Lobelane increased 

the Km value for DA uptake by 9-fold [t(10) = 13.7, p < 0.0001], with no change in 

Vmax, consistent with a previous results (Nickell et al., 2011b). The enantiomers 

increased the Km value for DA by 3-9-fold compared to control [t(8) = 9.25 for (R)-

GZ-924, p < 0.0001; t(11) = 2.42 for (S)-GZ-925, p < 0.05; t(8) = 13.1 for (R)-GZ-

880A, p < 0.0001; t(8) = 4.61 for (S)-GZ-880B, p < 0.001; t(8) = 13.9 for (R)-GZ-

878A, p < 0.0001; t(8) = 3.69 for (S)-GZ-878B, p < 0.01], with no change in Vmax, 

indicating competitive inhibition of VMAT2C function. 

3.3.5 Inhibition of [3H]Dofetilide Binding to HERG Channels  

In order to determine analogs selectivity at VMAT2C over hERG channels, 

[3H]dofetilide binding inhibition assay was performed. Potential for cardiac toxicity 

was evaluated using the [3H]dofetilide binding assay. The standard compound, 

amitriptyline, had an IC50 value of 12 ± 4.8 μM, consistent with previous reports 

(Diaz et al., 2004). Lobelane and the three pairs of enantiomers were evaluated 

for inhibition of [3H]dofetilide binding to hERG channels. IC50 values for lobelane 
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and the enantiomers are provided in Table 3.2. IC50 values for the enantiomers 

ranged from 0.78 to 8.5 μM and the selectivity of the enantiomers for VMAT2C 

function over hERG channels ranged from 35 to 510 fold. The most selective 

enantiomer, (R)-GZ-924, exhibited 510-fold higher inhibitory potency for 

VMAT2C function compared to hERG channels.  

3.3.6 Inhibition of [3H]DA Uptake at DAT  

In order to determine analogs selectivity at VMAT2C over DAT, DAT 

[3H]DA uptake inhibition assay was performed. Concentration-response curves 

for the pairs of pure enantiomers and the standards, lobelane and lobeline, are 

illustrated in Figure 3.6. Ki and Imax values are provided in Table 3.4. Lobelane 

and lobeline had Ki values for inhibition of [3H]DA uptake of 1.3 ± 0.16 and 18 ± 

0.76 µM, respectively, consistent with previous results (Nickell et al., 2010). At 

the highest concentrations, all of the enantiomers completely inhibited [3H]DA 

uptake by DAT. The range of Ki values for the enantiomers was 1.0 to 5.8 μM. 

(R)-GZ-878A and (S)-GZ-878B, the pair of enantiomers incorporating a 4-

methoxy-amphetamine scaffold and a 3-carbon linker, exhibited 4-fold lower 

affinity [Ki = 5.6 ± 1.3 and 5.2 ± 0.18 μM, respectively; t(6) = 5.74, p < 0.01; t(6) = 

11.2, p < 0.0001, respectively] than lobelane inhibiting [3H]DA uptake into 

synaptosomes. No significant difference in affinity for DAT was observed 

between (R)-GZ-878A and (S)-GZ-878B. The affinity for DAT of (R)-GZ-880A 

and (S)-GZ-880B, enantiomers incorporating a 4-bromo-amphetamine scaffold 

and a 3-carbon linker, were not different from that for lobelane. No significant 
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difference in affinity for DAT was observed between (R)-GZ-880A and (S)-GZ-

880B as well. (S)-GZ-925, the compound incorporating an amphetamine scaffold 

and a 3-carbon linker, exhibited a 2-fold lower affinity (Ki = 2.6 ± 0.14 μM) than 

lobelane [t(5) = 4.79, p < 0.01]. Enantiomeric selectivity was found for (R)-GZ-924 

and (S)-GZ-925, with (S)-GZ-925 exhibiting 2-fold higher affinity than (R)-GZ-924 

[t(4) = 11.6, p < 0.001].  

3.3.7 Release of [3H]DA from Synaptic Vesicles  

In order to determine analogs ability to redistribute DA from synaptic 

vesicles to cytosol, vesicular [3H]DA release assay was performed. 

Concentration-response curves and EC50 and Emax values for lobelane, lobeline, 

methamphetamine, and the enantiomers to evoke [3H]DA release from synaptic 

vesicles are provided in Figure 3.7. EC50 values of lobelane, lobeline, and 

methamphetamine were 0.26 ± 0.031, 13 ± 7.4, and 19 ± 4.1 μM, respectively 

(top left panel in Fig 3.7), as shown in top panel in Figure 2.7. The EC50 value for 

lobelane was 50-fold lower than that for lobeline [t(6) = 3.86, p < 0.01], and 35-fold 

lower than that for methamphetamine [t(6) = 11.1, p < 0.001]. All enantiomers 

released [3H]DA from the synaptic vesicles in a biphasic manner [F(2, 77) = 71.3 for 

(R)-GZ-924, p < 0.0001; F(2, 50) = 6.43 for (S)-GZ-925, p < 0.05; F(2, 29) = 6.45 for 

(R)-GZ-880A, p < 0.05, F(2, 34) = 14.1 for (S)-GZ-880B, p < 0.0001; F(2, 39) = 5.98 

for (R)-GZ-878A, p < 0.05, F(2, 48) = 14.2 for (S)-GZ-878B, p < 

0.001]..Enantioselectivity was found between (R)-GZ-924 and (S)-GZ-925, the 

pair of enantiomers incorporating the amphetamine scaffold and the 3-carbon 
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linker. High EC50 value (96 ± 51 nM) of (S)-GZ-925 was 26-fold greater than that 

for (R)-GZ-924 [3.7 ± 0.64 nM, t (9) = 2.49, p < 0.05]. No difference in the Low 

EC50 values was found between the two enantiomers. No enantioselectivity was 

found between (R)-GZ-880A and (S)-GZ-880B, or between (R)-GZ-878A and 

(S)-GZ-878B, the two pairs of enantiomers incorporating the 4-

bromoamphetamine and the 4-methoxyamphetamine scaffold and the 3-carbon 

linker.  

To determine whether the effect of (R)-GZ-924, the most potent and 

selective analog for VMAT2C, on vesicular DA release was due to the interaction 

with TBZ or reserpine binding site on VMAT2C, classical VMAT2 inhibitors, TBZ 

and reserpine (Scherman and Henry, 1984) was used to block the effect of the 

analog. The concentrations utilized were 30 nM for TBZ and 50 nM for reserpine. 

At these concentrations, the two compounds did not elicit [3H]DA release from 

the synaptic vesicles (Horton et al., 2013; Nickell et al., 2011b). The 

concentration-response curves for (R)-GZ-924 to release [3H]DA in the presence 

of TBZ and reserpine are illustrated in Figure 3.8. Both TBZ and reserpine 

inhibited the (R)-GZ-924-induced high affinity release, but not release associated 

with the low affinity site. In the presence of TBZ and reserpine, (R)-GZ-924-

evoked [3H]DA release best fit a one-site model [F(2, 43) = 1.79 and  F(2, 43) = 2.75, 

respectively, p > 0.05]. 
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3.3.8 (R)-GZ-924 Inhibition of Methamphetamine-Evoked [3H]DA Release from 

Synaptic Vesicles via VMAT2C and VMAT2M  

To determine the ability of (R)-GZ-924 to inhibit effect of 

methamphetamine at synaptic vesicles, methamphetamine-evoked vesicular 

[3H]DA release was determined in the presence of the analog. Initially, the 

inhibition assay using VMAT2C was performed at 37 °C. The concentration 

response for methamphetamine-evoked vesicular [3H]DA release in the absence 

and presence of (R)-GZ-924 via VMAT2C is illustrated in Figure 3.9. Two-way 

repeated-measures ANOVA revealed main effects of methamphetamine [F(10, 132) 

= 1190, p < 0.0001], (R)-GZ-924 [F(3, 132) = 222, p < 0.0001], and 

methamphetamine × (R)-GZ-924 interaction [F(30, 132) = 13.9, p < 0.0001]. (R)-GZ-

924 inhibited methamphetamine at 10 µM [F(3, 12) = 99.7, p < 0.0001], at 30 µM 

[F(3, 12) = 226, p < 0.0001], at 100 µM [F(3, 12) = 258, p < 0.0001], at 200 µM [F(3, 12) 

= 40.6, p < 0.0001], at 500 µM [F(3, 12) = 42.5, p < 0.0001], and at 1000 µM [F(3, 12) 

= 18.6, p < 0.0001]. (R)-GZ-924 at 3, 30 and 300 nM inhibited [3H]DA release 

evoked by methamphetamine at 10-100, 10-1000  and 10-1000 μM concentration 

ranges, respectively.   

From the methamphetamine concentration-response curves at 37 °C, 

EC50 and Emax values in the absence and presence of (R)-GZ-924 via VMAT2C 

were generated and provided in Table 3.5. EC50 and Emax values for 

methamphetamine alone using VMAT2C were 11.9 ± 0.769 µM and 82.4 ± 

0.614%, respectively, consistent with a previous study (Nickell et al., 2010). 
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Increasing concentrations of (R)-GZ-924 shifted the methamphetamine 

concentration-response curve to the right. (R)-GZ-924 (30 and 300 nM) 

increased [F(3,12) = 62.0, p < 0.0001] the log EC50 values by 5- and 14-fold in 

VMAT2C, whereas no changes in Emax values were found. Lew and Angus 

analysis revealed a linear fit (R2 = 0.67, p < 0.05) with a slope of -0.44 and a 95% 

confidence interval of -0.51 and -0.36 in VMAT2C (Figure 3.9., inset). No overlap 

of the 95% confidence interval with unity indicate that (R)-GZ-924 inhibited 

methamphetamine-evoked [3H]DA release in a surmountable allosteric manner in 

VMAT2C at 37 °C. 

In the previous vesicular [3H]DA release study in Chapter 2 (Section 

2.2.6), the vesicles collected was VMAT2C vesicles. In the slice release, both 

VMAT2C and VMAT2M vesicles existed in each intact slice (Figure 3.21). The 

lead analog in Chapter 2 [(±)-GZ-730B] inhibited methamphetamine-evoked 

[3H]DA release from synaptic vesicles but endogenous DA release from striatal 

slices. The incomplete vesicular VMAT2 preparation in the vesicular [3H]DA 

release study might be responsible for the conflict between those studies. In the 

current study, the ability of (R)-GZ-924 to inhibit methamphetamine-evoked 

[3H]DA release from vesicles via VMAT2C and VMAT2M was determined in a 

within subject design. Studies on VMAT2M uptake was done at 30 °C in the 

literature instead of 37 °C (Chu et al., 2010). Thus, all the studies on VMAT2M in 

this chapter were performed at 30 °C. In order to compare the results between 

studies using VMAT2C and VMAT2M, inhibition of methamphetamine-evoked 

[3H]DA release by (R)-GZ-924 via VMAT2C was performed at 30 °C as well.  
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At a different temperature, function of the transporter might be different 

and the experiment condition needed to be optimized. Before performing the 

inhibition assay at 30 °C, the concentration of [3H]DA and time points at which 

VMAT2C and VMAT2M vesicles was saturated during the first incubation in the 

vesicular [3H]DA release study needed to be determined. In order to determine 

the concentration of [3H]DA utilized in the first incubation in the VMAT2C and 

VMAT2M [3H]DA release study, [3H]DA uptake kinetic study was performed. 

Furthermore, to perform the above [3H]DA uptake kinetic study, an optimal 

incubation time needed to be determined by a time course study. Thus, the time 

points at which VMAT2C and VMAT2M was saturated by 0.1 µM [3H]DA at 30 °C 

was determined first. 0.1 µM [3H]DA was chosen since the affinity of [3H]DA for 

VMAT2C was around 0.1 µM (Chu et al., 2010; Nickell et al., 2011b). The time at 

which VMAT2C and VMAT2M vesicles were saturated by 0.1 µM [3H]DA was 8 

and 2 min, respectively (Figure 3.10). Thus, [3H]DA uptake kinetics at VMAT2C 

and VMAT2M were performed using the respective optimal incubation time at 30 

°C to determine the optimal concentration of [3H]DA in the first incubation of the 

vesicular [3H]DA release study (Figure 3.11). Vmax and Km values for VMAT2C 

was 42 ± 1.6 pmol/min/mg and 0.22 ± 0.030 µM, respectively. Vmax and Km 

values for VMAT2M was 15 ± 1.3 pmol/min/mg and 0.27 ± 0.039 µM, 

respectively. No difference of Km between VMAT2M and VMAT2C was found. 

Vmax for VMAT2M was lower compared to that for VMAT2C [t(4) = 13.1, p <0.001]. 

The concentration of [3H]DA at which VMAT2C and VMAT2M vesicles was 

saturated under respective incubation time at 30 °C was 0.5 µM. However, great 
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non-specific [3H]DA uptake was found at 0.5 µM. 0.3 µM was chosen due to the 

relative smaller non-specific [3H]DA uptake and the specific [3H]DA uptake that 

was very close to the Vmax. The time points at which VMAT2C and VMAT2M 

vesicles was saturated by 0.3 µM [3H]DA during the first incubation in the 

vesicular [3H]DA release study was determined in the time course study. The 

time at which VMAT2C and VMAT2M vesicles were saturated by 0.3 µM [3H]DA 

at 30 °C was 5 and 3 min, respectively ( Figure 3.12).  

The concentration response for methamphetamine-evoked vesicular 

[3H]DA release at 30 °C in the absence and presence of (R)-GZ-924 via 

VMAT2C is illustrated in the top panel in Figure 3.13. Two-way repeated-

measures ANOVA revealed main effects of methamphetamine [F(10, 132) = 167, p 

< 0.0001], (R)-GZ-924 [F(3, 132) = 90.6, p < 0.0001], and a methamphetamine × 

(R)-GZ-924 interaction [F(30, 132) = 2.83, p < 0.0001]. (R)-GZ-924 inhibited 

methamphetamine at 0.1 µM [F(3, 12) = 8.83, p < 0.01], at 1 µM [F(3, 12) = 8.98, p < 

0.01], at 3 µM [F(3, 12) = 36.4, p < 0.0001], at 10 µM [F(3, 12) = 35.4, p < 0.0001], at 

30 µM [F(3, 12) = 34.3, p < 0.0001], at 100 µM [F(3, 12) = 18.6, p < 0.0001], at 200 

µM [F(3, 12) = 12.5, p < 0.001], and at 500 µM [F(3, 12) = 4.34, p < 0.05]. (R)-GZ-924 

at 3, 30 and 300 nM inhibited [3H]DA release evoked by methamphetamine at 3-

100, 0.1-500  and 0.1-500 μM concentration ranges, respectively.   

From the methamphetamine concentration-response curves at 30 °C, 

EC50 and Emax values in the absence and presence of (R)-GZ-924 via VMAT2C 

were generated and provided in Table 3.6. EC50 and Emax values for 
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methamphetamine alone using VMAT2C were 10.3 ± 3.18 µM and 61.0 ± 5.56%, 

respectively, not different from that at 37 °C (11.9 ± 0.769 µM and 82.4 ± 

0.614%). Increasing concentrations of (R)-GZ-924 shifted the methamphetamine 

concentration-response curve to the right in VMAT2C. (R)-GZ-924 (3, 30 and 300 

nM) increased [F(3,12) = 29.5, p < 0.0001] the log EC50 values by 11, 15 and 59-

fold with no alteration of the Emax values for VMAT2C. Lew and Angus analysis 

revealed a linear fit (R2 = 0.68, p < 0.01) with a slope of -0.37 and a 95% 

confidence interval of -0.55 and -0.19 for VMAT2C (top panel in Figure 3.13, 

inset). Similar to the study using VMAT2C at 37 °C, No overlap of the 95% 

confidence interval with unity indicated that (R)-GZ-924 inhibited 

methamphetamine-evoked [3H]DA release in a surmountable allosteric manner 

when evaluating VMAT2C at 30 °C. 

The concentration response for methamphetamine-evoked vesicular 

[3H]DA release at 30 °C in the absence and presence of (R)-GZ-924 via 

VMAT2M is illustrated in the bottom panel in Figure 3.13. Two-way repeated-

measures ANOVA revealed main effects of methamphetamine [F(10, 132) = 40.4, p 

< 0.0001] and (R)-GZ-924 [F(3, 132) = 27.9, p < 0.0001]. The methamphetamine × 

(R)-GZ-924 interaction was not significant. (R)-GZ-924 inhibited 

methamphetamine at 10 µM [F(3, 12) = 7.10, p < 0.01], at 30 µM [F(3, 12) = 14.2, p < 

0.001], at 100 µM [F(3, 12) = 9.97, p < 0.01], and at 200 µM [F(3, 12) = 5.35, p < 

0.05]. (R)-GZ-924 at 30 and 300 nM inhibited [3H]DA release evoked by 

methamphetamine at 30 and 10-200 μM concentration ranges, respectively.  
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From the methamphetamine concentration-response curves at 30 °C, 

EC50 and Emax values in the absence and presence of (R)-GZ-924 via VMAT2M 

were generated and provided in Table 3.6. EC50 and Emax values for 

methamphetamine alone using VMAT2M were 5.28 ± 1.48 µM and 28.9 ± 4.39%, 

respectively. Emax for VMAT2M was significantly low compared to Emax for 

VMAT2C [t(6) = 4.53, p < 0.01] at 30 °C. Increasing concentrations of (R)-GZ-924 

shifted the methamphetamine concentration-response curve to the right in 

VMAT2M. (R)-GZ-924 (30 and 300 nM) increased [F(3,12) = 29.4, p < 0.0001] the 

log EC50 values by 14 and 110-fold, respectively, with no alteration of the Emax 

values for VMAT2M. Lew and Angus analysis revealed a linear fit (R2 = 0.89, p < 

0.0001) with a slope of -0.75 and a 95% confidence interval of -0.94 and -0.55 for 

VMAT2M (bottom panel in Figure 3.13, inset). Similar to the VMAT2C study at 30 

°C, no overlap of the 95% confidence interval with unity indicated that (R)-GZ-

924 inhibited methamphetamine-evoked [3H]DA release in a surmountable 

allosteric manner when evaluating VMAT2M at 30 °C. 

3.3.9 Lack of (R)-GZ-924 Inhibition of Methamphetamine-Evoked Endogenous 

Fractional DA Release from Striatal Slices  

To determine the ability of (R)-GZ-924 to inhibit effect of 

methamphetamine at striatal slices, methamphetamine-evoked endogenous DA 

release from striatal slices was determined in the presence of the analog. The 

time course of the concentration-dependent effect of (R)-GZ-924 alone on 

fractional DA release across the first 15-40 min of superfusion is illustrated in 
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Figure 3.14, and the results are presented as DA overflow in Table 3.7. The main 

effect of (R)-GZ-924 concentration, time, and the interaction of concentration × 

time were not significant. Thus, (R)-GZ-924 alone did not evoke fractional DA 

release. Consistently, (R)-GZ-924 did not evoke DA overflow (Table 3.7).  

Analysis of fractional DA release following the addition of 

methamphetamine to the superfusion buffer during 45-55 min in the absence and 

presence of (R)-GZ-924 revealed that the concentration effect and the 

concentration × time interaction were not significant; however a  main effect of 

time [F(2, 29) = 11.3; p < 0.05] was found. Consistent with these observations, 

methamphetamine-evoked DA overflow was not different in the absence and 

presence of (R)-GZ-924 across a range of concentrations (Table 3.8).  Thus, 

methamphetamine increased fractional DA release from superfused striatal slices 

across the 15 min exposure period in both the absence and presence of (R)-GZ-

924; however, (R)-GZ-924 did not inhibit the effect of methamphetamine to 

release DA.  

3.3.10 (R)-GZ-924-Evoked Fractional Release of DOPAC, DOPAC Overflow 

from Striatal Slices and Interaction with Methamphetamine  

To determine the effect of (R)-GZ-924 on DOPAC release, the ability of 

(R)-GZ-924 to evoke DOPAC release from striatal slices was determined. The 

time course of the concentration-dependent effect of (R)-GZ-924 alone on 

fractional release of DOPAC across the first 15-40 min of superfusion is 

illustrated in the top panel of Figure 3.15, and the results presented as DOPAC 
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overflow are illustrated in the bottom panel of Figure 3.15. The main effect of (R)-

GZ-924 and time were significant [F(5, 18) = 11.5, p < 0.001; F(5, 20) = 2.75, p < 

0.05, respectively], and the interaction of concentration × time was not significant. 

(R)-GZ-924 (30 µM) increased fractional release of DOPAC at 35 min [F(4, 19) = 

3.56, p < 0.05] and 40 min [F(4, 18) = 3.54, p < 0.05]. Consistently, (R)-GZ-924 (10 

and 30 μM) increased DOPAC overflow [F(4, 19) = 18.0, p < 0.05; bottom panel of 

Figure 3.15].  

The time course of the concentration-dependent effect of (R)-GZ-924 on 

fractional release of DOPAC across 45-50 min of superfusion in the presence of 

methamphetamine is illustrated in top panel of Figure 3.15 as well. The main 

effect of (R)-GZ-924 was significant [F(5, 22) = 4.28, p < 0.01], and the main effect 

of time and the interaction of concentration × time were not significant. (R)-GZ-

924 increased fractional release of DOPAC at 45 min [F(4, 19) = 5.03, p < 0.01], 50 

min [F(4, 23) = 6.69, p < 0.01], and 55 min [F(4, 23) = 4.09, p < 0.05]. (R)-GZ-924 at 

3, 10, and 30 µM increased the release of DOPAC at 50-55 min, 45-55 min, and 

50-55 min, respectively.  

3.3.11 (R)-GZ-924-Induced Alteration of Methamphetamine-Evoked Fractional 

[3H]-Release from Striatal Slices in the Absence and Presence of 

Pargyline 

Contradictory results using (R)-GZ-924 between [3H]DA release from 

synaptic vesicles and endogenous DA release from striatal slices was found. To 

determine whether different label, [3H]DA versus endogenous DA, was 
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responsible for such contradictory results, the ability of (R)-GZ-924 to inhibit 

methamphetamine-evoked [3H]DA release from striatal slices was determined. 

Using a within-subject design, the time course of the concentration-dependent 

effect of (R)-GZ-924 to inhibit the effect of methamphetamine was determined on 

fractional [3H]-release from superfused striatal slices in the absence and 

presence of pargyline (Figure 3.16, top and bottom panels, respectively). Three-

way repeated-measures ANOVA was conducted on the data prior to the addition 

of methamphetamine to the superfusion buffer to evaluate the time course of the 

concentration-dependent effects of (R)-GZ-924 in the absence and presence of 

pargyline. Main effects of (R)-GZ-924 [F(4, 27) = 4.81, p < 0.01], pargyline [F(1, 27) = 

37.9, p < 0.001], and time [F(2, 27) = 11.8, p < 0.001], as well as interactions of 

(R)-GZ-924 × time [F(9, 27) = 4.12, p < 0.01] and pargyline × time [F(2, 27) = 6.66, p 

< 0.01] were obtained. To further evaluate the significant interactions, post hoc 

analyses were performed and revealed that 10 µM (R)-GZ-924 increased 

fractional [3H]-release from 30-40 min in the absence of pargyline, but not in the 

presence of pargyline.  

With respect to the (R)-GZ-924-induced inhibition of methamphetamine on 

fractional [3H]-release in the absence and presence of pargyline, main effects of 

(R)-GZ-924 [F(4, 8) = 3.08, p < 0.05] and time [F(2, 8) = 103, p < 0.001], as well as 

two-way interactions of  (R)-GZ-924 × pargyline [F(4, 8) = 4.24, p < 0.05] and 

pargyline ×  time [F(2, 8) = 7.93, p < 0.01], and the three-way interaction of (R)-GZ-

924 × pargyline × time [F(8, 8) = 7.85, p < 0.001] were found. Post hoc analyses 

revealed that in the presence of pargyline from 50-60 min of superfusion, the 
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high concentration (10 µM) of (R)-GZ-924 plus methamphetamine increased 

fractional [3H]-release above methamphetamine alone. Thus, (R)-GZ-924 did not 

alter methamphetamine-evoked fractional [3H]-release in the absence of 

pargyline, whereas in the presence of pargyline, (R)-GZ-924 (10 µM) increased 

methamphetamine-evoked fractional [3H]-release. 

3.3.12 Inhibition of Nicotine-Evoked [3H]DA Overflow from Rat Striatal Slices  

To determine the specificity of (R)-GZ-924 on methamphetamine, the 

ability of (R)-GZ-924 to inhibit nicotine-evoked [3H]DA overflow from striatal slices 

was determined. The concentration-response curve and Ki and Imax values are 

illustrated in Figure 3.17. (R)-GZ-924 inhibited nicotine-evoked [3H]DA overflow 

from rat striatal slices (Imax = 85 ± 2%; IC50 = 0.98 ± 0.33 nM). A main effect of 

concentration was revealed by one-way ANOVA [F(5, 30) = 7.25, p < 0.05]. 

Dunnett’s post hoc test revealed that (R)-GZ-924 at 10 and 100 nM significantly 

decreased nicotine-evoked [3H]DA overflow from striatal slices. 

3.3.13 Inhibition of [3H]MLA and [3H]Nicotine Binding  

To determine whether (R)-GZ-924 inhibition of nicotine-evoked [3H]DA 

overflow was due to binding to the nicotinic receptors, the ability of (R)-GZ-924 to 

inhibit [3H]MLA and [3H]nicotine binding was determined. Concentration-response 

curves for (±)-GZ-819B (the racemic analog containing (R)-GZ-924), and the 

standards lobeline, MLA, and nicotine, and Ki values are illustrated in Figure 

3.18. The standard compounds lobeline and MLA exhibited Ki values of 10 ± 1.0 
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and 1.8 ± 0.22 µM (top panel in Figure 3.18), respectively, for the [3H]MLA 

binding site. Lobeline and nicotine exhibited Ki values of 12 ± 1.5 and 2.9 ± 0.3 

μM (bottom panel in Figure 3.18), respectively, for the [3H]nicotine binding site, 

consistent with previous results (Miller et al., 2004). (±)-GZ-819B did not inhibit 

[3H]MLA or [3H]nicotine binding within the concentrations range evaluated. 

3.3.14 (R)-GZ-924-Induced Decreases in Methamphetamine Self-Administration 

and Food-Maintained Responding  

To determine whether (R)-GZ-924 inhibition of methamphetamine-evoked 

[3H]DA release from synaptic vesicles translate to the study using live animals, 

the ability of (R)-GZ-924 to inhibit methamphetamine self-administration in rats 

was determined. The dose-response for (R)-GZ-924 to decrease 

methamphetamine self-administration and responding for food is illustrated in 

Figure 3.19 (top and middle panel, respectively). (R)-GZ-924 dose-dependently 

decreased the number of methamphetamine infusions [F(3,15) = 36.9, p < 0.0001]. 

The effect of (R)-GZ-924 was significant at 10 and 30 mg/kg. However, (R)-GZ-

924 also dose-dependently decreased the number of food pellets obtained [F(2,13) 

= 37.3; p < 0.0001], with 1 and 15 mg/kg producing significant effects. In addition, 

the inhibitory effect of (R)-GZ-924 (10 mg/kg) on food was not tolerated after 

repeated treatment (bottom panel in Figure 3.19). Thus, (R)-GZ-924 decreased 

methamphetamine self-administration in rats; however, this effect was not 

specific. 
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3.4 Discussion 

Removing the C-3 and C-4 carbons in the central piperidine ring of 

lobelane afforded racemic acyclic analogs. The most potent racemic analogs that 

inhibited VMAT2 function were identified and the corresponding enantiomers of 

these racemic compounds were synthesized. All of the enantiomers inhibited 

[3H]DA uptake at VMAT2 competitively and released [3H]DA from the synaptic 

vesicles in a biphasic manner. The lead compound, (R)-GZ-924, the analog 

incorporating the amphetamine scaffold and the 3-carbon linker, released 

vesicular [3H]DA in a biphasic manner, with the high affinity component being 

TBZ- and reserpine-sensitive. Also, (R)-GZ-924 inhibited methamphetamine-

evoked [3H]DA release from striatal synaptic vesicles, but did not inhibit 

methamphetamine-evoked [3H]DA or endogenous DA release from striatal slices. 

(R)-GZ-924 evoked DOPAC overflow from striatal slices, indicating that (R)-GZ-

924-redistributed DA was metabolized by MAO. Interestingly, (R)-GZ-924 

inhibited nicotine-evoked [3H]DA release from striatal slices, revealing a lack of 

selectivity for methamphetamine. Furthermore, (R)-GZ-924 decreased 

methamphetamine self-administration and food-maintained responding, revealing 

a similar lack of specificity for decreasing methamphetamine reinforcement in 

rats.   

The [3H]DTBZ binding assay provides information about the affinity of the 

analogs for the DTBZ site on VMAT2. For all the racemic analogs, either 

increasing or decreasing the linker length, or adding substituents to the 
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amphetamine or homoamphetamine N or phenyl rings did not increase analog 

affinity for this binding site. Two exceptions were (±)-GZ-893A, a nor-analog 

incorporating the 4-bromoamphetamine scaffold and 4-carbon linkers, and (±)-

GZ-865G, a nor-analog incorporating a 4-hydroxyamphetamine scaffold and the 

N-3-methoxyphenylpropyl substituent, which exhibited 10 and 3-fold, 

respectively, higher affinity than lobelane for the DTBZ site on VMAT2. In 

addition, replacing the homoamphetamine with an amphetamine moiety resulted 

in 1.5-11 fold increase in affinity for the VMAT2 binding site. The majority of the 

nor-analogs exhibited higher affinity for the DTBZ binding site on VMAT2 

compared to the corresponding N-methylated analogs. However, two nor-

analogs, (±)-GZ-819B and (±)-GZ-820B, analogs incorporating the amphetamine 

scaffold and the 3 and 2-carbon linkers, respectively, exhibited comparable 

affinity relative to their N-methylated analogs, (±)-GZ-819C and (±)-GZ-820C. 

Evaluation of the (R)- and (S)-analogs of three of the racemic analogs in the 

series revealed no enantiomeric effect on affinity for the DTBZ binding site on 

VMAT2. 

[3H]DA uptake at VMAT2 provides information about analog inhibition of 

transporter function. Racemic analogs with 3-4 carbons in the linkers between 

the phenyl ring and the amphetamine or homoamphetamine N-atom had the 

highest affinity for the [3H]DA uptake site on VMAT2. Replacing the 

homoamphetamine with an amphetamine moiety resulted in a 1.9 to 13-fold 

increase in affinity for the substrate site on VMAT2. Racemic nor-analogs 

exhibited a 1.7 to 24-fold increase in affinity for the substrate site on VMAT2 



 178 
 

compared to the corresponding N-methylated analogs. Enantiomers of three 

potent racemic analogs (±)-GZ-819B, (±)-GZ-819A and (±)-GZ-815A, including 

(R)-GZ-924 and (S)-GZ-925, (R)-GZ-880A and (S)-GZ-880B, and (R)-GZ-878A 

and (S)-GZ-878B, respectively, were synthesized and evaluated. Of the 

enantiomers, (R)-GZ-924 and (S)-GZ-925, analogs incorporating an 

amphetamine scaffold, a 3-carbon linker and no substituents on the phenyl rings, 

exhibited a 10-fold difference in affinity for the VMAT2 substrate site.  

A positive correlation between affinity for VMAT2 binding and uptake was 

revealed, indicating that the inhibition of VMAT2 function was due to binding at 

the DTBZ site on VMAT2. A similar result was found for analogs in Chapter 2 

(Section 2.4). Similar to the analogs in Chapter 2, this series of analogs bound to 

the DTBZ binding site on VMAT2 and inhibit DA uptake (VMAT2 function) 

through an allosteric effect. A 10-fold greater affinity for the uptake site relative to 

the binding sites was found for this series of analogs. A similar result was also 

found for analogs in Chapter 2 (Section 2.4). In general, compounds interacting 

with VMAT2 can be classified as either uptake inhibitors or substrates. In terms 

of substrates, higher potencies were observed in VMAT2 functional assays 

relative to binding assays, while equivalent potencies were observed in both 

assays for uptake inhibitors (Andersen, 1987; Nickell et al., 2011a; Partilla et al., 

2006). Similar to the analogs in Chapter 2, all the analogs in this study exhibited 

higher affinities in the VMAT2 functional assay in relative to the binding assay, 

suggesting that they are substrates for VMAT2. Evaluation of the mechanism of 

inhibition at the VMAT2 uptake site revealed a competitive interaction, indicating 
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that analog inhibition of VMAT2 function was surmountable by DA, consistent 

with the results found in our previous series of analogs that interacted with 

VMAT2 (Horton et al., 2011b; Nickell et al., 2010).  

Inhibition of DAT has been associated with abuse liability (Howell and 

Wilcox, 2001). To select a lead compound, selectivity for VMAT2 versus DAT 

was determined. The range of selectivity of the enantiomers for VMAT2 over 

DAT was 40-260-fold, indicating that all the enantiomers likely would not possess 

abuse liability. The most potent and selective enantiomers for VMAT2 over DAT 

were (R)-GZ-924 (183-fold) and (R)-GZ-880A (167-fold). Subsequently, the 

selectivity of (R)-GZ-924 and (R)-GZ-880A for VMAT2 over hERG channels was 

determined to be 510 and 84-fold, indicating that (R)-GZ-924 and (R)-GZ-880A 

likely would not possess cardiac toxicity. The most potent and selective 

enantiomer at VMAT2 over DAT and hERG was (R)-GZ-924, which assumed 

lead compound status.  

All enantiomers evoked [3H]DA release from VMAT2C-associated synaptic 

vesicles biphasically, indicating an interaction of the analogs with two different 

sites (a high-affinity site and a low-affinity site) on VMAT2C. In addition, (R)-GZ-

924-evoked release from the high affinity site was TBZ- and reserpine-sensitive, 

consistent with a previous report on another series of analogs (Horton et al., 

2013). This result suggested that (R)-GZ-924-evoked high affinity DA release 

was through VMAT2C, while the low affinity release was not. (R)-GZ-924-evoked 

low affinity DA release might be due to its non-specific effect on vesicular DA 
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release. For instance, methamphetamine released DA from synaptic vesicles by 

decreasing the proton gradient (Sulzer and Rayport, 1990). (R)-GZ-924 might 

release DA from synaptic vesicles by decreasing the proton gradient like 

methamphetamine.  

Furthermore, our group suggested that inhibition of methamphetamine 

self-administration could be caused by the inhibition of methamphetamine-

evoked [3H]DA release from presynaptic vesicles (Horton et al., 2013). However, 

in the previous vesicular [3H]DA release study in Chapter 2 (Section 2.2.6), the 

vesicles collected was VMAT2C vesicles. In the slice release study, both 

VMAT2C and VMAT2M vesicles existed in each intact slice (Figure 3.21). The 

lead analog in Chapter 2 [(±)-GZ-730B] inhibited methamphetamine-evoked 

[3H]DA release from synaptic vesicles but not endogenous DA release from 

striatal slices. A similar contradictory result using (R)-GZ-924 was also found 

between the studies using striatal VMAT2C and striatal slices. The incomplete 

vesicular VMAT2 preparation in the vesicular [3H]DA release study might be 

responsible for the conflict between those studies. In the current study, the ability 

of (R)-GZ-924 to inhibit methamphetamine-evoked [3H]DA release from vesicles 

via VMAT2M and VMAT2C was determined in a within subject design.  

The optimal concentration of [3H]DA to incubate VMAT2M and VMAT2C at 

30 °C was 0.3 µM determined by the kinetic study. Affinity of DA for VMAT2M 

and VMAT2C at 30 °C was obtained from the kinetic study and was not different, 

consistent with studies in the literature (Chu et al., 2010), indicating that the 
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structure of VMAT2M and VMAT2C was not different. In both time course studies 

to determine the optimal incubation time at 30 °C, VMAT2M vesicles were 

saturated faster than VMAT2C vesicles, indicating the uptake rate of VMAT2M 

was faster than that for VMAT2C. However, Vmax for VMAT2M was 2-fold lower 

than that for VMAT2C in the [3H]DA uptake kinetic study at 30 °C. Such a 

contradictory result could be caused by the means to calculate Vmax in our study. 

Vmax was normalized by protein amount. Large amount of protein was found in 

the VMAT2M suspension. Since VMAT2M vesicles were associated with the 

broken synaptosome membranes, it was reasonable that the VMAT2M 

suspension contained large amount of synaptosome membranes. In contrast, 

VMAT2C suspension did not contain the broken synaptosome membranes due 

to more and higher speed spins. Thus, Vmax for VMAT2M, normalized by protein 

contaminated by the synaptosome membranes, might not be accurate. 

Interestingly, Fleckenstein’s lab found that VMAT2M uptake rate was higher than 

that for VMAT2C using rotating disk electrode voltammetry (Volz et al., 2007). 

The velocity of DA transportation by VMAT2M was also normalized by protein 

contaminated by the broken synaptosome membranes in their study. Thus, the 

contradictory results might not due to the normalization of uptake rate by protein, 

and might be due to the different technique used to measure velocity of DA 

transportation.  

After the optimal incubation time and concentration of [3H]DA was 

determined, VMAT2C and VMAT2M vesicles were used to determine the ability 

of (R)-GZ-924 to inhibit methamphetamine-evoked release of [3H]DA. (R)-GZ-924 
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(30 and 300 nM) produced a rightward shift of the concentration-response of 

methamphetamine-evoked [3H]DA release at both 30 °C and 37 °C via VMAT2C, 

with no influence on the maximal release induced by methamphetamine. Thus, 

the mechanism of (R)-GZ-924 inhibition on methamphetamine-evoked [3H]DA 

release via VMAT2C was not altered by temperature. In addition, (R)-GZ-924 (30 

and 300 nM) produced a rightward shift of the concentration-response of 

methamphetamine via both VMAT2M and VMAT2C at 30 °C, with no influence 

on the maximal release induced by methamphetamine. The method of Lew and 

Angus revealed a slope different from unity in the release study using both 

VMAT2M and VMAT2C. Thus, (R)-GZ-924 was determined to be a surmountable 

allosteric inhibitor for both VMAT2M and VMAT2C (Horton et al., 2013; Kenakin, 

2006b). Based on the characteristic of allosteric inhibitors, binding of (R)-GZ-924 

to a site different from the methamphetamine binding site on VMAT2M and 

VMAT2C resulted in a conformational change in the transporter to decrease 

affinity for methamphetamine, but did not alter the efficacy of methamphetamine 

to release DA. Four different sites on VMAT2C have been reported by our lab: an 

extravesicular DTBZ binding site, an extravesicular DA uptake site and two 

intravesicular high and low affinity DA release sites (Horton et al., 2013). 

Methamphetamine interacts with the low affinity intravesicular site to evoke 

vesicular DA release (Horton et al., 2012). Thus, as an allosteric inhibitor, (R)-

GZ-924 may interact with the extravesicular DTBZ binding site, the extravesicular 

DA uptake site and the intravesicular high affinity DA release site on VMAT2C to 

inhibit methamphetamine effect (Figure 3.20). No study has been reported on 
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binding or release site on VMAT2M. Further study on defining binding and 

release site on VMAT2M needed to be done to allow to investigate the 

mechanism of interaction of (R)-GZ-924 and lead analogs from other series with 

VMAT2M. 

 However, methamphetamine in the absence or presence of (R)-GZ-924 

only released around 30% of the [3H]DA via VMAT2M, but around 70% of the 

[3H]DA via VMAT2C. VMAT2M containing vesicles were associated with the 

presynaptic membrane and undergoing exocytosis. The release of DA through 

exocytosis may be initiated before final incubation in the vesicular [3H]DA release 

study. Such release via exocytosis likely leads to less [3H]DA release via 

VMAT2M in the current release study relative to VMAT2C.  

Interestingly, in the absence of (R)-GZ-924 and methamphetamine, the 

[3H]DA left in the vesicles associated with membranes was more than that left in 

the vesicles in the cytosol. However, only less than 10% of total vesicles were 

reported to associate with the presynaptic membrane (Rizzoli and Betz, 2005). 

Such results could be due to the different endogenous DA content in the two 

different isolated vesicles. Prior to incubation with [3H]DA, due to less amount, 

vesicles associated with membranes contained much less endogenous DA 

compared to the vesicles in the cytosol. After incubation with same concentration 

of [3H]DA, total DA including [3H]DA and endogenous DA were less for vesicles 

associated with membranes compared to vesicles in the cytosol. However, only 

[3H]DA can be determined and the amount of [3H]DA determined may not be 
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capable of representing the total vesicular DA content in the two pools of 

vesicles. 

The next critical step in our drug discovery approach was to determine 

whether the lead analog, (R)-GZ-924, inhibited methamphetamine-evoked 

endogenous DA release from striatal slices. Despite inhibiting 

methamphetamine-evoked [3H]DA release from synaptic vesicles, this analog did 

not inhibit methamphetamine-evoked endogenous DA release from striatal slices, 

but increased DOPAC overflow significantly. Such increase of DOPAC overflow 

suggested the metabolism of the cytosol DA into DOPAC, however, it was not 

fully understood why methamphetamine-evoked DA release was not inhibited 

simultaneously. Furthermore, the ability of (R)-GZ-924 to inhibit 

methamphetamine-evoked [3H]DA release from striatal slices was determined in 

the presence and absence of the MAO inhibitor pargyline. Consistent with the 

study measuring endogenous DA, methamphetamine-evoked [3H]DA release 

was not inhibited by (R)-GZ-924 in the presence or absence of pargyline. 

Interestingly, in the presence of pargyline, (R)-GZ-924 did not release [3H]DA by 

itself, while in the absence of pargyline (R)-GZ-924 released [3H] in a 

concentration dependent manner. It was not a surprise to see this result since in 

the absence of pargyline. [3H]DA would be metabolized by MAO into [3H]DOPAC 

or other [3H]metabolites. The [3H]metabolites would diffuse across the membrane 

into the extracellular space following concentration gradient. In such a case, (R)-

GZ-924-evoked [3H]metabolites release was measured, indicating lack of MAO 

inhibition of the analog. In addition, in the presence of pargyline, [3H]DA could not 
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be metabolized due to MAO inhibition. In such case, redistributed [3H]DA was not 

capable of diffusing across the membrane like DOPAC, and were trapped in the 

presynaptic terminal. Thus, subsequent exposure of methamphetamine reversed 

DAT and released more [3H]DA compared to methamphetamine alone.  

Unexpectedly, (R)-GZ-924 inhibited nicotine-evoked [3H]DA overflow from 

striatal slices. Interestingly, at the same concentration range, (R)-GZ-924 

released [3H]DA from synaptic vesicles. Since nicotine-evoked release of [3H]DA 

was originally from presynaptic vesicles, it is possible that nicotine-evoked and 

(R)-GZ-924 redistributed [3H]DA were the same. Thus, the vesicular DA for 

nicotine-evoked release was not available probably due to the (R)-GZ-924 

induced redistribution of DA form synaptic vesicles to cytosol. Alternatively, (R)-

GZ-924 could be a nAChR antagonist and inhibit the neurochemical effect of 

nicotine. Nicotine bound and activated α4- and α6-containing nAChRs to evoke 

DA release from presynaptic terminals (Pivavarchyk et al., 2011). Current study 

showed that same amount of (R)-GZ-924 and (S)-GZ-925 mixed as racemic did 

not bind α4-containing or α7 nAChRs. Thus, these compounds are not likely 

acting as an α4-containing or α7 nAChR antagonist. However, the analog could 

inhibit nicotine-evoked [3H]DA release as an α6-containing nAChR antagonist. 

However, around 80% nicotine-evoked [3H]DA release was inhibited by (R)-GZ-

924 in the current study, while α-4 and α-6 containing nicotinic receptors 

mediated ~50% of the total nicotine-evoked [3H]DA release, respectively 

(Pivavarchyk et al., 2011). Thus, (R)-GZ-924 might not act as a specific nAChR 

subtype antagonist to inhibit nicotine-evoked [3H]DA overflow. In addition, 
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nicotine-evoked DA release could be blocked completely by the channel block 

mecamylamine (Smith et al., 2009; Varanda et al., 1985). Thus, (R)-GZ-924 

might acted as a channel blocker in a manner similar to mecamylamine to inhibit 

nicotine-evoked [3H]DA release from presynaptic terminals. 

(R)-GZ-924, in a dose dependent manner, inhibited methamphetamine 

self-administration in rats, with no concurrent inhibition of methamphetamine-

evoked DA release from striatal slices. However, other brain regions, including 

prefrontal cortex and nucleus accumbens, involved in the mesocorticolimbic 

pathway have not been studied and (R)-GZ-924 might inhibit methamphetamine-

evoked DA release into extracellular space in such brain regions. In addition, 

serotonin and norepinephrine transporter inhibitors have been reported to inhibit 

the neurochemical and behavioral effect of methamphetamine (Berigan and 

Russell, 2001; Shoptaw et al., 2008). Since serotonin and norepinephrine are 

also transported by VMAT2 into vesicles, (R)-GZ-924 inhibition of VMAT2 

function might affect neurochemical and behavioral effect of methamphetamine 

by regulating those two monoamines. In addition, local infusion of an α3β4* 

nicotinic receptor antagonist into medial habenula, the interpeduncular area or 

the basolateral amygdala decreased methamphetamine self-administration by 

indirectly regulating the dopaminergic mesolimbic pathway (Glick et al., 2008). 

Thus, (R)-GZ-924, as a potential nAChR antagonist, might also antagonize α3β4 

nAChRs, which could lead to the inhibition of methamphetamine self-

administration in rats. Unfortunately, food-maintained responding was inhibited 

by (R)-GZ-924 and the inhibitory effect on food was not tolerated after repeated 
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treatment. The inhibitory effect of (R)-GZ-924 on food responding demonstrated 

that the effect was not specific for methamphetamine. The nicotinic receptor 

channel blocker mecamylamine inhibited food self-administration in rats by 

inhibiting the neurochemical effects of nicotine (Levin et al., 2000). Thus, the 

effect of (R)-GZ-924 on food-maintained responding could be due to the 

inhibition of the neurochemical effects of nicotine. In addition, since (R)-GZ-924 

might bind nicotinic receptors, the analog could inhibit food-maintained 

responding by interacting with peripheral nicotinic receptors, leading to 

undesirable gastric side effects that might be reflected by the food-maintained 

responding data.  

In conclusion, the potent and selective VMAT2 inhibitor, (R)-GZ-924, 

inhibited methamphetamine-evoked vesicular [3H]DA release, inhibited 

methamphetamine self-administration and food-maintained responding in rats. 

The lack of specificity for decreasing methamphetamine reinforcement in rats 

might be due to the lack of selectivity of this analog for the neurochemical effect 

of methamphetamine. Further study will be performed by modifying (R)-GZ-924 

to afford potent and selective analogs for VMAT2 with specific neurochemical 

and behavioral effect for methamphetamine.  
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Table 3.1. Ki and Imax values in the [3H]DTBZ binding and vesicular 
[3H]DA uptake assays, binding/uptake Ki ratio for RO4-1284, lobeline, 
lobelane, acyclic lobelane racemic analogs.  

 

a
 The order of analogs is based on scaffold, carbon linker lengths, and affinity for 

VMAT2C [3H]DA uptake. b Ki  and Imax values are mean (± SEM). * p < 0.05 

different from lobelane. n = 3-4 rats/analog. 
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Table 3.2. IC50 and Imax values in the [3H]DTBZ binding, [3H]Dofetilide 
binding, and vesicular [3H]DA uptake assays, binding/uptake IC50 ratio for 
three pairs of enantiomers. 

 

a
 Analogs are arranged with each pair of enantiomers next to each other. b IC50  

and Imax values are mean (± SEM); * p < 0.05 different from lobelane. n = 3-4 

rats/analog.  
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Table 3.3. Km and Vmax values from kinetic analysis of [3H]DA uptake 
at VMAT2C for lobelane and three pairs of enantiomers. 

Compound Km (μM) Vmax (pm/min/mg)

Control b 0.10 ± 0.0070 c 42 ± 5.9

Lobelane 0.93 ± 0.12 * 59 ± 12

(R)-GZ-878A 0.68 ± 0.089 * 44 ± 1.4

(S)-GZ-878B 0.25 ± 0.065 * 33 ± 5.1

(R)-GZ-880A 0.90 ± 0.15 * 54 ± 12

(S)-GZ-880B 0.53 ± 0.18 * 40 ± 8.4

(R)-GZ-924 0.35 ± 0.043 * 36 ± 12

(S)-GZ-925 0.44 ± 0.15 * 68 ± 27
 

a Concentrations of enantiomers utilized for kinetic analyses were the Ki values 

from the inhibition curves in Fig. 3 [lobelane (40 nM), (R)-GZ-878A (45 nM), (S)-

GZ-878B (20 nM), (R)-GZ-880A (6 nM), (S)-GZ-880B (32 nM), (R)-GZ-924 (6 

nM), (S)-GZ-925 (65 nM)]. b Control represents Vmax and Km values in the 

absence of analogs. c Data are mean (± SEM) for Km and Vmax values. * p < 0.05 

different from Km values in control. n = 4-7 rats/analog. 
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Table 3.4. Ki and Imax values of lobeline, lobelane and three pairs of 
enantiomers in DAT uptake assays. 

Compound Ki (μM) Imax (%) 

Lobeline 18 ± 0.76 a 99 ± 0.6

Lobelane 1.3 ± 0.16 98 ± 1

(R)-GZ-924 1.1 ± 0.049 99 ± 1

(S)-GZ-925 2.6 ± 0.14 *, # 99 ± 0.2

(R)-GZ-878A 5.6 ± 1.3 * 100

(S)-GZ-878B 5.2 ± 0.2 * 99 ± 0.2

(R)-GZ-880A 1.0 ± 0.12 100

(S)-GZ-880B 1.8 ± 0.18 100  

a Data are expressed as mean ± SEM. * p < 0.05 different from Ki value of 

lobelane. # p < 0.05 different from Ki value of (R)-GZ-924. n = 3-4 rats/analog. 
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Table 3.5. EC50 and Emax values for methamphetamine-evoked [3H]DA 
release via VMAT2C in the absence and presence of (R)-GZ-924 at 37 °C. 

 
a Data are expressed as mean ± SEM. * p < 0.05 different from [3H]DA release in 

the presence of methamphetamine alone. n = 4/experiment. 

 

 

Table 3.6. EC50 and Emax values for methamphetamine-evoked [3H]DA 
release via VMAT2M and VMAT2C in the absence and presence of (R)-GZ-
924 at 30 °C. 
 

 

a Data are expressed as mean ± SEM. * p < 0.05 different from [3H]DA release in 

the presence of methamphetamine alone. n = 4/experiment. 
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Table 3.7. (R)-GZ-924-induced DA overflow from rat striatal slices.  

 

Data are the DA overflow during the 30 min period before the addition of 

methamphetamine. a represents buffer control. b Data are expressed as 

pg/30ml/mg (mean ± SEM). n = 7 rats. 

 

Table 3.8. Methamphetamine-evoked DA overflow from rat striatal 
slices in the presence of (R)-GZ-924. 

 

Data are the DA overflow during the 15 min with methamphetamine and (R)-GZ-

924 and the 25 min period with the analog after the removing methamphetamine. 
a 0 represents buffer control. b Data are expressed as pg/40 ml/mg (mean ± 

SEM). n = 7 rats. 
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Figure 3.1. Chemical structures of lobeline, lobelane, reserpine, TBZ, RO4-
1284, and acyclic lobelane analogs. 

Lobeline is the principal alkaloid from lobelia inflata. Lobelane is a 

defunctionalized, saturated analog of lobeline. TBZ and RO4-1284 are 

benzoquinolizine compounds and VMAT2 inhibitors that bind a site distinct from 

the DA uptake site on VMAT2. Reserpine is an indole alkaloid and VMAT2 

inhibitor that binds the DA uptake site on VMAT2. Acyclic racemic analogs are 

grouped according to structural similarity: Analogs incorporating a 

homoamphetamine scaffold; analogs incorporating an amphetamine scaffold and 

a 2, 4, 5 or 6-carbon linker; analogs incorporating an amphetamine scaffold and 

a 3-carbon linker; three pairs of enantiomers incorporating an amphetamine 

scaffold and the 3-carbon linker: (R)-GZ-924 and (S)-GZ-925 are the 

enantiomers in (±)-GZ-819B; (R)-GZ-880A and (S)-GZ-880B are the enantiomers 

in (±)-GZ-819A, (R)-GZ-878A and (S)-GZ-878B are the enantiomers in (±)-GZ-

815A.  
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Figure 3.2. Acyclic lobelane analogs inhibit [3H]DTBZ binding at 
VMAT2C. 

 Analogs are divided into groups based on structural similarity: RO4-1284, 

lobeline, lobelane, acyclic lobelane racemic analogs incorporating a 

homoamphetamine scaffold (top left); acyclic lobelane racemic analogs 

incorporating an amphetamine scaffold and a 2, 4, 5 or 6-carbon linker (top right); 

acyclic lobelane racemic analogs incorporating an amphetamine scaffold and a 

3-carbon linker (bottom left); three pairs of enantiomers incorporating an 

amphetamine scaffold and the 3-carbon linker (bottom right). All racemic analogs 

are presented in the legend in order from the most potent to the least potent from 

top to bottom and left to right. Three pairs of enantiomers are presented next to 

each other in the legend. Control represents specific [3H]DTBZ binding in the 

absence of analogs. Binding values in the curves are mean (± SEM) specific 
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[3H]DTBZ binding represented as a percentage of the respective control (1.35 ± 

0.04 pmol/mg, n = 3-4 rats/analogs). 
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Figure 3.3. Acyclic lobelane analogs inhibit [3H]DA uptake into rat 
striatal synaptic vesicles. 

Analogs are divided into groups based on structural similarity: RO4-1284, 

lobeline, lobelane, acyclic lobelane racemic analogs incorporating a 

homoamphetamine scaffold (top left); acyclic lobelane racemic analogs 

incorporating an amphetamine scaffold and a 2, 4, 5 or 6-carbon linker (top right); 

acyclic lobelane racemic analogs incorporating an amphetamine scaffold and a 

3-carbon linker (bottom left); three pairs of enantiomers incorporating an 

amphetamine scaffold and the 3-carbon linker (bottom right). All racemic analogs 

are presented in the legend in order from the most potent to the least potent. 

Three pairs of enantiomers are presented next to each other in the legend. 

Control represents specific [3H]DA uptake in the absence of analogs. Uptake 

values in the curves are mean (± SEM) specific [3H]DA uptake presented as a 



 199 
 

percentage of the respective control (32.1 ± 1.8 pmol/min/mg, n =3-4 

rats/analog). 

 

 

 

 

 

 

 

 



 200 
 

 

Figure 3.4. Vesicular [3H]DA uptake and [3H]DTBZ binding affinity 
correlation. 

Affinity for [3H]DTBZ binding site on VMAT2C and affinity for inhibition of 

VMAT2C function are positively correlated (Spearman r = 0.62; p < 0.001). Ki 

values are obtained from concentration-response curves in the [3H]DTBZ binding 

and [3H]DA uptake assays (Fig. 2 and 3, and Table 3.1 and 3.2).  
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Figure 3.5. Kinetic analysis of VMAT2C [3H]DA uptake in presence of 
lobelane, (R)-GZ-924, (S)-GZ-925, (R)-GZ-880A, (S)-GZ-880B, (R)-GZ-878A 
and (S)-GZ-878B. 

Concentrations of analogs, the values included in parentheses adjacent to 

the name of the enantiomers, are the respective Ki values from the concentration 

response curves in Fig. 3. Vmax and Km values (± SEM) are presented in Table 

3.3. n = 4-7 rats/analog. 
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Figure 3.6. (R)-GZ-924, (S)-GZ-925, (R)-GZ-880A, (S)-GZ-880B, (R)-GZ-
878A and (S)-GZ-878B inhibit [3H]DA uptake into rat striatal synaptosomes. 

The corresponding two enantiomers are presented next to each other in 

the legend. Control represents specific [3H]DA uptake in the absence of analogs. 

Uptake values in the curves are mean (± SEM) specific [3H]DA uptake presented 

as a percentage of the respective control (35.8 ± 6.7 pmol/min/mg, n =3-4 

rats/analog). 
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Figure 3.7. (R)-GZ-924, (S)-GZ-925, (R)-GZ-880A, (S)-GZ-880B, (R)-GZ-
878A and (S)-GZ-878B evoke [3H]DA release from synaptic vesicles. 

Concentration-response curves and EC50 and Emax values for standards 

(lobelane, lobeline, methamphetamine), (R)-GZ-924 and (S)-GZ-925, (R)-GZ-

880A and (S)-GZ-880B, (R)-GZ-878A and (S)-GZ-878B to evoke [3H]DA release 

from synaptic vesicles are provided in top left, top right, bottom left, and bottom 

right panels, respectively, in Fig. 7. Control represents [3H]DA release in the 

absence of enantiomers. METH represents methamphetamines. Release values 

in the curves are mean (± SEM) [3H]DA release as a percentage of the 

respective control (3369 ± 399 disintegrations per minute (DPM), n = 4 

rats/analog). 
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Figure 3.8. TBZ and reserpine eliminate (R)-GZ-924-evoked high 
affinity [3H]DA release. 

Concentration-response curves of (R)-GZ-924-evoked [3H]DA release in 

the presence of TBZ and reserpine are illustrated. Control represents [3H]DA 

release in the absence of drugs. Release values in the curves are mean (± SEM) 

[3H]DA release as a percentage of the respective control (3345 ± 751 DPM, n = 

4-7 rats/analog). 
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Figure 3.9. (R)-GZ-924 inhibits methamphetamine-evoked [3H]DA 
release from striatal synaptic vesicles via VMAT2C at 37 °C. 

Control represents [3H]DA release in the absence of methamphetamine 

and (R)-GZ-924. Release values in the curves are mean (± SEM) [3H]DA release 

as a percentage of the respective control (3162 ± 73 DPM, n = 4/experiment). 

Inset shows the Lew and Angus method. pEC50 values are plotted as a function 

of log value of (R)-GZ-924 concentration. * p < 0.05 compared to 

methamphetamine.  
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Figure 3.10. VMAT2M and VMAT2C [3H]DA uptake reach maximum at 
2 and 8 min, respectively, in the presence of 0.1 µM [3H]DA at 30 °C. 

Uptake values in the curves are mean (± SEM) [3H]DA uptake (pmol/mg), 

n = 3 rats. 
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Figure 3.11. Kinetic analysis of VMAT2M and VMAT2C [3H]DA uptake 
at 30 °C. 

Uptake values in the curves are mean (± SEM) [3H]DA uptake (pmol/mg), 

n = 3 rats. 
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Figure 3.12. VMAT2M and VMAT2C [3H]DA uptake reach maximum at 
3 and 5 min, respectively, in the presence of 0.3 µM [3H]DA at 30 °C. 

Uptake values in the curves are mean (± SEM) specific [3H]DA uptake 

(pmol/mg), n = 3 rats. 
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Figure 3.13. (R)-GZ-924 inhibits methamphetamine-evoked [3H]DA 
release from striatal synaptic vesicles via VMAT2M and VMAT2C at 30 °C. 

The concentration response of methamphetamine-evoked vesicular 

[3H]DA release in the presence of (R)-GZ-924 via VMAT2M and VMAT2C are 

illustrated in top and bottom panels, respectively. Control represents [3H]DA 

release in the absence of methamphetamine and (R)-GZ-924. Release values in 

the curves are mean (± SEM) [3H]DA release as a percentage of the respective 
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control (5524 ± 294 DPM for VMAT2M and 4443 ± 141 DPM for VMAT2C, n = 

4/experiment). Inset shows the Lew and Angus method. pEC50 values are plotted 

as a function of log value of (R)-GZ-924 concentration. * p < 0.05 compared to 

methamphetamine.  
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Figure 3.14. (R)-GZ-924 does not inhibit methamphetamine-evoked 
endogenous DA release from striatal slices. 

Striatal slices were superfused with a range of concentrations of (R)-GZ-

924 (0.3-30 µM). Fractional DA releases are amount of DA released in each min 

sample. (R)-GZ-924 was added to the buffer following 10 min basal sample 

collection, indicated by the arrow, and the analog remained in the buffer until the 

end of the experiment. METH represents methamphetamines. Methamphetamine 

(5 μM) was added to the buffer for 15 min, indicated by the horizontal bar with 

two arrows. Fractional release values are expressed as mean (± SEM) pg/ml/mg 

of the slice weight. n = 7 rats.  
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Figure 3.15. (R)-GZ-924 evokes fractional release of DOPAC and 
DOPAC overflow from striatal slices. 

Striatal slices were superfused with a range of concentrations of (R)-GZ-

924 (0.3-30 µM). Fractional DOPAC releases (top panel) are amount of DOPAC 

released in each min sample. (R)-GZ-924 was added to the buffer following 10 

min basal sample collection, indicated by the arrow, and the analog remained in 
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the buffer until the end of the experiment. METH represents methamphetamines. 

Methamphetamine (5 μM) was added to the buffer for 15 min, indicated by the 

horizontal bar with two arrows. Fractional release values are expressed as mean 

(± SEM) pg/ml/mg of the slice weight. n = 7 rats. Overflow data (bottom panel) 

represent the release of DOPAC during the 30 min period of superfusion in the 

presence or absence (control) of the analog before the addition of 

methamphetamine. Control represents the total overflow from slices in the 

absence of the analog. n = 7 rats. * p < 0.05 compared to control.  
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Figure 3.16. (R)-GZ-924 increases [3H] release in the absence of 
methamphetamine and pargyline, and methamphetamine-evoked [3H] 
release in the presence of pargyline from striatal slices. 

Striatal slices were superfused with a range of concentrations of (R)-GZ-

924 (0.3-10 µM). Fractional [3H] releases in the absence or presence of 10 µM 

pargyline are amount of [3H] released in each 5 min sample. (R)-GZ-924 was 

added to the buffer following 10 min basal sample collection, indicated by the 
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arrow, and the analog remained in the buffer until the end of the experiment. 

METH represents methamphetamines. Methamphetamine (5 μM) was added to 

the buffer for 15 min, indicated by the horizontal bar with two arrows. Fractional 

release values are expressed as mean (± SEM) pg/ml/mg of the slice weight. n = 

3 rats. * p < 0.05 compared with buffer control. 
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Figure 3.17. (R)-GZ-924 inhibits nicotine-evoked [3H]DA release from 
rat striatal slices. 

Control represents total nicotine-evoked [3H]DA overflow in the absence of 

(R)-GZ-924. Overflow values in the curve are mean (± SEM) [3H]DA overflow 

represented as a percentage of the control values (2.2 ± 0.36, n = 6 rats). *, p < 

0.05 compared to control  
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Figure 3.18. (±)-GZ-819B does not inhibit [3H]MLA and [3H]nicotine 
binding. 

(±)-GZ-819B is the racemic analog and contains the same amount of (R)-

GZ-924 and (S)-GZ-925. Control represents specific [3H]nicotine (top panel) and 

specific [3H]MLA (bottom panel) binding. Binding values in the curves are mean 

(± SEM) specific [3H]nicotine and [3H]MLA binding represented as a percentage 

of the respective control (36.7 ± 0.8 fmol/mg for [3H]MLA and 65.4 ± 3.1 fmol/mg 

for [3H]nicotine, n = 3-5 rats/analog). 
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Figure 3.19. (R)-GZ-924 inhibits methamphetamine self-
administration nonspecifically. 

 (R)-GZ-924 dose-dependently decreases methamphetamine self-

administration (top panel). Food-maintained responding is also reduced (bottom 

panel). Data points in the figure are expressed as mean (± SEM) number of 

methamphetamine infusions (0.05 mg/kg/infusion) or number of pellets as 

percentage of the baseline responding (16 ± 1.4 for methamphetamine self-

administration; 33 ± 3.1 for food-maintained responding, n = 6 rats). * p < 0.05 

compared with saline control. 
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Figure 3.20. (R)-GZ-924 interacts with the extravesicular [3H]DTBZ 
binding site, the extravesicular [3H]DA uptake site, and the intravesicular 
high affinity [3H]DA release site on VMAT2C to inhibit methamphetamine-
evoked vesicular [3H]DA release. 

METH represents methamphetamine. 
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Figure 3.21. VMAT2C-containing vesicles are in the cytosol and 
VMAT2M-containing vesicles are associated the presynaptic membrane.  

Black circle represents VMAT2C-containing vesicles in the cytosol. Semi-

circle represents VMAT2M-containing vesicles associated with the presynaptic 

membrane.  

            

Copy right © Zheng Cao 2014 
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CHAPTER 4 Discussion 

4.1 Review 

Methamphetamine inhibits DA uptake and promotes DA release from 

presynaptic vesicles by interacting with VMAT2, contributing to increased DA 

within presynaptic terminals (Brown et al., 2000; Pifl et al., 1995; Sulzer et al., 

1995). Cytosolic DA concentrations were further increased by 

methamphetamine-induced inhibition of MAO, the mitochondrial enzyme that is 

responsible for the metabolism of cytosolic DA (Mantle et al., 1976). The elevated 

cytosolic DA is released into synaptic cleft by methamphetamine-induced reverse 

transport of DAT (Sulzer et al., 1995). Interaction of methamphetamine with DAT 

and VMAT2 leads to elevated extracellular DA concentrations that contribute to 

the reward and reinforcing effects. Currently, no efficacious medicinal treatments 

are available for methamphetamine abuse. Recently, VMAT2 has been 

suggested as a promising target and studies focusing on VMAT2 as the 

therapeutic target have been performed (Dwoskin and Crooks, 2002; Zheng et al., 

2006). 

Lobeline, a major alkaloid from Lobelia inflata, has been evaluated in 

phase 1b clinical trials as a novel therapeutic for the treatment of 

methamphetamine abuse (Jones, 2007). Lobeline inhibits vesicular DA uptake 

and promotes vesicular DA release, resulting in redistributed cytosolic DA that is 

metabolized by MAO intraneuronally (Dwoskin and Crooks, 2002). Lobeline 

inhibits methamphetamine-induced release of DA from rat striatal slices. However, 
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lobeline does not alter the effects of methamphetamine on DA using in vivo 

microdialysis. Interestingly, a more selective VMAT2 inhibitor, N-(1,2R-

dihydroxylpropyl)-2,6-cis-di(4-methoxyphenethyl) piperidine hydrochloride (GZ-

793A), decreases the duration of methamphetamine-evoked elevation of 

extracellular DA. Both Lobeline and GZ-793A augment the methamphetamine-

induced decrease in extracellular DOPAC (Meyer et al., 2013).  

Methamphetamine alone increases extracellular DA by 

methamphetamine-induced DAT reverse transport, and decreases extracellular 

DOPAC by inhibiting MAO function which decreases metabolism of DA into 

DOPAC (Sulzer et al., 2005). However, low dose of methamphetamine (0.5 

mg/kg, s.c.) may not be able to inhibit MAO function (Mantle et al., 1976; 

Robinson, 1985). Thus, methamphetamine-induced DAT reverse transport might 

reduce cytosolic DA available for MAO metabolism without affect MAO function, 

which leads to the decrease of extracellular DOPAC (Meyer et al., 2013; 

Zetterstrom et al., 1988). In addition, methamphetamine-induced decrease of 

cytosolic DA might attenuate DA-mediated end production inhibition of tyrosine 

hydroxylase (TH) activity (Gordon et al., 2008; Meyer et al., 2013). In contrast, 

lobeline and GZ-793A redistribute DA into cytosol and the cytosolic DA will be 

metabolized into DOPAC, observed as increase of extracellular DOPAC (Meyer 

et al., 2013). In addition, the redistributed DA in the cytosol might lead to end 

product inhibition of TH activity (Gordon et al., 2008). Thus, lobeline and GZ-

793A pretreatment inhibit TH activity and subsequent DA synthesis, which results 

in a reduction of DA available for subsequent methamphetamine-induced reverse 
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transport and also an enhancement of methamphetamine-induced decrease in 

extracellular DOPAC (Meyer et al., 2013).    

In addition, lobeline inhibits methamphetamine-induced hyperactivity and 

methamphetamine self-administration in rats (Harrod et al., 2001; Miller et al., 

2001; Nickell et al., 2010). Meanwhile lobeline does not support self-

administration in rats, indicating a lack of abuse liability (Harrod et al., 2003). 

Above results indicate that lobeline is a potential treatment candidate for 

methamphetamine abuse. VMAT2 is responsible for the uptake of cytosolic DA 

into synaptic vesicles for storage and subsequent release (Dwoskin and Crooks, 

2002). In vitro studies indicate that lobeline decreases methamphetamine-evoked 

DA release from presynaptic terminals via an interaction with VMAT2 at the DTBZ 

binding site (Teng et al., 1998; Zheng et al., 2007). However, previous studies 

have shown that lobeline can bind α4β2* and α7 nicotinic receptors as well, 

which generates both central and peripheral side effects (Damaj et al., 1997; 

Miller et al., 2004). 

In order to increase the selectivity of lobeline at VMAT2, lobelane, a 

defunctionalized, saturated analog of lobeline has been generated. Lobelane 

shows higher affinity for VMAT2, lower affinity for α4β2* and α7 nicotinic 

receptors, and higher affinity to inhibit vesicular DA uptake in comparison to 

lobeline (Miller et al., 2004). Furthermore, lobelane decreases 

methamphetamine-evoked DA release from striatal slices and methamphetamine 

self-administration without influencing sucrose-maintained responding 
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(Neugebauer et al., 2007; Nickell et al., 2010). However, the effect of lobelane is 

tolerated after repeated treatment (Neugebauer et al., 2007). Thus, additional 

structure activity relationship studies have been performed to discover drug 

candidates for the treatment of methamphetamine abuse. In the current study, 

lobelane analogs with varying methylene linker lengths and acyclic lobelane 

analogs have been evaluated as potential therapeutic candidates.  

The objective of Chapter 2 was to modify the length of the methylene 

linkers of lobelane molecule to afford a series of analogs in the search of potent 

ligands for VMAT2 function, and to determine their ability to inhibit 

methamphetamine-evoked [3H]DA release from synaptic vesicles and 

endogenous DA release from rat striatal slices. It is important to point out that all 

of the non-symmetrical analogs in this series were racemic and that the 

enantiomers could exhibit different affinities. The results indicate that the linkers 

between the central piperidine and the phenyl rings of the lobelane analogs that 

contain one methylene units at the C-6 position and one or three methylene units 

at the C-2 position of the piperidine ring maintain high affinity at VMAT2 to inhibit 

binding and function. Introducing a cyclohexane substituent at the C-6 position of 

the piperidine ring improved affinity of one analog [(±)-GZ-725A], the analog with 

0,2 methylene units in the linkers, in the VMAT2 binding and uptake assay. (±)-

GZ-729C, the non-symmetrical lobelane analog with 1,2 methylene units in the 

linkers, and (±)-GZ-730B, the nor-analog with 1,3 methylene units in the linkers, 

were the two most potent analogs to inhibit VMAT2 function (Figure 4.1).  
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A positive correlation was found between the Ki values in the [3H]DTBZ 

binding and [3H]DA uptake assays, as would be expected if inhibition of VMAT2 

function was due to binding to the DTBZ site on VMAT2. Furthermore, (±)-GZ-

729C and (±)-GZ-730B inhibited methamphetamine-evoked [3H]DA release via 

VMAT2 through a surmountable allosteric mechanism. However, those two 

analogs did not inhibit methamphetamine-evoked endogenous DA release from 

rat striatal slices, but increased DOPAC release significantly. Such increases in 

DOPAC release suggested that cytosolic DA was metabolized into DOPAC. 

However, it was not fully understood why methamphetamine-evoked DA release 

was not inhibited simultaneously. VMAT2 localized on vesicles that co-fractionate 

with synaptosomal membranes are defined as VMAT2M, while vesicles that do 

not co-fractionate with synaptosomal membranes are defined as VMAT2C (Volz 

et al., 2007). In the vesicular [3H]DA release study, the vesicles collected were 

VMAT2C vesicles. In the slice release study, both VMAT2C and VMAT2M 

vesicles existed in each intact slice. The incomplete vesicular VMAT2 

preparation in the vesicular [3H]DA release study might be responsible for the 

conflict between those studies. In addition, different tissue preparation, striatal 

synaptic vesicles versus slices, and different label, [3H]DA versus endogenous 

DA, might contribute to the contradictory results. No further investigation in rats 

was performed due to the poor water solubility of (±)-GZ-729C and (±)-GZ-730B. 

The objective of Chapter 3 was to modify the lobelane molecule to afford 

acyclic lobelane analogs in search of potent and selective ligands for VMAT2 

with better water solubility. Racemic-acyclic lobelane analogs inhibited [3H]DTBZ 
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binding and [3H]DA uptake at VMAT2. A positive correlation for Ki values was 

found between the [3H]DTBZ binding and [3H]DA uptake assays, suggesting that 

inhibition of VMAT2 function might be due to binding to the DTBZ site on VMAT2. 

Both homoamphetamine and N methyl substituents have detrimental effect on 

analogs affinity for [3H]DTBZ binding and [3H]DA uptake at VMAT2. Racemic nor-

analogs with 3-4 carbons in the linkers between the phenyl ring and the 

amphetamine N-atom had the highest affinity for the [3H]DA uptake site on 

VMAT2.  Enantiomers of the most potent racemic analogs for VMAT2 [3H]DA 

uptake site were synthesized, and evaluated in inhibition of [3H]DTBZ binding 

and [3H]DA uptake at VMAT2, DAT, and for interaction at the hERG channel. The 

most potent and selective enantiomer for VMAT2 was (R)-GZ-924 (Figure 4.2), 

with 3 carbons in the linker between the phenyl ring and the amphetamine N 

atom. (R)-GZ-924 showed 11-fold greater affinity for VMAT2 and 2-fold lower 

affinity for DAT compared to its S-enantiomer GZ-925. Thus, stereochemistry of 

the N-2-phenylpropyl substituent at the amphetamine N-atom was an important 

factor in the design of acyclic analogs with regards to VMAT2 inhibition. Kinetic 

analyses of [3H]DA uptake at VMAT2 revealed competitive inhibition by the 

enantiomers. The incomplete vesicular VMAT2 preparation in the vesicular 

[3H]DA release study in Chapter 2 might be responsible for the conflict between 

studies using striatal vesicles and slices. Thus, the ability of (R)-GZ-924 to inhibit 

methamphetamine-evoked [3H]DA release from vesicles via both VMAT2C and 

VMAT2M was determined in a within subject design. However, (R)-GZ-924 

similarly inhibited methamphetamine-evoked [3H]DA release via VMAT2M and 
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VMAT2C in a surmountable allosteric mechanism. Thus, the contradictory results 

using striatal VMAT2M and VMAT2C between striatal slices were not due to the 

different pools of vesicles in the in vitro preparations. Interestingly, 

methamphetamine only released around 30% of the [3H]DA in the vesicles 

associated with the presynaptic membranes, but more than 70% of the [3H]DA in 

the vesicles in the cytosol. VMAT2 inhibitors such as TBZ and reserpine only 

released about 50% and 30%, respectively, of DA from vesicles (Horton et al., 

2013; Nickell et al., 2011b), while VMAT2 releaser such as methamphetamine 

released more than 80% of the DA from the vesicles in the cytosol (Horton et al., 

2013; Nickell et al., 2011b). Thus, instead of as a releaser, methamphetamine 

might act as an inhibitor at membrane-associated vesicles and only partially 

release [3H]DA from the vesicles. Such different release of DA could be caused 

by a change of the transporter function due to a conformational change in 

VMAT2M protein structure upon association of the vesicles with the presynaptic 

membranes. Alternatively, since membrane-associated vesicles were undergoing 

exocytosis, release of DA from membrane-associated vesicles might be initiated 

before incubation with methamphetamine in the vesicular [3H]DA release assay. 

Release via exocytosis would be predicted to lead to the less [3H]DA release 

from the membrane-associated vesicles in the current study.  

Although (R)-GZ-924 inhibited methamphetamine-evoked [3H]DA release 

at VMAT2C and VMAT2M, this analog did not inhibit methamphetamine-evoked 

[3H]DA or endogenous DA release from striatal slices. (R)-GZ-924 evoked the 

overflow of DOPAC from striatal slices, indicating that (R)-GZ-924-redistributed 
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DA was metabolized by MAO and appeared extracellularly as DOPAC. 

Interestingly, (R)-GZ-924 inhibited nicotine-evoked [3H]DA release from striatal 

slices at the same concentration range that (R)-GZ-924 released [3H]DA from 

synaptic vesicles. Thus, the vesicular DA for nicotine-evoked release was not 

available probably due to the (R)-GZ-924 induced redistribution of DA form 

synaptic vesicles to cytosol. Furthermore, (R)-GZ-924 decreased 

methamphetamine self-administration and food-maintained responding, revealing 

a similar lack of specificity for decreasing methamphetamine reinforcement in 

rats.   

4.2 Comparisons between Lobelane Analogs with Various Methylene 

Linker Lengths and the Corresponding Acyclic Lobelane Analogs 

The objective of Chapter 2 was to change the methylene linker length of 

lobelane molecule to generate a series of analogs in the search of potent ligands 

for VMAT2. However, the most potent analogs, (±)-GZ-729C and (±)-GZ-730B, in 

this series only had affinity that was twice that of lobelane. To generate 

compounds with higher affinity for VMAT2, acyclic lobelane analogs, afforded by 

removing the C-3 and C-4 carbons in the central piperidine ring, were evaluated 

in Chapter 2. By removing the C-3 and C-4 carbons from the lobelane molecule, 

(±)-GZ-813B was generated. The [3H]DTBZ binding affinity of (±)-GZ-813B was 

17 times lower and the [3H]DA uptake affinity was 9 times lower compared to 

lobelane. Removing the C-3 and C-4 carbon appeared to have detrimental effect 

on VMAT2 affinity of lobelane. However, removing the methyl substituent at the 



 230 
 

homoamphetamine N atom in (±)-GZ-813B afforded (±)-GZ-813A, with 3- and 7-

fold increased affinity at the [3H]DTBZ binding site and [3H]DA uptake site, 

respectively. Thus, removing the methyl substituent on the homoamphetamine N 

atom in the acyclic lobelane analogs had a beneficial effect on VMAT2 binding 

and function.  

  Since removing the methyl substituent at the N atom increased analog 

affinity at VMAT2, the, acyclic nor-analogs [(±)-GZ-893B and (±)-GZ-893A] were 

generated and found to be the most potent VMAT2 inhibitors in this series. 

However, these two analogs proved toxic in animals killing >50% of the rats 

following administration. (±)-GZ-819B, an acyclic analog afforded by removing C-

3 and C-4 carbons of the piperidine of (±)-GZ-729C and subsequent removal of 

the methyl substituent from the N atom, was the most potent analog that was not 

toxic. Since (±)-GZ-819B was racemic, the corresponding enantiomers, (R)-GZ-

924 and (S)-GZ-925, were synthesized and (R)-GZ-924 was the most potent and 

selective enantiomer and was selected as the lead from this series. Comparing to 

(±)-GZ-729C and (±)-GZ-730B (leads among lobelane analogs with the 

piperidine ring), (R)-GZ-924 (lead among acyclic lobelane analogs) was 4-fold 

more potent inhibiting VMAT2 function. In addition, the selectivity of (R)-GZ-924 

on VMAT2 over DAT was 183-fold, while the selectivity of (±)-GZ-729C and (±)-

GZ-730B on VMAT2 over DAT were 14 and 67-fold, respectively. Thus, the 

acyclic lobelane enantiomer (R)-GZ-924 was more potent and more selective for 

VMAT2 compared to (±)-GZ-729C and (±)-GZ-730B. These results suggest that 
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the less rigid molecule structure of the acyclic analog contributed to improved 

affinity for VMAT2.  

Compounds interacting with VMAT2 can be classified as either uptake 

inhibitors or substrates. In terms of substrates, higher potencies were observed 

in functional assays in relative to binding assays; while equivalent potencies were 

observed in both assays for uptake inhibitors (Andersen, 1987; Nickell et al., 

2011a; Partilla et al., 2006). All the analogs in this study exhibited higher affinities 

in the VMAT2 functional assay relative to the binding assay, and were suggested 

to be substrates for VMAT2. Since the analogs redistribute DA within the 

presynaptic terminals, the ability of analog to release [3H]DA from synaptic 

vesicles was determined. Interestingly, two different intravesicular sites (a high-

affinity site and a low-affinity site) on VMAT2 to which analogs bind have been 

reported by our lab. In addition, the lead N-1,2-dihydroxypropyl lobelane analog 

(GZ-793A)-evoked high affinity DA release was TBZ and reserpine sensitive 

(Horton et al., 2012). Similarly, (±)-GZ-729C and (±)-GZ-730B (leads among 

lobelane analogs with the piperidine ring), and (R)-GZ-924 (lead among acyclic 

lobelane analogs) released vesicular [3H]DA in a biphasic manner. High EC50 

values of (±)-GZ-729C and (±)-GZ-730B-induced release were 3 times greater 

than that of (R)-GZ-924, while no differences of Low EC50 values were found. 

These results showed that the affinity of the lead lobelane analogs, with the intact 

central piperidine ring, such as (±)-GZ-729C and (±)-GZ-730B, for the high 

affinity release site on VMAT2 was less than that for the acyclic lobelane lead 

enantiomer (R)-GZ-924. 
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The next critical step in our drug discovery approach was to determine 

whether the analogs inhibited methamphetamine-evoked endogenous DA 

release from striatal slices. We hypothesized that our analogs redistributed the 

cytosolic DA that would be metabolized by MAO and not available for 

methamphetamine-induced reverse transport through DAT. Thus, (±)-GZ-729C, 

(±)-GZ-730B, and (R)-GZ-924, the more potent and selective inhibitors at VMAT2 

compared to lobelane, were predicted to redistribute cytosolic DA more efficiently 

and inhibit methamphetamine-evoked endogenous DA release at lower 

concentration. However, none of the analogs inhibited the effect of 

methamphetamine to release DA from the slice preparation. In addition, our 

group has suggested that inhibition of methamphetamine self-administration 

could be an outcome of the inhibition of methamphetamine-evoked DA release 

from presynaptic vesicles (Horton et al., 2012). Thus, further investigation of the 

inhibition of methamphetamine-induced vesicular [3H]DA release was performed. 

All analogs produced a rightward shift of the concentration-response for 

methamphetamine-evoked [3H]DA release, with no alteration in maximal effect. 

(R)-GZ-924 was more potent at inhibiting methamphetamine-evoked vesicular 

[3H]DA release compared to (±)-GZ-729C and (±)-GZ-730B. These results were 

consistent with the finding that (R)-GZ-924 was more potent in inhibiting VMAT2 

function and releasing vesicular [3H]DA. To determine the mechanism of 

inhibition, Lew and Angus analysis was performed by plotting pE50 values against 

the log concentration of the inhibitors, and a slope different from unity was found 

for all three analogs. Thus, (±)-GZ-729C, (±)-GZ-730B, and (R)-GZ-924 were 
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determined to be surmountable allosteric inhibitors of methamphetamine-evoked 

vesicular [3H]DA release similar to our previous analogs (Horton et al., 2012; 

Kenakin, 2006a). Based on the characteristics of a surmountable allosteric 

inhibitor, binding of (±)-GZ-729C, (±)-GZ-730B, and (R)-GZ-924 could cause a 

conformational change in VMAT2 to decrease the affinity of methamphetamine 

for the transporter, not affecting the efficacy of methamphetamine to release 

[3H]DA (Kenakin, 2006a).  

4.3 Mechanisms Underlying (±)-GZ-729C, (±)-GZ-730B, and (R)-GZ-924-

induced Inhibition of Methamphetamine-evoked [3H]DA Release from 

Synaptic Vesicles 

Interpretations of the Lew and Angus analyses applied in the 

characterization of antagonists are straightforward in studies on interaction of 

receptors and ligands (Kenakin, 2006b). In the current study, the effect of 

methamphetamine and the antagonist response was determined using 

transporter VMAT2. It was ambiguous to apply receptor-based models to 

interpret mechanism of inhibition in experiments measuring transporter mediated 

release. However, DA flux through VMAT2 was accompanied by ion flow, as 

observed in other transporters as well, suggesting a similar function between 

transporters and the ligand-gated ion channel receptors (Galli et al., 1998; 

Sonders and Amara, 1996; Sonders et al., 1997). Thus, Interpretations of the 

Lew and Angus analyses was used in this dissertation study to evaluate 

interaction of transporters and ligands. 
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The analog inhibition of methamphetamine-induced vesicular [3H]DA 

release was first reported by Dr. Horton from our lab using GZ-793A (Horton et 

al., 2013). In order to determine mechanism of GZ-793A-induced inhibition of 

methamphetamine-evoked [3H]DA release from synaptic vesicles, it was 

assumed that methamphetamine bound an intravesicular site on VMAT2 to 

evoke DA release from the vesicles (Horton et al., 2013). The other release site 

on VMAT2 has been suggested by our lab and determined to be a high affinity 

site relative to the site that methamphetamine binds (Horton et al., 2013). Two 

extravesicular sites, including TBZ site and reserpine site, have been 

demonstrated on VMAT2 (Scherman and Henry, 1984). Thus, four sites, 

including the intravesicular high and low affinity DA release sites, and 

extravesicular DTBZ and reserpine binding sites, exist on VMAT2 (Horton et al., 

2013). GZ-793A interacted with the high affinity DA release site and the DA 

uptake site on VAMT2 to inhibit methamphetamine-induced vesicular [3H]DA 

release. The same assumptions were used in the studies in this dissertation and 

a similar manner of inhibition was found using (±)-GZ-729C, (±)-GZ-730B and 

(R)-GZ-924. 

In the studies in this dissertation, the ability and mechanism of (±)-GZ-

729C, (±)-GZ-730B and (R)-GZ-924 to inhibit methamphetamine-induced 

vesicular [3H]DA release were determined. (±)-GZ-729C, (±)-GZ-730B and (R)-

GZ-924 evoked [3H]DA release from synaptic vesicles in a biphasic manner, and 

such release has been reported in the study using GZ-793A (Horton et al., 2013). 

This result suggested that, similar to GZ-793A, (±)-GZ-729C, (±)-GZ-730B and 
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(R)-GZ-924 bound both high and low affinity intravesicular DA release sites on 

VMAT2. In addition, (±)-GZ-729C, (±)-GZ-730B and (R)-GZ-924 were determined 

to be surmountable allosteric inhibitors of methamphetamine-evoked vesicular 

[3H]DA release (Kenakin, 2006a). Thus, similar to GZ-793A, (±)-GZ-729C, (±)-

GZ-730B and (R)-GZ-924 may bind to the high affinity release site different from 

that which methamphetamine binds, and binding of the analogs could produce a 

conformational change in VMAT2 to decrease the affinity of methamphetamine 

for the transporter (Kenakin, 2006a). Interestingly, EC50 values of (±)-GZ-729C, 

(±)-GZ-730B and (R)-GZ-924 for the high affinity release site on VMAT2 to 

release DA were about 10-fold less than the concentration of the respective 

analog to inhibit methamphetamine-evoked [3H]DA release from synaptic 

vesicles. Methamphetamine in the above inhibition study might contribute to this 

difference. Specifically, methamphetamine appeared to inhibit analogs-induced 

[3H]DA release at low concentration. A similar inhibition of methamphetamine on 

analog-induced high affinity release has been indicated in a previous study using 

GZ-793A (Horton et al., 2013). This was not a complete surprise considering the 

characterization of allosteric inhibition, which was mutual between two ligands 

inhibiting each other (Kenakin, 2006b). Thus, at low concentrations, the analogs 

and methamphetamine might bind the respective intravesicular release sites on 

VMAT2 and inhibit the ability of each other to release vesicular [3H]DA release 

through allosteric inhibition. 

In addition, (±)-GZ-729C, (±)-GZ-730B, and (R)-GZ-924 also displaced 

[3H]DTBZ binding from VMAT2, suggesting that those analogs bound the TBZ 
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site to inhibit VMAT2 function. TBZ was capable of inhibiting methamphetamine-

evoked vesicular [3H]DA release (Horton et al., 2013). Thus, analogs-induced 

inhibition of methamphetamine-evoked [3H]DA release could be due to the 

interaction with the TBZ site on VMAT2. However, the affinity of (±)-GZ-729C, 

(±)-GZ-730B, and (R)-GZ-924 for TBZ site on VMAT2 were at micromolar range, 

while methamphetamine-evoked [3H]DA release was inhibited at nanomolar 

range by those analogs. Inhibition of methamphetamine effect occurred at 

concentrations at which binding to the TBZ site was not involved. Thus, 

interaction of (±)-GZ-729C, (±)-GZ-730B, and (R)-GZ-924 with the TBZ site on 

VMAT2 is not likely responsible for inhibition of methamphetamine-evoked 

[3H]DA release. However, different vesicular membrane preparation in those two 

experiments should be considered and might affect the results. Another 

explanation is that (±)-GZ-729C, (±)-GZ-730B, and (R)-GZ-924, as VMAT2 

substrates, might interact with the reserpine binding site on VMAT2 to inhibit 

methamphetamine-evoked vesicular [3H]DA release. (±)-GZ-729C, (±)-GZ-730B, 

and (R)-GZ-924 exhibited high affinity at nanomolar range for the [3H]DA uptake 

site on VMAT2. The analogs may produce a conformational change in VMAT2 

protein decreasing methamphetamine affinity for the intravesicular DA release 

site, without influencing efficacy. Alternatively, interaction of (±)-GZ-729C, (±)-

GZ-730B, and (R)-GZ-924 with the substrate site on VMAT2 may have inhibited 

the uptake of methamphetamine into vesicles, since methamphetamine acts as a 

substrate and could be transported into vesicles by VMAT2 (Partilla et al., 2006). 

Such inhibition will prevent the methamphetamine-induced conformational 
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change of VMAT2, the exposure of DA binding sites on VMAT2 inside vesicles, 

and the subsequent release of the neurotransmitter. In addition, analog-induced 

inhibition of transport of methamphetamine into vesicles might also prevent the 

weak base effect of methamphetamine and subsequent DA release.  

At high concentration, methamphetamine-induced [3H]DA release 

was not inhibited by any of the analogs. The VMAT2 inhibitor TBZ did not 

inhibit the effect of methamphetamine to evoked [3H]DA release as well 

(Horton et al., 2013). These results suggest that high concentrations of 

methamphetamine evoke [3H]DA release from vesicles not via VMAT2. 

This suggestion was supported by previous studies in which 

methamphetamine, as a lipophilic weak base, could diffuse across the 

vesicular membrane to alkalize the vesicular lumen, abolish the pH 

gradient and release vesicular DA (Peter et al., 1995; Sulzer et al., 2005). 

Thus, high concentration methamphetamine-evoked [3H]DA release, not 

sensitive to VMAT2 inhibitors, could be due to diffusion across the 

membrane and the weak base effect. Such diffusion of methamphetamine 

only occurred at relative high concentration. Such high concentrations of 

methamphetamine can only be utilized in in vitro studies and would not be 

realized in vivo. These in vitro studies were performed to evaluate the 

mechanism of action of the drug. 

The synaptic vesicle with four binding sites in Horton’s study (Horton et al., 

2013) and the above studies in this dissertation was a model of VMAT2C-
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contianing vesicles. In addition, inhibition studies using VMAT2M-containing 

vesicles were also performed to determine whether the contradictory results in 

the slice and vesicular release study was due to the effect of methamphetamine 

and (R)-GZ-924 on the VMAT2M-containing vesicles. Similar to the study using 

VMAT2C, (R)-GZ-924 inhibited methamphetamine-evoked [3H]DA release via 

VMAT2M in the surmountable allosteric manner. Thus, VMAT2M-containing 

vesicles are not responsible for the contradictory results. Based on the 

characteristics of allosteric inhibitors, (R)-GZ-924 bond a different site from 

methamphetamine site on VMAT2M and inhibited the methamphetamine-evoked 

vesicular [3H]DA release. Further studies exploring the binding sites on VMAT2M 

are needed to investigate the mechanism of interaction of methamphetamine and 

(R)-GZ-924 with VMAT2M.  

4.4 Mechanisms Underlying (R)-GZ-924 Effect on Methamphetamine and 

Nicotine-evoked DA Release from Striatal Slices 

Activation of nicotinic receptors in the brain leads to DA release from 

presynaptic terminals via vesicle fusion to the presynaptic terminal membrane 

and release of vesicular DA. Methamphetamine redistributes DA from the 

vesicular component to the cytosolic component in presynaptic terminals. Both 

nicotine and methamphetamine-evoked DA release originated from synaptic 

vesicles. In the current study, (R)-GZ-924 evoked DOPAC overflow from rat 

striatal slices, indicating that DA in vesicles was redistributed to cytoplasm and 

metabolized by MAO. However, it was not fully understood why 
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methamphetamine-evoked DA release was not inhibited. In addition, (R)-GZ-924 

inhibited nicotine-evoked [3H]DA overflow from striatal slices, and at the same 

concentration range, released vesicular [3H]DA by reducing vesicular content. 

Since nicotine-evoked release of [3H]DA was from synaptic vesicles, it was 

possible that nicotine-evoked and (R)-GZ-924 redistributed [3H]DA were the 

same. Thus, (R)-GZ-924 might inhibit nicotine-evoked [3H]DA overflow by 

redistributing DA from synaptic vesicles into cytosol. Alternatively, (R)-GZ-924 

might inhibit the neurochemical effect of nicotine by acting as nicotinic receptor 

antagonist.  

The interpretation that (R)-GZ-924 did not inhibit MAO function was based 

upon the observation that (R)-GZ-924 in a dose dependent manner increased 

DOPAC overflow, and a similar analog-induced DOPAC overflow was reported in 

in Horton’s study (Horton et al., 2011b). This interpretation was further supported 

by the experiment in this dissertation to determine the ability of (R)-GZ-924 to 

inhibit methamphetamine-evoked [3H]DA release from striatal slices in the 

presence and absence of the MAO inhibitor pargyline. Pargyline increased DA 

content in striatal tissue and vesicles by inhibiting the metabolism of DA (Buu and 

Lussier, 1989; Fekete et al., 1979), and pargyline pretreatment exacerbated 

methamphetamine depletion of DA content (Kita et al., 1995). Thus, pargyline 

would be predicted to facilitate methamphetamine-evoked [3H]DA release since 

pargyline-induced inhibition of MAO would increase cytosolic DA available for 

methamphetamine-induced reverse transport via DAT. Consistent with the study 

using endogenous DA, methamphetamine-evoked [3H]DA release was not 
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inhibited by (R)-GZ-924 in the presence or absence of pargyline. Interestingly, in 

the presence of pargyline (R)-GZ-924 did not release [3H] by itself, while in the 

absence of pargyline (R)-GZ-924 released [3H] in a concentration dependent 

manner. This result was not a surprise since in the absence of pargyline [3H]DA 

would be metabolized by MAO into [3H]DOPAC or other [3H]metabolites. The 

[3H]metabolites then diffuse across the membrane following the concentration 

gradient. Thus, (R)-GZ-924-evoked [3H]metabolites release was measured 

instead of [3H]DA, indicating a lack of MAO inhibition by the analog. In addition, 

in the presence of pargyline, (R)-GZ-924 redistributed DA from vesicles to 

cytosol and the redistributed DA would not be metabolized due to pargyline 

inhibition of MAO. The redistributed [3H]DA appeared to be trapped in the 

presynaptic terminals and did not appear in the extracellular fluid. Thus, the 

subsequently exposure to methamphetamine released a greater amount of 

[3H]DA compared with exposure to methamphetamine alone. Although 

methamphetamine-evoked [3H]DA release was not inhibited by (R)-GZ-924 in the 

presence or absence of pargyline, the lack of MAO inhibition by (R)-GZ-924 was 

further supported by the above study.  

In addition, (R)-GZ-924 inhibited nicotine-evoked [3H]DA release from rat 

striatal slices, indicating a possible interaction of the drug with nicotinic receptors. 

Such interaction with nicotinic receptors was reported for lobeline which interacts 

with both α4β2* and α7 nicotinic receptors. In addition, lobeline inhibited nicotinic 

receptors mediating nicotine-evoked [3H]DA release (Miller et al., 2000; Miller et 

al., 2001). Although defunctionalization of the lobeline molecule afforded 
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lobelane analogs with no interaction at nicotinic receptors (Miller et al., 2004), 

removing the C-3 and C-4 carbons in the central piperidine ring afforded acyclic 

lobelane analogs which may have had affinity for nicotinic receptors. An 

extraordinary diversity of nicotinic receptors are expressed in brain (Dani and 

Bertrand, 2007). Among all the subtypes of nicotinic receptors, six heteromeric 

nicotinic receptor subtypes expressed on dopaminergic nerve terminals mediate 

nicotine-evoked DA release. Four of these subtypes included α6 subunits 

(α6β2β3*, α4α6β2β3*, α6β2*, α4α6β2*) and are sensitive to α-conotoxin MII (α-

CtxMII). The other two subunits (α4β2* and α4α5β2*) without α6 subunit do not 

show high affinity/sensitivity for α-CtxMII. (R)-GZ-924 is predicted to not act as an 

antagonist at α4-containing nicotinic receptors due to the finding that (±)-GZ-

819B, which includes (R)-GZ-924, did not bind to α4-containing nicotinic 

receptors. Thus, the analog may inhibit nicotine-evoked [3H]DA release as an 

antagonist at α6-containing nicotinic receptors. However, nicotine-evoked [3H]DA 

release was inhibited by ~80% in the current study, while α-4 and α-6 containing 

nicotinic receptors mediate ~50% of the total nicotine-evoked DA release, 

respectively (Pivavarchyk et al., 2011). An explanation for the greater inhibition is 

that (R)-GZ-924 may not be selective for specific nicotinic receptor subtypes, 

thus providing greater inhibition of the effect of nicotine. Additionally, a channel 

blocker, mecamylamine, has been reported to inhibit nicotine-evoked DA release 

completely by blocking the ion channel. Thus, (R)-GZ-924 may act as a channel 

blocker in a manner similar to mecamylamine to inhibit nicotine-evoked [3H]DA 

release from presynaptic terminals (Smith et al., 2009; Varanda et al., 1985) 
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4.5 Mechanisms Underlying (R)-GZ-924 Inhibition on Methamphetamine 

Self-administration in Rats 

 (R)-GZ-924, in a dose-dependent manner, inhibited methamphetamine 

self-administration in rats, without inhibition of methamphetamine-evoked 

endogenous and [3H]DA release from striatal slices. However, (R)-GZ-924 might 

inhibit the neurochemical effect of methamphetamine in other brain regions 

involved in the mesocorticolimbic DA pathway such as the frontal cortex and 

NAc. In addition, VMAT2 transports monoamines including NE and 5-HT into 

vesicles in the presynaptic terminals as well and modulates the transmission of 

NE and 5-HT in brain. Furthermore, bupropion, a NET and DAT inhibitor, 

decreased the craving for methamphetamine in early abstinence and prevented 

relapse by inhibiting the reinforcing effects of methamphetamine (Berigan and 

Russell, 2001). Pre-treatment with the serotonin reuptake inhibitor fluoxetine 

inhibited methamphetamine-induced locomotor sensitization in mice (Takamatsu 

et al., 2006). Thus, (R)-GZ-924 may inhibit methamphetamine self-administration 

by modulating NE and 5-HT interactions. Interestingly, (R)-GZ-924 inhibited 

nicotine-evoked [3H]DA release from rat striatal slices, indicating a possible 

interaction of the drug with nicotinic receptors. Nicotinic receptor ligands are 

capable of regulating the neurochemical and behavioral effect of 

methamphetamine. Inhibition of the behavioral effect of methamphetamine by 

nicotinic receptor ligands was first reported by Glick et al in 2008. Specifically, 

local infusion of an α3β4 nicotinic receptor antagonist into medial habenula, the 

interpeduncular area or the basolateral amygdala decreased methamphetamine 
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self-administration by indirectly regulating the dopaminergic mesolimbic pathway 

(Glick et al., 2008). Thus, possible interactions of (R)-GZ-924 with nicotinic 

receptors led to the suggestion that the analog could also inhibit α3β4 nicotinic 

receptors to inhibit methamphetamine self-administration in rats.  

Unfortunately, food-maintained responding was inhibited by (R)-GZ-924 

and the inhibitory effect was not tolerated after repeated treatment, 

demonstrating that the effect of the analog was not specific for 

methamphetamine. The nicotinic receptor channel blocker mecamylamine 

inhibited food self-administration in rats by inhibiting the neurochemical effects of 

nicotine (Levin et al., 2000). Thus, the effect of (R)-GZ-924 on food-maintained 

responding could be due to the inhibition of the neurochemical effects of nicotine. 

In addition, since (R)-GZ-924 may bind nicotinic receptors, the analog could 

inhibit food-maintained responding by interacting with peripheral nicotinic 

receptors, leading to undesirable gastric side effects reflected by the food-

maintained responding results.  

4.6 Limitations 

The in vitro models were utilized to determine the potency and selectivity 

of lobelane analogs at VMAT2 and the ability to inhibit methamphetamine-evoked 

DA release from rat striatal vesicles and slices. When comparing potency of 

analogs across different experiments using different tissue preparations, it was 

assumed that analogs had universal access to the protein targets. For instance 

analogs were assumed to have equal access to DAT between striatal 
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synaptosomal preparations and slice preparations, while in fact analogs would 

have greater access to DAT in the synaptosomal preparations. In the case of 

systemic treatment, assumptions were made that the analogs were capable of 

reaching the pharmacological targets as the in vitro studies. However, in vitro 

studies such as the vesicular DA release assays were performed in which high 

concentrations of methamphetamine were used. In addition, affinities of analogs 

for the transporters were obtained via in vitro models and the intact physiological 

systems were not utilized. Lack of druglikeness and poor water solubility was a 

characteristic of some of the analogs in the first series and the physical chemical 

properties of the analogs should be considered before conducting the structure 

activity relationship studies. 

4.7 Conclusion 

The research in this dissertation has been focused on discovering VMAT2 

selective lobelane analogs as treatments for methamphetamine abuse. A lead 

analog, (R)-GZ-924, was discovered and inhibited methamphetamine-evoked 

vesicular [3H]DA release. Furthermore, (R)-GZ-924 inhibited both 

methamphetamine self-administration and food-maintained responding in rats, 

indicating that the decrease in responding for methamphetamine was 

nonspecific. The lack of specificity for methamphetamine in rats prevented 

potential pharmacotherapeutic benefits. Further evaluation of the pharmacophore 

is needed to discover VMAT2 ligands which specifically inhibit the neurochemical 

and behavioral effect of methamphetamine. 
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4.8 Future direction 

More analogs will be generated and evaluated for VMAT2 activity 

and selectivity. Current SAR studies in our lab indicate that an analog with 

a central piperazine ring (JPC-141) exhibited potential as a clinical 

candidate to treat methamphetamine abuse. The lead piperazine analog 

did not possess potential cardiac toxicity and inhibited methamphetamine-

self administration in rats with an effect on food which was tolerated after 

repeated treatment (our unpublished observations). In the current study in 

this dissertation, removing the C-3 and C-4 carbon in the central piperidine 

ring in lobelane analogs afforded acyclic lobelane analogs with increased 

affinity for VMAT2. Thus, structure modification of the central piperazine to 

afford acyclic JPC analogs could be performed in the future SAR studies. 

Before synthesis of the analogs, the cardiac and liver toxicity of the 

designed analogs will be predicted in silico. Analogs with great chance to 

possess cardiac and liver toxicity will be avoided. The predicted non-toxic 

analogs will be synthesized and analogs with a 30-fold selectivity for 

VMAT2 over DAT, hERG, and nicotinic receptors will be evaluated in the 

endogenous DA release assays using striatal slices. Analogs inhibiting 

methamphetamine-evoked endogenous DA release will be synthesized in 

larger quantities and evaluated in methamphetamine-induced locomotor 

sensitization study, providing initial efficacy data in rats. Analogs 

decreasing methamphetamine-induced locomotor sensitization will be 

evaluated in striatal DA content study in combination with 
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methamphetamine. Analogs without exacerbation of methamphetamine-

induced DA depletion will be evaluated in the methamphetamine self-

administration and reinstatement using both peripheral and oral 

administration. In addition, analogs passing the above screen will be 

further evaluated in pharmacokinetics, including absorption, distribution, 

metabolism, elimination, and toxicity, to determine their potential as a 

clinical candidate.  
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Figure 4.1. Chemical structure of (±)-GZ-729C and (±)-GZ-730B. 
(±)-GZ-729C is a non-symmetrical lobelane analog with 1,2 methylene 

units in the linkers and (±)-GZ-730B is a lobelane nor-analog with 1,3 methylene 

units in the linkers. 

 

Figure 4.2. Chemical structure of (R)-GZ-924 and (±)-GZ-819B. 
(R)-GZ-924 is one of the enantiomers of (±)-GZ-819B, an acyclic nor-

analog incorporating an amphetamine scaffold, a 3-carbon linker and with no 

substituents on the phenyl rings. 
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